
S. Omatu et al. (Eds.): Distrib. Computing & Artificial Intelligence, AISC 217, pp. 503–511. 
DOI: 10.1007/978-3-319-00551-5_60 © Springer International Publishing Switzerland 2013 

Periodic Chemotherapy Dose Schedule 
Optimization Using Genetic Algorithm 

Nadia Alam1, Munira Sultana1, M.S. Alam1, M.A. Al-Mamun2, and M.A. Hossain2 

1 Department of Applied Physics, Electronics and Communication Engineering,  
  University of Dhaka, Dhaka-1000, Bangladesh  
 {nadia14,munirasultana17}@gmail.com, 
  msalam@univdhaka.edu 
2 Computational Intelligence Group, Faculty of Engineering and Environment,  
  University of Northumbria at Newcastle, UK 
{mohammed.al-mamun,alamgir.hossain}@northumbria.ac.uk 

Abstract. This paper presents a design method for optimal cancer chemotherapy 
schedules using genetic algorithm (GA). The main objective of chemotherapy is to 
reduce the number of cancer cells or eradicate completely, if possible, after a pre-
defined time with minimum toxic side effects which is difficult to achieve using 
conventional clinical methods due to narrow therapeutic indices of chemotherapy 
drugs. Three drug scheduling schemes are proposed where GA is used to optimize 
the doses and schedules by satisfying several treatment constraints. Finally, a clin-
ically relevant dose scheme with periodic nature is proposed. Here Martin's model 
is used to test the designed treatment schedules and observe cell population, drug 
concentration and toxicity during the treatment. The number of cancer cells is 
found zero at the end of the treatment for all three cases with acceptable toxicity. 
So the proposed design method clearly shows effectiveness in planning chemothe-
rapy schedules. 
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1 Introduction 

Cancer is a class of diseases characterized by an imbalance in the mechanisms of 
cellular proliferation and apoptosis [1-2]. There are four major approaches to can-
cer treatment: surgery and radiotherapy as local treatments, chemotherapy and the 
use of biological agents (such as hormones, antibodies and growth factors). Tradi-
tional chemotherapeutic agents act by killing cells that divide rapidly, one of the 
main properties of cancer cells. Chemotherapy also harms other cells that divide 
rapidly: cells in the bone marrow, digestive tract, hair follicles. This causes com-
mon side-effects: myelosuppression (decreased production of blood cells, hence 
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also immunosuppression), mucostisitis (inflammation of the lining of the digestive 
tract), and alopecia (hair loss). Chemotherapy treatment schedule, defined as dose 
amount and frequency is needed to be conveniently chosen to reduce the number 
of cancer cells after a number of fixed treatment cycles with acceptable/minimum 
toxic side effects. Researchers have designed optimal drug schedules of cancer 
chemotherapy and developed mathematical models to predict tumor growth. Evo-
lutionary algorithms have been employed to design the chemotherapy drug sche-
duling for cancer treatment [3-6]. Considering clinical limitations in maintaining 
continuous treatment and giving emphasis on clinical relevance and patient’s com-
fort, this paper presents a design method of optimal cancer chemotherapy treat-
ment schedules where  genetic algorithm (GA) is used to optimize drug doses and 
intervals by minimizing treatment main objective (cancer cells) and satisfying 
other key objectives. 

2 Mathematical Model, Design Objective and Constraints 

Here we consider a mathematical model (Equations 1 –7), originally developed by 
Martin and Teo in [1] that accounts for a tumor proliferating in Gompertzian fa-
shion along with  therapeutic and toxicity effects of intravenous administration of 
drug.  

(t)(t)=D(t)-CC  (1) 

(t)N(t)  effCeff- k
N(t)

gρ
N(t)

N

gρ

N

gρ

gτ
(t)N 



















































= ln

02
ln

0
ln

1

 

(2) 

) th)H(C(t)-CthC(t)=(C(t)-effC
 

(3) 





<
≥

=
thC(t),     if C
thC(t),     if C

)thH(C(t)-C
0

1

 

(4) 

 =)=CC( 00 0  
(5) 

0)0 =NN(
 

(6) 



Periodic Chemotherapy Dose Schedule Optimization Using Genetic Algorithm 505 

T(t)(t)=C(t)-ηT  (7) 

