A Recognition Algorithm and Some Optimization Problems on Weakly Quasi-Threshold Graphs

Mihai Talmaciu

Abstract Graph theory provides algorithms and tools to handle models for important applications in medicine, such as drug design, diagnosis, validation of graph-theoretical methods for pattern identification in public health datasets. In this chapter we characterize weakly quasi-threshold graphs using the weakly decomposition, determine: density and stability number for weakly quasi-threshold graphs.

1 Introduction

The well-known class of cographs is recursively defined by using the graph operations of 'union' and 'join' [1]. Bapat et al. [2], introduced a proper subclass of cographs, namely the class of weakly quasi-threshold graphs, by restricting the join operation. The class of cographs coincides with the class of graphs having no induced P_4 [3]. Trivially-perfect graphs, also known as quasi-threshold graphs, are characterized as the subclass of cographs having no induced C_4 , that is, such graphs are $\{P_4, C_4\}$ -free graphs, and are recognized in linear time [4, 5]. Another subclass of cographs are the $\{P_4, C_4, 2K_2\}$ -free graphs known as threshold graphs, for which there are several linear-time recognition algorithms [4, 5]. Every threshold graph is trivially-perfect but the converse is not true.

When searching for recognition algorithms, frequently appears a type of partition for the set of vertices in three classes A, B, C, which we call a *weakly decomposition*, such that: A induces a connected subgraph, C is totally adjacent to B, while C and A are totally nonadjacent.

The structure of the chapter is the following. In Sect. 2 we present the notations to be used, in Sect. 3 we give the notion of weakly decomposition and in Sect. 4

M. Talmaciu (🖂)

Department of Mathematics and Informatics, "Vasile Alecsandri" University of Bacău, Str. Calea Marasesti No 157, 600115 Bacău, Romania e-mail: mtalmaciu@ub.ro

we give a recognition algorithm and determine the clique number, the stability number on weakly quasi-threshold graphs.

2 General Notations

Throughout this chapter, G = (V, E) is a connected, finite and undirected graph, without loops and multiple edges [6], having V = V(G) as the vertex set and E = E(G) as the set of edges. \overline{G} is the complement of G. If $U \subseteq V$, by G(U) we denote the subgraph of G induced by U. By G - X we mean the subgraph G(V - X), whenever $X \subseteq V$, but we simply write G - v, when $X = \{v\}$. If e = xy is an edge of a graph G, then x and y are adjacent, while x and e are incident, as are y and e. If $xy \in E$, we also use $x \sim y$, and $x \approx y$ whenever x, y are not adjacent in G. A vertex $z \in V$ distinguishes the non-adjacent vertices $x, y \in V$ if $zx \in E$ and $zy \notin E$. If $A, B \subset V$ are disjoint and $ab \in E$ for every $a \in A$ and $b \in B$, we say that A, B are *totally adjacent* and we denote by $A \sim B$, while by $A \approx B$ we mean that no edge of G joins some vertex of A to a vertex from B and, in this case, we say that A and B are *non-adjacent*.

The *neighbourhood* of the vertex $v \in V$ is the set $N_G(v) = \{u \in V : uv \in E\}$, while $N_G[v] = N_G(v) \cup \{v\}$; we simply write N(v) and N[v], when *G* appears clearly from the context. The neighbourhood of the vertex *v* in the complement of *G* will be denoted by $\overline{N}(v)$.

The neighbourhood of $S \subset V$ is the set $N(S) = \bigcup_{v \in S} N(v) - S$ and $N[S] = S \cup N(S)$. A *clique* is a subset Q of V with the property that G(Q) is complete. The *clique* number or *density* of G, denoted by $\omega(G)$, is the size of the maximum clique. A clique cover is a partition of the vertices set such that each part is a clique. $\theta(G)$ is the size of a smallest possible clique cover of G; it is called the *clique cover number* of G. A stable set is a subset X of vertices where every two vertices are not adjacent. $\alpha(G)$ is the number of vertices is a stable set o maximum cardinality; it is called the *stability* number of G. $\chi(G) = \omega(G)$ and it is called *chromatic number*.

By P_n , C_n , K_n we mean a chordless path on $n \ge 3$ vertices, a chordless cycle on $n \ge 3$ vertices, and a complete graph on $n \ge 1$ vertices, respectively.

A graph is called *cograph* if it does not contain P_4 as an induced subgraph.

Let \mathscr{F} denote a family of graphs. A graph G is called \mathscr{F} -free if none of its subgraphs is in F.

3 Preliminary Results

3.1 Weakly Decomposition

At first, we recall the notions of weakly component and weakly decomposition.

Definition 1 [7–9] A set $A \subset V(G)$ is called a weakly set of the graph G if $N_G(A) \neq V(G) - A$ and G(A) is connected. If A is a weakly set, maximal with

respect to set inclusion, then G(A) is called a weakly component. For simplicity, the weakly component G(A) will be denoted with A.

