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Abstract. It is well known that the evolution algorithms use pseudo-random
numbers generators for example to generate random individuals in the space
of possible solutions, crossing etc. In this paper we are dealing with the effect
of different pseudo-random numbers generators on the course of evolution and
the speed of their convergence to the global minimum. From evolution algo-
rithms the differential evolution and self organizing migrating algorithm have
been chosen because they have different strategies. As the random generators
Mersenne Twister and chaotic system - logistic map have been used.

1 Introduction

Evolution algorithms are based on the Darwin’s and Mendel’s principles.
There is the population of individuals, which is improving in the time. The
individuals are crossing and mutated and the best survive, while worse die.
The population is developing during the generation cycles, we call them Gen-
erations or Migrations according to the used algorithm [1]. From the view
of pseudo-random numbers generators, we need to generate individuals in
the space of possible solutions. The individual consists of parameters (each
parameter has its low and high bound) and these parameters are usually real
numbers. In the first generation cycle the individuals are chosen randomly
- their parameters are chosen randomly in their low and high borders. Next
the pseudo-random numbers generators plays the essential role in the process
of crossing.

In this paper we connect together three basic research areas – evolution
algorithms, chaos and pseudo-random numbers generators. With connection
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of evolutionary algorithms (especially differential evolution and SOMA) and
chaos [2] - [4] have been written. Artificial bee colony algorithm is connected
with chaos in [5]. New adaptive differential evolution technique based on lo-
gistic map for optimal distribution placement and sizing is presented in [7]
and in [6]the differential evolution with chaos theory for self adaptation of dif-
ferential evolution’s parameters is combined. In [8] chaotic Logistic equation
is mentioned in connection with SOMA and differential evolution. In recent
years, some new pseudo-random number generators were described, e.g. [11]
and [12]. The pseudo-random numbers generators based on chaos are pre-
sented in [9], [10]. In [13] Sandpile model - the complex system operating at
a critical state between chaos and order - is proposed and author state that
cellular automata can be used as a generator of pseudo-random numbers.

This paper is divided into the sections, where in the first one we describe
the used evolution algorithms - DE and SOMA, next we are dealing with used
pseudo-random numbers generators, motivation and design experiments. In
section Results, the experiment’s results are shown and in Conclusions we
sumarize achieved results.

2 Evolution Algorithms

2.1 Differential Evolution (DE)

Differential evolution works at the principle of improving population during
the generation’s cycles, as it is mentioned above. The population consists of
individuals, each individual has its own parameters and fitness value – the
value of the cost function. The fitness says how good this individual is in the
population. In generation cycle for each individual three different individuals
from the population are chosen randomly and the noise vector is generated,
see Eq.(1.

vG+1
i = xG

r1 + F (xG
r2 − xG

r3), r1 �= r2 �= r3 (1)

where vG+1
i is the i-th noise vector in the next generation, xr1 is the first

randomly chosen individual, xG
r2 is the second randomly chosen individual and

xG
r3 is the third randomly chosen individual. F is the mutation constant [14].
When the noise vector is made, the trial individual creation can start. To

the trial individual the parameters from the noise vector or from the actual
individual are chosen according to Eq.(2).

uj
i,G+1 =

{
vji,G+1 if r(j) ≤ CR

xj
i,G otherwise

(2)

where ui,G+1 is the j-th parameter of the trial vector, r(j) is the random
number from the interval [0, 1] [14] and CR is the crossover probability.
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The selection of a new individual is described by Eq.(3).

xi,G+1 =

{
ui,G+1 if f(ui,G+1) ≺ f(xi,G)
xi,G otherwise

(3)

where f(ui,G+1) is the fitness of the trial vector and f(xi,G) denote fitness of
the actual individual. The sign ≺ is used because we search global minimum
[14].

2.2 Self Organized Migrating Algorithm (SOMA)

The strategy of SOMA differs from DE. In DE new offspring is creating
during the evolution. In SOMA there is no offspring. The individuals migrate
in the space of possible solutions, they just change their positions. In this
paper version AllToOne of SOMA is used, where all individuals migrate to
the one individual, we call it Leader. Except this strategy, AllToAll, AllToOne
Random, AllToAll Adaptive and AllToOne Adaptive exist.

The begin of the algorithm is the same like in DE – the random individuals
are generated in population. Following principle is different: Each individual
migrates to the Leader in steps (the length of all step is united), while the sum
of steps do not reach or even cross the parameter denoted as PathLength,
see Eq.(4). In SOMA the step is denoted by the parameter Step and its value
should be odd, usually it is the value 0.11. For each step, where individual
reaches a new position, new fitness is computed. In the end of migration cycle
the best reached position is chosen.

