
Chapter 25
Comparing Numerical Methods
for Convectively-Dominated Problems

List of Symbols

Roman Symbols

a(u) = ∂ f (u)
∂u Characteristic convective speed

An
j+1/2 Corrected (grid) anti-diffusive flux at the nth time step

D j+1/2 Temporal mean value of the flux Γ ∂u
∂x :

D j+1/2 = 1
Δt

∫ tn+1

tn

(
Γ ∂u

∂x

)
(x j+1/2, t)dt

f (u) Flux of u

F j+1/2 Temporal mean value of f : F j+1/2 = 1
Δx

∫ tn+1

tn f (x j+1/2, t)dt
g(x) Initial distribution of a Heaviside-type function in a travelling shock

wave, see (25.54)
Pe = aΔx

Γ
Grid-Péclet number, or cell Reynolds number

sgn(x) sgn(x) =
⎧
⎨

⎩

1, x > 0
∈ [−1, 1], x = 0
−1, x < 0

Sn
j+1 Sn

j+1 = sgn(U n
j+1 − U n

j )

t time variable
T (z, 0) Initial vertical temperature distribution
u Differentiable function satisfying a conservation law
U n

j Spatial mean value of u in grid point j : U n
j = 1

Δx

∫ x j+1/2
x j−1/2

u(x, tn)dx

U R,L
j+1/2 Value of the linearly constructed u(x) at the right (R) or left (L)

boundary of the grid with midpoint x j+1/2
x Position
xn

j , f n
j Position, respectively function value at grid point j and at time slice n

In this chapter the primitive fundamentals of numerical techniques are assumed known. Its
content is classical insofar that the significant scientific numerical research work has been
published in the second half of the twentieth century, largely before the 1990s. The content is
certainly known to numerical analysts. However, to the physical limnologist not specialized in
the computational determination of convective-diffusive processes, the results for the flow of
advected material requires subtle discretization to correctly predict the physical flow processes.
The recognition of this fact is the reason for the presentation of the various outlined discretization
features that are known to the numerical specialist.
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Greek Symbols

Γ Turbulent diffusion coefficient
Γnum = |a|Δx

2 Numerical grid diffusivity
Γ̃ Artificial diffusivity
Δt Time step
δx Grid size
ε Small positive increment of a variable
φ j Slope limiter φ j = φ(θ j ), θ j = (U j − U j−1)/(U j+1 − U j )

φSuperbee(θ) φSuperbee(θ) = max[0, min(1, 2θ), min(θ, 2)

φMinmod(θ) φMinmod(θ) = max[0, min(1, θ)
φWoodward(θ) φWoodward(θ) = max[0, min(2, 2θ, 0.5(1 + θ))

σ j slope limiter σ j = 1
Δx φ j (U j+1 − U j )

25.1 Preview and Attempt of a Judicious Evaluation
of Numerical Methods in Lake Dynamics

Lake dynamics is composed of convective heat and mass transfer accompanied by
turbulent diffusion. Usually, the effect of convection prevails over that of diffusion.
Numerical simulation of convective heat and mass transfer represents a very impor-
tant area of application of computational fluid dynamics (CFD). Although CFD
techniques are often useful in gaining insight into fluid dynamic processes, they
have not, in the past, been generally reliable enough to be used (without experimen-
tal verification) in routine engineering design calculations where genuinely predic-
tive capabilities are required. Of course there are exceptions, but in particular flows
involving highly convective processes, have presented CFD with some of its most
difficult challenges.

Successful modeling of strong convection is one of the most challenging problems
in computational fluid mechanics. On the one hand, although traditional first-order
finite difference methods (e.g., first-order upstream and Lax-Friedrichs schemes) are
monotonic and stable, they are strongly dissipative, causing the solution to become
smeared out and often grossly inaccurate. On the other hand, traditional high-order
difference methods (e.g. second-order upstream, central, Lax–Wendroff, Beam–
Warming, Fromm, and third-order QUICK, QUICKEST etc.) are less dissipative,
but are susceptible to numerical instabilities that cause nonphysical oscillations in
regions of large gradients of the variables. The usual way to deal with these types of
oscillations is to incorporate artificial diffusion into the numerical scheme. However,
if this is applied uniformly over the problem domain, and enough diffusion is added
to dampen spurious oscillations in regions of large gradients, then the solution is also
smeared out elsewhere.

In the past forty years, a tremendous amount of research was done in develop-
ing and utilizing modern high-resolution methods for approximating solutions of
hyperbolic systems of conservation laws. Among these methods, the flux corrected
transport (FCT) method (Boris and Book 1973, [4]; Book et al. 1975, [2], 1981,
[3]; DeVore 1991, [8]; Georghiou et al. 2000, [10]; Kuzmin et al. 2012, [19];
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Patnaik et al. 1987, [31]; Zalesak 1979, [47]) and the total variation dimin-
ishing (TVD) schemes (Blazek 2001, [1]; Harten 1983, [11]; Hou et al. 2012,
[12]; Kesserwani 2012, [17]; Kuzmin 2006, [18]; Jiang and Tadmor 1997,
[15]; LeVeque 2002, [26]; Nessyahu and Tadmor 1990, [30]; Tai 2000, [39];
Versteeg and Malalasekera 2007, [41]; Wang et al. 2004, [44]; Wesseling

2001, [45]) are the most widely used discretization schemes of this sort.
The FCT technique is a scheme for applying artificial diffusion to the numerical

solution of convectively-dominated flow problems in a spatially nonuniform way.
More artificial diffusion is applied in regions of large gradients, and less in smooth
regions. The solution is propagated forward in time using a spatially second-order
scheme in which artificial diffusion is then added. Alternatively, often spatial first-
order schemes are used in which additional diffusion is inherent. In regions where
the solution is smooth, some or all of this diffusion is subsequently removed, so
the solution there is basically second-order. Where the gradient is large, little or
none of the diffusion is removed, so the solution in such regions is first-order. In
regions of intermediate gradients, the order of the approximation of the solution
depends on how much of the artificial diffusion is removed. In this way, the FCT
technique prevents nonphysical extrema from being introduced into the solution. The
procedure of another high-resolution TVD scheme is similar to the FCT method.
These algorithms can ensure that the total variation of the variables does not increase
with time, thus no spurious numerical oscillations are generated. The approximation
can be of second or even third-order accuracy in the smooth parts of the solution, but
only first-order near regions with large gradients.

Comparisons of some numerical advection algorithms have been performed for
different test problems, see e.g. Chock (1985), [6]; Leonard (1979), [22]; Rood
(1987), [35]; Tóth and Odstrčil (1996), [40]; Wang and Hutter (2001), [43].
In this chapter we intend to consider a series of the most frequently used numerical
schemes, especially including high-resolution schemes. Many numerical schemes
have been summarized by Leonard (1997), [24]. We test these numerical methods
with respect to simple one-dimensional convectively-dominated problems. Numer-
ical diffusivity, production of spurious oscillations, computational efficiency and
suitability for grid size or magnitude of diffusion are all taken into account, thus we
hope to gain some balanced view on the properties of different schemes in convection-
diffusion problems. Many results shown in this chapter have been presented inWang

and Hutter (2001) [43]. A comparison of numerical schemes in simulating three-
dimensional wind-induced lake circulations will be performed in the next chapter.

In Sect. 25.2 a series of numerical methods: traditional first-order upstream, Lax–
Friedrichs; second-order upstream, central difference, Lax–Wendroff, Beam–
Warming, Fromm, third-order QUICK, QUICKEST schemes and high-resolution
flux corrected transport (FCT) and total variation diminishing (TVD) schemes are
summarized. Partial descriptions of these numerical schemes are extracted from
Leonard (1997), [24]. In Sect. 25.3 numerical results obtained by employing these
difference schemes are compared for linear and nonlinear pure convection prob-
lems with discontinuous initial data and by a convection-diffusion problem with



94 25 Comparing Numerical Methods

sinusoidally-shaped initial distribution of the variable as well as for the deformation
of the temperature profiles in upwelling and downwelling areas in lakes. Some
concluding remarks are given in Sect. 25.4.

25.2 A Series of Numerical Methods

The basic equations describing circulations in lakes or oceans, e.g. the balance equa-
tions of linear momentum, energy and tracer mass, possess the form of an advection-
diffusion equation, in one-dimension

∂u

∂t
+ ∂ f (u)

∂x
= ∂

∂x

(

Γ
∂u

∂x

)

or
∂u

∂t
+ a(u)

∂u

∂x
= ∂

∂x

(

Γ
∂u

∂x

)

(25.1)

together with appropriate initial and boundary conditions. Here, a(u) = ∂ f (u)/∂u
is the characteristic (convective) speed depending on the variable u, Γ may be a
turbulent diffusion coefficient and u may either be the concentration of a passive
tracer, the temperature, salinity or a velocity component.

It is worthwhile to mention that, depending on the values of a and Γ , (25.1)
changes its character. If a = 0 and Γ �= 0, (25.1) is parabolic; but it is hyperbolic
when a �= 0 and Γ = 0. If a, Γ are functions of x and t , the character of the partial
differential equation may change locally and/or with time.

