Cubature Methods and Applications

D. Crisan, K. Manolarakis, and C. Nee

Abstract We present an introduction to a new class of numerical methods
for approximating distributions of solutions of stochastic differential equations.
The convergence results for these methods are based on certain sharp gradient
bounds established by Kusuoka and Stroock under non-Hormader constraints on
diffusion semigroups. These bounds and some other subsequent refinements are
covered in these lectures. In addition to the description of the new class of methods
and the corresponding convergence results, we include an application of these
methods to the numerical solution of backward stochastic differential equations.
As it is well-known, backward stochastic differential equations play a central role
in pricing financial derivatives.

1 Introduction

Stochastic differential equations (SDEs) are ideal models for the evolution of
randomly perturbed dynamical systems. Such systems pervade a variety of areas
of human activity, including biology, communications, engineering, finance and
physics.

The solution of an SDE is amenable to numerical approximations even in high
dimensions. Classical methods such as the Euler method work well provided the
distribution of the SDE and the function that we wish to integrate are sufficiently
smooth. In particular, when the SDE is driven by non-singular noise, the conver-
gence properties of classical numerical methods are well understood. However, in
the 1980s, Kusuoka and Stroock [34] relaxedthe conditions under which some of
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the smoothness properties of the semigroup associated to the solution of the SDE
remain valid. They replaced the classical Hérmander condition requirement by a
weaker condition: the so-called UFG condition. Essentially, this condition states
that the Lie algebra generated by the vector fields appearing in the noise term
of the equation is finite dimensional when viewed as a module over the space of
bounded infinitely differentiable functions. Kusuoka and Stroock showed that the
semigroup remains smooth in any direction belonging to the above algebra. This
fundamental result forms the theoretical basis of a recently developed class of high
accuracy numerical methods. In the last 10 years, Kusuoka, Lyons, Ninomiya and
Victoir [29,36,49] developed several numerical algorithms based on Chen’s iterated
integrals expansion. These new algorithms generate approximations to the solution
of the SDE in the form of the empirical distribution of a cloud of particles with
deterministic trajectories. They work under a weaker condition (termed the UFG
condition, see Sect. 2.3 for details) rather than the ellipticity/Hormander condition
and are faster than the corresponding classical methods. Let us describe briefly the
framework and structure of these methods:
In the following, let (2, W, IP) be the standard (d-dimensional) Wiener space:

Q = {w € C([0,00): RY), w(0) = 0}, W = B(C([0, 00); RY)),
where C([0, 00);R?) is the set of R?-valued continuous paths endowed with the

corresponding Borel o-algebra B(C ([0, o0); R?)) and IP is the probability measure
such that the coordinate mapping process:

B ={B, = (B)"_,.t €[0,00)}, Bi/(w) = w(t) == (wj(t) :i =1,...,d)
is a d-dimensional Brownian motion under . We define B? := ¢ for notational
simplicity.

Let Vo, Vq,...,V,; € C(RN; RMbed +1 Lipschitz vector fields and
X ={X",t €[0,00),x € RV}

be the solution of the following stochastic differential equation

d ¢
XF=x+ Z/ Vi (XF)dB.. (1)
i=0"0

Equation (1) has a unique solution (see, for example, Theorem 2.9 page 289 in[26]).
To be more precise, there exists a unique stochastic process adapted with respect to
the augmented filtration generated by the Brownian motion B for which identity (1)
holds true. The measurability property of X is crucial. However, this condition is
sometimes overlooked and treated as a rather meaningless theoretical requirement.
In effect, the condition means that there is a B(C([0, t]; R?))/B(R")-measurable
mapping o; ., : C([0,¢]; R?) — RY such that
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X =o;x(Bpy), P—as. 2)

Hence X is determined by the driving noise { By, s € [0, ¢]}. Put differently, if we
know B then (theoretically) we will also know the value of X*.!

Example 1. For the following equations, one can explicitly write the solution of the
SDE as a function of the Brownian motion B:

t t
X¥=x +/ aXrdB® + / bX'dB!, X; = xexp (bB} + (a —b*/2)B})
0 0

(3)
! ! 0 d 0 0
X' =x+ / aX'dB’ + / bdB!, X, = xe™® + b / e BB 4p!
0 0 0
4)
th’l xl /t a 1 /t 0 2
= dB dB: 5
(th,z) (x2)+ o \0 ot o \bX] ’ ©)
X! _(x'+aB} ©)
X2 ) 7\ x>+ [y b(x' + aB!)dB?

In general it is not possible to have explicit formulae for the solution of the
stochastic differential equation, in other words the mapping o, , appearing in the
representation (2) is not known. Hence accurate numerical approximations of X
are highly desirable. In particular, we are interested in computing quantities of the
form

E[(p(XtV)] = E[(p O Ut x (B[Ot])] = /Q(P O O x (Cl)) P(dw)v (7)

where ¢ is a given test function and P is the probability distribution of the Brownian
motion (the Wiener measure). The computation of expectations of the form (7)
has particular relevance in mathematical finance through the pricing of financial
contracts. Indeed, calculating the expected value of functionals of the solution of
a stochastic differential equation (which would be assumed as the model of the
underlying price process) in a very short time is a standard problem in finance
and is one which has ruled more exotic models out of practical implementation in
industry.

Computing quantities of the form (7) is also relevant for the estimation of
infinite dimensional random dynamical systems. The theory of infinite dimensional

'The process X is uniquely identified by (1) only up to a set of measure 0. Two processes X! and
X2 satisfying (1) are indistinguishable: the set {@ € Q3¢ € [0, 00) such that X, (w) = X*(w)}
is a P-null set (has probability zero). Similarly, the identity (2) holds P-almost surely, i.e. there can
be a subset of €2 of probability zero where (2) does not hold.
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random dynamical systems shares many of the concepts and results with their
finite dimensional counter-parts. Many examples are determined by stochastic
and deterministic partial differential equations. These partial differential equations
have solutions u(z, x) that admit certain representations, called Feynman—Kac
representations, in terms of certain functionals integrated with respect to the law
of a stochastic process:

u(t, %) = B[A« (X))l @®)

A large class of such PDEs exhibit the common feature that the process X appearing
in (8) has a representation of the form (2) hence their solution u(z, x) can be
represented as

u(t, x) = E[(Arx o arx) (Bpoa)l, )]

where the functional Aj, = A, o o, is nonlinear and, possibly, implicitly
defined. Examples, include linear PDEs, semilinear PDEs such as those appearing
in the pricing of financial derivatives under trading constraints, McKean—Vlasov
equations, Navier—Stokes equation, Burgers equation, Zakai equation, etc.

It follows that the computation of u(¢, x) requires the approximation of the law of
the process X if the Feynman—Kac formula (8) is used, or the law of the Brownian
motion B if one uses (9) instead. However this is not enough. The functionals A; .
respectively A; . do not have a closed form, in other words they cannot be explicitly
described and, more importantly, integrated with respect to the approximating law.
One needs to approximate them with versions whose integral with respect to the
corresponding approximating law can be easily computed. Obviously, the error of
the approximation of the solution of the PDE obtained in this manner will depend
on both the error introduced when approximating the functional and that introduced
when approximating the law of the process. Care must be taken so as not to
compound the corresponding errors. In practice both approximations are performed
simultaneously. Nevertheless, when it comes to estimating the approximation error
it helps to separate them. The numerical methods discussed in the following entail
the following three steps:

* Replacing the law of B with the law of a simpler process B. The process B
will have bounded variation paths and its so-called “signature” will approximate
that of the original B. The support of the law of the process g[o,r] is chosen
to have finite support. In other words, there are only a finite number of paths,
w; 1[0,1] = R?,i =1,...,n, such that

A’i,t = ]P)(B[Ot] = (I)j) > 0.2

20f course the sum of the weights Aigis 1, ie., ST Ai, =1

i=l
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* Approximating A; , with an explicit/simple version A;V Here we will exploit the
smoothness properties of the functional A} .. Such properties will be analyzed in
the next chapter by using Malliavin Calculus techniques.

* Integrate /~\’ with respect to the law of B. This step consists in computing the
average of A
have

- estimated over the n, realizations of g[o,z]- In essence, we will

u(t,x) ~E [A B[o ,] Za, ,Atx(a),
i=1

If the number of paths 7, contained in the support of l;’[oyf] is above a threshold
that depends on the capabilities of the hardware on which the algorithm is run,
then an additional procedure is required to reduce n, to a manageable size. One can
employ a Monte Carlo procedure similar to that used in the classical schemes (e.g.
Euler—Maruyama) or the so-called “tree based branching algorithm” [14], a minimal
variance selection procedure analysed in Sect. 3.

To understand the choice of the simple process B, let us introduce briefly the
classical Euler-Maruyama method.? For this we choose a partition IT of a generic
interval, say, [0, T']

NI : 0=gp<1<...<tmy<...tv=1T.
and we denote by § the mesh of the partition § = max;=;__n(7; — 7;—1). We do
not specify the choice of the partition. However if the partition is equidistant, then

= T/N and it is also called the time step. Let Y* = {Y;*, ¢ € [0, T]} be the
continuous time process satisfying the evolution equation

[ d
Y =Y} +/ Vo (YS¥)ds + / S’ds t € [ty Tut1]»
FEYE ) (¥ ; _w_tn
(10
where {E};, i =1,....,d, n =0,...,N — 1} are mutually independent random
variables whose moments match the moments of a standard Gaussian random

variable up to order 3 and with initial value Y;* = x. More precisely we require
that the random variables £, must be independent, with moments satisfying,

Blg) = E[@)] =0 2[E)]-1. an

In particular, £ can be chosen to have the Bernoulli distribution

3To be more precise, following the phraseology of [27], we describe here the simplified weak Euler
scheme for a scalar SDE driven by a multi-dimensional noise.
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P (g ==£1)= 5 (12)

We can recast the evolution equation of the process Y* in a similar manner to that
of X*.Let B = {B,,t € [0,00)} be the d-dimensional stochastic process*

[N1]
By = &wnt —tivr) + ) 1 /T — Tt (13)
n=1

where the last term is chosen to be 0 if [NT] = O and {§,, n = 0,...,N} are
d-dimensional random vectors with corresponding entries &, = ( ,}, e, &‘,‘j’ ) Then

B has piecewise-linear trajectories and, if we use an equidistant partition, the
support of B; has n, = 2" paths for ¢t € (7,—1,t,],n = 1,...,[NT]. Then Y is
the solution of the following ordinary differential equation

Yy —x—}—Z/ “)d B, (14)

where, as in (1), we defined 1;’,0 := t. Under suitable conditions, the process Y ¥, is
a first order approximation of the equation (1) associated with the partition IT (see,
for example Theorem 14.1.5, page 460 in [27]). More precisely, we have

[E[p(X)] = Elp(Y)]| = Cpé, 1 €[0,T].
The paths {w, ..., ®,, } in the support of B are the realizations of a random walk
(linearly interpolated between jumps). Then A, ; := P(Bp, = w;) = % and
Elp(Y)] = > Aiao(¥;),
i=1

where Y * is the solution of the ordinary differential equation (14) corresponding
to the path w;. That is

t'—x—i—Z/ (Y5) do] (5).

If the ordinary differential equation (14) has no explicit solution, one can
choose without loss of accuracy, a process Z* which satisfies an explicit/implicit

“In (13) and subsequently, [z] denotes the integer part of z € R.
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discretization of (14). For example

d
Zr =2+ Vo(ZY) @i — ) + ) _Vi(Z) &t — . (195)

i=1

The solution of (15) is customarily called the Euler—Maruyama approximation of X
and has the same order of approximation as Y (order 1). The ODE (14) has solutions
that evolve in the support of the original diffusion so it manifests good numerical
stability conditions. Classical higher order approximations of (1) such as those
described in Chaps. 14 and 15 in [27] no longer have this property. The question that
arises is whether it would be possible to produce a high order approximation that
still has this property. The answer is yes and this is exactly what a cubature method
does. One can replace the process B by a “better” approximation of B which, in
turn, will lead to a high order approximation of the solution of (1). To understand
in what sense B is an approximation of B and how can it be improved we need to
explain in brief the concept of a signature of a path. Let

o0 m

T (Rd) — @ (Rd)@, Tm (Rd) — @(Rd)ebi

i=0 i=0

be the tensor algebra of all non-commutative polynomials over R¢ and, respectively,
the tensor algebra of all non-commutative polynomials of degree less than m + 1.
For a path @ : [0, 00) — R¢ with finite variation we define its signature Sy, (w) €
T (]Rd) to be the corresponding Chen’s iterated integrals expansion:

Si(@) = Z/ do, ® ... ®dwy,

k=0 S<tti <t

where

/ do, ® ... ®dw, = Z (/ dw,il‘...dwf,’:)eil®...®e,~k,
0<ty...txp <t i1 0<ty...tp <t

and (e;, ® ... ® e;),i1,...,ix € {1,...,d}, is the canonical basis of (R?)®*.

Similarly we define its truncated signature S, (w) € T™ (R?) to be

m

S;",,(w)zzf oy, ® ... & do,.
k=0 Y s<tdk <t

Similarly the (random) signature and, respectively, the truncated signature of the
Brownian motion are
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Ss((B) = Zf dB; ® ...®dBy, SI'(B) = Zf dB, ® ...® dBy,.

S<Iy..0p <t S<t]..tp <t
(16)

In (16), the stochastic (iterated) integrals are of Stratonovitch type.
The expected value of S;,(B) uniquely identifies the law of B, i.e., the Wiener
measure.’ Moreover, if B is a process such that

E[ S8 ges(B)] = BISE s Bk = 0.1 N =1, (17)

then for certain classes of functionals A’, E[A’(B’)] is a high order approximation
of E[A’(B)]. In particular, if A] _ is the functional that gives the solution of the SDE
(1)fort = N§,ie., A] .(B) = ¢(X[), then

[E[p(X7)] -

(18)

where Y, is the solution of the ordinary differential equation (14) driven by B. We
prove this result in Sect. 3 of the current lecture notes. In particular, the process B
as defined (13) satisfies (17) withm = 3.

The proof of (18), requires the smoothness of the (diffusion) semigroup {P;, ¢ €
[0, 00)} defined as

(Pip)(x) = E[p(X)], xeR’ >0,

where ¢ is an appropriately chosen test function. If the vector fields satisfy the
ellipticity or, more generally, the uniform Hormander condition, P;¢ is smooth for
any bounded measurable function ¢ and ¢ > 0. Many of the classical numerical
schemes rely on this property and so Hormander’s paper [24] is a major contribution
to this field. A probabilistic version of this result led Malliavin [40] to develop
his celebrated stochastic calculus of variations through which one can prove,
probabilistically, the sufficiency of Hérmander’s condition.

The work of Kusuoka and Stroock [32-34] in the 1980s provided an extension
of Malliavin’s results. In it, they proved precise gradient bounds that are valid under
a general condition termed the UFG condition, see Sect. 2.3 for details. The UFG
condition imposed on the vector fields {V;,i = 0,...,d} essentially states that
the C° (R¥)-module M generated by the vector fields {V;,i = 1,...,d} within
the Lie algebra generated by {V;,i = 0,...,d} is finite dimensional. The UFG
condition implies Hormander’s hypoellipticity condition, but not viceversa. There
are explicit examples for which Hérmander’s condition fails to hold, but for which
the UFG condition is satisfied (see Example 15). In particular, the condition does
not require that the vector space {W(x)|W € M} is homeomorphic to R? for

3See Proposition 118 in [18].
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any x € RZ. Moreover, under the UFG condition, the dimension of the space
{W(x)|W € M} is not required to be constant over R?. Such generality makes
any Frobenius type approach to prove smoothness of the solution very difficult.
Indeed the authors are not aware of any alternative proof of the smoothness results
of the solution of P,¢ (under the UFG condition) other than that given by Kusuoka
and Stroock. Kusuoka and Stroock prove that, under the UFG condition, P;¢ is
differentiable in the direction of any vector field W belonging to M and deduce
precise gradient bounds of the form:

Ck
[Wi ... Wi Piglloo < t—,||€0||p, (19)

where / is a constant that depends explicitly on the vector fields W; € M, i =
1,...,k and |l¢||, is the standard L , norm of the function ¢.

Whilst the Kusuoka—Stroock result does not suffice to justify the convergence
of classical numerical schemes, it is tailor-made for the cubature methods. The
global error of numerical schemes depends intrinsically on the smoothness of P, ¢,
but only in the direction of the vector fields W belonging to M. As a result, the
cubature methods are proved to work under the more general UFG condition, unlike
the classical numerical methods.

The lecture notes are structured as follows: In the following section, we provide
a “clean” treatment of the (sharp) gradient bounds of the type (19) deduced under
the minimal smoothness requirements on imposed on the vector fields {V;,i =
0,...,d}. Suchresults are intrinsically related to the solution of the linear parabolic
partial differential equation

d
du(t, x) = %Z V2u(t, x) + Vou(t, x), (t,x) € (0,00) xR, (20)

i=1

We show how the Kusuoka—Stroock approach can be used to recover the smoothness
of the solution of (20) under the Hormander condition. In the Hormander case,
it is straightforward to show that P;¢ is indeed the (unique) classical solution of
(20) with ¢ being the initial condition of the PDE. In particular we show that
u is differentiable in any direction including direction V;. The situation is more
delicate in the absence of the Hormander condition. Under the UFG condition, (20)
may not have a solution in the classical sense. As explained in [44], it turns out
that P, remains differentiable in the direction Vy := 9; — V, when viewed as a
function (f,x) — P;¢(x) over the product space (0, 00) x R?. This together with
the continuity at 1 = 0 implies that P;¢ is the unique (classical) solution of the
equation

d
Vou(t, x) = % > V2u(t.x), (t.x) € (0,00) x RY. 1)

i=1
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In Sect. 3, we incorporate cubature methods into a larger class of methods, and
deduce their convergence rates under the UFG condition and an additional constraint
called the Vy condition. We also deduce the convergence rates of the cubature
methods combined with an algorithm for controlling the computational effort—the
tree based branching algorithm (or TBBA for short). The section is concluded with
an application of the cubature and TBBA method to the approximation of a call
option on a Heston model price process.

