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Abstract We propose a novel approach to privacy-preserving analytical
processing within a distributed setting, and tackle the problem of obtaining
aggregated information about vehicle traffic in a city from movement data col-
lected by individual vehicles and shipped to a central server. Movement data are
sensitive because people’s whereabouts have the potential to reveal intimate
personal traits, such as religious or sexual preferences, and may allow re-identi-
fication of individuals in a database. We provide a privacy-preserving framework
for movement data aggregation based on trajectory generalization in a distributed
environment. The proposed solution, based on the differential privacy model and
on sketching techniques for efficient data compression, provides a formal data
protection safeguard. Using real-life data, we demonstrate the effectiveness of our
approach also in terms of data utility preserved by the data transformation.
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1 Introduction

The widespread availability of low cost GPS devices enables collecting data about
movements of people and objects at a large scale. Understanding of the human
mobility behavior in a city is important for improving the use of city space and
accessibility of various places and utilities, managing the traffic network, and
reducing traffic jams. Generalization and aggregation of individual movement data
can provide an overall description of traffic flows in a given time interval and their
variation over time. Chapter Andrienko and Andrienko (2011) proposes a method
for generalization and aggregation of movement data that requires having all
individual data in a central station. This centralized setting entails two important
problems: (a) the amount of information to be collected and processed may exceed
the capacity of the storage and computational resources, and (b) the raw data
describe the mobility behavior of the individuals with great detail that could enable
the inference of very sensitive information related to the personal private sphere.

In order to solve these problems, we propose a privacy-preserving distributed
computation framework for the aggregation of movement data. We assume that
on-board location devices in vehicles continuously trace the positions of the
vehicles and can periodically send derived information about their movements to a
central station, which stores it. The vehicles provide a statistical sample of the
whole population, so that the information can be used to compute a summary of
the traffic conditions on the whole territory. To protect individual privacy, we
propose a data transformation method based on the well-known differential pri-
vacy model. To reduce the amount of information that each vehicle transmits to
the central station, we propose to apply the sketch techniques to the differentially
private data to obtain a compressed representation. The central station, that we call
coordinator, is able to reconstruct the movement data represented by the sketched
data that, although transformed for guaranteeing privacy, preserve some important
properties of the original data that make them useful for mobility analysis.

The remainder of the chapter is organized as follows. Section 2 introduces
background information and definitions. Section 3 describes the system architec-
ture and states the problem. Section 4 presents our privacy-preserving framework.
In Sect. 5, we discuss the privacy analysis. Experimental results from applying our
method to real-world data are presented and discussed in Sect. 6. Section 7 dis-
cusses the related work and Sect. 8 concludes the chapter.
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2 Preliminaries

2.1 Movement Data Representation

Definition 1 (Trajectory) A Trajectory or spatio-temporal sequence is a sequence
of triplets T ¼\l1; t1 [ ; . . .;\ln; tn [ , where ti (i ¼ 1. . .n) denotes a timestamp
such that 81� i\n ti\tiþ1 and li ¼ ðxi; yiÞ are points in R2.

Intuitively, each pair hli; tii indicates that the object is in the position li ¼ hxi; yii at
time ti.

We assume that the territory is subdivided in cells C ¼ fc1; c2; . . .; cpg which
compose a partition of the territory. During a travel a user goes from a cell to
another cell. We use g to denote the function that applies the spatial generalization
to a trajectory. Given a trajectory T this function generates the generalized tra-
jectory gðTÞ, i.e. a sequence of moves with temporal annotations, where a move is
an pair ðlci ; lcjÞ, which indicates that the moving object moves from the cell ci to
the adjacent cell cj. Note that, lci denotes the pair of spatial coordinates repre-
senting the centroid of the cell ci; in other words lci ¼ hxci ; ycii. The temporal
annotated move is the quadruple ðlci ; lcj ; tci ; tcjÞ where lci is the location of the
origin, lcj is the location of the destination and the tci ; tcj are the time information
associate to lci and lcj . As a consequence, we define a generalized trajectory as
follows.

Definition 2 (Generalized Trajectory) Let T ¼ hl1; t1i; . . .; hln; tni be a trajectory.
Let C ¼ fc1; c2; . . .; cpg be the set of the cells that compose the territory partition.
A generalized version of T is a sequence of temporal annotated moves

Tg ¼ ðlc1 ; lc2 ; tc1 ; tc2Þðlc2 ; lc3 ; tc2 ; tc3Þ. . .ðlcm�1 ; lcm ; tcm�1 ; tcmÞ

where m� n.

