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Abstract Graph theory provides algorithms and tools to handle models for
important applications in medicine, such as drug design, diagnosis, validation of
graph-theoretical methods for pattern identification in public health datasets. In this
chapter we characterize weakly quasi-threshold graphs using the weakly decom-
position, determine: density and stability number for weakly quasi-threshold graphs.

1 Introduction

The well-known class of cographs is recursively defined by using the graph
operations of ‘union’ and ‘join’ [1]. Bapat et al. [2], introduced a proper subclass
of cographs, namely the class of weakly quasi-threshold graphs, by restricting the
join operation. The class of cographs coincides with the class of graphs having no
induced P4 [3]. Trivially-perfect graphs, also known as quasi-threshold graphs, are
characterized as the subclass of cographs having no induced C4, that is, such
graphs are fP4;C4g-free graphs, and are recognized in linear time [4, 5]. Another
subclass of cographs are the fP4;C4; 2K2g-free graphs known as threshold graphs,
for which there are several linear-time recognition algorithms [4, 5]. Every
threshold graph is trivially-perfect but the converse is not true.

When searching for recognition algorithms, frequently appears a type of par-
tition for the set of vertices in three classes A;B;C, which we call a weakly
decomposition, such that: A induces a connected subgraph, C is totally adjacent to
B, while C and A are totally nonadjacent.

The structure of the chapter is the following. In Sect. 2 we present the notations
to be used, in Sect. 3 we give the notion of weakly decomposition and in Sect. 4
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we give a recognition algorithm and determine the clique number, the stability
number on weakly quasi-threshold graphs.

2 General Notations

Throughout this chapter, G ¼ ðV ;EÞ is a connected, finite and undirected graph,
without loops and multiple edges [6], having V ¼ VðGÞ as the vertex set and E ¼
EðGÞ as the set of edges. G is the complement of G. If U � V , by GðUÞwe denote the
subgraph of G induced by U. By G� X we mean the subgraph GðV � XÞ, whenever
X � V , but we simply write G� v, when X ¼ fvg. If e ¼ xy is an edge of a graph G,
then x and y are adjacent, while x and e are incident, as are y and e. If xy 2 E, we also
use x� y, and x¿y whenever x; y are not adjacent in G. A vertex z 2 V distinguishes
the non-adjacent vertices x; y 2 V if zx 2 E and zy 62 E. If A;B � V are disjoint and
ab 2 E for every a 2 A and b 2 B, we say that A;B are totally adjacent and we denote
by A�B, while by A¿B we mean that no edge of G joins some vertex of A to a vertex
from B and, in this case, we say that A and B are non-adjacent.

The neighbourhood of the vertex v 2 V is the set NGðvÞ ¼ fu 2 V : uv 2 Eg,
while NG½v� ¼ NGðvÞ [ fvg; we simply write NðvÞ and N½v�, when G appears
clearly from the context. The neighbourhood of the vertex v in the complement of
G will be denoted by NðvÞ.

The neighbourhood of S � V is the set NðSÞ ¼ [v2SNðvÞ � S and N½S� ¼ S[
NðSÞ. A clique is a subset Q of V with the property that GðQÞ is complete. The clique
number or density of G, denoted by xðGÞ, is the size of the maximum clique. A clique
cover is a partition of the vertices set such that each part is a clique. hðGÞ is the size of
a smallest possible clique cover of G; it is called the clique cover number of G. A
stable set is a subset X of vertices where every two vertices are not adjacent. aðGÞ is
the number of vertices is a stable set o maximum cardinality; it is called the stability

number of G. vðGÞ ¼ xðGÞ and it is called chromatic number.
By Pn, Cn, Kn we mean a chordless path on n� 3 vertices, a chordless cycle on

n� 3 vertices, and a complete graph on n� 1 vertices, respectively.
A graph is called cograph if it does not contain P4 as an induced subgraph.
Let F denote a family of graphs. A graph G is called F-free if none of its

subgraphs is in F.

