
Chapter 8
Multiple Regression

8.1 Introduction

Multiple regression analysis is one of the dependence technique in which the
researcher can analyze the relationship between a single-dependent (criterion)
variable and several independent variables. In multiple regression analysis, we use
independent variables whose values are known or fixed (non-stochastic) to predict
the single-dependent variable whose values are random (stochastic). In multiple
regression analysis, our dependent and independent variables are metric in nature;
however, in some situations, it is possible to use non-metric data as independent
variable (as dummy variable).

Gujarati and Sangeetha (2008) defined regression as:
‘It is concerned with the study of the dependence of one variable, the dependent

variable, on one or more other variables, the explanatory variables, with a view to
estimating and/or predicting the (population) mean or average value of the former
in terms of the known or fixed (in repeated sampling) value of the later’.

8.2 Important Assumptions of Multiple Regression

1. Linearity—the relationship between the predictors and the outcome variable
should be linear

2. Normality—the errors should be normally distributed—technically normality is
necessary only for the t-tests to be valid, estimation of the coefficients (errors
are identically and independently distributed

3. Homogeneity of variance (homoscedasticity)—the error variance should be
constant

4. Independence (no autocorrelation)—the errors associated with one observation
are not correlated with errors of any other observation

5. There is no multicollinearity or perfect correlation between independent
variables.
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Additionally, there are issues that can arise during the analysis that, while
strictly speaking, are not assumptions of regression, are none the less, of great
concern to regression analysis. These are

1. Outliers; it is an observation whose dependent variable value is unusual given
its values on the predictor variable (independent variable).

2. Leverage; an observation with an extreme value on a predictor variable is called
a point with high leverage.

3. Influence; an observation is said to be influential if removing the observation
substantially changes the estimate of coefficients. Influence can be thought of as
the product of leverage and outliers.

8.3 Multiple Regression Model with Three Independent
Variables

One of the well-known supermarket chains (ABC group) in the country has
adopted an aggressive marketing decision particularly to increase the sales of its
own private brands in the last 19 months. Recently, the company decided to
investigate its product sales in the last 19 months. In the last 19 months, the
company has invested lot of money in three strategic areas: Advertisement,
marketing (excluding advertisement and distribution) and its distribution network.
The company decided to do a multiple regression analysis to predict the impact of
advertisement, marketing, and distribution expenses on its sales (Table 8.1a).

8.4 Multiple Regression Equation

A multiple regression equation with three independent variables is given below:

Yt ¼ b1 þ b2x2t þ b3x3t þ b4x4t þ u0t ð1Þ

Salest ¼ b1 constantð Þ þ b2 Advertisement Ex:ð Þt þ b3 Marketing Ex:ð Þt
þ b4 Distribution Ex:ð Þt
þ u0t ð2Þ

Here, Yt is the value of the dependent variable (here it is sales) on time period t,
b1 is the intercept or average value of dependent variable when all the independent
variables are absent. b2b3; and b4; are the slope of sales (partial regression
coefficients) with respect independent variables like advertisement expenses,
marketing expenses, and distribution expenses holding other variables constant.
For example, the coefficient value b2 implies that one unit change (increase or
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decrease) of in advertisement will lead to b2 unit time changes (increase or
decrease) in sales holding other variables constant. u0t is the random error in Y, for
time period t.

8.5 Regression Analysis Using SPSS

How to Check Linearity Assumption.mp4

Step 1 Open the data file named Supermarket.sav (Fig. 8.1).
Step 2 Go to Analyze =[ Regression =[Linear to get the Linear Regression

window as given in Fig. 8.2.
Step 3 Click the dependent variable Sales from the left panel of the Linear

Regression window into dependent variable (right panel) and other three
variables into Independent window (Fig. 8.3).

Step 4 Click the Statistics option and select Estimates, Model fit, and
Descriptives, then click on Continue to get the main window of Linear
Regression (Fig. 8.4).

Step 5 Go to the main window of linear regression and click OK (Fig. 8.5).