Now, we show how a generalized trajectory can be represented by a frequency
distribution vector. First, we define the function Move Frequency MF that given a
generalized trajectory Tg, a move ðlci ; lcjÞ and a time interval computes how many
times the move appears in Tg by considering the temporal constraint. More for-
mally, we define the Move Frequency function as follows.

Definition 3 (Move Frequency) Let Tg be a generalized trajectory and let ðlci ; lcjÞ
be a move. Let s be a temporal interval. The Move Frequency function is defined as:

MFðTg; ðlci ; lcjÞ; sÞ ¼ jfðlci ; lcj ; ti; tjÞ 2 Tgjti 2 s ^ tj 2 sgj:

This function can be easily extended for taking into consideration a set of
generalized trajectories TG. In this case, the information computed by the func-
tion represents the total number of movements from the cell ci to the cell cj in a
time interval in the set of trajectories.
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Definition 4 (Global Move Frequency) Let TG be a set of generalized trajectories
and let ðci; cjÞ be a move. Let s be a time interval. The Global Move Frequency
function is defined as:

GMFðTG; ðci; cjÞ; sÞ ¼
X

8Tg2TG

MFðTg; ðci; cjÞ; sÞ:

The number of movements between two cells computed by either the function
MF or GMF describes the amount of traffic flow between the two cells in a specific
time interval. This information can be represented by a frequency distribution
vector.

Definition 5 (Vector of Moves) Let C ¼ fc1; c2; . . .; cpg be the set of the cells that
compose the territory partition. The vector of moves M with s ¼
jfðci; cjÞjci is adjacent to cjgj positions is the vector containing all possible moves.
The element M½i� ¼ ðlci ; lcjÞ is the move from the cell ci to the adjacent cell cj.

Definition 6 (Frequency Vector) Let C ¼ fc1; c2; . . .; cpg be the of the cells that
compose the territory partition and let M be the vector of moves. Given a set of
generalized trajectories in a time interval s TG. The corresponding frequency
vector is the vector f with size s ¼ jfðci; cjÞjci is adjacent to cjgj where each
f ½i� ¼ GMFðTG;M½i�; sÞ.

The definition of frequency vector of a trajectory set is straightforward; it
requires to compute the function GMF instead of MF.

Note that the above definitions are based on the assumption that consecutive
locations can be contained in the same cell or in adjacent cells. In some cases (for
example, because of GPS problems) this fact would not be true. In order to avoid
illegal moves (i.e., moves that are not present in the Frequency Vector) a reasonable
solution is to reconstruct the missing part of the trajectories, e.g. by interpolation.

2.2 Differential Privacy

Differential privacy implies that adding or deleting a single record does not sig-
nificantly affect the result of any analysis. Intuitively, differential privacy can be
understood as follows. Let a database D include a private data record di about an
individual i. By querying the database, it is possible to obtain certain information
I(D) about all data and information I(D - di) about the data without the record di.
The difference between I(D) and I(D - di) may enable inferring some private
information about the individual i. Hence, it must be guaranteed that I(D) and
I(D - di) do not significantly differ for any individual i.

The formal definition (Dwork et al. 2006) is the following. Here the parameter,
e, specifies the level of privacy guaranteed.
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Definition 7 (e-differential privacy) A privacy mechanism A gives e-differential
privacy if for any dataset D1 and D2 differing on at most one record, and for any
possible output D0 of A we have

Pr½AðD1Þ ¼ D0� � ee � Pr½AðD2Þ ¼ D0�

where the probability is taken over the randomness of A.

Two principal techniques for achieving differential privacy have appeared in
the literature, one for real-valued outputs (Dwork et al. 2006) and the other for
outputs of arbitrary types (McSherry and Talwar 2007). A fundamental concept of
both techniques is the global sensitivity of a function mapping underlying datasets
to (vectors of) reals.

Definition 8 (Global Sensitivity) For any function f : D! Rd, the sensitivity of
f is

Df ¼ maxD1;D2 jjf ðD1Þ � f ðD2Þjj1
for all D1, D2 differing in at most one record.

For the analysis whose outputs are real, a standard mechanism to achieve
differential privacy is to add Laplace noise to the true output of a function. Dwork
et al. (2006) propose the Laplace mechanism which takes as inputs a dataset D, a
function f , and the privacy parameter e. The magnitude of the noise added con-
forms to a Laplace distribution with the probability density function
pðxjkÞ ¼ 1

2k e�jxj=k, where k is determined by both the global sensitivity of f and the
desired privacy level e.

Theorem 1 (Dwork et al. 2006) For any function f : D! Rd over an arbitrary
domain D, the mechanism A AðDÞ ¼ f ðDÞ þ LaplaceðDf=eÞ gives e-differential
privacy.

