Service-Oriented Middleware for the
Cooperation of Smart Objects and Web Services

Andrea Giordano and Giandomenico Spezzano

Abstract Many physical devices can be interconnected and cooperate by Internet
of Things (IoT), providing and consuming information available on the network.
These will not only provide information by monitoring the real-world, but create
complex collaborations, interacting also with business processes, in order to provide
sophisticated value-added services. In addition, business processes can also adapt
their behavior in response to real-time context updates. Web services technology
offers a promising approach to provide information and functionalities of physical
objects to business processes, since it facilitates interoperability and encapsulates the
heterogeneity and specificity of physical objects. To address the dynamic composition
of web services in a decentralized, distributed manner, with no single point of failure,
a choreography execution model can be used. This chapter describes an approach to
support adaptable business processes (workflows) considering changes in the state of
Things; likewise, whenever needed, the software controlling the behavior of sensors
can be dynamically configured as a result of changes in the functional specifications
of business processes.

1 Introduction

From an enterprise and economic perspective, the Future Internet will be the basis
for a web-based service economy [1] that will merge the digital and physical worlds.
The Future Internet, it is now widely accepted, will have four pillars [2]. Besides
the Internet of Networks, there will be an Internet of Services as well as Internet of
Things integrating common objects into our lives. Finally, an Internet of Contents &

A. Giordano - G. Spezzano ()
CNR-ICAR, Via P. Bucci 41C, 87036 Rende, CS, Italy
e-mail: giordano@icar.cnr.it

G. Spezzano
e-mail: spezzano@icar.cnr.it

G. Fortino and P. Trunfio (eds.), Internet of Things Based on Smart Objects, 49
Internet of Things, DOI: 10.1007/978-3-319-00491-4_3,
© Springer International Publishing Switzerland 2014

50 A. Giordano and G. Spezzano

Knowledge, and an Internet of People are foreseen too. It is important to note that
these terms should not be regarded as different “Internets” that will exist in parallel,
but rather as different aspects of a common Future Internet.

The innovative and rapidly evolving area of Internet of Things [3] and Services
(IoTS) integrates two of the four pillars of the Future Internet and investigates a world
where smart objects (SOs) [4—7]—that is, autonomous physical/digital objects aug-
mented with sensing, processing, and network capabilities, are seamlessly integrated
into the information system where they can become active participants in business
processes. The supporting service-oriented middleware [8] will then abstract the
functionalities of SOs as services as well as provide the needed interoperability and
flexibility, through a loose coupling of components and composition of services.

Efforts in this area are focused on a development of platforms and solutions
where services and SOs cooperate and can be employed in real-world applications in
industrial domains such as manufacturing, e-Health, smart cities, home automation,
e-Business, etc. However, owing to the heterogeneity of devices and tight coupling of
individual information systems, developers cannot easily create their specific appli-
cations by combining physical devices and web resources. To address these prob-
lems, we proposed to realize composite applications combining services and SOs by
event-driven choreographic workflows.

Nowadays enterprise systems are built on a service-oriented architecture (SOA),
and business processes in such systems are modeled as an orchestration of underlying
services. In order to integrate the [oT into business process systems it is necessary to
service-enable IoT resources, e.g., the sensors and actuators that are used to interact
with the physical environments. The current state-of-the-art is mostly focused on
integration of IP enabled networked smart objects where nodes communicate their
information using RESTful Web services. We argue that the approach for the inte-
gration of RESTful SOs with existing, widely deployed SOA technologies such as
Web services and Business Process Execution Language (BPEL) is the key to the
success of SOs in enterprise systems.

In SOA, service composition is normally achieved either through a centralized
controller or in a decentralized manner. Support of decentralized workflow execution
and scalability are important issues for workflow management systems since it makes
it easier to obtain a flexible and adaptive composition of services.

Typically, to reach the required level of scalability, the workflow management
system must be distributed and make use of replicated web services that are selected
and used at runtime. Traditional workflow systems use centralized orchestration
techniques which limit the scalability in the presence of a high number of services.
In the orchestration model, all data pass through a centralized engine, which results
in unnecessary data transfer and wasted bandwidth so that the engine becomes a
bottleneck to the execution of a workflow. Choreography techniques [9], although
more complex to model, offer a decentralized alternative and are optimal architectures
for data-centric workflows. In this model, data are passed directly to where they are
required, at the next service in the workflow.

Self-organizing in this context describes the adaptability of the model during
deployment. Changes in the environment (e.g. location change, connectivity outage,

Service-Oriented Middleware 51

reconfiguration of business processes etc.) require reorganization of the deployed
components during run time to meet given Quality of Service (QoS) constraints.

Ourideais to integrate enterprise web services with RESTful SOs by exploiting the
concept of service choreography undertaking the scalability and dynamicity issues
of IoT in order to extend the existing (adaptable) service composition mechanisms.
We show that applications involving SO interaction can be seen as a particular case
of event-driven composite services.

