
Maximality-Based Labeled Transition Systems

Normal Form

Adel Benamira1,2 and Djamel-Eddine Säıdouni1
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Abstract. This paper proposes an algorithm (functional method) for
reducing Maximality-based Labeled Transition Systems (MLTS) mod-
ulo a maximality bisimulation relation. For this purpose, we define a
partial order relation on MLTS states according to a given maximality
bisimulation relation. We prove that a reduced MLTS is unique. In other
word, it provides a normal form.
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1 Introduction

Action refinement has been deeply studied for characterising true concurrency
semantics. For this purpose, several authors have proposed new semantics, and
in the same context new equivalence relations proven to be preserved under
action refinement and supporting action duration (See [6] for survey). The ST-
semantics is one of the most studied of these propositions, originally defined in
[8] over Petri nets, in which semantics, non atomic actions are split into start
and end sub actions. The ST-semantics has been applied in the literature to
process algebras [1,9].

The interleaving ST-bisimulation (ST-bisimulation in short) without silent
moves has been defined on Petri nets [8], and further on prime event structures
[7]. In [13], an alternative definition of the ST-bisimulation has been proposed
for prime event structures with silent moves; the main point of this definition is
that it does not require any-more to split actions as previously, the partial order
relation among events being used instead for determining the set of maximal
events in each configuration. The same idea has been used in [5] for defining the
maximality preserving bisimulation on labeled P/T nets, and with the hypothesis
that all visible actions are non atomics, the maximality preserving bisimulation
coincides with the ST-bisimulation.

For implementing the ST-Bisimulation relation, in [3] an algorithm for a par-
ticular process algebra has been proposed. This approach consists in verifying
the ST-bisimulation relation between process algebra terms; actions are split
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into start and end sub actions. Then, the proposed solution is ad hoc to the con-
sidered process algebra. Dealing with non dependability between concurrency
semantic model and specification models, another concurrency semantic model,
named maximality-based labeled transition system, has been defined in the lit-
erature and used for expressing the semantics of process algebras and P/T Petri
net with the hypothesis that actions are not necessary atomic [4,11,12], i.e. ac-
tions are abstractions of finite processes and elapse in time. The main interest
of maximality-based labeled transition system model is that it can be imple-
mented and used in verification without splinting actions into starts and ends
sub actions. In this paper, given a maximality-based labeled transition system
mlts and a maximality bisimulation relation R on mlts nodes, we propose an al-
gorithm like a recursive function (functional implementation) for reducing mlts
w.r.t R.

Let us take the example in [11]. Consider the Petri net of Fig.1.(a). By apply-
ing the approach of [12], the corresponding maximality-based labeled transition
system of this Petri net is given by Fig.1.(b).

t1 : a

t2 : b

(a)

s0 : φ

s1 : {x} s2 : {y}

s4 : {x, y}s3 : {x}

s5 : {x, y}

φax

φby

{x}bx

{x}bx

φby

φby

φax

(b)

s0 : φ

s1 : {x} s2 : {y}

s4 : {x, y}

s5 : {x, y}

φax

φby

{x}bx

φby

φax

(c)

Fig. 1. Operational semantics of a Petri net in terms of MLTS

At first, recall that a maximality-based labeled transition system is given by
a graph labeled on both states and transitions. Each state is labeled by a set
of event names. Each event name identifies the start of execution of an action
(eventually under execution) which occurred before this state. This action is said
to be potentially under execution in this state. A transition between two states si
and sj is labeled by a 3-uple (M,a, x) (denoted Max) where x is the event name
identifying the start of execution of the action a and M denotes the set of event
names representing some causes of the action a. Elements of M belong to state
s. Occurrence of this transition terminates actions identified by M , thus, the set
of event names corresponding to state sj is that of si from which we subtract
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the set M and add the event name x. Formal definition of a maximality-based
labeled transition system will be given in Sect.2.1.

