
QoS Synchronization of Web Services:
A Multi Agent-Based Model

Jaber Kouki1, Walid Chainbi2, and Khaled Ghedira3

1 High Institute of Human Sciences of Tunis/SOIE, Tunisia
jaber.kouki@hotmail.com

2 Sousse National School of Engineers/SOIE, Tunisia
Walid.Chainbi@gmail.com

3 Higher Management Institute of Tunis/SOIE, Tunisia
Khaled.Ghedira@isg.rnu.tn

Abstract. From the last decade, Web services technology has witnessed a great
adoption rate as a new paradigm of communication and interoperability between
different software systems. This fact, has led to the emergence of Web services and
to their proliferation from outside the boundary of the UDDI business registry to
other potential service resources such as public and private service registries, ser-
vice portals, and so on. The main challenge that arises from this situation is the fact
that for the same service implementation, several service descriptions are published
in different service registries. Accordingly, if the service implementation is updated
all of its descriptions have to be updated too over all of these registries. Otherwise,
the service user may not bind to the suitable Web service if its descriptions are inac-
curate or outdated. To address the above challenge, we propose in this paper a multi
agent-based model that focuses on synchronizing the description of Web services,
especially their quality of service, to maintain their consistency and sustainable use.

1 Introduction

To support interoperable machine-to-machine interaction over a network, Web ser-
vices are emerged as a promising technology that delivers application functionalities
as services which are language and platform independent. One of the major building
blocks of Web services technology is the UDDI (Universal Description Discovery
and Integration) [1] business registry (UBR) where service providers and service
consumers (or users) publish and discover Web services respectively.

To use the UBR service consumers can only provide functional descriptions of
Web services they need (e.g. keywords, inputs, outputs, etc.), however to select the
best suitable Web service nonfunctional descriptions (e.g. QoS) are required but,
they are missing in UBR.

Focusing on this limit, other service resources start to be deployed such as
public business registries (PBRs), and service portals (e.g. Xmethods.net, webser-
vicelist.com, webservicesx.net, etc). Nevertheless, the main issue with these re-
sources is the fact that they do not adhere with Web service standards (e.g. UDDI)
and therefore to be potential service resources like UBR does. Furthermore, as Web
services substantially increase in number all over the Web, the number of service

S. Omatu et al. (Eds.): Distrib. Computing & Artificial Intelligence, AISC 217, pp. 401–408.
DOI: 10.1007/978-3-319-00551-5_49 c© Springer International Publishing Switzerland 2013



402 J. Kouki, W. Chainbi, and K. Ghedira

ressources is also increased. Accordingly, service users will not be able to browse
all of them separately to select Web services of interest.

To cope with these facts, we have proposed in a previous work [2] a local
repository-based framework (LRBF) which provides service users with local Web
service repositories (LWSRs) to collect service information including binding de-
tails and QoS descriptions. This information is used to bind locally to Web ser-
vices that interest service users without the need to browse heterogeneous service
resources independently.

However, since service providers may change the implementation of their pub-
lished Web services, the service information collected in LWSRs may become inac-
curate and outdated. Due to this change, Web services that are locally bound may no
more interest service users. To deal with this fact, we extend the LRBF framework
with a multi agent-based model to synchronize service information (especially QoS)
of the updated Web services over different service resources, and therefore to ensure
that the locally bound Web services are always the best suitable ones according to
the service users need.

The remainder of this paper is organized as follows. Section 2 outlines the back-
ground material of the QoS synchronization issue within the LRBF framework. The
extension to this framework with a multi agent-based model for QoS synchroniza-
tion is discussed in Sect. 3.The implementation issues are presented in Sect. 4. Prior
to the conclusion and future work in Sect. 6, related work are reviewed in Sect. 5.

2 QoS Synchronization Background

Considering the need to optimize the binding to relevant Web services from het-
erogeneous environments, the LRBF framework provides service users with a local
access point to bind to Web services of interest without having to browse separately
hundreds if not thousands of different service resources. The architecture of this
framework involves three levels of service repositories where two levels of binding
optimization are performed.

The first level of optimization, which is public, is performed by a public Web ser-
vice crawler engine (PWSCE) that collects service information from the first level of
service repositories that encompasses UBRs, PBRs and service portals into the sec-
ond level which is represented by a public Web service repository (PWSR). Having
collected service information of all Web services in this repository, is very practi-
cal for service users to see Web service candidates from different service resources
grouped under one roof, and then to select easily the best suitable one. However,
what is impractical in this level of optimization is the fact that service users have to
access the PWSR each time they need to re-bind to the same Web services which
may be a useless work and a waste of time. In fact, as the PWSR is hosted on the
administrator server host and as it contains a huge number of service information, to
respond to an excessive amount of service requests may take a considerable amount
of time.