Eqn 1 gives the pharmacokinetics of drug. The plasma drug concentration, C(t) 
increases with intravenous infusions of the drug, D(t), and decreases according to 
first–order elimination kinetics at a rate λ. Equation 2 gives the number of cancer 
cells proliferating in a Gompertzian fashion and the therapeutic effect of the drug 
on the tumor is represented by adding a negative bilinear kill term to the tumor 
growth equation. Here ρg  is the asymptotic plateau population, N0 is the initial 
number of tumor cells, τg is the first doubling time of the tumor during exponential 
growth [1]. The bilinear term is proportional to both the current size of the tumor, 
N(t) and the effective drug plasma concentration, Ceff(t) with constant of propor-
tionality keff [1]. keff is called the fractional kill term per day of the drug. Ceff(t) is 
the drug concentration above the minimum therapeutic concentration, Cth, as given 
in equation 3. Equation 4 is a Heaviside step function that implies drugs may not 
become effective until a therapeutic plasma concentration is reached (Cth). The 
initial drug concentration and number of cancer cells are given by C0 and N0, re-
spectively. Equation 7 gives the toxicity level in body after infusion of drugs 
where is η  a constant [8]. The values of λ, τg, ρg, N0, keff, Cth and η  are respec-

tively considered to be 0.27 days-1, 150 days, 1012, 1010, 2.7×10-2  days-1[D]-1, 
10[D] and 0.4 days-1 [1],[8]. Here [D] is a unit of dose concentration/mass. The 
model is implemented in Matlab/Simulink environment and used in following 
sections. 

Here we considered three types of toxicity constraints. The drug concentration 
in plasma should not exceed maximum allowable level Cmax and the measurement 
of toxicity must not exceed an acute level Tmax stated by following inequalities 8 
and 9 

],t[t;       CC(t) f0max ∈∀≤  (8) 

],t[t;       TT(t) f0max ∈∀≤
 

(9) 

Total exposure of drugs in plasma is commonly calculated by integrating drug 
plasma concentration over the treatment must not exceed a value Ccum as in 10 

cum CC(t)dt
ft
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0  

(10) 

The values of Cmax, Tmax and Ccum are taken to be 50[D], 100[D] and 
4.1×103[D].days [7,8]. Finally, the efficacy constraint limits the number of cancer 
cells not to surpass the initial condition, N0. Which gives  

 ],t[t;       NN(t) f00 ∈∀≤
 

(11) 

Here we have used the optimal control problem considered by Martin and Teo in 
[1] to minimize cancer cell no. at a final time. It can be expressed as:  
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In words, we have to design a chemotherapy schedule for 1 year to minimize the 
final number of cancer cell. The drug concentration should range between 10 and 
50 and cumulative plasma drug concentration at the end of the treatment should be 
lower than a value 4.1×103. Finally, the cancer cell number should never exceed 
1012.  

3 Optimal Chemotherapy Schedule Using GA 

Genetic Algorithm (GA) is a stochastic global search method that replicates the 
metaphor of natural biological evolution [8]. Selection, crossover and mutation are 
its main operators. The fundamental element processed is a string formed by con-
catenating sub-strings, each of which is a numeric coding of a parameter. Each 
string stands for a solution in the search space. Performance of each solution is 
assessed through an objective function imposed by the problem and used in the 
selection process to lead the search towards the best individual. Crossover can 
cause to swap the properties of any two chromosomes via random decision in the 
mating pool and provides a means to produce the desirable qualities. Mutation is a 
random alternation of a bit in the string to keep diversity in the population. Here 
we propose three drug scheduling schemes, all planned for 364 days and GA is 
employed to find doses and intervals throughout the period. 

Dose Pattern 1: Variable Interval Variable Dose (VIVD): In VIVD scheme, 
chemotherapy treatment will be administered to patients only first two days of 
each week depending on decision variable. For each week, decision variable is 
encoded with one bit; ‘1’ to indicate that a patient will receive treatment on that 
week and ‘0’ to indicate rest week, i.e, no drugs will be administered on that 
week. Giving clinical relevance, same drug doses are administered to patient 
treatment for first two days of any treatment week and one variable is required for 
each week. So, two variables are defined for each week; one for dose and one for 
decision. For a year (364 days = 52 weeks) long treatment plan, 52×2=104 va-
riables are required and GA is used find an optimum solution set.  

