Semi-automated Generation of Semantic Service
Descriptions

Nils Masuch, Philipp Brock, and Sahin Albayrak

Abstract. The increasing complexity and dynamics of distributed systems make the
management and integration of new services more and more difficult. Automation
processes for the definition, selection and composition of services for goal achieve-
ment can produce reliefs. However, a high degree of self-explanation of the services
is obligatory for this. Today’s multi-agent frameworks only provide insufficient so-
Iutions to this. Within this paper we will outline an approach, which enables the
integration of semantic service descriptions into multi-agent systems with reason-
able effort.

Keywords: OWL-S, Multi-Agent Framwork, Semantic Service Description, JIAC.

1 Introduction

In the past, the demand for modular, distributed and dynamic computer systems
has increased rapidly. The reasons for this are manifold, ranging from maintainabil-
ity and reliability to adaptability aspects, just to name a few [14]. In the field of
multiagent systems (MAS) many of the current approaches try to account for these
requirements. However, these systems usually are characterised by a high degree of
complexity, which makes it difficult to provide a transparent way to define, lookup
and invoke functionalities of software entities, such as agents. A promising approach
to this is the service paradigm which leads to the development of service-oriented
architectures (SOA) and is an ideal complement to multiagent systems [13]]. One
of its inherent strengths is typically the definition of a clear autonomy of each ser-
vice, which means that it is represented as a separate module. Further, services are
designed for enhancing the interoperability which is one of the key issues for dis-
tributed systems. Especially when talking about huge computer systems with differ-
ent providers and parties involved these parameter are essential.

Nils Masuch - Philipp Brock - Sahin Albayrak
DAI-Labor, TU Berlin

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
e-mail: nils.masuch@dai-labor.de

J.B. Pérez et al. (Eds.): Trends in Prac. Appl. of Agents & Multiagent Syst., AISC 221, pp. 155-]162]
DOI: 10.1007/978-3-319-00563-8 19 © Springer International Publishing Switzerland 2013

156 N. Masuch, P. Brock, and S. Albayrak

Beyond that, these systems also require mechanisms to adapt their behaviour to
the environment or to current offers, since software services might be added or re-
moved dynamically. In many approaches of current software systems the dynamic
aspect is not regarded sufficiently. In order to encounter these challenges automated
techniques that minimize the necessary intervention by developers are a promising
approach [10]]. One important issue in the automation process is the automated in-
terpretation of services, allowing for a discovery of suitable services. Therefore the
system has to be able to understand specific service parameters such as precondi-
tions or effects. In practice a lot of so-called semantic service matcher components
have been developed (e.g. [[7]], [9]]), but, to the best of our knowledge, none of them
has been fully integrated into a multi-agent framework. Doing so, the basic function-
ality is provided for the next step, which is the autonomic composition of services
to reach a certain goal. The basic condition to develop these automation processes is
a knowledge representation that enriches descriptions semantically, often described
as ontologies. In practice the enrichment of real applications, which are more and
more developed based on the agent-oriented programming paradigm (AOP), by on-
tologies is currently very troublesome if available at all. This means there is a clear
lack of concepts combining the AOP world, which is widely used for program-
ming, and the world of standardized formal semantics not only at runtime but also at
design time.

In this paper we present a conceptual approach for integrating semantic service
information into a MAS, taking the first step towards standard-based, dynamic and
automatic service matching and composition systems.

In the remainder of this paper we will give some background information about
the semantic service description language OWL-S. Thereupon we will introduce
JIAC V (Java Intelligent Componentware, Version 5) [5]], our own Java-based multi-
agent development framework. Based on this framework, we will then present our
approach of integrating semantic service descriptions into the development method-
ology of dynamic, distributed systems based on JIAC. Consequently we will present
a use case, in which the dynamic invocation of services can be gainful. Finally, we
will conclude with a short outlook of our next steps.

2 Background

In the context of semantic enrichment of services the semantic web community
developed multiple approaches, such as SAWSDIE, WSMO [2], hRests [3]] and
OWL-S [1]] which are focusing on many identical aspects but are at the same time
distinct in some relevant attributes. Due to the lack of space we are not able to
discuss them thoroughly and refer to [§]]. In the following we will focus on one of
the most comprehensive ones, namely OWL-S, and describe it in more detail.

