

S. Omatu et al. (Eds.): Distrib. Computing & Artificial Intelligence, AISC 217, pp. 227–234.
DOI: 10.1007/978-3-319-00551-5_28 © Springer International Publishing Switzerland 2013

Creating GPU-Enabled Agent-Based
Simulations Using a PDES Tool

Worawan Marurngsith and Yanyong Mongkolsin

Department of Computer Science, Faculty of Science and Technology, Thammasat University
99 Phaholyothin Road, Pathum Thani, 12120, Thailand
wdc@cs.tu.ac.th, 5109035054@student.cs.tu.ac.th

Abstract. By offloading some computation to graphical processing units (GPUs),
agent-based simulation (ABS) can be accelerated up to thousands of times faster.
To exploit the power of GPUs, modellers can use available simulation frameworks
to auto-generated GPU codes without requiring any knowledge of GPU program-
ming languages. However, such frameworks only support computation on the
GPUs of a particular vendor. This paper proposes techniques, implemented in a
synchronous parallel discrete event simulation (PDES) tool, to allow modellers to
create ABS models, and to specify computation regions in the models for multiple
vendor’s GPUs or CPUs. The technique comprises a set of meta-language tags and
a compilation framework to convert user-defined GPU execution regions to
OpenCL. A well-known cellular ABS models, the Conway’s Game of Life, have
been implemented and evaluated on two platforms i.e., the NVIDIA GeForce
240M LE and AMD Radeon HD6650M. The preliminary results demonstrate two
findings: (a) the proposed technique allows the example ABS model to be exe-
cuted on a PDES engine successfully; (b) the generated GPU-enabled ABS model
can achieve fourteen times faster than its multicore version.

Keywords. OpenCL, GPU, Agent-based simulation, PDES, Acceleration.

1 Introduction

Exploiting the computational power of graphic processing units (GPUs), high
performance agent-based simulations (ABS) permit modellers to study large-scale
complex phenomena faster than before. Development of languages and tools has
made the integration of GPU computation to ABS models become more user
friendly. Among several GPU languages[1] (e.g., Brook, CUDA, and OpenCL),
CUDA is probably the most popular language used in ABS as they are several
parallelisation techniques and optimisation available[2, 3]. Despite its popularity,

CUDA-based ABS models suffer from lack of portability as they are limited to
executing only on NVIDIA GPUs. To overcome this limitation, recent GPU lan-
guages including, OpenCL[4] and C++AMP[5], can be a good candidate. Both
languages allow programmers to express computation on heterogeneous process-
ing platforms including CPUs and GPUs (and any compliant devices). The

228 W. Marurngsith and Y. Mongkolsin

OpenCL language has been used in Multi2Sim [6] framework to accelerate paral-
lel discrete event simulations (PDES). However to the best of the authors’ knowl-
edge, there are still no ABS frameworks based on OpenCL or C++ AMP.

As significant performance improvements are necessary, the implementation of
many legacy ABS simulation frameworks e.g., EcoLab, NetLogo, Mason, Repast
(HPC version), ABM++ and FLAME have shifted towards parallel performance
and scalability using multi-threading and multiprocessing techniques [7]. Only
two ABS frameworks i.e., the work of Lysenko and D'Souza [8] and FLAME[9],
provide performance acceleration of ABS models using GPUs.

The first framework [8], developed at the Michigan Technological University,
is a completely GPU-based ABS framework using C++, OpenGL and GLSL. The
framework composed of three parts i.e., a system for handling environments, mo-
bility mechanism in agents, and visualisation. Mobile agents are off-loading to
GPUs and encoding into textures. Some algorithms have been employed to per-
form three basic tasks of mobile agents on GPUs, including: storing and updating
the mobile agent state and connecting the mobile agents to their environment. The
experimental results show that using the framework, an ABS model can achieve a
speed up factor of over 9,000.