A relaxed version of differential privacy discussed in Michael and Sebastian
(2012) allows claiming the same privacy level as Definition 7 in the case there is a
small amount of privacy loss due to a variation in the output distribution for the
privacy mechanism A is as follows.

Definition 9 [ðe; dÞ-differential privacy] A privacy mechanism A gives ðe; dÞ-
differential privacy if for any dataset D1 and D2 differing on at most one record,
and for any possible output D0 of A we have

Pr½AðD1Þ ¼ D0� � ee � Pr½AðD2Þ ¼ D0� þ d

where the probability is taken over the randomness of A.

Note that, if d ¼ 0, ðe; 0Þ-differential privacy is e-differential privacy. In the
remaining of this chapter we will refer to this last version of differential privacy.
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3 Problem Definition

3.1 System Architecture

We consider a system architecture as that one in described in Cormode and
Garofalakis (2008). In particular, we assume a distributed-computing environment
comprising a collection of k (trusted) remote sites (nodes) and a designated
coordinator site. Streams of data updates arrive continuously at remote sites, while
the coordinator site is responsible for generating approximate answers to periodic
user queries posed over the unions of remotely-observed streams across all sites.
Each remote site exchanges messages only with the coordinator, providing it with
state information on its (locally observed) streams. There is no communication
between remote sites.

In our scenario, the coordinator is responsible for computing the aggregation of
movement data on a territory by combining the information received by each node.
In order to obtain the aggregation of the movement data in the centralized setting
we need to generalize all the trajectories by using the cells of a partition of the
territory. In our distributed setting we assume that the partition of the territory, i.e.,
the set of cells C ¼ fc1; . . .; cpg useful for the generalization, is known by both all
the nodes and the coordinator. Each node, that represents a vehicle that moves in
this territory, in a given time interval observes a sequence of spatio-temporal
points (trajectory), generalizes it and contributes to the computation of the global
vector.

Formally, each remote site j 2 f1; . . .; kg observes local update streams that
incrementally render a collection of (up to) s distinct frequency distribution vec-
tors (equivalently, multi-sets) f1;j; . . .; fs;j over data elements from corresponding
integer domains ½Ui� ¼ f0; . . .;Ui1g, for i ¼ 1; . . .; s; that is, fi;j½v� denotes the
frequency of element v 2 ½Ui� observed locally at remote site j.

The coordinator for each i 2 f1; . . .; sg computes the global frequency distri-

bution vector fi ¼
Pk

j¼1 fi;j.

3.2 Privacy Model

In our setting we assume that each node in our system is secure; in other words we
do not consider attacks at node level. Instead, we take into consideration possible
attacks from any intruder between the node and the coordinator (i.e., attacks during
the communications), and any intruder at coordinator site, so our privacy pre-
serving technique has to guarantee privacy even against a malicious behavior of
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the coordinator. We consider sensitive information as any information from which
the typical mobility behavior of a user may be inferred. This information is
considered sensitive for two main reasons: (1) typical movements can be used to
identify the drivers who drive specific vehicles even when a simple de-identifi-
cation of the individual in the system is applied; and (2) the places visited by a
driver could identify specific sensitive areas such as clinics, hospitals, the user’s
home.

Therefore, we need to find effective privacy mechanisms on the real count
associate to each move, in order to generate uncertainty. As a consequence, the
goal of our framework is to compute a distributed aggregation of movement data
for a comprehensive exploration of them while preserving privacy.

Definition 10 (Problem Definition)
Given a set of cells C ¼ fc1; . . .; cpg and a set V ¼ fV1; . . .;Vkg of vehicles, the

privacy-preserving distributed movement data aggregation problem (DMAP)
consists in computing, in a specific time interval s the f s

DMAPðVÞ ¼ ½f1; f2; . . .; fs�,
where each fi ¼ GMFðTG;M½i�; sÞ and s ¼ jfðci; cjÞjci is adjacent to cjgj, while
preserving privacy. Here, TG is the set of generalized trajectories related to the k
vehicles V in the time interval s and M is the vector of moves defined on the set of
cells C.

4 Our Solution

Clearly, in order to guarantee the privacy within this framework we may apply
many privacy-preserving techniques depending on the privacy attack model and
the background knowledge of the adversary that we want to consider in this
scenario. In this chapter, we provide a solution based on the differential privacy,
that is a very strong privacy model independent on the the background knowledge
of an adversary. In this section, we describe the details of our solution, including
the computation of each node and the coordinator in the system.

