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Pauli was very impressed by this paper which he labeled as Killén “looking
behind the veil of Dyson’s power series”. He wrote about it to several people
(see the chapter on “Non-perturbative Renormalization” in Part 4).

In this paper Killén takes his first steps to go beyond perturbation the-
ory in quantum electrodynamics. He uses the Heisenberg representation for
the electron and the photon field operators and expresses the renormalization
constants in terms of spectral functions. The charge renormalization constant
L emerges in the vacuum expectation value of the commutator of the pho-
ton field and its time-derivative (see Eq. (40)) and is related to Killén’s weight
function IT which appears in the vacuum expectation value of the commuta-
tor of the current operator at two different space-time points. The definition
of the mass renormalization constant K is carried through in a similar way
by considering the vacuum expectation value of the anticommutator of the
fermionic current (the right-hand side of the Dirac equation) taken at two
different space-time points.
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Separatum

HELVETICA PHYSICA ACTA

Volumen XXV, Fasciculus Quartus (1952)

On the Definition of the Renormalization Constants
in Quantum Electrodynamies

by Gunnar Killén.*)
Swiss Federal Institute of Technology, Ziirich.

(14. I1. 1952.)

Summary. A formulation of quantum electrodynamics in terms of the renor-
malized Heisenberg operators and the experimental mass and charge of the
electron is given. The renormalization constants are implicitly defined and ex-
pressed as integrals over finite functions in momentum space. No discussion of
the convergence of these integrals or of the existence of rigorous solutions is given.

Introduetion.

The renormalization method in quantum electrodynamics has
been investigated by many authors, and it has been proved by
Dyson?) that every term in a formal expansion in powers of the
coupling constant of various expressions is a finite quantity. No
serious attempt at a discussion of the convergence of the series
has been published, and the definition of the renormalization
constants is always given as a formal series where every coefficient
is infinite. It is the aim of the present paper to give a formulation
of quantum electrodynamics where only the renormalized opera-
tors (in the Heisenberg representation) will appear and where the
renormalization constants are defined in terms of these operators
and the experimental mass and charge of the electron. There thus
exists a possibility of studying the renormalized quantities directly
without the aid of a power series expansion and especially to decide
if they are really finite and not only a divergent sum of finite terms.
No discussion of this point, however, will be given in this paper,
only the formulation of the theory.

*) On leave of absence from Department of Mechanics and Mathematical
Physics, University of Lund, Sweden.
1) F. J. Dysow, Phys. Rev. 83, 608; 1207 (1951) and earlier papers.



90 Paper [1952a] 511

418 Gunnar Killén.

The starting point of our analysis is the following formal Lagran-
gian
Nt [— (0 N[ 0% (x) = ;
L=— 4—[50 (&), (y k)".{:' —i:—'m) w(x)] - —4—{— =t my(x), p(z)|+
? i — L1 0d,(x) 04u(x)
+5 Ny (@) v(@)] -5 55 5.,
i=& ( 04y(2) ‘)_A-{'..ff}_') (@_‘_x}_ - iﬁfﬂ) ne

0z,  O0x 0z 0,

+ 5 N2 A (@), [P (@), v v (@)} ()

In this expression Ay(z) is the renormalized vector-potential of
the electromagnetic field, p(z) the renormalized Dirac-operator of
the electron-positron field, m and e the experimental mass and
charge of the electron, and K, L and N three universal constants,
the definition of which will be given later. The three quantities K,
N-1 and (1—L)~! might be infinite but in spite of that, we will
adopt the convention that the usual algebraic operations can be
performed with them. K and L describe respectively the mass- and
the charge-renormalization, and N i1s a normalization constant for
the w-field. The other notations are nowadays standard symbols
in quantum field theory.

From the above Lagrangian we obtain without difficulty the
following equations of motion for the field operators in the Hei-
senberg representation

(v o5 +m) p(@) = 5 {4,@, 0@} Kyp@=i@ @

: 18 Liop= & 04, - :
O Au(®) = 3% N¥[p (@), v 9(®)]+L( 0 Au(2)- 252 == ju(2). B)

T 0z, 0,

In Eq. (2) and (3) f(z) and ju (z) are only to be considered as abbre-
viations for the right-hand sides.

