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Abstract. From a computational point of view, in nonlinear dynamical systems, at-
tractors can be regarded as self-excited and hidden attractors. Self-excited attractors
can be localized numerically by a standard computational procedure, in which af-
ter a transient process a trajectory, starting from a point of unstable manifold in a
neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily
identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect
neighborhoods of equilibria. While classical attractors are self-excited, attractors
can therefore be obtained numerically by the standard computational procedure, for
localization of hidden attractors it is necessary to develop special procedures, since
there are no similar transient processes leading to such attractors. This keynote lec-
ture is devoted to affective analytical-numerical methods for localization of hidden
oscillations in nonlinear dynamical systems and their application to well known
fundamental problems and applied models.

1 Introduction

An oscillation in dynamical system can be easily localized numerically if initial
conditions from its open neighborhood lead to long-time behavior that approaches
the oscillation. Such oscillation (or a set of oscillations) is called an attractor, and its
attracting set is called the basin of attraction [49, 27]. Thus, from a computational
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point of view in applied problems of nonlinear analysis of dynamical models, it is
essential to regard attractors [44, 45, 40, 32] as self-excited and hidden attractors
depending on simplicity of finding its basin of attraction in the phase space.

For a self-excited attractors its basin of attraction is connected with an
unstable equilibrium: self-excited attractors can be localized numerically by stan-
dard computational procedure, in which after a transient process a trajectory,
started from a point of unstable manifold in a neighborhood of equilibrium, reaches
a state of oscillation therefore one can easily identify it. In contrast, for a hidden
attractor, its basin of attraction does not intersect with small neighborhoods of equi-
libria.

For numerical localization of hidden attractors it is necessary to develop special
analytical-numerical procedures, since there are no similar transient processes lead-
ing to such attractors from neighborhoods of equilibria. Remark, that one cannot
guarantee finding of an attractor (especially for multidimensional systems) by the
integration of trajectories with random initial conditions since basin of attraction
can be very small.

2 Self-excited Attractor Localization

In the first half of the last century during the initial period of the development of
the theory of nonlinear oscillations [55, 19, 3, 53], a main attention was given to
analysis and synthesis of oscillating systems, for which the problem of the existence
of oscillations can be solved with relative ease.

These investigations were encouraged by the applied research of periodic os-
cillations in mechanics, electronics, chemistry, biology and so on (see, e.g., [54])
The structure of many applied systems (see, e.g., Duffing [13], van der Pol [51],
Tricomi [56], Beluosov-Zhabotinsky [4] systems) was such that the existence of os-
cillations was “almost obvious” since the oscillations were excited from unstable
equilibria (self-excited oscillation). This allowed one, following Poincare’s advice
“to construct the curves defined by differential equations” [50], to visualize periodic
oscillations by standard computational procedure.

Then, in the middle of 20th century, it was found numerically the existence of
chaotic oscillations [57, 47], which were also excited from an unstable equilibrium
and could be computed by the standard computational procedure. Nowadays there
is enormous number of publications devoted to the computation and analysis of
self-exited chaotic oscillations (see, e.g., [52, 11, 9] and others).

In Fig. 1 numerical localization of classical self-exited oscillation are shown: van
der Pol oscillator [51], one of the modification of Belousov-Zhabotinsky reaction
[4], two prey and one predator model [14].

In Fig. 2 examples of visualization of classical self-excited chaotic attractors
are presented: Lorenz system [47], Rössler system [52], “double-scroll” attractor
in Chua’s circuit [5].
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Fig. 1 Standard computation of classical self-excited periodic oscillations
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Fig. 2 Standard computation of classical self-excited chaotic attractors

3 Hidden Attractor Localization

While classical attractors are self-exited attractors therefore can be obtained numer-
ically by the standard computational procedure, for localization of hidden attractors
it is necessary to develop special procedures, since there are no similar transient
processes leading to such attractors. At first, the problem of investigating hidden
oscillations arose in the second part of Hilbert’s 16th problem (1900) on the num-
ber and possible dispositions of limit cycles in two-dimensional polynomial systems
(see, e.g., [46] and authors’ works [34, 23, 42, 36, 43, 21, 32]). The the problem is
still far from being resolved even for a simple class of quadratic systems.