The pseudo code of our algorithm is shown in Algorithm 1. Each node repre-
sents a vehicle that moves in a specific territory and this vehicle in a given time
interval observes sequences of spatio-temporal points (trajectories) and computes
the corresponding frequency vector to be sent to the coordinator. The computation
of the frequency vector requires four steps described in Algorithm 1: (a) trajectory
generalization; (b) frequency vector construction; (c) frequency vector transfor-
mation for privacy guarantees and (d) vector sketching for compressing the
information to be transmitted.
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4.1 Trajectory Generalization

Given a specific division of the territory, a trajectory is generalized in the fol-
lowing way. We apply place-based division of the trajectory into segments. The
area c1 containing its first point l1 is found. Then, the second and following points
of the trajectory are checked for being inside c1 until finding a point li not con-
tained in c1. For this point li, the containing area c2 is found.

The trajectory segment from the first point to the i-th point is represented by the
vector ðc1; c2Þ. Then, the procedure is repeated: the points starting from liþ1 are
checked for containment in c2 until finding a point lk outside c2, the area c3

containing lk is found, and so forth up to the last point of the trajectory.
In the result, the trajectory is represented by the sequence of moves

ðc1; c2; t1; t2Þðc2; c3; t2; t3Þ . . .ðcm�1; cm; tm�1; tmÞ. Here, in a specific quadruple ti is
the time moment of the last position in ci and tj is the time moment of the last
position in cj. There may be also a case when all points of a trajectory are
contained in one and the same area c1. Then, the whole trajectory is represented by
the sequence fc1g. Since, globally we want to compute aggregation of moves we
discard this kind of trajectories. Moreover, as most of the methods for analysis of
trajectories are suited to work with positions specified as points, the areas
fc1; c2; . . .; cmg are replaced, for practical purposes, by the sequence lc1 ; lc2 ; . . .; lcm

consisting of the centroids of the areas fc1; c2; . . .; cmg.
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4.2 Frequency Vector Construction

After the generalization of a trajectory, the node computes the Move Frequency
function for each move ðlci ; lcjÞ in that trajectory and updates its frequency vector
f Vj associated to the current time interval s. Intuitively, the vehicle populates the
frequency vector f Vj according the generalized trajectory observed. So, at the end
of the time interval s the element f Vj ½i� contains the number of times that the
vehicle Vj moved from m to n in that time interval, if M½i� ¼ ðm; nÞ.

4.3 Vector Transformation for Achieving Privacy

As we stated in Sect. 3.2, if a node sends the frequency vector without any data
transformation any intruder may infer the typical movements of the vehicle rep-
resented by the node. As an example, he could learn his most frequent move; this
information can be considered very sensitive because the cells of this move usually
correspond to user’s home and his work place. Clearly, the generalization step can
help the privacy user but it depends on the density of the area; specifically, if the
area is not so dense it could identify few places and in that case the privacy is at
risk. How can we hide the event that the user moved from a location a to a location
b in the time interval s? We propose a solution based on a very strong privacy
model called e-differential privacy (Sect. 2.2). As explained above the key point of
this model is the definition of the sensitivity. Given a move ða; bÞ its sensitivity is
straightforward: releasing its frequency have sensitivity 1 as adding or removing a
single flow can affect its frequency by at most 1. Thus adding noise according to
Lapð1eÞ to the frequency of each of the moves in the frequency vector satisfies e-
differential privacy. As a consequence, at the end of the time interval s, before
sending the vector to the coordinator, for each position of the vector (i.e., for each
move) has to generate the noise by the Laplace distribution with zero mean and
scale 1

e and then has to add it to the value in that position of the vector. At the end

of this step the node transforms f Vj into ~f Vj .
Differential privacy must be applied with caution because in some context it

could lead to the destruction of the data utility because of the added noise that,
although with small probability, can reach values of arbitrary magnitude. More-
over, adding noise drawn from the Laplace distribution could generate negative
values for the flow in a move and negative flows does not make sense. To prevent
this two problems we decided to draw the noise from a cutting version of the
Laplace distribution. In particular, for each value x of the vector f Vj we draw the
noise from Lapð1eÞ bounding the noise value to the interval ½�x; x�. In other words,
if we have the original flow f Vj ½i� ¼ x in the perturbed version we obtain a flow
value in the interval ½0; 2x�. The use of a truncated version of the Laplace distri-
bution can lead to privacy leaks and in Sect. 5 we show that our privacy mech-
anism satisfies ðe; dÞ-differential privacy, where d represents this privacy loss.
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4.4 Vector Sketching for Compact Communications