Section 4 is dedicated to the application of cubature methods to the numerical
solution of backward stochastic differential equations.

The lecture notes are concluded with an appendix comprising a number of
technical lemmas and a proof of the convergence of the cubature method in the
absence of the V; condition.

2 Sharp Gradient Bounds

In this chapter we give a full and self-contained proof of Kusuoka’s gradient bounds
(cf. [30]). The main difference between what is done there and what is presented
here, is that we relax the restrictive assumptions on the SDE coefficients (in [30]
they are assumed to be smooth and uniformly bounded). In later chapters, we shall
apply these results to prove convergence of the cubature method.

2.1 Framework

Recall that (2, W, P) is the standard (d-dimensional) Wiener space:
Q = {w € C([0, 00); RY), w(0) = 0}, W = B(C(]0, o0); RY)),
where C([0, 00); R?) is the set of R?-valued continuous paths endowed with the

uniform norm topology, W is the corresponding Borel o-algebra B(C([0, 00); R?))
and P is the probability measure such that the coordinate mapping process:

B ={B;,t €[0,00)}, Bi(w) =w() = (wi(t):i=1,...,d)
is a d-dimensional Brownian motion under P. We define B := ¢ for notational
simplicity.

Let k be a positive integer to be determined at a later stage. Assume that
Vi,...,Vg € Cf“(RN;RN)f’ and Vy € Cf(RY;R") are d + 1 vector fields and let

SFor any positive integer m, the set Cj' (R%; R?) is the set of all bounded continuous functions
¢ : R* — R?, m-times continuously differentiable with all derivatives bounded.
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X ={X,t €[0,00), x € RV} be the following stochastic flow
d t
XF=x+ Z/ Vi(X7) o dB. (22)
i=0Y0

t
In (22) the stochastic integrals / Vi(X}) o dBi, i =1,...,d are Stratonovitch
0

t
integrals whereas / Vo(X?Y) o dB is a standard Riemann integral.
0

Remark 2. In the following, we will view the vector fields Vy, V1,..., V; as both
vector-valued functions and first order differential operators defined as follows: for
Vi(x) = (VX(x),...,V¥(x))T the corresponding first order differential operator
will be

N
Vi= Y V05 Vi) = VIV, where Vf(x) = @1 (). 0N f(X).
ji=1
Using this notation, from (22) we have the standard chain rule

d o
FOX) = )+ / Vi f(X7) o dB!
i=0 Y0

for any f € Cg (RV,R). We remark that the different levels of differentiability
chosen for V; and Vi,...,V,; ensure that the corresponding It6 equation has
C}’)‘ (RY; RV) coefficients.

It is a classical result that the stochastic flow X = {X,7 € [0,00),x € RV} is
differentiable in the space variable x. See for example Kunita [28] or Nualart [51,
Theorem 2.2.1, p. 119]. We state the required result in the following:

Theorem 3. Let X = {X},t € [0,00),x € RN} be the solution of (22). Then X
has a modification (again denoted by X ) such that the mapping

xeRY — X* eRY

is k-times continuously differentiable, for each t, P-almost surely. Moreover the
Jacobian of X,(') at x, J,(') = (0; X;’('))lgi,jgN satisfies the matrix stochastic
differential equation’:

7In (23) and subsequently, dV; is the matrix valued map V; := (9, V™)1 <pm<n-
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{ dJi = Z;j=0 Vi (X7)J o dBi’ (23)

Jr=1

The Jacobian is almost surely invertible (as a matrix) and its inverse, (J*)7!,
satisfies the SDE

N = = YTV o B, (24)
UH =1
In addition, the following integrability result holds
glvixx|”
sup E ! <Crp, Yp>1,T>0,0<|y| <k VxeR"
1€[0,7] axv
(25)

2.2 Malliavin Differentiation

For an absolutely continuous path 2 € C([0, 00); R?), we denote by 4’ its derivative.
Let H be the space

H = {h € Q, habsolutely continuous, &’ € L*([0,00); R%)} C Q.
H is endowed with a Hilbert structure under the inner product

o0
(h.g)u = (N, &) 120.00)ma) = /0 h'(u) - g’ (u)du

and is called the Cameron—Martin space. We use this space to define the Malliavin
derivative.

Definition 4 (Malliavin Derivative). Let /' € C°(R",R), hy,...,h, € H and
F : Q — R be the functional given by:

F)=f ( /0 1, (t)dB, (), ... /O h,’,(t)dBt(a))), (26)

where, for any h; = (h} . ..., hi ),

00 d 0o X
/ hj(t)dB, == / h} ;(t)dB].
0 =070 ’
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Any functional of the form (26) is called smooth and we denote the class of all such
functionals by S. Then the Malliavin derivative of F', denoted by DF € L*(Q; H)
is given by:

DF =Y 0. f ( /O ” R\ (u)dB,. ..., /O ” ! (u)dBu) hi 27)
i=1

We will often make use of the notation: D, F := (DF, h)y for h € H. Observe
that Dy, F is the directional derivative of F in the direction / as

d 00 00
DiF(@) = ;aif( /0 W WdBo(®). ... /0 h;(u)dBu(w)) iy

d o0
= &f (/o hy(w)dB, () + €(h, h') 12(0.00)-

--,/0 h,, (w)dB,(w) + e(h;sh/>L2([O,oo))

e=0

and, since B;(w + ¢h) = B; (w) + ¢h (), this yields

Hence

D, F(w) = %f (/Ooo I, (w) dB,(w + €h), .. "/Ooo !, (u) dB, (o + sh))

=0

= %F(a)—f—eh)

(28)
e=0

If F € Sand h € H, then the following basic integration by parts formula holds

E [F /OOO h/(t)dB,} = E[(DF, h) ]. (29)

The proof of this formula is very simple: It uses an integration by parts formula for
the finite dimensional Gaussian density (see, e.g., Lemma 1.2.1 in Nualart [51]).

The set of smooth functionals (random variables) S is dense in L?(2), for any
p > 1. That s, for any F € L?(S2) there exists { F,,} C S such that

| F — Fllzr @) — 0.

This result is available in, for example, Nualart [51]. Its proof relies on showing that
a subset of S (the Wiener polynomials) is dense in L”(£2). This is done by using
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Hermite polynomials and the Wiener—It6 chaos expansion. The density property
of S is used to extend the definition of the Malliavin derivative to the set of all
square integrable random variable for which there exist an approximating sequence
of smooth random variables such that the corresponding Malliavin derivatives
converge too. This approach works as the Malliavin derivatives of two convergent
sequences of smooth random variables converging to the same L?(Q2)-limit have
the same L2([0, 0o) x Q)-limit. To be more precise we have the following (see, e.g.,
Nualart [51]) :

Proposition 5 (Closability of the Malliavin Derivative operator). The Malliavin
derivative, a linear unbounded operator D : S — L?*([0,00) x Q;RY) is
closable as an operator from L*(2; R?) into L*([0, 00) x Q;R?). In other words if
{F.} C S is a sequence of smooth random variables such that: || Fy | 12y — 0 and
| DEull120.00)x) IS convergent then it follows that

| DF, ||L2([0,oo)x9) — 0.

More generally, the Malliavin derivative operator is closable as an operator from
L?(Q:R?) into L?(Q2; H) for any p > 1. For p # 2 we use with the norm:

”DF”il’(Q;H) =E [”DF”}{]] . (30)

The proof of the closability of the Malliavin operator relies on the basic
integration by parts formula (29).

We denote by D'*? the domain of the Malliavin derivative operator as an operator
from L?(Q;R?) into L?(Q; H) for any p > 1. More precisely, D"? is the closure
of the set S within L?(2;R?) with respect to the norm:

1
IF Il = (E[IFI7] + E[IDFII31) 7 .

The higher order Malliavin derivatives are defined in a similar manner. For smooth
random variables, the iterated derivative D¥F, k > 2, is a random variable with
values in H ®* defined as

DFi= > .. ikf(/ h’l(u)dBu,...,/ h;(u)dBu)hil®...®h,-k,
0 0

iip=1

where h;(\) = fo h!(s)ds. The above expression for D¥F coincides with that
obtained by iteratively applying the Malliavin differential operation. Indeed, for
h € H, F € S, it is easily seen that Dy FF € S. As per (28), it can be shown
that,

Dy Dy ... Dy F = (D*F, by @ ... ® hy) yer.
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In an analogous way, one can close the operator D¥ from L?(Q) to L?(Q; H®%).
So, for any p > 1 and natural £ > 1, we define D¥P to be the closure of S with
respect to the norm:

k
IF(12,, :=E[FI?]+ Y E[|D!F| ;1.

J=1

Note that for p = 2 the following isometry holds L?(Q x [0,00)*;R?) ~
L?(: H®"). Hence one may identify D* F as a process: D, F.

A random variable F is said to be smooth in the Malliavin sense if F € D*? for
all p > 1 and all k > 1. We denote by ID*° the set of all smooth random variables in
the Malliavin sense. For example, the solution X to (22) satisfies X/ € D*? for all
t €[0,00) and p > 1 provided Vg, ..., Vg € C°(RY;R") (see Theorem 8 below).

Moreover, there is nothing which restricts consideration to R?-valued random
variables. Indeed, one can consider more general Hilbert space-valued random
variables, and the theory would extend in an appropriate way. To this end, denote
D*P(E) to be the appropriate space of E-valued random variables, where E is
some separable Hilbert space. For more details, see [51], where also the proof of the
following chain rule formula can be found:

Proposition 6 (Chain Rule for the Malliavin Derivative). If ¢ : R” — R is
a continuously differentiable function with bounded partial derivatives, and F =

(F1, ..., Fy,) is a random vector with components belonging to D' for some p>1.
Then o(F) € D"?, with

Dg(F) = (Vo)(F)DF = ) 3;¢(F)DF;,

i=1
where Vo is the row vector (01¢,...,0,¢) and DF is the (column) vector
(DFi,...,DF,)".

Lemma 7 (The Malliavin derivative and integration). Assume that E is a
separable real Hilbert space. Consider f : [0,00) x Q — E, and suppose that
foreacht € [0, T] we have f(t) € D'*(E) andt — f(t) is adapted with respect
to the natural filtration of B.® Moreover; suppose that:

T T
E /0 IfO2di<co  E /0 1DF) apdr < o 31)

8 Although not used in the sequel, the result holds for general f : [0,00) X Q — E such that
f(t) € DV2(E) forany ¢ € [0, T}, i.e., not necessarily adapted with respect to the natural filtration
of B.In this case, the F;(T) is the Skorohod integral and not the It6 integral of f'. See, for example,
Proposition 1.38 page 43 in [51].
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Then F,(T) := [\ f(t)dB} € D'"*(E) foralli = 0,1,...,d, with

T
DFy(T) = / Df(t)dB’
0
T ) TA.
DF,-(T):/ Df(t)dB: + f(s)ds, i=1,....d.
0 0
Also

T
DyFo(T) = /0 Dy f(1)dB’

T 4 T
DhFi(T)zfo th(z)dB;Jr/O FOR@ydr, i=1,....d.

Moreover, assuming that

T T
E /0 1D (1) 2 pond < 00, E /0 1D (0] g yndt < o0

one has for the iterated Malliavin derivative operator D*:

T
D¥Fy = / D* f(t)aB?
0

T TA.
DkFi(T):/ D¥ f(t)aB! + D f(syds, i=1,....d.
0 0

Proof. The proof is done using an induction argument. See Kusuoka and Stroock
[32] for details. O

Theorem 8. Assume X is the stochastic flow which solves (22), where the coeffi-
cients Vi,...,Vq € C;TYRY;RY) and Vy € CKRY;RN). Then X;*' € D*? for
allt € [0,00),i = 1,...,N and p > 1. Furthermore, the matrix valued process
DXY = (D’ X;"")i=1...N;j=1...a Satisfies the stochastic differential equation:

d ! IA.
DX; =Y /0 dV;(X)DX* o dB! + ( /0 V; (X;)du) . (32)
i=0

j=ld

Hence,

d t d t
DpX[ =) /0 Wi (X)) DXy 0dBl, + ) /O Vi (XH, ()du.  (33)
i=0 k=1
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If the vector fields Vy, ..., Vy are uniformly bounded then the following bound on
the norms of the derivatives can be shown to hold:

sup E[||D"Xf||g®k] <Cip Ypelloo), T >0 (34)
t€l0,T]
x€RN
If, however; the vector fields Vy, ..., V; are globally Lipschitz continuous but not

necessarily bounded, then it may only be deduced that the following holds:

sup E [||D"X," ||j;®k] <C,(1+|x)?. Vpelloo), T>0. (35
1€[0,T]

Proof. See Nualart [51, pp. 119-124]. O

Corollary 9. For any (¢, x) € [0,00) x RY, we have that

IN.
(J,;")_IDXj‘ = (/ (J;‘)‘WQ(X?)ds) . (36)
0 j=1..d

Proof. This is a simple result of applying integration by parts to the product
(J)"'DX7}, using the SDEs from the respective processes. For a complete proof
see, for example, Nualart [51, Sect. 2.3.1]. O

Definition 10 (Lie Bracket of Vector Fields). Let V, W < C'(RY;R") be two
vector fields. The Lie bracket of V and W is a third vector field, [V, W], defined by:

[V.W]:= 0W.V — aV.W,

where V' := (3;V")1<; j<n and the multiplication is that of a matrix by a vector.

The Lie bracket is a bilinear differential form [.,.] : C"™ x C™2 — C™/~"2~1 where
1 < my,my < oo, which satisfies the identities:

[V.W]=—[W.V] and [U.[V.W]]+ [W.[U V] +[V.[W.U]] = 0.

The latter is known as the Jacobi Identity.
Corollary 11. Let W € C3(RV;RV) then there holds:

d
d[(N)TWEH] == (I W V(X o dBY. (37)
k=0
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Proof. Note that
Y
WX = W)+ / IW(XI)WVi(XF) o dBF.
k=00
Thus, by an analogous formula for matrix—vector SDEs we have:
t t
G = [[uneawoe + [ aun e Wi
0 0

d t
=3 [unawa o) oast
k=070
d t
-3 / (IO V(XE)W(XT) o dB
k=070

d t
=3 [ o st 0
k=00

The alternative representation (36) for (J,*)"'DX¥ will be used in deriving
the integration by parts formula and Lie brackets are a natural occurrence in this
analysis. We may apply Corollary (11) iteratively to expand an expression for
(J)"Wi(XF) fori = 1,....,d, as far as the differentiability constraints on the
vector fields permit. The divergence operator—which is the adjoint of the Malliavin
derivative—plays a vital role in the construction of our integration by parts formula.
This operator is also called the Skorohod integral. It coincides with a generalisation
of the Itd integral to anticipating integrands. A detailed discussion of the divergence
operator can be found in Nualart [51].

Definition 12 (Divergence operator). Denote by § the adjoint of the operator D.
That is, § is an unbounded operator on L?(2 x [0, 00); R?) with values in L?(Q)
such that:

1. Dom § = {u € L*(Q x [0, 00); RY); |[E((DF, u) ;)| < c|Fll;2@). YF € D'}
2. For every u € Dom §, then §(u) € L*(R2) satisfies:

E(Fé(u)) = E((DF,u)y).

The following important results are shown in Sect. 1.5 of Nualart [51]:

1. D is continuous from D*?(E) into D*~'"?(H ® E)
2. (DF,DF),, € D®if F,G € D®
3. § is continuous from D*°(H) into D*°.
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Remark 13. Tf u = (u',...,u?) € Dom § has the property that t — u(-,t) is F;-
adapted, then the adjoint §(u), is nothing more than the It6 integral of u with respect
to the d-dimensional Brownian motion B, = (B,l, e B,d ). i.e.

d o0 . .
S(u) = Z/O u' (-, 5)dB.

i=1

2.3 The UFG Condition

Define A to be the set of all n-tuples of natural numbers of any size n with the
following form: 4 = {1,...,d} U U {0, 1,...,d}k. We endow A with the

keNy
product:

axf = (a,...,q,B1,...,PB1), wherea = (ay,...,0), B =(B1,...,01) € A

Define Ago := A U {0, 0}. We consider the following n-tuples lengths:

k, ifa=(ai,...,o),
la]:= ,
0, ifaa=2a.
el == || +card{i :e; =0,i =1,...,d}.

We also introduce the sets
Am) ={a e A:|la| <m} Ago(m) = {a € Ago : |laf| <m}.
We now define the vector field concatenation V], @ € Ag inductively, as follows:

Vig) := 0,
Vip == Vi, i=0.1,....4d,
V[a*i] = [‘/[0(]7 I/l]s l = Os 17"'9d'

In a similar vein to the above, we also define the Stratonovich integral concatenation,
B, t €[0,00), & € A

inductively:
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We now introduce the main assumption for the gradient bounds analysis: the
UFG condition. The purpose of the UFG condition, in its purest form, is to
truncate the expansion obtained when considering the expression (J;*)~'V; (X)),
fori = 1,...,d. Recalling the work of the previous section, this appears when
considering the product (J;*)"!DX;" between the Malliavin derivative and the
inverse of the Jacobian of the stochastic flow. The UFG condition is a “finite
generation” assumption, which helps to provide integration by parts formula.

Definition 14 (UFG Condition). Let {V; : i = 0,...,d}, be a system of vector
fields such that Vi,...,V; € CAT/(RN;RY) and V € CF(RY;RV). We say that
{Vi :i =0,...,d} satisfy the UFG condition if, there exists m € N,m < k — 1,
suchforanyaw € A, = o' xi,a’ € A(m)andi = 0,...,d, there exist uniformly
bounded functions ¢, g € C§+1_IQI(RN ,R), with 8 € A(m) such that

V@) = >~ 0up(x)Vig(x).