The numerical treatment of the convection-diffusion equation involves specific
difficulties which mainly originate from the different scales of the convective and
turbulent motion. We will see that for pure diffusion (parabolic equation) or phys-
ical diffusively-dominated problems, a spatial central and temporal Euler forward
difference scheme is basically suitable, but for convectively-dominated problems,
difference schemes of convection terms are quite sensible to stability and accuracy.
The high discretization errors of finite difference techniques lead often to physically
unrealistic results. Apart from numerical instabilities, fundamental mechanical or
thermodynamical principles can be violated. For instance, fronts emerging in inves-
tigated physical problems will not be sufficiently resolved due to numerical diffusion
(Maier-Reimer 1973, [28]).

Integrating (25.1) over the rectangle [x j−1/2, x j+1/2] × [tn, tn+1],
∫ x j+1/2

x j−1/2

u(x, tn+1)dx −
∫ x j+1/2

x j−1/2

u(x, tn)dx

+
∫ tn+1

tn
f (x j+1/2, t)dt −

∫ tn+1

tn
f (x j−1/2, t)dt

=
∫ tn+1

tn

(

Γ
∂u

∂x

)

(x j+1/2, t)dt −
∫ tn+1

tn

(

Γ
∂u

∂x

)

(x j−1/2, t)dt, (25.2)
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and introducing the definitions of the spatial and temporal mean values

U n
j = 1

Δx

∫ x j+1/2

x j−1/2

u(x, tn)dx,

F j+1/2 = F(U ; j + 1/2) = 1

Δt

∫ tn+1

tn
f (x j+1/2, t)dt, (25.3)

D j+1/2 = D(U ; j + 1/2) = 1

Δt

∫ tn+1

tn

(

Γ
∂u

∂x

)

(x j+1/2, t)dt,

a difference equation in form of

U n+1
j = U n

j − Δt

Δx

{F j+1/2 − F j−1/2
} + Δt

Δx

{D j+1/2 − D j−1/2
}

(25.4)

is obtained, in which lower case Latin subscripts j denote the grid points while upper
case superscripts n indicate the time step. F j±1/2 denote the convection fluxes and
D j±1/2 indicate the diffusion fluxes on the cell boundaries at x j±1/2, respectively,
which can be expressed as functions of the cell averages of the neighbouring cells.
This is the reason why in (25.3)2,3 F and D show a U -dependence. These numerical
fluxes may have different forms depending on the order of accuracy and types of
interpolation. If the cell averages in the flux functions are taken at the time level tn ,
one obtains an explicit numerical scheme, whilst using cell averages at time tn+1

results in an implicit method. Note that the spatial integration means that finite-
volume methods are fundamentally dealing with the evolution of cell-average values
of the scalar (25.3)1, rather than nodal-point values. This distinction is not often
stressed in the literature because for first- and second-order methods there is no
difference between cell-average and nodal-point values. For third- and higher-order
methods, however, this distinction is obvious. For example, Fig. 25.1 shows three
one-dimensional control-volume cells containing the same cell-average value, U j .
In Fig. 25.1a, the assumed subcell variation is piecewise constant: u(x) = u j = U j .
In panel (b) of the figure, the assumed subcell behavior is piecewise linear; again, u j

(at the center) equals U j . However, in panel (c), piecewise quadratic subcell behavior
is assumed; in general, u j �= U j in this case.

(c)(b)(a)

Fig. 25.1 Subcell interpolants: a constant; b linear; c quadratic
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The most rudimentary argument about using the flux (or conservative) form (25.4)
(or its differential form (25.1)1) rather than the advective form (25.1)2 to model the
transport of the physical variable is that with the flux form it is simpler to assure
that the physical variable is conserved. This is particularly so for a no-flux boundary
condition. It has also been argued that by using the flux form it is easier to avoid the
numerical nonlinear instabilities of the type reported by Phillips (1959) [32].

It is also important to distinguish between finite-volume methods and finite-
difference methods—again because for first- and second-order methods, there is
an apparent similarity (although an important subtle distinction prevails as well).
Finite-difference methods result from estimating the derivatives in (25.1) directly,
rather than the integrated fluxes.

25.2.1 Central Difference Scheme

Figure 25.2 shows the appropriate subcell interpolation for what is usually known as
the second-order central scheme. However, as seen, the piecewise-linear
interpolant is downwind weighted. The rule for estimating the effective face value
is as follows: at a given face, establish the flow direction; in the adjacent upstream
cell, use the downwind-weighted piecewise-linear interpolant through node values
(≡ cell-average values); the effective face value is chosen to be that of the subcell
interpolant just upstream of the face. In the case shown in Fig. 25.2 for the right face
(a j+1/2 > 0), the subcell interpolant across cell j , i.e. x ∈ (x j−1/2, x j+1/2)), is

u(x) = u j +
(

u j+1 − u j

Δx

)

x, a j+1/2 > 0. (25.5)

According to the natural upwind rule

Fig. 25.2 Downwind-weighted piecewise-linear subcell interpolation in the case of a > 0
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u j+1/2 = lim
ε→0

u(x j+1/2 − ε) = 1
2

(
u j+1 + u j

)
, (25.6)

i.e., a simple linear weighting of node values. The resulting face value is independent
on the flow direction—the downwind bias in the subcell interpolant has cancelled the
natural upwind bias. For example, if a j+1/2 were negative, the appropriate subcell
interpolant would be that in cell ( j + 1); but the downwind-weighted interpolant in
that cell would still be the straight line passing through node-values u j and u j+1, giv-
ing the same result for u j+1/2. One rather “unnatural” feature of this method occurs at
a cell where the velocity changes sign; i.e., a j+1/2 > 0, a j−1/2 < 0. In this case, two
different downwind-weighted linear interpolants are needed, simultaneously, across
cell j .

As pointed out by Leonard (1997) [24] a common misinterpretation of second-
order central methods is shown in Fig. 25.3. In this case, the subcell interpolant
consists of simple linear interpolation between node values (a linear spline), inde-
pendent on the velocity direction. This is clearly inconsistent with the cell-average
condition which requires in the case of the piecewise-linear cell interpolation.

U j = u j = 1

Δx

∫ x j+1/2

x j−1/2

u(x)d x, across cell j. (25.7)

For diffusion terms, downwind-weighted piecewise-linear subcell interpolation
leads to the classical second-order form. For (25.5),

(
∂u

∂x

)

j+1/2
= ∂u

∂x
|x=Δx/2−ε = u j+1 − u j

Δx
. (25.8)

Again, the result is independent on the velocity direction.
In most cases of practical interest, the classical second-order central scheme for

diffusion terms appears to be adequate. Figure 25.4 shows the usual way of esti-

Fig. 25.3 A linear spline violating the cell-average constraint
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Fig. 25.4 Estimation of
diffusion terms using
quadratic interpolation

mating the diffusion term at nodal point j or across cell j . A parabola is collocated
symmetrically through three nodal points:

u(x) = u j +
(

u j+1 − u j−1

2Δx

)

x +
(

u j+1 − 2u j + u j−1

2(Δx)2

)

x2. (25.9)

For constant Γ , we can estimate the diffusion term in (25.1) from the second-derivate
of u(x) at nodal point j

Γ

(
∂2u

∂x2

)

j
= Γ

(
u j+1 − 2u j + u j−1

(Δx)2

)

. (25.10)

A central difference scheme in space for both the convection and the diffusion
terms are employed in the forms of

F j+1/2 = f
(
U j+1/2

)
, D j+1/2 = Γ j+1/2

U j+1 − U j

Δx
(25.11)

with U j+1/2 = 1
2

(
U j + U j+1

)
.

The time stepping used for processes other than diffusion is the well-known leapfrog
scheme (see e.g. Mesinger and Arakawa 1976, [29]). It is a temporal centred
scheme. In lake dynamics, it may be used for momentum, heat and tracer advec-
tion, pressure gradient, and Coriolis terms, but not for diffusion terms. The leapfrog
scheme is used only to the convection term in the convection-diffusion Eq. (25.1),
but is unsuitable for the diffusion term. An Euler forward temporal scheme regarding
the diffusion term is suggested. The discretized difference equation takes the form

U n+1
j = U n−1

j − 2Δt

Δx
(Fn

j+1/2 − Fn
j−1/2)

+ 2Δt

(Δx)2

(
Γ n−1

j+1/2(U
n−1
j+1 − U n−1

j ) − Γ n−1
j−1/2(U

n−1
j − U n−1

j−1 )
)

.