From our Lagrangian we can also obtain the commutators for
the electromagnetic operators and their time-derivatives in two
points, the distance of which is space-like, and the corresponding
anticommutators for the electron field. As the terms with K and L
contain the time-derivatives of 4,(x) but not of y(z), the canonical
commutators involving the electromagnetic potentials will be
rather complicated and really meaningless if L = 1, but the anti-
commutators of the matter-field will have the simple form

{Pa(2), (@)} = )g- N2 0@ —F) for ;y=2,  (4)
6(3) =0 (z,) 8(zs) 0 (xy). (1)



512 Portrait of Gunnar Kallén

On the Definition of the Renormalization Constants. 419

For the electromagnetic potentials we get for (z —z)* > 0

[4,(x), 4,(z)] =0 (5)
| . cos— —=n [ Our L
{ o) A,_m)] -—i3@-3) [y - 15 6,&4614] 6)
0Au(z) 04, () i 0 0 -,
['_5? ST ilL'(‘s-“*‘a'x, 0, 'a'x';.'] o(z—2). (7)

Besides, every component A, will commute with every component
of p on a space-like surface.

General Properties of the Operators.

The two equations of motion are formally integrated with the
help of the retarded singular functions and the operators for the
free fields

p(z) = pO(z) - N j,s z— ') f(a') da’ 8)
Ay(@) = AP (@) + [ Dol — @) ju (=) A&’ (9)
Sp(z—a) = §(z—2) - + S(z—2) (10)
Dy(z—a) = D(z—12') — 5 D(z— ). (11)

The integral equations (8) and (9) have the same solutions as the
differential equations (2) and (3) but contain also the boundary

conditions for t = — oo, The operators @ (z) fulfill the following
formulae

{93 (x) ‘0‘ N}=- aSﬁ T’ — ) (12)

<0[[w(0} ’ :U} ]I0> Sm ( ’ $) (13)

The properties of the operators 4 (x) are a little more delicate.
In practical calculations, we want to use the formulae

[4Q (), AD(z')]=— 104y D (2’ —1) (14)

0| {4 (x), AD(z')}| 0> =b,, DV(z’' - z) (15)

but it is well-known that these formulae are inconsistent with the
Lorentz-condition

(ﬂi
d‘4p{x) ' ‘4 ( ) |

OIF |1)U>: dx |!p 0‘ (16)
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On the other hand, it can be shown that this inconsistency is of
no importance if only gauge-invariant expressions are calculated?).
However, in what follows we will not only be interested in gauge-
invariant quantities and are thus forced to discuss Eq. (14) and
(15) in more detail. For our purpose, the most convenient way to
do this will be to adopt the indefinite metric of Guera®) and
Brevier?). In this formalism the Lorentz-condition (16) is re-
placed by the weaker condition

() AP )y

x> =0 (17)
and as a consequence of this, equation (14) can be fulfilled. (F*)(z)
means the positive-frequency part of the operator F(z).) Further,
if the vacuum is suitably defined (no scalar, transversal or longi-
tudinal photons present) Eq. (15) follows from the formalism, but
1t must be understood that this is a non-gauge-invariant conven-
tion. The special gauge chosen corresponds to

(0] 4,(x)[0)>=<0[4(x)[0>=0. (18)

In what follows we will, when necessary, use this gauge.
From our Lagrangian we can construct an energy-momentum
tensor Ty and from this one a displacement operator P, fulfilling

[P.us Pp] =0 (19)
[Bu F(2)] =i 52 (20)

In Eq. (20) F(x) 1s an arbitrary operator depending on the point z.
Eq. (19) thus expresses the fact that the P,’s are constants of mo-
tion. As all the operators P, commute with each other, we can
use a representation in the Hilbert space where every state vector
1s an eigenvector of all the P,'s with the exgenva.lues Pu- In this
representation Eq. (20) reads

<a|[ By, F(2)]]b> = (pi — piY) <a| F(2) | b) =
9 (a|F(z)|b. (21)

=1 -
0x,

Hence
(a|F(x)|b)> = a|F|bye®?-rz (22)
-;. Cf.e.q. S T. Ma, Phys. Rev. 80, 729 (1950) and other papers quoted by him.

