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Abstract This chapter demonstrates the development of a brain computer interface
(BCI) decision support system for controlling the movement of a wheelchair for
neurologically disabled patients using their Electroencephalography (EEG). The
subject was able to imagine his/her hand movements during EEG experiment which
made EEG oscillations in the signal that could be classified by BCI. The BCI will
translate the patient’s thoughts into simple wheelchair commands such as ‘‘go’’ and
‘‘stop’’. EEG signals are recorded using 59 scalp electrodes. The acquired signals
are artifacts contaminated. These artifacts were removed using blind source sepa-
ration (BSS) by independent component analysis (ICA) to get artifact-free EEG
signal from which certain features are extracted by applying discrete wavelet
transformation (DWT). The extracted features were reduced in dimensionality
using principal component analysis (PCA). The reduced features were fed to neural
networks classifier yielding classification accuracy greater than 95 %.
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1 Introduction

Brain computer interface creates a new communication system between the brain
and an output device by bypassing conventional motor output pathways of nerves
and muscles [1–3]. The BCI operation is based on two adaptive controllers, the
user’s brain, which produces the activity that encodes the user thoughts, and the
system, which decodes this activity into device commands [4, 5]. When advanced
Computational Intelligence (CI) and machine learning techniques are used, a Brain
computer interface can learn to recognize signals generated by a user after short
time of training period [6–14]. The proposed system depends on the EEG activity
that derives the user’s wishes. Subjects are trained to imagine right and left hand
movements during EEG experiment. The imagination of right or left hand
movement results in rhythmic oscillations in the EEG signal. The oscillatory
activity is comprised of event-related changes in specific frequency bands. This
activity can be categorized into event-related desynchronization (ERD), which
defines an amplitude (power) decrease of l rhythm (8–12 Hz) or b rhythm
(18–28 Hz), and event-related synchronization (ERS), which characterizes
amplitude (power) increase in these EEG rhythms. The system is used to output
commands to a remote control to control the movement of a wheelchair via radio
frequency (RF) waves (Fig. 1).

2 Methodology

This work is applied on a dataset that uses EEG activity recorded from 59 scalp
electrodes placed according to the international 10/20 system of channel locations.
The signals were sampled at 100 Hz. Two different tasks, an imagined right-hand
movement and an imagined left-hand movement, are performed in the experiment.
The brain signals recorded from the scalp encode information about the user’s

Fig. 1 Block diagram of the system

98 A. T. Azar et al.



thoughts. A BCI system has been established to decode this information and
translate it into device commands. Figure 2 shows the processing stages of BCI.
First the artifacts contaminated in the EEG signal are removed in order to increase
the signal to noise ratio (SNR) of the acquired EEG signal. Second, certain features
are extracted and translated into device control commands. Each processing phase
will be discussed in the following sections.

A. Artifact Removal

Artifacts are non–brain based EEG activity that corrupt and disturb the signal
making it unusable and difficult to interpret. To increase the effectiveness of BCI
system, it is necessary to find methods for removing the artifacts. The artifact
sources can be internal or external. Internal artifacts are those which are generated
by the subject itself and uncorrelated to the movement in which we are interested.
This type of artifacts includes eye movement, eye blink, heart beat and other
muscle activity. On the other hand the external artifacts are coming from the
external world such as line noise and electrode displacement. Several approaches
for removing these artifacts have been proposed. Early approaches to the task of
subtracting artifacts using regression methods were met with limited success
[15–17]. Many of the newer approaches involve techniques based on blind source
separation. In this chapter, a generally applicable method is applied for removing a
wide variety of artifacts based on blind source separation by independent com-
ponent analysis. The ICA work was performed on Matlab (http://www.
mathworks.com) using EEGLAB software toolbox [18]. ICA is a statistical and
computational technique that finds a suitable representation of data by finding a
suitable transformation. It performs the rotation by minimizing the gaussianity of
the data projected on the new axes. By this way it can separate a multivariate
signal into additive subcomponents supposing the mutual statistical independence
of the non-Gaussian source signals.

Bell and Sejnowski [19] proposed a simple neural network algorithm that
blindly separates mixtures, X, of independent sources, S, using information
maximization (infomax). They showed that maximizing the joint entropy of the
output of a neural processor minimizes the mutual information among the output
components. Makeig et al. [16] proposed an approach to the analysis of EEG data
based on infomax ICA algorithm. They showed that the ICA can be used to
separate the neural activity of muscle and blink artifacts and find the independent

Retinal Image 

Decision Classifier 

Artifact Removal

Feature 
Extraction and 

Feature 
Selection

Fig. 2 The processing stages of BCI
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components of EEG [20]. Once the independent components are extracted,
‘‘corrected EEG’’ can be derived by identifying the artifactual components and
eliminating their contribution to EEG.