'http: //www.w3.0rg/2002/ws/sawsdl/

http://www.w3.org/2002/ws/sawsdl/

Semi-automated Generation of Semantic Service Descriptions 157

2.1 OWL-S

OWL-S is based upon on the Web Ontology Language (OWLE, more precisely it is
a specific OWL ontology, which is structured for describing service attributes. The
ontology is split up into three parts, namely Service Profile, Service Grounding and
Service Model.

The Service Profile describes all relevant parameters of the service for searching
components. The most important attributes are the so-called IOPEs, which stands
for Input, Output, Precondition and Effects. The Service Model enables the descrip-
tion of the service’s processment. It defines how the service works, and if necessary
which interactions will take place. For example a Service Model can combine mul-
tiple atomic processes to more complex components using constructs like loops or
conditional expressions. The Service Grounding defines the invocation details of
the service. The OWL-S standard leaves the kind of invocation technique open,
allowing the integration of different transport protocols. For the definition of pre-
conditions and effects OWL-S does not adhere to a specific rule language. One of
the propositions to use is the Semantic Web Rule Language (SWRL) [6]].

SWRL has been designed to formulate implication rules, which can be used on
entities from OWL ontologies. A SWRL rule consists of two parts, the antecedent
(body) and the consequent (head). For the evaluation of the rules the information
from the head will be added to the knowledge base, if the conditions in the body
are fulfilled. SWRL rules are comprised of any number of conjugated atoms. In
order to evaluate the rules in acceptable time, the language must remain decidable.
Therefore all variables which are required in the head part, have to be already present
in the body part and further no complex class constructs may be used. Using SWRL
according this way, it can be used together with OWL-DL and remains decidable.

2.2 JIACV

Java Intelligent Agent Componentware V (JIAC V) is, as the name indicates, an
open Java-based multi-agent framework currently being developed at Technical
University of Berlin. The framework combines the agent-oriented with a service-
oriented view. Services can either be invoked via explicit invocations of specific
services or via an incomplete service description that leads to a service matching
process returning the most appropriate one. Agents in JIAC V are located on Nodes.
These nodes can be executed on different machines and are also responsible for
middleware management and communication issues. For example each node man-
ages the dynamics via a service- and an agent-directory according to FIPA Agent
Management SpeciﬁcatiorE].

The agents in JIAC V are component-based. Their structure can be very roughly
divided into an execution cycle, a local memory and Agent Beans. The memory is
a tuple space implementation, and provides parallel access of the data to all agent

2http://www.w3.0rg/2004/OWL/
3 http://www.fipa.org/specs/fipa00023/XC00023H.html

http://www.w3.org/2004/OWL/
http://www.fipa.org/specs/fipa00023/XC00023H.html

158 N. Masuch, P. Brock, and S. Albayrak

components. The components also have the opportunity to sign up for listeners on
memory data, in order to be informed about every change. The execution cycle is the
heart of JIAC agents. This main thread processes existing events at regular intervals.

The different functionalities and behavioural rules of an agent are encapsulated
in Agent Beans. These functions are defined as actions and can be made available in
different scopes. Thus, an action can be defined as being visible to the agent itself,
to all agents of one node or globally to all nodes.

One central component of JIAC V is the Semantic Service Matcher SeMa? [9],
which enables the system to match OWL-S based service requests and advertise-
ments. The matching process follows a hybrid approach, which considers both syn-
tactic and semantic elements. For the evaluation of rules SeMa? utilises a OWL-DL
Reasoner named Pellet [11], which is able to reason over SWRL constructs. The
overall evaluation result is composed of multiple matching algorithms, namely Ser-
vice Name Matching, Text Similarity Matching, Taxonomy Matching, Rule Struc-
ture Matching and Rule Reasoning. As a result the service matcher provides the
requester with an assessment of all suitable service options in a ranking order.

3 Approach

As described within the previous chapter, OWL-S is a very comprehensive service
desciption ontology with a huge flexibility in describing the IOPEs. However, this
complexity leads to a significant drawback when it comes to the creation and inte-
gration into an application environment, since there are no sufficient tools available.
In the following we propose our conceptual approach of integrating OWL-S into
JIAC V by describing the different methodological steps towards a dynamic service
platform.