3 Preliminary Results

3.1 Weakly Decomposition

At first, we recall the notions of weakly component and weakly decomposition.

Definition 1 [7–9] A set A � VðGÞ is called a weakly set of the graph G if
NGðAÞ 6¼ VðGÞ � A and GðAÞ is connected. If A is a weakly set, maximal with
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respect to set inclusion, then GðAÞ is called a weakly component. For simplicity,
the weakly component GðAÞ will be denoted with A.

Definition 2 [7–9] Let G ¼ ðV ;EÞ be a connected and non-complete graph. If A
is a weakly set, then the partition fA;NðAÞ;V � A [ NðAÞg is called a weakly
decomposition of G with respect to A.

Below we remind a characterization of the weakly decomposition of a graph.
The name of ‘‘weakly component’’ is justified by the following result.

Theorem 1 [8–10] Every connected and non-complete graph G ¼ ðV ;EÞ
admits a weakly component A such that GðV � AÞ ¼ GðNðAÞÞ þ GðNðAÞÞ.

Theorem 2 [8, 9] Let G ¼ ðV ;EÞ be a connected and non-complete graph and
A � V . Then A is a weakly component of G if and only if GðAÞ is connected and
NðAÞ�NðAÞ.

The next result, that follows from Theorem 1, ensures the existence of a weakly
decomposition in a connected and non-complete graph.

Corollary 1 If G ¼ ðV ;EÞ is a connected and non-complete graph, then V
admits a weakly decomposition ðA;B;CÞ, such that GðAÞ is a weakly component
and GðV � AÞ ¼ GðBÞ þ GðCÞ.

Theorem 2 provides an Oðnþ mÞ algorithm for building a weakly decompo-
sition for a non-complete and connected graph.

In [7] we give:
Let G ¼ ðV;EÞ be a connected graph with at least two nonadjacent vertices and

(A,N,R) a weakly decomposition, with A the weakly component. G is a P4-free
graph if and only if:
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(1) A�N�R;
(2) G(A), G(N), G(R) are P4-free graph.

3.2 Weakly Quasi-Threshold Graphs

In this subsection we remind some results on weakly quasi-threshold graphs.
A cograph which is C4-free is called a quasi-threshold graph.
In [2] we study the class of weakly quasi-threshold graphs that are obtained

from a vertex by recursively applying the operations (1) adding a new isolated
vertex, (2) adding a new vertex and making it adjacent to all old vertices,
(3) disjoint union of two old graphs, and (4) adding a new vertex an making it
adjacent to all neighbours of an old vertex.

Let G ¼ ðV ;EÞ be a graph. Define a relation on V [2] as follows: Let u; v 2 V .
Then u � v if NðuÞ ¼ NðvÞ. We observe that � is an equivalence relation and the
equivalence classes are stable sets in G.

Let G be a graph with Q1; :::;Qk as the equivalence classes under the relation �.

For each i ¼ 1; :::; k choose a vertex ui 2 Qi. We call the subgraph eG of G induced
by u1; :::; uk as a subgraph of representatives of G.

Let G be a graph. Then G is weakly quasi-threshold [2] if an only if a subgraph
of representatives is quasi-threshold.

Let G ¼ ðV;EÞ be a connected graph. Then the following are equivalent [2]:

(1) G is a weakly quasi-threshold
(2) G ia a P4-free and there is no induced C4 ¼ ½v1; v2; v3; v4� with Nðv1Þ 6¼ Nðv3Þ

and Nðv2Þ 6¼ Nðv4Þ.

A graph G is weakly quasi-threshold [11] if and only if G does not contain any P4

or co� ð2P3Þ as induced subgraphs.

4 New Results on Threshold Graphs

4.1 Characterization of a Weakly Quasi-Threshold Graph
Using the Weakly Decomposition

In this paragraph we give a new characterization of weakly quasi-threshold graphs
using the weakly decomposition.