In the initial state (state s0) of the maximality-based labeled transition sys-
tem of Fig.1.(b), no action is running, from where the association of the empty
set with this state. From state s0, actions a and b can start their execution in-
dependently, their starts are respectively identified by event names x and y. a
and b can be launched in any order. The set {x} (resp. {y}) in state s1 (resp. s2)
stipulates that the action a (resp. b) are potentially under execution in this state.
The set {x, y} in s4 shows that actions a and b can be executed simultaneously.

Note that when the system is in state s1, while the action a has not been
terminated yet, the only evolution concerns the start of b. However, when a
terminates, we can start the action b caused by a or the action b which is inde-
pendent from the end of a. Resulting states are respectively s3 and s4. We can
observe that from state s3, the start of b is always possible. However, the same
ending constraint of a is imposed for the execution of b at the level of state s4.
Note that causal dependence between execution of b across from the action a is
captured by the consumption of the produced token coming from the transition
t1 during the firing of t2 in the Petri net.

Notice that from state s1, transitions leading respectively to states s3 and s4
are due to the firing of the same transition t2. In the first firing, the token of
the initial marking is used whereas in the second firing, the used token is that
produced by the firing of t1. On the other hand, as noted above, the derivation
by b leading to state s4 is not conditioned by the end of the action a, while the
derivation leading to state s3 is conditioned by the end of a.

By maximality bisimulation relation, we can omit the derivations s1 −→
s3 −→ s5 in the maximality-based labeled transition system of Fig.1.(b). In
other words, the maximality-based labeled transition system of Fig.1.(c) is the
reduced system modulo maximality bisimulation relation which preserve action
refinement.

The paper is organized as follows. In Sect.2, we give the definition of a
maximality-based labeled transition system and maximality bisimulation rela-
tion. In Sect.3, we define a partial order relation on a maximality bisimulation
relation by witch an algorithm for reducting of maximality-based labeled transi-
tion systems modulo maximality bisimulation relation is described as a functional
implementation. This paper is ended by some conclusions of this work. Proofs
can be found in [2].

2 Preliminaries [4,10]

2.1 Maximality-Based Labeled Transition Systems

Definition 1. Let M be a countable set of event names, a maximality-based
labeled transition system of support M is a tuple (Ω, λ, μ, ξ, ψ) with:

– Ω = (S, T, α, β, s0) is a transition system such that:
• S is the set of states in which the system can be found, this set can be
finite or infinite.
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• T is the set of transitions indicating state switch that the system can
achieve, this set can be finite or infinite.

• α and β are two applications of T in S such that for all transition t we
have: α(t) is the origin of the transition and β(t) its goal.

• s0 is the initial state of the transition system Ω.
– (Ω, λ) is a transition system labeled by the function λ on an alphabet Act

called support of (Ω, λ). In the other word λ : T → Act.
– ψ : S → 2M is a function which associates to each state the finite set of

maximal event names present in this state.
– μ : T → 2M is a function which associates to each transition the finite set of

event names corresponding to actions that have already begun their execution
and the end of their executions enables this transition.

– ξ : T → M is a function which associates to each transition the event name
identifying its occurrence.

such that ψ(s0) = φ and for all transition t, μ(t) ⊆ ψ(α(t)), ξ(t) /∈ ψ(α(t))−μ(t)
and ψ(β(t)) = (ψ(α(t)) − μ(t)) ∪ ξ(t)
Note 1. In what follows, we use the following assumptions:

– In this present paper we suppose the uniqueness of event name.
– Let mlts = (Ω, λ, μ, ξ, ψ) a maximality-based labeled transition system such

that Ω = 〈S, T, α, β, s0〉. t ∈ T is a transition for which α(t) = s, β(t) = s′,
λ(t) = a, μ(t) = E and ξ(t) = x. The transition t will be noted s Eax−→ s′.

