
43

Chapter 3
Camptothecin Production and Biosynthesis  
in Plant Cell Cultures

Takashi Asano, Kazuki Saito and Mami Yamazaki

D. R. Gang (ed.), 50 Years of Phytochemistry Research,  
Recent Advances in Phytochemistry 43, DOI 10.1007/978-3-319-00581-2_3,  
© Springer International Publishing Switzerland 2013

M. Yamazaki () · T. Asano · K. Saito
Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, 
Chuo-ku, Chiba 260-8675, Japan
e-mail: mamiy@faculty.chiba-u.jp

T. Asano · M. Yamazaki
CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan

K. Saito
RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama 230-0045, Japan

T. Asano
School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba,
Iwate 028-3694, Japan

Abstract Camptothecin, a well-known monoterpenoid indole alkaloid originally 
identified in the extracts of the Chinese tree Camptotheca acuminata (Nyssaceae), 
exhibits antitumor activity due to its ability to kill cancer cells via topoisomerase 
I poisoning. Other plant species have since been shown to produce camptothecin 
and related compounds. In particular, Ophiorrhiza species (Rubiaceae) are impor-
tant resources for the production of various alkaloids, including camptothecin. This 
chapter describes the production of camptothecin-related alkaloids and the elucida-
tion of the mechanisms of camptothecin biosynthesis using plant cell and tissue cul-
tures. In particular, aseptically grown plants, callus cultures, and hairy root cultures 
were established for several species, O. liukiuensis, O. kuroiwai, and O. pumila, 
which were then evaluated for production of camptothecin and related alkaloids. 
The metabolite profiles differed between the species, and between tissues of the 
same species; for example, profiles from hairy roots were not identical to those 
of aseptic plants. The complementary DNAs (cDNAs) for strictosidine synthase, 
tryptophan decarboxylase, and cytochrome P450 reductase were cloned from O. 
pumila and evaluated for involvement in production of camptothecin in this species. 
RNA interference (RNAi)-mediated knockdown of gene expression indicated that 



44 T. Asano et al.

the production of camptothecin, strictosidine, and camptothecin-related alkaloids 
was suppressed in a TDC expression-dependent manner in RNAi hairy roots.

3.1  Intro duction

Alkaloids are nitrogen-containing basic compounds known from about 20 % of all 
plant species. Many alkaloids are pharmacologically active and have been used tra-
ditionally in the form of medicinal plant extracts as treatments for various diseases 
[1]. A few dozen pharmacologically active alkaloids, including camptothecin, are 
widely used in modern medicine, and worldwide sales of alkaloid-containing drugs 
were projected to exceed US$ 4 billion in 2002 [2].

Camptothecin (1) is a well-known monoterpenoid indole alkaloidand was origi-
nally identified in the extracts of the Chinese tree Camptotheca acuminata (Nyssa-
ceae) [3]. Camptothecin exhibits antitumor activity, which is due to its ability to kill 
cancer cells via topoisomerase I poisoning [4]. At present, the semi-synthetic water-
soluble camptothecin derivatives, topotecan (2) and irinotecan (3), are used world-
wide as clinical antitumor agents against cancers of the lung, cervix, ovaries, colon 
[5], and other organs [6] (Fig. 3.1). In addition, a number of reports are available 
announcing the therapeutic values of camptothecin derivatives against acquired im-
munodeficiency syndrome (AIDS) [7] and falciparum malaria [8]. Consequently, 
the demand for camptothecin will continue to increase in the future.

Despite the rapid growth of the pharmaceutical market for this compound, camp-
tothecin is still supplied exclusively from intact plants, mainly C. acuminata and 
Nothapodytes foetida [9]. However, the extraction of this compound from intact 
plants is problematic because of the shortage of natural resources and the resultant 
environmental concerns. Thus, the production of secondary metabolites by geneti-
cally engineered plant cell cultures, particularly for compounds such as camptoth-
ecin, has become a keen issue [10].

Camptothecin-related alkaloids have been reported to be produced in a relatively 
wide array of plant species, besides C. acuminata and N. foetida [11]. For instance, 

Fig. 3.1  Camptothecin ( 1) and its clinically used derivatives, topotecan ( 2) and irinotecan ( 3). 
(With permission from Ref. [38])
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Merrilliodendron megacarpum [12], Pyrenacantha klaineana (Icacinaceae) [13], 
Ervatamia heyneana (Apocynaceae) [14], Mostuea brunonis (Loganiaceae) [15], 
Ophiorrhiza mungos [16], and O. filistipula (Rubiaceae) [17] have been reported to 
produce camptothecin-related compounds. Moreover, the results of phytochemical 
studies of the genus Ophiorrhiza have shown that camptothecin also accumulates in 
some Ophiorrhiza species (e.g., O. pumila) distributed in Japan [18, 19].