Definition 2 [7–9] Let G = (V, E) be a connected and non-complete graph. If A is a weakly set, then the partition $\{A, N(A), V - A \cup N(A)\}$ is called a weakly decomposition of G with respect to A.

Below we remind a characterization of the weakly decomposition of a graph. The name of "*weakly component*" is justified by the following result.

Theorem 1 [8–10] Every connected and non-complete graph G = (V, E)admits a weakly component A such that $G(V - A) = G(N(A)) + G(\overline{N}(A))$.

Theorem 2 [8, 9] Let G = (V, E) be a connected and non-complete graph and $A \subset V$. Then A is a weakly component of G if and only if G(A) is connected and $N(A) \sim \overline{N}(A)$.

The next result, that follows from Theorem 1, ensures the existence of a weakly decomposition in a connected and non-complete graph.

Corollary 1 If G = (V, E) is a connected and non-complete graph, then V admits a weakly decomposition (A, B, C), such that G(A) is a weakly component and G(V - A) = G(B) + G(C).

Theorem 2 provides an O(n+m) algorithm for building a weakly decomposition for a non-complete and connected graph.

Algorithm for the weakly decomposition of a graph ([10])

Input: A connected graph with at least two nonadjacent vertices, G = (V, E). *Output:* A partition V = (A, N, R) such that G(A) is connected, N = N(A), $A \not\sim R = \overline{N}(A)$.

begin

```
A := \text{any set of vertices such that}A \cup N(A) \neq VN := N(A)R := V - A \cup N(A)while (\exists n \in N, \exists r \in R \text{ such that } nr \notin E \text{ }) \text{ do }beginA := A \cup \{n\}N := (N - \{n\}) \cup (N(n) \cap R)R := R - (N(n) \cap R)end
```

end

In [7] we give:

Let G = (V, E) be a connected graph with at least two nonadjacent vertices and (A, N, R) a weakly decomposition, with A the weakly component. G is a P₄-free graph if and only if:

(1) $A \sim N \sim R$; (2) G(A), G(N), G(R) are P_4 -free graph.

3.2 Weakly Quasi-Threshold Graphs

In this subsection we remind some results on weakly quasi-threshold graphs.

A cograph which is C_4 -free is called a *quasi-threshold* graph.

In [2] we study the class of weakly quasi-threshold graphs that are obtained from a vertex by recursively applying the operations (1) adding a new isolated vertex, (2) adding a new vertex and making it adjacent to all old vertices, (3) disjoint union of two old graphs, and (4) adding a new vertex an making it adjacent to all neighbours of an old vertex.

Let G = (V, E) be a graph. Define a relation on V [2] as follows: Let $u, v \in V$. Then $u \equiv v$ if N(u) = N(v). We observe that \equiv is an equivalence relation and the equivalence classes are stable sets in G.

Let *G* be a graph with $Q_1, ..., Q_k$ as the equivalence classes under the relation \equiv . For each i = 1, ..., k choose a vertex $u_i \in Q_i$. We call the subgraph \widetilde{G} of *G* induced by $u_1, ..., u_k$ as a subgraph of representatives of *G*.

Let G be a graph. Then G is weakly quasi-threshold [2] if an only if a subgraph of representatives is quasi-threshold.

Let G = (V, E) be a connected graph. Then the following are equivalent [2]:

- (1) G is a weakly quasi-threshold
- (2) *G* ia a P_4 -free and there is no induced $C_4 = [v_1, v_2, v_3, v_4]$ with $N(v_1) \neq N(v_3)$ and $N(v_2) \neq N(v_4)$.

A graph G is weakly quasi-threshold [11] if and only if G does not contain any P_4 or $co - (2P_3)$ as induced subgraphs.

4 New Results on Threshold Graphs

4.1 Characterization of a Weakly Quasi-Threshold Graph Using the Weakly Decomposition

In this paragraph we give a new characterization of weakly quasi-threshold graphs using the weakly decomposition.

Theorem 3 Let G = (V, E) be a connected graph with at least two nonadjacent vertices and (A, N, R) a weakly decomposition, with A the weakly component. G is a weakly quasi-threshold graph if and only if:

Proof Let G = (V, E) be a connected, uncomplete graph and (A, N, R) a weakly decomposition of G, with G(A) as the weakly component.

At first, we assume that *G* is weakly quasi-threshold. Then *G* is P_4 -free. So, $A \sim N \sim R$. Because *G* is weakly quasi-threshold graph it follows that $G(A \cup N)$, $G(N \cup R)$ are weakly quasi-threshold graphs. We suppose that G(N) contain $\overline{P}_3 = (\{a, b, c\}, \{ac\})$ as induced subgraph. Because G(A) is connected $\exists x, y \in A$ such that $xy \in E$. Because $A \approx R$, $\forall z \in R$, $G(\{x, y, z\}) \simeq \overline{P}_3$. Because $N \sim A \cup R$, $G(\{a, y, a, b, c, z\}) \simeq co - (2P_3)$, in contradicting with *G* is weakly quasi-threshold graph.