– Let f : E → F be a function (bijection) such that domain Dom(f) = E and
codomain Cod(f) = F , and let D (respectively C) be a subset of E (respec-
tively of F ). Restrictions of f with respect to its domain and codomain are
defined by:
• f�D = {(x, y) ∈ f |x ∈ D}
• f	C = {(x, y) ∈ f |y ∈ C}

– F ⊆ 2M×M is the set of all bijective functions between subsets of M.
– IdA is the identity function on elements of a set A.
– For s ∈ S and Y ⊆ S: Tax [s] = {s′|(s,M ax, s

′) ∈ T } and Tax [Y ] =
∪{Tax [s]|s ∈ Y }.

– The set of Maximality-based labeled transition systems is noted Mlts.

2.2 Maximality Bisimulation Relation

Definition 2. Let mlts1 = (Ω1, λ1, μ1, ξ1, ψ1) and mlts2 = (Ω2, λ2, μ2, ξ2, ψ2)
be two maximality-based labeled transition systems such that
Ω1 =

〈
S1, T1, α1, β1, s

1
0

〉
and Ω2 =

〈
S2, T2, α2, β2, s

2
0

〉
. mlts1 and mlts2 are

said to be maximally bisimilar, noted mlts1 ≈m mlts2, if there is a relation
R ⊆ S1 × S2 × F with

1. (s10, s
2
0, ∅) ∈ R. Initial states of mlts1 and mlts2 are related by the relation.

Since the sets of maximal events in initial states are empty, the function
relating these two sets is empty.
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2. If (s1, s2, f) ∈ R then
(a) Dom(f) ⊆ ψ(s1) and Cod(f) ⊆ ψ(s2).

(b) If s1
Eax−→ s′1 then there is s2

F ay−→ s′2 such that
i. ∀(u, v) ∈ f , if u /∈ E then v /∈ F
ii. (s′1, s

′
2, f

′) ∈ R with f ′ = (f�(ψ(s′1)− {x}))	(ψ(s′2)− {y})∪ {(x, y)}
(c) If s2

F ay−→ s′2 then there is s1
Eax−→ s′1 such that

i. ∀(u, v) ∈ f , if v /∈ F then u /∈ E
ii. (s′1, s

′
2, f

′) ∈ R with f ′ = (f�(ψ(s′1)−{x}))	(ψ(s′2)−{y})∪{(x, y)}.

3 Partial Order on a Maximality Bisimulation Relation

In this section, we assume a givenmlts = (Ω, λ, μ, ξ, ψ) to be a maximality-based
labeled transition system such that Ω = 〈S, T, α, β, s0〉 and R a maximality
bisimulation relation on mlts states. We define two partial order relations. The
first relation is over a set of states of mlts. The second relation is over the set
of maximality-based labeled transition systems. This last relation will be used
for computing the normal form of a maximality-based labeled transition system.
We prove that both relations are complete partial orders. These partial order
relations will be used to define a recursive function1 of reduction of maximality-
based labeled transition systems modulo maximality bisimulation relation. The
reduced maximality-based labeled transition system constitutes its normal form.

3.1 Partial Order Over a Set of States

Definition 3. Let (s, s′, f) ∈ R, s ≤ s′ if and only if:

∀x ∈ ψ(s) : ∃y ∈ ψ(s′) and (x, y) ∈ f .

Proposition 1. Given (s, s′, f) ∈ R:

1. We have s ≤ s′ or s′ ≤ s.
2. The relation ≤ is a partial order.
3. (S,≤) is a Complete Partial Order (CPO).

Example 1. In mlts1 of Fig.2, we have (s2, s3, f1) ∈ R, (s4, s5, f2) ∈ R and
(s5, s6, f3) ∈ R such that f1 = {(z, y)}, f2 = {(z, y), (t, u)} and
f3 = {(u, v), (x, x)}. In other words, we have s2 ≤ s3, s4 ≤ s5 and s6 ≤ s5.

In this CPO, the chains which have the same least upper bound forms a
partition on S. This partition is formally defined by Definition.4.