The genus Ophiorrhiza is widely distributed around tropical and subtropical Asia 
and comprises about 150 species [20]. Moreover, some of these species produce in-
dole alkaloids [21]. With regard to the chemical constituents of Ophiorrhiza species 
distributed in Japan, O. pumila accumulated camptothecin and related alkaloids [18, 
22] and O. japonica accumulated β-carboline-type alkaloids, such as lyalosidic acid 
and harman [23, 24]. Meanwhile, O. liukiuensis [25] and O. kuroiwai [26], which 
was shown to be an interspecies hybrid of O. pumila and O. liukiuensis, accumu-
lated both camptothecin-related alkaloids and β-carboline-type alkaloids (Fig. 3.2). 
Therefore, these Ophiorrhiza species are important as resources for the production 
of various alkaloids, including camptothecin.

In this chapter, we describe the production of camptothecin-related alkaloids and 
the elucidation of the mechanisms of camptothecin biosynthesis by use of plant cell 
and tissue cultures.

Fig. 3.2  The genus Ophiorrhiza species distributed in Japan

 



46

3.2  In Vitro Cultures of Camptothecin-Producing Plants

3.2.1  Establishment of In Vitro Cultures

Cell and tissue cultures of several camptothecin-producing plants have been inves-
tigated as alternative sources for camptothecin production [27]. Sakato et al. [28] 
reported the first establishment of a rapidly growing cell suspension culture of C. acu-
minata, although the camptothecin productivity was insufficient (0.002 mg g−1 dry 
weight) for practical use. Callus cultures of C. acuminata established by Wiedenfeld 
et al. [29] produced comparatively adequate amounts of camptothecin (2 mg g−1 dry 
weight). These callus cultures were also reported to contain 10-hydroxycamptoth-
ecin, from trace amounts up to 0.08–0.1 mg g−1 dry weight [29]. Callus cultures of 
N. foetida were found to accumulate small amounts of camptothecin and 9-methoxy-
camptothecin [30–32], but the level of alkaloid production was 100- to 1000-fold 
lower than that from soil-grown plants. Callus cultures of O. pumila produced no 
camptothecin-related alkaloids but accumulated only anthraquinones [33, 34].

Since alkaloid biosynthesis and accumulation are under the strict control of cell 
developmental and environmental factors [35], establishing cultures of cell types 
suitable for the production of the camptothecin is important. Accordingly, aseptic 
plants and hairy roots of Ophiorrhiza species have been established as an effective 
means of producing camptothecin (Fig. 3.3) [36–38].

3.2.2  Camptothecin Production and Metabolite Profiles  
in Tissue Cultures of Ophiorrhiza Species

In shoots and roots of established aseptic plants of Ophiorrhiza species, campto-
thecin production per tissue weight was the highest in the roots of O. pumila. On 
the other hand, the production per tube was the highest in O. kuroiwai because 
it showed the higher growth rate of the two species. The concentration and total 
amount of camptothecin in O. liukiuensis were lower than those of O. kuroiwai and 
O. pumila.

Camptothecin accumulated to higher levels in hairy root lines of O. pumila than 
in those of O. liukiuensis and O. kuroiwai [38]. Camptothecin accumulation and 
increased growth rate of O. pumila hairy roots have the best results in the reports of 
camptothecin production by in vitro tissue cultures [37, 39].

The patterns of secondary metabolite production in the aseptic plants and hairy 
roots of Ophiorrhiza species were profiled by high-performance liquid chroma-
tography–diode array detection–electrospray ion trap tandem mass spectrometry 
(Fig. 3.4 and Table 3.1) [38]. The metabolite profiles of O. liukiuensis and O. ku-
roiwai were highly similar in the shoot and root. 10-Methoxycamptothecin (5) and 
lyalosidic acid (6) were detected in the roots and shoots, respectively, of both O. 
liukiuensis and O. kuroiwai but not in those of O. pumila. Moreover, 3( S)- and 
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3( R)-deoxypumilosides (9, 10) were detected only in O. pumila. Camptothecin (1), 
9-methoxycamptothecin (4), strictosamide (7), pumiloside (8), strictosidinic acid 
(11), and 3-O-caffeoylquinic acid (13) were detected in all three species. The me-
tabolite profiles of the hairy roots were not identical to those of aseptic plants.