%) 8. N. Gupra, Proc. Phys. Soc. London 63, 681 (1950).
1) K. BLEULER, Helv. Phys. Acta 23, 567 (1950).
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Here pfj;) and piﬁ” are the eigenvalues of P, in the states |a )
and | b>. In this representation, the z-dependence of an arbitrary
operator is thus given by Eq. (22). The detailed form of the opera-
tors P, is of very little interest for the present investigation, and
we will not write them down explicitly but make the following
assumptions concerning the eigenvalues py:

a) Every vector py is time-like.

b) There exists a state with a smallest eigenvalue of the time-
component p,. This state by definition will be called the vacuum
and, with a suitable renormalization of the energy, this eigen-
value of p, can be put equal to zero.

It is supposed that the above definition of the vacuum is not
in contradiction with Eq. (18).

Definition of the Constant L.

We are now able to turn to the main problem of this paper,
i. e. the definition of the universal constants K, L and N in the
Lagrangian (1). We begin with the definition of L that describes
the charge-renormalization. This is conveniently stated in terms
of the matrix elements of the operators 4, (z) between the vacuum
state and a state where only one photon is present. (As we are
working in the Heisenberg representation some care is necessary
when we are speaking of a state with a given number of particles
present. If, however, 1t is understood that we hereby always specify
the system for { = — oo, no ambiguities will arise. The occupation-
number operators are then constructed from the special operators
AR and %@ introduced in Eq. (8) and (9).) At the first moment
it would seem natural to introduce the following condition for the
matrix elements

0| dy(@) | k> =<0 4p(z) [k (23)

where | k) decribes a state with only one photon with energy-
momentum vector k, but as the calculation below shows, this can
only be fulfilled for the transversal photons. If also the longitudinal
and scalar photons are considered, the correct condition for
<O Au(x) | kD is

0| dy(w) k> = (840 + M a‘fa‘,:-;_) 0| AO() k> (24)

where M is another universal constant (i. e. independent of z and
k). Eq. (24), together with the commutators (5), (6) and (7) and
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the equation of motion (9), determines the two constants L and
M uniquely in terms of the matrix elements of the current operator
in Eq. (3). As this contains the constant L explicitly and the other
constants implicitly, the definitions of L and M are only implicit.

We now compute the vacuum expectation value of the commu-
tator between the electromagnetic potentials and obtain

CO|[Ap(), 4,(2)]]0> = <O [AD(a), 4D(a")]| 0> +
+<0[Au(z) - AP(@), 4P(2)]] 05 + C0|[4{(), 4,(2") — 4P(") ]| 0>+
+ [ [ da"dz" Dy(z — ") Dy’ — 2") 0| [ju(2"), 5,(2")]] 0. (25)
It is here convenient to introduce a special notation for the vacuum

expectation value of the current commutator. Considering the defi-
nition of a matrix product and Eq. (22), we obtain

<O [Gu (@), 5,(2)]10)> = 37<0]jul2><2]5,] 0) e~ =2 _

| 4 \ y i\ —x =il i iplz’'—z &
P XUADTAI MO ’—*(ng.;é{v/dpem 'z, (P) -

Po =0
_‘J/dpeip(:’—-z}n;:v’ (p)} (26)
Pos O
nL*vl(p) oy V“Z' <0[7,12><2]7u]0> (26a)
p¥=p
@) >V 3 COljul2><zl5,10) (26b)
pE=—p

In Eq. (26a) and (26b) V is a large volume in which the fields are
supposed to be enclosed, and summation over states and inte-
gration in p-space are freely interchanged. Due to the equation

DIBY 27)

