Multiple Agents for Data Processing

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper proposes a distributed processing framework inspired from
data processing. It unique among other data processing for large-scale data, so-
called bigdata, because it can locally process data maintained in distributed nodes,
including sensor or database nodes with non-powerful computing capabilities con-
nected through low-bandwidth networks. It uses mobile agent technology as a mech-
anism to distribute and execute data processing tasks to distributed nodes and aggre-
gate their results. The paper outlines the architecture of the framework and evaluates
its basic performance.

1 Introduction

MapReduce is a model for processing large data sets. It was originally studied by
Google [2] and inspired by the map and reduce functions commonly used in paral-
lel LISP or functional programming paradigms. Data processing should be provided
close to the sources of data, e.g., sensors and database, as much as possible to reduce
network traffic. However, existing projects assume that MapReduce is executed in
data centers or in-house high performance computing systems, which may be far
from the sources of data. This paper proposes a novel implementation of MapRe-
duce to process data at the edges of networks. In fact, it can satisfy the following
requirements, which existing MapReduce implementations cannot support.

e The goal of our MapReduce implementation is to directly execute MapReduce
processing on ambient computing systems and sensor networks, where each
node may have non-powerful processor with the small amount of memory, rather
than data centers and high performance server clusters.

e Networks in such systems may be low-band, often disconnected, and dynamic,
e.g., wireless sensor networks. Therefore, our implementation should be avail-
able in such networks.

e There may be no database or file systems in the target systems. Instead the data
that need to be processed are generated or locally maintained in the local storage
of nodes.

S. Omatu et al. (Eds.): Distrib. Computing & Artificial Intelligence, AISC 217, pp. 1471541
DOI: 10.1007/978-3-319-00551-5 18 (© Springer International Publishing Switzerland 2013



148 1. Satoh

e Every node may be able to support management and/or data processing tasks,
but may not initially have any codes for its tasks.

The basic idea behind our implementation is to deploy data processing tasks at the
nodes that have the target data at the edge of networks and aggregate the results,
rather than to transmit data to servers at the center. It introduces mobile agent tech-
nology, where mobile agents are autonomous programs that can travel from com-
puter to computer in a network, at times and to places of their own choosing. The
state of the running program is saved, by being transmitted to the destination. The
program is resumed at the destination continuing its processing with the saved state.
Our implementation of MapReduce defines the management system and data pro-
cessing tasks as mobile agents and map and reduce processing in MapReduce are
provided by migrating workers, which are implemented as mobile agents, with the
results of their processing. It is constructed based on our original mobile agent plat-
form, which is designed for data processing, in particular MapReduce processing.

2 Related Work

The tremendous opportunities to gain new and exciting value from big data are
compelling for most organizations, but the challenge of managing and transform-
ing it into insights requires new approaches. MapReduce processing has been used
as one of the approaches. It originally supports Map and Reduce processes [2]] The
first is to divide a large scale of data into smaller sub-problems and assign them to
worker nodes. Each worker node processes the smaller sub-problem. The second is
to collect the answers to all the sub-problems and aggregates them as the answer to
the original problem it was trying to solve. Hadoop, which is one of its one of the
most popular implementations of MapReduce, developed and named by Yahoo!.
There have been many attempts to improve Hadoop in academic or commercial
projects. On the other hand, there have been a few attempts to implement MapRe-
duce itself except for Hadoop. For example, the Phoenix system [6] and the MATE
system [3]] supported multicore processors with shared memory. Haloop [1]] and
Twister [3] were designed for MapReduce-based iterative computation. Google’s
MapReduce, Hadoop, and other existing MapReduce implementations assume their
own distributed file systems, e.g., Google file system (GFS) and Hadoop file sys-
tem (HDFS), or shared memory between processors. For example, Hadoop needs
to move target data from the external storage systems to HDFS via networks be-
fore its processing. Our MapReduce system does not move data between nodes.
Instead, it deploys program codes for defining processing tasks to the nodes that
have the data by using the migration of agents corresponding to the tasks and exe-
cute the codes with their current local data. In the literature of sensor networks, IoT,
and machine-to-machine (M2M), several academic or commercial projects have at-
tempted to support data on the edge, e.g., sensor nodes and embedded computers.
For example, Cisco’s Flog Computing and EMC’s computing intend to integrate
cloud computing over the Internet and peripheral computers.



Multiple Agents for Data Processing 149

3 Mobile Agent-Based MapReduce

This section outlines our mobile agent-based MapReduce processing system and
compares between our system and Hadoop, which one of the most typical imple-
mentation of MapReduce. The architecture of our MapReduce system is different
from existing implementation of MapReduce, including Hadoop.