Table 8.1a Sales, advertising, marketing, and distribution expenses

Months Sales
(In lakhs)

Advertising
expenses
(In lakhs)

Marketing
expenses
(In lakhs)

Distribution
expenses
(In lakhs)

1 9324.6 9 129.8 139.9
2 11870.8 20.2 206.1 124.7
3 15118.6 9.8 105.1 169.9
4 19406.4 17.2 53 483.9
5 21715.4 11.5 65 495
6 28270.2 38.9 68.5 618.4
7 41960.1 41.9 81 850.3
8 64647.5 139.9 203 1273.2
9 77826.3 344.9 439.6 1624.6
10 83059.5 451.6 767.7 1538.3
11 78855.6 656.3 1680 1474.9
12 94407 882 1638 1732
13 90615 1051 1376 1594
14 92313 1170 2063 1588
15 92038 1676 2361 2041
16 111281 2518 354 1188
17 134859 2044 195 1133
18 151252 2257 234 1069
19 174580 3389 234 1376
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8.6 Output Interpretation for Regression Analysis

Table 8.1b in SPSS regression output shows the model summary, which provides
the value of R (Multiple Correlation), R2 (Coefficient of Determination) and
Adjusted R2 (R2 adjusted with Degrees of Freedom). In this model, R has a value
of 0.970. This value represents the multiple correlation between dependent and
independent variables. The value of R2 shows all the three independent variables

Fig. 8.1 SPSS data view window

Fig. 8.2 SPSS linear regression window
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can account for 94 % of the variation in sales. In other words, if the researcher
would like to explain the contribution of all these three expenses on sales, looking
at the R2 it is possible. This means that around 6 % of the variation is sales cannot
be explained by all these expenses. Therefore, it can be concluded that there must
be other variables that have influence on sales.

Table 8.2 reports an analysis of variance (ANOVA). This table shows all the
sums of squares associated with regression. The regression sum of square explains
the sum of squares explained by the model or all the independent variables.
Residual sum of squares explains the sum of squares for the residual or

Fig. 8.3 SPSS linear regression window

Fig. 8.4 Linear regression statistics window
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unexplained part. Total sum of squares explains the sum of squares of the
dependent variable. The third column shows the associated degrees of freedom for
each sum of squares. The mean sum of squares for the regression and residuals are
calculated by dividing respective sum of squares by its degrees of freedom. The
most important part in this table is F value, which is calculated by taking the ratio
of mean square of regression and mean square of residual. For this model, the
F value is 78.742, which is significant (p \ .01). This result tells us that there is
less than a 0.1 % chance that an F-ratio this large would happen if the null
hypothesis were true. Therefore, looking at the ANOVA table, we can infer that
our regression model results in significantly better prediction of sales.

Looking at the ANOVA explained in Table 8.2, we cannot make inference
about the predictive ability of individual independent variables. Table 8.3 provides
details about the model parameters. Looking at the beta vales and its significance,
one can interpret the significance of each predictor on the dependent variable. The
value 6908.926 is the constant term which is b1 in Eqs. 1 and 2. This can be
interpreted as when no money is spent on all these three areas (advertising,
marketing, and distribution) or X2 X3 X4 = 0, the model predicts that average sales
would be 6908.92 (remember our unit of measurement is in lakhs). The coefficient
value for advertising expenses is 33.56(b2) is the partial regression coefficient for
advertising expenses. This value represents the change in the outcome associated
with the unit change in the predictor or independent variable, while other variables

Fig. 8.5 SPSS linear regression window

Table 8.1b Model summary

Model R R2 Adjusted R2 Std. error of the estimate

1 0.970a 0.940 0.928 13093.8291

a Predictors: (constant), distribution expenses, advertising expenses, marketing expenses
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hold constant. Therefore, it can be interpreted that if our independent variable is
increased by one unit (here advertising expenses), then our model predicts that
33.56 unit times change in depended variable (here sales) occurs while holding
other variables like marketing expenses and distribution expenses constant. As our
unit of measurement for the advertising expenses were in lakhs, it can be inter-
preted that an increase in advertising expenses of Rs. 1 lakhs will increase the sales
33,56000 lakhs (100000 * 33.569) holding other expenses constant. In the same
fashion, one can also interpret the other coefficients. The negative sign of the
coefficients indicates an inverse relationship between dependent and independent
variables.