To this end, the rest of chapter is structured as follows: in Sect.2, we present
our view of system architecture for the execution of event-driven workflows; Sect. 3
presents a description of the adaptive P2P agent-based framework, called Sunflower,
we studied and designed, that supports autonomic management of workflows; Sect. 4
describes the integration in Sunflower of RESTful SO; Sect. 5 illustrates the details
of the proposed methodology through a case study; finally Sect. 6 concludes the
chapter.

2 System Architecture

This section presents an architecture for the execution of event-driven workflows
(i.e. composite applications combining services and SOs through events). The inner
part of Fig. 1 shows the architecture of the Sunflower service execution platform
designed to support the composition of SOAP services. This cooperating model is
created by WS-BPEL workflows. Sunflower permits a decentralized and optimized
execution of WS-BPEL workflows upon a P2P system as described in Sect. 3.

In this context, addressing Smart Object (SO) technology and, in general, Internet
of Things philosophy requires some additional mechanisms to suitably cope with
physical entities. Firstly, a kind of transport layer should be chosen and implemented
in order to foster proper interaction between the WS-BPEL world and concrete
“things” (i.e. SO). Secondly, given that SOs capture the state of the environment
in which they are embedded, environmental state modifications should be carefully
handled and reflected at the Sunflower side. Finally, a mechanism is required that
permits Sunflower workflows to trigger actuation upon SOs.

On the basis of the previous considerations, we propose the use of Web Service
Proxy (SP) acting as an adapter/wrapper of the SO’s world. Through SP, each com-
mand coming from Sunflower will be forwarded toward the SOs. In addition, each
environmental state modification will be considered as an event and notified to the
Sunflower part. In summary, the proposed system can be seen as a Web Service
orchestrator enhanced by a SOs mashup and an even-driven engine.

SP adds the following features to Sunflower:

e support for a combination of services implemented by means of different tech-
nologies (e.g. SOAP, REST etc.);

52 A. Giordano and G. Spezzano

REST
Web

EXTERNAL
web
Service
EXTERNAL
Web
Service

web
Service
PROXY

EXTERNAL
cloud
Service

Sunflower
Service
Choreography
Engine
EXTERNAL

Grid
Service

WS Web
Service
PROXY

Fig. 1 Architecture for event-driven choreographic workflows execution combining Web services
and RESTful Smart Objects

e interaction between Web service and SOs through an “event/action” paradigm,
according to which, the occurrence of an event triggers the execution of one or
more actions in other components.

SPis attached to SOs via REST invocations on a middleware layer that is in charge
to manage underlying SOs. This middleware layer is represented by a so-called
Smart Object Gateway (SOG). SOG offers a transparent and ubiquitous access to
the physical part due to a well-established interface exposed as a REST service as
described in Sect. 4.

SOG allows enterprise application to connect directly to devices without using
proprietary drivers or addressing some kind of fine-grained technological issues.

Service-Oriented Middleware 53

In addition, it fosters the reusing of a pre-existent Web Service in conjunction with
SOs thus achieving a perfect match between the Internet of Service and Internet of
Things.

The low level of our architecture concerns formalization of SO and how it is inte-
grated in the system. We define a SO as a system made up of one or more physical
devices that together achieve complex behaviors. Each SO comprises “functionali-
ties” directly provided by the physical part.

Essentially, a SO exposes an abstract representation (i.e. machine-readable
descriptions) of the features and capabilities of physical objects spread in the smart
environment. It is implemented as computer software that is used to link physical
objects with the virtual world.

Functionalities exposed by different types of SOs can be combined in a more
sophisticated way on the basis of event-driven rules which affect high-level applica-
tions and end-users. A SO is self-managed and self-configurable, capable of being
used also out of the context for which it was initially created.

Each physical object, contained in a SO, should automatically perform a simple
action (e.g., lighting, recording) in response to a simple event (e.g. detecting a user,
people who sit in a chair). On the other hand, SOs must have the flexibility to change
their behavior dynamically on the basis of complex applications even though they
posses low processing power and small memory.

A SO changes the behaviour of physical objects by remote and dynamic repro-
gramming thus considering them as execution parts of business processes.

In summary, our architecture is structured in three layers:

e The firstlevel is the SO level dedicated to the characterization of the SO abstraction
in terms of its different functionalities that can be either sensing or actuating and
can be refined by further parameters that dynamically configure it (see Sect.4.1).

e The second level is dedicated to SOG abstraction which permits operations of
remote and transparent reading and writing on SOs and, also, definition of complex
rules on SO functionalities.

e The top level concerns applications written as WS-BPEL/Sunflower workflows.
This level encapsulates SOs through Web Service Proxies linked via REST to
the underlying layer in order to hide the heterogeneity of devices and provide a
seamless way to integrate SOs with web applications.