0 xy

(which 1s easily verified from Eq. (3)) we must have
() _(+) =) (=) ”
PuTuy =Tuy Py = Puuv =Tuv P, = 0. (28)

From reasons of invariance, on the other hand, :t(j‘f must have
the form

55 (B) = 8y A9 (0) + D, B0 )
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Combining (28) and (29) we get

T;:—v]{p) - (— p? onv Pu Py = }\p) (30)
with )
AP = = 30025200 =Y. (8)
p=p

We thus have ‘
O] [ju(®), 7,()]10) =

-1 3 s ]
=gy | APEPTTe®) (-2 0u+pup) (P (32)

7z (p?) — 37 Z(O,},:U(zu,!ﬂ). (32a)
R
Here it can be observed that if we compute the vacuum expectation
value of the anticommutator instead of the commutator we get

<O|{ju(x),5,(x)}0>=
N _ "
= gy | A€ TP (= P2y + pup) 7 (P (33)

with the same function = (p?) in (33) as in (32). This follows imme-
diately from the analysis above. Noting that z(p?) = 0 unless
p? < 0 (this follows from Eq. (32a) and (24)) we can further write

CO[[Jul®), 7,(2")]]0> =

o | 4 T ' i o :
=@y ) 4P e!?¥ e (p) [ dad(p*+a)(~p*ouy+pup)n(-0a)=
._-_;/da(jéu,, Ox";x)J(xux,a)x(-a). (34)

]
Heve 4(z’ — x, a) is the usual singular function constructed with
the *‘mass” |/a. Thus we also have

— 5(2' = 7)< 0| [ju(2),,()] 0> =
[ 46— 5 (@' 5, 2~ a) =
)
=g | APEPE I (= P 0+ ) F (Y (35)
7 (p*) =P / :HL] (35a%)

pi+a

*) The letter P in Eq. (35a) indicates that the principal value of the integral
has to be taken in the point a = — p2.
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Returning to Eq. (25) we get with the aid of (24) and (32)

O[[Au(z), 4,(x ) 10> =

[dpeir=2¢ /daz){p +a)Fy, (36)

(’“I)J

Fuy=0(0) (Our— 2 M pup)+ 252 (8, + P2P-) =
= 8uy(3(a) + 262) +p‘u’p,(ﬂa_m 2Ms(@).  (87)

Putting z," = z, in (36) it follows from (5) that we must have

1 (-
M=5 [ 250 da. (38)

The integral in (38) may diverge both for a = 0 and for a = oo.
The first divergency is of a kind usually classified as “infrared’.
It can always be avoided if we introduce a small photon mass wu.
The function 7 will then vanish for ¢ < 9 u?, and the denominator
is zero only for a = u% We will not investigate this point further.
The convergence of the integral at infinity will be discussed later
in this paragraph.

Performing a differentiation with respect to the time ¢ in (36)
and putting the two times equal afterwards, we obtain

<ol [F"_*a.{i’. A,)]107> = —i8,,0( - ) (1+7(0)) -

To=1,
=]

~ | 4P E7E D [dapopup,e(p)o(p?+a)| "G —2 M o(@)] . (39)
0

If © and » are both equal to 1, 2 or 3, the last integral in (39) is

zero due to Eq. (38). If they are both equal to 4, we get

s =]

—<2_;;= | @pe?¥=2 [ da(-p2-a)(Z5Y — 2 Mo (a)) =

0

i0(z' —1)7(0).

If only one of the indices x and » is equal to 4, the integral will
vanish due to reasons of symmetry. We thus have

Q0 [24), 4,0)] 0> =

Zymzy’

= —18(T —Z) [ur(1 +7 (0)) — 8, 8,7 (0)] - (40)
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Equations (40) and (6) are identical if

— 1

1+7(0) = 41 (41)
which is our formula for L?). It now only remains to verify that
Eq. (7) 1s consistent with the formulae (38) and (41). With the
same method as used above we find from Eq. (36)

<0 [Q‘i;.(rf!'f_)‘h{x)] 0\._1 [%o + “% o(z'—x) (42)

which is in fact identical with (7) due to (41).

