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Abstract In this chapter a new approach is suggested for compression of CT
images with branched inverse pyramidal decomposition. A packet of CT images is
analyzed and the correlation between each couple inside it is found. Then the
packet is split into groups of images with almost even correlation, typically into six
or more. One is chosen as a referent being mostly correlated with all of the others.
From the rest difference images with the referent are found. After the pyramidal
decomposition a packet of spectral coefficients is formed and difference levels
which are coded by entropy coder. Scalable high compression is achieved at higher
image quality in comparison to that of the JPEG2000 coder. The proposed
approach is considered perspective also for compression of MRI images.
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1 Introduction

Important stage in Computed Tomography (CT) is archiving the images obtained
in an efficient manner concerning the data volume occupied and the image quality.
A vast number of medical image compression techniques exist [1] which can be
divided into two large groups—lossless [2, 3] and lossy [4] depending on the
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ability to restore the image fully or not. In both groups often a certain type of
decomposition of the image is applied—either a linear orthogonal transform or a
wavelet one combined with spectral coefficients rearrangement and entropy cod-
ing. Some authors propose completely different methods such as the min–max
method developed by Karadimitriou and Tyler [5].

Wu [6] propose an approach based on adaptive sampling of DCT coefficients
achieving compression in the interval 0.18–0.25 bpp at PSNR between 41 and
43 dB. The quality of the images at this compression is comparable to that of the
JPEG2000 as the author shows while the JPEG coder produces images with PSNR
between 31 and 40 dB for the same levels. Erickson et al. [7] confirm that wavelet
decomposition assures better quality for the images being compressed from 0.1 to
0.4 bpp in comparison to the JPEG coder.

Further more authors undertake the advantages of the wavelet decomposition
for medical image compression combining it with other techniques to construct
more efficient coders—using joint statistical characterization [8], by linear pre-
diction of the spectral coefficients [9], introducing region of interest (ROI) [10],
incorporating planar coding [11], etc. Nevertheless, the higher compression levels
achieved some authors point out the significant reduction of the visual quality of
these images [4]. While cumulative quality measures such as PSNR stay high the
smoothing of vast image areas due to the wavelet coefficients quantization
becomes intolerable for compression ratios (CR) smaller than 0.8 bpp in some
cases.

In this chapter a new approach for lossy CT image compression is suggested. It
is based on linear orthogonal transforms with a new type of spectral coefficients
hierarchical grouping provided by the Branched Inverse Pyramidal Decomposition
(BIDP). Along with entropy coding the approach assures higher image quality than
the previously developed methods at the same CR.

The chapter is arranged as follows: in Sect. 2 are given the steps of the proposed
algorithm; in Sect. 3 some experimental results are presented, and then a con-
clusion is made.

2 Compression of CT Images with BIDP

A new opportunity for achieving highly effective compression of CT images is the
usage of BIDP with 3 levels based on orthogonal transforms. It represents a
generalization of the Inverse Pyramidal Decomposition (IDP) [12] related to group
of CT images.

The new approach called BIDP includes the following stages:

1. Selection of a referent image from the group of CT images based on correlation
analysis. For the purpose the correlation coefficient qxy should be found
between the vectors ~X ¼ ½x1; x2; . . .; xS�t and ~Y ¼ ½y1; y2; . . .; yS�t describing the
intensity of the pixels inside a couple of images from the group:
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Here �x ¼ 1
S

PS
s¼1 xs and �y ¼ 1

S

PS
s¼1 ys are the average values of the elements xs

and ys of the both vectors and S is the number of pixels in the images. The
selection of referent image is done after calculation of all correlation coefficients
for all couples possible from the group of CT images. The number of consecutive
images N forming a group for compression from all the images in the CT packet is
found according the relation varðqxg;ygÞ[ qxd;yd where qxg;yg is the correlation
coefficient between all the couples of images in the group and the qxd;yd is the
correlation coefficient between the referent image from the group and the most
distant one from the CT packet. As shown in Sect. 3 significant variation exist for
the correlation coefficient inside the selected group and outside it there is satu-
ration for its value indicating the limits of the group itself. For a group of N images
the number L of all couples l(p, q) is:

L ¼
XN�1

p¼1

XN

q¼pþ1

1ðp; qÞ: ð2Þ

After calculating all L correlation coefficients qpq the index p0 is found for
which it is true that:

