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Abstract Manufacturers are nowadays highly affected by the ever-increasing
number of product variants, under the product personalization trend. The large
number of cooperating manufacturing network partners leads to enormous search
spaces of alternative manufacturing network configurations. This obstructs effec-
tive decision-making towards configuring efficient network structures, a none-
theless crucial decision for a company. Exact methods guarantee that the identified
solution is the optimum, with regards to the objectives set in the specified problem.
However, in real life cases the magnitude of the solution space is such that these
methods cannot be utilized due to computational constraints. For tackling such
NP-hard problems, meta-heuristics can be utilized that provide a trade-off between
the quality of solution and the computation time. This research work describes the
modeling and solving of a manufacturing network design problem using the meta-
heuristic methods of simulated annealing and tabu search. The quality of the
results identified by these methods is compared with the results obtained from an
intelligent search algorithm and an exhaustive enumerative method, which are
implemented into a web-based platform for the design and planning of manu-
facturing networks. The approach is validated through its application to a real life
case study with data acquired from the automotive industry.
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1 Introduction

The introduced number of product variants under the trend of market’s person-
alization needs constitutes the identification of effective and efficient manufac-
turing network structures an utterly challenging issue. In this personalization
environment, manufacturers are called to materialise, customer unique requests
[1]. The vast amount of alternative configurations especially for a newly intro-
duced personalized variant requires immediate feedback from the production
system and intelligent methods capable to suggest optimal ways of configuring the
manufacturing resources [2]. Toward this end, this research work focuses to
provide strategic level decision-support for the design of manufacturing networks
in order to handle high product variety and demand volatility.

2 State of the Art

The increased complexity, the ever-existing competitiveness and the dynamic
character in today’s manufacturing landscape generates a series of difficulties in
supply chain management [3]. Supply chain design, planning and continuous
optimization is nevertheless a critical decision for modern enterprises and at the
same time a flourishing research area. As most of the optimization problems and
predominantly cases under uncertainty will be of large scale, the need for devel-
oping efficient and intelligent procedures is evident [4].

Optimization methods have been extensively utilized for the manufacturing
network design. One of the most prominent family of techniques are metaheu-
ristics, which use parallel and non-independent solution constructions [5]. Meta-
heuristics have been applied to the majority of manufacturing network design and
planning problems, aiming at multi or single objective optimization [6]. Com-
monly used metaheuristics include the methods of simulated annealing [7], tabu
search [8], cross-entropy [9] as well as nature-inspired methods like genetic
algorithms [10], evolution strategies [11] and, more recently, ant colony optimi-
zation [12] and particle swarm optimization [13]. Other metaheuristics such as
greedy randomized adaptive search procedures (Grasp) [14] and ant colony opti-
mization (ACO) employ repeated probabilistic solution constructions. Moreover,
approximate and non-deterministic tree search procedures (ANTS) [15] and
probabilistic beam search derivate like Beam-ACO can be found [16].

Tabu Search is among the most effective approaches for solving hard combi-
natorial optimization problems, with high applicability in discrete search spaces
[5]. Tabu search was preferred by Keskin and Ülster (2007) because it offered both
high solution quality and computational time advantages [17]. A tabu search with
path relinking was proposed in [18], and was used for the identification of the
indicative number of parts to be produced. It also proposed the quantity of each
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item to be delivered to the customers. Melo et al., proposed a tabu search method
for the redesign of a multi-echelon supply network [19]. The study tackled a
number of manufacturing network related issues, such as facility relocation sce-
narios and multi-period design horizons. Tabu search was utilized in a Markov
chain bootstrapping procedure, in order to search through the exploding number of
alternative scenarios [20].

Moreover, simulated annealing has been extensively applied for the design of
manufacturing networks. A simulated annealing methodology that addressed the
distribution network design and management problem was proposed in [21]. The
study focused on the determination of the optimal set of warehouses and cross-
docks to operate while minimizing the cost to operate such open warehouses and
cross-docks, costs to transport multiple shipments of products from warehouses to
cross-docks and costs to supply products based on customer demands. A simulated
annealing approach was proposed to a bi-criteria sequencing problem in two-stage
supply chain to coordinate required set-ups between the two successive stages
[22]. Mansouri [6] also proposed a bi-criteria simulated annealing approach for a
two-stage manufacturing network for the coordination required set-ups between
two successive stages of a supply chain in a flow shop pattern. Furthermore, a
recent study incorporated environmental objectives into the decision-making
procedure for the design and planning of supply chains [23]. Finally, the authors in
[24] focused on manufacturing network design for a single-product, single-period
problem with constant demand and uncertainty in returns, incorporating also
environmental impact factors. A comprehensive comparison among the methods
of Tabu Search, Simulated Annealing and Genetic Algorithms is provided by
Arostegui et al. [25].