Definition 4. Let D = (S,≤) be a CPO, we can define a partition ΥD as follow:
ΥD = {Bi ⊆ S| for any X ⊆ Bi, if ∃Y ⊆ S with

⊔
X =

⊔
Y then Y ⊆ Bi}.

Such that X and Y be two chains over D.

Example 2. Given mlts1 of Fig.2, we have
ΥD = {{s0}, {s1}, {s2, s3}, {s4, s5, s6}}, its stems from the fact that �{s0} = s0,
�{s1} = s1,�{s2, s3} = s3 and �{s4, s5} = �{s5, s6} = s5.

1 It is straightforward to propose an imperative algorithm
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3.2 Normal Form of a Maximality-Based Labeled Transition System

Definition 5. Let mlts = (Ω, λ, μ, ξ, ψ) and mlts′ = (Ω′, λ, μ′, ξ′, ψ′) be two
maximality-based labeled transition systems such that Ω = 〈S, T, α, β, s0〉 and
Ω′ = 〈S′, T ′, α′, β′, s′0〉, we define a relation ≤ on Mlts×Mlts as follows: mlts ≤
mlts′ if and only if : ∀s ∈ S.∃s′ ∈ S′ such that s ≤ s′.

Proposition 2. (Mlts,≤) is a complete partial order.

Consider the example in Fig.2, we have inmlts1, (s2, s3, f1) ∈ R, (s4, s5, f2) ∈ R
and (s5, s6, f3) ∈ R such that f1 = {(z, y)}, f2 = {(z, y), (t, u)} and f3 =
{(u, v), (x, x)}. In the other words, we have s2 ≤ s3, s4 ≤ s5 and s6 ≤ s5. We can
deduce easily thatmlts1 ≤ mlts2 ≤ mlts3 ≤ mlts4, so Y = {mlts1,mlts2,mlts3,
mlts4} is a chain with �Y = mlts4. From this example, we can remark thatmlts2
is the mlts1 after suppression the state s6, because s6 ≤ s5. From the fact that
s2 ≤ s3, we obtain mlts3 from mlts2 by suppression the state s2. Since s4 ≤ s5,
we obtain mlts4 by suppression the state s4 of mlts3.

In other words, we can obtain mlts4 (seen as a normal form) from mlts1 by
the suppression of the states s6, s2 and s4. We signal here, that the suppression
of the states is not in the arbitrary order (see Definition.9). Also, the suppression
order is not unique (Property.4 of Proposition.4). The reader may remark that
the graph obtained from mlts1 by suppression of s4 is not a maximality-based
labeled transition system (ψ(s5) is not respected).

To have a normal form, we propose a recursive function Γ (Definition.11)
which is a continuous function on CPO (Mlts,≤). The function Γ is constructed
by the following definitions.

Definition 6. Let s1 and s2 be two states of mlts with s1 ≤f s2. The state s1 is
an eliminated state if and only: ∃s′1, s′2 ∈ S : s′1 =f ′ s′2 such that s′1 predecessor
of s1 and s′2 predecessor of s′2.

Definition 7. Let (s, s′, f) ∈ R, we define a substitution function as follows:

– σφ,mlts = ι (identity substitution),
– σf,mlts = [z/x][z/y]σf−{(x,y)},mlts[z/x][z/y] such that z doesn’t appear in mlts

(new event name).

Proposition 3. R′ = (R−{(s, s′, f)}∪{(s, s′, fσf,mlts)} is a maximality bisim-
ulation relation on mltsσf,mlts.

Definition 8. Let s1, s2 ∈ S with (s1, s2, f) ∈ R, and let mlts′ = (mlts)σf,mlts

= (Ω, λ, μ′, ξ′, ψ′) such that μ′ = (μ)σf,mlts, ξ
′ = (ξ)σf,mlts and ψ′ = (ψ)σf,mlts.