3 Sunflower Framework

Sunflower is an adaptive P2P agent-based framework for configuring, enacting, man-
aging and adapting autonomic workflows [10, 11]. Sunflower assumes that multiple
copies of a Web service co-exist, with different performance profiles and distributed
in different locations. During the execution of the workflow, when a service fails
or becomes overloaded, a self-reconfiguring mechanism based on a binding adap-
tation model is used to ensure that the running workflow is not interrupted but its

54 A. Giordano and G. Spezzano

Fig. 2 The Sunflower
architecture Grid / Web W Grid / Web Grid / Web
Services Services Services
J
f'r, an m
|| \ | ‘ | Migration | lll
| | |
II I|I I|I I|I |I ||I
SBE | \ SBE | 1 | SBE | | |
‘ 1

,Jy’j‘{-’."f_s'”(_}

i.‘i\\']{.«\ Self- ized Workflow Executor t — SBE - Sunflower BPEL Engine |
T MA : Monitor gent — RA - Routing Agent QA © Query Agent — AA - Ant Agent!

structure is adapted in response to both internal or external changes. Figure 2 shows
the architecture of the framework Sunflower.

Workflows are described in Sunflower by the BPEL language [12] in order to
exploit existing design tools. Sunflower replaces the standard BPEL engine with a
new decentralized engine able to exploit the dynamic information available in the
network and respond to the dynamic nature of Internet.

The workflow process is enacted by a set of cooperating Sunflower BPEL engines
(SBE), instantiated at all participating nodes, which are responsible for interpret-
ing and activating part of the process definition and interacting with the external
resources—invoked web services—necessary to process the various activities.

A dynamic group of bio-inspired mobile agents SWEA (Self-organized Work-
flow Executor Agent) [13] representing the workflow executors generated from the
BPEL workflow specification are initially deployed on the basis of the workflow
configuration. A coordination model describes how the generated agents cooperate
with each other to reach a choreographic execution. In Sunflower, the coordination
model is obtained by the Petri Net (PN) associated with the BPEL program. The
PN representation is then structurally decomposed into a set of distributed sub-flow
schemas.

Service-Oriented Middleware 55

Fig. 3 Example of BPEL workflow (right)

3.1 Mapping BPEL Workflows on Petri Nets

A workflow described in BPEL, as shown in Fig. 3, details the flow control and any
data dependencies among a collection of Web services being composed. We build
every process in a BPEL workflow by plugging language constructs together; we
thus can translate each construct of the language into a Petri net (PN). Each primitive
or structured activity can be easily modeled as a Petri Net as illustrated in Fig. 4.
BPEL based workflows are converted to a Petri net applying the rules defined by
the Van der Aalst methodology [14] that generate a PNs via the repetitive replace-
ment of elemental PNs with other PNs. Figure 5a shows the conversion of the BPEL
workflow described in Fig.3 to a PN form using the replacement property.

56 A. Giordano and G. Spezzano

<sequence>
activity

activity _,_.,!_,(__L.{accnn ty |_..|act vity Hach\nty r—;—.i—.(:
: _

activity
</sequencex>

-sequen’e- :SEQUE"CE:\-

<flows <fFlows
<flow=
<sequence/>

O e
<sequence/>

O
<sequence;/> -

</Flows

<switch>
<case/>

<case/>
<otherwise/>
</switch>

<case condition >

activity s s A W SN
activity ' H
- —:»—;'—..(Hactw!ty '—.-[act vity Hact‘ vity H_O_?'
activity wendition '
</casex T T
<otherwise> <otherwises <otherwises
activity bt bt S EEh S gr~AEn Ry
activity _ﬁ_a+——r<_)__44a-=|v1cy}.,:c:u. ty}_p=ct1v tvk4—j+——.<i>——+p
activity
</otherwise>
awhiles </while>
<while condition > : i —
RSy | O |
</while> ! : '

rcendition

Siniekes ToF [<assign:> r.mmke:\-lrr‘ece ves |<replys]

<assign> or ' !

<receives> or v b} r(:) i
' :

<reply>

Fig. 4 Example of BPEL constructs (left) converted to Petri nets (right)

3.2 Petri Nets Partitioning

A workflow written as a single BPEL program must be decomposed in an equivalent
set of decentralized processes to set up the choreography model. Our strategy is to
construct a PN for the workflow and then apply partitioning rules to operate on such
an abstract representation to create the set of cooperating sub-workflows. Our PN
partitioning algorithm is based on the idea of merging tasks starting from the invoke
activities along the control dependence edges.

Service-Oriented Middleware 57

(a) (b) (c)

ED35E I ED#T

Fig. 5 Petri nets partitioning a Petri nets. b Top down allocation. ¢ Bottom up allocation

An informal description of the partitioning algorithm is as follow:

e The begin and end portions of PN concerning the main sequence must be assigned
to the same peer, named Peer Collector (PC). Reply and receive activities must be
also executed on the PC.

e The portion of PN concerning the invoke is assigned to the peer handling the web
service called by the invoke itself.

e All the other constructs are assigned by means of two subsequent visits (fop down
and bottom up) of the PN graph. The visits of the PN graph start from the invoke
activities. Constructs between two invoke activities can be assigned to one of the
two peers where the invokes are executed in order to balance the load.