The type of the problem tackled in this paper is a multi-objective decision-
making problem that aims at the simultaneous optimization of multiple cost and
benefit criteria. The problem is NP-hard [26] and the magnitude of the search
space for the specific investigated model is in the order of millions of alternatives.
The aim is the timely identification of high quality feasible alternative multi-stage
manufacturing networks that support the production and transportation of heavily
customized products.

This design of multi-stage manufacturing networks for personalized products
problem is tackled using exhaustive, intelligent and metaheuristic techniques. The
developed framework includes the following search methods: Exhaustive Search,
Intelligent Search Algorithm, Simulated Annealing and Tabu Search. The per-
formance of these methods is calculated in terms of solution quality and compu-
tational requirements. The solution quality takes into consideration classical
indicators such as cost, lead time and quality, along with parameters of environ-
mental impact and manufacturing network reliability. Finally, the approach is
validated through a real life case study utilising data acquired from the automotive
industry.

Design of Multi-Stage Manufacturing Networks 1265



3 Manufacturing Network and Personalized
Product Models

The evolution of manufacturing resources and the establishment of Key Enabling
Technologies (KETs) has allowed the realization of highly complex products cost-
effectively. Moreover, innovative production concepts such as Flexible Manu-
facturing Systems grant capabilities for producing larger number of different parts
using the same machines [27]. Apart from OEMs, who already implement such
technologies, their cooperating pool of suppliers and dealers are forced to do the
same. They are driven by the needs of maintaining their competitiveness, or they
are imposed to reform their production system by the OEM they supply. Therefore,
manufacturing tasks, such as assemblies and/or special personalization tasks can
be outsourced to suppliers and dealers closer to the final customers [28]. This
concept of decentralized manufacturing that has already been implemented in
practice, is utilized in the presented research work for modeling the manufacturing
networks.

The modeling of the personalized product structure includes a number of
commonly shared parts by all variants and a series of customer-personalized
components and accessories. The product personalization is carried out by the
customer through a web-based three-dimensional configurator. The customer can
select an accessory and modify its characteristics, ranging from simple colour and
texture modifications up to more elaborate geometrical alteration. The system is
checking in real-time the manufacturability of the customer preferences and in
case the design is feasible, the order is forward to the production system, which is
the starting point of the presented study.

4 Methods for the Design of Manufacturing Networks

The decision-making methods used for the identification of manufacturing net-
work alternatives and their evaluation is performed using the following four
methods: Exhaustive Search, Intelligent Search Algorithm, and Simulated
Annealing and Tabu Search.

4.1 Exhaustive Search

The Exhaustive Search (EXS) is an exact enumerative method [27, 29]. During an
EXS, the entire search space of the manufacturing network configuration alter-
natives is generated and evaluated. Therefore, EXS is capable of identifying the
best alternative with respect to the selected criteria, as defined by the design and
planning objectives. However, the EXS can be very time-consuming in realistic
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cases, due to the enormous size of the search space. In real-life manufacturing
cases, when the Total Number of Alternatives (TNA) is in the order of billions,
EXS is non-executable in conventional workstations in real time, therefore, it is
impractical for manufacturing needs.

4.2 Intelligent Search Algorithm

The ISA used for the digital experimentation is described in [29–32]. ISA is an
artificial intelligence search method that utilizes three adjustable control param-
eters. The depth of the search is defined by the Decision Horizon (DH), the breadth
of the search by the Selected Number of Alternatives (SNA) and the Sampling
Rate (SR) guides the search towards paths of high quality. The algorithm’s per-
formance is investigated in [29, 32].

4.3 Simulated Annealing

In the Simulated Annealing (SA) method, an initial solution S is fed to the algo-
rithm. S is randomly generated obeying the constraints of the manufacturing
capabilities of the supply chain partners. This S is changed following a hill
climbing notion. However, the difference with simple hill climbing is that when
SA makes the decision on when to replace S with R, its newly tweaked offspring.
More specifically, if R is better than S, SA will always replace S with R. But if R is
worse than S, it may still replace S with a certain probability P(t, R, S):