(25.12)
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That the discretizations of the convection and the diffusion terms are considered at
different time levels is because, for a central difference scheme in space, the leap
frog time step is always unstable when a = 0 in Eq. (25.1)2 (pure diffusion case)
while the Euler forward scheme in time results in numerical instability for a pure
convection problem (Γ = 0). For details see e.g. Smith (1977) [36]. Therefore,
the discretization (25.12) ensures numerical stability for the convection-diffusion
problem both with dominant convection and with prevailing diffusion. However,
for the difference scheme (25.12), if the grid Péclet number (or cell Reynolds
number), defined by

Pe = aΔx/Γ, (25.13)

exceeds the critical value Pe = 2, e.g., the convection term is dominant, and so
oscillatory grid dispersion may occur, which is unphysical (Price et al. 1966, [33]).
In order to avoid the above problems, Pe must be made smaller by using a finer
spacing. This can become very costly in terms of computer time. Another remedy is
to add large artificial diffusion, but that could make the original problem unrealistic.

25.2.2 Upstream Difference Scheme

The above mentioned numerical oscillations in CDS are due to the use of the unphys-
ical central difference scheme for the convection term, because at any spatial point,
information by convection can come only from the upstream direction of this point. In
order to avoid the above problem non-centered upstream difference schemes in space
for the convection term ought to be used. However, as we shall see, this introduces
alternative difficulties.

Because for most flows of practical interest, the classical, second-order central
scheme for diffusion terms is adequate, from now on, we will discuss various differ-
ence schemes mainly for convection terms. If one considers only the convective part
of (25.1) the equation is the simplest first-order hyperbolic equation

∂u

∂t
+ ∂ f (u)

∂x
= 0 or

∂u

∂t
+ a(u)

∂u

∂x
= 0, (25.14)

its difference equation, i.e. (25.4) with D j±1/2 = 0, can be written as

U n+1
j = U n

j − Δt

Δx

{F j+1/2 − F j−1/2
}
. (25.15)

The hyperbolic differential Eq. (25.14) has the general solution u = g(x − at)
if a = constant where g(x) is an arbitrary differentiable function depending on the
initial condition. The lines x −at = const are called characteristics, and u is constant
on these lines. With this in mind a difference scheme is constructed which depends on
the slope of the characteristics, i.e. on the sign of a. The new value U n+1

j is computed

by tracing the characteristic passing through U n+1
j back to the previous time level
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Fig. 25.5 Velocity-direction-independent piecewise-constant behavior (UDS)

where the solution can be computed by linear interpolation from neighbouring grid
points. More details are given in Mesinger and Arakawa (1976) [29].

The most simple subcell interpolation assumes piecewise-constant behaviour, as
shown in Fig. 25.5. In this case, we have u(x) = u j = U j across cell j , with
discontinuities at cell faces. At any particular face, information is coming from the
upstream side of the face. With the expression of the convection flux

Fn
j+1/2 =

{
f (U n

j ), for an
j+1/2 > 0,

f (U n
j+1), for an

j+1/2 < 0,
(25.16)

a first-order accurate upstream scheme of (25.14) can be written as follows (Huang
1981, [13]):

U n+1
j = U n

j − Δt

2Δx

{
f n

j+1 − f n
j−1 − |an

j+1/2|ΔU n
j+1/2 + |an

j−1/2|ΔU n
j−1/2

}
,

(25.17)
in which ΔU n

j+1/2 = U n
j+1 − U n

j , f n
j = f (U n

j ). The characteristic speed an
j+1/2 is

defined by using the Rankine-Hugoniot jump condition (Roe 1981, [34]).

an
j+1/2 =

⎧
⎨

⎩

( f n
j+1 − f n

j )/ΔU n
j+1/2, ΔU n

j+1/2 �= 0,

a(U n
j ), ΔU n

j+1/2 = 0.
(25.18)

The difference Eq. (25.17) can be seen as a three-point central difference approxi-
mation of (25.14) plus a numerical viscosity term, i.e., its difference form (25.15)
with the fluxes at the cell interfaces

Fn
j+1/2 = 1

2

(
f n

j+1 + f n
j − φn

j+1/2

)
, φn

j+1/2 = |an
j+1/2|ΔU n

j+1/2, (25.19)
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which indicates that the upstream difference scheme for the convection term is equiv-
alent to the central difference scheme for this term and an additional numerical dif-
fusion term

∂u

∂t
+ a

∂u

∂x
= ∂

∂x

(

Γnum
∂u

∂x

)

, with Γnum = |a|Δx/2. (25.20)

Similar problems, e.g. oscillations in numerical solutions as discussed in the last
subsection with central differences may not be encountered; thus such one-sided
upstream differences are not restricted by that kind of criteria of the Péclet number
(Pe < 2) but such schemes lead to large numerical diffusion in time-dependent
problems.

25.2.3 Lax-Friedrichs Scheme

Another example of first-order finite difference approximations is theLax–Friedrichs
scheme for which (25.14) takes the form

U n+1
j = 1

2
(U n

j+1 + U n
j−1) − Δt

2Δx

(
f n

j+1 − f n
j−1

)
. (25.21)

It can be seen as the scheme (25.15) with the fluxes

Fn
j+1/2 = 1

2

{

f n
j+1 + f n

j − Δx

Δt

(
U n

j+1 − U n
j

)}

(25.22)

at the interfaces. As in the upstream method (25.19), the Lax–Friedrichs method
also has a numerical dissipation term φLF

j+1/2 = Δx
Δt ΔU n

j+1/2, corresponding to a

diffusion coefficient of Γnum = (Δx)2/(2Δt).

25.2.4 Second-Order Upstream Scheme (2UDS)
and Fromm’s Method

The upstream difference scheme (25.17) possesses only first-order accuracy in space.
By using Taylor series expansion in space, the value at the interface x j+1/2 can be
written as

u j+1/2 = u(x j + Δx/2, t) = u(x j , t) + 1

2
Δx

∂u

∂x
+ 1

8
(Δx)2 ∂2u

∂x2 + · · · . (25.23)
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By retaining only the first two terms of (25.23) and using an upstream difference
approximation for the appearing spatial derivative, (25.23) becomes

U n
j+1/2 = un

j+1/2 = 3
2 un

j − 1
2 un

j−1 = 3
2U n

j − 1
2U n

j−1, an
j+1/2 > 0, (25.24)

representing a linear extrapolation from u j−1 (= U j−1) through un
j (= U n

j ), as shown
in Fig. 25.6, which corresponds to an upwind-weighted piecewise-linear interpolation

u(x) = u j +
(

u j − u j−1

Δx

)

x, a j+1/2 > 0 (25.25)

across cell j . Similarly, if an
j+1/2 < 0, the value at the interface is

U n
j+1/2 = 3

2U n
j+1 − 1

2U n
j+2, an

j+1/2 < 0. (25.26)

Relations (25.24 and 25.26) are conveniently implemented as follows

U n
j+1/2 = 1

2 (U n
j+1 + U n

j ) − 1
4 (U n

j+2 − U n
j+1 − U n

j + U n
j−1)

+ 1
4 sgn(an

j+1/2)(U
n
j+2 − 3U n

j+1 + 3U n
j − U n

j−1). (25.27)

Substituting (25.27) into (25.4) with F j+1/2 = f (U j+1/2), the corresponding dif-
ference equation for the upstream scheme can be obtained.

Fromm’s method (Fromm 1968, [9]) results from averaging the values of
the second-order central and second-order upstream schemes. Figure 25.7 shows
the basic principle of Fromm’s method. The interpolant is linear but dependent on
the velocity direction. Across cell j , it has the form

Fig. 25.6 Upwind-weighted piecewise-linear subcell interpolation (2UDS)



25.2 A Series of Numerical Methods 103

Fig. 25.7 Velocity-direction-independent piecewise-linear subcell interpolation (Fromm)

u(x) = u j +
(

u j+1 − u j−1

2Δx

)

x, a j+1/2 > 0. (25.28)

Then, the value at the interface has the form

U n
j+1/2 =

{
U n

j + 1
4 (U n

j+1 − U n
j−1), an

j+1/2 > 0,

U n
j+1 − 1

4 (U n
j+2 − U n

j ), an
j+1/2 < 0.

(25.29)

It is instructive to rewrite (25.29) as a linear interpolation plus a correction term

U n
j+1/2 =

{ 1
2 (U n

j+1 + U n
j ) − 1

4 (U n
j+1 − 2U n

j + U n
j−1), an

j+1/2 > 0,

1
2 (U n

j+1 + U n
j ) − 1

4 (U n
j+2 − 2U n

j+1 + U n
j ), an

j+1/2 < 0,
(25.30)

involving upwind-biased curvature (i.e. second-difference) terms.

25.2.5 QUICK Scheme

The Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme
stems from a velocity-direction-dependent piecewise-parabolic interpolation through
node points, shown in Fig. 25.8. For comparison purposes, the cell averages are taken
to be the same as those in previous figures—but note that node values are slightly
different. By retaining the first three terms of (25.23) and using upstream-weighted
central difference approximations for the derivatives appearing there, i.e.,

u(x)=u j +
(

u j+1 − u j−1

2Δx

)

x+
(

u j+1 − 2u j + u j−1

2(Δx)2

)

x2, a j+1/2 > 0, (25.31)
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Fig. 25.8 Velocity-direction-dependent piecewise-quadratic subcell interpolation (QUICK)

the estimated interface value is approximately

U n
j+1/2 =

{
U n

j + 1
4 (U n

j+1 − U n
j−1) + 1

8 (U n
j+1 − 2U n

j + U n
j−1) for an

j+1/2 > 0,

U n
j+1 − 1

4 (U n
j+2 − U n

j ) + 1
8 (U n

j+2 − 2U n
j+1 + U n

j ) for an
j+1/2 < 0.