After the initial allocations, we start with an TopDown visit of the PN graph and then
continue with a BottomUp visit. The procedure is as follow:

1. TopDown initial allocation: for each PN portion concerning the invoke activity,
the label that indicates the peer on which the invoke activity is allocated is
propagated to all the successors; in the case of controversy (several activities
going to the same place), only the right label is propagated.

58 A. Giordano and G. Spezzano

2. BottomUp final allocation: for each PN portion concerning the invoke activity,
the label of the peer assigned to this activity is propagated to all the predecessors;
in the case of controversy, only the left label is propagated.

In order to better describe the entire process, the PN graph shown in Fig. 5a will
be used to illustrate the partitioning procedure. Figure 5b shows how the activities
are allocated to the peers through the TopDown procedure. Following the above
partitioning algorithm, activities 1, 2 (main sequence, begin and receive) and 24,
25 (reply and main sequence end) are assigned to the Peer Collector. Then, starting
from the invoke activities marked as 7, 15 and 18 activities 7—-11, with the E1 label,
are assigned to Peerl, activities 15 and 16, with E2 label, are assigned to Peer2 and
activities 18-23, with E3 label, are assigned to Peer3. Then, applying the BottomUp
procedure, activities 3—6 are assigned to Peerl, 12—14 to Peer2, 17 to Peer3 as shown
in Fig. 5c.

3.3 Sunflower Decentralized Execution

On the basis of these schemas, Sunflower enacts the federation of (SWEA) agents that
has to be executed on the SBE nodes. The decentralized execution of the workflow
is coordinate by tokens exchanged among the SBE platforms. Tokens contain the
whole execution state, including all data gathered during execution. Each SWEA
agent performs the portion of workflow assigned and determine which agent should
be activated next.

SWEA agents adapt their structure moving over the Internet to position themselves
in the nodes with low workload and where the Web services with the best performance
are available. The framework provides support for the migration-transparent of the
agents and instructs the agents, by a migration policy, to migrate in order to achieve
goals like load balancing, performance optimization or guaranteeing QoS.

Sunflower monitors the QoS for Web services by Antares [15] and effectively
self-adapts the workflow engines in response to changes in load patterns and server
failures. Antares is able to disseminate and reorganize service descriptors by an
ant-clustering algorithm and, as a consequence of this, it facilitates and speeds up
discovery operations. Based on dynamic service performance evaluation, the ser-
vices with similar or same metric are gather into clusters by Antares. Scheduling
managers make a scheduling decision based on user QoS requirements and informa-
tion in Antares. All member services in a cluster provide similar or the same QoS
after service clustering. Consequently, the task scheduling involves two steps: initial
cluster selection from service clusters and further service selection from the selected
cluster.

To support workflow adaptation the SWEA agents are assisted by routing/schedul-
ing RA agents and monitoring/analizing MA agents that interact with the Antares
information system. The MA agent collects details about the performance metrics
and workload of the Web service and when it detects a change, owing to external

Service-Oriented Middleware 59

events, itinserts a new Web service descriptor with the new information in the Antares
virtual space and notifies the change to the RA agent. When the RA agent receives
a notification about a modification of the class of QoS, it sends a query to Antares
to discovery and select a descriptor of an equivalent optimal service. Then, Antares
returns a reference to an end point handler for the selected service. Before executing
the sub-workflow, the SWEA agent contacts the MA agent to verify whether the class
of QoS of the service to invoke is respected. In the affirmative case, the SWEA agent
invokes the service and performs the workflow task, otherwise it uses its migration-
policy to decide its destination consulting the RA agent. The activities of the MA and
RA agents are performed continuously.

Sunflower uses the scheduling algorithm executed by RA agents, to make these
choices, using information provided by Antares. For each Web service, the RA agent
schedules the SWEA agents queued in the local SBE. The scheduled SWEA agent
checks whether the QoS of the service relied on the node of the network is less than
that required. If affirmative, a request is sent to the Antares registry service to search
for an equivalent service to replace. If the service exists and is available, the reference
to the service is returned to the RA agent that uses this information to migrate the
SWEA agent on the node where the service is localized. Otherwise, if there are no
services available an activation request for a new virtual machine is sent to the Cloud
[16] provisioner.

Before, a new VM is started the provisioner checks whether there is one VM
with the QOS requested already, else a new VM is started. The VM continues the
execution of the workflow and before invoking the next Web service on the Cloud the
RA agent checks, by querying Antares, whether an equivalent service is available
on the Internet. If affirmative, the activation token with the status information is
transferred to the SBE node on the network that has the next service to invoke.

4 Integration of RESTful SO in Sunflower

IoT technology emerges from the recent research and technology advancements in
the fields of embedded systems and wireless sensor networks [17]. In these contexts,
a plethora of electronic objects has been developed that fulfills even more complex
requirements. These objects span from simple sensors to more and more flexible and
programmable objects. In addition, all the objects should be able to interact with
each other and with the services on the internet in order to fully accomplish the IoT
philosophy. These considerations suggest these objects should be wrapped with a
standard well-established interface that also addresses the complex and proactive
behavior leading to the concept of SO.