R t;R; Sð Þ ¼ e
UtilityValue Rð Þ � UtilityValueðSÞ

t
;where t� 0

Thus, the algorithm sometimes goes down hills. The fraction in the exponent is
negative because R has a lower utility values than S. First, if R is much worse than
S, the fraction is larger, and so the probability is close to 0. If R is very close to S,
the probability is close to 1. Thus, if R isn’t much worse than S, SA will still select
R with a reasonable probability. Second, the tuneable parameter t, if close to 0, the
fraction is again a large number, and so the probability is close to 0. If t is a large
number, the probability is close to 1. Initially t is set to a high number, which
causes the algorithm to move to explore new neighborhoods by adopting every
newly-created solution regardless of how good it is. Afterwards, t decreases
slowly, eventually becoming 0, at which point the algorithm is doing nothing more
than plain hill-climbing. The rate at which t is decreased is called the algorithm’s
schedule. The longer t is stretched out the schedule, the longer the algorithm
resembles a random walk and the more exploration it does. The pseudo-code of the
SA implemented in this research work is a follows:
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1: t / temperature (initially a high number)
2: S / initially generated candidate solution
3: Best / S
4: repeat
5: R / Tweak(Copy(S))
6: if Utility(R) [ Utility(S) or if a random number chosen in [0,

1] \ eUtilityValue Rð Þ�UtilityValueðSÞ
t then

7: S / R
8: Decrease t
9: if Utility(S) [ Utility(Best) then

10: Best / S
11: until Best is the optimum solution or t = 0 or another termination condition

is met
12: return Best

4.4 Tabu Search

TS employs a different approach to doing exploration, by exploiting a memory
feature. TS stores a history of recently considered candidate solutions (known as
the tabu list) and refuses to return to those solutions until they’re sufficiently far in
the past, i.e. removed from the list of taboos. Thus, if a hill climb is carried out, the
algorithm will cause a back down walk on the other side because it is not permitted
to stay at or return to the top of the hill. During TS, a tabu list L, of some maximum
length l, of candidate solutions that have been searched so far is stored. Whenever
a new candidate solution is adopted, it goes in the tabu list. If the number of rows
of the tabu list exceed l, the oldest candidate solution is removed and it’s no longer
taboo to reconsider. The implemented TS algorithm is based on the following
pseudo-code:

1: l / desired maximum tabu list length
2: n / number of tweaks desired to sample the gradient
3: S / initially generated candidate solution
4: Best / S
5: L / {} a tabu list of maximum length l
6: Enqueue S into L
7: repeat
8: if Length(L) [ l then
9: Remove oldest element from L

10: R / Tweak(Copy(S))
11: for n - 1 times do
12: W / Tweak(Copy(S))
13: if W 62L and (UtilityValue(W) [ UtilityValue(R) or R[L) then
14: R / W
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15: if R 62L and Quality(R) [ Quality(S) then
16: S / R
17: Enqueue R into L
18: if UtilityValue(S) [ UtilityValue(Best) then
19: Best / S
20: until Best is the optimum solution or another termination condition is met
21: return Best

4.5 Decision-Making Method

The underlying decision theory is based on five steps: (1) form a set of alternatives
according to the selected method (EXS, ISA, SA and TS), (2) determine a set of
decision-making criteria, (3) normalise the calculated criteria values, (4) calculate
the utility value, and (5) select the best or a good alternative. The alternatives are
selected according to their utility value, which is the weighted sum of the nor-
malized criteria values multiplied by their corresponding weight factors. The
weight factors are defined according to the specific design and planning objectives.

The normalization of the criteria values is necessary due to the fact that the
considered criteria may be conflicting and have different units of measurement.
Some of the criteria need to be maximized (quality and reliability) and others need
to be minimized (e.g., production cost, lead time, CO2 emissions, and energy
consumption). The normalization of the benefit criteria is performed using Eq. (1)
and for the cost criteria using Eq. (2) [29, 33]. The utility value is calculated using
Eq. (3) [29, 30].

Ĉij ¼
Cij � Cmin

j

Cmax
j � Cmin

j

ð1Þ

Ĉij ¼
Cmax

j � Cij

Cmax
j � Cmin

j

ð2Þ

Ui ¼
Xn

j¼1

WcĈij ð3Þ

5 Mathematical Modeling of the Problem

The problem faced is expressed through the optimization of the following
objectives (decision-making criteria). The weighted sum of these criteria is
expressed through the utility values which must be maximized in the range [0, 1]:

Production and Transportation Cost (PTC): sum of production cost (PC) for
partner i to perform task k and of transportation cost (TC) from partner i to j, where
i, j, k [ N, i = 0,1…I, j = 0,1…J, k = 0,1…K [29, 34].
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Lead Time (LT): sum of processing and setup times (PT) for partner i to
perform task k and of transportation time (TT) from partner i to partner j [34].

Energy Consumption (EC): sum of energy consumption (EP) for partner i to
perform task k and of the transportation energy (ET) required from partner i to
partner j [28, 35].