Later, the problem of analyzing hidden oscillations arose from engineering prob-
lems in automatic control. In 50s of the last century in M.Kapranov’s works [17] on
stability of phase locked-loops (PLL) systems, widely used nowadays in telecom-
munications and computer architectures, the qualitative behavior of systems was
studied and the estimate of stability domain was obtained. In these investigations
Kapranov assumed that in PLL systems there were self-excited oscillations only.
However, in 1961, N.Gubar’ [32] revealed a gap in Kapranov’s work and showed an-
alytically the possibility of the existence of hidden oscillations in two-dimensional
system of phase locked-loop: thus from the computational point of view the system
considered was globally stable (all the trajectories tend to equilibria), but, in fact,
there was a bounded domain of attraction only.
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Fig. 3 Nonlinear control system. G(s) is a linear transfer function, f (e) is a single-valued,
continuous, and differentiable function [16].

In 1957 year R.E. Kalman stated the following [16]: “If f (e) in Fig. 1 [see Fig. 3]
is replaced by constants K corresponding to all possible values of f ′(e), and it is
found that the closed-loop system is stable for all such K, then it intuitively clear
that the system must be monostable; i.e., all transient solutions will converge to a
unique, stable critical point.” Kalman’s conjecture is a strengthening of Aizerman’s
conjecture [2], in which in place of condition on the derivative of nonlinearity it is
required that the nonlinearity itself belongs to linear sector.

In the last century the investigations of widely known Aizerman’s, and Kalman’s
conjectures on absolute stability have led to the finding of hidden oscillations in
automatic control systems with a unique stable stationary point and with a nonlin-
earity, which belongs to the sector of linear stability (see, e.g., [31, 30, 6, 37, 7, 24,
38, 41, 32]).

The generalization of Kalman’s conjecture to multidimensional nonlinearity is
known as Markus-Yamabe conjecture [48] (which is also proved to be false [12]).

At the end of the last century the difficulties the difficulties of numerical anal-
ysis of hidden oscillations arose in simulations of aircraft’s control systems (anti-
windup) and drilling systems which caused crashes [26, 29, 8, 18, 33, 32].

Further investigations on hidden oscillations were greatly encouraged by the
present authors’ discovery, in 2009-2010 (for the first time), of chaotic hidden
attractor in Chua’s circuits (simple electronic circuit with nonlinear feedback)
[25, 44, 7].

Until recently, only self excited attractors have been found in Chua circuits. Note
that L. Chua himself, in analyzing various cases of attractors existence in Chua’s
circuit [10], does not admit the existence of hidden attractor (discovered later) in his
circuits. Now, it is shown that Chua’s circuit and its various modifications [44, 45,
20] can exhibit hidden chaotic attractors (see, Fig.4, b), Fig.5) with positive largest
Lyapunov exponent[22, 35]1.

1 While there are known effects of the largest Lyapunov exponent (LE) sign inversion ([35,
22]) for nonregular time-varying linearizations, computation of Lyapunov exponents for
linearization of nonlinear autonomous system along non stationary trajectories is widely
used for investigation of chaos, where positiveness of the largest Lyapunov exponent is
often considered as indication of chaotic behavior in considered nonlinear system.
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Fig. 4 a) Self-excited and b) Hidden Chua attractor with similar shapes
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4 Conclusion

Since one cannot guarantee revealing complex oscillations regime by linear analysis
and standard simulation, rigorous nonlinear analysis and special numerical methods
should be used for investigation of nonlinear dynamical systems.

It was found [28, 38, 24, 39, 41, 32] that the effective methods for the numeri-
cal localization of hidden attractors in multidimensional dynamical systems are the
methods based on special modifications of describing function method2 and numeri-
cal continuation: it is constructed a sequence of similar systems such that for the first
(starting) system the initial data for numerical computation of possible oscillating
solution (starting oscillation) can be obtained analytically and then the transforma-
tion of this starting oscillation when passing from one system to another is followed
numerically.

Also some recent examples of hidden attractors can be found in [63, 60, 59, 58,
61, 62, 1, 15].
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istry of Education and Science (Federal target programm), Russian Foundation for Basic
Research and Saint-Petersburg State University.
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