The first essential step for an efficient interoperability is the definition of a do-
main ontology (see Figure[I). When developing project applications based on JIAC
V often Eclipse Modeling Framework (EMFE]) is being used. EMF comes with a di-
rect transformation into Java. Further, there is an intensive research in transforming
EMF models into OWL ontologies [12,/4]]. Consequently, EMF is an ideal candidate
to describe ontologies and transform them to the implementation language (Java)
and the service description language (OWL / OWL-S).

As described in the JIAC V section, Java methods developed within Agent Beans
can easily be declared as JIAC Actions by annotating the method heads. Figure
shows such a method head exemplarily. During runtime all relevant service infor-
mation is being extracted and added to the agents service directories. Therefore the
developer can fully concentrate on the implementation of the service’s functionality.

However, what is missing here is the semantic enrichment of services for a de-
tailed analysis of their functionality. Figure[3lshows a process diagramm illustrating
the workflow of how semantical information should be enhanced to the core service
data. At first the annotation head will be extended by a further tag named semantify,
which specifies that the service should be descibed via an OWL-S ontology. Then,

4 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

Semi-automated Generation of Semantic Service Descriptions 159

[Model Development] EMEF
[Model Transformation] Java OWL
[Service Development] | Implementation
OWL-S Generator/ Editor
[Semantic Enrichment] OWL-S Services
[Service Deployment] | Service Directory |
Semantic Service Search : S
[G . ,] | Semantic Service Matcher |
omposition

Fig. 1 Service integration methodology

(@Expose(name = MobilityServiceBeanActions.ACTION SEARCH ROUTING GPTIONS, scope = ActionScope.NODE)
public ArraylList<JourneyEvent> getJourneyOptions (Position locationl, Pesition location2, Date time) {

Fig. 2 The JIAC V annotation mechanism

at compile time, the system checks whether a service description for this action
has already been created. If not, a component named OWL-S Generator extracts all
available information of the method head and the comment part (for now service
name, service description, Java input params, Java output param) and maps the in-
put and output parameters to the concepts of the corresponding ontology, which has
to be defined as the reference ontology within the JIAC application settings. Conse-
quently, a first OWL-S description will be created and loaded into an Eclipse based
Editor. The developer is now able to modify and extend the service description (e.g.
preconditions and effects). After the adaption phase the OWL-S description is stored
persistently and a reference from the service to the description is being stored in the
service header. At runtime the framework deploys and registers the service within
the agent’s service directory.

In order to find and integrate an appropriate service into a new application, the
developer has to be able to specify the desired functionalities. Therefore there has to
be some sort of Semantic Service Search Editor at design time, which is supporting
the definitions of IOPEs and further restrictions, such as QoS parameters. The search

160 N. Masuch, P. Brock, and S. Albayrak

"semantify"? already "semantified"?

Extraction of service
name, description and
scope

Sean JIAC beans Servic
for actions

Input / Output analysis Link of the data types to Integration into OWL-S Editor Generation and persistence
OWL concepts of OWL-S description

Sermantic Compiler

i
Manual adaption of Manual description of |
extracted preconditions and
parameters effects

Fig. 3 Workflow of the OWL-S generation process

OWLS Generatol|

OWL-5Editor

algorithm is then based upon the semantic service matcher SeMa? and returns all
suitable and available services. The developer can select the most appropriate one,
which is then hard coded into the invocation details. In a next step a hybrid approach
is intended, in which the developer defines a specific service, but at times the service
is not available, SeMa? is searching for an alternative and, if available, invokes it
instead. Finally, the service matcher should be able to compose multiple services to
reach a specific goal.

Our main intention with this approach is to enable the developer to easily utilise
semantic service descriptions in order to have an increased flexibility and automa-
tion in highly dynamic application environments. In the next chapter we will identify
a use case in which the additional overhead is justified.