ICA methods are based on the assumptions that the signals recorded from the
scalp are mixtures of temporally independent cerebral and artifactual sources, that
potentials from different parts of the brain, scalp, and the body are summed lin-
early at the electrodes, and that propagation delays are negligible. ICA will solve
the blind source separation problem to recover the independent source signals after
they are linearly mixed by an unknown matrix A. Nothing is known about the
sources except that there are N recorded mixtures, X. ICA model will be:

x ¼ AS ð1Þ

The task of ICA is to recover a version U of the original sources, S, by finding a
square matrix W, the inverse of matrix A, that invert the mixing process linearly as:

U ¼ WX ð2Þ

For EEG analysis, the rows of X correspond to the EEG signals recorded at the
electrodes, the rows of U correspond to the independent activity of each compo-
nent (Fig. 3), and the columns of A correspond to the projection strengths of the
respective components onto the scalp sensors. The independent sources were
visually inspected and artifictual components were rejected to get a ‘‘Corrected
EEG’’ matrix, X0, by back projection of the the matrix of activation waveforms, U,
with artifactual components set to zero, U0, as:

X0 ¼ ðWÞ�1U0 ð3Þ

Before applying ICA algorithm on the data, it is very useful to do some pre-
processing. One popular method is to transform the observed data matrix to obtain
a new matrix in which its components are uncorrelated as a condition to be
independent. This can be achieved by applying principal component analysis
(PCA). PCA finds a transformation for the data to a new orthogonal coordinate

Fig. 3 EEG independent components (ICs)
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system with the axes ordered in terms of the amount of variance. At the same time,
PCA can be used to reduce the dimension of the data by keeping the principal
components that contribute to the most important variance of the data and ignoring
the other ones. This often has the effect of reducing the noise and preventing
overlearning of ICA.

B. Feature Extraction

To get a reduced and more meaningful representation of the preprocessed signal
for further classification, certain features are measured to capture the most
important relevant information. The patterns of right and left hand movements are
focused in the channels recorded from the sensorimotor area of the brain in the
central lobe and some of the other channels might be unusable for discrimination
between the two motor tasks. Therefore, a minimum number of EEG channels
were selected from the primary sensorimotor cortex area for further processing
(Fig. 4). The right cerebral hemisphere of the brain controls the left side of the
body and the left hemisphere controls the right side. It was found that left hand
movement appears strongly on the C4 channel and right hand movement appears
strongly on the C3 channel. The two selected channels were found to be sufficient
to ensure a high level of classification as they contain the most relevant infor-
mation for discrimination [21]. Commonly used techniques for feature extraction
such as Fourier analysis have the serious drawback that transitory information is
lost in the frequency domain. The investigation of features in the EEG signals
requires a detailed time frequency analysis. Wavelet analysis comes into play here
since wavelet allows decomposition into frequency components while keeping as
much time information as possible [22–26]. Wavelets are able to determine if a

Fig. 4 EEG channel
locations showing the
selected channels
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quick transitory signal exists, and if so, it can localize it. This feature makes
wavelets very useful to the study of EEG.

The wavelet transform is achieved by breaking up of a signal into shifted and
scaled versions of the original (or mother) wavelet. The mother wavelet ø is scaled
by parameter s and translated by s. WT of a time domain signal x (t) is defined as:

wðs; sÞ ¼
Z

xðtÞW�s;sðtÞ dt ð4Þ

This wavelet transform is called the continuous wavelet transform (CWT). In
our case both the input signal and the parameters are discrete so the transform here
is the discrete version of wavelet transform. To create the feature vector of each
trial, discrete wavelet transform (DWT) was applied. An efficient way to imple-
ment DWT is by using digital filter bank using Mallat’s algorithm [27].

In this algorithm the original signal passes through two complementary filters,
low pass and high pass filters, and wavelet coefficients are quickly produced. This
process is iterated to generate at each level of decomposition an approximation cA
which is the low frequency component and a detail cD which is the high frequency
component (Fig. 5). The ability of the mother wavelet to extract features from the
signal is dependent on the appropriate choice of the mother wavelet function. The
different orders (wavelets) of the mother wavelet ‘‘Coiflet’’ were tried out to
implement the wavelet decomposition (Fig. 6). Each decomposition level corre-
sponds to a breakdown of the main signal to a bandwidth. The low frequency
component is the most important part. It carries the information needed about the
motor movement found in the ì rhythm (8–12 Hz). Therefore, the coefficients of
the second level decomposition cA2 were selected to form the feature vector of
each trial. As wavelet coefficients have some redundancy, dimensionality reduc-
tion of feature vectors is suggested as a preprocessing step before classification.
This could lead to better classification results as it will keep the minimum number
of coefficients that are significant and discriminatory. This was achieved by
applying PCA by projecting the coefficients onto the first n principal components
(PCs), where n is much smaller than the dimensionality of the features. The
number of PCs to project the data can be determined by examining the energy of
the data. Therefore, PCA was formed by projecting 150 dimensional patterns onto
the first 44 PCs which accounted for 99.98 % of the variability of the data.