Fig. 3.3  Established tissue cultures of Ophiorrhiza liukiuensis, O. kuroiwai, and O. pumila. a 
Aseptic plants cultured for 5 weeks on 1/2 MS medium containing 1 % sucrose and 0.2 % gellan 
gum in test tubes. b Hairy roots cultured for 4 weeks in B5 liquid medium containing 2 % sucrose. 
(With permission from Ref. [38])
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Table 3.1  Alkaloids and anthraquinones detected in tissue cultures of Ophiorrhiza species
Compound O. liukiuensis O. kuroiwai O. pumila

Shoot Root Hairy 
root

Shoot Root Hairy 
root

Shoot Root Hairy 
root

1 Camptothecin  +  +  +  +  +  +  +  +  + 
4 9-Methoxycamptot-

hecin
 +  +  +  +  +  + 

5 10-Methoxycamptot-
hecin

 +  + 

6 Lyalosidic acid  +  + 
7 Strictosamide  +  +  +  +  +  + 
8 Pumiloside  +  +  +  +  +  +  +  +  + 
9 3(S)-Deoxypumilo-

sidea
 +  + 

10 3(R)-Deoxypumi-
losidea

11 Strictosidinic acid  +  +  + 
12 Lucidin 3-O-β-

purimeveroside
 + 

13 3-O-Caffeoylquinic 
acid

 +  +  +  +  +  + 

a 3( S)-Deoxypumiloside (9) and 3( R)-deoxypumiloside (10) cannot be separated in this condition

Fig. 3.4  Chemical structures of secondary metabolites detected in tissue cultures of Ophiorrhiza 
species. (With permission from Ref. [38])
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3.3  Biosynthesis of Camptothecin

3.3.1  Camptothecin Biosynthetic Genes

Monoterpenoid indole alkaloids, including camptothecin, are derived from stricto-
sidine, which is a common intermediate formed by condensation of the indole trypt-
amine with the iridoid glucoside secologanin by the enzyme strictosidine synthase 
(STR) [40–42] (Fig. 3.5). The intramolecular cyclization of strictosidine results in 
strictosamide, which is an intermediate peculiar to camptothecin biosynthesis, as 
proven by the incorporation of radiolabeled precursor [43]. The remaining details 
between strictosamide and camptothecin are not completely defined. However, 
camptothecin has been postulated to be formed potentially from strictosamide by 
three transformations: (1) oxidation–recyclization of the B- and C-rings, (2) oxida-
tion of the D-ring and removal of the C-21 glucose moiety, and (3) oxidation of ring 
E [43]. Plausible camptothecin precursors, such as pumiloside and 3( S)-deoxypum-
iloside, were isolated from Ophiorrhiza species [18, 19]. Pumiloside has been found 
also in C. acuminata [44].

The cloning of complementary DNAs (cDNAs) from O. pumila hairy roots has 
been successfully performed to isolate the genes encoding the biosynthetic enzymes 
involved in the upper part of camptothecin biosynthesis, including STR, trypto-
phan decarboxylase (TDC) [45], and nicotinamide adenine dinucleotide phosphate, 
reduced form (NADPH):cytochrome P450 reductase (CPR), in this species [46] 
(Fig. 3.5). The full-length STR cDNA sequence isolated from O. pumila ( OpSTR) 
contained a 1,056-bp open reading frame (ORF) encoding a protein of 351 amino 
acids with a molecular mass of 38.9 kDa. The deduced amino acid sequence of 

Fig. 3.5  Predicted camptothecin biosynthetic pathway in O. pumila. The enzymes are as follows: 
TDC, tryptophan decarboxylase; G10H, geraniol 10-hydroxylase; CPR, NADPH:cytochrome 
P450 reductase; SLS, secologanin synthase; STR, strictosidine synthase. Plausible intermediates 
of camptothecin biosynthesis are provided in parentheses
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OpSTR exhibited 55 % and 51 %identities with STRs from Rauwolfia serpentina 
[41] and Catharanthus roseus [47], respectively. OpSTR most likely localizes to the 
vacuole, as predicted by the PSORT program. Southern blot analysis suggested that 
a single STR-encoding gene is present in the genome of O. pumila. The highest Op-
STR expression occurred in hairy roots, followed by the root, and the stem, whereas 
OpSTR was apparently not expressed in leaves. STR enzymatic activity was de-
tected in the protein extracts of stems, roots, and hairy roots; however, no activity 
was detected in leaf and callus extracts. The distribution of STR activity correlated 
with the messenger RNA (mRNA) accumulation pattern and the camptothecin con-
centrations in O. pumila tissues, with the exception of the young leaves, suggesting 
that roots and stems are the main tissues for camptothecin biosynthesis [34].