Dose Pattern 2: Fixed Interval Variable Dose (FIVD): In FIVD, interval be-
tween two consecutive treatments is fixed throughout the whole treatment period. 
Drugs are administered to patients on first two days of every 4th week following a 
rest period of 26 days. For any treatment week, same doses are administered on 
first two days. So, only one control variable is required to define the dose level of 
any treatment week.  For a total period of one year, treatments are given only in 
52/4=13 weeks and a total of 13 variables are required in designing this dose pat-
tern. Aiming clinical relevance and to meet treatment efficacy, a high dose, called 
bowl (dose level of 50[D]) is administered to a patient at the beginning of the 
treatment. 
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Dose Pattern 3: Periodic Dose: Like FIVD, drugs are administered on first two 
days of every 4th week followed by a rest period of 26 days in this case. Unlike 
dose pattern 2, in any treatment week, different drug doses are administered on 
first two days and similar doses are followed in subsequent treatment weeks. As a 
result only two control variables are required to design treatment schedules for a 
year.  

Encoding Scheme and GA Optimization Process: To design optimum dose 
pattern 1(VIVD), the GA optimization process begins with a randomly generated 
population called chromosome of size 50 × 676 where 50 is the number of indi-
viduals and 676((52×12)+(52×1)) is the length of the chromosome structure for 
104 control variables. First 52 parameters are encoded as 12 bits binary strings 
which will define drug doses for each week while the remaining 52 parameters are 
encoded as 1 bit to define decision variables, i.e., whether treatment will be given 
to a patient. First 52 binary strings are converted into real numbers within a range 
of 10 to 50. Using each individual (solution), a chemotherapy drug schedule is 
designed for 1 year as discussed earlier and used as input D(t) to the tumor model 
stated in Section 2. The model is simulated and several important output parame-
ters: number of cells, drug concentration and toxicity are measured. The number 
of tumor cells at the end of treatment is used as objective function in GA optimi-
zation process. Before calculating fitness function, each individual is checked for 
constraints. If any of the constraint is not satisfied, that individual is penalized by 
adding a big penalty value so that it will have less chance to be selected for fol-
lowing generations. Once individuals are evaluated, fit individuals are selected 
through selection process to form the mating pool [8]. Genetic operators such as 
crossover, mutation and reinsertion are applied to form the new population for the 
next generation [8]. The crossover rate and mutation rate are set as 0.8 and 0.01 
respectively. The maximum number of generations is set to 50. It is noted that, 
binary-coded GA is preferred and used in this optimization/design procedure be-
cause half of the control variable (=52) are binary-type decision variables 
represented by only single bit. GA with aforementioned parameters is run several 
times on the model. Table 1 gives a summary of the simulation results for five 
different runs.  

Table 1 A summary of the simulation results of different runs for dose pattern 1 

Run Drug Dose Drug Concentration Toxicity No. Cell 
at  end 

Cell 
Reduction Max Avg Max Avg Max Avg 

1 32 10.7 49.4 11.2 83.4 27.7 ≈ 0 ≈ 100% 

2 32 10.5 49.9 11.1 83.3 27.8 ≈ 0 ≈ 100% 

3 32 10.6 49.5 11.2 81.3 27.9 ≈ 0 ≈ 100% 

4 32 10.7 49.8 11.2 84.7 27.7 ≈ 0 ≈ 100% 

5 32 10.7 49.9 11.2 82.2 27.7 ≈ 0 ≈ 100% 
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Table 2 Results of all three dose patterns 

Scheme Drug Dose DrugConcentration Toxicity No. Cell 
at  End

Cell Re-
duction Max Avg Max Avg Max Avg 

VIVD 
(Run-1) 

32 10.7 49.4 11.2 83.4 27.7 ≈ 0 ≈ 100% 

FIVD 50 32.6 49.6 8.8 69.9 21.7 ≈ 0 ≈ 100% 
Periodic 50 34.6 49.3 9.3 74.4 23 ≈ 0 ≈ 100% 

 

 
(a) Dose pattern 1: Variable Interval Variable Dose Pattern. 