Fig. 5 Multi-level wavelet
decomposition of EEG signal
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C. Classification

Classification was performed by training nonlinear feedforward neural net-
works using the standard backpropagation algorithm to minimize the squared error
between the actual and the desired output of the network [28]. The use of nonlinear
methods is useful when the data is not linearly separable. The network is used to
develop a nonlinear classification boundary between the two classes in feature
space in which each decision region corresponds to a specific class.

The network was implemented with 3 hidden neurons in the hidden layer and a
single neuron in the output layer that will result in a single value 0 or 1 (Fig. 7).
The target output during the training was set to 0 and +1 to represent the different
classes. When simulating new input data, an output value greater than or equal to
0.5 represents the first class and a value less than 0.5 represents the other one. The
data from one subject was divided into training set and test set using ‘‘leave-k-out’’
cross validation method. By this way the data was divided into k subsets of equal
size. The network was trained k times. Each time leaving out one of the subsets
from training and using only the remaining subset for validation. To get the true
classification rate, the accuracy was averaged over all subsets.

Fig. 6 The mother wavelet (Coiflet) with the different orders used in the decomposition

Fig. 7 The architecture of
the feed-forward neural
network used for
classification
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3 Results and Discussion

To evaluate the performance of our system, EEG data acquired from a motor
experiment is processed. The subject made an imagined left or right hand keyboard
pressing synchronized with command received. A total of 90 trials were carried
out in the experiment for each subject. Table 1 shows the results of all classifi-
cation experiments as the average percent of test patterns classified correctly using
the ‘‘leave-k-out’’ cross validation method.

The results presented above demonstrate that the most effective results were
found by applying the mother wavelet ‘‘Coiflet’’ order 5. As there is no well-
defined rule for selecting a wavelet basis function in a particular application or
analysis, different wavelets were tried out. However, for a more precise choice of a
wavelet function, the properties of the wavelet function and the characteristics of
the signal to be analyzed should be matched which was the case in the wavelet
‘‘Coiflet’’ of order 5. Also there are other wavelet families can be applied like
Harr, Daubechies, and Symmlet. Since the classification accuracy is sensitive to
the contaminated EEG artifacts, our processing was performed on artifact-free
EEG signal. In order to improve the performance of the system in real time
applications, it is ideal if the removal of the artifacts is done using automatic
methods [29]. The results also indicated that the two channels C3 and C4 of the
sensorimotor cortex area are sufficient to ensure high classification rates. Müller-
Gerking et al. [30] and Ramoser et al. [31] studies give a strong evidence that
further increase in the number of used channels can increase the classification
accuracy. Other studies were performed on the same dataset using a hierarchical
multi-method approach based on spatio-temporal pattern analysis achieved clas-
sification accuracy up to 81.48 % [32].

4 Conclusions

With the advances in DSS, expert systems (ES) and machine learning, the effects
of these tools are used in many application domains and medical field is one of
them. Classification systems that are used in medical decision making provide

Table 1 Classification accuracy of imagined right and left hand movements for 6 subjects
obtained using the different orders of the mother wavelet ‘‘Coiflet’’

Subject Coif1 (%) Coif3 (%) Coif 5 (%)

Subject 1 94.45 95.56 96.67
Subject 2 92.23 93.34 97.78
Subject 3 91.12 94.45 96.67
Subject 4 90 92.23 97.78
Subject 5 86.67 91.12 100
Subject 6 91.12 94.45 95.56
Average 87.93 93.52 97.41
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medical data to be examined in shorter time and more detailed. Recently, there has
been a great progress in the development of novel computational intelligence
techniques for recording and monitoring EEG signal. Brain Computer Interface
technology involves monitoring of brain electrical activity using electroencepha-
logram (EEG) signals and detecting characteristics of EEG patterns by using
digital signal processing (DSP) techniques that the user applies to communicate.
The proposed wavelet-based processing technique leads to satisfactory classifi-
cation rates that improve the task of classifying imagined hand movements. The
results are promising and show the suitability of the technique used for this
application. It is hoped to realize the system in real world environment and to
overcome the BCI challenges of accuracy and speed.
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