Tryptamine, a precursor of strictosidine, is formed by the decarboxylation of 
tryptophan by the enzyme TDC. The cDNA clone encoding TDC was first isolated 
from C. roseus [48]. The full-length TDC cDNA sequence isolated from O. pumila 
( OpTDC) contained a 1,521-bp ORF encoding a protein of 506 amino acids with a 
molecular mass of 56.6 kDa. The deduced amino acid sequence of OpTDC showed 
high identity to TDCs from C. acuminata [49] and C. roseus [48] (71 and 67 %, 
respectively). Southern blot analysis suggested that at least TDC-encoding genes 
are present in the genome. The expression patterns of OpSTR and OpTDC were 
nearly the same.

The enzyme CPR is essential for the activity of cytochrome P450 monooxy-
genases, such as geraniol 10-hydroxylase (G10H) and secologanin synthase (SLS), 
which are involved in camptothecin biosynthesis [50] (Fig. 3.5). The full-length 
CPR cDNA sequence isolated from O. pumila ( OpCPR) contained a 2,073-bp ORF 
encoding a protein of 690 amino acids with a molecular mass of 76.6 kDa. The 
deduced amino acid sequence of OpCPR showed high identity with Arabidopsis 
thaliana, Petroselinum crispum, Pisum sativum, and Triticum aestivum CPRs (72, 
66, 65, and 67 %, respectively). Southern blot analysis suggested that only a single 
CPR-encoding gene was present in the genome of O. pumila. Mirroring the general 
importance of the enzyme, OpCPR was expressed in all tissues.

Studies have been performed to investigate the effects of stress compounds, such 
as methyl jasmonate (MeJA), salicylic acid (SA), and yeast extract (YE), on the ex-
pression of OpSTR, OpTDC, and OpCPR in O. pumila hairy roots [46]. The chang-
es in the expression patterns of OpSTR and OpTDC in response to these various 
compounds were highly similar. In particular, OpSTR and OpTDC expression was 
repressed by SA and YE treatments but unaffected by MeJA. Meanwhile, no treat-
ment resulted in the induction or repression of OpCPR transcripts. In addition, no 
change in STR activity was observed after treatment with either stress compounds 
or phytohormones.

3.3.2  In Silico and In Vitro Tracer Studies with [1-13C] glucose

Both the mevalonate (MVA) pathway [51] and the 2C-methyl-d-erythritol 4-phos-
phate (MEP) pathway [52–54] have been recognized for their role in the formation 
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of isopentenyl diphosphate, the precursor of terpenoid biosynthesis. Yamazaki et al. 
[55] investigated the incorporation of [1-13C]glucose into camptothecin in the hairy 
roots of O. pumila by in silico computation using the Atomic Reconstruction of 
Metabolism (ARM) [56] program and by in vivo tracer experiments. The 13C-nu-
clear magnetic resonance (13C-NMR) analysis clearly showed that the secologanin 
moiety of camptothecin was synthesized via the MEP pathway. Furthermore, in O. 
pumila hairy root cultures, treatment with fosmidomycin, a specific inhibitor of the 
MEP pathway, resulted in a significant decrease in camptothecin production. These 
results support the conclusion that the secologanin moiety of camptothecin is de-
rived from the MEP pathway.

3.4  Metabolic Modification in Hairy Roots of O. pumila 
by RNA Interference

A detailed understanding of camptothecin production, including the enzymatic 
pathway for its biosynthesis, will be essential to the ultimate goal of the metabolic 
engineering of this compound. In Papaver somniferum (opium poppy), genetic 
approaches using antisense RNA [57, 58] or RNA interference (RNAi)-mediated 
silencing [59] of biosynthetic enzymes have been performed, leading to rapid prog-
ress in the metabolic engineering of benzylisoquinoline alkaloids. Therefore, it is 
considered that RNAi technology is an effective strategy for investigating camp-
tothecin biosynthesis. In our study, the production of camptothecin, strictosidine, 
and camptothecin-related alkaloids was suppressed in a TDC expression-dependent 
manner in RNAi hairy roots. Among the hairy root-specific peaks correlated with 
TDC expression in the liquid chromatography/Fourier transform ion cyclotron reso-
nance mass spectrometry (LC-FTICR-MS) analysis, two unknown peaks with a 
positive correlation were annotated as alkaloids and six unknown peaks with a neg-
ative correlation, as flavonoids. The exact mass of several non-annotated peaks was 
similar to those of predicted intermediates in camptothecin biosynthesis, suggesting 
that most peaks that positively correlated with TDC expression could be intermedi-
ates in camptothecin biosynthesis [60].
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