If we consider the definition of the function z(p®) in Eq. (32a),
we observe that 1t is defined as a sum over only a finite number
of terms or rather as an integral over a finite domain in p-space.
(The two surfaces p? = 0 and p? = — m?, where in fact an infinite
number of states exist, are of no importance, as the first kind of
matrix elements will vanish in view of Eq. (24) and the second
kind will vanish as a consequence of the charge-invariance.) If a
solution to our equations exists at all, 7z(p?) is thus a finite quantity
for all values of p% The question if L, M and 7(p? are finite or
not 1s thus answered, if we know the behaviour of z(p?) for large
values of — p2% The assumption of the renormalization method is
that although (0) might be infinite (and hence L = 1) the diffe-
rence 7(p?) —7(0) (and thus also M) is finite. This means that
7i(p?) is not allowed to increase as strongly as — p? for large values
of — p2.

Concerning the general behaviour of the function z(p?), we will
here only mention that it must be positive. This follows e. g. from
the formula

V“2<0|j,,iz> 2[7ul0> = (= P* duv+pup) n(p?)  (43)
p'¥=p
if we here put 4 = » = 1. As the z-component of the current ope-
rator is self-adjoint (not Hermitian, in view of the indefinite metric!)

we have i

¢2|72] 0y = (KO|7|2p)* (= 1)+ . (44)

In Eq. (44) N® means the number of scalar photons in the state
| z>. To obtain (44) we have made use of the explicit form of the

%) A similar formula for the charge-renormalization but in terms of the un-
renormalized current operator has been given by UsEzawa and KamerucHr, Prog.
Theor. Phys. 6, 543 (1951).
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metric operator as given by Gurera?) and BLevLeErY). Eq. (43) and
(44) now give
v R N i
A(p%) = == 2 |07l D[F(=1)7 - (43)
Pr— P (z) =
p»er=p
The negative contribution to the sum in (45) from a state with a
scalar photon will exactly cancel with the contribution from a si-
milar state with a longitudinal photon, if we observe that the current
1s a gauge-invariant operator, and hence that we can write

Oljulz, k> =F,; <O[AP [k (46)
with
Fpi )'1')'= g. (47)

In (46) | 2z, k ) means a state with one photon with energy-momen-
tum k and other particles present, some of which may also be
photons. The quantity /', then depends on the vector k (but not
on the polarization vector of the photon) and on the annihilation
operators of the other particles. The only surviving terms in (45)
will then be the contributions from the transversal photons and
these terms are all positive. It thus follows

7 (p?) =0 (48)
7(0) = ../‘ D 4z 0 (49)
(1]
a(0) =
U < l_:}:_:'?_(ﬁ}_ = L g ]. . ('JO)

This property of the charge-renormalization has earlier been proved
by ScuwiNGER (unpublished) in a somewhat different way. I am
indebted to professor Pavwur for information concerning SCHWIN-
GER's proof.

Definition of the Constant K.

The definition of K (the mass-renormalization) can be carried out
in a way similar to that of the definition of L. Here we state the
renormalization in terms of the matrix elements of the operators y
between the vacuum state and a state | ¢ > with only one electron
present

0| p(z)| g =<0|p(z)|g> (51)
or

<0/ f(z)|g>=0. (52)
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To investigate the last condition we compute the vacuum expecta-
tion value of the anticommutator between f(x) and @ (z').