In a system like ours an important issue to be considered is the amount of data to
be communicated. In fact, real life systems usually involve 1,000 vehicles (nodes)
that are located in any place of the territory. Each vehicle has to send to the
coordinator the information contained in its frequency vector that has a size
depending on the number of cells that represent the partition of the territory. The
number of cells in a territory can be very huge and this can make each frequency
vector too big. As an example, in the dataset of real-life trajectories used in our
experiments we have about 4,200 vehicles and a frequency vector with about
15,900 positions. Therefore, the system has to be able to handle both a very large
number of nodes and a huge amount of the global information to be communi-
cated. These considerations make the reduction of the information communicated
necessary. We propose the application of a sketching method (Cormode et al.
2012a) that allows us to apply a good compression of the information to be
communicated. In particular, we propose the application of Count-Min sketch
algorithm (Cormode and Muthukrishnan 2005). In general, this algorithm maps the
frequency vector onto a more compressed vector. In particular, the sketch consists
of an array C of d � w counters and for each of d rows a pairwise independent
hash functions hj, that maps items onto ½w�. Each item is mapped onto d entries in
the array, by adding to the previous value the new item. Given a sketch repre-
sentation of a vector we can estimate the original value of each component of the
vector by the following function f ½i� ¼ min1� j� dC½j; hjðiÞ�. The estimation of each
component j is affected by an error, but it is showed that the overestimate is less
than n=w, where n is the number of components. So, setting d ¼ log 1

c and w ¼
Oð1aÞ ensures that the estimation of f ½i� has error at most an with probability at least
1� c. Here, a indicates the accuracy (i.e. the approximation error), and c repre-
sents the probability of exceeding the accuracy bounds.

4.5 Coordinator Computation

The computation of the coordinator is composed of two main phases: (1) com-
putation of the set of moves and (2) computation of the aggregation of global
movements.

Move Vector Computation. The coordinator in an initial setting phase has to
send to the nodes the vector of moves (Definition 5). The computation of this
vector depends on the set of cells that represent the partition of the territory. This
partition can be a simple grid or a more sophisticated territory subdivision such as
the Voronoi tessellation. The sharing of vector of moves is a requirement of the
whole process because each node has to use the same data structure for allowing
the coordinator the correct computation of the global flows.

234 A. Monreale et al.



Global Flow Computation. The coordinator has to compute the global vector that
corresponds to the global aggregation of movement data in a given time interval s
by composing all the local frequency vectors. It receives the sketch vector skð~f VjÞ
from each node; then it reconstructs each frequency vector from the sketch vector,
by using the estimation described in Sect. 4.4. Finally, the coordinator computes
the global frequency vector by summing the estimate vectors component by
component. Clearly the estimate global vector is an approximated version of the
global vector obtained by summing the local frequency vectors after the only
privacy transformation.

5 Privacy Analysis

As pointed out in Kifer and Machanavajjhala (2011) differential privacy must be
applied with caution. The privacy protection provided by differential privacy
relates to the data generating mechanism and deterministic aggregate level
background knowledge. As in our problem the trajectories in the raw database are
independent of each other, and no deterministic statistics of the raw database will
ever be released, we are ready to show that Algorithm 1 satisfies (e, d)-differential
privacy.

Let F and F0 be the frequency distribution before and after adding Laplace
noise. We observe that bounding the Laplace noise will lead to some privacy
leakage on some values. For instance, from the noisy frequency values that are
large, the attacker can infer that these values should not be transformed from small
ones. To analyze the privacy leakage of our bound-noise approach, we first explain
the concept of statistical distance. Statistical distance is defined in Michael and
Sebastian (2012). Formally, given two distributions X and Y , the statistical dis-
tance between X and Y over a set U is defined as

dðX;YÞ ¼ maxS2UðPr½X 2 S� � Pr½Y 2 S�Þ:

Michael and Sebastian (2012) also shows the relationship between ðe; dÞ-differ-
ential privacy and the statistical distance.

Lemma1 (Michael and Sebastian 2012) Given two probabilistic functions F and
G with the same input domain, where F is ðe; d1Þ-differentially private. If for all
possible inputs x we have that the statistical distance on the output distributions of
F and G is:

dðFðxÞ;GðxÞÞ� d2;

then G is ðe; d1 þ ðee þ 1Þd2Þ-differentially private.

Let F and F0 be the frequency distribution before and after adding Laplace
noise. We can show that the statistical distance between F and F0 can be bounded
as follows:
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Lemma 2 (Michael and Sebastian 2012) Given an ðe; dÞ-differentially private
function F with FðxÞ ¼ f ðxÞ þ R for a deterministic function f and a random
variable R. Then for all x, the statistical distance between F and its throughput-
respecting variant F0 with the bound b on R is at most

dðFðxÞ � F0ðxÞÞ�Pr½jRj[ b�:

Michael and Sebastian (2012) has the following lemma to bound the probability
Pr½jRj[ b�.