FLAME [9] is the flexible large-scale agent modelling environment developed
at the University of Sheffield. The framework is template-based, ideally suited for
creating ABS models of cellular systems running on multicore and GPUs. Simula-
tions are advanced by using discrete time steps. Modellers use the FLAME’s tem-
plate, based on XML syntax, to describe all GPU computations without having to
have any specialist knowledge of the underlining GPU platform. The template is
then automatically translated into the corresponding CUDA codes. Using the auto-
generated GPU codes in FLAME, simulation of cellular models could achieve
hundreds of times faster than they multicore version. Model data can also be saved
and analysed post simulation; or viewing on the fly. Published experimental re-
sults have shown that, using FLAME, cellular models can be massively acceler-
ated using the parallel GPU architecture beyond that of CPU-based frameworks.

Existing simulation frameworks have confirmed that GPU computing can be a
novel cost-effective approach towards high-performance ABS models, with less
programming effort from modellers. Some research has shown the successful
parallelism techniques for achieving high-performance ABS models on multicores
and GPUs i.e., cellular automata models using CUDA with OpenMP[3]. adaptive
Swarm model using Java-binding OpenCL [10]. However, developing a simula-
tion framework for ABS models to exploit computational power of multicores and
GPUs at the same time is still a challenge.

This paper presents the use of a synchronous parallel discrete-event simulation
(PDES) tool, called P-HASE1, as a framework for creating GPU-based ABS mod-
els using OpenCL C++ binding. Our main contributions are the following:

1 Available at http://parlab.cs.tu.ac.th/P-Hase

Creating GPU-Enabled Agent-Based Simulations Using a PDES Tool 229

─ The mapping of ABS components to the discrete event simulation (DES) com-
ponents is presented,

─ A technique to convert user-defined GPU computation regions to OpenCL
kernels is proposed,

─ An example GPU-based ABS model is presented; and the performance analysis
experiment of the model on two GPUs models has shown the speedup up to
fourteen-fold, in comparison to its multicore counterpart.

The rest of the paper is organised as follow. The next section presents the tech-
niques used to create ABS models and to integrate them with GPU computation.
Section 3 presents the detail of compilation framework for generating OpenCL
codes. An example ABS model and the experimental results are presented in Sec-
tion 4. Section 5 gives the conclusion of the paper.

2 GPU-Enabled ABS on P-HASE Simulation Tool

P-HASE [11] is a parallel extension of HASE [12] (the Hierarchical computer
Architecture design and Simulation Environment), which is a framework for dis-
crete-event simulation (DES) and visualisation, developed at the University of
Edinburgh. The key idea of HASE is two folds. First it aims to provide modellers
facilities to allow a simulation model to be hierarchically structured. Second it
provides modellers the visual verification of a model’s behaviour via an anima-
tion. The P-HASE simulation tool derives all functionalities from HASE. Thus, it
supports the creation, execution of simulation models, and post-mortem debug-
ging via an animation. Extra to HASE is that P-HASE provides a scalable PDES
engine using conservative synchronous technique [11]. The tool generates a PDES
from the HASE DES definition. Thus, sequential models can be accelerating by
the parallel engine provided in P-HASE.

Table 1 Mapping between components of P-HASE model to the ABS model

DES Components in P-HASE ABS Components

Entity Environment, static agent

Ports Interaction between environments/static agents

Task object inside an Entity Agents

Compound entity Hierarchical environments

Design template Multiple environments connected via a topology

There are several ways to represent ABS models in a specification which con-

form with the discrete event system specification (DEVS) formalism [13]. As
diagram shown in Fig.1, to create a simulation model in P-HASE, modellers first
have to provide a structural definition of model’s components using a file written
in the entity description language (EDL). Components of a model in P-HASE are
atomic units called Entities that communicate by passing events via Ports. Each

230 W. Marurngsith and Y. Mongkolsin

Entity can be viewed as an independent thread. Since it is better to group agents
which frequently communicate with each other on one thread, the Entity is used to
represent an Environment (or virtual space) in ABS. So that Ports can be used to
represent the communication between Environments.

