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A. S. Wightman: Looking Back
at Quantum Field Theory

In 1980 an international symposium, dedicated to the memory of Gunnar
Killén, was organized in Stockholm. The theme of the symposium was

PERSPECTIVES IN MODERN FIELD THEORIES
In the Preface to the Proceedings, the editors Bengt Nagel and Hakan Snell-

man write:

“In the last decade, field theory has come to play a much more central role
in fundamental physics than it did at the untimely death of Gunnar Kil-
lén in 1968. Gunnar Killén might not have fully approved of all the new
branches and sometimes daring speculations in present day field theory. We
think, however, that his penetrating mind and search for clarity would have
continued to exert a healthy influence on its development. The Symposium
is dedicated to his memory.”

At the above symposium, Lamek Hulthén gave a short opening talk which he
ended by stating:

“The symposium on ‘Perspectives in Modern Field Theories’ is now opened.
We are very fortunate that an old friend and collaborator of Gunnar Killén,

Arthur Wightman, will give the memorial lecture. Dr Wightman!”

Here comes Dr Wightman’s presentation!

C. Jarlskog (Ed.), Portrait of Gunnar Killén, DOI 10.1007/978-3-319-00627-7_66,
© Springer International Publishing Switzerland 2014



312 Portrait of Gunnar Kallén

Physica Scripta. Vol. 24, 813-816, 1981

Looking Back at Quantum Field Theory

The Gunnar Kallén Memorial Lecture

A. S. Wightman
Princeton University, P.O. Box 708, Princeton, NJ 08540, U.S.A.

Received November 10, 1980

“The people who live in a Golden Age usually go around complaining
how yellow everything looks."

Randall Jarrell

Abstract

Some high-lights in the development of quantum field theory are
presented.

An invitation to give a Memorial Lecture for Gunnar Killén
provides a certain license for reminiscence. Since I was a friend
and co-worker of Killén's, it is a pleasure for me to indulge my-
self in this respect. Nevertheless, I suspect that Gunnar himself
would have been rather impatient with this sort of thing. *Get
on with the physics”, he would have said. It is clear from the
rest of the program that we will. In the same spirit, after telling
a few old tales, 1 will try 1o restate some of the questions that
motivated Killén’s work and describe what we have and haven’t
learned about the answers to them since. I will concentrate on
general problems of quantum field theory because that was the
area in which Killén made most of his original contributions.

1. Field theory in the fifties

To evoke the atmosphere in quantum field theory in the 1950’s,
let me compare it with the aftermath of a great football match
(the triumph of renormalization theory in quantum electro-
dynamics — the achievement of Tomonaga, Schwinger,
Feynman, Dyson et al.). A crowd of supporters, flushed with
victory, piles boisterously onto a bus. Their names could be
Salam, Kaillén, Gell-Mann, Low, Landau, Pomeranchuk,
Lehmann, Symanzik, Zimmermann . . . ) Nobody knows quite
where the bus is going, but each passenger has a strong opinion
about where it ought to be going. The bus driver isn’t talking
very much. It was in this rollicking atmosphere that Killén
started work on quantum field theory in general and quantum
electrodynamics in particular.

I am not overstating in using the adjective “boisterous” to
describe the atmosphere. For most of those working on quan-
tum field theory at the time, the boisterousness was intellectual.
For Kallén, it was also, on occasion, physical. I recall a seminar
in Copenhagen given by Bemard Jouvet with Killén in the
audience. Jouvet wrote on the blackboard an expression which
provoked comment from Kaillén. Gunnar proceeded directly
from his seat, over chairs and tables to reach the offending
expression on the board.

Killén earned his spurs by calculating, at Pauli’s instigation,
the higher order corrections to vacuum polarization in an exter-
nal field [1]. In so doing he found that by working directly in
the Heisenberg picture, he could obtain the same results some-

what more easily than with Feynman-Dyson techniques. In the
process, he introduced and used systematically what nowadays
would be called the in-field of the electron [2]. Independently,
Yang and Feldman obtained similar results [3]. They went
farther, however, introducing the out-field and proving that the
S-matrix may be defined by the equation Y4t = §™! yin g
One of the virtues of this work by Killén, Yang and Feldman
was that it is, in principle, independent of perturbation theory.
Of course, to convince oneself that it really works one expands
in the charge and compares the resulting perturbation series
with those obtained by other methods.