Theorem 3 Let G ¼ ðV;EÞ be a connected graph with at least two nonadjacent
vertices and (A, N, R) a weakly decomposition, with A the weakly component. G is
a weakly quasi-threshold graph if and only if:
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(1) A�N�R;
(2) GðNÞ is P3-free graph;
(3) GðA [ NÞ, GðN [ RÞ are weakly quasi-threshold graphs.

Proof Let G ¼ ðV ;EÞ be a connected, uncomplete graph and ðA;N;RÞ a weakly
decomposition of G, with GðAÞ as the weakly component.

At first, we assume that G is weakly quasi-threshold. Then G is P4-free. So,
A�N�R. Because G is weakly quasi-threshold graph it follows that GðA [ NÞ,
GðN [ RÞ are weakly quasi-threshold graphs. We suppose that GðNÞ contain P3 ¼
ðfa; b; cg; facgÞ as induced subgraph. Because GðAÞ is connected 9x; y 2 A such
that xy 2 E. Because A¿R, 8z 2 R, Gðfx; y; zgÞ ’ P3. Because N�A [ R,
Gðfa; y; a; b; c; zgÞ ’ co� ð2P3Þ, in contradicting with G is weakly quasi-thresh-
old graph.

Conversely, we suppose that (1), (2) and (3) hold. From (3), GðAÞ, GðNÞ, GðRÞ
are P4-free. Because (1) hold, G is P4-free. GðAÞ, GðNÞ, GðRÞ are fco� ð2P3Þg-
free because (3) hold. GðA [ RÞ is fco� ð2P3Þg-free because A¿R and fco�
ð2P3Þg is connected. We suppose that G contain H ¼ fco� ð2P3Þg as induced
subgraph such that VðHÞ \ A 6¼ ;, VðHÞ \ N 6¼ ; and VðHÞ \ R 6¼ ;. Because (1)
hold, N�ðA [ RÞ. The unique S � V totally adjacent with VðHÞ � S,
(S�VðHÞ � S), is S with S ¼ VðP3Þ. Then GðNÞ contain P3 as induced subgraph,
contradicting (2). So, G is fco� ð2P3Þg-free. So, G is weakly quasi- threshold
graph.

4.2 Determination of Clique Number and Stability Number
for a Weakly Quasi-Threshold Graph

In this paragraph we determine the stability number and the clique number for
weakly quasi-threshold graphs.

Proposition 1 If G ¼ ðV ;EÞ is a connected graph with at least two nonadjacent
vertices and (A, N, R) a weakly decomposition with A the weakly component then

aðGÞ ¼ maxfaðGðAÞÞ þ aðGðNðAÞÞÞ; aðGðA [ NðAÞÞÞg:

Proof Indeed, every stable set of maximum cardinality either intersects NðAÞ and
in this case the cardinal is aðGðAÞÞ þ aðGðNðAÞÞÞ or it does not intersect NðAÞ and
has the cardinal aðGðA [ NðAÞÞÞ.

Theorem 4 Let G ¼ ðV ;EÞ be connected with at least two non-adjacent vertices
and (A, N, R) a weakly decomposition with A the weakly component. If G is a
weakly quasi-threshold graph then
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aðGÞ ¼ aðGðAÞÞ þ maxfaðGðNÞÞ; aðGðRÞÞg

and

xðGÞ ¼ xðGðNÞÞ þ maxfxðGðAÞÞ;xðGðRÞÞg:

Proof Because A�N, from Proposition 1, it follows that

aðGÞ ¼ aðGðAÞÞ þ maxfaðGðNÞÞ; aðGðRÞÞg:

Because A�N�R, it follows that

xðGÞ ¼ xðGðNÞÞ þ maxfxðGðAÞÞ;xðGðRÞÞg:

5 Conclusions and Future Work

In this chapter we characterize weakly quasi-threshold graphs using the weakly
decomposition, determine: density and stability number for weakly quasi-threshold
graphs. Our future work concerns we give some applications of weakly quasi-
threshold graphs including the medicine. Also we will explore the connection of
weakly quasi-threshold graphs with the intelligent systems.
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