Modellers can group together sets of Entities that are logically related in two
ways: (a) aggregating them into a compound entity, or (b) using a design template.
Compound entities describe the vertical composition of a more complex entity
from its basic subunits up to its higher abstract-level units. A design template de-
scribes functional relationships among entities and also provides the means of
connection between them. Thus, a group of Environments in ABS can be repre-
sented in three ways: (a) as multiple Entities connected via ports, (b) as a com-
pound entity or (c) as a design template. Table 1 shows the possible mapping be-
tween DES components used in P-HASE to the ABS components.

Fig. 1 Modules of the P-HASE tool with GPU-enabled extension

The top left corner of Fig.1 depicts all types of input file needed for creating a
model. The key file type for adding the GPU computation to a model is the behav-
iour file (.hase). Once the structure of model components (.edl file) has been de-
fined, modellers insert C++ codes to mimic the behaviour of each entity in .hase
file. The behaviour file is a text file organised in sections separated by tags (e.g.,
$startup, $pre, $phase_0, $phase_1, $report). Modellers write C++ code
into each section to implement the behaviour for each particular time step. For
example, in synchronous models using two-phase clocking, the behaviour of each
clock phase must be added under the $phase_0 and $phase_1 sections respec-
tively. Codes specified under these sections will be generated by the HASE
Builder into a clock-phase routine. In a clock phase routine, a special tag ($GPU) is
used to specified the beginning of a GPU computation. The tag must be immedi-
ately followed by a for loop which implements the behaviour of agents. As show
in Fig.1, when modellers compile the model, the behaviour file with $GPU tag is
passed to the $GPU Front End module. The tag instructs the module to generate

GPU-enabled P-HASE Builder

HASE GUI

P-HASE PDES Engine

 Model Files

Simulation

Executable

 Trace file &

Output files

T On-screen parameters

configuration

Animator & Graphical
View

C++ Files

 Model
Parameters

Model
Structure

Entity Description file (.edl)
Entity Behaviour file (.hase) with $GPU
Entity Layout & Icons (.elf & image files)

S

Q

Code
Generation

Entity Description
Parser

T = Timing routine
Q = Queuing manager
S = Event Scheduler
H = OpenCL Host Functions

 kernels.cl

$GPU
Front End

HOpenCL

Runtime
OpenCL

Compute Devices
(e.g. GPU)

User-defined Models

Creating GPU-Enabled Agent-Based Simulations Using a PDES Tool 231

loop iterations as agents. The module performs some semantic analysis on the
following for loop and generates the corresponding OpenCL codes. The gener-
ated codes have two parts. The first part is generated as a file with .cl extension,
called kernels. It is a file containing C-style functions each of which describes a
unit of task to be offloaded to GPUs (so called devices). The body of the for loop
is generated as a kernel function. All array references are flattening into one di-
mension to fit with the OpenCL device architecture. The second part, called host,
is source codes used to initialise the OpenCL execution environment (Context),
and to build and compile the kernel. The host codes are generated and inserted
into the behaviour file to replace the for loop.

The modified behaviour files are passed to the original code generation process
in HASE to build the simulation executable. During a simulation run, the simula-
tion executable acts as the host of the OpenCL environment. Thus, it will create a
context and launch kernels to GPUs.