BeA(m)

Heuristically, the UFG conditions states that higher order Lie brackets can be
expressed as a linear combination of lower order Lie brackets, for some fixed order
m. The uniform Hérmander condition implies the UFG condition, but not vice versa
as we can see from the following example, taken from Kusuoka [30]:

Example 15. Assume d = 1and N = 2. Let 1, V; € C°(R?; R?) be given by

0 d
Vo(x1,x2) = sinxj — Vi(x1, x2) = sin x| —
0x1 0x2

Then {1}, V1} do not satisfy the Hormander condition. However the UFG condition
is satisfied with m = 4.

Remark 16.

1. The UFG condition is defined in such a way (i.e. with m < k — 1) that the
elements V|, are well-defined and such that we may apply Corollary 11 to V|
for all o € A(m).

2. The regularity of the coefficients ¢, g is chosen in accordance with what one
would expect, given the regularity of V.

3. We draw attention to the fact that we have assumed the coefficients are uniformly
bounded. Although this assumption does not materially restrict the strength of
the results, it does make them more presentable and reduces the complexity
in the proof. Essentially the boundedness of the coefficients means there is a
natural and elegant description for how the gradient bounds may increase as a
function of |x|. We endeavor to draw attention to the effects of this assumption
where appropriate. In many examples of interest, this assumption imposes no
unnecessary restrictions.
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2.4 The Central Representation Formula

From Corollary (11) and the UFG condition, we have, for each o € A(m),

d[(J) " V(X)) = —Z(J") [Viey- ViI(X7') © dB,

d

= > ) Vi) (X[ 0 dB;
i=0

d
Y3 Ay XNUN T V(X)) 0dBl . (38)

i=0 BeA(m)

where the coefficients cl’;ﬁ, a,p e A(m),i =0,...,d are given by

-1 ifoxie Am)and B = « *i
chp(x) =120 ifoxic A(m)and B # o *i - (39)
—@axip faxi g A(m)

We note, in particular, that ¢! wf € Ck+1 ol (RY,R) are uniformly bounded.
We obtained a representation of the vector fields Viyj, « € A(m) (estimated at (X))
in terms of the Lie brackets Vigxi] := [V|o, Vil @ € A(m), i = 0,...,d, which
where then reverted back to the original set of vector fields Vj,, o € A(m) via
the UFG condition. Without the UFG condition, the resulting representation would
potentially be infinite. Indeed, the Hormander approach relies on showing that, after
a certain number of iterations (taking Lie brackets of the resulting vector fields), the
remainder term arising from the expansion becomes very small. The UFG condition
is more general than Hormander’s (see [24]) famous criterion for hypoellipticity of
linear differential operators and it allows us to take a different approach. We can
view (38) as a linear system of SDEs whose coefficients are of suitably chosen
differentiability whose solutions are the processes t — (J;*) ™'V (X[%), & € A(m).
This enables us to represent these processes in terms of their initial values Vjyj(x),
a € A(m) and the corresponding representation facilitates the integration by parts
formula. Moreover, we shall see how the same representation leads to the classical
non-degeneracy result: The gradient bounds obtained under the UFG condition shall
implicitly recover Hormander’s result, see Theorem 70.

By considering the above as a closed linear system of equations, we are able to
equivalently view it as the matrix SDE:

d ¢
Y(t,x) = Y(0,x) + Z/ C'(X¥)Y(s,x) o dB., (40)
i=0"0



224 D. Crisan et al.

where Y (0,x) = V(x) := (Vg (x))aeA(m) € RV» x RN (N, = card(A,) ) and

C': RN — RV @ RV are given by
C'(x):= (c(’x X ) .
(x) £ e e

We are able to take advantage of the linear nature of this system of SDEs by
considering in more generality the matrix which produces such vectors. Namely,

Lemma 17. Assume that A(t,x), (t,x) € [0,00) x RY is the N,, x N,,-matrix
which is the unique solution to the matrix stochastic differential equation

d
dA(t.x) =) C'(X)A(t.x) o dB], (41)
i=0
where A(0,x) = I. Then Y(t,x) = A(t,x)Y (0, x).
Proof. We need only show that A(z, x)Y (0, x) solves equation (40), then by the

uniqueness of SDE solutions (see, for example Karatzas and Shreve [26]), the result
follows. But,

d(A(t,x)Y(0,x)) = A(t,x) odY(0,x) 4+ odA(t, x)Y(0,x) = odA(t, x)Y (0, x)

d
=Y C'(X"A(t.x)Y(0.x) o dB
i=0
and, clearly, A(0, x)Y (0, x) = Y (0, x). O

The above results show that all the relevant information about the solution (40)
is captured by the solution (41). We can apply classical results about solutions of
SDE:s to obtain the following proposition.

Proposition 18. The matrix stochastic differential equation (41) has a unique
solution, A = (aq.g)apeAom) With components aqp : [0,00) x RY — R, a,p €
A(m) that satisfy the mutually dependent SDEs:

d t
agp(t,x) = 8up + Z Z /0 Chy (Xi)ayp(u, x) 0 dB,.

i=0yeA(m)

Moreover aqp(t,.) : RN — R are a.s. k — m times differentiable in x for fixed
1 €[0,00) and aq (., .) is jointly continuous in [0, 00) x RN with probability one,
foreach o, B € A(m) and
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alvl

ax—yaaﬂ (t, x)

P
sup E|: :|<oo, Vpell,o0), T >0, (42)
x€RN
{€[0,T]
for any multi-index y with |y| < k — m. Finally, foranyl <k —m

sup IE[”Dlaaﬁ(t,x)HZ@,] <C,(1+|x])? Vpell.oo), T>0, (43)
tel0,7]

Furthermore, the matrix A = (ag.8)a.peAm) IS invertible, and its inverse B =
(ba,g)a.peA(m) satisfies the matrix SDE:

d ¢
B(t,x)=1— Z/ B(u,x)C'(XX) o dB!.
i=0v0

Moreover, the components by g, o0, B € A(m), are a.s. k —m times differentiable in
x for fixed t € [0, 00), jointly continuous in (t, x) and

sup E
t€[0.7]
x€RN

foreach p € [1,00), T >0, |y | < k —m and some constant Cr.,p,. Finally, for any
I <k—m

[yl

v

ba,lg(l,x)

P
:| < Cr,p, (44)

sup E[||D’ba,ﬁ(r,x) ||f1®l] <C,(1+|x)? Vpelloo), T >0, (45)
1€[0.7T]

Proof. This is very similar to Theorem 8. The only difference here is that the
bounds on the norms of the iterated Malliavin derivatives are now bounded only
linearly in | x |. This is obvious once one considers Theorem 8 and, in particular,
inequality (34). It is clear from this equation that the norm of the Malliavin
derivatives inherits the linear growth of the vector fields. All higher order Malliavin
derivatives inherit this linearity from the first order Malliavin derivative, but given
the boundedness of the derivatives of the vector fields, have no worse than linear
growth. O

Remark 19. (a) The above proposition highlights an idiosyncratic difference
between the Malliavin derivative and the normal derivative for the solutions
of such SDEs. It stems from the fact that the Malliavin derivative of X;* has
an unbounded norm over x € R¥, as it has Lipschitz continuous coefficients.
However, the same result for the norm of the classical derivative of X} is
bounded over x € R¥. Note this difference would not appear if we assumed
the vector fields were uniformly bounded.
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(b) Although not used in the sequel, identities (42)—(45) hold true with the
supremum taken inside the expectation.

We now seek to study the solution to (41), whose elements will be absolutely
fundamental to our analysis. We note initially, that although this matrix is potentially
very large, with potentially significant mutual dependence, many of the terms which
make up this mutual dependence are zero. This allows us to get a good handle on
the matrix. Note that for fixed «, 8 € A(m) we have

d ¢
Aup(t.X) =8up+ Y /0 ¢l (XD)ayp(s.x) o dB. (46)

i=0 yeA(m)

The coefficients c;,y identified in (39) lead to the following:
For ||o|| < m — 2 there holds: || % i|| < mforalli =0,...,d, so c(’;é’y # 0 only

when y = & * i. In which case ¢}, , = —1.i.e.

d t
aoc,ﬂ(ts x) = Saﬂ - Z/ aa*i,ﬁ(ss X)o dBlS
i=0"0

For ||a|| = m—1thereholds: ||« x i|| = mfori = 1,...,d, with |« * 0| = m+1.
Hence o xi € A(m) fori = 1,...,d,and a x 0 & A(m). i.e.

d t t
A p(t, x) = up — Z/o Aoxi g(s,x) o dB — Z /0 Qax0,y (X )ayp(s, x)ds.

i=1 y€A(m)

For ||| = m there holds: ||a % i|| > m fori = 0,...,d. Hence a xi & A(m) for
i=0,...,d.1e.

d !
tupt.¥) = 8= Y /0 Gy (X2)ay (5, %) 0 dB.

i=0yeA(m)

An explicit form for a, g is sought and is easy to identify from (46). In fact, each
element of the matrix A can be split up into a sum of two terms: the term which
arises from 8,4—a iterated Stratonovich integral of a constant—and a remainder
term. That is, for any «, B € A(m),

A p(t,x) = agﬁ(t,x) + rap(t, x), (47)
where

(_1)|V\l§;’y if 8 = o * y for some y € A(m)

0
a, 4(t,x) =
op otherwise
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and

rept)= Y 3 /0, /Osk.../osl(—l)Y'cg;*y’g(xg)

y€A,j=0,...d S€A(m)
s.t. laxy||l<m
ly*jll=m+1—|ll

xasg(s,x) odBl o dB!" .. .dB¥

The following proposition is a good indicator of how we are able to identify the
explicit short-time asymptotic rates in terms of time, 7.

Proposition 20. For any T > 0, p € [1,00), a,8 € A(m) and y € Ay, the
following hold

Aoy [\ P
sup E[<t—||1/||/2 ) B ) ] < 00, (48)
1€(0,T]
p
sup E [(t_(m-Fl—“a”)/Z ‘ ra,ﬂ(l,x) |) ] < 00. (49)
xeRY
1€(0,T]
Proof. The proof of these result is left for the appendix. O

We are now ready to derive the integration by parts formula. Let f* € C;° (RY,R),
then, using (36), we get

Df (X)) = V f(X])DX;
= V(f o X)(x)(J")'DX?
= V(f o X)(x) (/ '(JYX)_IVi(X‘;V)dS)
0 i=1,..d

The idea is to develop the preceding equality to isolate terms involving V(f o
X;)(x). Once isolated, the operators of the Malliavin calculus will be used to derive
an integration by parts formula. Now we note that, from Lemma 17:

UDTViXD) = (A, 0)V()); = ) aip(t, x)Vg ().
peA(m)

Hence,

DFCX) = V(f 0 X)(x) / S s 0 Vg (0)ds

BeA(m)
=V(foX)(x) Z Vigy (x) (/ .ai,ﬂ(S,)C)dS)
BeA(m) 0 i=l,..d

= Y Vig(f o X)(@)kg(t, x),

BEA(m)
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where

We re-write the previous equation into a linear system of equations by taking the H
inner product with k, (¢, x) for all « € A(m). i.e.

(DA k@), = D Vis(f o X)) (ks (2, x), kay (2, x)

BeA(m)

(DFX) ka6 )y = D Vigi(f o X)) (kg (2, %), ko (2, %))

BeA(m)

(DFCX) koo (0.0) ;= S Vigi(f © X)) k(2. x). kaqa) (. ))
BeA@m)

Define, for « € A(m):

D@ F(X[) == (D (X)) ka(t.))
Mgt x) 1= =042 (ke (1 3y ey (1, ),

d ot
_ ~(lal+Ipl/2 Z/ 1.0 (5, X)ai 5 (5, x)ds.
i=170

This leaves us with

D(“)f(X,X) - Z t(”“”"'”ﬁ”)/zMaﬁ(t,x)V[ﬂ](f o X))(x).
BeA(m)

The above can be seen as a linear system of equations driven by a random matrix
M(t,x) = (M g(t,X))ap-

The invertibility of this matrix is a major step forward towards an integration by
parts. For then there would hold, P-a.s:
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Vi) (f © X)(x) = (7102 = W12 M i, ) DB f (X)),
peAm)

Proposition 21. M (z, x) is P-a.s. invertible. Moreover, for p € [1,00) and o, B €
A(m), there holds

sup E [(M;l(z, x))f’] <0 (50)
1€(0,1],xeRN '
Proof. The proof of invertibility is lengthy and is left to the appendix. O

2.5 Kusuoka-Stroock Functions

We introduce now a class of functions which we shall call Kusuoka—Stroock
functions. Such functions play the central role in the deduction of the integration
by parts formulae (IBPF) and the control of the derivatives of the semigroup P;.
In particular we will show that if (z, x) — ®(¢, x) is a Kusuoka—Stroock function,
then there exists another Kusuoka—Stroock function (¢, x) — @4 (¢, x), @ € A(m)
such that:

E[®(t, x) Vi (f 0 X)) (x)] = ¢t 1I2E[@, (1, x) £(X}1)].

This class of functions is closed under the operations which are taken during the
formation of the IBPF. As a result this space supports iterative applications of the
above formula.

Definition 22 (Local Kusuoka-Stroock functions). Let E be a separable Hilbert

space and let ¥ € R, n € N. We denote by K!°°(E, n) the set of functions: f :

(0,T] x RN — D" (E) satisfying the following:

1. f(t,.) is n-times continuously differentiable and %(.,.) is continuous in
(t,x) € (0,T] x RN as. for any o € A satisfying |a| < n

2. For any K compact subset of RY and k € N, p € [1,00) with k < n — |a],
we have

o | 0% f
—r/2

t — 4

sup Py

t€(0.T].xeK

< oo. (51
Dk-2 (E)

If (51) holds globally over RY, we write f € K,(E,n) and denote ICi””(n) =
ICi”" (R, n) and, respectively, K, (n) := K, (R, n).

The functions belonging to the set IC,I,”" (E, n) satisfy the following properties which
form the basis of the integration by parts formula.
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Lemma 23 (Properties of local Kusuoka-Stroock functions). The following
hold

1. Suppose [ € Kl°(E,n), where r > 0. Then, fori = 1,...,d,
/0 f(s.x)dB. € K (E.n) and /0 f(s.x)ds € K (E. n).

2. Aup.bagp € Iq(|)|78||—||a||)v0(k —m) for any a, B € A(m).

3 ky € ICfl‘g'” (H,k —m) for any o € A(m).

4. D@y = (Du(t,x), ko) y € ICi"i”a”(n A [k — m]) where u € K“(n) and
o € A(m).

5. If M~ (t, x) is the inverse matrix of M(t,x), then Ma_é € ICé”“(k —m), a, B e
A(m).

6. If fi € ICi’I_’C(n,‘)fori =1,...,N, then

N N
It . It .
[15 ekt 4, (minn;)  and > fiek (minn;).

i=1 i=1

Moreover, if we assume the vector fields Vy, ..., Vg are also uniformly bounded,
then (2)—(5) hold with KC'°¢ replaced by K.

Proof. This is proved in the appendix. O

2.6 Integration by Parts Formulae

In this section we synthesise the developed results to obtain various integration by
parts formulae, in a way which should now be familiar. We note that some of the
stated results are for iterated derivatives of the semigroup P; (cf. Corollary 28) along
vector fields of the Lie algebra. Seeing as the purpose of this section is to look at
derivatives of the semigroup, we shall always assume that Vig,], ..., Viey ul have
sufficient smoothness for this operation to be well-defined.

Theorem 24 (Integration by Parts formula I). Under the UFG condition, for any
® € K(n) and for any o € A(m), there exists @, € K'°((n — 1) A (k —m — 1))
such that:

E[®(1, x) Vi (f o X)(x)] = t T VIPE [, (1, x) f(X1)], t>0,x e RY (52)
forany [ € C}?O(RN; R). In addition, for any q > p

sup E[| @ (r,x)[7] < Cpg(1+[x ) sup E[| @, 2)lIF,, 1. (53)
1€(0,T] t€(0,7]
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Moreover, if ® € K,(n) and the vector fields V;, i = 0,1,...,d are uniformly

bounded, then ®, € IC,((n — 1) A (k —m — 1)). In particular

sup sup E[| @q(t,x)|”] < oo.
1€(0,T] xeRN

Proof. We showed in the previous section that

Vi) (f 0 X)(x) = ¢71elz == W2 p i ) DB (£(X)))
BeA(m)

holds P-a.s. By the product rule for the Malliavin derivative:
DO (@, x) My j(t.x) f(X))) = DPO(1, x) My (1, %) f(X])

+ @(1.x) DPM (. x) f(X))

+ ®(t,x) My 3(t.x) DPF(X]).

Then
E[@(1.x)Vieg (f © Xo)(x)]
= Y A E[ewmgep® )]
BEA(m)
= 8 [0, 0 X)),
where

Ot x)= Y IR {cb(z,x) MZA(t, x)8(kg (2, x)
BeA(m)

—0(t, ) DPM (1, x) — DPD(t, x) M}, x)} .

(54)

The claim ®, € K'((n — 1) A (k —m — 1)) follows from a diligent application
of Lemma 23, namely, parts 3—6. Note that the only term unbounded in x in the
expression for @ is DWM (¢, x) which has linear growth in x. Finally, the bound

(53) can be proved by observing that, due to (43)

sup B[ DM A0 | < ca+1x ).
1€(0.T) ’

(55)



232 D. Crisan et al.

Hence, the bound

sup E| @y (t,x) 7 < Cp(1+[xD? sup [|D(. 0I5,
1€(0,T] t€(0,7]

follows by applying the following to the expression for ®,(¢, x): (55), Holder’s
inequality, and the uniform boundedness of the L" norm of M~ and k, over
(t,x) € (0,T] x RN foreachr > 1. O

Remark 25. Following from Remark 13, the adjoint 6(k,, (¢, x)) is the Itd integral of
k, (z, x) with respect to the d-dimensional Brownian motion B, = (B}, ..., BY) as
the process s — ky (z, x)(s) is F;-adapted for almost all (7, x) € (0, T] x R¥. That
is, we have that

8(ky(t.x) =Y / ky(t,x) (s)dB..
i=170

It follows that for processes with values in K"(E) which are a.e. adapted as
stochastic processes in H, that §(f) := §(f(.,.)) € Kr41(E).