3.1 Data Processing at the Edge

The original MapReduce and its clones are unable to cope cost-effectively if at all
with new dynamic data sources and multiple contexts for the large amount of data,
which is generated at sensors and devices. More data are generated at the edge of
networks, e.g., sensors and devices, than servers, including data centers and cloud
computing infrastructure. The transmission of such data from nodes at the edge to
server nodes seriously affect the performance of analyzing the data and results in
congestion in networks. To solve this problem, data processing tasks are defined
as mobile agents and dynamically duplicated and deployed at the nodes that have
the target data. Mobile agents also can directly access data from sensors and low-
level file systems at their destination nodes. Our approach assumes data at nodes
to be independent of one another and can be processed without exchanging data
between nodes. Finally, like MapReduce, agents running on nodes carry their results
to specified nodes after their processing are done to aggregate the results.

3.2 Architecture

The original MapReduce consists of one master node and one or more worker nodes
and Hadoop consists of job tracker, task tracker, name, and data nodes, where the
first and third corresponds to the master node, the second and forth to data nodes in
the original MapReduce. Our MapReduce system has a little different architecture
from Google’s MapReduce and a far from Hadoop. The system itself is a collection
of three kinds of mobile agents, called Mapper, Worker, and Reducer, which should
be deployed at appropriate nodes, called data nodes, according to the location of the
target data. They are still mobile agents so that they can dynamically deployed at
nodes according to the location of the target data and available resources to process
them.

3.3 MapReduce Processing

Our system supports MapReduce processing with mobile agents. Figure [T shows
the basic mechanism of the processing.

e Map process: a Mapper agent corresponds to the master node of the original
MapReduce. The agent makes copies of Worker agent and each of the Worker
agents migrates to one or more data nodes, which locally have the target data.
They execute their processing locally at the nodes. When there are multiple



150 1. Satoh

Step 3:
Executing worker agents
at data nodes
Step 4:
Migrating worker agents
with results
Mapper agent Worker agent \

(clone) Worker agent with results

—_—
/Reducer agent

Worker agent
Worker agent
(clone)
— Ny, B -
I I
— T = Worker agent with results | o=
— — |
Step 1: Worker agent processing
- Step 5:
Duplicating work agent .
— Aggregating the results to
— Reducer agent
Worker agent | Worker agent with results
(clone)
Step 2: Worker agent
Migrating worker agents processing

to data nodes
Fig. 1 Mobile agent-based MapReduce processing

Mapper agents in the same time, they can be executed in a specified schedule,
e.g., sequential or parallel.

e Reduce process: after executing their processing, Worker agents migrates to the
computer that the Reducer agent is running with their results and then send the
results to the agent. Mapper and Reducer agents can be running on the same
node.

Note that the amount of the results are by far smaller than the amount of target data.
Each Worker agent assumes to be executed independently of the others.

4 Design and Implementation

This section describes our mobile agent-based MapReduce system. It consists of two
layers; mobile agents and agent runtime systems. The former consists of agents cor-
responding to job tracker and map and reduce processing and the latter corresponds
to task and data nodes. It was implemented with Java language and operated on the
Java virtual machine. In our implementation, the system has been designed inde-
pendently of MapReduce, because it can support other data processing approaches
in the same time. As a result, our approach can be available in other existing mobile
agent platforms.

4.1 Agent Runtime System

Each runtime system runs on a computer and is responsible for executing agents
at the computer and migrating agents to other computers through networks. The
system itself is designed independent of any data processing. Instead, agents running
on it support MapReduce processing.



Multiple Agents for Data Processing 151

4.1.1 Agent Duplication

Before deploying agents at data nodes, our approach makes one or more copies of
task agents. The runtime system can store the state of the agent in heap space in
addition to the codes of agents into a bit-stream formed in Java’s JAR file format,
which can support digital signatures for authentication. The current system basi-
cally uses the Java object serialization package for marshaling agents. The package
does not support the capturing of stack frames of threads. Instead, when an agent is
duplicated, the runtime system issues events to it to invoke their specified methods,
which should be executed before it is duplicated and it then suspends their active
threads.

4.1.2 Agent Migration

Each runtime system also establishes at most one TCP connection with each of its
neighboring systems in a peer-to-peer manner without any centralized management
server and exchanges control messages and agents through the connection. When
an agent is transferred over a network, the runtime system transmits one or more
marshalled agents to the destination data nodes through TCP connections from the
source node to the nodes. After arriving at the nodes, they are resumed and activated
from the marshalled agents and then their specified methods are invoked to acquire
resources and start their processing.

4.1.3 Agent Execution

Each agent can have one or more activities, which are implemented by using the Java
thread library. Furthermore, the runtime system maintains the life-cycle of agents.
When the life-cycle state of an agent is changed, the runtime system issues certain
events to the agent. The system can impose specified time constraints on all method
invocations between agents to avoid being blocked forever. Each agent is provided
with its own Java class load, so that its namespace is independent of other agents
in each runtime system. The identifier of each agent is generated from information
consisting of its runtime system’s host address and port number, so that each agent
has a unique identifier in the whole distributed system. Therefore, even when two
agents are defined from different classes whose names are the same, the runtime
system disallows agents from loading other agents’s classes. To prevent agents from
accessing the underlying system and other agents, the runtime system can control
all agents under the protection of Java’s security manager.