Standard Error Column explains the standard error associated with each esti-
mate or coefficients. The standardized coefficients column shows the standardized
coefficient values for each estimate in which the unit of measurement is common.
These coefficients can be used for explaining the relative importance of each
independent variable when the unit of measurement is different for different
independent variables. Looking at the coefficients, one can infer that advertising
expense is the most important predictor followed by distribution expenses.

The last two columns show t-value and associated probability. The t-value can
be calculated as unstandardized coefficients divided by its respective standard
error. The t-test tells us whether the b-value is different from 0 or not. The last
column of the Table 8.3 shows the exact probability that the observed value of
t would occur if the value of b in the population were 0. If the probability value is
less than 0.05, then the researcher agree that result reflect a genuine effect or b is
different from 0. From the table, it is evident that for all the three independent
variables, the probability value is less than that the assumed 0.05 level, and so we

Table 8.2 ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 40500692519.872 3 13500230839.957 78.742 0.000b

Residual 2571725425.134 15 171448361.676
Total 43072417945.006 18

a Dependent variable: sales
b Predictors: (constant), distribution expenses, advertising expenses, marketing expenses

Table 8.3 Coefficientsa

Model Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta

1 (Constant) 6908.926 6840.615 1.010 0.329
Advertising expenses 33.569 3.545 0.709 9.468 0.000
Marketing expenses -15.625 6.203 -0.244 -2.519 0.024
Distribution expenses 43.485 9.002 0.524 4.831 0.000

a Dependent variable: sales
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can say that in all the three cases, the coefficient values are significantly different
from zero or it significantly contributes to the model.

8.7 Examination of Major Assumptions of Multiple
Regression Analysis

8.7.1 Examination of Residual

Examining the residual provide useful insights in examining the appropriateness of
the underlying assumptions and regression model fitted A residual is the differ-
ence between the observed value of Yi and the value predicted by the regression
equation Ŷi.. Residuals are used in the calculation of several statistics associated
with regression. Without verifying that your data have met the regression
assumptions, the results may be misleading.

8.7.2 Test of Linearity

When we do linear regression, we assume that the relationship between the
response variable and the predictors is linear. This is the assumption of linearity. If
this assumption is violated, the linear regression will try to fit a straight line to data
that does not follow a straight line. Checking the linear assumption in the case of
simple regression is straightforward, since we only have one predictor. All we
have to do is a scatter plot between the each response variable (independent
variable) and the predictor (dependent variable) to see if nonlinearity is present,
such as a curved band or a big wave-shaped curve. The examination of linearity
can be examined through the following video.

How to Check Normality Assumption.mp4

8.7.3 Test of Normality

The assumption of a normally distributed error term can be examined by con-
structing a histogram of the residuals. A visual check reveals whether the distri-
bution is normal. It is also useful to examine the normal probability of plot of
standardized residuals compared with expected standardized residuals from the
normal distribution. If the observed residuals are normally distributed, they will
fall on the 45-degree line. Additional evidence can be obtained by determining the
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percentages of residuals falling within ± 2 SE or ± 2.5 SE. More formal assess-
ment can be made by running the tests: Shapiro–Wilk, Kolmogorov–Smirnov,
Cramer–von Mises and Anderson–Darling.1

How to Autocorrelation Assumption.mp4

8.7.4 Test of Homogeneity of Variance (Homoscedasticity)

The assumption of constant variance of the error term can be examined by plotting
the residuals against the predicted values of the dependent variable, Ŷi. If the
pattern is not random, the variance of the error term is not constant. See the video
How to check Normality Assumption.