To deal with these facts, a local Web service crawler engine (LWSCE) performs
the second level of binding optimization which is local. In this level of optimization,



QoS Synchronization of Web Services: A Multi Agent-Based Model 403

the LWSCE collects service information of the best suitable Web services from the
PWSR into the third level of service repositories which is represented by a local
Web service repository (LWSR). In this repository, service users can find locally
(within their local hosts) service information required to bind to Web services of
interest without using the PWSR.

However, having collected service information in more than one repository
within the LRBF framework, means that such information is duplicated over the
involved service repositories. According to this fact, service information of Web
services and especially their QoS descriptions need to be synchronized for two rea-
sons. The first one is to ensure that the different levels of service repositories, in-
volved within the LRBF framework, see all the changes that have been originated
by the service providers, and the second one is to ensure that the locally bound Web
services still always fit the service user interest. To meet these two objectives, we in-
troduce in the next section a multi agent-based model for dynamic synchronization
of Web service QoS descriptions.

3 QoS Synchronization Proposed Model

The need to agent paradigm in our proposed synchronization model is basically
argued by the need of both the autonomy and pro-activeness properties of software
agents to synchronize dynamically QoS descriptions of Web services over service
repositories with the minimum of human intervention (either by service providers
or service users).

As defined by Wooldridge, software agent is “a computer system that is situated
in some environment, and that is capable of autonomous actions in this environment
in order to meet its delegated objectives” [3]. In our proposed model, the actions to
carry out by software agents within LRBF are first to synchronize QoS descriptions
of Web services over the involved service repositories once new updates are deliv-
ered by service providers and then to ensure that, upon each update in the service
information, the locally bound Web services always rank better than their candi-
dates.

From the above considerations and given the infrastructure of LRBF framework
which encompasses three levels of service repositories, the architecture of the pro-
posed synchronization model (see Fig. 1) involves three software agents including
PISA (Public Information Synchronization Agent), UISA (Universal Information
Synchronization Agent), and LISA (Local Information Synchronization Agent).
Each class of software agents operates at one level of service repositories.

As depicted in Fig. 1, the processing of QoS synchronization module within
LRBF starts when new updates in the service QoS description are delivered by the
service provider to the PISA agent that operates at the first level of service reposi-
tories which includes UBRs, PBRs and service portals. To interact with this agent,
the service provider uses a GUI by which he can provide new updates in the QoS
description (e.g. response time) of a particular Web service. Upon receiving these
updates, the PISA agent saves them first in the repository (e.g. PBR) of the service



404 J. Kouki, W. Chainbi, and K. Ghedira

provider, and then it sends to the UISA agent a message incorporating the updated
QoS description.

As soon as the UISA agent receives this message from the PISA agent, it saves
first the included QoS description in the PWSR, the second level of service reposito-
ries on which this agent operates, and then it starts listening for new update requests
from the LISA agent. When new requests are received, the UISA agent replies the
requestor agent with a message incorporating the updated QoS description received
from the PISA agent. Upon receiving this message and before saving the included
data in the LWSR (the third level of service repositories), the LISA agent checks
first whether the locally bound Web service with its new QoS description still match
better the predefined requirements of the service user or not. Accordingly, if this
Web service always ranks better than its candidates, the LISA agent will save its
new QoS description in the LWSR. Otherwise, this agent selects from the list of
Web service candidates the service that best fits requirements of the service user
and then it collects the service information of the new selected Web service from
the PWSR into the LWSR to replace the existing one.

To conduct a reliable synchronization of QoS information over the different lev-
els of service repositories, software agents have to carry out suitable behaviors.
According to the Fipa-compliant agent platform, JADE (Java Agent Development
Framework), software agents can carry out One-shot behavior that is executed only
once and then completes immediately, Cyclic behavior that is executed forever, and
Generic behavior that is executed when a given condition is met [4]. Besides, further
behaviors may be executed at given points in time such as Waker behavior that is

Fig. 1 Architecture of the QoS synchronization model



QoS Synchronization of Web Services: A Multi Agent-Based Model 405

executed only once just after a given timeout is elapsed and Ticker behavior that is
executed periodically waiting a given period after each execution.