CO2 Emissions (CO): the CO2 tonnes for the transportation (CE) of parts from
partner i to partner j [28, 35].

Quality (Q): the mean quality of the partners of an alternative manufacturing
network configuration [27].

maxQ ¼
PI

i QLi

I

Reliability (R): total reliability, where s represents serial and p parallel
resources, s,p [ N, s = 0,1…S, p = 0,1…P [36].

6 Software Tool Implementation

The digital experimentation was executed into a web-based software tool, where
the ISA and EXS algorithms are coded using JAVATM, contained in the Apache
Tomcat web-server and stored in a MySQL database. The SA and TS engines were

minPTC ¼
PI

i

PK

k
PCik þ

PI

i

PJ

j
TCij

(€)

minLT ¼
PI

i

PK

k
PTik þ

PI

i

PJ

j
TTij

(days)

minEC ¼
PI

i

PK

k
EPik þ

PI

i

PJ

j
ETij

(Joules)

minCO ¼
PI

i

PJ

j
CEij

(tonnes CO2)

maxRstot ¼
QS

s Rs For serial resources

maxRptot ¼ 1�
QR

r ð1� RpÞ For parallel resources
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executed in the Matlab
�

environment. Graphical interfaces are shared among the
four methods and are used for performing the required data entry (resources, tasks,
materials etc.) and adjusting the parameters of the ISA, SA and TS methods. The
user is capable to select the preferred decision-making method, execute the
experiments and visualise the results, comparisons as well as the selected manu-
facturing network configurations within a web-browser.

7 Industrial Pilot Case

The dataset used in the experiments are obtained from an automotive manufacturer
and includes the manufacturing resource characteristics (processing time, setup
time, energy consumption, quality etc.), the armrest Bill of Materials (BoM)
structure, the Bill of Processes (BoP), and the mapping between these three
(Fig. 1).

Moreover, the locations of the production plants are entered to the system, in
order for the integrated GoogleMapsTM API to automatically calculate the dis-
tances between them, which are utilized for the accurate calculation of the
transportation related impact. The distances are used for the calculation of trans-
portation cost and time, CO2 emissions and energy consumption. The armrest can
be produced in 3 variants upon customer request. The basic non-customized
armrest (A1 variant) is comprised by the compartment, the external covering, the
closing covering, the bushing, the hinge support and the screw. The other variants
are extensions to this A1 and feature the addition of an inner light kit and an inner
cooling kit (A2 variant) an internal covering (A3 variant) (Fig. 2). These com-
ponents can be produced and assembled by a set of suppliers, dealers and OEM
plants, at different cost, time, and quality. The final stage of this value-adding
chain is the delivery of the customized product to the customer.

Materials loading Application

ApplicationMaterials loading

Materials loading Application

Customer

Production of Basic 
Armrest Components

Basic Armrest Assembly
GL 1,2,3,4,5

GL 6

Inner Light Kit Application

Inner Cooling Kit Application

GL 7

Internal Covering Application

GL 9

GL 8

Production of Optional 
Armrest Components

Inner Light Kit 

Inner Cooling Kit 

Internal Covering

GL 10,11,12
GL: Geographic Location

Geometry positioning AssemblingMaterials loading

Fig. 1 BoP of the
customized armrest
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8 Results and Discussion

The digital experiments conducted are: one execution of the EXS and ten exe-
cutions for each of the ISA, SA, and TS, due to the inherent randomness of these
methods. The adjustable parameters of the ISA method were obtained through a
Statistical Design of Experiments, and were SNA = 1,000, DH = 6, and SR = 20
[37]. The cooling schedule (t) for the SA was 0.99 and the initial temperature was
1. Moreover, the tabu list was a matrix with dimensions maintained at [150 9 l],
where l the number of stages in an alternative manufacturing network configura-
tion. Other termination conditions jointly applied in these two algorithms were the
maximum number of iterations (MI), which was set at 65,000 and the maximum
number of accepts (MA) for a solution, which was set at 1,500. The MA for SA
represents the number of occurrences for a tweaked solution to replace the parent
solution. In the case of TS, MA counts the times when the newly created solution is
not contained in the tabu list and therefore, replaces a current taboo solution. The
obtained criteria values of the best alternatives as provided by each of the 4
methods are collectively depicted in Fig. 3.