The difference between the node value u j and the cell-average value U j is neglected.
We could generalize the CDS, (25.11), second-order upstream, (25.24),Fromm’s,

(25.29), and QUICK, (25.2.5), schemes by writing

U n
j+1/2 = 1

2 (U n
j+1 + U n

j ) − CF(U n
j+1 − 2U n

j + U n
j−1) for an

j+1/2 > 0. (25.32)

and similarly for an
j+1/2 < 0, and thus introduce a “curvature-factor” coefficient, CF .

For the second-order central scheme, CF = 0; for second-order upstream scheme,
CF = 1

2 ; for Fromm’s method, CF = 1
4 ; and for the QUICK method, CF = 1

8 .
Such schemes are at least second-order accurate—and third-order accurate for CF =
1
8 (Leonard 1995, [23]).

The value at the right interface of these high-order spatial difference schemes is
implemented for any sign of an

j+1/2 as follows

U n
j+1/2 = 1

2 (U n
j+1 + U n

j ) − 1
2CF(U n

j+2 − U n
j+1 − U n

j + U n
j−1)

+ 1
2CF sgn(an

j+1/2)(U
n
j+2 − 3U n

j+1 + 3U n
j − U n

j−1). (25.33)

In unsteady flows, which are primarily convective, field variations are carried along
at the local fluid velocity. A better streaming estimation procedure can be used in
conjunction with quadratic upstream interpolation. Such a method was developed
by Leonard (1979) [22], named QUICKEST (QUICK with Estimated Streaming
Terms). It is third-order accurate in space as the QUICK scheme, and second-order
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in time. For brevity we do not here repeat this method, but will only demonstrate
some numerical results for it.

25.2.6 Lax-Wendroff and Beam-Warming Schemes

A wide variety of methods can be devised for convection equations by using different
finite difference approximations. Most of these are based directly on finite difference
approximations or Taylor series expansion in space. The Lax–Wendroff method
(Lax and Wendroff 1960, [20]) is based on Taylor series expansion in time

u(x, t + Δt) = u(x, t) + Δt
∂u

∂t
+ 1

2
(Δt)2 ∂2u

∂t2 + · · ·

= u(x, t) − aΔt
∂u

∂x
+ 1

2
a2(Δt)2 ∂2u

∂x2 + · · · , (25.34)

where in the second line the convection Eq. (25.14) has been used. The Lax–
Wendroff method then results from retaining only the first three terms of (25.34)
and using centered difference approximations for the derivatives appearing there,

U n+1
j = U n

j − aΔt

2Δx

(
U n

j+1 − U n
j−1

)
+ (aΔt)2

2(Δx)2

(
U n

j+1 − 2U n
j + U n

j−1

)
. (25.35)

The Beam–Warming method is a one-sided version of Lax–Wendroff. It is also
obtained from (25.34), but now using second-order accurate one-sided approxima-
tions of the derivatives,

U n+1
j = U n

j − aΔt

2Δx

(
3U n

j − 4U n
j−1 + U n

j−2

)
+ (aΔt)2

2(Δx)2

(
U n

j − 2U n
j−1 + U n

j−2

)
.

(25.36)
Both the Lax–Wendroff and the Beam–Warming schemes are of second-order
accuracy not only in space but also in time.

25.2.7 Flux Corrected Transport

As has been indicated and will also be seen in numerical results, for problems with
convection terms, traditional high-order accuracy methods (e.g., CDS, 2UDS, Lax–
Wendroff, etc) result in unexpected oscillations near zones with steep gradients
in the variables, while the first-order upstream differencing scheme (UDS, Lax–
Friedrichs) exhibits large false diffusion. There is no way of suppressing numeri-
cal diffusion and simultaneously having the desired accuracy except by reducing the
spatial grid size which causes large computer time. Therefore, it seems quite reason-
able to try to add some anti-diffusion to the schemes which balances the unwanted
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numerical diffusion. Boris and Book (1973) [4] and Book et al. (1975) [2], (1981)
[3] offer such a method and call it flux-corrected transport technique (FCT). The FCT
strategy is to add as much of this anti-diffusive flux as possible without increasing
the variation of the solution, to ensure at least second-order accuracy on smooth
solutions and yet give well resolved, non-oscillatory discontinuities.

The method consists of the following steps: (i) one uses one of the traditional
schemes (e.g. first-order UDS, Lax–Friedrichs or second-order CDS, 2UDS,
Lax–Wendroff, Beam–Warming etc), and adds artificial diffusion where neces-
sary (e.g. for second-order schemes) to assure monotonicity and, (ii) one eliminates
false diffusion Γ̃ added to high-order schemes (e.g. CDS), or which was inherent in
the scheme (e.g. first-order UDS). In principle the second step is of the form

∂u

∂t
= − ∂

∂x

(

Γ̃
∂u

∂x

)

, Γ̃ > 0, (25.37)

where Γ̃ denotes the diffusive coefficient which is added artificially or is inherent in
the traditional schemes in the first step.

This anti-diffusion can be discretized from time level n to n + 1 in the form

U n+1
j = U n

j − Δt

(Δx)2 (An
j+1/2 − An

j−1/2), (25.38)

whereA is the corrected anti-diffusive flux which eliminates the excessive numerical
diffusion where it is possible. Since additional viscosity is typically needed only near
discontinuities and large gradients, the coefficient of this anti-diffusive flux might
also depend on the behaviour of the solution, being smaller near discontinuities and
steep gradients than in smooth regions.

A may be considered as a flux which is successively added and subtracted, thus
satisfying conservation conditions. However, positiveness cannot be warranted. To
achieve positiveness and avoid formation of new maxima and minima with the
transported and diffused solution, a limiter for the anti-diffusive flux is introduced,

An
j+1/2 = Γ̃ n

j+1/2Sn
j+1/2 max

[
0, min

(|U n
j+1−U n

j |,
Sn

j+1/2(U
n
j −U n

j−1), Sn
j+1/2(U

n
j+2−U n

j+1)
)]

(25.39)

with Sn
j+1/2 = sgn(U n

j+1 − U n
j ). We can see that this correction depends also on

neighbouring values, which become important in case of steep gradients. In case the
minimum is equal to |U n

j+1 − U n
j | �= 0, we have An

j+1/2 = Γ̃ n
j+1/2(U

n
j+1 − U n

j ) as
the uncorrected anti-diffusive flux. Otherwise, this formulation does not permit that
local maxima or minima are generated.

To see what the flux-correction formula (25.39) does, assume (U n
j+1 − U n

j ) > 0.
Then, (25.39) gives either
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An
j+1/2 = Γ̃ n

j+1/2 max
[
0, min

(
(U n

j+1−U n
j ), (U

n
j −U n

j−1), (U
n
j+2−U n

j+1)
)]

or (25.40)

An
j+1/2 = 0,

whichever is larger. The anti-diffusive flux, An
j+1/2, always tends to decrease U n+1

j

and to increase U n+1
j+1 . The flux-limiting formula ensures that the corrected flux cannot

push U n+1
j below U n+1

j−1 , which would produce a new minimum, or push U n+1
j+1 above

U n+1
j+2 , which would produce a new maximum. Equation (25.39) is constructed to take

care of all cases of sign and slope.
For UDS numerical diffusion is inherent. Here, the uncorrected anti-diffusive flux

is Γ̃ j+1/2 = |an
j+1/2|Δx/2 as shown in (25.20). It can be easily seen if this uncor-

rected anti-diffusive flux is used for FCT, the same numerical results are obtained
as for CDS. Therefore, the effect of the limiter (25.39) is decisive for FCT. In the
numerical results below, the FCT scheme always indicates the UDS in the first step
plus the FCT in the second step.

A more general limiter especially suitable for explicit multi-dimensional imple-
mentations is described by Zalesak (1979) [47].

25.2.8 Total Variation Diminishing

Apart from FCT, another so-called high-resolution method is the Total Variation
Diminishing (TVD) method. The concept of TVD schemes was introduced by
Harten (1983) [11]. For certain types of equations these algorithms can ensure that
the sum of the variations of the field variable over the whole computational domain
does not increase with time, thus no spurious numerical oscillations are generated.
Since by numerical schemes only the value of the cell average is available, with the
concept of TVD the cells are reconstructed in such a way that no spurious oscillation
is present near a discontinuity or a zone with steep gradients and high-order accuracy
is simultaneously retained, e.g., the solution can be second- or third-order accurate
in the smooth parts of the solution, whilst it possesses only first-order accuracy at
extrema.