Oi{p2’ (@), f3(2) 0> =2 (<09 (2") Ig><q| f3(x) 0>+

T

+ <0]f5(x) [ @> <qlyP(2) [ 0>) . (53)
With the aid of the formula

N-1-5O(z) = [ f(z") S(@"—a') da"—i [p(z") y,S(z"—a)d%z"  (54)

o "v’
—c0 %" =z,

(Eq. (54) follows from the equation of motion (8) — or rather its
adjoint — and some well-known properties of the S-function) we
can write

N~ 0| {p ('), f(z) }| 0 = //0 {,.' z"), ()} 0> S(z"—=z)dz"—
—i/ O{w(x"), f(2)}|0)y,S(z"—z')d?z". (55)

The three-dimensional integral in (55) contains the anticommutator
of operators for equal times and can thus be calculated with the
aid of (4). In view of the definition of f(z) in Eq.(2) we get

{v(z"),f(x)} = (iey A(z) + K) y,6(z—z")-N-2 (56)

Ig—fp

O|{w(z"), f(2)}|0> = K'p,6(z—Z") (57)

z,,—zo

(in view of Eq. (18))

N0 {pO(x'), f(z) }|0y = / <l {f(x f(z)} 0y S(z"—2")dz"—

—iK'S(z—z); (K’ = K-N-%). (58)

Here again it is convenient to introduce a special notation for the
anticommutator in (58). In analogy with (26) we write

<0[{f z"), f3(2)} 0> =
_ (2;;? ( /"‘d'p esp{.c—z”l{:tlv)(pa) + ('*:?P + m) Eéél)(pz)}ﬁf:'_

Pa ;‘0

+ [dpetre=( 3 (pe *(-e:ypsz‘;-*(pz)}ﬁx) (59)

p,cl}



90 Paper [1952a] 521

428 Gunnar Kallén.

(Z'" +(yp+ m“aZ'" ) e =-—Tr'2(0jfﬂ}z>{z]f;i0‘) (39a)
pEl=p

(X @) +Eyp+m) @) ==V 3 012> C2[f0>. (59b)
pFl=—p

In view of the charge-invariance of the theory, we must have

—V 30| (C-1), 12> 2 (Cfi,10> =

pP=—p
= TP byt iy p+mly, X O (60)

where C is the charge-conjugation matrix of ScawiNGERrS®), which
has the following properties

CT=—-C (61)
—C-1y,C =97, (62)
If we compare (60) and (59a) we get, considering (61) and (62)
2 = — i) (63)
2( )(p?) Z‘t’ ) (p?). (63a)
O{f (2", fs(2)}]0> =
= T{—%s— v/'d p &P e(p){ X (p) + iy p+m) X, (p*) }s. - (64)

We thus have

As on page 423 we also have
OllF(z"), f5()]10> =

= (—31,}—3 [dp P 3 (p) +(iyp+m) X, (pH ). (63)
and
5 e(@—2") (O {f,(z"), f5(z) }| 0> =

(, ~rg /dpe”"‘ HE () +Gyp+m) 3 (00}, (66)

Zen=P [ 250 da; (=19). (67)

m?

%) J. ScEWINGER, Phys. Rev. 74, 1439 (1948).
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With these notations we can write Eq. (58) as
N-10} (5O (), f(x)}] 0 =
L r—zx" } N v " r
= .,,3 [da" [dpeiresntd {2 )+ (iyp-m) Z,(pY) }S(2"~2) +

b s[4 [dp == 5 0+ (i p+m) £, (9} S (" )=
—iK'S(z—2'). (68)
As
S(@) = g [ ApETTe() (iyp—m) 8 (p+m?)

Eq. (68) can also be written
N—- I <0|{W(U] Itx } 0)_
= —i[K'— 3 (—m*)—izne(p) Y (—m?)]S(z—2).  (69)

From Eq. (52), however, it follows that the right-hand side of (69)
must vanish and, as Z;(—m?) = 01in view of e. g. (539a), this means

e s Pl s s o
K'=3 (—m)= | 1-9) go=K-N-2. (70)

m!