3 Compilation Framework and the GPU-Enable PDES

Fig. 2 depicts the structure of the compilation framework implemented in P-HASE
for translating each $GPU tags to an OpenCL kernel, and inserting the calls from
host. Similar techniques used in our previous work have been adapted to perform
static analysis and code generation [14]. Fig.3 shows the mechanism of GPU-
enabled PDES. During a simulation run, each Entity represents an Environment
where agents reside. Each Environment is created as a thread executing on CPUs,
deriving from a clock abstract class for timing control. Events are used for time
advancing. At the start of a simulation, the Environment initialises the OpenCL
host functions. These includes querying for platforms (CPUs or GPUs) or compute
devices, and creating Context on the devices found; creating command queue in
the context; reading kernels.cl into a stream and creating a program object from it;
specifying a kernel function from the program object and creating it as a kernel
object; creating memory buffers for passing inputs and receiving results. At each
clock phase routine, Environment starts agents by submitting the kernel object to
the command queue for executing on GPUs. Each kernel object will be created as
an execution unit, called work-item, and assigned to each ALU of the compute
device. When agents finished the tasks of each time step, results are written back
to Environment via buffers.

Fig. 2 Overview of the compiler framework implemented in the P-HASE Builder

Scanner Preprocessor
Symbol list and

var. scope + AST

Loop
Parallelisation

Kernel
Generation

Memory allocation &
Host Code Generation

$GPU tag
Entity.hase

Entity_kernels.cl
(OpenCL kernels) modified Entity.hase

232 W. Marurngsith and Y. Mongkolsin

Fig. 3 Structure and mechanism of the P-HASE Tool (GPU related modules are high-
lighted)

4 Preliminary Experiments and Results

Our proposed platform is still limited to cellular models which tasks of agents are
written in a loop. The Conway’s Game of Life (GOL) with two-dimensional grid
has been developed in the P-HASE tool (Fig.4) in two versions, the model with 1-
and 2- environments (GOL-1, and GOL-2). The environment represents the ݊ ൈ ݉ grid of cells. In the environment, a cell lives in each grid entry and cannot
move. Each version receives the number of agents as a parameter; and has been
validated by matching the model results against the CPU-only models.

Fig. 4 The ABS model of Conway’s Game of Life on P-HASE

Preliminary experiments have been done using two middle class graphics card
for laptops, the AMD Radeon HD6650M and the NVIDIA GeForce 240LE. The
setup of the experiments aimed for finding the speedup achieved on using

Model

Clock Entity

Entity A

Entity B

C C A E E A

E E E E E E E E E

Future

Deferred

Queue Manager

Time
Advancer

Event Scheduler

Timing Routine
P-HASE PDES Engine A_kernels.cl

OpenCL Context

Compute
Device1

Compute
Device n

Programs Kernels Memory
Objects

Command
Queues

Load stream &
Build

Compute
Device2

Creating GPU-Enabled Agent-Based Simulations Using a PDES Tool 233

GPU-enabled models generated by P-HASE if modellers are mobile. That is if the
simulation is run on-site where any high performance computation platform is not
applicable. The experiments used the GOL-1 model (Fig.5) and GOL-2 model
(Fig.6) with four different numbers agents. Each model was repeated five times,
and executed on a core-2 duo CPU, a Core i7-2620M CPU, and on the two graph-
ics cards. Execution time was recorded for each run and the speedup was calcu-
lated by using the dual-core execution time as a base line.

Fig. 5 Speedup of three platforms compared to dual-core model for single environment
model

Fig. 6 Speedup of three platforms compared to dual-core model for two environments
model

Overall results show that GPU-enabled models outperform the dual-core ver-
sions for 7 – 14 times, and outperform the Core i7 model for 5 – 12 times. The
speedup plots of GPU-enabled models drop when the agent size is 10,000,000,
which may cause by the synchronisation overhead. Detail analysis has to be done
to quantify the overhead and to improve the code generation process.