As for the FCT method, the main idea behind the TVD method is also to attempt
to use a high-order method, but to modify the method and increase the amount of
numerical dissipation in, and only in, the neighbourhood of a discontinuity or a
steep gradient so that the potentially occurring oscillations in high-order methods
are suppressed.

In the TVD method the non-oscillatory requirement is imposed more directly. It
requires that

N−1∑

j=0

|U n+1
j+1 − U n+1

j | �
N−1∑

j=0

|U n
j+1 − U n

j |. (25.41)
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The contribution of terms in non-conservative form, e.g. physical source terms, are
added separately without the limiting procedures of TVD.

In the upstream method mentioned in Sect. 25.2.2 the physical value at the cell
boundary U j+1/2 is assumed to be one of the adjacent cell average values, either
U j or U j+1. This is equivalent to using a piecewise constant approximation over the
cell. It then only gives first-order accuracy. In accordance with the TVD condition
the distribution of the physical variables over the cell is introduced by a piecewise
linear reconstruction,

ũn(x, tn) = U n
j + σn

j (x − x j ), x ∈ [x j−1/2, x j+1/2], (25.42)

where the slope limiter σ j = φ j (U j+1 − U j )/Δx and φ j is defined as a function of
the ratio of consecutive gradients θ j ,

φ j = φ(θ j ), θ j = U j − U j−1

U j+1 − U j
. (25.43)

To obtain the second-order accurate cell reconstruction and satisfy the TVD property,
φ(θ) must satisfy some conditions, i.e., it should be confined to a certain region in
the φ—θ diagram. Sweby (1984) [38] showed that the region of values displayed in
Fig. 25.9a which φ(θ) can take to possess the TVD property must lie in the shaded
region; however, for second-order TVD, φ(θ) is confined to lie in the region shown
in Fig. 25.9b.

There are various selections for the function φ(θ). If φ(θ) is defined by the upper
boundary of the second-order TVD region, there results the so-called Superbee limiter
(Sweby 1984, [38]),

φSuperbee(θ) = max(0, min(1, 2θ), min(θ, 2)), (25.44)

3.02.01.0

1.0

2.0

0.0
0.0

φ(θ)=1

θ

φ(θ)=θφ(θ)

1.0 2.0 3.0

1.0

0.0

2.0

φ(θ) φ(θ)=θ

φ(θ)=1

θ

(b)(a)

Fig. 25.9 a Region of values which φ(θ) can take to possess the TVD property. b Region of values
φ(θ) for the second-order TVD methods, where the Superbee limiter (solid line) is on the upper
boundary, the Minmod limiter (dashed line) lies on the lower boundary and the Woodward limiter
(dotted line) lies between them
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whilst the Minmod limiter

φMinmod(θ) = max(0, min(1, θ)) (25.45)

is obtained, if φ(θ) is defined by the lower boundary of the second-order TVD region.
The Woodward limiter (dotted line) lies between them

φWoodward(θ) = max(0, min(2, 2θ, 0.5(1 + θ))). (25.46)

Figure 25.9b illustrates the values of φ(θ) for these three limiters. Since φ(θ) deter-
mines the value of the anti-diffusive flux, different limiters result in different diffu-
sion. The Minmod and the Superbee limiters are the most and least diffusive of all
acceptable limiters, respectively. The Woodward limiter lies in between. Many other
different limiters can be found e.g. in Yee (1989) [46].

The application of slope limiters can eliminate unwanted oscillations and gives
second-order accurate reconstruction for smooth solutions over the cell (except near
critical points). One can therefore develop high-order resolution schemes without
spurious oscillation, but with the ability to capture a possible discontinuity.

Consider the piecewise linear reconstruction (25.42); there are two values at each
interface, i.e. U L

j+1/2, U R
j+1/2; one stems from the left-side cell U j , and the other is

due to the right-side element, U j+1. They are (see Fig. 25.10)

U L
j+1/2 = U j + 1

2Δx σ j , U R
j+1/2 = U j+1 − 1

2Δx σ j+1. (25.47)

Let us select a few cases of TVD schemes for our tests.

MUSCL Schemes. Spatially high-order Monotonic Upstream Schemes for Conser-
vation Laws (MUSCL) are introduced by applying the first-order upstream numerical
flux (25.19) and replacing the arguments U j and U j+1 by the U L

j+1/2 and U R
j+1/2,

respectively. Since the piecewise linear reconstruction is second order accurate, the
spatially second-order MUSCL scheme is of the form

Fig. 25.10 The cell average
of the physical variable U j
(dashed line) and the piece-
wise linear cell reconstruction
(solid line) with two values at
each interface
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U n+1
j = U n

j − Δt

Δx

(F j+1/2 − F j−1/2
)
,

with F j+1/2 = 1
2

{
f (U R

j+1/2) + f (U L
j+1/2) − φMUSCL

j+1/2

}
, (25.48)

where φMUSCL
j+1/2 = |aRL

j+1/2|
(

U R
j+1/2 − U L

j+1/2

)
is called the dissipative limiter. The

characteristic speed aRL
j+1/2 is obtained from theRankine–Hugoniot jump condition

and given by

aRL
j+1/2 =

⎧
⎪⎨

⎪⎩

f (U R
j+1/2) − f (U L

j+1/2)

U R
j+1/2 − U L

j+1/2

, U R
j+1/2 �= U L

j+1/2,

a(U j+1/2), U R
j+1/2 = U L

j+1/2.

(25.49)

TVD LAX–FRIEDRICHS method. A second-order TVDLax–Friedrichs (TVDLF)
scheme can be obtained by replacing U j+1 and U j in the Lax–Friedrichs scheme
(25.22) with the second-order accurate U R

j+1/2 and U L
j+1/2,

U n+1
j = U n

j − Δt

Δx

(F j+1/2 − F j−1/2
)

(25.50)

where the fluxes are then given by

F j+1/2 = 1
2

(
f (U R

j+1/2) + f (U L
j+1/2) − φTVDLF

j+1/2

)
(25.51)

with the dissipative limiter

φTVDLF
j+1/2 = Δx

Δt
ΔU RL

j+1/2, (25.52)

where ΔU RL
j+1/2 = U R

j+1/2 − U L
j+1/2. However, this dissipative limiter leads to a

very diffusive scheme. Tóth and Odstrčil (1996) [40] suggested that the dissi-
pative limiter should be multiplied by the maximum Courant number Cmax

j+1/2 =
|a j+1/2|maxΔt/Δx to obtain a modified dissipative limiter

φMTVDLF
j+1/2 = Cmax

j+1φ
TVDLF
j+1/2 = |a j+1/2|maxΔU RL

j+1/2. (25.53)

which preserves most of the desired properties of a TVD scheme. This scheme is
called the modified TVD Lax–Friedrichs method (MTVDLF). Cockburn et al.
(1989) [7] took |a j+1/2|max = max[|a j+1/2(U R

j+1/2)|, |a j+1/2(U L
j+1/2)|]. It can be

easily seen that for one-dimensional problems with constant convection velocity both
MTVDLF and MUSCL schemes are identical.
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25.3 Comparison of Some Numerical Results

In this section we present numerical results depicting various numerical schemes
listed in the last section with respect to several simple test problems.

25.3.1 A Linear Convection Problem: Travelling Shock Wave

One of the simplest model problems is one-dimensional convection at constant veloc-
ity of an initial data with step function in the variable u without physical diffusion.
It has the general solution u = g(x − at) where g(x) is the initial distribution of u
assumed by

g(x) =
{

ul = 1, x � 0.1,

ur = 0, x > 0.1.
(25.54)

The solution describes a wave propagating in the positive x-direction with the speed
a (if a > 0). Since the analytic solution is known in this simple case, the numerical
solution can be critically evaluated. Varying velocity fields, multi-dimensionality,
and non-rectangular coordinate systems all increase the difficulties in modeling
convection problems, but if an algorithm cannot model this simple problem cor-
rectly, then it will be of little use in more complex situations.

We choose the dimensionless convection velocity a = 0.01, the grid size
Δx = 0.005 (corresponding to a grid number N = 200 for the domain x ∈ [0, 1]).
Because the numerical schemes listed in Sect. 25.2 are of first-order or second-order
accuracy in time, respectively, but our main interest is in various spatial difference
schemes for the convection term, then in order to avoid numerical error due to dis-
cretization in time as far as possible, we choose in the computations a very small
time-step size Δt = 0.005. For this, the Courant number C = aΔt/Δx = 0.01 is
much smaller than required by stable conditions for most, but not all, schemes C < 1.

In Fig. 25.11 the results of using various difference schemes are shown for a
dimensionless time t = 50. At this instant the jump is moving through x = 0.6 from
its initial position x = 0.1. The highly diffusive nature of the first-order upstream
and the Lax–Friedrichs schemes (Fig. 25.11a, b) are clearly seen due to inherent
numerical diffusion. Especially for theLax–Friedrichs scheme the jump is strongly
smeared. For both schemes reducing the grid size Δx (increasing grid number N )
will reduce numerical diffusion, but at the costs of larger computational time.