REST services could be a way to deal with standardization issues in an easy and
lightweight way. Also, REST technology strongly relies on IP reachability which is
a fundamental concept of IoT technology in the world of IoT researchers.

Our middleware uses a REST interface to wrap SOs and also supplies an event-
driven engine that properly captures the context modifications in the physical part.

60 A. Giordano and G. Spezzano

WorkFlow

hiip 7.

@ SOAP/Prp
i

ary

Client
Library

Rest Interface Rest Interface

Smart Object Gateway

Publish/Subscribe
Manager

Smart Object Gateway

Publish/Subscribe
Manager

Fig. 6 Middleware architecture for integration of web services and smart objects

Roughly speaking, our middleware permits us to read/write the SOs and define events
upon them through a well-established REST interface. Events are defined by logical
rules submitted to the middleware and exploited in a publish/subscribe [18] fashion.

This approach is designed to ensure ubiquity and location transparency of SOs
while fostering a service-oriented easy to use development of 10T applications.

As is shown in Fig.6 our architecture was conceived so that SOs are linked to
different computing nodes. Each SO is wrapped in a suitable Smart Object
Interface (SOI).Allthe SOs relative to a computing node, together with their
Smart Object Interfaces, are managed by the SOG.

SOG represents the “glue” between the REST part and the SO part of the system.
More in particular, SOG is a singleton (i.e. one SOG per computing node) and
persistent entity of the middleware. Through SOG, REST invocations, which are
intrinsically non-persistent and stateless, can access properly to the SOs which are
conversely persistent and stateful. In addition, SOG is in charge of managing events
defined by rules involving more than one SO; In this case, SOG divides an entire
rule into different sub-rules and then assigns each sub-rule to the suitable SO.

As can be seen in Fig.6 remote accessing of the SOs can be done in different
ways: owing to REST protocol, one can access the middleware and relative SOs by
using a normal browser, that is, by means of HTTP protocol. In a different scenario,
one can interact with the middleware using an ad hoc client library that hides REST

Service-Oriented Middleware 61

invocation details offering suitable API for developing the application in general
purpose programming languages such as: java, c++ and so on.

The third scenario is the one which is more of interest in the context of this work:
it foresees full integration between the SO paradigm and web service’s orchestration
with the addition of an event-driven methodology. Web services orchestration could
be realized in different ways, in the context of this work we propose the use of
WS-BPEL/SunFlower described in the previous sections.

WS-BPEL technology permits web services to be orchestrated through workflow
design. Nowadays, many graphical tools exist that allow WS-BPEL workflows to be
developed in an easy manner in order to allow people, even with no skills in pro-
gramming, to create their own applications. WS-BPEL relies on SOAP web services
rather than on RESTs. Our middleware tackles this issue using SOAP/REST proxy
services that permit full compatibility and integration.

4.1 SOs Versus Physical Resources

A SO can be composed of just a simple sensor or it can be a more complex object
that includes many sensors, many actuators, computational resources like CPU or
memory and so on. Examples of complex SOs can be: smart room, smart flat, smart
building etc.

In general, SO outputs can be represented by punctual values (e.g. the temperature
at a given point of aroom) or aggregate values (e.g. the average of moisture during the
last 8h). Also, the values returned by SOs could be just the measurement of sensors
or could be the result of complex computations (e.g. the temperature of a given point
of space computed by means of interpolation of the values given by sensors spread
across the environment). Furthermore, a SO could supply actuation functionality by
changing the environment on the basis of external triggers or internal calculus.

These different kinds of behavior that SO can expose must be reflected in how it is
integrated in the middleware. SO is therefore conceived as a complex object that can
read and write upon many simple physical resources. More in details, we consider that
each SO exposes different functionalities. Each functionality can be either sensing
or actuating and can be refined by further parameters that dynamically configure it.
The previous assumption leads to the definition of simple physical resource as the
following triplet:

[SOId, SOFunctionld, Params]

where SOId uniquely identifies the SO, SOFunctionId identifies the specific
functionality and Params is an ordered set of parameter values that configure the
functionality. For example let’s consider a Smart Room made of sensors for measuring
different physical quantities inside a room such as temperature, moisture, brightness
and so on. Suppose now you want to read from Smart Room the temperature in a
given spatial point of the room. In that case the triplet could be:

62 A. Giordano and G. Spezzano

@ammﬁ{m vbrightness>500) «num_of_person>3 Adoor-u@
@eramreﬂﬂﬂ Vbrighmess@ @_of F_person>3 4 door-unm@
| temperature<100 (brigmneswsoo) Gum_of _persan% | door-uniocked j

Fig. 7 Example of binary tree of a rule

[Smart Room, temperature, [x, y, z]]

where x, v and z are the cartesian coordinate of the point of interest.