Corollary 26 (Integration by Parts formula II). Under the UFG condition, for
any ® € K'“(n) and for any a € A(m), there exists @/, € K'°(n—1) A (k—m—1))
such that:

E[®(t, x)(Viy £)(X)] = 7 1I2E[@) (1, x) f(X)]. t>0.x eRN  (56)
forany [ € Cb°°(RN; R). In addition, for any g > p

sup E[| @, (t.x)|"] < Cpg(1 +|x])? sup E[|®@. 0)II7,,]- (57)
t€(0,7] t€(0,7]

Moreover, if ® € K,(n) and the vector fields V;, i = 0,1,...,d are uniformly
bounded, then @/, € KC,((n — 1) A (k —m — 1)). In particular,

sup sup E[| @t x)|"] < cc. (58)
t€(0,T] xeRN

Proof. The first observation is the following relationship:
(Vi )(XT) = V(X)) Vi (X[)
= (IS 0 X)) Vi (X))
= V(f o X)) () Vi (X]),
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where (J*)~T := ((J;*)~1)T. At this point refer back to the closed linear system of
equations, which induced the expression:

I Vig(X) = Y ap(t.x) Vg (x).
BeA(m)

Again, the central position of the UFG condition is emphasised, as

V(f o X)) V(X)) = D dap(t, )V(f 0 X)(x)Vigy(x)

BEA(m)
= Y aapt.X)Vig(f o X)(x).
BeA@m)
From Lemma 23, aq g € Kt(ﬁjsn—uau)vo(k — m). Hence, it has been shown that:

E[®1 )V f(X)] = Y B[O X)aupt, x)Vig (f © X)(x)].

BEA(m)

The integration by parts formula (52) can then be applied N,, times, after noting

1
that the product ®a, g € Ile’i[(”ﬂ”_”a”)vo]((n —1) A (k —m —1)). And so,

B[00 )V f(XH] = 3 1B [w,0, 0 £(X0)]

BeA(m)

_ Z t—"’i”r“"z"ﬂ”E[z leli—]lel \I‘ﬂ(l,X)f(th):|

BeA(m)

llell

=172 B [®,(t.x) f(X9)].

where
lloll— (18
o/, = Z A Wy e K°((n — D) A (kK —m —1)).
BEA(m)
The bounds (57), (58) can be deduced from the previous theorem. O

Corollary 27 (Integration by Parts formula III). Under the same conditions as
Theorem 24, the following integration by parts formula holds:

VuE[®(, x) f(X)] = T WIPE[@!(1, x) f(X)], t>0,x eRY, (59
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where ®!! € K1¢((n — 1) A (k — m — 1)). In addition, for any q > p:

sup E[|®(t,x)|"] < Cpg(1+ [x )7 sup (1. )7, (60)
t€(0,T] t€(0,T]

Moreover, if ® € K,(n) and the vector fields V;, i = 0,1,...,d are uniformly
bounded, then @) € K, ((n — 1) A (k —m — 1)). In particular,

sup sup E[| ®(t,x)|"] < oo. (61)
1€(0.T] xeRN

Proof. Observe that
Vi BL®(1, ) f(X])] = B [Vig) ((t, %)) f(X7) + (¢, %) Vg (f 0 X)(x)]
= E[Vig (¢, %)) f(X) + 1714120 (2, %) £(X})]
= PRy (1, x) £(X))),
where
@) (1, x) = 112V (B(t, x)) + Pyt x) € K1*((n = 1) A (k —m — 1)),

It is also clear from the previous results that @/, satisfies (60). ]

Corollary 28 (Integration by Parts formula IV). Under the same conditions as
Theorem 24, the following integration by parts formula holds form; +my < k —m
anday, ..., 0m +m, € A(m):

I/[U‘l] R ‘/[a”,I]Pt(I/[am1+1] tc I/[O‘mlerz]f)(‘x)

= i altectlen D 2E [@y, L 0 FXN] (@)

where ®, . Sy 4y € IC(I)”C((k —m —my —my)). Moreover,

I
sup ]E[‘ Do, .....cm; +my (t,x)‘ ] < Cp(1 + |x])imtmar, (63)
1€(0.T]
If the vector fields Vi, i = 0,1,...,d are uniformly bounded, then @, oy €
Ko((k —m — m; —my)). In particular,
P

sup sup ]E[‘ Dy, aml+mz(t,x)‘ ] < o0. (64)

t€(0,T] xeRN
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Proof. Once it is noted that constant functions are in Ky, the proof follows from
my applications of Theorem 24 followed by m; applications of Corollary 26.
The bounds (63), (64) follows likewise. O

Remark 29. Observe that we are able to quantify exactly how the derivatives
explode (when ¢ tends to 0)—as functions of x-based on an analysis of the
integration by parts factors. In the next section, we shall use the above bounds to
deduce sharp gradient bounds for the diffusion semigroup ;.

2.7 Explicit Bounds

We discuss now how the integration by parts formulae allow the acquisition of
several explicit gradient bounds. This section is by no means exhaustive, and for a
more complete synopsis of obtainable gradient bounds, one should consult Nee [44].
We will use the following norms and semi-norms

o

oxi

[flloo = sup [F(O. IV oo =

, fECPRY,R)
XERN ie{l,.d}

o0

Il =Y > Ve ViadS o i €N T RY) ={f : I f]ly; < oo}

u=1l oy,..0,€EA
lloey ... % e, || =i
p .
1A, =D IVifle. feEC®Y.R), peN (65)
i=1
i _ ¥ f
A o /’I,'rgﬁ ,,,,, a3 [l 0xjy ... 0% o

1 lpoo = 1/ llee + 111, f €CP®RY.R).

Remark 30. Note that || Ve flloo < C || f ||y forany & € Aand f € CL“'(RN,R),
hence

lelly;, <Clell;, i€N.

Corollary 31. Let f € CP(RV,R) and oy, ... 0 +m, € A(m) be such that
my + my < k —m. Then there is a constant C such that, for anyt € [0, T],

|I/[al] A ‘/[aml]Pt(I/[aml-ﬁ-I] e I/[anzl+zn2]f)(x)|
— C||f||OOZ_(”a1”+~~~+”aml+mz ||)/2(1 + | x |)m1+mz' (66)
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Moreover, if the vector fields Vy, ..., Vy are uniformly bounded, then there is a
constant C such that, forany t € [0, T},

” I/[al] et ‘/[aml]Pt (I/[an11+1] et I/[an11+zﬂ2]f) ||00 = C ”f ||OOZ‘_(”O[1 ”+~~~+”U‘m1+mz ”)/2
(67)
Proof. This now follows easily from Corollary 28. O
The following result will be of use in the next section:

Corollary 32. Assume thatO < p <n <k —m, andlet f € CEO(RN,R) . Then
there is a constant C < oo such that for oy, . ..,a, € A(m) andanyt € [0,T],

C tP/?
IV[a11-~~V[an1Ptf(x)|§mllfllp(lﬂxl)”. (68)

Moreover, if the vector fields Vy, ..., Vy are uniformly bounded, then there is a
constant C such that, forany t € [0, T},

C tP/?
Vie] - - Vi1 Pr )|l oo = m”f”p- (69)

Proof. We prove the result for p = 1 as the general case follows along the same
lines. The idea behind this gradient bound is that one can “sacrifice” the derivative
along V|, to obtain a new integration by parts formula involving the gradient of f.
Observe,

N
Vi P f(x) = D Vi ()FE[(f 0 X,)(x)]

i=1

N
= [a JFEXDD V[j;n](x)(f;‘)j,i}

i=1

[0, F(X1)D/ (. x)].

N
ZIE
j=1

N
ZIE
j=1

where ®/(t,x) = YIL, Vi (x)(J;)i € Ki(k — m). Hence, following n — 1

=1 " o]
applications of Theorem 24 to the above expression, we see that:

N
Vies] - - - Vi Pr f(x) = (el 4 llen—11)/2 ZE [aj f(XtX)CDél,...,anfl (t, x)] )
i=1
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And therefore

Vier - - - Vi Pr f(x)| < € enltclenmiD2 g 1 4 oy

Ct'/? )
= etz VA + 12D
The last inequality follows because ¢(!=llenlD/2 > 7 (=lelh/2, .

The gradient bounds presented above play the central role in determining the
rates of convergence of the numerical approximations presented in the following
chapters. In addition, we can use them to deduce the Hormander’s criterion in
the particular case when the vector fields V;, i = 0,1,...,d satisfy the uniform
Hoérmander condition.

2.8 Smoothness of the Diffusion Semigroup

In this section, we shall assume for simplicity that the vector fields V;, i =
0,1,...,d are smooth and uniformly bounded. We prove that, under the assumption
of Hormander’s criterion, x — P; f(x) is a smooth function. This implies the
existence and smoothness of the density of the law of the corresponding diffusion.
To show this, we make use of the following proposition, provided by Malliavin
in [40]:

Proposition 33. Let 1 be a finite measure defined on the Borel o-algebra B(RY).
Assume that for every multi-index o , there is a constant Cy, such that

‘ / 8 O] < Calf 1o

for every smooth f with compact support. Then |4 has a density with respect to the
Lebesgue measure which is smooth on RN . In particular, if for every multi-index a,
there is a constant C,, such that

IE[0a SHXO] ] = Ca 1 flloo » (70)

for every smooth f with compact support, then the law of X;* has a density, which
is smooth on RV

Remark 34. One can “localize” the result in Proposition 33 in the following
standard way: Assume that for every R > 0 and every multi-index o there is a
constant Cy g, such that

‘ / B FOORE)| < Car | flloo
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for every smooth f with compact support in the ball B(0, R). Then p has a density
with respect to the Lebesgue measure which is smooth on RY . To justify this, one
uses Proposition 33 to show that for every R > 0, 1|p(o,r) has a smooth density
with respect to the Lebesgue measure.

In particular, if for every R > 0 and every multi-index « there is a constant Cy g,
such that

| E[(0e /)X = Cor 1 f lloo - (71)

for every smooth f with compact support in the ball B(0, R) then the law of X*
has a smooth density with respect to the Lebesgue measure.

Gradient bounds such as (70), (71) may be deduced from the techniques of Kusuoka,
provided some extra assumptions are made.

Theorem 35. Assume that the following holds for all x € RV :
Span{V[a] (x):ae€ A(m)} =RN, (72)

Then the law of X} has a smooth density with respect to the Lebesgue measure.

Note that we may restate (72), as the property that there exists € = €(x) > 0
such that

3 (V). = elg ], (73)

a€A(m)

forall ¢ € R", or equivalently: the matrix (V' V) (x) is invertible Vx € R, where
V(x) := (V}}))j=1...v. Note: upon taking the infimum over all | | = 1, the LHS

we A(m)
of (73) is the minimum eigenvalue of this matrix. The inverse must have smooth

entries (by the inverse function theorem) and be bounded on compact sets.

Proof. Showing (71), amounts to deriving an integration by parts formula for the
partial derivatives d;. This can easily be iterated to obtain any combination of higher
partial derivatives. We claim that there exist smooth functions C;, such that:

0= Y Clx)VwX),

a€A(m)

for all x € R™. This can be re-written in matrix form as 9; = VC', where V(x) :=
(Vi (x))j;zk(.;lj;/, and C'(x) = (CL(X))yea(m But it holds that (VV7)(x) is
invertible for all x € RV . Therefore, we may choose

Ci — VT(VVT)_lai ,
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that is, Ci(x) = (VT(VVT)719;,)q(x). Clearly, C/ is smooth by the inverse
function theorem and it is also bounded on compacts. Let ¢ be a smooth function
with compact support in the ball B(0, R). Observe that

E[@)(X)] = D E[CVue)X)] = D E[(ArCLVime)(X)].
a€A(m) a€A(m)

where Ag : RY — R is a smooth “truncation” function such that A r(x) = 1if
x € B(0,R) and A, (x) = 0if x & B(0,2R). We can therefore assume without loss
of generality that both C! and V], are bounded. By Corollary 26 we deduce that
there exists @, , such that:

E [(ARCiVie) (X)) = t T 1IPE[@], (1, x)e(X)] (74)
and
sup sup E[| @), x(t,x) ‘p] < oo. (75)
1€(0,T] xeRN

Hence there exists a constant C; g, such that

[E[(0: ) (X < Cirl¢lloo (76)
with

Cip=171912"3" sup E[| @] x(1.x)[] < co.

a€A(m) xeRN

The same argument can be done for any partial derivative and the procedure can be
iterated for any multi-index «. The result follows by Remark 34. O

2.9 The VO Condition

Under the UFG condition alone, one cannot gauge any differentiability properties
in the direction V. Even if we have differentiability in the direction V}, the norm
IVoP¢l|lo may explode with arbitrary high rate. Kusuoka has given an explicit
class of examples where, for arbitrary integers / > 2, it holds

1 _1
2 @lloe = VoPrglloo = C172 l@lloo

for some constants ¢, C > 0 (see Propositions 14 and 16 in [30]). However the
following condition allows us to have a suitable control in the direction Vj.
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Definition 36 (The V0 Condition). Let{V; :i =0,...,d}, be a system of vector
fields such that Vi,...,V; € CAH'(RV;RY) and V, € CK(RV;RY). We say that
{Vi ©i = 0,...,d} satisfy the VO condition if, there exist uniformly bounded
functions g € Cf (RY,R), with B € A(2) such that

) = Y o)V (). (77

BEAQ2)

Condition VO states that ¥ can be expressed as a linear combination of the
vector fields {V1,...V;} U {[V,-,Vj],l <i<j< k}. This premise is weaker
than the ellipticity assumption and has been used, for example, by Jerison and
Sanchez—Calle [25] to obtain estimates for the heat kernel. Under the VO condition
all results presented above extend to the differentiability in the direction V}, as well.
For example we have the following equivalent of the corollary 28:

Proposition 37. Under the same conditions as Theorem 24 and the VO condition,
the following integration by parts formula holds for m; + my, < k — m and
01y oo s Omi4m, € .A(m) U {(0)}

I/[al] e ‘/[aml]Pt(I/[aml-ﬁ-I] e I/[an11+zn2]f)(x)

= t_(”f)tl”+...+”0¢m1+m2”)/2]E I:q)al,...,amlerz (t, -x)f(th)] , (78)

where g, . Sy 4y € ICIO""((k —m —my —my)). Moreover,

P (m1+m2)p
Sup ]E ¢a1 ..... a,,ll+,,,2 (ts'x) E Cp(l + I'x |) . (79)
1€(0.7]
Moreover, if the vector fields Vi, i = 0,1,...,d are uniformly bounded, then
Doy +my € Kol((k —m —my —my)). In particular,
P
sup sup E| Dy, a, 4, X) } < 00. (80)
1€(0.T] xRN

From Proposition 37 one can deduce the following corollary similar to
Corollary 32

Corollary 38. Assume n < k —m, and let f € CEO(RN,R) . Then, under the
UFG+VO0 conditions, there is a constant C < oo such that foray, . ..,o, € A(m)U

{0}

Cll/2
W] -+ Vi) Pr f(X)] = m”vf”oo(l +[x M. (81)
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Moreover, if the vector fields Vy, ..., Vy are uniformly bounded, then there is a
constant C such that

Ct'/?
Vier - - Ve e F)lloo = m”vfﬂ- (82)

and for any integer p > O there is a constant C,, such that

Cp
”V[ozl]---V[an]Ptf)”oo:m”f”p- (83)

3 Cubature Methods

3.1 Introduction

In this section we will be concerned with numerical approximations of solutions
of stochastic differential equations (SDEs). There are two classes of numerical
methods for approximating SDEs. The objective of the first is to produce a pathwise
approximation of the solution (strong approximation). The second method involves
approximating the distribution of the solution at a particular instance in time
(weak approximation). For example when one is only interested in the expectation
E[p(X;)] for some function ¢, it is sufficient to have a good approximation of
the distribution of the random variable X; rather than of its sample paths. This
observation was first made by Milstein [42] who showed that pathwise schemes
and L? estimates of the corresponding errors are irrelevant in this context since the
objective is to approximate the law of X;. This section contains approximations that
belong to this second class of methods.

Classical results in this area concentrate on solving numerically SDEs for which
the so-called “ellipticity condition”, or more generally the “Uniform Hormander
condition” (UH), is satisfied. For a survey of such schemes see, for example,
Kloeden and Platen [27] or Burrage, Burrage and Tian [6]. Under this condition,
for any bounded measurable function ¢, P,¢ is smooth for any ¢ > 0. It is this
property upon which the majority of these schemes rely.

For example, the classical Euler—Maruyama scheme requires P;¢ to be four times
differentiable in order to obtain the optimal rate of convergence. Talay [57,58] and,
independently, Milstein [43] introduced the appropriate methodology to analyse
this scheme. They express the error as a difference including a sum of terms
involving P;¢. Their analysis also shows the relationship between the smoothness
of ¢ and the corresponding error. Talay and Tubaro [59] prove an even more precise
result showing that, under the same conditions, the errors corresponding to the
Euler-Maruyama and many other schemes can be expanded in terms of powers
of the discretization step. Furthermore, Bally and Talay [2] show the existence of
such an expansion under a much weaker hypothesis on ¢: that ¢ need only be
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measurable and bounded (even the boundedness condition can be relaxed). Higher
order schemes require additional smoothness properties of P,¢ (see for example,
Platen and Wagner [52]).