5 Conclusion

The use of a synchronous PDES tool, called P-HASE, as a framework for creating
a GPU-based ABS models using OpenCL C++ has been presented. A cellular
ABS model was evaluated and confirmed the feasibility to use the PDES frame-
work to create efficient GPU-based models. The work presented in this paper is a

1.23
2.39 2.01

3.08

7.83

10.92
14.39 13.04

7.32

10.41

12.38

0

5

10

15

1K 10K 1M 10M

Sp
ee

du
p

Number of Agents

Dual-core CPU

Dual-core with
Hyperthreading
CPU
AMD Radeon
HD6650M

2.68
1.86 1.79

3.19

8.55

12.79 13.93 14.65

8.42

13.59 14.04

10.06

0

5

10

15

1K 10K 1M 10M

Sp
ee

du
p

Number of Agents

Dual-core CPU

Dual-core with
Hyperthreading CPU
AMD Radeon
HD6650M
NVIDIA GeForce
240M LE

234 W. Marurngsith and Y. Mongkolsin

preliminary wor. The framework is still limited to represent cellular models with
simple behaviours. Thus our immediate future work is to explore the ways to
cover more realistic models to understand the performance limitation.

Acknowledgement. We wish to thank Professor Roland Ibbett and David Dolman for
allowing us to extend the original HASE tool. We thank the referees for valuable com-
ments.

References

1. Brodtkorb, A.R., Hagen, T.R., Sætra, M.L.: Graphics processing unit (GPU) pro-
gramming strategies and trends in GPU computing. Journal of Parallel and Distributed
Computing 73(1), 4–13 (2013)

2. Perumalla, K.S., Aaby, B.G.: Data parallel execution challenges and runtime perfor-
mance of agent simulations on GPUs. In: Proceedings of the SpringSim. SCS, pp.
116–123 (2008)

3. Falk, M., et al.: Parallelized agent-based simulation on CPU and graphics hardware for
spatial and stochastic models in biology (2011)

4. Group, K.: OpenCL - The open standard for parallel programming of heterogeneous
systems (2013), http://www.khronos.org

5. Microsoft. C++ AMP (C++ Accelerated Massive Parallelism) (2013),
http://msdn.microsoft.com/en-
us/library/vstudio/hh265137.aspx

6. Ubal, R., et al.: Multi2Sim: a simulation framework for CPU-GPU computing. In: Pro-
ceedings of PACT 2012, pp. 335–344. ACM, Minneapolis (2012)

7. Coakley, S., et al.: Exploitation of High Performance Computing in the FLAME
Agent-Based Simulation Framework. In: 2012 IEEE HPCC-ICESS (2012)

8. Lysenko, M., D’Souza, R.M.: A Framework for Megascale Agent Based Model Simu-
lations on Graphics Processing Units. J. of Art. Soc. and Soc. Sim. 11(4), 10 (2008)

9. Richmond, P., et al.: High performance cellular level agent-based simulation with
FLAME for the GPU. Briefings in Bioinformatics 11(3), 334–347 (2010)

10. Laville, G., et al.: Using GPU for multi-agent multi-scale simulations, pp. 197–204
(2012)

11. Mongkolsin, Y., Marurngsith, W.: P-HASE: An Efficient Synchronous PDES Tool for
Creating Scalable Simulations. In: Xiao, T., Zhang, L., Fei, M. (eds.) AsiaSim 2012,
Part III. CCIS, vol. 325, pp. 231–245. Springer, Heidelberg (2012)

12. Coe, P.S., et al.: Technical note: a hierarchical computer architecture design and simu-
lation environment. ACM Trans. Model. Comput. Simul. 8(4), 431–446 (1998)

13. Tauböck, S., et al.: The <morespace> Project: Modelling and Simulation of Room
Management and Schedule Planning at Universityby Combining DEVS and Agent-
based Approaches. J. on Developments and Trends in Mod. and Simulation 22(2), 11–
20 (2012)

14. Makpaisit, P., Marurngsith, W.: Griffon - GPU programming APIs for scientific and
general purpose computing (Extended version). International Journal of Artificial In-
telligence 8(12 S), 223–238 (2012)

	Creating GPU-Enabled Agent-Based Simulations Using a PDES Tool
	1 Introduction
	2 GPU-Enabled ABS on P-HASE Simulation Tool
	3 Compilation Framework and the GPU-Enable PDES
	4 Preliminary Experiments and Results
	5 Conclusion
	References