In two important papers, Killén went farther by formulating
the equations of quantum electrodynamics, including the
definition of the renormalization constants, independently of
perturbation theory {4, 5]. These papers are full of nuggets. For
example, Killén introduced and exploited the spectral represen-
tations of the electron and photon propagators, using them to
express the renormalization constants. By now we take these
things so much for granted that it is difficult to recall how strik-
ing they appeared at the time. However, workers in the field
were far from unanimous about the importance of a non-per-
turbative treatment. M. Gell-Mann was heard to remark that
there is nothing worth knowing about quantum electrodynamics
that cannot be learned from its perturbation series. That could
be dismissed (and was) as an outrageous statement calculated to
raise the hackles of the mathematically inclined. (How could
you verify its truth or falsity without studying quantum electro-
dynamics non-perturbatively?) Nevertheless, it does give some
flavor of the diversity of opinion. There was impatient dis-
satisfaction with the then existing understanding of the foun-
dations of quantum electrodynamics, but the impatience was
especially acute when it came to other people’s understanding
of the foundations. Probably one should not pay too much
attention to such programmatic pronouncements on methods —
having delivered himself of this one, Murray proceeded to write
(with Francis Low) one of the most important papers of the
1950’s on the non-perturbative behaviour of quantum electro-
dynamics [6] .

Killén regarded his non-perturbative formulation as the first
step toward an analysis of the consistency of the theory. He
suspected, in fact, that the theory might be inconsistent. His
joint work with W. Pauli on the Lee Model [7] was an effort to
understand how such inconsistencies come about in a simple
model. He expected to find analogous troubles in quantum
electrodynamics. His paper on the infinity of the renormaliz-
ation constants may be regarded as a preliminary to a general
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investigation of consistency (8]. I will return later to comment
on his conclusions in more detail.

When [ arrived in Copenhagen in the Fall of 1956, Kéllén was
nearing the end of an investigation of a representation formula
for the three-point function which he hoped to use in studying
the consistency problem. I came with a copy of the Princeton
Ph.D. thesis of D. Hall in hand. Hall had obtained a description
of the boundary of the analyticity domain of the three-point
function that follows from general principles of field theory.
The region that followed from Killén’s representation was much
larger than that found by Hall. Now Hall and I knew that this
was not necessarily a contradiction, because the holomorphy
envelope of Hall’s domain was definitely larger than the domain
itself. Conceivable, the holomorphy envelope was just Kallén's
domain. That was settled in the negative by Jost and Lehmann,
who produced a counter-example showing that the holomorphy
envelope was not as large as Killén's domain. [9] (Jost had seen
Hall’s thesis in Princeton and had learned of Killén’s represen-
tation from Pauli.) After some initial confusion caused by a dif-
ferent convention for the Minkowski metrc in Ziirich and
Copenhagen, all parties agreed. Killén's representation could
not follow from general principles; so he abandoned it. Mean-
while, I had considerably simplified Hall’s formulae for the
boundary and in January 1957 he and I sat down to try to com-
pute the holomorphy envelope at Hall’s domain. We were
gluttons for punishment — it’s not so easy to compute holo-
morphy envelopes for domains in three complex variables — but
by August we had the result [10] . There was an interlude in the
Spring during which Killén went to the Rochester High Energy
Conference while I went on a trip to Naples. I mention this
because who should show up in Rochester with the abandoned
integral representation but Schwinger. I have been told that
Kaillén pointed out the inadequacy of the representation with
considerable vehemence. Poor Schwinger — he probably didn’t
realize that he was the victim of our frustration — at that time
we still did not have the holomorphy envelope.