As explained in the previous chapter, Kusuoka and Stroock [32,33, 34] studied
the properties of P,¢ under the UFG condition which is weaker. A number of
schemes have recently been developed to work under the UFG conditions rather
than the ellipticity condition, their convergence depending intrinsically on the
above estimates of V|y,] ... Vo, Pr¢. A further advantage of this new generation of
schemes is a consequence of the classical result stating that the support of X (x) is
the closure of the set S = {x : [0, 00) — R?} where x¥ solves the ODE,

t d t
x? :x+/ Vo(xf)ds—i—Z/ Vi (x9)g (s) ds
0 =170

and ¢ : [0,00) — R? is an arbitrary smooth function (see Stroock and Varadhan
[54-56], Millet and Sanz-Sole[41]). These schemes attempt to keep the support of
the approximating process on the set S. In this way, stability problems that are
known to affect classical schemes can be avoided. For example, Ninomyia and
Victoir [49] give an explicit example where the Euler-Maruyama approximation
fails whilst their algorithm succeeds (see Example 43 below for their algorithm).
Their example involves an SDE related to the Heston stochastic volatility model in
finance.

In this chapter we give a general criterion for the convergence of a class of weak
approximations incorporating this new category of schemes. The criterion is based
upon the stochastic Stratonovich—Taylor expansion of ¢(X;) and demonstrates how
the rate of convergence depends on the smoothness of the test function ¢.

For smooth test functions, an equidistant partition of the time interval on which
the approximation is sought is optimal. For less smooth functions, this is no longer
true. We emphasize that the UFG+VO conditions are not required for smooth test
functions.

3.2 M-Perfect Families

In this section we introduce the concept of an m-perfect family. Such families
correspond to various weak approximations of SDEs, including the Lyons—Victoir
and Ninomiya—Victoir schemes. The main result appears in Theorem 46 and
Corollary 47.

Fora = (i1,....i;) € Aand ¢ € C/(R"), let f, 4 be defined as f, _i)p =
Vi, ... Vi,p and I s, (¢) be the iterated Stratonovich integral

t S0 Sr—2 ) . .
Iy, (1) :=/0 /0 ( A fa,w(Xs,l)odWQLI) o---0dWi™' odWy,
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forz > 0. 1f iy = O then I, (¢) is well defined for ¢ € CI’;(RN). However, if i} #

0 then Iy, (¢) is well defined provided ¢ € C;“(RN ), since the semimartingale
property of f,,(X) is required in the definition of the first Stratonovich integral
Sr—2

o Jee(Xs_)) o dW";,‘M. Note that the Stratonovich integrals are evaluated
innermost first. Finally let

! 50 Sr—=2 . . .
I (1) 12/0 /0 (/0 IOdW’Slr—l)O"'OdW’S’I“ o dWy .

Leta = (i1,...,i;) € Ap be an arbitrary multi-index such that ||¢| = m € N
(and || = r € N). If m is odd, then E[/,(¢)] = 0 and if m is even then

t% . m.,r
o ifa € A"
E[l,(1)] = { 2% @) o (84)
0 otherwise

where A{'" is the set of multi-indices @ = a * -« % an € Ao (m) such that each
a; = (0) or (j, j) forsome j € {1,...,k}. Note that r — 7 is equal to the number
of pairs of indices (j, j) occurring in .. A proof of this result can be found in [19].

We state three further results in (85), (86) and (88). The proofs are all elementary
and can be found in [19]. The first two give an upper bound on the L? norm of
Iy, ,(t) for smooth ¢. The third provides an explicit form for the remainder of ¢ (X;)
when expanded in terms of iterated integrals.

For ¢ € C}‘ylaH“(RN) and any multi-index &« = (iy,...,i;) € Ap such that
i1 # 0, we have®

115, O, < |l favl o P CZ Vi foy | 1 e )

i=1

for some constant ¢ = c(«) > 0. For ¢ € C}UO‘H(RN ) and any multi-index o =
(i1,...,i;) € Ap such that i{ = 0 we have

@l < e fuploot (86)

Form e N, ¢ € CZ’H(RN) and x € RY, we define the truncation,

o) =)+ Y fup () La(0). (87)

a€Ay(m)

°In the following, we allow for the constant ¢ to take different values from one line to another.
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Then for ¢ > 0 the remainder is

Rug(®) =pX)—g")=| > + > Iy, @).
lell=m+1  |lal=m+2,a=0B.||]|=m
(88)

In the following, we define a class of approximations of X expressed in terms of
certain families of stochastic processes, X (x) = {X; (x)}se[0.00) for x € RY, which
are explicitly solvable. In particular, we can explicitly compute the operator,

(0:9)(x) = E[p(X;(x))]. (89)

The semigroup Pr will then be approximated by Q;' Q) ... Qj' where {hj =
tj—tj—1})i—and m, = {1; = (%)VT}’}ZO for n € N, is a sufficiently fine partition
of the interval [0, T]. In particular #; € [0,1) for j = 1,...,n. The underlying
idea is that Q¢ will have the same truncation as P;¢.

So let X (x) = {X, (%) }ref0.00)» Where x € RV, be a family of progressively
measurable stochastic processes such that, lim, X, () = X (x0) P-almost
surely, for any t+ > 0 and xy € RY. As a result, the operator Q; defined in
(89) has the property that Q,¢ € C,(R") for any ¢ € C»(R"). In particular,
0, : Cp(RY) — Cp(RY) is a Markov operator.

Definition 39. For m € N, the family X (x) = {X, (x)}/ef0.00) Where x € R" is
said to be m-perfect for the process X if there exist a constant ¢ > 0 and an integer
M > m + 1 such that for ¢ € C;"™ (RY),

M
sup |Qip(x) —Elg" ][ < ¢ Y ol - (90)
xRV i=m+1

As we can see from (90), the quantity E[¢;"(x)] plays the same role as the
classical truncation in the standard Taylor expansion of a function. Using (84) we
deduce that,

Elp?(x)] = ¢(x)
Elp?(x)] = ¢(x) + Lo(x)t

2
Elp*(x)] = p(x) + Lo(x) + L%o(x)%,

where L = V) + %Zflzl V2. Furthermore, since E[I,(¢)] = 0 for odd |«, it
follows that E[p} (x)] = Elg{ (x)]. E[¢; ()] = El? (x)] and E[? (x)] = Elg(x)]-
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3.3 Examples

There now follow some examples of m-perfect families corresponding to the semi-
group { P };¢[0.00), the Lyons—Victoir method and the Ninomiya—Victoir algorithm.

Example 40. The family of stochastic processes {X; (x)}se[0.00), Where x € RV,
is m-perfect. More precisely, there exists a constant ¢ > 0 such that for ¢ €
C;/,m-l-Z (RY),

m—+2
sup |Pio(x) —Elp/" ()] <c Y 1ol O1)
veRY i=m+1
Proof. For ¢ € C;’”H(RN),
|Pio(x) —Elp!" (0)]| = |E[Rmp)]| = [E[( D+ > My, , (0]

llall=m~+1 ||a||=m+2,ot=0*ﬁ,||ﬁ||=m

Applying inequality (85) to the first sum,

k
Y @l s X tel a4 e Vit
i=1

lel|l=m+1 loel|=m~+1

m+2

<c Y el (92)

i=m+1

for some constant ¢ > 0. Applying result (86) to the second sum,

> |17, @], = > ¢ [ fur oot

lall=m~+2.a=0%B.||Bll=m lall=m+2.a=0%p.|8ll=m
m+2
<clellympat 7 - (93)

The result for ¢ € C;/ ’m+3(RN ) follows from combining (92) and (93). Since none
of the terms in (91) depend on partial derivatives of order m + 3, the inequality is
also valid for any ¢ € C Z 2RV (a standard approximation method can be used).

|

In the following example, the family of processes X (x) = {X, (x)}ref0,1), Where
x € R, corresponds to the Lyons—Victoir approximation (see [36]). The example
involves a set of / finite variation paths, w;, ..., w; € Cg([O, 1], Rd), forsome/ € N,
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!
together with some weights A1,...,A4; € R* such that )~ A; = 1. These paths
j=1
are said to define a cubature formula on Wiener Space of degree m if, for any

a € Ag(m),
i
El[l(D]=) A, 1.7 (1),
j=1

where,

) L rso Sr—2 . . .
19 ()= /0 /0 (/0 4o (s7-1)) -+ dw'r (s1)do” (50).

From the scaling properties of the Brownian motion we can deduce, for z > 0,

l
E[lo(0]=) A 1" (1),

Jj=1

where w; 1, ..., w;; € C([0,1],R?) is defined by w; ; (s) = Viw; (%), s € [0,1].
In other words, the expectation of the iterated Stratonovich integrals I, (¢) is the
same under the Wiener measure as it is under the measure,

1
Q= Ajbu,
j=1

Example 41. If we choose X to be the stochastic flow defined in (1), but with the
driving Brownian motion replaced by the paths w1, ..., ®,; defined above then
the family of processes, { X, (x)}sef0,1], with corresponding operator (0,0)(x) :=
Eq, [¢(X,(x))], is m-perfect. More precisely, there exists a constant ¢ > 0 such that

for ¢ € CbV’m“(RN),
m—+2 )
sup [Q,0(x) —Elg" )] <¢ Y ol
x i=m+1

For example, if (A sy, j) are chosen such that for / = 2¢ the paths are @, ; : t
t(1,2},..,29) for j = 1,...,2¢ with points z; € {—1,1}* and weights A; = 27,
we obtain a cubature formula of degree 3 and a corresponding 3-perfect family.
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|

Proof. Let us first observe that I, (1) = ¢ > I’ (1) Hence, for ¢ € C,""*(RY),

[0,0(x) = Elg" ()] = [Eq, [Rur.o ()]
=)+ > ) fo oo [Ea ],

llall=m+1 ||a||:m+2,ot:O*ﬁ,||ﬁ||:m

1
<( ) + > ) ol A 2877 @1

llell=m~+1 ||a||:m+2,ot:O*ﬁ,||ﬁ||:m j=1

<Y + > Ve | fuploo -

llall=m-+1 ||a||=m+2,ot=0*ﬁ,||ﬁ||=m

[
where ko = Y. A; |1 (D], o
j=1

Remark 42. (i) There has been no change to the underlying measure in the
example above. Merely a representation in terms of the measure (Y, has been
introduced to ease the computation of af. More precisely, the family of
processes {Y,f (x)} where x € RV is constructed as follows. We take,

t€[0,1]
Xo(x) = x
and then randomly choose a path w;, from the set {wy 1, ..., ;} with corre-
sponding probabilities (A1, ..., A;). Each process then follows a deterministic

trajectory driven by the solution of the ordinary differential equation,

d
dX, =Vo(X)di+ ) V;(X)dw],.
j=1

We can therefore compute the expected value of a functional of X, (x) as
integrals on the path space with respect to the Radon measure ;. Hence the
identities,

0,¢(x) = E[p(X, (x))] = Eq, [¢(X; (x))]

(i) The approach adopted by Lyons and Victoir to construct the above approx-
imation resembles the ideas developed by Clark and Newton in a series of
papers [10, 11, 45, 46]. Heuristically, Clark and Newton constructed strong
approximations of SDEs using flows driven by vector fields which were
measurable with respect to the filtration generated by the driving Wiener
process. In a similar vein, Castell and Gaines [8] provide a method of strongly
approximating the solution of an SDE by means of exponential Lie series.
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(iii) The family of processes X (x) = {X; (%) }¢ref0,1).xerv} corresponding to the
Lyons—Victoir approximation (see [36]) have the fundamental property that
they match the expectation of the truncated signature as sketched in the
Introduction. In [36], Lyons and Victoir constructed degree 3 and degree
5 approximations in general dimensions. More recently, Gyurko and Lyons
developed in [22] higher degree approximation (degree 7, 9 and 11) in low
dimensions and show how to extend the cubature method to piece-wise smooth
test functions.

For the following example, we will denote by exp(V't) f the value at time ¢ of
the solution of the ODE y’ = V (y), y(0) = f where V € C°(RY,R"). In
particular, exp(V't) (x) isexp(Vt) f for f being the identity function. The family
of processes ¥ (x) = {¥; (x)}e[.1] below corresponds to the Ninomiya—Victoir
approximation (see [49]).

Example 43. Let A and Z be two independent random variables such that A is

Bernoulli distributed P(A = 1) = P(A = —1) = J and Z = (Z')\_ is a

standard normal k-dimensional random variable. Consider the family of processes
Y (x) ={Y, (-x)}te[o,l] defined by

k
exp(%t)‘]_[ exp(Z'Vit!/?) exp(L1)(x) ifA =1
Y, (x) = T ‘
exp(21) [T exp(ZF 1 Vit ) exp(21) (x) if A = —1

i=1

with the corresponding operator (Q;¢)(x) := E[p(Y;(x))] . Then there exists a
constant ¢ > 0 such that for ¢ € C bV’S(RN )

sup [Q,¢(x) — Elg;()]] < ¢’ [l9]lyg

Hence {Y; (x)}:e[o.1] is 5-perfect.
Proof. See [13]. O
The following lemma is required to prove the main theorem below.

Lemmadd. For 0 < s < t < 1 and any m-perfect family {X, (X)}te.1] with
corresponding operator Q = {Q,}:e(.1] we have,

M .
1112
IP:(Pgp) = Q:i(Pp)lloo < cllll, D —=5 (94)
j=m+15 2

where ¢ € Cf(RN)for 0 < p < oo and some constant ¢ > 0. In particular, for
¢ € C)' (RY),

m+1
[P (Psp) — OQi(Ps@)lloo Sl 2 2. 95)
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Proof. Since C{°(RY) is dense in C; (R9) in the topology generated by the norm
|| ,00 it suffices to prove (94) and (95) only for a function ¢ € CP(RN).
By Corollary 32, we have

J
1Pl =Y D0 Vil Vi Pre o

i=1 o,..a €A
oy ... i |=

C C
<Y X et <
- o kLR || — - =P
i=1 o,..a €A t : l P r2
llory ... 0e; | =

Then (94) and (95) follow from the definition of an m-perfect family. |

The family of processes X (x) = {X; (x)}ref0.00) below corresponds to the
Kusuoka approximation. We recall that Kusuoka’s result requires only the UFG
condition.

Example 45. A family of random variables {Z, : « € Ay} is said to be m-moment
similar if E[ | Z,|"] < oo forany r € N, « € Ag and Z(g) = 1 with,

ElZe, ... Zo;] = Elly, ... 1o,]

forany j = 1,...,manday,...,a; € Agsuch that ||| +---+ “O‘J'H < m where
1, is defined as above.

Let {Zy : @ € Ay} be a family of m-moment similar random variables and let
X (x) = {X, (x)}ref0.00) be the family of processes,

Nt -+ [l |

_ 21 .
X, (x) = § :7 § : t 2 (P ...ng)(V[al]...V[aj]H)(x)
— j!

llovt |4+ ||y || <m
(96)

where H : RY — R is defined H(x) = x and

le (- 1)1+1

0= ||~ 12 > Zp ... 2Zg,

Brx..xB;=a
with the corresponding operator Q = {0, }:¢(0.1] defined by,
0:9(x) = Ep(X; (x))]

for ¢ € Cy(R"Y) Then,
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mm-‘rl t]/z
1Prsp = Qi Pstllos < IVollow Y. —= 97
j=m+18 2

for some constant ¢ > 0.
Proof. See Definition 1, Theorem 3 and Lemma 18 in Kusuoka[29] for (97). O

The family X (x), x € RY as defined in (96) is not m-perfect. However,
inequality (97) is a particular case of (94) where p = 1 and M = m™ !, Since (94)
is the only result required to obtain (98), we deduce from the proof of Theorem 46
that (98), with p = 1, holds for Kusuoka’s method as well. Similarly part (ii) of
Corollary 47 holds for Kusuoka’s method. For numerical algorithms related to the
family X (x), x € RN as defined in (96) see [31,47,48]. In particular, paper [48]
uses a control on the computational effort based on the same algorithm (the TBBA)
as the one employed in Sect. 3.5.

The set of vector fields appearing in (96) belong to the Lie algebra generated
by the original vector fields {Vy, Vi,...,V;}. Ben Arous [1] and Burrage and
Burrage [5] employ the same set of vector fields to produce strong approximations
of solutions of SDEs. Notably, the same ideas appear much earlier in Magnus [39],
in the context of approximations of the solution of linear (deterministic) differential
equations. Castell [7] also gives an explicit formula for the solution of an SDE in
terms of Lie brackets and iterated Stratonovich integrals.

3.4 Rates of Convergence

We now prove our main result on m-perfect families, the gist of which can be
conveyed by the concept of local and global order of an approximation. Local order
measures how close an approximation is to the exact solution on a sub-interval of the
integration, given an exact initial condition at the start of that subinterval. The global
order of an approximation looks at the build up of errors over the entire integration
range. The theorem below states that, in the best possible case, the global order of an
approximation obtained using an m-perfect family is one less than the local order.
More precisely, for a suitable partition, the global error is of order ’"T_l whilst the
m+1

local error is of order .