According to the tasks to carry out by each agent within the proposed synchro-
nization model and given the types of agent behaviors described above, software
agents involved in this model have to carry out the following behaviors:

• PISA behaviors: the PISA agent executes one-shot behavior for each updates
reception from the service provider and another one-shot behavior for each up-
dates delivery to the UISA agent.

• UISA behaviors: the UISA agent executes two cyclic behaviors: one dedicated to
serve requests for updates reception from the PISA agent and the other dedicated
to serve requests for updates delivery to the LISA agent.

• LISA behaviors: the LISA agent carries out a ticker behavior that deals with the
update requests to the UISA agent and one-shot behavior that deals with the up-
dates reception from this agent. The last behavior is executed only if the updated
QoS descriptions belong to the locally bound Web services. Upon updating these
services or their potential candidates the LISA agent carries out another ticker
behavior to select periodically the new suitable Web service that fits better the
service user needs.

4 Implementation

The QoS synchronization model is implemented using JADE framework to develop
software agents involved in this model such as PISA, UISA and LISA. Furthermore,
we have integrated these agents in ATAC4WS1 (Agent Technology and Autonomic
Computing for Web Services) which implements the LRBF framework that we
have developed to create the three levels of service repositories on which software
agents synchronize QoS information of Web services. Upon running ATAC4WS,
both PWSCE and LWSCE (the two Web service crawler engines) start collecting
service information from UBRs, PBRs and other potential service resources into the
PWSR for all Web services and then from PWSR into LWSR for only Web services
that interest service users. To launch the processing of the QoS synchronization
module within LRBF, service providers use a GUI to deliver to the PISA agent new
updates in the QoS description (e.g. cost) of a particular Web service.

Upon receiving these updates, the PISA agent incorporates them first into the
repository (e.g. PBR) of the service provider within the first level of service repos-
itories and then it sends them to the UISA agent. To synchronize the updates in
QoS description over the second and third levels of service repositories, the UISA
and LISA agents exchange a message incorporating the new Qos description to be
included in the PWSR and LWSR respectively.

Finally, upon each updates reception in QoS description, the LISA agent com-
putes the QoS ranking of the locally bound Web services compared to their candi-
dates according to the QoS preferences of the service user. The focus of this com-
putation is to select Web services that interest more the service user and therefore to

1 ATAC4WS provides an environment to create, register, discover and use Web services.



406 J. Kouki, W. Chainbi, and K. Ghedira

collect their service information in the LWSR where to be bound locally in subse-
quent use.

Details about the running of LISA agent in response to the update of the cost
attribute of two Web services (e.g. GlobalWeather and WeatherForecast) are shown
in the NetBeans IDE outputs of Fig. 2. These Web services are used to get up-to-date
weather conditions for all major cities around the world.

In the first output (see the top of Fig. 2), although the cost of GlobalWeather
(a locally bound web service) is raised to 0.4 $, this service still always the best
suitable one assuming that the service user is only interested in the cheapest Web
service. However, in the second output (see the buttom of Fig. 2), upon decreasing
the cost of WeatherForecast (a Web service candidate) to 0.3 $, this service becomes
cheaper than GlobalWeather and in this case the LISA agent will collect its service
information from the PWSR into the LWSR to replace the existing service (Global-
Weather).

Note that, before each request of new QoS updates, the LISA agent tries to find
new UISA agents since they may dynamically appear and disappear in the system.

5 Related Work

As Web services start to expand across the Internet, most of them are still inaccessi-
ble or have duplicated descriptions that do not match the new implementation of the
original Web services. Therefore, several works focused on addressing QoS issues
to guarantee the reliability of published Web services while others are interested in
addressing synchronization concern of Web services in different aspects.

Fig. 2 LISA running outputs



QoS Synchronization of Web Services: A Multi Agent-Based Model 407

To address the QoS issue of Web services, many researchers have extended the
service oriented architecture (SOA) [5] to incorporate nonfunctional properties of
Web services including QoS. For example, in [6] the author proposed a regulated
UDDI model by adding a new data structure type where to represent QoS informa-
tion of Web services such as availability, reliability, etc.

The authors in [7] did not extend the UDDI model but they used the existing
data structure type tModels. In tModels, QoS are represented as a KeyedReference
element where the KeyName attribute contains the QoS name and the KeyValue
contains the QoS value. In the same effort, Hollunder in [8] and the authors in [9]
used WS-Policy [10] and OWL-S [11] respectively instead of tModels to advertise
QoS information of Web services.

However, since service providers may change the QoS description of their pub-
lished Web services, it is important to synchronize the new description over different
services ressources. Although it is hard to find works addressing the synchroniza-
tion issue of QoS description, some other works focused on the validity of service
information in service registries in general.