4.2 Publish/Subscribe of Events

SOG include a publish/subscribe component for managing events in each computing
node. Each event is defined by a logical rule where one or more SOs could be
involved. Each rule is a logical proposition in which the atomic predicates can be of
the following kinds:

simple_physical_resource < threshold (e.g. temperature <300)
simple_physical_resource > threshold
boolean_resource (e.g. the_door_was_unlocked)

Just an example of rule:

(temperature < 100 and brightness > 500) or number_of_ person > 3 or
door_unlocked

The SOG (specifically its publish/subscribe manager) is in charge to parse the
logical rule and generate a binary tree made as explained below: each node N of the
tree corresponds to a logical proposition N (). given L and R, the child nodes of N,
their associated logical propositions are respectively L() and R() so that it results
either N() = L() or R() or N() = L() and R(). The radix of the tree corresponds to the
entire rule while the leaves contain the atomic propositions that SOG considers in
order to pass them forward towards the suitable SOs.

An example of a binary tree representation of a composed rule is shown in Fig. 7.

A SO is in charge to establish each time when the assigned atomic propositions
are true or false. The logical proposition of a given node is computed on the basis
of the value of its child nodes. The root of the tree is recursively involved by this

Service-Oriented Middleware 63

bottom-up computation. As soon as the value of the root node (i.e. the value of the
entire rule) changes SOG notifies all the subscriber.

4.3 Smart Object Interface

The previous sections are focused on supplying a sort of general formalization to
SO and their relative functionalities. The effort of formalization is now useful to
introduce a well-established interface for SO:

interface SmartObjectInterface {
SOResult checkValue (SOFunctionId functionId, SOFunctionParams
params) ;
SOResult acting (SOFunctionId functionId, SOFunctionParams
params) ;
void setRule (SOFunctionId functionId, SOFunctionParams params,
Operator operator, SOValue threshold, RuleMatchedListener
listener);
void setRule (SOFunctionId functionId, SOFunctionParams params,
RuleMatchedListener listener);

Where the checkValue is the method for read a particular physical resource,
acting is the method for performing an operation that produces a change in the
smart environment. There are 2 methods setRule: the first concerns publishing
of threshold based rules while the second is thought for Boolean resources (see
Sect.4.2).

The parameters of the methods follow the previously described logic:
functionId identifies a functionality that the SO exposes, params is an ordered
set of parameter values that configure the functionality, operator is just the com-
parative operator to be used for the rule, its value can be either < or >, threshold
is a numeric value intended as the threshold value of the rule. The last parameter
of both setRule methods is a listener object that the SO have to notify when the
value of a rule is changed. The involved SO will execute notifications by calling the
methods of the RuleMacthedListener presented below:

interface RuleMatchedListener ({
void ruleMatched();
void ruleNotMatched() ;

For instance, let’s consider the previously introduced Smart Room example, if
one wants to publish an event that occurs when the temperature in the [4,4,5] point
of the room’s space is less than 27 then the method setRule should be called as
shown in the following code excerpt:

64 A. Giordano and G. Spezzano

//pseudo code
SmartRoom.setRule (temperature_Id, [4,4,5],0perator.lessThan, 27,
objectListener);

It is worth noting that the SO Interface is used only by the SOG while it is
completely hidden at application level. SOG is in charge of interacting with the
suitable SO on the basis of the application part that, in turn, interacts with SOG
through the SOG interface presented in the next section. Finally, all the SOs will
have to link itself to the suitable SOG calling the register method on the SOG
thus supplying its unique /d. For example:

//pseudo code
SmartObjectGateway.register (SmartObjectId, this);

4.4 Gateway Interface

The SOG implements the GatewayInterface described below. This interface is
exposed outside by means of REST technology. The middleware foresees a suitable
proxy SOAP web service that executes REST invocations in order to reproduce the
GatewayInterface in the client side thus permitting fully integration with WS-
BPEL/SunFlower workflows.

interface GatewayInterface {
void resourceNaming (String name, SOId soId, SOFunctionId
functionId, SOFunctionParams params) ;
SOResult check (String name);
SOResult check (String name, SOFunctionParams params) ;
SOResult acting(String name);
SOResult acting(String name, SOFunctionParams params);
void setRule (Rule rule, String idRule);
void subscribe (String idRule);

The method resourceNaming assigns an identification name to a given
resource supplied by a given SO. A resource is a particular instance of a function-
ality of a SO refined by some parameters. In other word, a resource is the above-
mentioned triplet: [SOId, SOFunctionld, Params]. The name assigned to a resource
via resourceNaming can be used in the other methods in order to simply identify
the resource. Furthermore, the identification name of a resource is useful to compose
the rules in a more human-readable fashion.

The method check reads the current value of the resource identified by name.
acting triggers tha actuation operation upon the resource identified by name. Both
check and acting methods are of two kinds: the first take only name as parame-
ter and refers to the resource as it is previously defined in resourceNaming; the
second kind, instead, permits to dynamically refine the parameters of the referred
resource. The method setRule permits a complex rule to be published (e.g. (tem-

Service-Oriented Middleware 65

Fig. 8 Micaz mote and MTS310 sensor board

perature < 100 and brightness >500) or number_of _person > 3 or door_unlocked)
and to assigns an id (i.e. idRule) useful for subscribing the rule afterwards.