Mutation is replaced by perturbation in SOMA, see Eq.4.

r = r0 +mtPRTvector (4)

where r is a new candidate solution, r0 denotes actual individual, m is a dif-
ference between Leader and start position of individual and t is the parameter
Step, t ∈ [0, PathLength] [15].

The direction of the individual’s migration is given by the parameter PRT ,
ussually with the value 0.1. According to the PRT the PRTvector is gener-
ated by this way: for each parameter of PRTvector a random number from
interval [0,1] is generated. If this number is smaller than PRT , the parameter
of PRTvector will have value 1 else it will have value 0, see Eq.(5).

if rndj ≺ PRT then PRTvectorj = 1 else 0 (5)

where rndj means random number from the interval [0,1], PRTvectorj de-
noted the j-th parameter of the perturbation vector. If the fitness of the best
found position od the individual is better than its actual fitness, the individ-
ual will migrate to the best position. Otherwise individual stays at its old
position.
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3 Pseudo-random Numbers Generator

3.1 Mersenne Twister (MT)

Mersenne Twister has been proposed by M. Matsumoto and T. Nishimura in
the year 1997. Its period is 219937 − 1 and it has 632-dimensional equidistri-
bution property. It is the variant of previously proposed generators, TGFSR.
For more information see [16].

MT has been used for example in the Monte Carlo Localization Algorithm
in [17]. It has been also used as a comparative tool in the developement of
new pseudo-random numbers generators, see [19]. In [18] authors state that
MT cannot be used efficiently without substantial changes as a random num-
ber generator for massively parallel simulations on GPU. In connection with
evolution algorithm MT has been used in [20], where autors are specialized
in genetic algorithms and simulated annealing, [21] in parallel evolutionary
algorithm for RNA holding and [22] in Particle Swarm Optimization.

3.2 Logistic Map

Each definition of chaos describes some kind of unpredictability in the evolu-
tion of the system. At this idea theory of Li and Yorke is based, this theory
says that in the logistic map in interval [0,1] it is possible to find two close
trajectories, which are moving away from each other with increasing time.
In other words small change in starting conditions may cause very different
results. The system can behave equally if and only if the starting conditions
are absolutely same [33]. Good example is the butterfly effect.

In connection with chaos control [24] and [27] have been written. In 2013 [25]
and [26] have been written about chaos and evolution algorithms connection.

Logistic map is a one – dimensional quadratic map defined by Eq.6.

xn+1 = axn(1− xn) (6)

where a is an external parameter and xn value moves in interval [0,1] [28].
Kuznetsov N.V. and Leonov G.A. in [34] say about Lyapunov exponent:

”In 1930 O. Perron found the effects of Lyapunov exponent sign inversion.
It has been shown that the negativeness of the largest Lyapunov exponent
of the first approximation system does not always result in the stability of
zero solution of the original system. Small neighborhood of zero solution, the
solutions of the original system with positive Lyapunov exponent (Lyapunov
characteristic exponent) can exist. A. M. Lyapunov has introduced the notion
of regular linear system and showed that for regular linearizations the stability
is defined by the negativeness of Lyapunov exponents of linearized system
- that was the first sufficient condition of asymptotic stability by the first
approximation for nonstationary linearizations.”

We can say that Lyapunov exponent is the basic tool for dynamic system
description. If the Lyapunov exponent is negative, the dynamic system is
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not sensitive to beginning conditions. On the other hand if the Lyapunov
exponent is positive, the system will be sensitive to basic condition. The
chaotic system must have at least one positive exponent [36].

The behavior of the logistic map is described in [28] where authors investi-
gate behavior of logistic map for x ≥ x∞, they say that Lyapunov exponent λ
(it characterizes the rate of separation of infinitesimally close trajectories) of
the logistic map at x∞ is zero. Lyapunov exponent λ becomes mostly possi-
tive for x > x∞ and therefore authors say that chaos starts at the end of the
bifurcation region, see Fig.1. Next authors state that: ”the detailed behavior
of the iterates of the logistic map appears rather complicated in this region, it
shows regularities which are again dictated by doubling operator and therefor
universal. For x∞ ≺ r, periodic and chaotic regions are densely interwoven,
and one finds a sensitive dependence on the parameter value”.