 
(b) Dose pattern 2: Fixed Interval Variable Dose Pattern 

 
(c) Dose pattern 3: Periodic dose pattern 

Fig. 1 Different dose patterns 

The minimum values of objective function out of the five runs are approximate-
ly same (see Table 1). Moreover, other performance measures, recorded and pre-
sented in Table 1, are also very close to one another. All these show repeatability 
and consistency of GA optimization process and the overall design procedure as 
well. Similar GA optimization process but with different number of control va-
riables are used to design optimum treatment schedules for dose pattern 2 and 
dose pattern 3. Due to space constraints, like dose pattern 1, results of all runs for 
dose pattern 2 and dose pattern 3 are not shown here. Instead, results of best runs 
for dose pattern 2 and dose pattern 3 are provided against dose pattern 1(run-1) in 
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Table 2. The drug schedules obtained with corresponding runs for three dose pat-
terns are shown in Figure 1. 

For dose pattern 3 (see Figure 1(c)), a pre-decided constant dose concentra-
tion/mass of 50[D] on the 1st day of the treatment is applied to guarantee efficacy 
constraint. For every 4th week the dosing can be clearly seen to be periodic. Each 
4th week is dosed with 50[D] on the 1st day followed by 18[D] on the 2nd day. The 
remaining days of a week are kept as rest period for the patient to recover from 
toxic side effects, if occur or tend to occur. Fig. 2 shows how the number of tumor 
cells reduces and finally reaches to approximately zero. Toxicity profile due to the 
dosing is displayed in Fig. 3 where it can be seen that the limiting value Tmax is 
never exceeded during the whole course of treatment. 

It is relevant to mention that dose pattern 1: VIVD, highly lacks clinical and 
logical acceptability. We can call the solution mathematically optimal. But the 
plan requires too much information to record. As the dosing is at random weeks, a 
patient may forget to visit the clinic for administration. On the other hand, dose 
pattern 2: FIVD, leads towards logical and clinical relevance with its fixed dosing 
days (1st 2 days every 4th week), same level of doses for the two consecutive days 
of a week, an efficient resting period and a defined starting dose of 50[D] to  meet 
efficacy constraint. 13 weekly dose levels/parameters calculated by applying GA 
in this scheme vary from 30 to 32 (Fig. 1(b)). 

 

 

Fig. 2 Tumor cell population throughout the treatment period for all three dose patterns 

 

Fig. 3 Toxicity profile throughout the treatment period for all three dose patterns 
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If we compare FIVD and periodic pattern, both have same dosing days a, in the 
former, same level in two successive days are chosen, where in the latter we have 
used two separate levels. When FIVD is formulated, periodicity has not been im-
posed rather near periodicity is achieved from the 4th week in the optimal result 
(negligible variation of dose levels). So for more simplification and clinical relev-
ance, in our final step we have approached periodicity and proposed periodic dose 
pattern. Having two separate levels is just an additional variation to get a lower 
value of the objective function. The main feature of periodic pattern is it is highly 
simplified, clinically appropriate, but still effective. 

4 Conclusion 

This paper presents a optimal cancer chemotherapy schedule mothod using GA. 
All of the dose plans have successfully converged resulting in 100% elimination 
of cancer tumors without violating treatment constraints. More importantly, the 
maximum toxicity levels during the whole period of treatment remain lower than 
the maximum allowable value as indicated earlier and suggested by other re-
searchers [1],[3],[8]. So the periodic dose plan can be preferred for clinical im-
plementation. The proposed technique clearly demonstrates that ‘GA with reliable 
tumor growth model’ can help oncologists/clinicians in planning optimum chemo-
therapy drug scheduling besides conventional methods. Although multi-objective 
evolutionary algorithms can design different drug doses by trading of different 
conflicting treatment objectives, single-objective optimization process with effi-
cient encoding and clearly defined constraints can also provide very satisfactory 
result. Moreover, personalized treatment schedules can also be obtained by adjust-
ing model parameters depending on the physiological condition of the patient and 
state of the tumor. Furthermore, the same design method can be extended in plan-
ning multi-drug or combination chemotherapy regimen. Future work will include 
verification of the proposed scheduling with clinical data and efforts are underway 
in that direction. 
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