Standard second- or higher-order difference methods, e.g. the central, Lax–
Wendroff, second-order upstream, Beam–Warming, Fromm, QUICK, QUICK-
EST schemes, eliminate a great deal of such numerical diffusion but introduce disper-
sive effects that lead to unphysical oscillations in the numerical solution (Fig. 25.11
c–i). The central and Lax–Wendroff difference schemes introduce propagating
numerical dispersion terms (odd-order derivatives) which corrupt large regions of the
flow with unphysical oscillations, which are behind the advancing front and damped
with distance from the front. The second upstream and Beam–Warming schemes
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1-order Upstream Lax-Friedrichs

Central Lax-Wendro

2-order Upstream Beam-Warming

Fromm QUICK

QUICKEST FCT

TVDLF MTVDLF
(Superbee) (Superbee)

(a)

(c)

(e)

(g)

(i)

(k)

(b)
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(f)

(h)

(j)
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Fig. 25.11 Comparison of different numerical methods with regard to the convective problem
with discontinuous initial data. The computations for the integration of Eq. (25.14) are performed
with grid number N = 200, dimensionless convective velocity a = 0.01 and dimensionless time
step Δt = 0.005. The results are illustrated for dimensionless time t = 50. Solid lines indicate
exact solutions; dashed lines are numerical solutions where circles denote the numerical results
at every fourth grid point, adapted from Wang and Hutter (2001) [43]. © John Wiley & Sons,
Ltd., reproduced with permission
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have been successful in eliminating artificial diffusion, while minimizing numerical
dispersion. Their leading truncation errors are (potentially oscillatory) third-order-
derivative terms. The damped oscillations before the advancing front are typical
of these second-order upstream difference methods; however, the fourth-derivative
numerical dissipation is sufficiently large to dampen short-wavelength components
of the dispersion to some extent. Third-order upstream schemes, e.g. QUICK and
QUICKEST, have a leading fourth-derivative truncation error term which is dissi-
pative, but higher-order dispersion terms can still cause overshoots and a few oscil-
lations when excited by nearly discontinuous behaviour of the advected variable.
However, they are considerably smaller than the other second-order schemes. The
profiles simulated by the QUICK and QUICKEST schemes remain comparatively
sharp; the small undershoots and overshoots which develop are each about only 5 %
of the step height, while for the central and theLax–Wendroff schemes such under-
and overshoots can reach almost 30 % of the step height; and the ranges of oscilla-
tions by the QUICK and QUICKEST schemes are also much smaller than that with
the second-order schemes.

For high-resolution methods e.g. FCT and TVDLF, no oscillations occur in numer-
ical solutions, but visible smearings do still exist although they are much smaller than
for the first-order methods. The modified TVDLF scheme, which is identical with
the MUSCL scheme for this problem, indicates the best agreement with the exact
solution of this problem. If the Superbee slope limiter, which possesses the least dif-
fusion of all acceptable limiters, is replaced by the Woodward or Minmod limiters,
a little more visible diffusion occurs, as seen in Fig. 25.12.

To quantitatively discriminate how well these schemes can describe the convec-
tion problem with a discontinuity an error measure for the physical variable u is
introduced,

Error =
∑

j |U j − uexact
j |

∑
j |uexact

j | , (25.55)

where uexact
j denotes the exact solution of the j th cell, while U j is the corresponding

numerical value.
The errors of various difference schemes are listed in Table 25.1 with different

grid numbers N . It can be seen that the errors decrease with increasing grid num-

(a) (b)

MTVDLF MTVDLF
(Woodward) (Minmod)

Fig. 25.12 Same as in Fig. 25.11 but here only results are shown for the MTVDLF method with
the Woodward and Minmod limiters, adapted from Wang and Hutter (2001) [43]. © John Wiley
& Sons, Ltd., reproduced with permission
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Table 25.1 Errors [%] of the different numerical schemes with regard to the convective problem
with discontinuous initial data

Grid number N 30 50 100 200 400

Upstream 14.723 11.767 8.596 6.215 4.452
Lax-Friedrichs 95.862 88.546 58.715 21.540 10.042
Central (CDS) 18.670 14.881 10.984 8.126 5.958
Lax-Wendroff 18.596 14.804 10.606 7.302 4.495
2-order Upstream 9.345 7.147 5.154 3.698 2.690
Beam-Warming 9.337 7.132 5.108 3.598 2.467
Fromm 13.456 4.881 2.813 1.782 1.209
QUICK 17.639 7.501 3.471 2.155 1.450
QUICKEST 16.222 5.941 2.795 1.616 0.950
FCT 10.3286 7.523 4.846 3.090 1.939
TVDLF (Superbee) 82.643 46.388 8.559 4.303 3.321
MTVDLF (Superbee) 5.129 3.178 1.637 0.834 0.422
MTVDLF (Woodward) 5.666 3.767 2.197 1.310 0.798
MTVDLF (Minmod) 7.964 5.694 3.629 2.324 1.491

Here results for different spatial resolutions are displayed. The other conditions are the same as in
Fig. 25.11. The smallest errors in each column are shown in bold

ber for all numerical schemes, not only for the first-order schemes with numerical
diffusion but also for high-order schemes with unphysical oscillations. Therefore, in
principle, grid refinement can alleviate these numerical errors. The necessary degree
of refinement is often completely impracticable for engineering purposes, especially
if one is attempting to model problems as unsteady three-dimensional turbulent flow
in lake dynamics. It is worthwhile to mention that the numerical solution of the
TVDLF method for small grid number (e.g. N = 30 or 50) has even a much larger
error (numerical diffusion!) than that of the first-order upstream scheme; the reason is
the property of the Lax–Friedrichs scheme, whose error is proportional to (Δx)2.
Therefore, in general, one should abandon the TVDLF method, but use the MTVDLF
or MUSCL schemes. It is also interesting to note that the third-order QUICK and
QUICKEST schemes may produce more inaccurate results than most first-order or
second-order difference schemes if spatial resolution is too rough as for the case of
N = 30. Thus, simply going to high-order schemes does not necessarily produce a
proportionate increase in accuracy. Among some traditional second-order schemes,
although their errors are of the same order as MTVDLF in some cases, they should
not be used because of their property of oscillation. The MTVDLF scheme is still
most preferable, because the oscillations resulting from the schemes are of impor-
tance, e.g. in the simulation of horizontal propagation of concentration patterns, in
many cases leading to locally negative concentrations or other anomalies.
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25.3.2 A Convection-Diffusion Problem

The second type of model problem to be considered is a one-dimensional constant-
coefficient version of (25.1), in which, besides convection, physical diffusion is
included. We first consider a simple one-dimensional diffusive problem

∂u

∂t
= Γ

∂2u

∂x2 , Γ = const. (25.56)

The general solution of (25.56) for an arbitrary initial distribution, u(x, t = 0) =
g(x), diffusing in an unbounded space is given by (Carslaw and Jaeger 1959, [5])

u(x, t) =
∫ ∞

−∞
g(ξ)

2(πΓ t)1/2 exp

{

− (x − ξ)2

4Γ t

}

dξ. (25.57)

Then, the solution for a one-dimensional linear convection-diffusion problem

∂u

∂t
+ a

∂u

∂x
= Γ

∂2u

∂x2 , a = const, Γ = const (25.58)

can be given in the form

u(x, t) =
∫ ∞

−∞
g(ξ)

2(πΓ t)1/2 exp

{

− (x − at − ξ)2

4Γ t

}

dξ. (25.59)

Numerical results will be compared with this analytic solution.
In our numerical simulations, the various difference schemes displayed in

Sect. 25.2 are used for the convection term, but only a classical central difference
scheme for the diffusion term, because it is reasonable for most flows of practical
interest. We choose all parameters in a physically reasonable range for computing
tracer convection-diffusion problems in lakes, even though here we still deal only
with one-dimensional problems. The studied domain is 10 km long (x ∈ [0, 10] km)
to ensure that the influence of the boundary conditions is negligible. The grid size is
Δx = 0.1 km corresponding to a total grid number N = 100. The time-step size is
Δt = 2 s. Test computations indicate that for any smaller time-step size numerical
solutions of various difference schemes remain basically unchanged. This means that
with this time-step size numerical errors are not related to time truncation, but rather
to spatial difference schemes. We assume a constant water velocity a = 0.04 m s−1

in the positive x-direction (a typical water velocity in lakes) and an initial distribution
of tracer concentration

u(x, t =0) =
{

0.4 sin [(x − 2)π] , x ∈ [2, 3] km,

0, for all other x
(25.60)
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with its maximum at x = 2.5 km. A series of computations are performed for various
Péclet numbers, see definition (25.13), representing essentially the ratio between
convection and diffusion.

In Fig. 25.13 a–j the numerical solutions (dashed lines with circles) simulated by
various schemes and the corresponding analytic solution (solid lines) are illustrated
at the instant t = 30 h forPe → ∞ indicating pure convection. Results for the Lax–
Friedrichs and TVDLF schemes are not shown, because for both schemes the tracer
is dispersed rapidly as a result of large numerical diffusion due to the large grid size,
so that the numerical errors for both schemes are almost always larger than 100 %.
Therefore such numerical schemes hold less practical interest for this problem.