Fig. 1 Logistic map

In [29] the logistic map has been used for example to generate cycle time in
series of signals, in cryptography - Baptista’s cryptosystem, [30], and image
encryption [31]. From the view of connection between evolution algorithms
logistic map is mentioned for example in [32].

4 Motivation

The main motivation was to compare pseudo-random numbers generators
from the view of influence to developing of the population in evolutionary
algorithms. Mersenne Twister has been chosen because it has a big period
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(219937 − 1) and as it was mentioned above it is very often connected with
evolution algorithms as a confirmed random number generator.

5 Experiment Design

For experiments, SOMA and DE have been chosen because these algorithms
have different strategies. As it was mentioned above, DE’s population is still
developing during the generation cycles, while in SOMA the individuals are
migrating in the space of possible solutions and no offspring is generated.
Each experiment in the experiment group has been repeated one hundred
times and exact settings of both algorithms are mentioned in Tabs. 1 and 2
where NP means the number of individuals in one population, D dimension
(how many parameters will be contained in one individual), Migrations and
Generations denote the number of evolution cycles.

For experiments HP Pavilion dv7-6050 with processor Intel Core i7 with
frequency 2 GHz, 4 GB RAM and graphic card AMD Radeon HD 6770M
and Microsoft Visual Studio 2010 have been used. The experiments have
beed processed by Mathematica 8.

Table 1 DE setting

NP 1000
D 20
Generations 500
F 0.8
CR 0.5

Table 2 SOMA setting

NP 1000
D 20
Migrations 500
PRT 0.11
PathLength 3
Step 0.11

As the trial functions 1st de Jong’s function, Schwefel’s function and
Ranna’s function have been chosen. Schwefel’s function has many local
minimums, it is very jagged and we know the global minimum - f(x) =
−418.9829D. 1st de Jong’s function has just one minimum - global minimum
- f(x) = 0 and this function is not jagged. And in Ranna’s function there
the global minimum has not been found. And it is not mentioned in any
literature.

Table 3 Setting of logistic map

Experiment’s group Value of parameter a

1st group 3.58

2nd group [3.8280, 3.8285]

3rd group 3.855
4th group [3.8567, 3.8570]

5th group 4
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In logistic map of chaos as the beginning value of xn 0.02 has been set.
This value has been chosen randomly. Each algorithm’s experiments have
been divided into 5 groups according setting of parameter a, see Tab. 3. 2nd

and 4th groups are special, because the parameter a has been changing for
each xn by the step 0.0001. Otherwise the parameter a has been constant.

6 Results

The Figs. 2 and 3 show comparing of results of MT and Chaos random number
generators, where in chaos a = 4 and Ranna’s function has been used as a
testing function. It is known that if a = 4 logistic equation will generate
numbers from all interval [0,1], see 1. This fact is important for evolution
developing. As it is obvious, evolutions where chaos pseudo-random number
generator has been used, convergate faster than evolutions, where MT has
been used. On the other hand when a = 3.58 and 1st de Jong’s and Schwefel’s
functions have been testing function, some experiments from the collection,
where chaos has been used convergate much slower than MT and the total
results have been much worse than MT.

Fig. 2 Comparing MT and Chaos. Differential evolution, Ranna’s function, a = 4.
Blue represents Chaos, red represents MT.
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Fig. 3 Comparing MT and Chaos. SOMA, Ranna’s function, a = 4. Blue repre-
sents Chaos, red represents MT.

Table 4 Minimum, maximu and average fitness value of DE experiments for 1st

de Jong’s, Ranna’s and Schwefel’s function with settings mentioned in Tab. 1.

Function Min. fitness value Max. fitness value Average fitness value

Chaos a = 3.58
1st de Jong’s 0.000 0.000 0.000

Ranna’s -7669.411 -5426.377 -6656.126
Schwefel’s -8379.658 -7539.422 -8160.376

Chaos a = 3.828
1st de Jong’s 11.674 15220.172 4206.105

Ranna’s -8081.707 -5125.884 -6894.176
Schwefel’s -7763.678 -6167.574 -7107.649

Chaos a = 3.855
1st de Jong’s 0.003 0.074 0.023

Ranna’s -8585.980 -6383.648 -7730.503
Schwefel’s -8379.657 -7712.970 -8231.763

Chaos a = 3.8567
1st de Jong’s 0.004 0.121 0.026

Ranna’s -8494.416 -6136.087 -7687.413
Schwefel’s -8379.657 -7692.009 -8221.569

Chaos a = 4
1st de Jong’s 0.008 0.144 0.039

Ranna’s -8732.198 -6175.018 -7860.793
Schwefel’s -8379.651 -7882.383 -8234.940

MT
1st de Jong’s 0.000 0.003 0.000

Ranna’s -8013.129 -6213.274 -7052.287
Schwefel’s -8379.656 -7144.871 -7976.479
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Table 5 Minimum, maximu and average fitness value of SOMA experiments for
1st de Jong’s, Ranna’s and Schwefel’s function with settings mentioned in Tab. 2.