The computation of the domain of the holomorphy of the
three-point function was only the first step in the representation
problem. One had then to learn how to incorporate the restric-
tions arising from spectral conditions, and to get a usable
representation formula for general functions satisfying the
spectral condition and analytic in the domain. The former
turned out to be quite difficult; there have been many contri-
butions to a solution over the past twenty years. [ will mention
only [11] and [12]. A representation formula for functions
analytic in the holomorphy domain was obtained by Killén and
Toll [13]. Itis a sum of terms all but one of which can be inter-
preted as weighted sums of contributions arising in the pertur-
bation theory of some Lagrangian field theory models. The
remaining term seems strictly non-perturbative. The obvious
questions are: Does the non-perturbative term occur in the non-
perturbative three-point function of a Lagrangian field theory?
If not, does its vanishing follow from general non-linear con-
ditions (structure analysis)? So far as I know these questions are
open. If we are ever to know the precise status of multiple dis-
persion relations for the three-point function they will have to
be answered. It seems however that they are not regarded as
buming issues today.

After the holomorphy domain of the three-point function,
what next? Clearly, the holomorphy envelope of the four-point
function. By the time Killén tackled this, he was firmly estab-
lished in Lund with a school of coworkers. A computer had
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replaced the slide rule that we had used for the three-point
function. I will not try to summarize this work, but instead will
give some representative references [14-16] and ask the ques-
tion: Whatever came of all of this work on the holomorphy
envelopes and representation formulae for the three- and four-
point function? In my opinion, the answer is: Not much. The
further important developments leading to the so-alled axio-
matic analyticity domain in S-matrix theory that one associates
with such names as Bros, Epstein, Glaser, Stora, Martin, and
others were not based on these results [17, 18]. Furthermore,
in the work on the S-matrix important positivity restrictions
arising from unitarity were introduced and exploited. To my
knowledge, Kallén never succeeded in using these represen-
tations to analyze the consistency of quantum electrodynamics.
His last word on the subject appears to be his Schladming
lectures of 1965 [19].

He was not much impressed by the developments in field
theory in the early 1960’s. In particular, Reggeology and
Analytic S-Matrix Theory left him cold. My colleague Sam
Trieman recalls meeting him at the High Energy Physics Confer-
ence sitting in a parallel session on experimental weak inter-
actions. Sam said: “What are you doing here? Why aren’t you in
the field theory session?” Gunnar said: “I can't stand that
stuff.”

Let me complete these historical remarks by retelling an
anecdote about Landau which bears on this subject. At the Kiev
version of the High Energy Conference in 1959, I made it clear
to my hosts that I regarded Landau along with the Kremlin as a
National Monument, and eventually I was invited to converse
with him. Landau immediately asked whether I believed that any
non-trivial quantum field theories exist. 1 said that 1 reserved
judgment on the question since the evidence was not convincing
either way. Landau said that one could use the arguments of
Landau and Pomeranchuk to conclude that only trivial theories
exist but he thought that there was a much simpler and ecually
convincing argument as follows: Did I believe that the crux of
the matter was in the large momentum behaviour of the Green’s
functions? Yes, I agreed. Did I think that anyone had con-
jectured a consistent large momentum behaviour? No, I didn’t.
Well then there was no non-trivial consistent large momentum
behaviour because physicists are smart, and if there were a con-
sistent behaviour they would have found it. Killén did not
accept either of these arguments. He felt that they did not
respect the possible subtlety of a theory which had up to then
shown itself more clever than we. Are we better off today in
this respect?

2. What have we learned

In the last two decades we have had a series of conceptual
developments which have changed our perspective on quantum
field theory. A partial list could include:

(1) Broken symmetry — Goldstone bosons;

(2) Higgs phenomenon in gauge theories;

(3) Confinement;

(4) Asymptotic freedom;

(5) Euclidean field theory and its connection with statistical
mechanics;

(6) Constructive field theory;

(7) Renormalization group.