Let Γ : S × S ×Mlts → Mlts be a function such that Dom(Γ ) = {(s, s′,mlts)
such that (s, s′, f ′) ∈ R and verifies Definition.6 for mlts}. Γs1,s2(mlts) =
(Ω′, λ, μ′′, ξ′′, ψ′′) is a maximality-based labeled transitions system in which s1
is removed such that Ω′ = 〈S′, T ′, α′, β′, s0〉 with:
1. S′ = S − {s1},
2. T ′ = T − {In(s1) ∪Out(s1)} ∪ Set Out(s1, s2) ∪ Set In(s1, s2),
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s0 : φ

s1 : {x}

s2 : {z} s3 : {x, y}

s4 : {z, t}
s5 : {x, y, u} s6 : {x, v}

φax

φby{x}bz

{y}cvφcu

φct

(mlts1)

s0 : φ

s1 : {x}

s2 : {z} s3 : {x, y}

s4 : {z, t} s5 : {x, y, u}

φax

φby{x}bz

φcuφct

(mlts2)

s0 : φ

s1 : {x}

s3 : {x, y}

s4 : {z, t} s5 : {x, y, u}

φax

φby

φcuφct

(mlts3)

s0 : φ

s1 : {x}

s3 : {x, y}

s5 : {x, y, u}

φax

φby

φcu

(mlts4)

Fig. 2. Partial Order on Mlts

3. μ′′ = μ′ − ({((si, s1), Xi)} ∪ {((s1, sj), Xj)}),
4. ξ′′ = ξ′ − ({((si, s1), xi)} ∪ {((s1, sj), xj)}),
5. ψ′′ = ψ′ − (s1, X), α′ = α�T ′ and β′ = β�T ′.

with: In(s) = {t|∀t ∈ T : β(t) = s}, Out(s) = {t|∀t ∈ T : α(t) = s} ,
set In(s1, s2) = {(sJ ,M ax, s2)|∀(sj ,N ax, s1) ∈ T ∧ M = ψ(sj) \ ψ(s2)} and
set Out(s1, s2) = {(s2,M ax, sj)|∀(s1,N ax, sj) ∈ T ∧M = ψ(s2) \ ψ(sj)}.
Example 3. In Fig.2, we can affirm that: Γs6,s5(mlts1) = mlts2, Γs2,s3(mlts2) =
mlts3 and Γs4,s5(mlts3) = mlts4.

Proposition 4. Let mlts be a maximality-based labeled transition system:

1. For any s1 and s2 two states of mlts, if s1 ≤f s2 then mlts ≤ Γs1,s2(mlts),
2. Γ is monotone : for any s1 and s2 two states of mlts, if s1 ≤f s2 and

mlts ≤ mlts′ then Γs1,s2(mlts) ≤ Γs1,s2(mlts
′),

3. Γ is continuous : �{Γs1,s2(mlts)|mlts ∈ Y } = Γs1,s2(�Y ),
4. For any states s1, s2, s3 and s4 of mlts, if Γs3,s4(mlts) and Γs1,s2(mlts) are

both defined then Γs1,s2 ◦ Γs3,s4(mlts)
∼= Γs3,s4 ◦ Γs1,s2(mlts).
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Given mlts a maximality-based labeled transition system and subset R ⊆ R.−→
R denotes a set of suppression sequences w.r.t R (Definition.9) ranged over−→
R i. Γ−→R i

: a function suppression a states w.r.t a sequence
−→
R i is defined by

Definition.10.

Definition 9. Let R ⊆ R,
−→
R i is called a suppression sequence of mlts w.r.t R

if and only if:

– either
−→
R0 = ε if R0 = φ (empty sequence),

–
−→
Rn = (sn, s

′
n).

−−−→
Rn−1 such that (sn, s

′
n, fn) ∈ R and

−−−→
Rn−1 is a suppression

sequence of Γsn,s′n(mlts) under a maximality bisimulation relation Rn−1 =
Rn − {(sn, s′n, fn)} (with the hypothesis that R = Rn).