Lemma 3 (Michael and Sebastian 2012) Given a function F with

FðxÞ ¼ f ðxÞ þ LapðDf
e ) for a deterministic function f , the probability that the La-

placian noise LapðDf
e Þ applied to f is larger than b is bounded by:

PrðLapðDf

e
Þ[ bÞ� 2ðDf Þ2

b2e2
:

We stress that in our approach, the bound b of each frequency value x is not
fixed. Indeed, b ¼ x. Therefore, each frequency value x has different amounts of
privacy leakage. Our approach thus achieves different degree of ðe; dÞ-differen-
tially privacy guarantee on each frequency value x. Theorem 2 shows more details.

Theorem 2 Given the total privacy budget e, for each frequency value x,
Algorithm 1 ensures (e; ðee þ 1Þ 2

x2e2Þ-differentially privacy.

Proof Algorithm 1 consists of four steps, namely TrajectoryGeneralization,
FrequencyVectorUpdate, PrivacyTransformation, and SketchVectorGeneration.
The steps of TrajectoryGeneralization and FrequencyVectorUpdate mainly pre-
pare the frequency vectors for privacy transformation. Hence we focus on the
privacy guarantee of PrivacyTransformation and SketchVectorGeneration steps.
For each frequency value x, the PrivacyTransformation step can achieve

(e; ðee þ 1Þ 2ðDf Þ2
x2e2 -differentially privacy. This can be easily proven by Lemma 1 and

Lemma 3. Note that the the frequency vectors with Laplace noise (without trun-
cation) satisfies ðe; 0Þ-differentially privacy. In our approach, Df ¼ 1. Thus the
PrivacyTransformation step can achieve (e; ðee þ 1Þ 2

x2e2Þ-differentially privacy. For
the SketchVectorGeneration step, it only accesses a differentially private fre-
quency vector, not the underlying database. As proven by Michael et al. (2010), a
post-processing of differentially private results remains differentially private.
Therefore, Algorithm 1 as a whole maintains ðee þ 1Þ 2

x2e2Þ-differentially privacy.
h
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6 Experiments

6.1 Dataset

For our experiments we used a large dataset of GPS vehicles traces, collected in a
period from 1st May to 31st May 2011. In our simulation, the coordinator collects
the FV from all the vehicles to determine the Global Frequency Vector (GFV), i.e.
the sum all the trajectories crossing any link, at the end of each day, so we defined
a series of time intervals si, where each si spans over a single day. In the following
we show the resulting GFV for the 25th May 2011, but similar accuracy is
observed also for the other days. The GPS traces were collected in the geo-
graphical areas around Pisa, in central Italy, and it counts for around 4,200
vehicles, generating around 15,700 trips.

6.2 Space Tessellation

The generalization and aggregation of movement data is based on space parti-
tioning. Arbitrary territory divisions, such as administrative districts or regular
grids, do not reflect the spatial distribution of the data. The resulting aggregations
may not convey the essential spatial and quantitative properties of the traffic flows
over the territory. Our method for territory partitioning extends the data-driven
method suggested in chapter Andrienko and Andrienko (2011). Using a given
sample of points (which may be, for example, randomly selected from a historical
set of movement data), the original method finds spatial clusters of points that can
be enclosed by circles with a user-chosen radius. The centroids of the clusters are
then taken as generating seeds for Voronoi tessellation of the territory. We have
modified the method so that dense point clusters can be subdivided into smaller
clusters, so that the sizes of the resulting Voronoi polygons vary depending on the
point density: large polygons in data-sparse areas and small polygons in data-dense
areas. The method requires the user to set 3 parameters: maximal radius R, min-
imal radius r, and minimal number of points N allowing a cluster to be subdivided.
In our experiments, we used a tessellation with 2,681 polygons obtained with R =
10 km, r = 500 m, N = 80.

6.3 Utility Evaluation

In the proposed framework, the coordinator collects the Frequency Vectors from
all the vehicles in the time interval s and aggregate them to obtain the resulting
GFV, representing the flow values for each link of the spatial tessellation. Each FV
received from the vehicles is perturbed by means of a two-step transformation:
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privacy transformation—with the objective of protecting sensitive information–,
and sketches summarization—to reduce the volume of communication to be sent.
These two transformations are regulated by two set of parameters: e for the dif-
ferential privacy transformation, and a and c for the Count-Min Sketch summa-
rization. When e tends to 1 very little perturbation is introduced and this yields a
low privacy protection. On the contrary, better privacy guarantees are obtained
when e tends to zero. The two parameters a and c regulate the compression of the
FV to be sent to the coordinator. Table 1 shows how the choice of these two
parameters influences the final size of the FV. For example, for a ¼ 0:0008 and
c ¼ 0:1 the original FV of 16k entries is reduced to a vector of 5k cells.