4.2 Mobile Agent

Each agent is defined as a collection of Java objects. It is general-purposed. In-
stead, we provide agents with a framework for MapReduce processing. Every agent



152 1. Satoh

consists of several callback methods to be invoked by the runtime system before or
after the life-cycle state of the agent changes, e.g., initialization, execution, arrival,
departure, suspension, and termination. It can invoke several fundamental methods
used to create a new agent as its child and control the life-cycle of itself and its
children, e.g., mobility, duplication, termination. To support existing data process-
ing software for Hadoop, the current implementation can explicitly provide call-
back methods compatible to Hadoop’s classes and interfaces, e.g., Mapper and
Reducerﬂ

Unlike other existing MapReduce implementations, including Hadoop, our
system does not have any file system, because nodes in sensor networks and ambi-
ent computing systems may lack enrich storage devices. Instead, it provides a tree-
structured key value stores (KVSs), where each KVS maps arbitrary string value and
arbitrary byte array data and is maintained inside its agent, and directory servers for
KVSs in agents. To support reduce processing, the root KVS merge KVS of agents
into itself. In the current implementation each KVS in each data processing agent is
implemented as a hashtable whose keys given as pairs of arbitrary string values and
values are byte array data and is carried with its agent between nodes.

5 Current Status

A prototype implementation of this framework was constructed with Sun’s Java
Developer Kit version 1.6 or later versions. The implementation provided graphical
user interfaces to operate the mobile agents. Although the current implementation
was not constructed for performance, we evaluated that of several basic operations
in a distributed system where eight computers (Intel Core Duo 2 2 GHz with MacOS
X 10.7 and J2SE version 6) were connected through a Giga Ethernet.

e The cost of agent duplication was measured as the left of Figl2] where The agent
was simple and consisted of basic callback methods. The cost included that of
invocating two callback methods.

e The cost of migrating the same agent between two computers was measured
as the right of Fig2l The cost of agent migration included that of opening TCP-
transmission, marshaling the agents, migrating the agents from their source com-
puters to their destination computers, unmarshaling the agents, and verifying
security.

We constructed word counting from texts Fig Bl shows the basic structure of our
word counting by using mobile agent-based MapReduce with the screenshots of the
word counting.

't does not support fully compatible methods, since it does not intend to use existing
programs for Hadoop.
2 Word counting is one of the most typical examples of Hadoop.



Multiple Agents for Data Processing

S/

10 20 40 80 160 320
Agent size (KB)

153

600,

500

— 400
@

£
=300
17

Q
O 200

100

10 20

40

80 160 320

Agent size (KB)

Fig. 2 Mobile agent-based MapReduce processing

Step 1: Mapper agent make copies of worker agent (word counter)

800

Mapper Agent

Executor:
WORDCOUNT jar

Target URL:
matp://localhost:7001|

Target URL:
matp://localhost:7001

Map Run

Target file(s):

/Users/ichiro/workas6/macbeth.txt

Target file(s):

J/Users/ichiro/work/as6/romeo.txt

Step 2: Worker (word counter)
migrates to the data node

Step 2: Worker (word counter)
migrates to the data node

Step 3: Worker (word :
counter) sends its my

Is
results to Reducer agent |;,

you
that

Reducer Agent
Clear
Value
k

995
900
746
680
613
482
477
475
463
415
408

Step 3: Worker (word
counter) sends its
results to Reducer agent

s

Step 4: Reducer agent aggregates the results from Woker

Fig. 3 Mobile agent-based MapReduce processing

6 Conclusion

We presented a novel distributed processing framework inspired from MapReduce
processing. It was designed for analyzing data at the edges of networks and con-
structed based mobile agents. It introduces mobile agent technology so that it dis-
tributed data processing tasks to distributed nodes as a map process and aggregates
their results by returning them to specified servers as reduce process.



154 1. Satoh

References

1. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: HalLoop: Efficient Iterative Data Process-
ing on Large Clusters. Proceedings of the VLDB Endowment 3(1) (2010)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the 6th Conference on Symposium on Opearting Systems Design and Im-
plementation, OSDI 2004 (2004)

3. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.: Twister: a
runtime for iterative MapReduce. In: Proceedings of the 19th ACM International Sympo-
sium on High Performance Distributed Computing (HPDC 2010). ACM (2010)

4. Grossman, R., Gu, Y.: Data mining using high performance data clouds: experimental
studies using sector and sphere. In: Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2008), pp. 920-927. ACM
(2008)

5. Jiang, W., Ravi, V.T., Agrawal, G.: A Map-Reduce System with an Alternate API for
Multi-Core Environments. In: Proceedings of 10th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing (2010)

6. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++: modular MapReduce for shared-memory
systems. In: Proceedings of 2nd International Workshop on MapReduce and Its Applica-
tions (MapReduce 2011). ACM Press (2011)



	Multiple Agents for Data Processing
	1 Introduction

	2 Related Work

	3 Mobile Agent-Based MapReduce

	3.1 Data Processing at the Edge

	3.2 Architecture

	3.3 MapReduce Processing


	4 Design and Implementation

	4.1 Agent Runtime System

	4.2 Mobile Agent


	5 Current Status

	6 Conclusion

	References