Eq. (70) gives the formula for K. Returning now to Eq. (51), we
can write the matrix element of y between the vacuum and an
one-electron state

Ol (@) 0> = <O ¥(@) | g + (1= ) <0 ¥™(@) | g>. (71)

The normalization constant N can be determined from the anti-
commutator of p and y for equal times. Computing the vacuum
expectation value of this quantity, we get in analogy with Eq. (25)

O|{w (@), p(@)}0y = 3o S(z'—2)[1+2(N—1)] +
+f /'dm'*d.z-'"sﬁ(x*—x” OF (", Fz™} 0> S, (" —x) =

o bon e A (N
(2-:}1 /dpelmx Ye(p )[MP'Tm') +'—‘E(';—}
B (%) + iy p +m 2, )}y p—m). (72)
As _
iyp—m X z/p m
pi+m? (2 *(l’f’p m}Z) p+m? o

o -5, 2m5 B -
= tb/p m) [p3+m2 (p3+’n1)2 - p3+n13 ("3)
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we get for equal times with the aid of (4)

N-2y, 80—z )=y,0(r—T ‘1[11‘2*{\\__1} e
' [=Z(-a) _ Zm.E'l(—a}] e
_, d&l i e i {a_m :._ ] (I‘—l:)
and hence
N-1 - — -
_\-"'=":_§']_(Z->( m?) + 2 ’”Z (- m?) (75)
’ ; E(-—u}da d Z (p?) -
= VI a e (pl)
ZI( m‘] ‘{ (a—m?)? d p* pi=—mt (fﬁ)

As was the case with the function 7(p?), it is necessary if the renor-
malization method 1s consistent that the difference

SE)-Z . (=m) (=12

15 finite, or that the integrals

o0

/- E,_'('-(I} da

(p*-l—a} (@ —m?)

m!
will converge. The last term in (75) is thus a finite quantity (apart
from an infrared divergency for a = m?2) but the first integral might
be infinite. This is, however, not serious, as the normalization con-
stant itself is not observable. As a matter of fact, it has been shown
by Warp?) that, for an observable quantity, all infinities of this
kind will disappear from the coefficients in an expansion in powers
of the charge.

We will end this paragraph with the observation that if one con-
siders Eq. (68) as an identity in ', one concludes e. g.
N

<0 f( ) q> = (—2 /d_z: /dpef.!i(.t—.r”}x

x[K'—3 (pY)—ize(p) X (p?) —
—(iyp+m) (T, (pY) +ize(p) X, (IO ¥ | (77)

where the equation of motion for »® has not been used. One could

7) J.C. Warp, Phys. Rev. 78, 182 (1950).
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then try to compute the normalization constant N from (77) in the
following way

(‘I_;'»")<Ui'4«'(l”(3??.9> =— | Splz—a)<0l{(z) | da’ =

1fP )

n z . N "
e [z [ ap [P iy p ) i) 5O (i pm)

pitm?
—3 (P —ime(p) X, (pY]<01p0(a")| gy eire=r

& N{— 5 (—m¥)—2m lim PG -’3‘—’--}<0iwf“1(x);q>. (78)

premi—s0

In Eq. (78) the equation of motion for %@ and the fact that X;(p?)
vanishes for — p? < (m + x)? has been used in the last step of the
computation. (u is the small photon mass introduced to avoid in-
frared divergencies.) The value obtained in this way for N is
however, not the correct value in Eq. (75). This error comes from
the way in which we have ambiguously put

- [ Sala—a) (y 52 +m)¥O @) da = §¥@). (1)

The left-hand side of (79) is not a well-defined mathematical sym-
bol, and the example above shows that a formula of the kind of
Eq. (79) 1s not always to be trusted. Similar observations have
been made in the past by many authors$).

[ want to express my deep gratitude to professor W. Pauwr for
his kind interest and valuable criticism and to the Swedish Atomic
Commattee for financial support.

Appendix.

The physical meaning of the functions z(p? and z(p?) can be
made clearer if we consider a system with an external electro-
magnetic field. The influence of such a field can be taken into ac-
count if we add the following two terms to the Lagrangian (1)

S AL [Py, v + LAV (2). (&-1)

8) Cf. e.g. R. KarpLus-N, M. KroLL, Phys. Rev. 77, 542 (1950); F. J. Dysox,
Phys. Rev. 75, 1736 (1949) and G. KiLLEx, Ark. f. Fys. 2, 371 (1950).
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We then get the following equations of motion