XN

q¼1

qp0q�
XN

q¼1

qpq for p; q ¼ 1; 2; . . .;N; when p 6¼ q and p 6¼ p0: ð3Þ

Then the consecutive number of the referent image for the group is p0, that is
½BR� ¼ ½Bp0 �:

2. The matrix of the referent image R is divided to blocks with dimensions
2n 9 2n and each of them is presented with Inverse Pyramidal Decomposition
(IDP) with 3 levels:

½BRð2nÞ� ¼ ½~B0Rð2nÞ� þ
X2

p¼1

½~Ep�1;Rð2nÞ� þ ½E2;Rð2nÞ�; ð4Þ

where ½E2;Rð2nÞ� is the matrix of the residual from the decomposition. In the last
expression each matrix is with dimensions 2n 9 2n. The first component ½~B0Rð2nÞ�
for the level p = 0 is a rough approximation of the block [BR(2n)]. It is obtained by
applying inverse 2D-DCT over the transformed block ½~S0Rð2nÞ� in correspondence
with the expression:

½~B0Rð2nÞ� ¼ ½T0ð2nÞ��1½~S0Rð2nÞ�½T0ð2nÞ��1; ð5Þ

where ½T0ð2nÞ��1 is a matrix with dimensions 2n 9 2n for the inverse 2D-DCT.
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The matrix ½~S0Rð2nÞ� ¼ ½m0ðu; vÞ:s0Rðu; vÞ� is the transform block of the cut 2D-
DCT over [BR(2n)]. Here m0(u,v) are the elements of the binary matrix-mask
[M0(2n)] with the help of which the preserved coefficients are being determined
½~S0Rð2nÞ� in accordance to the equation:

m0ðu; vÞ ¼
1; if s0Rðu; vÞ is preserved coefficient;

0; otherwise;

(
for u; v ¼ 0; 1; . . .; 2n � 1:

ð6Þ

The values of the elements m0(u,v) are chosen by the condition the preserved
coefficients ~s0Rðu; vÞ ¼ m0ðu; vÞ:s0Rðu; vÞ to correspond to those with the highest
average energy into the transformed blocks ½S0Rð2nÞ� for all the blocks to which the
image has been divided. The transformed block ½S0Rð2nÞ� from [BR(2n)] is found by
the 2D-DCT:

½S0Rð2nÞ� ¼ ½T0ð2nÞ�½BRð2nÞ�½T0ð2nÞ�; ð7Þ

where ½T0ð2nÞ� is a matrix with dimensions 2n 9 2n for level p = 0 which is used
for implementing the DCT.

The rest components in decomposition (4) are the approximation matrices

½~Ep�1;Rð2n�pÞ� for p = 1, 2. Each of them consists of sub-matrices ½~Ekp

p�1;Rð2n�pÞ�
with dimensions 2n-p9 2n-p for kp = 1, 2,…,4p obtained by its quad-tree split. On

the other hand each sub-matrix ½~Ekp

p�1;Rð2n�pÞ� is calculated by:

½~Ekp

p�1;Rð2n�pÞ� ¼ ½Tpð2n�pÞ��1½~Skp

pRð2n�pÞ�½Tpð2n�pÞ��1 for kp ¼ 1; 2; . . .; 4p; ð8Þ

where 4p is the number of the branches of the quad-tree in level p of the

decomposition; ½Tpð2n�pÞ��1—matrix for inverse 2D-WHT; ½~Skp

pRð2n�pÞ�—the

transformed block of the cut 2D-WHT of the difference matrix ½Ekp

p�1;Rð2n�pÞ�:
The elements ~s

kp

pRðu; vÞ ¼ mpðu; vÞ: skp

pRðu; vÞ of the matrix ½~Skp

pRð2n�pÞ� depend on
the elements mp(u,v) of the binary mask [Mp(2n-p)]:

mp u; vð Þ ¼
1; if s

kp

pR u; vð Þ� preserved coefficient;

0 otherwise:
for u; v ¼ 0; 1; . . .; 2n�p � 1:

8
<

:

ð9Þ

Here s
kp

pRðu; vÞ are elements of the transformed block ½Skp

pRð2n�pÞ� which is
obtained by the 2D-WHT:

½Skp

pRð2n�pÞ� ¼ ½Tpð2n�pÞ�½Ekp

p�1;Rð2n�pÞ�½Tpð2n�pÞ�: ð10Þ

where ½Tpð2n�pÞ� is a matrix with dimensions 2n-p 9 2n-p for level p = 0 by
which WHT is applied.
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It is possible to represent each group of four neighbouring elements ~s
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one and the same u and v in the following way:
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which allows to gain even higher correlation between the spectral coefficients
since the last three ones for positions (0, 1), (1, 0) and (1, 1) form differences two
by two and these differences often are zero valued because neighboring blocks
contain almost identical content.