8.7.5 Test of Autocorrelation

How to Check No Multicollinearity Assumption.mp4

A plot of residuals against time, or the sequence of observations, will throw
some light on the assumption that the error terms are uncorrelated or no auto-
correlation. A random pattern should be seen if this assumption is true. A more
formal procedure for examining the correlations between the error terms is the
Durbin–Watson test (Applicable only for time series data).

8.7.6 Test of Multicollinearity

The presence of multicollinearity or perfect linear relationship between indepen-
dent variables can be identified using different methods. These methods are:

1. VIF (Variance-Inflating factor): As a rule of thumb, If the VIF value exceeds
10, which will happen only if correlation between independent variables
exceeds 0.90, that variable is said to be highly collinear (Gujarati and
Sangeetha 2008).

1 Null hypothesis the observations are normally distributed, alternative hypothesis not normally
distributed.
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2. TOL (Tolerance): The closer the TOL to zero, the greater the degree of col-
linearity of the variables (Gujarati and Sangeetha 2008).

3. Conditional Index (CI): If CI exceeds 30, there is severe multicollinearity
(Gujarati and Sangeetha 2008).

4. Partial Correlations: High partial correlation between independent variables
also shows the presence of multicollinearity.

How to Check No Multicollinearity Assumption.mp4

8.7.7 Questions

Examine the following fictitious data

Model R R2 Adjusted R square Std. error of the estimate
1 0.863 0.849 0.850 13.8767

1. Which of the following statements can we not say?

(a) The standard error is an estimate of the variance of y, for each value of x.
(b) In order to obtain a measure of explained variance, you need to square

the correlation coefficient.
(c) The correlation between x and y is 86 %.
d) The correlation is good here as the data points cluster around the line of fit

quite well. So prediction will be good.
(e) The correlation between x and y is 85 %.

2. The slope of the line is called:

(a) Which gives us a measure of how much y changes as x changes.
(b) Is the point where the regression line cuts the vertical axis.
(c) A correlation coefficient indicates the variability of the points around the

regression line in the scatter diagram.
(d) None of the above.
(e) The average value of the dependent variable.

3. Using some fictitious data, we wish to predict the musical ability for a person
who scores 8 on a test for mathematical ability. We know the relationship is
positive. We know that the slope is 1.63 and the intercept is 8.41. What is their
predicted score on musical ability?
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(a) 80.32
(b) -4.63
(c) 21.45
(d) 68.91
(e) 54.55

4. We have a negative relationship between number of drinks consumed and
number of marks in a driving test. One individual scores 3 on number of drinks
consumed, another individual scores 5 on number of drinks consumed. What
will be their respective scores on the driving test if the intercept is 18 and the
slope 3?

(a) It is not possible to predict from negative relationships.
(b) Driving test scores (Y-axis) will be 51 and 87 [individual who scored 5 on

drink consumption].
(c) Driving test scores (Y-axis) will be 27 [individual who scored 3 on drink

consumption] and 33 [individual who scored 5 on drink consumption].
(d) Driving test scores (Y-axis) will be 9 [individual who scored 3 on drink

consumption] and 3 [individual who scored 5 on drink consumption].
(e) None of these.

5. You are still interested in whether problem-solving ability can predict the
ability to cope well in difficult situations; whether motivation can predict
coping and whether these two factors together predict coping even better. You
produce some more results.

Dependent variable coping skills in difficult situations

Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta
Constant -0.466 0.241 1.036 0.302
Problem 0.200 0.048 0.140 2.082 0.030
Motivation 0.950 0.087 0.740 10.97 0.000

Which of the following statements is incorrect?

(a) As motivation increases by one standard deviation, coping skills increases by
almost three quarters of a standard deviation (0.74). Thus, motivation appears
to contribute more to coping skills than problem solving.

(b) As motivation increases by one unit coping skills increases by 0.95.
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(c) The t-value for problem solving is 2.082 and the associated probability is
0.03. This tells us the likelihood of such a result arising by sampling error,
assuming the null hypothesis is true, is 97 in 100.

(d) Problem solving has a regression coefficient of 0.20. Therefore, as problem
solving increases by one unit coping skills increases by 0.20.

(e) None of these.
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