Example 4. In mlts1 of Fig.2, we have R = {(s2, s3, f1); (s4, s5, f2); (s6, s5, f3)}.
We can obtain from R, three suppressions sequences:−→
R 1 = (s2, s3).(s4, s5).(s6, s5),

−→
R 2 = (s2, s3).(s6, s5).(s4, s5) and−→

R 3 = (s6, s5).(s2, s3).(s4, s5). The sequence (s4, s5).(s2, s3).(s6, s5) is not a sup-
pression sequence, therefore, Definition.6 is not verified for (s4, s5).

Definition 10. Let
−→
R i be a suppression sequence, we define Γ−→

Ri
as follows:

– either Γ−→
Ri

(mlts) = mlts if
−→
R i = ε,

– Γ−→
Rn

(mlts) = Γ−−−→
Rn−1

◦ Γ(sn,s′n)(mlts) such that
−→
Rn = (sn, s

′
n).

−−−→
Rn−1 .

Given mlts a maximality-based labeled transition system and D = (S,≤) a
CPO over R, we can have from ΥD a suppression sequence with respect to R
(Proposition.5). We define an operator Γ which eliminates a set of states w.r.tR.

Proposition 5. Let mlts = (Ω, λ, μ, ξ, ψ) be a maximality-based labeled tran-
sition system such that Ω = 〈S, T, α, β, s0〉, and D = (S,≤f ) a CPO. Given
ΥD = {Yi|i = 0..n} with Y0 = {s0} and ∃a ∈ Act : (Taf(x)

[Yi] = Yj) ∧ i < j.

1. We can obtain, over Γ−→
Yi
, the suppression sequence

−−→
Yi+1 = (s1,�Yi+1)...(sj ,�Yi+1)...(sn,�Yi+1) with sj ∈ Yi+1 and sj �= �Yi+1,

2. The composition in
−−→
Yi+1 is commutative.

Example 5. Given ΥD = {{s0}, {s1}, {s2, s3}, {s4, s5, s6}} of mlts1 of Fig.2, we
have ΓΥD (mlts1) = Γ(s4,s5).(s6,s5) ◦ Γ(s2,s3)(mlts1)

Definition 11. Let mlts = (Ω, λ, μ, ξ, ψ) be a maximality-based labeled tran-
sition system such that Ω = 〈S, T, α, β, s0〉, and D = (S,≤) a CPO. Given
ΥD = {Yi|i = 0..n} with Y0 = {s0} and ∃a ∈ Act : (Taf(x)

[Yi] = Yj) ∧ i < j. We
can define the function Γ as follows: Γ (mlts) = Γ−→

Yn
◦ .. ◦ Γ−→

Y1
(mlts).

Proposition 6. Let mlts be a maximality-based labeled transition system:
mlts ≤ Γ (mlts) and Γ (mlts) is unique.



Maximality-Based Labeled Transition Systems Normal Form 345

Definition 12. Given mlts = (Ω, λ, μ, ξ, ψ) a maximality-based labeled tran-
sition system such that Ω = 〈S, T, α, β, s0〉, mlts is in normal form if and
only if: for any maximality bisimulation relation R and for any s, s′ ∈ S:
((s, s′, f) ∈ R ⇒ s = s′).

Theorem 1. Given mlts a maximality-based labeled transition system, Γ (mlts)
is the normal form of mlts.

4 Conclusions

This paper proposes a functional method for reducing maximality-based labeled
transition systems. The choice of this model is motivated by its independence
from any concurrency specification model. For this purpose, we define a complete
partial order on both the set of maximality-based labeled transition systems and
the set of maximality-based labeled transition system states. These relations al-
low us to define an algorithm reducing a maximality-based labeled transition
system according to maximality bisimulation relation. As a perspective of this
work, it remain the definition of an algorithm computing a maximality bisimula-
tion relation for any maximality-based labeled transition system and by the way
analysing realistic systems specified in Petri nets and processes algebras using
results of [11,12].
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