For example, the authors in [12] extended WS-Policy as WS-TemporalPolicy to
describe service properties with time constraints. That is, to define the validity of
a policy or its included service properties a set of time attributes are used such as
startTime, endTime and expires.

The authors in [13] extended UDDI as UDDIe where Web services hold a lease
which defines how long the service information should remain registered in a reg-
istry. If a lease expires, the service provider should renew it otherwise the registered
information will be deregistered.

Finally, the authors in [14] proposed an agent-based model for dynamic synchro-
nization of Web services. However the synchronization aspects of this model focus
only on service binding details.

6 Conclusion

In this work, we have proposed a multi agent-based model for QoS synchronization
of Web services which is integrated within LRBF framework to synchronize the
QoS description of updated Web services over different levels of service repositories
(PBRs, PWSR, and LWSR respectively). This model has been implemented using
the JADE platform.

In Future work, we envision to deal with the trustworthy of the delivered QoS
information since the service provider may greatly influence how QoS metrics are
generated to obtain the most suitable results, and therefore may provide inaccurate
information about QoS.

References

1. Clement, L., Hately, A., Riegen, V.C., Rogers, T.: Universal description, discovery, and
integration (UDDI 3.0.2). Technical committee draft, OASIS (2004),
http://uddi.org/pubs/uddi_v3.htm/

http://uddi.org/pubs/uddi_v3.htm/


408 J. Kouki, W. Chainbi, and K. Ghedira

2. Kouki, J., Chainbi, W., Ghedira, K.: Binding optimization of web services: a quantita-
tive study of local repository-based approach. In: ICWS 2009: Proceedings of the IEEE
International Conference on Web Services, pp. 646–647. IEEE computer society (2012)

3. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons Ltd., UK
(2009)

4. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade programmers guide. Technical
report, TILab (2010),
http://jade.tilab.com/doc/programmersguide.pdf/

5. Krafzig, D., Banke, K., Slam, D.: Enterprise soa: service-oriented architecture best prac-
tices. Prentice-Hall Inc., New Jersey (2005)

6. Ran, S.: A model for web services discovery with qos. ACM SIGecom Exchanges 4(1),
1–10 (2003)

7. Rajendran, T., Balasubramanie, P.: An optimal agent-based architecture for dynamic web
service discovery with qos. In: ICCCNT 2010: International Conference on Computing
Communication and Networking Technologies, pp. 1–7 (2010)

8. Hollunder, B.: Ws-policy: on conditional and custom assertions. In: ICWS 2009: Pro-
ceedings of the IEEE International Conference on Web Services, pp. 936–943. IEEE
Computer Society (2009)

9. Lakhal, R.B., Chainbi, W.: A multi-criteria approach for web service discovery. In: Mobi-
WIS 2012: Proceedings of the 9th International Conference on Mobile Web Information
Systems, vol. 10, pp. 609–616. Elsevier PCS (2012)

10. Vedamuthu, A., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Yalcinalp,
U.: Web services policy (1.5). W3C recommendation, W3C (2007),
http://www.w3.org/TR/ws-policy/

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, C.:
Owl-s: semantic markup for web services. W3C member submission, W3C (2004),
http://www.w3.org/Submission/OWL-S/

12. Mathes, M., Heinzl, S., Freisleben, B.: Ws-temporalpolicy: a ws-policy extension for
describing service properties with time constraints. In: COMPSAC 2008: Proceedings
of the 32nd Annual IEEE International Computer Software and Applications, pp. 1180–
1186 (2008)

13. ShaikhAli, A., Rana, O.F., Al-Ali, R., Walker, D.W.: UDDIe: an extended registry for
web services. In: SAINT-W 2003: Proceedings of the 2003 Symposium on Applications
and the Internet Workshops, pp. 85–89. IEEE Computer Society (2003)

14. Kouki, J., Chainbi, W., Ghedira, K.: An agent-based approach for binding synchroniza-
tion of web services. In: AWS 2012: Proceedings of the 1st International Workshop on
the Adaptation of Web Services, pp. 921–926. Elsevier PCS (2012)

http://jade.tilab.com/doc/programmersguide.pdf/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/Submission/OWL-S/

	QoS Synchronization ofWeb Services: A Multi Agent-Based Model
	1 Introduction
	2 QoS Synchronization Background
	3 QoS Synchronization Proposed Model
	4 Implementation
	5 Related Work
	6 Conclusion
	References