0 \ : ; : : g
(7 35 +m) v(@) = 5 {4 (2),, w(@)}+ iedD (@) y, p(2) +
+ K yp(z) (A.2)

O4D (@) =— 25 [3(2), v w(@)] + L(D 4D (@)

02 A9(x) _
S r o j}f’(x))- (A. 3)
In the formulae above, 4’(z) is the external field and 4% (z) the
induced field. The former 1s a c-number and the latter an operator.
The external current j%(z) is given by

9 (@) = — (049 (=) —

If we suppose that we know the solution (¥(z) and A,(z)) when
the external field is zero, and that we have a situation where the
external field is very weak, we can expand the operators above in
a power series of the external field. It can be verified without diffi-
culty that the first two terms in such an expansion are respectively

2249 () )
0z,0x, )"

(A. 4)

p(2) = 0(2)—i [[j,(@), (@] 40 dz’ (A 5)
anl —0
A9(@) = Ay @) —i [ [,(2), Ay (@)] 49 () da’ +

L ,
+ 1o Bur—0,u0,) 4°(2). (A. 6)

Substituting e. g. Eq. (A. 6) into the left-hand side of Eq. (A. 3) we
obtain

D“‘{f!i)(-r) =—Ju(z)— E_(ii-f,)_ /'.[[j,,(x'),q—b(x]_'], Y (T ]A(e) )da' —

2(1 L} /['1” 7w LI (2), P (2)]] 45(2") da’ +

2 1% aee o 3 04D 1. 04
—:-a‘/ a2 ([j, (=), Au(@)] g7 + (@), 2542 40 (2) +
. - . L — Ale
“-*-— / [Jv )9z [}:e: i)(;} AP(@) A2+ 77 Ouy—0u,0p,) DA (a).

(A.7)
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Using Eq. (A. 5), (A. 6) and the formulae

e , 4(8)( f ) A
A (FACH M;c)] o ..+[ (&), #{ )]Am

- 024Y) >
=1=L J5,95, + 1=r %« 040(@) (4.8)
and
Taion A ] g g 0 [ I o—
({30 282 s = 2 o o o+
iL 0 & 04P(x)
T =L 0z, &7 oz, ()
we can simplify the right-hand side of (A. 7) to
sy (P(), 7y (@) —[#(@) — B(2), vl w(@) — (3))]) —
i 4“’(r) s '
- l— ( 0::,,03:,, L }Lj[&')). (:’i. 10)

This expression differs from the correct current only in terms which
are of second order in 4?(z). The verification of (A. 5) can be
performed along similar lines and will not be given explicitly.

It we now compute the vacuum-expectation value of the current
operator, we obtain from (A. 6) with the aid of (A. 8)

<0] ()]0 / (1+ € (@— ")) <O| [j,("), Ju(2)]| 0> 4V(a’) da'+
+ o= 19(2) (A 11)

or

<0[j@(x)[0) =
= /dpe”"l—‘f Y +7(0)—ize(p) (pY) () (A 12)

where
@ (@) = G 1}4 [ dper= i@ (p). (A. 13)

The vacuum thus behaves as a medium with the complex dielectri-
city-constant
e(p?) =1—7(p?) +7(0) —ize(p) 7 (pY). (A 14)

The connection between the real and the imaginary part of &(p?),
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which is expressed in Eq. (35a), is very similar to a formula that
has been given by Kramers?) for a dielectricum.

The expectation value of the energy which is transferred per unit
time from the external field to the system of particles is given by

(e:
/d" UE= |U>— do l' “<0uff’x}|0>+
(8l( ) (‘”(xj ) 0‘4("61{_” _
[fo A(2)]0y 2" ~<0] (=) | 0>— ~—jz) ——]) . (A.13)

The time average of the terms proportional to L is zero, and the
average of the first term is equal to

(zw ’dp"( - —!——_f 357(p) 33 (—p) (A. 16)

which is thus the energy of the real particles (photons and electron
pairs) which are created per unit time by the external field.

9) M. H. A. Kramers, Cong. Int. d. Fisici, Como, Settembre 1927.
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