Let us define the function,

p—2 min(yp.(m="D) jf yp #£m—1

Y’ (n) = .
(n) n~™=Y21nn  foryp =m—1

In the following,

EM (@)= |Pre— O O1  ...00e|

fory e R,n e N.
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Theorem 46. Let T,y > 0 and m, = {t; = (%)YT};? —o be a partition of the
interval [0, T| where n € N is such that {h; =t; — tj—l}’}=1 C (0, 1]. Then for any

m-perfect family {X, (X)}tefo,r) with corresponding operator Q = {Q;}ie.1] we
have, for ¢ € Cf(RN) where p = 1,...,m,

E (@) <eX? ) lel, + | Pne — Ohel (98)

for some constant ¢ = c(y, M, T) > 0 where M > m + 1, as in Definition 39.
In particular, if y > mT_l then,

£ (p) < = loll, + [ Prno — Qo]
n

Proof. We have,

EM (@) = Py, (Pr—p, @) — Qp (Pr—pn,®)
n—1
+ Z thn - thj+1(PT_hj+l_"'_hn(p - th] PT—h‘/—---—h,,QO)
j=1
= Phn (Ptnfl(p) - Q;[’:Y(Ptnfl(p)

n—1
+Y o 0n L Of L (P, (Py_y9) — O (Py_y0)).
=1

By Lemma 44, there exists a constant ¢ > 0 such that,

M 1/2
| o, (Pry0) = O (P @) o < cllell, Y =
I=m+1 tn—l
Since P is a semigroup and QZ’/ is a Markov operator for j =2,...,n —1,

|oh - efy By (Pyie) = O (P = By (Poie) = 2 Pyl

M hl/Z

J

<clel, Y. 5
I=m+1 ¢.2

—_

J

for some ¢ > 0. Finally, since O Z’j is a Markov operator, it follows from (102) that,

loi ... 0% (Pune—Qro)|,, < | Pue—0rel.
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Combining these last four results gives,

1/2

M
5y’”(<ﬂ)=HPT</J—QZZmQ2”1¢H HPhl(ﬂ Q;w” +C|I<ﬂ|lpz >

I=p "
j=2l=m+1p,2)

It follows, almost immediately from the definition of /; that,

TG — 1)y~ i r=l
hj :—y (j ) / ( .M ) dM,
nv j—1 \J —1

=1 < max]( ]1)7 1] < max[2”~!, 1]. Hence for

but for j € {2,..
l=m+1,...,M,

]_

hlj/2 (}/T(jn—yl)y_1 maX[Zy_l, 1])//2
<
(=p)/2 — . (=p)/2
G
T =Dl yi=p) yp—l
= C(ny) = C(—) (G-D'7

where ¢ = max[1, (y max[2" 7!, 1])™/2]. It follows that,

M hl/z 1 % M ,

j . p—=

> WEC(;) > (=1
1=m+1Lj—1 I=m+1

. M . yp—l yp—= (m+1) +1 _1 .
Since 3L, (j = D7 = (=1 AR Ve T
yr— (m+1)

1) M we have,

Yp
2

l h'/? 1 yp—(n+1)
J . yp—mT’)
Z W =M (;) (G- > 99)

I=m+1"j—1

We now consider (99) for three different ranges of y.

m— n . yp—(m+1)
Fory € (0.251), X,/ = D™ = 22, - 1)
series on the right hand side is convergent, we have,

= (m+

and since the

n
_r . yp—(m+1 _w
n- 2 E (=12 <c¢n 2

j=2

for some constant ¢ = ¢(y, M) > 0.
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Fory = mT_l, Z’}:z(j — 1)7! < ¢Inn for some constant ¢ = ¢(y, M) > 0 so we
have,

n
_yr . yp—(m+1) (m 3]
no2 E G-1 =2 <c Inn.
j=2
Fory > =1 we have
P

—1 yp (m+l) 1 1 yp—(m+1) ! 1+ yp—(m—1)
E ( - <c x 2 dx=c X 2 dx < o0
n 0 0

S0,

yp—(m+1)

n .
m+1) _m— _1 2 1 m—
%Z(,_l)”( - z‘z(_fn) Lot o
j=2

We observe that the rate of convergence is the controlled by the maximum

between Y (n) and the rate at which H Pro—0re H converges to 0. We define
o0

Ykika () := Yk (n) + n_%. We have the following corollary:

Corollary 47. (i) Forany ¢ € Cg’[ (RM),

EM () < X" () (@]l -

for some constant ¢ > 0. In particular, if y > 1, then E"" (p) < +%1 el a-
(ii) If there exists a constant ¢ > 0 independent of t such that,

sup |X; (x) — x| < v/, (100)

X€RN

then, for any ¢ € Cg (RM),

EM () < XM () llolly

for some constant ¢ > 0. In particular, if y > m — 1, then E"" (@) <
m Tm=1 ||(p||l
(iii) lf there exist constants ¢, ¢ > 0 independent of t such that,

IPrp — O ¢lloe < ct? o], . (101)
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then, for any ¢ € C}ZJ(RN) where 1 <1 < M, we have

EM (@) <Y () o),

for some constant ¢ > 0, In particular, if y > m — 1, then E"" (p) <
==t llell; -
n 2

Proof. (i) The result follows from Theorem 46 and the definition of an m-perfect
family.
(ii) If ¢ € Cy»(RN) is Lipschitz then,

1019(x) = ¢ ()] = ¢ |IVelloo V7 (102)
hence,
| Pro — Oo|l, < cllell, V1.
(iii) The result follows from Theorem 46 and (101). O

Finally we define u, to be the law of X, that is u,; (p) = E [p (X;)] for ¢ €
Cy(RY). We also define u¥ to be the probability measure defined by,

i @) =B[QF07 - 0w (X0 = [ OF.07_ ... 0} () 10 (@)

for ¢ € Cp(R") and introduce the family of norms on the set of signed measures:

lul, =sup{{u @) .0 € CLRY). |loll; o < 1}, > 1.

Obviously, |u|; < |ulp if I < I'. In other words, the higher the value of /, the
coarser the norm. We have the following:

Corollary 48. (i) For | > M, we have |, —ul|, < Y"1 (n). In

[4
—1

particular, if y > 1, then |,u, — ,ufv‘] <

(i) If (100) is satisfied then ‘u, — N |[ < YU (n). In particular, if y > m — 1,

then i/“Ll‘ _I"Ll{v|[ ==

m—1
n 2 _
(iii) If (101) is satisfied then |,u, — N |l < Y3 (n). In particular, ify > m — 1,

then |pe — Y|, < <=
n 2

Remark 49. We deduce that there is a payoff between the rate of convergence and
the coarseness of the norm employed: the finer the norm the slower the rate of
convergence. Hence intermediate results such as part (iii) of Corollaries 47 and 48
may prove useful in subsequent applications. The additional constraint (101) holds,
for example, for the Lyons—Victoir method, as a cubature formula of degree m is
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also a cubature formula of degree m’ for m’ < m. Similarly, it holds for Kusuoka’s
approximation since an m-similar family is also m’-similar for any m’ < m.

3.5 Cubature and TBBA

In this section we discuss an algorithm that is used to control the computational
effort required for the implementation of the Lyons—Victoir cubature method. This
method suffers from the usual drawback of any tree based method, namely an
exponentially increasing support. This is not an issue in low dimensional problems
or when only a sparse partition is used. However, the exponential growth is a
major hurdle in more complex and/or high-dimensional problems. To the best of
our knowledge, currently, there exist two methods that may be applied to control
this growth: The recombination method of Litterer and Lyons [35] and the tree
based branching algorithm (TBBA) of Crisan and Lyons [14]. The application of
the former to the cubature method has been extensively discussed in [35], where as
here, we focus on the TBBA. !0

The idea behind the TBBA is to construct a finite random measure with a
support of size less than a pre-determined value that is an unbiased, minimal
variance estimator of the original measure. The method insures that every point
in the support of the original measure remains in the support of the resulting
measure with a probability (approximately) proportional to its original weight. To
fix ideas, let us consider the cubature measure Q' of degree m > 3 supported
on the paths oy, ..., w.m with corresponding weights Ay ,)chz, cl € Ni. As
usual we may consider by scaling, cubature measures Q)" on any interval [0, ¢]. Let
Bix(w), o€ Copy ( [0, 1]; R? ) denote the solution at time ¢ of the ODE

d .
dyt,x = Zj=0 I/J(Yt,x)dw](t) . (103)
Yox = X
Consider also a partition 7 := {0 = #p < t; < ... < t, = t} of [0,7]. By

iterating the cubature measure along this partition and solving the successive ODEs
(see Remark 42), we generate a collection of discrete measures {Q’t’; Yk <n, Where the
I . k
cardinality of the support of the measure Q" is (' )". i
We wish to replace the measure Q7 by a random measure Q' whose support
is included in the support of the measure Q7' and whose cardinality is at most N

. k ~ . .. .
(with N < (cd’”) ). Moreover we want QZ: to be an unbiased minimal variance
estimator of Q7! in a sense that we will make explicit below. To handle the additional

10The TBBA has also been _used to control on the computational effort for a class of numerical
algorithm using the family X (x), x € R? as defined in (96), see [47] for details.
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randomness we introduce an additional probability space ( Q. F

the random probability measure @’t’; We will require that E [@Z:

denotes integration with respect to IP. Let
d
:’Z = Z/\jé’yj, Vi =wsi) ... ws ;,, forsomeiy,....ir =1,...,c),
=1

where w; ® w; denotes the concatenation of two paths. We will construct a random
probability measure Q! such that

LNQg ()] . o
- — with probability 1 — {NQ7*(y)} -
Q) =3 weloun . ok »y € supp(Q7),
—*——  with probability {NQy' (y)}

(104)

where for any real number y, |y| denotes the lower integer part and {y} the
fractional part, {y} = y — | y]. As a result each point in the support of Q}'(y) has
either mass O (i.e. it does not appear in the support of @’I’Z or its mass is an integer
multiple of 1/N. Since @jﬁ is a probability measure, its support cannot therefore

have cardinality larger than N and is included in the support of Qf'. If @’I’Z (y) has
distribution described by (104) for any y € supp(Qy), it is clearly an unbiased

estimator of QZ: , that is E [QZ: ] = Z: Moreover it has minimal variance amongst

all unbiased estimators of Q! for which the mass associated to any element in the

support of the original measure takes values in the set {0, %, %, ..., 1}.See [14] pg.

344-345 for further optimality properties of @jﬁ

The algorithm that produces the random probability measure @’k” from Q)" such
that (104) is satisfied for every element in the support of the cubature measure
is the subject of Theorem 2.6 of [14]. The idea is to embed the support of the
cubature measure into a binary tree and distribute the weights recursively, targeting
distribution (104) at every nod/leaf.

Each element in the support of Q;! is associated to the end nodes or leaves
of the binary tree. We associate a weight to each leaf equal to the mass of the
corresponding element in the support of Q7. We then recursively associate a weight
to each of the (intermediate) nodes, equal to the sum of the weights of its offspring
nodes. Eventually we associate weight 1 to the root node (the sum of the masses
of all the elements in the support of Q). We note that any tree (not necessarily a
binary one) can be embedded into a binary tree as follows: For each intermediate
node, we separate the set of its offsprings nodes in two sets. On the left, we take a
singleton consisting of the first of the offsprings nodes and on the right we add a
new intermediate node with offsprings corresponding to the rest of the offsprings of
the original node. We then apply the same procedure to the intermediate node and
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repeat the process until we are left with only two offspring nodes which we keep

as part of the new tree. The next example explain this procedure further through a
concrete example.

Example 50. Let us consider the cubature method of order 3 in dimension 2.
Starting from xg (the initial condition for the forward diffusion) we take on step
forward say at time 1. This produces a measure with four elements in its support
(see Example 41), as there are four paths that define the cubature formula,!! all
carrying equal weight. Schematically, Q' looks as in the figure below

(20, 1.)

(E1.a0 (w1), 0.25) (Bro(w2),0.25) (Z1,20 (w3), 0.25) (E1,20 (wa), 0.25)

We embed the above tree into the following (by no means unique) binary tree:

(:E[)v 1)
(El-,la (Wl)v 025) ({El,zn (Wz), El,zn (UJ3), El,rn (w‘4)}, [)75)
~—_————
leaf nod
(El-,-fo (u}g), 025) ({ ELID (L’A}g), El,l‘o (w4)}, 05)
~—_———
leaf nod

-

(ELIO(W(';),O.QE)) (ELIO(WA;),O.QE))
leaf leaf

Notice how every node carries the total weight of all of its offspring leaves.

We will next describe how one distributes the mass according to TBBA per
family, hence achieving the distribution (104) at every point in the support of the
measure. The reasoning relies of course on the structure of the binary tree.

Any path y € supp (Q’,:1 ) carries the weight A, = Q}'(y) which is the product
of the cubature weights that correspond to the ODEs we solve to arrive at x =

B x,(y) along the path y. Assume that we have assigned to x the random weight

Ay = Q’I’Z (y) distributed according to (104). The following algorithm shows how
one assigns the corresponding weights to any of the offsprings of x:

These are the straight lines connecting the origin with (—1, —1), (1,—1), (—1,1), (1,1).
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Algorithm 1 TBBA(x, A1, Ay)

Require: Aq,..., Acl}’ {The cubature weights and ¢/}’ is the cubature dimension. }
Define 1;., = thd;l Aj
Declare il, A )Atc.;n and )Atlx.;n, A i(.L,,l;C;n

A~

{)Atl, .+« A store the TBBA weights at every leaf}
whereas the il;(,m ..... )Atcm_l;(,m store the TBBA weights at every nod.}
d d d g Ty
Set i];(-g' = ix.
for i =1to N, —1do
u; (x) ~ U[0,1], {Draw uniform}

if (VA = (LA + (VA A 417} ) then

. Nicki
if (ui (x) < —{[fmxim;} ) then

R ~ [NA A m |
NAcAi i
A= A Ay —
else
o — INAA
i = TN
end if
else
if (uf (x) < —IL;,{V’X%;%':}) then
X Ifcll
~ ~ [NAcA;.m J+1
NAh+1
Ai = % +Ai:cd’" _ Td
else
1 = LA+
i= N
end if
end if

if (A; > 0) then
Solve the ODE (103) in the direction of path w;
Store offspring (x;, Axi,i,-), Ay = AxA;
end if R .
Set digrien = Ajzem — A
end for

Remark 51. All uniform random variables used in Algorithm 1 are drawn indepen-
dent of each other.

We apply Algorithm 1 recursively until all nodes in the support of the cubature
measure are assigned their corresponding random weights A,. We continue in this
way until we reach the leaves of the tree. Recall that there can be at most N elements
in the support of the original measure that get assigned a positive weight by the
TBBA, hence indeed the new measure @? will have a support of cardinality at
most N.

We denote the set of all nodes corresponding to the (original) cubature tree at
time #; by
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We denote by Cx the set of remaining nodes after the TBBA is applied
ék = {x € (y, ;\X > 0},

where )Akx is the random weight computed by Algorithm 1. In other words, Cr is
the set of all nodes to which the TBBA assigns a positive weight. Finally, we shall
also use the notation

(f,f = ék ﬂ{ children of x}, x Eék_l, k=1,...,n.

We collect in the following Lemma some properties of the random weights
constructed via the Algorithm 1. In particular, the algorithm produces an unbiased
estimator of the pure cubature measure and the random weights are sampled with
minimal variance.

Lemma 52. For any point x € | J/_, é,-, algorithm 1 produces a random weight

~

Ay, that is distributed according to (104), i.e.,

VA ; 7
i = { S with probability 1 — {N A} (105)

% with probability {N A}

where A is the original cubature weight. Moreover

E[ix] = Ax, E[(ix—xx)z} _ {ka}(iv—z{NAx}).

Finally, the random weights that correspond to different leaves are negatively
correlated, i.e.

E[(ix—kx)(;\y—/\y)]fO, X #y, x,yeéi,i: 1,...,n.

A proof of the previous Lemma can be found in the appendix of [15].

Theorem 53. Let w := {0 =ty < t1 < ... <ty = T} be a partition of the
time interval [0, T] on which we use a cubature formula of degree m to construct
cubature measures along the partition 7, {thl Vo1, hi =t —ti_1. Let N € Ny be

a given parameter which we use to define the cubature+TBBA measures {@;"h T
supported on an additional probability space (Q, F, If") Then for any function

¢ € Cbl (Rd) we have

- ~ 2712 1 n
[ |rro-ref | <c(im+ 7).
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Proof. The first term in the control of the error is explained via Corollary 47 as the

error between the diffusion semigroup operator and the cubature measure.
1/2

. .27V . 12 - .2
E[\Pm—@%\ } <2E[| Prg - Q7o ] +m“@'¥¢—@?¢\ }
and hence we can focus on the second term. We proceed with the usual telescopic
sum expansion
~ n_l ~ ~ ~ ~
re-Qro=> Q.. Qrar, ...Qre-Q...Qr, Q... Qe
i=1

From the Markov property of the cubature method and TBBA algorithm we
understand that taking expectations under the family {Qfl } composes in the obvious

manner, i.e.

,.’;:1 @Z:‘P — Z ixl Z ;xz Z ikxi ¢(Xi) = Z ixiqb(-xi)

xleél XzEC;l *1 Ni—1 X1 xiEéi

x; €C;
In this way, we see that every term in the telescopic sum, may be written as
., Qe - QL O, Q8
=ap ... (@, - O, ) O, 6
( s A )Q?_,i+l¢(xi+1)

=Y i >

~ Axi
x; €C; x,'+1€CiiH

b

Next, by using the identity

a d-—a a N
——=—+4+ —=(b-D)),
b b bb( )

S|

we can re-write the above generic term of the telescopic sum as

Y G = A QP Bt

xi41€Cip
. .
+ 2 G =) D QL i)

Xi+1 Eéﬁﬁ-l

x; €C;

We can then take squares in the above, and using the fact that the random TBBA
weights are negatively correlated as well as the expression on the variance of the
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error (see Lemma 52) and the fact that ¢ (X7) has a finite second moment under the
pure cubature measure (this is quite trivial to show), we have that

B B B B B ) 1/2
E“@%...Q%Qﬁm...@Z’M—@Z’l...Qfm@ﬁiﬂ...@ﬁnd)}} <C/JN

and the result follows. O

3.6 Numerical Simulations Under the Heston Model

In this section we present the application of the cubature and TBBA method for the
approximation of a call option on a Heston model price process. This is a favorable
set up since the Heston model is well known for capturing the volatility dynamics
in various asset classes and hence has received a lot of attention by practioners and
academics. On the other hand, pricing call options under the Heston model admits
semi closed solutions (see [23]) against which we can compare the efficiency of
our method. Let us recall briefly the Heston model. In the following, we consider
X ={(X! (x), X} (x)),1 >0, x € R?} satisfying

X (x) =x'+ / rX! (x)ds + / X! (x) /X2 (x)dB! (106)
0 0

X2 (x) = x2 +/0 o (6 — X2 (x)) ds +/0 B/ X2 (x) (deg +/1 —pZdBf) :
(107)

where x',x2 > 0 are positive values, (Bl, BZ) is a standard two dimensional
Brownian motion and «, 6, i are positive constants satisfying

200 — B2 >0
to ensure the existence and uniqueness of a solution of the SDE (107) which never
hits 0. This is a two factor stochastic volatility model with p being the correlation

between the two random noises, |p| < 1. The payoff of a vanilla call option with
maturity 7 > 0 and strike price K > 0 is given

C(T,K)ZE[(X}—K)+].