Since the two transformations operate on the entries of the FV, and hence on the
flows, we compare two measures: (1) the flow per link (fpl), i.e. the directed
volume of traffic between two adjacent zones; (2) the flow per zone (fpz), i.e. the
sum of the incoming and outgoing flows in a zone. Figure 1 shows the resulting
distributions of different privacy transformation with e ¼ 0:9; 0:5; 0:3. Figure 1
(left) shows the reconstructed flows per link: fixed a value of flow (x) we count the
number of links (y) that have that flow. Figure 1 (right) shows the distribution of
sum of flows passing for each zone: given a flow value (x) it shows how many
zones (y) present that total flow.

From the distribution we can notice how the privacy transformation preserves
very well the distribution of the original flows, even for more restrictive values of
the parameter e.

When we consider several flows together, like those incident to a given zone
[Fig. 1 (right)], the distribution curves present several local variations, however
the general shape is preserved for all the privacy transformations. Since the global
distributions are comparable, we choose a value 0.3 for e for the following dis-
cussions, in order to obtain a better privacy protection.

Fixed the privacy transformation parameter, we can evaluate the error intro-
duced by the Count-Min sketch summarization. In Fig. 2 we can appreciate how a
large compression of the FV yields a precise reconstruction of the transformed
flows. In fact, we can observe that the general shape of the distribution curves are
also preserved after the application of sketching techniques.

To maintain the data utility for mobility density analysis, we want to preserve
the relative density distribution over the zones, i.e. it is desirable that former zones
with low (high) traffic still present low (high) traffic after the transformations. To
check this property, we show in Fig. 3 the correlation plots to compare the original
flows with the transformed ones. From the charts we can notice how the

Table 1 Reduced sizes of the FV for different values of a and c

a c Columns (w) Rows (d) w� d

CM5k 0.0008 0.1 2,500 2 5,000
CM7k 0.00078 0.05 2,564 3 7,692
CM10k 0.00057 0.05 3,508 3 10,524
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transformed flows maintain a very strong correlation with the original ones,
enabling relative flows comparisons also in the transformed data.

Qualitatively, Fig. 4 shows a visually comparison of each Sketch summariza-
tion with the original flows. Each flow is draw with arrows with thickness pro-
portional to the volume of trajectories observed on a link. From the figure it is
evident how the relevant flows are preserved in all the transformed GFV, revealing
the major highways and urban centers.

Similarly, the flow per zone is also preserved, as it is shown in Fig. 5, where the
flow per each cell is rendered with a circle of radius proportional to the difference
from the median value of each GFV. The maps allow us to recognize the dense
areas (red circles, above the median) separated by sparse areas (blue circle below

Fig. 1 Distribution of flow per link (left) and flow per zone (right)

Fig. 2 Distribution of flow per link (left) and flow per zone (right) after the Count-Min sketch
transformation
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the median). The high density traffic zones follow the highways and the major city
centers along their routes.

The two comparisons proposed above give the intuition that, while the trans-
formations protect individual sensitive information, the utility of data is preserved.

Fig. 3 Correlation between original flows and transformed flows with DP e ¼ 0:3 and CM5k

(first), CM7k (second), CM10k (third)

Fig. 4 Comparison of the original flows (a) with the GMF obtained with e ¼ 0:3 and CM5k (b),
CM7k (c), and CM10k (d)
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7 Related Work

The existing methods of privacy-preserving publishing of trajectories can be
categorized into two classes: (1) generalization/suppression based data perturba-
tion, and (2) differential privacy.

Generalization/suppression based data perturbation techniques. There have
been some recent works on privacy-preserving publishing of spatio-temporal
moving points by using the generalization/suppression techniques. The mostly
widely used privacy model of these work is adapted from what so called k-
anonymity (Samarati and Sweeney 1998a, b), which requires that an individual
should not be identifiable from a group of size smaller than k based on their quasi-
identifies (QIDs), i.e., a set of attributes that can be used to uniquely identify the
individuals. Abul et al. (2008) proposes the ðk; dÞ-anonymity model that exploits