Conversely, we suppose that (1), (2) and (3) hold. From (3), G(A), G(N), G(R) are P_4 -free. Because (1) hold, G is P_4 -free. G(A), G(N), G(R) are $\{co - (2P_3)\}$ -free because (3) hold. $G(A \cup R)$ is $\{co - (2P_3)\}$ -free because $A \approx R$ and $\{co - (2P_3)\}$ is connected. We suppose that G contain $H = \{co - (2P_3)\}$ as induced subgraph such that $V(H) \cap A \neq \emptyset$, $V(H) \cap N \neq \emptyset$ and $V(H) \cap R \neq \emptyset$. Because (1) hold, $N \sim (A \cup R)$. The unique $S \subset V$ totally adjacent with V(H) - S, $(S \sim V(H) - S)$, is S with $S = V(\overline{P}_3)$. Then G(N) contain \overline{P}_3 as induced subgraph, contradicting (2). So, G is $\{co - (2P_3)\}$ -free. So, G is weakly quasi- threshold graph.

4.2 Determination of Clique Number and Stability Number for a Weakly Quasi-Threshold Graph

In this paragraph we determine the stability number and the clique number for weakly quasi-threshold graphs.

Proposition 1 If G = (V, E) is a connected graph with at least two nonadjacent vertices and (A, N, R) a weakly decomposition with A the weakly component then

$$\alpha(G) = max\{\alpha(G(A)) + \alpha(G(\overline{N}(A))), \alpha(G(A \cup N(A)))\}.$$

Proof Indeed, every stable set of maximum cardinality either intersects $\overline{N}(A)$ and in this case the cardinal is $\alpha(G(A)) + \alpha(G(\overline{N}(A)))$ or it does not intersect $\overline{N}(A)$ and has the cardinal $\alpha(G(A \cup N(A)))$.

Theorem 4 Let G = (V, E) be connected with at least two non-adjacent vertices and (A, N, R) a weakly decomposition with A the weakly component. If G is a weakly quasi-threshold graph then

$$\alpha(G) = \alpha(G(A)) + max\{\alpha(G(N)), \alpha(G(R))\}$$

and

$$\omega(G) = \omega(G(N)) + \max\{\omega(G(A)), \omega(G(R))\}.$$

Proof Because $A \sim N$, from Proposition 1, it follows that

$$\alpha(G) = \alpha(G(A)) + max\{\alpha(G(N)), \alpha(G(R))\}.$$

Because $A \sim N \sim R$, it follows that

$$\omega(G) = \omega(G(N)) + \max\{\omega(G(A)), \omega(G(R))\}.$$

5 Conclusions and Future Work

In this chapter we characterize weakly quasi-threshold graphs using the weakly decomposition, determine: density and stability number for weakly quasi-threshold graphs. Our future work concerns we give some applications of weakly quasi-threshold graphs including the medicine. Also we will explore the connection of weakly quasi-threshold graphs with the intelligent systems.

Acknowledgments This research was supported by the project entitled *Classes of graphs, complexity of problems and algorithms* in Bilateral Cooperation by Romanian Academy ("Vasile Alecsandri" University of Bacău is partner) and the National Academy of Sciences of Belarus and Belarusian Republican Foundation for Fundamental Research.

References

- Corneil, D.G., Lerchs, H., Stewart, L.K.: Complement reducible graphs. Discrete Appl. Math. 3, 163–174 (1981)
- 2. Bapat, R.B., Lal, A.K., Pati, S.: Laplacian spectrum of weakly quasi-threshold graphs. Graphs and Combinatorics **24**, 273–290 (2008)
- Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–934 (1985)
- 4. Brandstadt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey, SIAM Monographs on, Discrete Mathematics and Applications (1999).
- Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Second edition. Annals of Discrete Mathematics, vol. 57, Elsevier, Amsterdam (2004).
- 6. Berge, C.: Graphs. Nort-Holland, Amsterdam (1985)
- Croitoru, C., Talmaciu, M.: A new graph search algorithm and some applications, presented at ROSYCS 2000, Alexandru Ioan Cuza University of Iaşi (2000).

- 8. Talmaciu, M.: Decomposition problems in the graph theory with applications in combinatorial optimization. PhD. Thesis, Alexandru Ioan Cuza University of Iasi, Romania (2002).
- 9. Talmaciu, M., Nechita, E.: Recognition algorithm for diamond-free graphs. Informatica 18(3), 457–462 (2007)
- Croitoru, C., Olaru, E., Talmaciu, M.: Confidentially connected graphs, The annals of the University "Dunarea de Jos" of Galati, Suppliment to Tome XVIII (XXII) 2000. In: Proceedings of the international conference "The risk in contemporany economy" (2000).
- 11. Nikolopoulos, S.D., Papadopoulos, C.: A simple linear-time recognition algorithm for weakly quasi-threshold graphs. Graphs and Combinatorics **27**, 567–584 (2011)