The inverse transform which leads to full restoration of ~s
kp

pRðu; vÞ is given by:
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The difference matrix ½Ep�1;Rð2n�pÞ� for level p containing the sub-matrices

½Ekp

p�1;Rð2n�pÞ� is determined by the following equation:

½Ep�1;Rð2n�pÞ� ¼ ½BRð2nÞ� � ½~B0Rð2nÞ� for p ¼ 1;
½Ep�2;Rð2n�pÞ� � ½~Ep�2;Rð2n�pÞ� for p ¼ 2:

�
ð13Þ

3. Branch is taken only for level p = 0 of the pyramid (4) of the referent image
R with dimensions H 9 V. The preserved coefficients ~s0Rðu; vÞ with all the
same spatial frequencies (u,v) from all blocks ½~B0Rð2nÞ� for p = 0 are united
into two-dimensional arrays ½~S0Rðu; vÞ� with dimensions (H/2n) 9 (V/2n). The
number of these matrices is equal of the number of the preserved coefficients
~s0Rðu; vÞ in each block from the referent image. In resemblance to Eq. (4) every
found matrix ½~S0Rðu; vÞ� ¼ ½Buv� is represented by IPD with 2 levels:

½Buv� ¼ ½~Buv� þ ½~E0;uv� þ ½E1;uv�; ð14Þ

where ½E1;uv� is the residual from the decomposition. Its components are matrices
with dimensions (H/2n) 9 (V/2n) and they are found in a similar fashion as it was
done in (4). The first component for level p = 0 is found by:

½~Buv� ¼ ½T0��1½~S0�½T0��1; ð15Þ

where ½T0��1 is a matrix with dimensions (H/2n) 9 (V/2n) used for the inverse
2D-WHT. The matrix ½~S0� is the transformed block of ½~Buv� obtained by the cut
2D-WHT:
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½~S0� ¼ ½T0�½~Buv�½T0�: ð16Þ

The preserved coefficients of the transformed block ½~S0� are calculated
according to Eq. (6). The next component for p = 1 of decomposition (14) is
estimated based on the difference:

½E0� ¼ ½Buv� � ½~Buv�: ð17Þ

The approximation of this difference is given by:

½~Ek1
0 � ¼ ½T1��1½~Sk1

1 �½T1��1 for k1 ¼ 1; 2; 3; 4; ð18Þ

where ½~Sk1
1 �is the transformed block returned by the cut 2D-WHT:

½Sk1
1 � ¼ ½T1�½Ek1

0 �½T1�: ð19Þ

Here [T1] is a matrix for WHT with dimensions (H/2n ? 1) 9 (V/2n ? 1).

4. For every block of the ith CT image from the group which is not referent a
difference is found:

½E0ið2nÞ� ¼ ½Bið2nÞ� � ½~B0Rð2nÞ� for i ¼ 0; 1; 2; . . .;N � 1; ð20Þ

where N is the number of the CT images in the group.
The difference matrices ½Ep�1;ið2nÞ� for the next levels p = 1, 2 are divided to

4p sub-matrices with dimensions 2n-p 9 2n-p and over each one of them is
applied the cut 2D-WHT. Further the processing of the obtained matrices is done
in a similar way as the processing of the components of the referent image R pa
p = 1, 2.

It should be noticed that when the number of the preserved coefficients in a
certain block is 4 using the 2D-WHT it is possible to reduce this number for levels
p = 1, 2. As shown in [4] for each of these levels it is not necessary to calculate

coefficients s
kp
p ð0; 0Þ as they are always zero. Thus, the number of the coefficients

necessary for lossless reconstruction of the image becomes smaller with a factor of
1.33.