Fig. 5 Traffic flow per zone drawn with circles proportional to the difference from the median
for each transformation with privacy transformations with different parameters (a), without
privacy transformation; e ¼ 0:3 and CM5k (b), CM7k (c), and CM10k (d)
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the inherent uncertainty of the moving object’s whereabouts, where d represents
possible location imprecision. Terrovitis and Mamoulis (2008) assume that dif-
ferent adversaries own different, disjoint parts of the trajectories. Their anony-
mization technique is based on suppression of the dangerous observations from
each trajectory. Yarovoy et al. (2009) consider timestamps as the quasi-identifiers,
and define a method based on k -anonymity to defend against an attack called
attack graphs. Monreale et al. (2010) propose a spatial generalization approach to
achieve k-anonymity. A general problem of these k-anonymity based privacy
preserving techniques is that these techniques assume a certain level of back-
ground knowledge of the attackers, which may not be available to the data owner
in practice.

Differential privacy. The recently proposed concept of differential privacy (DP)
(Dwork et al. 2006) addresses the above issue. There are two popular mechanisms
to achieve differential privacy, Laplace mechanism that supports queries whose
outputs are numerical (Dwork et al. 2006) and exponential mechanism that works
for any queries whose output spaces are discrete (McSherry and Talwar 2007). The
basic idea of the Laplace mechanism is to add noise to aggregate queries (e.g.,
counts) or queries that can be reduced to simple aggregates. The Laplace mech-
anism has been widely adopted in many existing work for various data applica-
tions. For instance, Xiaokui et al. (2011), Cormode et al. (2012b) present methods
for minimizing the worst-case error of count queries; Barak et al. (2007), Ding
et al. (2011) consider the publication of data cubes; Michael et al. (2010), Xu et al.
(2012) focus on publishing histograms; and Mohammed et al. (2011), Ninghui
et al. (2012) propose the methods of releasing data in a differential private way for
data mining. On the other hand, for the analysis whose outputs are not real or make
no sense after adding noise, the exponential mechanism selects an output from the
output domain, r 2 R, by taking into consideration its score of a given utility
function q in a differentially private manner. It has been applied for the publication
of audition results (McSherry and Talwar 2007), coresets (Feldman et al. 2009),
frequent patterns (Bhaskar et al. 2010) and decision trees (Friedman and Schuster
2010).

Regarding publishing differentially private spatial data, Chen et al. (2012)
propose to release a prefix tree of trajectories with injected Laplace noise. Each
node in the prefix tree contains a doublet in the form of \trðvÞ; cðvÞ[ , where
trðvÞ is the set of trajectories of the prefix v, and cðvÞ is a version of jtrðvÞj with
Laplace noise. Compared with our work, the prefix tree in Chen et al. (2012) is
data-dependent, i.e., it should have a different structure when the underlying
database changes. In our work, the frequency vector is data-independent. Cormode
et al. (2012b) present a solution to publish differentially private spatial index (e.g.,
quadtrees and kd-trees) to provide a private description of the data distribution. Its
main utility concern is the accuracy of multi-dimensional range queries (e.g., how
many individuals fall within a given region). Therefore, the spatial index only
stores the count of a specific spatial decomposition. It does not store the movement
information (e.g., how many individuals move from location i to location j) as in
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our work. In another chapter, Cormode et al. (2012c) proposes to publish a con-
tingency table of trajectory data. The contingency table can be indexed by specific
locations so that each cell in the table contains the number of people who commute
from the given source to the given destination. The contingency table is very
similar to our frequency vector structure. However, Cormode et al. (2012c) has a
different focus from ours: we investigate how to publish the frequency vector in a
differential privacy way, while Cormode et al. (2012c) address the sparsity issue of
the contingency table and presents a method of releasing a compact summary of
the contingency table with Laplace noise.

There are some work on publishing time-series data with differential privacy
guarantee (McSherry and Mahajan 2010; Rastogi and Nath 2010). Since we only
consider spatial data, these work are complement to our work.

8 Conclusion

In this chapter, we have studied the problem of computing movement data
aggregation based on trajectory generalization in a distributed system while pre-
serving privacy. We have proposed a method based on the well-known notion of
differential privacy that provides very nice data protection guarantees. In partic-
ular, in our framework each vehicle, before sending the information about its
movements within a time interval, applies to the data a transformation for
achieving privacy and then, creates a summarization of the private data (by using a
sketching algorithm) for reducing the amount of information to be communicated.
The results obtained in our experiments show that the proposed method preserves
some important properties of the original data allowing the analyst to use them for
important mobility data analysis.

Future investigations could be directed to explore other methods for achieving
differential privacy; as an example, it would be interesting to understand the
impact of the use of the geometric mechanism instead of the Laplace one for
achieving differential privacy.
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