It can be seen that, as in Fig. 25.11 for the moving jump problem, all second-order
numerical schemes exhibit numerical oscillations, while the first-order upstream and
even the high-resolution Flux Corrected Transport (FCT) schemes are accompanied
by large numerical diffusion. The behaviour of both the central and the Lax–
Wendroff schemes as well as both the second-order upstream and the Beam-
Warming schemes are very similar. The third-order QUICK scheme, especially the
QUICKEST scheme achieve better numerical results. Among all these schemes, the
result accomplished by the high-resolution MTVDLF (or MUSCL) is closest to the
exact solution.

If physical diffusion exists, numerical oscillations caused by high-order numerical
schemes can partly or even entirely be damped out, depending on the magnitude of
the Péclet number. In Fig. 25.14 the same results as in Fig. 25.13 are depicted but
accompanied by physical diffusion with a diffusion coefficient of Γ = 0.2 m2s−1,
corresponding to a Péclet number of Pe = 20. Owing to this physical diffusion, the
numerical oscillations exist now only in fairly narrow regions with large gradients,
and their amplitudes are also much smaller than for pure convection (by comparing
with Fig. 25.13). In this case, as the high-resolution MTVDLF scheme, the third-
order QUICK and QUICKEST methods produce also fairly good results.

In Table 25.2 the computational errors of various difference schemes are listed
for different Péclet numbers Pe = ∞, 40, 20, 4, 1 and 0.4, which correspond to
diffusion coefficients Γ = 0, 0.1, 0.2, 1, 4 and 10 m2s−1, respectively. Obviously,
computational errors decrease with decreasing Péclet number. If Pe < 2, i.e., the
effect of diffusion is dominant in the physical process, the oscillations caused by
high-order schemes do no longer occur, the errors of almost all numerical schemes
are below 2 %, except for the first-order schemes, for which numerical diffusion is
still comparable with the physical value. Therefore, oscillatory grid dispersion may
be excited only if the Péclet number exceeds the critical value Pe = 2, while first-
order differences are not restricted by this kind of criteria, however, such schemes
lead to large numerical diffusion.

The differences between the central and Lax–Wendroff as well as between
second-order upstream and Beam–Warming schemes are negligibly small, not only
for total errors as listen in Table 25.2 but also for their local numerical solutions as
illustrated in Figs. 25.13 and 25.14. For the convectively-dominated case (Pe > 20),
the QUICK and QUICKEST schemes are much more inaccurate, although they are
even more accurate for large physical diffusion (Pe ≤ 1) than the MTVDLF scheme
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Central Lax-Wendroff

2-order Upstream Beam-Warming

Fromm 1-order Upstream

QUICK QUICKEST

FCT MTVDLF

x [km]x [km]

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 25.13 Results of different numerical methods for the tracer convective problem with the initial
data of sinusoidal shape in a finite interval [2, 3] km. The computations are performed with grid
number N = 100 (corresponding to a grid size of Δx = 100 m), convective velocity a = 0.04 m s−1

and time step Δt = 2 s. The results are displayed for the instant t = 30 h. Solid lines indicate exact
solutions; dashed lines are numerical solutions where circles denote the numerical results at every
second grid points, adapted from Wang and Hutter (2001) [43]. © John Wiley & Sons, Ltd.,
reproduced with permission
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Central Lax-Wendroff

2-order Upstream Beam-Warming

Fromm 1-order Upstream

QUICK QUICKEST

FCT MTVDLF

x [km] x [km]

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 25.14 Same as Fig. 25.13 but now for a problem with an additional diffusion term with a
diffusion coefficient of Γ = 0.2 m2s−1, corresponding to a Péclet number of Pe = 20. The
equation is (25.58) and the exact solution is (25.59), adapted from Wang and Hutter (2001) [43].
© John Wiley & Sons, Ltd., reproduced with permission



25.3 Comparison of Some Numerical Results 119

Table 25.2 Errors (in [%]) of the different numerical schemes with regard to the tracer convection-
diffusion problem with a sinusoidal shape of the initial data

Péclet number: Pe ∞ 40 20 4 1 0.4

Upstream 102.959 89.533 80.095 46.046 18.473 8.490
Central 86.938 52.461 36.858 7.980 1.255 0.547
Lax-Wendroff 86.262 52.262 36.730 7.975 1.253 0.546
2-order Upstream 79.343 62.726 50.460 14.769 2.444 1.025
Beam-Warming 79.218 62.624 50.392 14.751 2.442 1.026
Fromm 30.829 22.259 16.441 3.938 0.614 0.543
QUICK 24.1792 16.158 11.121 2.172 0.326 0.432
QUICKEST 18.731 12.185 8.176 1.038 0.019 0.402
FCT 69.754 57.461 48.550 18.988 3.863 1.326
MTVDLF (Superbee) 8.054 6.311 6.110 4.757 1.566 0.821
MTVDLF (Woodward) 22.501 16.738 12.866 3.524 0.581 0.714
MTVDLF (Minmod) 51.883 41.034 32.991 10.461 1.922 1.113

Results are displayed for different Péclet numbers. The other conditions are the same as in Fig. 25.13.
The smallest errors in each column are shown in bold

with the Superbee limiter. It can also be seen from Table 25.2 that the Woodward and
Minmod limiters bring fairly large errors into the MTVDLF scheme for large Péclet
number due to large numerical diffusion. Among all cases the MTVDLF scheme with
the Superbee slope limiter is proved to be most suitable for this physical problem.

25.3.3 A Non-Linear Convection Problem

Among the field equations which describe wind-driven circulations in limnological or
oceanic dynamics, the balance equation of momentum is non-linear due to its non-
linear advection terms. When one attempts to solve non-linear conservation laws
numerically one runs into additional difficulties not seen in the linear equation. We
have, however, already seen some of the difficulties caused by large gradients of the
variable in the linear case. For non-linear problems there are additional difficulties
that can arise (LeVeque 1992, [25]):

• The method might be “non-linearly unstable”, i.e., unstable when applied to the
non-linear problem even though the linearized version may appear to be stable.
Often oscillations will trigger non-linear instabilities.

• The method might converge to a function that is not a solution of the original
equation.

For instance, consider the non-linear problem (25.14) with a(u) = u ( f = 1
2 u2),

corresponding to the Burgers equation, and an initial function

u(x) =
{

ul = 0.7, x ≤ 2,

ur = 0.1, x > 2.
(25.61)



120 25 Comparing Numerical Methods

By use of the Rankine–Hugoniot jump condition (25.49) it is easily seen that the
shock speed, the speed at which the discontinuity travels, is given by

ajump = f (ur ) − f (ul)

ur − ul
= 1

2 (ur + ul) = 0.4. (25.62)

Hence this non-linear equation with the initial condition (25.61) must have the same
analytic solution as the linear problem with a constant advection velocity a = 0.4.

For this non-linear equation, let numerical simulations be constructed with a non-
conservative upwind scheme

U n+1
j = U n

j − Δt

Δx
U n

j (U
n
j − U n

j−1) (25.63)

and a non-conservative central difference scheme

U n+1
j = U n−1

j − Δt

2Δx
U n

j (U
n
j+1 − U n

j−1), (25.64)

as well as the conservative forms of such two schemes

U n+1
j = U n

j − 1

2

Δt

Δx
((U n

j )
2 − (U n

j−1)
2) (25.65)

and

U n+1
j = U n−1

j − 1

2

Δt

Δx

⎛

⎝

(
U n

j + U n
j+1

2

)2

−
(

U n
j + U n

j−1

2

)2
⎞

⎠ , (25.66)

respectively.
We choose time step Δt = 0.01 and grid size Δx = 0.1 (corresponding to a grid

number N = 100 for the domain x ∈ [0, 10]). Numerical results obtained by the
four difference schemes (25.63–25.66) and the TVD scheme with the Superbee and
Minmod limiters, respectively, are illustrated in Fig. 25.15 for a dimensionless time
t = 10; at this time the jump has moved to x = 6 from its initial position x = 2.
Some features exhibited in Fig. 25.15 are impressive:

• The non-conservative forms of UDS and CDS are inadequate to model the non-
linear advection equation with a discontinuity or a large gradient of the variable.
With the non-conservative UDS, (25.63), the numerical solution propagates at
the wrong speed (panel (a)), whereas with the non-conservative CDS, (25.64),
although the propagating speed of the solution is fairly accurate, the numerical
oscillations are so large that the true solution is overshadowed (panel (c)).