The method subscribe permits a previously published rule to be subscribed
that is identified by 1dRule. Itis worth underlining that the latter method is a block-
ing method: when it is invoked, the middleware takes care of the event of interest
while the execution of subscribe is stopped for waiting for the event to occur. This
blocking behavior guarantees a correct integration in WS-BPEL/SunFlower work-
flows. In general, indeed, a workflow has one start point and one end point. Between
start and end points there is the entire workflow that can be as complex as required.
Nevertheless, it does not have any other entry points of execution except for the
start point, so workflow cannot manage asynchronous operations properly because
some sort of request/callback mechanism is required to cope with the asynchronous
scenario.

5 Example of Usage

In this section we introduce a simple example of usage of the middleware in order to
explain in detail how the proposed middleware works. In the example we use Micaz
motes (Crossbow MPR2400) (see Fig. 8) as reference technology to build SOs.

A Micaz mote is a processor/radio board that run the operating system 7inyOS
[19], which handles power, radio transmission and networking transparent to the
user. The Micaz system is widely used in the context of wireless sensors network
where multiple motes distributed over a wide area are able to wirelessly transmit
their data back to a base station attached to a computer.

TinyOS operating system enables Micaz motes to be programmed in NescC lan-
guage supplying the chance to perform even complex elaborations directly inside the
mote itself. Each mote can be expanded by attaching it a sensor board like MTS310

66 A. Giordano and G. Spezzano

(see Fig. 8) which includes different kinds of sensing operations concerning physical
entities such as temperature, brightness etc. In addition, each MTS310 sensor board
includes 3 led that will be used as actuators in the context of our example. Firstly, we
need to define the SOs we want, the functionalities they would offer and the meaning
of the latter. After, we have to program the Micaz motes properly and develop suit-
able computer side SOs implementations that interact with motes via base station. In
our simple example we define a single SO called smart micaz made of 3 Micaz
motes. The first 2 motes both have sensing behavior while the third have the role
of actuator. More in particular, the foreseen functionality for the first 2 concerns
brightness while the third one exposes an actuating functionality that corresponds
just to turn on and off a led. Formally, we call Light 1and 1ight 2 respectively
the sensing functionality of the first 2 motes and we call actuator the acting func-
tionality of the third one. On the basis of the just defined functionalities we introduce
the resources that will be used by the application part. Each resource corresponds to
a triplet as explained in the previous sections:

light sensor 1 = { smart micaz, light 1, [] }
light sensor 2 = { smart micaz, light 2, [] }
led off = { smart micaz, actuator, [led = 0] }
led on = { smart micaz, actuator, [led = 1] }

Now we are free to use the resources as we want, we can read and publish/subscribe
events upon light senor 1 and light sensor 2 or trigger actuation of
led off and led on. The application we want to develop as example has a
straightforward behavior: when the brightness sensed by the first mote (i.e. 1ight
sensor 1) decreases under a given threshold value, the led upon the third mote
shall be turned on (i.e. triggering 1ed on) whilst if it is the brightness measured
by the second mote (i.e. Light sensor 2) which decreases under the threshold
value, the led upon the third mote shall be turned off (i.e. triggering 1ed off). The
above-described application is created by setting up a WS-BPEL workflow as shown
in Fig.9.

As can be seen the flow construct is used which enables executing commands
in parallel. In our example there are two branches (i.e. sub-workflows) executing
concurrently, each execution branch is in charge of controlling one of the read-
ing resources (Light sensor 1,light sensor 2)and triggering one of the
writing resources (led on, led off). More in particular, each branch contains
a while construct that loop infinitely. For each iteration a first proxy web service
is called in order to subscribe an event defined by a rule such as 1ight sensor
1 < 150000 (the Assign construct passes the rule as parameter to the Invoke
construct). The subscribe operation waits for the event to occur. When the rule is
matched the first proxy web server ends its execution and a second proxy web server
is called in order to trigger the actuation part. In that case the Assign construct
passes led onor led off asa parameter to the Invoke construct.

Service-Oriented Middleware 67

O start
W
) While () While
b b

w = Assign = Assign @

g? Invoke <§’ Invoke

b 4 W
— Assign = Assign
W v

g? Invoke & Invoke

@ h 4 e @

Fig. 9 WS-BPEL workflow

6 Conclusions

This chapter introduces an innovative framework and applications to combine Web
service and SOs. The platform designed provides the execution of event-driven
choreographic workflows. We present the design requirements and the corresponding
architecture with a description of the technologies and platforms we intend to use for
the implementation. Practical experience gained with the evaluation and implemen-
tation of the architecture demonstrates that it is both feasible and flexible to adapt to a
variety of applications and off-the-shelf technologies. Regarding the implementation
issues, we have shown that Event-driven Architecture has evolved to Event-driven
SOA and this combination may form the foundation of emerging smart systems.
Furthermore, we describe an implementation of a simple example of usage of the
middleware following the SO’s vision. In the near future, we aim to implement and
test the proposed solution with the help of a smart room application.