How could we have been so naive as to think we really under-
stood something about quantum field theory in the 1950s? In
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Fig. 1. Diagram representing the possible values of the renormalized
Li as a function of sp di in the Ao*

theory.

the light of all this, what can we say about Killén’s question of
consistency? For simplicity, I want to discuss this question in
the Ap* theory rather than in quantum electrodynamics and in
space-time dimension » varying continuously in the range 0 <
v<4,

Figure 1 is a diagram representing the possible values of the
renormalized coupling constant

_ m” [dx, dx, dxa(0x, x; X3)p

£” [/ ax, ©@x))]*
If the curve is denoted g,,(v) then g takes the values 0<g <
8w(®)-

The zig-zag lines Fig. 1 represent the values for which con-
structive quantum field theory has obtained a solution. Accord-
ing to the conventional wisdom the curve g, (v) gives the value
of the coupling constant in the scaling limit of the [sing model.
(The subscript W is intended to record the contributions of K.
Wilson on this subject.) Approximations to the curve from a
theory of the strong coupling limit have been derived by
Bender, Cooper et al. [20] A gap has been left between the con-
structive field theory values and the Ising values at » = 2, 3
because it still has not been proved for those dimensions that
the upper bound of the coupling constant in the constructive
field theory solutions coincides with that from the scaling limit
Ising model. The valuesg =2 at v =0 and g = 6atv =1 have
been independently derived by Bender et al. (20] and C. New-
man [21]. I would like to repeat the arguments of C. Newman
because they are so instructive.

In dimension v = 0, the Schwinger functions are just
numbers, the moments of a positive measure du on the real line

j x"du(x)

the x being the possible values of the Euclidean field. One may
assume du normalized

Sp =

Jdu(x) =1

Furthermore, 1 want to consider the case in which the odd
moments vanish (no symmetry breaking)
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Sinn =0, n=0,1,2,...
Then the formula for g reduces to
Sa—3 [52 ] 2 Sq
g=—2—x2l _ 3.
15:1? [5.]?

and a lower bound on S4/[S, ] ? will yield an upper bound on g.
Schwarz’s inequality does just that

2
[ jx’ .1 du(x)] <'[ x4 du(x)* J- 12 du(x)
ie.,
[S:1* <S4
with equality if and only if x* and 1 are proportional almost

everywhere with respect to du. But that means, if we use the
fact that odd moments vanish

du(x) = $[8(x —a)+8(x + a))

for some constant a, just the measure associated with the Ising
model. For it and it alone g takes its largest possible value, 2.

In dimension v = 1, things are almost as simple. The sym-
metry of (0x,,x,,X3)y under permutations permits one to
reduce the integration to a sector in which {0, x,, X, x; }are in
time order times a factor 4! for the number of sectors. The
integrals over the time differences then convert operators e H
into 1/H. The result is this expression
(R, 0 1/H ¢Q)(Q, ¢ 1/H 9Q)

—(Q0V/HOE5o/H ¢ 1/H ¢Q))
(2 ¢ 1/H ¢))*

Here the 6 is 4!/(2!), Q is the ground state of H, Es is the
projection onto the orthogonal complement of the ground state,
and (2, Q) = 0 has been assumed. Since £ o/H is non-
negative dropping the second term in the numerator gives an
upper bound for g

(1/VH ¢Q, m/H 1/\H ¢Q)
I11/v/A ¢RI

and since m/H is an operator of norm < 1, g < 6. Equality holds
in the first step when the negative discarded term is actually
zero, Then

o 1/HoQ = aQ

g = 6m

g<6

for some constant 4. For equality in the second step

m/H 1/NHoQ = 1/VH ¢Q

ie.,

HpQ = moQ

but then by virtue of the two conditions together Q and ¢Q2
span a two-dimensional space invariant under ¢ and H and we
are again dealing with the Ising model, with ¢* = am. Thus g =
6 if and only if the theory is that of an Ising model.

These are the results and arguments of C. Newman. It is
educational to try to extend them to » = 2. It turns out that it
is possible to derive an analogue of the formula that worked for
v=1.1Itis

[fffdx, dx; dx3[(82, 60, 0) 1/H?

6(0,x2)Q)(R, ¢(0, xy) 1/H
#(0,x,)Q) ~ (82, 6(0,0) 1/H
2 __9(0,x1)E> o/H ¢(0, x3) 1/H 6(0, x3)$2)]
[fdxy (82, (0, 0) 1/H 6(0, x,))]*
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Here the x integrals run over the real line.