In the numerical example below we consider the following values for the various
parameters

Xo r o 0 B o T
100. 0.05 1 0.4 0.2 0 1.
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We price a call option with strikes varying between K = 80, 90, 100 and 110.
We keep the (maximal) number of particles that the TBBA allows to survive fixed
at N = 200000. For every strike price and any number of steps, we launch the
algorithm 10 times and average out the results. In other words if ¢(K, Xy, N, n)
denotes the value computed by our algorithm when N particles and n steps for the
discretization of time are used for a call option with strike K and spot at X, at time
0, we report on

10
Y 1@ (K, Xo, N.n) = c(K, Xo)) /e(K, Xo),

i=1

where ¢; (K, Xo, N, n) is the result of the i-th run of our algorithm and ¢(K, Xj) is
the value of the call option in the Heston model. We plot the results for the various
strikes and varying number of steps in the figure below:

.1073
T ;
4F » —— K=80
\ = K=90
3 —o— K =100 Ll
* ——K=110

Relative error
[\

steps

In all different strikes, we see that the algorithm behaves satisfactorily. It achieves
an accuracy between 10~ and 10~ in the relevant error when 15 or more steps are
used to discretize time. Recall that an at-the-money call is in general more difficult
to approximate than in or out of the money calls, as its derivatives oscillate more as
we approach maturity. However our algorithm does not seem affected by this.

4 Backward SDEs

In this section we present a brief overview to the theory of backward stochastic
differential equations (BSDEs). These objects have received considerable attention
over the last 20 years as they are intrinsically connected with three areas of
stochastic analysis where research is very active: Non linear pricing, stochastic
control and probabilistic representations of (viscosity) solutions of nonlinear PDEs
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and associated numerical methods. We will not go deep into the subject of BSDE:s.
Rather, we present some key points, mostly for ready reference, as in the following
section we discuss an algorithm designed for the numerical solution of a BSDE
(equivalently of a non linear PDE) based on the cubature and TBBA method.

4.1 The General Framework for Backward SDEs

Let (2, F,P) be complete probability space endowed with a filtration that satisfies
the usual conditions {F;},;>¢. Let W be a d-dimensional, {F; }-adapted Brownian
motion and let (X,Y,Z) = {(X;.Y:.Z;),t € [0,T]} be the solution of the
(decoupled) system, called a Forward—-Backward SDE:

' d ¢
X = Xo+ / Vo(Xs)ds + Z/ Vi(Xy) o de;, forward component (108)
0 0

i=1

T d T
Y, = &(X7) +/ f(s, X, Y, Zs)ds — Z ZidWi, backward component.
t i1 Yt

(109)

In (108)4-(109), the process X is d-dimensional, Y is one dimensional and Z is
d-dimensional. The coefficients V; : RY — R are smooth vector fields with V; €
Cr° (Rd), i =0,1,...,d. The stochastic integrals in (108) are Stratonovitch type
integral. The quantity ®(Xr) is called the final condition, whilst f : [0, T] x R? x
R x R? — R is a Lipschitz function called “the driver”.

Initially, existence and uniqueness for solution of equations of the form
(108)4-(109) was shown under a general Lipschitz assumption on the coefficients.
This has since been relaxed considerably but here, we will only consider systems
whose coefficients satisfy at least the following Lipschitz assumptions:

(A) The coefficients of the forward SDE V; : R — R i = 0,1,...,d and the
driver f are globally Lipschitz with respect to the spatial variables. Further on,
the driver is 1/2-Holder continuous with respect to ¢.

(B) The coefficients of the forward SDE V; : RY — R¢,i = 0,1,...,d have all
entries belonging to C;)”(Rd), the space of bounded m times differentiable
functions with all partial derivatives bounded. The value of the parameter m
shall be determined further on.

(C) The final condition @ is Lipschitz continuous.

We denote by K the bound associated with all assumptions (A), (B), (C).

Theorem 54 (Pardoux and Peng (1990)). Under assumptions (A),(C) there exists
a unique F;-adapted solution (X, Y, Z) of the system (108) 4+ (109).



264 D. Crisan et al.

Let us consider the simplest form of BSDE

T d T
Y, = &(X7) + / fs. Xds =Y / Zidw,. (110)
t =Yt
By the Martingale Representation Theorem, for

T
£ = <I>(XT)+/O £(s, Xy)ds

there exists a unique J;-adapted process Z such that the martingale M = {M,,t €
[0, T']} defined as M, = E [§|F;], t € [0, T] has the following representation

d t
mo=s+ ) [ ziaw,
i=170
Define Y = (Y;,t € [0, T]) to be the F;-adapted process

Y, =M, —/ f(s, Xy)ds. (111)
0

It is the straightforward to show that the pair (Y, Z) are the unique solution of (110).
Indeed from (111) we deduce that

T
Yr = My —/ f(S, Xs)ds
0

3

T T
=E <I>(XT)+/0 f(s, Xs)ds | Fr —/O f(s, Xy)ds = ©(X7),

hence

Y; Yr

/—YL 4 T
Y~ (X7) = (M, — /0 (5. X,)ds) —(My — /0 (5. X,)ds)

d .1 T
=-> / Zidw, + / £(s, Xy)ds.
i=1"! !

Thus (Y, Z) satisfies (110). The martingale representation theorem, as applied
above, lies at the heart of the Picard iteration style argument for the proof of
Theorem 54.
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A celebrated result in the theory of BSDEs, is a theorem due to Pardoux and
Peng that links their solution to the (viscosity) solution of semilinear PDEs. This
is achieved by a Feynman—Kac type representation and it has since been extended
to obstacle problems [16], quasi-linear PDEs [38] and indeed recently to fully non-
linear PDEs [9,53]. Here we restrict ourselves to the simplest possible case, namely
the one corresponding to semilinear PDEs (equivalently decoupled FBSDEs). Let
us consider the following semilinear PDE,

@ +Lu=—f(txu (VuV)(x)), tel0,T) xecR?

(112)
u(T,x) = ®(x), xeR?
In (112), L is the second order differential operator
Lv:Vo—i—lZd:Vz (113)
2 i=1 s
V is the matrix valued function with columns V; (x),i = 1,...,d, V* (x) is the

transpose of V' (x) and u has final condition u(T, x) = ®(x).

Theorem 55 (Pardoux and Peng 1992). Under additional smoothness assump-
tions on its coefficients, the unique solution of the Cauchy problem (112) admits the
following Feynman—Kac representation

T
ut,x) =Y =E [q>(XfT~") +/ fs. XP¥ Y, Zé”‘)} , (114)
t

where (X', Y, Z"") is the stochastic flow associated FBSDE (108) + (109), i.e.,

d

N

X =x+ / Vo(X ¥ )du + )
t

i=1

N
/I/i(X;”‘)odWL, selt,T]. (115)

t

T d T
Y = d(X5Y) + / f(u, X;’“‘,YM”X,ZZ’"")du—Z / (ZL5)Yaw'.  (116)

N i=1 S

Moreover ZI* = Vu(s, X!)V(XIY) fors € [t, T

The representation for Y is true even if u exists only in the viscosity sense. Given
such a viscosity solution, Ma and Zhang [37] show that the representation for Z
holds as well, provided that the driver and the terminal condition are continuously
differentiable. Numerical algorithms that are designed for the approximation of
solutions of BSDEs are, in effect, probabilistic methods for solving semilinear
PDEs.



266 D. Crisan et al.
4.2 Discretization of Backward SDEs

The Feynman—Kac representation (114) is instructive as it implies that the solution
to a BSDE can be expressed as an integral against the law of the forward diffusion.
Indeed taking expectations in a BSDE and substituting for Z, we have,

T
Y/ = E[CD(X}’X) + / Fs, X5 uls, X1, Vs, X;"‘)V(Xj”‘))ds}
t

As Y/ is adapted to {F*} _ _;, the filtration associated to X", it is almost surely
deterministic and there exists a functional A, : C [¢t, T] — R such that

Ytt,x — E[At (X't,x)]’

where C [t, T] is the space of continuous functions « : [¢, T] — R? and X is the
path valued random map

weQ— (X (w),set,T]}.

Obviously the functional A, is only implicitly defined by the dynamics of the
backward equation. Hence, a numerical method for the approximation of ¥,
should rely on two components : A method that substitutes A; with an explicitly
computable functional and an approximation of the law of the forward diffusion to
integrate against.

We approximate A; in the following manner: Consider a partition 7 = {0 =
to<...<ty_1 <t,=T}of[0,T] withh; :=t;—t;_,i = 1,...,n. Assume that
we know the values of Y, Z attime t; 41, Yi+1, Z;+1. Consider the BSDE between
times ¢;, tiy1

lit1 li+1
Yti = Yt,~+1 + f(Xs’ Y, Zs)ds _/ Zy - dBy
ti

t

and discretize the Riemann integral using the left hand side point (the so called
implicit Euler scheme of Bouchard—Touzi [3]), thus leading to an implicit equation
for Y;, and the stochastic part in the usual way, to obtain

}]ti jad }]ti+1 + hi+1f(Xl‘iv Yt,’v Zl‘i) - Zl‘i * AI/I/I'-I—I- (117)

By conditioning (117) with respect to J;, we obtain a first order approximation
for Y,

Yt,' :E[}]ti+1‘ﬁi]+hi+1f(xtia }]l‘i?Zl‘i)’ (118)
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but for the presence of Z;,. To treat the Z,,, we can multiply both sides of (117) by
AW/, |, I =1,...,d and condition with respect to F;,, to obtain

AW}
Ztl,- >~ I[-E[Yti+l - it+1
i+1

f,,.:|, I=1,....d. (119)

Inspired by (118), (119) we define the family R; : Cp;p (]Rd) — Crp (Rd) i =0,
1,...,n — 1 of operators defined on the set of Lipschitz continuous functions
CLip (Rd )Z

Rig(x) =E [g (Xf,."fl)]

1 .
+M+Lf(mx,&gcm,E;:E[g(Xgl)oﬂﬁl—w@ﬂ). (120)

The iteration of this family of operators R;.,—; := R;...R,—| gives rise to an
explicitly defined functional AZ ,i=0,....,n—1,

E[AT (X5)] = Rizyo1 ®(x).

The operator R;.,—; applied to the boundary data ®(-) and evaluated at x = X, ™,
can be viewed as a discretized version (corresponding to the partition ) of ¥,/ ™
In fact the above discretization is merely the Euler scheme for BSDEs (it should
be clear that the Riemann integral is discretized in an Euler fashion). Relative to
this, we have the following convergence result due to Bouchard and Touzi [3]
and independently to Zhang [60]. This results were further refined by Gobet and
Labart [20], where an error expansion, under additional smoothness assumptions,
was obtained.

Theorem 56 (Bouchard and Touzi, Zhang). Ser Y, = Ro.,—1 ®(x). Under assu-
mptions (A), (C)

[Yg™ =Ygl = CVlixl,

where ||t || is the size of the partition mesh.

Remark 57. Originally, the proof of the convergence of the Euler scheme for
BSDEs required an ellipticity assumption on the diffusion matrix of the forward
component. However, the proof can be redone without this at least in the Markovian
case. All one needs to show is that the value functions describing Y;, Z; as functions
of time and X; are smooth enough for the relevant stochastic Taylor expansions to
be applied.

Theorem 58 (Gobet and Labart). Let assumption (B) hold true with m > 3 and
assume also that the partial derivatives of the driver with respect to space are
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Holder continuous. Assume also that the terminal condition is twice continuously
differentiable with bounded partial derivatives. Then

Yo =Ygl < Cl=ll.

To obtain a fully implementable scheme, a method of computation for the
expectations appearing in (120) involved needs to be introduced. We will present
next an algorithm that uses the cubature method to approximate the law of the
forward diffusion and the TBBA algorithm to control the computational effort. Both
of these when combined with the Euler style discretization (118), (119) provide a
fully implementable scheme for BSDEs.

4.3 Cubature on BSDEs

We will use a cubature formula of degree m, supported on paths wi, ..., @
[0,1] — R<. We also fix throughout a parameter N to be used in the application
of the TBBA. Using this cubature formula and TBBA we build (see Sect. 3.5) the
sequence of explicit measures {@Z’}?: |- Substituting integration against the Wiener
measure, with integration against the explicit measures {@Z’ y7_, in (120), we can
define the following family of operators:

Rig (x) = Egplg(X;/}")]

1
+hisi f (z,,x Rig (x). —Egy | (X)W, — W,,-)])

(121)

where g : R? — R. Computations of the involved expectations in (121) are done in
the obvious way, namely we work our way backwards along the cubature+TBBA
tree.

Recall from the Sect. 3.5 the sets (f,, i =1,...,nandforevery x € C; the subset
of its children C*. Given that we are standing at depth i (equivalently, at time 7;), we
need to evaluate the operator R,, when applied to R,+1 21— P, at all points x € C
We have

s .
Egnlg (X)) = Egp [¢(Xiy)IX, = x] = ) 8, xed
xeCiy, !
YRR .
Egp [ §(Xi)AW, LlX =x]= ) Te®bw) 5 xeCl=1,...d
zecy,,

(122)
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where a),ll - is the [-th coordinate of the path wp, 1. 7 in the cubature formula, that

was used in the ODE that lead to the point X € Cx i+10 scaled over the time interval

[, ti+1). It should then be clear how one computes R, n—1P(x) for x € C

Estimating the global error Roln_ldD(xo) YOX" requires standard numerical
analysis arguments as well as some knowledge of the behavior of the solution to
PDE (112). As estimating the errors of cubature formulas is done with the help of
Taylor expansions, the derivatives of the involved functions need to be estimated.
In other words, we need gradient bounds, in the spirit of Sect.2 but here for the
semilinear PDEs. For elliptic PDEs, such bounds are of course well known for a
long time. But when one wishes to step into the realm of degenerate PDEs/SDESs the
subject becomes quite technical and difficult. Recently, these issues were addressed
in Crisan and Delarue [12] and we are able to report here on this gradient bounds
for semi linear PDEs without discussing its proof.

Theorem 59 (Crisan and Delarue [12]). Let assumption (B) hold true and con-
sider an m > 3. Assume further that the vector fields {V; : i = 0,...,d} satisfy
the UFG condition. Assume also ® € C}" (Rd ) Define u(t, x) = Y;"*. Then u is
differentiable in all the direction that appear in (112). Moreover; for any multi-index
o € AL, there exist increasing function cy, ¢ : [0, 00) — [0, 00) such that for any
o e C;J” (Rd ), we have

WVttt Voo <o | D IVa®@ll | (123)
a€A,
.

| Vau(t, )l o < Ca (I Pllsip) tel0,7), (124)

(T —t )(Ilall—l)/2’

In analyzing the error we split it into two parts: The error between the solution
of the BSDE and the Euler scheme and the error between the Euler scheme and its
cubature and TBBA realization. The first part of the error is treated by Theorem 56.
The second part of the error is split to the error due to cubature method and the error
due to TBBA. Let us define the family of intermediate operators

Rig (x) = Eqplg(X;;))]

1
i f (100 Rig () By [0 0, = W) ] )
(125)

which is merely the equivalent definition to the family {Ié;}lsisn but using
the pure cubature measures. It is obvious that in quantifying the error between
Riy—1®, Riyy—1®,7 =0,...,n — 1 we need to quantify the errors

Egplg (XD = Elg(X; 7)) Eqr [g(Xi 1) AW 1] = Elg (X[ [)AW; 4], i = 0,....n — 1.



270 D. Crisan et al.

We have already seen in Sect. 3 that

m—+2
is is /2
sup [E[¢(X/ )| ~Egp, [exiin][=C 3w s Vigleo:
x fR— TEA()\AG =)

(126)

For the second term, we also have

E I:g(Xl‘tiifl)Au/il-H:I —Eep I:g(X;iifl)AH/il-i-l]‘

m+2 (127)

i +1)/2
<C Y RIEVE T sup Viglloo
i T€A(\AG-1)

sup
X

Proof of (127) Let us fix a value [ € {1,...,d}. Since the function g is smooth
it admits the Stratonovich—Taylor expansion. An easy application of It6’s formula,
shows that the product of an iterated Stratonovich integral and a Brownian motion
can be expressed as a sum of higher order iterated integrals (see for example
Proposition 5.2.10 of [27]).

k
([ otw)w=3 [ it
AK[0,1] =0 AKF10,¢]

where for any multi index o = (i1, ..., ix) we denote

/ odW* := / oth’;‘ ...0 dWﬁ:.
Ak[0,¢] 0<ty <..<tp <t

Hence, we have that

k

O = 3 Vg X [ odweiitisseio
) =0 Ak+1[0,t]

+ Rm(ts-xs g)Vth-

Using this formula the error is

’IE [g(X: (0. ) W] — Eqp [g(Xt(O’ x))Wfl]‘

< [E[Ru(t.x. W] + [Eqp [Ru(t. x. 0)W/]]

k
Ve[ T S Vst [ eawitn]|

k
(1onit) €A =0 AkF10.4]
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According to estimates of Lemma 8 in [36] and (88), we have that

sup, E[Rn(t, x, 2)2]" Al
PERMCX T 0 S e G gl
sup, By [| Ruve”] jmmt [EAUNAGD

An application of Holder’s inequality gives us

m+2
sup\E [Rm,t,gl/vt]i 5 Z t(j_H)/z sup ”VOtg”OO
X j=m4+1 acA(H\A(G—1)

To estimate the term Eq [ Ry, W; | observe that

Rm,t,g = Z Vil ...Vikg(th(O,x))odWill 0--.OdWi1;_
(i2emip) €Ay ¥ AF104]
(i1 ik)¢Am

So that, with [ € {1,...,d} fixed,
[Eqy [Runse W/ ]|
N
=DIE DD
j=1

(1240 sik )EA
(@i1,eees lk)¢Am

/ Vii.. Vi g (Xt1 (0, x)(wflsj))
AK[0,1]

dopl, 1) .. do, ol o).