Function Min. fitness value Max. fitness value Average fitness value

Chaos a = 3.58
1st de Jong’s 0.000 0.000 0.000

Ranna’s -8588.349 -6946.222 -7716.781
Schwefel’s -8379.658 -6543.776 -7277.547

Chaos a = 3.828
1st de Jong’s 0.000 0.000 0.000

Ranna’s -9180.587 -8415.158 -8857.963
Schwefel’s -8379.658 -8379.658 -8379.658

Chaos a = 3.855
1st de Jong’s 0.000 0.000 0.000

Ranna’s -9110.511 -8435.843 -8830.062
Schwefel’s -8379.658 -8379.658 -8379.658

Chaos a = 3.8567
1st de Jong’s 0.000 0.000 0.000

Ranna’s -9264.553 -8535.640 -8887.881
Schwefel’s -8379.658 -8379.657 -8379.658

Chaos a = 4
1st de Jong’s 0.000 0.000 0.000

Ranna’s -9258.219 -8947.286 -9090.472
Schwefel’s -8379.658 -8379.658 -8379.658

MT
1st de Jong’s 0.000 0.000 0.000

Ranna’s -9139.584 -8667.654 -8866.831
Schwefel’s -8379.658 8379.658 8379.658

7 Conclusion

From the experiments we can make some conclusions:

− It depends on the parameter a in logistic equation. When a = 4 the evo-
lution convergence has been faster with using chaos pseudo-random num-
bers generator than MT. When a has been from interval [3.828, 3.8285],
a = 3.855 and a has been from interval [3.8567, 3.857] chaos random num-
ber generator and MT results have been comparable except 1st de Jong’s
function, which converged faster with MT using. If a = 3.58 the results have
been much worse in chaos than in MT. It is logical, because in this area in
the bifurcation diagramwe can see deterministic windows (white areas), see
1. That means many numbers from interval [0,1] have not been contained
in the computation. This area is weighted by a big periodicity, that influ-
ence the results negatively. Much better results with using chaos have been
reached when a = 4, see Figs. 2 and 3. It is the area of chaos in bifurcation
diagram and random numbers are generated from all interval [0,1].

− In chaos pseudo-random numbers generator some experiments differ from
total average by their convergence trajectories, while in MT there was no
experiment, which would be much different than others from the same
group.

− In Tabs. 4 and 5 minimum, maximum and average cost function values
of the best individuals in evolution are shown for DE and SOMA, where
MT and Chaos - logistic map as the pseudo-random numbers generators
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have been used. As it was mentioned above 1st de Jong’s, Ranna’s and
Schwefel’s function have ben used as test functions. Minimums in Tabs. 4
and 5 are the best values of the cost function, maximums are the worst
values of the cost function, which have been reached during the evolution
process.

− There is a big difference between SOMA and DE in 1st de Jong’s function’s
searched minimum, SOMA has got a smaller value than DE, while in the
other functions the minimum values are comparable, and it does not matter
if MT or Chaos - logistic map has been used.

− In Figs. 2 and 3 it is shown that if a = 4 in logistic equation and the
Ranna’s function has been choosen, evolution converged faster than when
MT has been used as a pseudo-random numbers generator.

In the future the experiments will be extended by next kinds of SOMA -
AllToAll, AllToOne Random, AllToAll Adaptive and AllToOne Adaptive as
well as some other kinds of DE. As testing functions next testing functions
(e.g. Rastrigin’s, Ackley’s, Michalewicz’s) will be tried. Further research will
be focused on more extensive and intensive testing of our ideas proposed here.
Our aim is to try algorithms like scatter search [46], evolutionary strategies
[47], genetic algorithms [48], [52] or particle swarm [49]. Also novel algorithms
will be tested for its performance under our proposed approach in [50], [51]
and alternative methods of symbolic regression [53].

Wider class of different algorithms, test functions and deterministic pro-
cesses will be selected for future experiments to prove and specify the domain
of validity of our ideas proposed here.
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