Because of the x integrations, this formula presents us with
an entirely new problem. Before we could throw away the term
with the minus sign and estimate the rest. Here each of the two
terms in the numerator has a divergent integral and it is only
after cancelling them that one comes to a finite result. So far no
one has succeeded in finding an explicit expression for the
difference of the two terms which is visibly integrable. If such
an expression can be found and the conventional wisdom is
correct, it should be possible to bound it by the result for the
planar Ising model obtained by integrating the formulae of Wu
and co-workers [22], and to see how, in the limiting case, the
Hilbert space of states and the Hamiltonian are squeezed until
they tum into those associated with the transfer matrix of the
scaling limit planar [sing model. The problem is open both here
and for v = 3, where recent developments have buttressed the
view that the situation is similar after years in which there was
considerable doubt [23].

It is a striking feature of the above arguments for v = 0, 1,
that the results g = 2 and 6, respectively, are independent of the
degree of the interaction; the range of possible values of the
four-point coupling constant is completely independent of the
presence of higher degree terms ¢?", n > 2. Whether this holds
for all higher dimensions and, if not, for which dimension the
differences make themselves felt, is an interesting open problem.

Whether or not one can find a simple direct proof that the
scaling limit Ising model yields the least upper bound of g(v),
the extraordinary fact remains that none of the solutions whose
existence is suggested by statistical mechanics or constructed in
constructive field theory to this date seems to lie above the
curve g, (¥), 0 < » < 4, and all evidence points to g,,(4) = 0.
Does this mean that the only consistent A¢® theory has g = 0
and therefore is a trivial free field theory? It appears that at the
moment, most people would be pleased if the answer were yes,
and, more generally, if the only theories with non-trivial solu-
tions were asymptotically free. That would mean in particular
that the quantum electrodynamics of spin 1/2 would also have
no non-trivial solutions. This position seeks to put ignorance to
work for us: we don’t know much about such solutions, so they
don’t exist. I belong to the little band of those who are made
queasy by arguments that proceed from the existing ignorance
about renormalization theory to physical conclusions. (Usually
this is stated succinctly: non-renormalizable means non-physical,
but the terminology is tendentious. ‘‘Non-renormalizable”
means in this connection that we don’t know how to renormal-
ize with standard methods and new methods are still under
development.) [ am old enough to remember that the same line
of argument was used to eliminate pseudo-scalar meson theory
with pseudo-vector coupling from consideration in pion-nucleon
problems — a dubious ploy to say the least. If theories which are
not asymptotically free have no solutions, let us understand
exactly why.

There is one obvious possibility for theories above and to the
right of the curve g, (¥), 0 < » < 4, Perhaps solutions exist
which are more singular than those (tempered distribution solu-
tions) heretofore considered. To point this out amounts only to
spelling out Wilson’s vision — the curve g,,(¥), 0 < » < 4 defines
an ultraviolet phase tr. the ultraviolet asymptotic
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behaviour of a theory changes as one crosses the curve. In the
past few years there has been a series of developments in the
general theory of quantized fields which has prepared the
ground for an investigation of this possibility. I would like to
call attention in particular to two classes of theories: strictly
localizable theories in which tempered distributions are replaced
by a family of ultra-distributions and hyperfunction theories
where a class of hyperfunctions is used [24, 25]. In both cases,
the general machinery of quantum field theory has been estab-
lished: reconstruction theorem, relation between the Minkowski
and Euclidean theory, spectral representation of the two-point
function, Haag-Ruelle scattering theory.

If hyperfunction solutions of ¢3 exist with g > g, (v), it
seems that Newman’s argument requires » > 1. Do such solu-
tions first appear at ¥ =1+ € or at » =2 + €? It is tempting to
try to link the appearance of singular solutions to the
dimensional poles in Schwinger functions in perturbation theory
arising from ¢*". n =2, 3,4, ...interactions. They have v =2
as a limit point.

Until we have clear answers to such questions, it would be
prudent to take the view that quantum field theories are smarter
than we are — at any rate, most of us.
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