From the output of the coder the following arrays containing spectral coeffi-
cients are passed:

1. From level p = 0 of the referent image represented with a branch in the form of
pyramid with levels p = 0, 1 and residual 3 arrays are formed of coefficients
with frequencies (u, v). Then the total amount of arrays is 3 9 (number of
preserved coefficients) and the length of each array is (H/2n) 9 (V/2n);

2. From levels p = 1, 2 for each of the N-th images in the group are formed arrays
of preserved coefficients with frequencies (u, v). The number of the arrays is
equal to that of the preserved coefficients and their lengths are equal to 4p(H/
2n+p) 9 (V/2n+p) = (H/2n) 9 (V/2n).
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Over the coefficients from the output of the coder for all the levels of the
branched pyramid for every CT image in the group lossless entropy coding (EC) is
applied which includes run-length coding (RLC), Huffman coding (HC) and
arithmetic coding (AC).

At the stage of decoding the compressed data for the group of CT images all the
operations are carried out in reverse order: lossless decoding, branch matrix res-
toration based on Eq. (14), referent image decoding according to (4) and the rest
images in correspondence to (20). As a result all CT images from the group are
restored.

3 Experimental Results

The CT test images are 576 greyscale slices in DICOM format. The size of all
images is H = 512 9 V = 512 pixels with intensity depth of 16 bpp.

In Fig. 1a the correlation coefficient is presented between each two images from
the packet and in Fig. 1b—the same coefficient only between the first image and
all the others. As suggested in Sect. 2 a strong variation of the correlation exists
inside a candidate group around a proper referent and outside it asymptotically
goes to a constant.

The first test group for which experimental results are presented in Table 1
consists from 9 images shown in Fig. 2—the first one appears to be the referent.
The size of the initial block is 16 9 16 (n = 4) and the number of the preserved
coefficients is 7—all of them low-frequent. In the zero and first level of the branch
the preserved coefficients are 4—again low-frequent. For the main branch of the
inverse pyramid in the first and second level 4 low-frequent coefficients are
preserved.

Fig. 1 The correlation coefficient for a all couples of images, and b the first one and all the
others
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In Fig. 3 the changes of the average PSNR and the average SSIM from the
average CR are given for the group compared to those obtained when JPEG2000
coder is applied over each image separately.

With the exception of the range of low compression (under 1.5 bpp) the sug-
gested approach produces higher value for the average PSNR than JPEG2000.
Especially higher is the difference for the big CR values—with 6 dB difference on
average. In relation to preserving the structural similarity of the compressed
images it is also visible that the proposed approach is dominating JPEG2000—at
0.1 bpp with more than 0.05 for the SSIM.

In Fig. 4a is shown the referent image with an isolated area magnified after
compressing with BIDP in Fig. 4b and with JPEG2000 in Fig. 4c at CR = 0.11 bpp.

(a) (b) (c)

(d)

(g)

(e)

(h)

(f)

(i)

Fig. 2 First test group of 9 images: a base image, and b–i 8 side images
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Worsening the quality for JPEG2000 is obvious in comparison to the BIDP
coder—even vast homogenous areas are highly blurred and no details are visible in
practice. Only slight block effect is present when applying BIDP at such high CR
changing the smaller details insignificantly.

4 Conclusion

From the presented experimental results the advantages of the proposed approach
using BIDP become evident when compressing CT images. The coder presented
proves to be more efficient than the widely used in practice JPEG2000 coder.
Considerably high values for the compression ratio are achieved while preserving

(a) (b) (c)

Fig. 4 Visual quality comparison for a segment of the a original referent image compressed at
CR = 0.11 bpp using, b BIDP, and c JPEG2000

0 0.5 1 1.5
25

30

35

40

45

CR, bpp

P
S

N
R

, d
B

BIDP

JPEG2000

0 0.5 1 1.5
0.9

0.92

0.94

0.96

0.98

1

CR, bpp

S
S

IM

BIDP

JPEG2000

(a) (b)

Fig. 3 Quality comparison between BIDP and JPEG2000 based on a PSNR, and b SSIM
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high quality of the images—around 39 dB on average and in some cases—over
44 dB. The structural similarity index is close to 1. With the introduction of
quantization tables for the spectral coefficients being transmitted it is possible to
achieve smooth change for the compression ratio. With the increase of the size of
the images it is suitable to increase the size of the initial block (working window,
2n 9 2n) and the number of the levels of the pyramid. Possibility for further
development of the proposed approach is applying it over MRI images.
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