• The conservative UDS, (25.65), shows excellent agreement with this non-linear
problem (panel (b)). Different from the solution of the linear problem (Fig. 25.11a),
less numerical diffusion exists here in the result obtained by the UDS.
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Fig. 25.15 Comparison of different numerical methods with regard to a one-dimensional non-
linear advective problem with discontinuous initial data. Computations are performed with the grid
number N = 100 and the dimensionless time step Δt = 0.01. The results are illustrated for the
dimensionless time t = 10. Solid lines indicate the exact solution; dashed lines are numerical
solutions where circles denote the numerical results at every second grid points, adapted from
Wang and Hutter (2001) [43]. © John Wiley & Sons, Ltd., reproduced with permission

• The conservative CDS (25.66) exhibits still large numerical oscillations (panel
(d)), although they are much smaller than those by the non-conservative scheme.
The propagation of the solution obtained by the conservative CDS seems slightly
faster than its exact solution.

• The TVD scheme with the Minmod limiter exhibits a small amount of visi-
ble numerical diffusion (panel (e)). The TVD scheme with the Superbee limiter
demonstrates the best performance in this problem (panel (f)).

In summary, the TVD scheme (with the Superbee limiter) is the most suitable dif-
ference scheme not only for a linear advection but also for a non-linear advection
problem, while the conservative form of the UDS is also suitable but only for the
purely non-linear problem.
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25.3.4 Deformation of Temperature Profile Caused
by Vertical Convection in Stratified Lakes

As we have seen, for problems with dominant convection terms, conventional
high-order accuracy difference methods result in numerical oscillations near steep
gradients of variables. Alternatively, first-order difference schemes avoid such oscil-
lations, but inherent numerical diffusion included in such schemes often causes severe
inaccuracies. The modified TVDLF method (MTVDLF) seems to be a suitable tech-
nique. As another typical illustration of the behaviour of such schemes, consider the
temporal alteration of vertical temperature distributions in a stratified lake.

In a lake the stratification varies seasonally according to the solar radiation that
heats the upper most layers of the lake, and wind-induced motions and turbulences
transfer this heat to greater depths. By late summer these processes will have estab-
lished a distinct stratification, that essentially divides the water mass into a warm
upper layer (epilimnion), a cold deep layer (hypolimnion) which are separated by a
transition zone (metalimnion) with a sharp temperature gradient. A typical evolution
of such temperature profiles through the seasons is shown in Fig. 1.8 of Chap. 1
in Vol. 1 of this book series. A typical initial vertical temperature profile may be
given by

T (z, t = 0) =
{

17 − 2 exp [(z − 20)/5], 0 � z � −20 m,

5 + 10 exp [(−z + 20)/5], z � −20 m,
(25.67)

in which the vertical coordinate, z is directed upward with z = 0 at the undeformed
water surface. The largest temperature gradient occurs at the depth z = −20 m, which
is called thermocline. Under the effect of wind stress at the water surface, strong ver-
tical convection, occurring mainly near lake shores, causes a vertical movement and
hence declination of the thermocline. Accurate simulation of the temporal alteration
of the stratification is decisively important for studying the baroclinic response of a
lake.

In lake dynamics the temperature (energy balance) equation is a three-dimensional
convection-diffusion equation. Here, for simplicity, we still only consider
one-dimensional motions with a typical vertical velocity of 1.0×10−3m s−1 upward
(upwelling) and downward (downwelling), respectively; we neglect the effect of
diffusion, and choose a time step Δt = 2 seconds and a grid size Δz = 2 m cor-
responding to a grid number N = 50 through the total vertical domain of 100 m.
Thus the hyperbolic variant of (25.1) for u = T is addressed with (25.67) as initial
condition.

The computed deformations of the temperature profile after 3 days in the presence
of upwelling and downwelling, respectively, simulated by central differences, are
displayed in Fig. 25.16a. The gradients are smoothed out ahead of the moving frontal
interface, while wave-like phenomena appear behind the front. In this example the
waves cause numerical oscillations. In many practical computations of lake dynamics
such oscillations are so large that numerical instabilities occur. Therefore, they must

http://dx.doi.org/10.1007/978-3-642-15178-4_1
http://dx.doi.org/10.1007/978-3-642-15178-4_1
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Fig. 25.16 Comparison of the performance of different difference schemes in computations of
temperature profiles in upwelling and downwelling areas of a lake, respectively. Solid lines indi-
cate the initial temperature profile, while dashed lines mark the computed temperature distrib-
utions after 3 h in upwelling and downwelling areas, respectively, with a convection velocity of
a = 1.0 × 10−3m s−1, adapted from Wang and Hutter (2001) [43]. © John Wiley & Sons, Ltd.,
reproduced with permission

be removed by the mechanism for simulating convection that should be incorporated
in any model, e.g. by use of a physically reasonable first-order upstream simulation of
convection or by adding an artificial diffusion. However, it is clear that in this kind of
a model the initially steep temperature gradient will soon be dissipated, as the results
show in Fig. 25.16b obtained by using the upstream difference scheme. Therefore,
removal of the oscillatory effects of the spatial central difference discretization of the
convection terms can be accomplished by including sufficient diffusion in the model.
However, in general this would mean that numerical diffusion would be far greater
than the actual physical diffusion effects. In many cases, such necessary numerical
diffusion is so large that numerical results are unrealistic; indeed one can often
see in computational lake dynamics that the numerical diffusion is much larger than
its physically reasonable counterpart so that some physically interesting phenomena,
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e.g. internal waves that are a persistent phenomenon everywhere in stratified lakes are
damped out rapidly and not discernible in numerical results. In principle, the required
artificial diffusion can always be reduced by increasing the spatial resolution (Wang

and Hutter 1998, [42]), which may become very costly in terms of computer time.
As we have seen, attempts have been made to design numerical schemes that can
properly deal with convectively-dominated problems. A successful approach is the
use of high-resolution numerical schemes for convection terms. Results are shown in
Fig. 25.16c using the FCT scheme and in Fig. 25.16d for the MTVDLF method. It is
obvious by comparison with the upstream scheme (Fig. 25.16b) that the FCT scheme
reduces the numerical diffusion greatly, but it is still larger than that obtained by the
MTVDLF method with the Superbee limiter and smear is still visible. As before,
the MTVDLF scheme yields quite accurate results. In fact, the temperature profiles
simulated with the MTVDLF scheme (Fig. 25.16d) are essentially a parallel move
of its initial distribution upward (upwelling) and downward (downwelling).

25.4 Concluding Remarks

Satisfactory numerical modeling of convection problems presents a well-known
dilemma to the computational fluid dynamicist. On the one hand, traditional second-
order differences lead often to unphysical oscillatory behaviour or disastrous non-
convergence in regions where convection strongly dominates diffusion. On the other
hand, computations based on the classical alternative of first-order, e.g. upstream
differencing often suffer from severe inaccuracies due to truncation errors. This
error mechanism can be associated with equivalent artificial numerical diffusion
terms introduced by the first-order upstream differencing of convection. Although,
in principle, grid refinement can alleviate all these problems, the necessary degree of
refinement is often impracticable for engineering purposes. The quadratic upstream
interpolations for convective kinematic schemes (QUICK and QUICKEST) have
the desirable simultaneous properties of third-order accuracy and inherent numerical
convective stability. Compared with traditional first-order or second-order difference
schemes, the QUICKEST method can produce a solution of high accuracy, but the
methods are clearly limited in their ability to resolve regions of large gradients if
spatial resolution is not sufficiently high. With the development of modern numer-
ical modeling, one has step by step found a way out of the dilemma: the use of
so-called high-resolution methods. Between two high-resolution methods, the FCT
scheme possesses almost no advantage over the QUICK or QUICKEST schemes.
The effects of the modified TVDLF (MTVDLF) method, which in one-dimensional
problems is in agreement with the MUSCL scheme, is highly dependent on the used
slope limiters in some cases. Computations indicate that the MTVDLF scheme with
the Superbee slope limiter is most favourable in treating convectively-dominated
problems.

Although the modified TVDLF schemes can describe convection problems with
a discontinuity or a large gradient very well, they are at most first order accurate
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at local extrema. This disadvantage results in some cases in the so-called clipping
phenomena, an example of which was illustrated in Tai (2000) [39]. To circumvent
this, more modern shock-capturing ENO (Essentially Non-Oscillatory) (LeVeque
1992, [25]; Sonar 1997, [37]) and WENO (Weighted Essentially Non-Oscillatory)
schemes have been introduced (Jiang and Wu 1999, [16]; Liu et al. 1994, [27]).

In lake and ocean dynamics, with the introduction of three-dimensional circula-
tion models the convection terms take on considerable importance; if not in the equa-
tions of motion, then certainly in the temperature and salinity equations. Besides,
the interest in hydrodynamic modeling as a tool to study water quality problems
led to the use of convection-diffusion equations and their approximate treatment to
simulate transports of dissolved or suspended matter in natural basins (Hutter and
Wang 1998, [14]; Lam and Simons 1976, [21]). To our surprise, so far, in com-
putational lake and ocean dynamics, only few models use high-resolution schemes
to simulate convection terms, while most models treat convection terms still only
with traditional central or upstream differences. The treatment of convection terms
in three-dimensional circulation models in lakes forms the subject of the subsequent
chapter.
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