Acknowledgments This work has been partially supported by TETRis—TETRA Innovative Open
Source Services, funded by the Italian Government (PON 01-00451).

68

A. Giordano and G. Spezzano

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. ISTAG Working Group Report on We-based Service Industry, February 2008, ftp://ftp.cordis.

europa.eu/pub/ist/docs/web-based-service-industry-istag_en.pdf.

Alvarez, F,, et al. (eds.): The Future Internet—Future Internet Assembly 2012: From Promises
to Reality. LNCS, vol. 7281. Springer, Berlin (2012)

Atzori, L., lera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787-2805 (2010). ISSN 1389-1286

Kortuem, G., Kawsar, F,, Fitton, D., Sundramoorth, V.: Smart objects as building blocks for
the Internet of things. IEEE Internet Comput. 14(1), 44-51 (2010)

Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Middlewares for Smart Objects and Smart
Environments: Overview and Comparison, in Internet of Things based on Smart Objects:
technology, middleware and applications. Springer Series on the Internet of Things (2014)
Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., Russo W.: An agent-based middleware for
cooperating smart objects. In: Highlights on Practical Applications of Agents and Multi-Agent
Systems, Communications in Comp. and Inform. Science (CCIS), vol. 365, pp. 387-398.
Springer, Berlin (2013)

Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development. In: Proceed-
ings of IEEE 16th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), pp. 907-912 (2012)

Teixeira, T., Hachem, S., Issarny, V., Georgantas, N.: Service oriented middleware for the inter-
net of things: a perspective. In: Proceeding ServiceWave’11 Proceedings of the 4th European
Conference on Towards a Service-Based Internet, pp. 220-229. Springer, Berlin (2011)
Barker, A., Besana, P., Robertson, D., Weissman, J.B. : The benefits of service choreography
for data-intensive computing. In: CLADE ’09 Proceedings of the 7th international workshop
on Challenges of Large Applications in Distributed Environments. ACM, New York, pp. 1-10
(2009)

Papuzzo, G., Spezzano, G.: Processing applications composed of web/grid services by distrib-
uted autonomic and self-organizing workflow engines. In: Chapman, B., Desprez, F., Joubert,
G.R., Lichnewsky, A., Peters, F., Priol, T. (eds.) Paralle]l Computing: From Multicores and
GPU’s to Petascale. Advances in Paralle] Computing. IOS Press, vol. 19, pp. 195-204 (2010)
Rahman, M., Buyya, R.: An autonomic workflow management system for global grids. In:
Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2008), IEEE CS Press, pp. 578-583 (2008)

Alves A., et al.: Web Services Business Process Execution Language (WS-BPEL) 2.0, OASIS,
August 2006, http://www.oasis-open.org/committees/wsbpel, accessed 12 Feb 2010

Brazier, EM.T., Kephart, J.O., Van Dyke Parunak, H., Huhns, M.N.: Agents and service-
oriented computing for autonomic computing: a research agenda. IEEE Internet Comput. 13(3),
82-87 (2009)

van der Aalst, W., van Hee, K.M.: Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge (2002)

Forestiero, A., Mastroianni, C., Spezzano, G.: Antares: an ant-inspired P2P information system
for a self-structured grid. In: BIONETICS 2007-2nd International Conference on Bio-Inspired
Models of Network, Information, and Computing Systems, Budapest, Hungary, 2007
BuyyaR., Yeo C.S., Venugopal S.: Market-oriented cloud computing: vision, hype, and reality
for delivering IT services as computing utilities. In: Proceedings of the 10th IEEE International
Conference on High Performance Computing and Communications (HPCC 2008), IEEE CS
Press, Los Alamitos, CA, USA, Sept. 25-27, 2008, Dalian, China. - Keynote Paper, 2008
Raghavendra, C.S., Sivalingam, K.M., Znati, T. (eds.): Wireless Sensor Networks. Springer,
Berlin (2004)

Eugster, P., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe.
J. ACM Comput. Surv. (CSUR) 35(2), 114-131 (2003)

Levis, P, Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K.: TinyOS: An Operating
System for Sensor Networks. Springer, Berlin (2005)

ftp://ftp.cordis.europa.eu/pub/ist/docs/web-based-service-industry-istag_en.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/web-based-service-industry-istag_en.pdf
http://www.oasis-open.org/committees/wsbpel

	3 Service-Oriented Middleware for the Cooperation of Smart Objects and Web Services
	1 Introduction
	2 System Architecture
	3 Sunflower Framework
	3.1 Mapping BPEL Workflows on Petri Nets
	3.2 Petri Nets Partitioning
	3.3 Sunflower Decentralized Execution

	4 Integration of RESTful SO in Sunflower
	4.1 SOs Versus Physical Resources
	4.2 Publish/Subscribe of Events
	4.3 Smart Object Interface
	4.4 Gateway Interface

	5 Example of Usage
	6 Conclusions
	References