The EXS values were superior when compared to the other three methods, as
expected. More specifically, regarding the values of the cost criterion the alter-
native configuration obtained by the ISA is 24.05 % worse than the results of the
EXS an 28.43 and 12.88 % better than the result of the SA and TS methods
respectively. The value of the cost criterion obtained from the TS is 32.71 %
higher than the value obtained from the EXS. Furthermore, the same trend is
observed for the values of the CO2 emissions quality and reliability. More spe-
cifically, the relative difference for the CO2 Emission values between the EXS and
the other three methods is 29.31 % from ISA, 54.82 % from SA and 46.92 % from
TS. Additionally, the relative difference in the quality value of EXS is 0.12, 1.28
and 0.58 % higher than the ISA, SA and TS. Finally, the difference between the
EXS and the other three methods for the Reliability criterion is 3.57 % for the ISA,
10.71 % for the SA and 1.19 % for the TS. The lead time as well as the energy

Armrest

Compartment

External Covering

Closing Covering

Bushing

Hinge Support

Screw

Inner Light Kit (A1)

Inner Cooling kit (A2)

Internal Covering (A3)

Bill of Materials (BoM)

Standard 
Components

Personalisation 
Options

Fig. 2 BoM of the
customized armrest
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consumption values when comparing the SA and TS results however, are in favor
of the first.

Moreover, Fig. 4 below includes a comparison of the utility value of the
solutions of the four methods and graphically presents the performance of
the methods. The figure on the right hand side includes normalized values for the
criteria, utility and computation time indicators. Comparing the utility value with
the computation time that each method required in order to solve the problem it
becomes obvious that ISA, and TS are superior to the EXS and SA. The relative
difference of the utility value obtained from the ISA and the EXS is -5.4 %,
however, the computation time required from ISA was calculated at three orders of
magnitude less than the respective time required from EXS (Table 1). Further-
more, the difference of the utility value of the EXS and the SA and TS is 20.46 and
14.52 % correspondingly. The difference in the computation times between the
methods of ISA, SA and TS is relatively small. Thus, the trade-off between the
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quality of the solution and the computation time is in favor of these methods as
opposed to the EXS computationally intensive procedure. Moreover, the solutions
identified by the ISA belonged to the top 0.14 % of the best alternatives of the
solution space, the TS results to the 1.41 % and the SA to the top 6.12 %.

9 Conclusion and Future Work

The presented research work focused on the design of manufacturing networks that
aim on the production of personalized products. The methods of Exhaustive
Search, Intelligent Search Algorithm, and Simulated Annealing and Tabu Search
were implemented in a software framework and compared based on the results
they yielded. The comparison depicted that the solutions identified by the ISA are
of high quality when compared to the results obtained by TS and SA, the latter
yielding the lower performance of all examined methods. The deviation of the
ISA, TS and SA solutions from the best solution acquired by the EXS is never-
theless acceptable taking into consideration the required computation time.
Moreover, the exploding solution space of realistic manufacturing cases consti-
tutes the use of EXS non-practical due to the computational resource constraints
introduced by the magnitude of the solution space. In realistic manufacturing
cases, the TNA may be calculated in the order of billions. Thus, a timely and
efficient solution can only be then obtained through the utilization of the intelligent
search techniques such as the ISA and other well-established metaheuristics,
among which the SA and TS presented above. As a result, depending on the design
and planning objectives, a trade-off between the time for obtaining the solution and
its quality is necessary. Concluding, in case an objective function n = f(utility
value, computation time) was to be calculated, this trade-off will become apparent,
as the EXS will yield results of lower n values as opposed to intelligent methods
[38].

Future work will focus on enhancing the capabilities of the TS and SA methods.
For TS, a novel memory feature will be introduced, supported by a knowledge-
based repository. A set of rules will effectively aid the exclusion of already visited
neighborhoods, enabling the exploration of larger search spaces. For SA, an

Table 1 Criteria values and required computation time for the four methods

Method Production
cost (€)

Lead
time
(hrs)

CO2

emis.
(tonnes
CO2)

Energy
cons.
(GJ)

Quality Reliability Computation
time (sec)

No. of
alternatives

EXS 2229.7 1822.6 1.6396 42.5027 83.3 0.84 1,719 12,266,496
ISA 2935.5 1964.3 2.3168 58.7606 83.2 0.81 1.7 20,000
TS 3313.3 4233.3 3.0879 72.4214 82.8 0.82 12.6 1,626
SA 4101.8 3546.1 3.6308 65.4279 82.2 0.75 131.5 135,419
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intelligent procedure will be devised for iteratively adjusting the cooling schedule,
in order for the algorithm to decide when to focus on exploring the solution space
and when to focus on the exploitation of discovered regions of high quality.
Moreover, the developed TS and SA methods will be coded into a web-based
design and planning software platform as components, under the Software as a
service (SaaS) pattern. Finally, the wide applicability of the proposed framework
will be depicted through its application in other industrial sectors, such as the CNC
and robot building industries.
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