4 Example

A domain that is well-suited for the integration of service automation techniques
into huge computer systems is the field of mobility and transportation. Especially
when thinking about urban traffic, people are asking for more flexible solutions
regarding their personal needs. Therefore intermodal solutions or new approaches
such as spontaneous car- or ride-sharing become more and more popular. Integrat-
ing different mobility providers into a distributed platform is an ideal use-case for
an assistance system where dynamic aspects such as the availability of resources
and context information (e.g. traffic jams) have to be considered for creating a user-
specific solution. The combination of these offers can lead to composite services that
support the user with intermodal and adaptable travel assistance. In this scenario ser-
vices will be dynamically added or removed. Having a platform with comprehen-
sive, but distributed information about mobility and routing options together with
value added services offers the opportunity to develop a highly automatic service

Semi-automated Generation of Semantic Service Descriptions 161

assistance planner. However, it requires an architecture which enables the develop-
ers to easily extend their services with semantical information, which is interpretable
for standard-based matching and composition components. The concept described
in the paper shall be a basic step towards this goal.

5 Conclusion

In this paper we presented a methodological and procedural approach of integrat-
ing semantic service descriptions into a multi-agent framework, in order to address
the challenges of highly dynamic and complex application platforms. Our approach
shows how OWL-S descriptions can be semi-automatically generated via standard
Java method information and multi-agent framework specific annotations and inte-
grated into the running system. Doing so, the software developer will be unburdened
from declaring all service description information manually.

In a next step, we will implement the described concept within the JIAC V agent
framework and upon that we aim to develop an open, intermodal mobility service
platform as a first evaluation use case within a national government funded project.

References

1. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., Mcilraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: DAML-S: Semantic
Markup for Web Services

2. Feier, C., Roman, D., Polleres, A., Domingue, J., Fensel, D.: Towards intelligent web
services: The web service modeling ontology. In: International Conference on Intelligent
Computing, ICIC (2005)

3. Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for Describing RESTful Web
Services. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2008 (2008)

4. Hillairet, G., Bertrand, F., Lafaye, J., et al.: Bridging EMF applications and RDF data
sources. In: Proceedings of the 4th International Workshop on Semantic Web Enabled
Software Engineering, SWESE (2008)

5. Hirsch, B., Konnerth, T., HeB3ler, A.: Merging Agents and Services — the JIAC Agent
Platform. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming: Languages, Tools and Applications, pp. 159-185. Springer (2009)

6. Horrocks, 1., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
Submission 21, 79 (2004)

7. Kapahnke, P., Klusch, M.: Adaptive Hybrid Selection of Semantic Services: The iSeM
Matchmaker. In: Blake, M.B., Cabral, L., Konig-Ries, B., Kiister, U., Martin, D. (eds.)
Semantic Web Services, pp. 63—-82. Springer, Heidelberg (2012)

8. Klusch, M.: Semantic web service description. In: Schumacher, M., Schuldt, H.,
Helin, H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web.
Whitestein Series in Software Agent Technologies and Autonomic Computing, pp. 31—
57. Birkhauser, Basel (2008)

162 N. Masuch, P. Brock, and S. Albayrak

9. Masuch, N., Hirsch, B., Burkhardt, M., HeBler, A., Albayrak, S.: SeMa?: A Hybrid Se-
mantic Service Matching Approach. In: Blake, M.B., Cabral, L., Konig-Ries, B., Kiister,
U., Martin, D. (eds.) Semantic Web Services, pp. 35-47. Springer, Heidelberg (2012)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
a Research Roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223-255 (2008)

11. Parsia, B., Sirin, E.: Pellet: An OWL DL Reasoner. In: Proceedings of the International
Workshop on Description Logics, p. 2003 (2004)

12. Rahmani, T., Oberle, D., Dahms, M.: An adjustable transformation from OWL to Ecore.
In: Petriu, D.C., Rouquette, N., Haugen, @. (eds.) MODELS 2010, Part II. LNCS,
vol. 6395, pp. 243-257. Springer, Heidelberg (2010)

13. Ribeiro, L., Barata, J., Colombo, A.: MAS and SOA: A Case Study Exploring Prin-
ciples and Technologies to Support Self-Properties in Assembly Systems. In: Second
IEEE International Conference on Self-Adaptive and Self-Organizing Systems Work-
shops, SASOW 2008, pp. 192-197 (2008)

14. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley (2009)

	Semi-automated Generation of Semantic Service
Descriptions

	1 Introduction
	2 Background
	2.1 OWL-S
	2.2 JIAC V

	3 Approach
	4 Example
	5 Conclusion
	References