Performing a change of variables to the paths w; ; to pass back to the paths that
define the cubature formula on [0, 1] we obtain the estimate

m+2
sup [Egp [RuagWe]| <C D2 tU*2 sup  |[Vaglleo.  (129)
x [ R—rt a€A(H\A(G—1)

where the constant C depends on the bounds on the total variation of the paths

wi, ...,wy. We now focus on the last term of (128).
]E EQm Z Vag(X) OdWa I/Vfl]l
a€A(m) AF0.1]
=| 2 Veg() (E—Eg) Z / odW/it-=-t---it)
a€A(m) AKF1{0,1]

i1,.... 1.1
= Z Vag(x) (E —Egr) Z/Ak+l[0t]OdW(‘ i)

a€A(m)\A(m—1)
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since the terms corresponding to ¢« € A(m — 1) are 0 by definition of the
measure Q.

Hence, to obtain the estimate, observe that, for any « € A(m)\A(m — 1) the
terms under the cubature measure satisfy

Em [/ odW Ll ik)i|
‘ i AktL[0.1]

since they are iterated integrals along paths of bounded variation and hence, with

similar arguments to the ones we used to derive (129), we may show that they are

of order 1™+ 1/2_ As for the ones under the Wiener measure, they are either 0 or of

order ¢+ 1/2 according to (84). The bounds on the derivatives of the vector fields

complete the proof. O
We can now report on the main cubature for BSDEs error estimate

< Cymtn/2

Theorem 60. Consider a fixed m > 3 and assume that the system (115)+ (116)
satisfies assumption (B) and (C). Given a partition w we consider the family of
operators {R; Yo<i<n—1 along it and consider a p > 1. Then, there exists a constant
C independent of the partition, such that

n—2 4
Yo Bl = €3 | " sup 1Viuth)lee
Il=j

i=0 \j=3
m+2 )
+ >0 WG sup [Viud e
jemrt =i
_ p /P
+Eqp_, [\Ytn,l — R ® (X, )| ] (130)

where Yoﬂ = Ro;n_lcb (XO) s X() = X0-
The proof of the theorem requires the following lemma:

Lemma 61. Consider two measurable functions g, g : R? — R. The operators
{Ri}!_, 1 =0,...,n enjoy the following property

1+ Chiy

Rigi— R; < FTlivl
|Ri g1 &l (x) = 1 — Khity

Eonllg1 — gl (g(X; )" (131)
for any p > 1, where C is a constant which depends on the bounded variation

constants of the paths w;, j = 1,..., N that define cubature on the Wiener space
and K is the Lipschitz constant of the driver f.

Proof. The Lipschitz property of f tells us that there exists bounded deterministic
functions v(x), ¢(x) such that
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(1= hi 410 (X)) (Ri g1 (x) — R; g2(x))
= Eor [(&1 = £ (X[ | + £ - Eon [ (61 = £ (XD AW |

Hence, for h; 4, small enough,
(1= Khi41)|Rig1(x) — R g2(x)]

< Eor |91 — &2l (X[ AW - £(0) + 1]

1/p 1/2k
< Egr [(g1 =&l ()] Eon [(AWiga - 200 + DF]7,

where k > ¢/2 and ¢q is the conjugate of p. Observe that Egn[AW; ]
E[AW; 1] = 0, since AW;4; can be written as a stochastic integral of length 1.
For any higher powers of the Brownian increment, it holds that

Eon [(AW4) | s ChG vi=1,..d.

To see this, observe that for any r < m we may express the increment (AW/ )" as
a linear combination of iterated integrals of length less than m. The estimate then
follows from the definition of the measure Q”. Hence,

1/2k
]

Egn [(AWig1-2(x) + D™ < (1 + Chiyy)

and this completes the proof. O

Proof of Theorem 60. To begin with, set

thf:l”/z sup |Viulti, Moow i=0,....n—1.
1=

We expand the error as a telescopic sum

lit1*

Yo — Roy—1®(x) = Z Ro:im1 Y — R Y, (132)

The size of each of the terms Ro:i—lYt?’ RO,Y 0.x

4., 1s then controlled using
Lemma 61. We have, with for p > 1,

n—1

Yo — Y| <cZEQm[

i=0

Y, i~ Rthfiﬁti ’

]W. (133)
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Observe that forany i € {0,...,n — 1} and x € R?, by taking expectations on the
backward part of (109), we have

lit1
lit1

Y, =E [Y” FACID (R S Z;""")ds} :

i

The above together with the definition of R; tells us
t ti t it 1, t t
X i i i X X X
Y, —R; Y T (IE - EQ;?+1)[I/,,+I] /t Ef(s, X/, Y, Z]")ds

1
_hin(ti’x’RYl‘tlJrlh Eay, [ 'f+1AW+1])

We now fix a value fori = 0, ...,n —2. To compare the drivers we need to add and
subtract the right terms:

ti . x t, ti,
Yfi R Yf+1 (E_EQZ+1)[YYI+1]
lit1 ) )
+ / E[f(s, X[ Y[, Z05) — f(6,x, Y, Z;™)] ds
ti
+hi+l (f(ti , X, Yt?’xs Ztt,lY)
1
—f (. x, R; thlJrl hi+ EQerrl [ t:+1AW+1:|)
SR KA LR L (134)
with the obvious definition for the / ]:" *’s. To estimate each of these terms the non
linear Feynman—Kac formula for BSDE’s plays a central role.
Since (112) has a classical solution on [0, T') x R¢, it holds that
Y5 = u(s, XY, Z = Vu(s, X!HV(XD).

We can apply Itd’s formula to the function Fit, x)— f(t, x,u(t, x), Vu(t, x)V(x))
to control /5,

ti41 s _ _
) = 'E [ [ [ adexm + vif e xiars
ti ti

d d
s 1 _ B '
+/t,- (5 Z V2 f(r X[ )dr + Z Vif(r, X,”"x)dW’r) ds:|

i=1 i=1

(135)
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Hence

sup | 13| < iy (nvof + 0 loo + max V2] Hoo)
reRd P=led (136)

<Chiyy sup |Viuo .
I71=3

where, the latter estimate follows by the chain rule. To estimate 13" ~ we use the
mean value theorem, so that we can find two points 6; € R, 6, € R¢ such that

1 = i (f (%, 00,00 = RV

fit1

. 1 .
+fo(ti, x, 01, 0,) - (Zfﬁ’x - EEQ;’;JH I:thlJ:iAVVi+l]))

fit1

157 < Khigy ()Y - RY,
hi

L |
+ ‘Zfi'x ——Eq, [ AW]

)

(137)
since the partial derivatives of f are bounded by K. As a next step observe that

y 1
hit1 Ztt,l i (138)
i+

Eqy,, [Yt?jAm+l]

=

hi1Zi —E [Y””‘AMHH n ‘E [Y”'"‘AI/I/,-+1] ~Eqr,, [Y,jf:jAWm]‘

li1 li+1 i

As before, th’+‘l =u(ti+1, X tt,-ifl) and we may apply the stochastic Taylor expansion
to the latter, to treat the first term above. In particular, we do so using the hierarchical
set A,. Let us fix an integer value [ = 1,...,d and denote by Z ,tl’” the /-th entry

of the vector Z ,tl’ . We then have,

hi+1Z§;'”"[ —E [“(fi+1’ X )AW:’[+1]‘

X
+1

x d lit1 )
]’l,‘+1Ztt;’x’ —E u(t;, x) + Z Viu(t;, x) / OdW‘lY (139)
i=0 li

d ti+1 pt . .
+ Z ViV]‘M(li,x)[ [ OdW’SOdW{ 4+ Ry(hit1,x,u) AI/ViI_H

ij=1

Observe that

d fit1 . ;
E Zviu(zf,m[ odWi AW}, | = i1 Viute, x).

i=1



276 D. Crisan et al.

Moreover, according to Proposition 5.2.10 of Kloeden and Platen [27] we have that
forany k,r =1,...,d,

li+1 pt
/ / odWX o dWI AW/, | = Joern W gy + Jer gy Wi i + T sy
t t;

and the three terms on the right hand side will have expectation 0 according to (84).
Due to the non linear Feynman- Kac formula we have fori = 0,...,n — 2 that
Z,fi" o= Vu(t;, x)* - Vi(x) = Viu(t;, x). Hence, (139) together with (138) and the
estimate on the remainder process, give us

o
hl+l Ztt,'lw - h__H ti41 (140)

Egp,, [Yi5 AWt ]

1 ti . x
< CE Ryt %, ) AW | + 5 (IE —E@;¢+l) I:u(ti+1,Xti+l)AVV,-+1]‘

Equations (140) and (139) are plugged in (138) and the resulting estimate (137).
The latter together with (136) and (134) gives us

i3 Xij
(1—=hi1K)Eqr [ f+1'

< [| (2B, ) [ ][]

1i, Xy
i

Y,

_ pl/p
- R:Y, ]

Xy, pl/p (141)
+]EQZ~ZI:‘(]E_]EQZ'Z+1)I:Yfi+llAI/I/i+l]‘ ] + €;
m+2 )
<a+C Y WP s Vigle i=0....n-2.
j=m+1 T€AjNAj—

where we have used the estimates (126) and (127). This completes the proof. O

We have already discussed how a non even partition can compensate for the
explosion in the gradient bounds, in the linear case. In view of Theorem 59, we
have a similar result in the semilinear case. In the more interesting case where
the terminal condition is only Lipschitz continuous, we have to appeal to the
derivative bounds (124). In this case the control on the derivatives of u explodes
as ¢ approaches T'. To compensate for this negative impact of the derivative bounds
on the error estimate we shall use a non equidistant partition that becomes denser as
we approach 7.

Corollary 62. Let (A) and (B) hold true, fix and m > 3 and assume further that
the vector fields {V; : i = 0,...,d} satisfy the UFG condition and that the final
condition ® is Lipschitz. We consider the family {R; }o<i<n—1 along the partition 7 :
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i\P
ti =T l—(l——) , i=0,...,n, B>2.
n

Then, there exists an increasing function c¢ : [0,00) — [0, 00) independent of the
partition such that

| Yo — Ron—1®(x0) | < c(deiﬂ

Proof. Let us assume first that ® € C;" (R?). In the following, the functions ¢; :
[0,00) — [0, 00) are all strictly increasing. Given the estimates of Theorems 130,
59, it is straightforward to see that the dominating term in our error bound is
h? SUp|4) =3 I Vett|loc- On the above partition we have, for a given multi index o
with ||| = 3,

|—i=l 2
B 1
2 ) T2 -1 - -
(1 = i1 Vattloo < c1(1@]1) T (/1 Bs ds) TP

C .
_ (1@l
= 2
On the other hand, for the term corresponding to #,—; we may argue, using the mean
value theorem, that,

_ 1/
Eop, [ [ = R0, 1% 7]
: 1 pVp
< CY Eg , [|(E—Egy) [@X,)aW/1X, ., ]|"]
1=0

from elementary properties of the Wiener and cubature measure, it is clear that

(E - EQ,”,Z ) [q)(an)AWr”anfl ] = (E - EQ,”; ) [(q)(th) —®(X,,_))) AWnl|th4 ]

and hence, standard estimates on the increments of the forward diffusion together
with the Lipschitz property of &, lead to

_ y ol
[’Y’"—l = Ry ®(Xi, )Xo, |p] 7 _ Ul ®Pliip)

Eqy = B2

n—1
which concludes the proof for the case of smooth terminal conditions. Assume
next that & is Lipschitz. Via a standard mollification result, one can construct a
sequence of smooth functions {®,, } >0 that converge uniformly to ¢ and such that
|®nllLipy < I|P|lLip for all m > 0. Using the continuity properties of both Y, and
Ry, as functions of the final condition, it follows that
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C(”q)”Lip)

Yo — Romp1®(x0) | = Jlim | Y — Rozp1 @™ (x0) | < "

where Y;" is the solution of the BSDE corresponding to the final condition ®,,.
Crucially in the above inequality the function c¢ is independent of m. The proof is
complete. O

It remains to estimate the error Rg.,—i D(x0) — Ron—1 ®(xp), i.e. the error due to
the application of the TBBA. In this case one needs only to combine the arguments
of the previous proof with the arguments that were presented in the proof of
Theorem 53. Such analysis can be found in [15]. We report here on the this estimate.

Theorem 63. Let assumptions (A) and (B) hold true and assume that ® is Lipschitz
continuous. Consider the family {Ié, Yo<i<n defined with N particles. With the usual
notation, on the iteration of operators, there exists a constant C independent of the
partition, such that

Cn

=T 142
= N (142)

_ B R 2 1/2
E [ ‘ Ry ©(x0) — Rown @ (x0) ’ }

4.4 Numerical Simulations

In this section, we apply our numerical scheme for BSDEs in one and multidimen-
sional problems where the involved coefficients can be smooth or non smooth. This
empirical study helps us to validate the method described above.

One Dimensional Numerical Examples

Firstly, we consider the following popular non-linear example from finance, the
problem of pricing with differential interest rates. In this set up, one is able to invest
money in the money account at an interest rate » and borrow at an interest rate R
with R > r. The underlying asset price evolves as a geometric Brownian motion
under the objective probability measure:

t t
X0 = / X 0ds + / o X dW;.
0 0

It is shown in El Karoui et al. [17] that a self-financing trading strategy of portfolio
Z and wealth process Y solves a BSDE with driver

Jt.x,y.2) == (ry +20 = (R—r)(y —z/0)-)
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where (x)_ denotes the negative part of x and 8 = (i —r)/o. The problem of pric-
ing a call option corresponds to a terminal condition of the form ®(x) = (x — K) 4.
We test our algorithm with parameters

u r R o XoK
0.03 0.06 0.08 0.2 10 10

As explained in Gobet et al. [21], in such an economy the issuer of the call option
keeps borrowing money to hedge the call option so that the price of the option is
the Black—Scholes with interest rate R. Hence we have the favorable set up of a
non linear driver, but yet we know Y. Moreover we see that, even though the driver
is not differentiable our algorithm still produces very good estimates. In the figure
below, we plot the ratio of the computed value over the Black Scholes price against
the number of steps.

1072
— :
—e—cub3
oL —=—cub5 ||
g 1t .
()
[
2
= 0f B
o)
o~
1k i
—9L i
1 1 1 1
5 10 15 20

steps

Since this is only a one dimensional set up, we manage to achieve an accuracy of
1073 with only a few time discretization steps and hence the application of TBBA
to control the computational effort is not necessary here.

Since pure cubature can be applied successfully in one dimensional examples,
we can next try to monitor the effect that TBBA has on the overall error. We do so
in a smooth example. We consider a FBSDE system with smooth coefficients and a
non linear driver for the backward part:

t t
X[O,xo =x0+/ MXsds+/ \/1+Xt2dWl‘a 0<t=<T
0 0
T

Y,O'x" = arctan(X%x") — / rYs +e" T (u—1 )XSO’""0 (Z?’x0 )2 ds

t

T
- / Z0%0qw, (143)

t
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It is easy to check , by means of It6’s lemma, that the solution to the above system
is given by

e (T—1)

Y,O’x0 = e_r(T_’)arctan(X,O’x"), Z,O’x0 = =
0.
(X0

We test our example with parameters

Tu r X
1.0.020.12 °

We denote by N the (maximal) number of paths that the support of the “pruned”
cubature measure is allowed to hold, at every point on the partition. Let ¥y =
e~'T arctan(X,) denote the solution of (143) at time 0. We denote by )7(])\’ = ﬁév (w)
the result we get at time O by solving the BSDE along the tree produced by one
launch of the algorithm. In other words

P = R ®(x0).

We also fix a further parameter M that counts the number of times the algorithm
is launched. Obviously all the launches of the algorithm are independent of each
other. Let %v " denote the result on the m-th run of the algorithm, m = 1,..., M.
Our approximation is then

| M

~N.M SN,

Yo ZMZYO "
m=1

AN, -
The figure below, monitors the error (we plot yo.—o_yo) on example (143), when
using cubature of order 3, 5 with and without sampling, against the number of steps.
In this case the parameters N, M are fixed as N = 100000, M = 10.

1072
T

2+ —— cub3 H

—u—cub3 + TBBA
—o— cub5
5 15EF —— cub5 + TBBA ||
5
o
2
=
T 1r B
o~
0.5 B
1 1 1 1 1 1 1
8§ 10 12 14 16 18 20
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In particular we see that no accuracy is lost when applying the TBBA. Next
we turn to a multidimensional example. The goal here is to show that the method
produces good estimates but also to compare its performance with existing methods
for solving BSDE. In a recent publication of Bouchard and Warin [4] the authors
study the application of three other numerical methods (quantization, Malliavin
integration by parts and regression on function basis) for BSDEs on the pricing
of American/Bermudan options. In particular, we consider the case where the
underlying is a Geometric Brownian motion and the payoff is a call or a put written
on geometric/arithmetic averages. Here we shall consider the equivalent European
pricing problem. In terms of computational complexity (on which the authors of
[4] report), there is no significant difference. Indeed, the pricing of the Bermudan
counterpart amounts to checking for optimal exercise on every point in the support
of the underlying measure which would be negligible given the overall complexity
of the algorithm.

We look at a five-dimensional example:

t
X! x3+/uixjds+o,-xgdw§, i=1,...,5
0

(144)

5 1 1
n:(]—[xf—K) —/ rYs+9ZSds—/ Z, - dW,
t t
+

i=1

where 6, = (u; —r)/o;, i = 1,...,5 is the market price of risk. The theoretical
value for Y can be produced with the usual Black Scholes methodology. Again we
fix the number of steps to 10 and we do a plot the usual relative error. Of course
we normalize against the Black Scholes price.

1072
T T T I T I T
2 —eo—cub3,M=10
—=— cub5, M =10
—— cub5
1.5F ——cub5 + TBBA H

Relative error

1 1 1 1 1 1
02 04 06 08 1 12 14 16

N -10°
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As far as the computational time is concerned, we report on the following values
(the computational time is measured here in seconds)'?:

N 40000 100000 160000
cub3(M=10) 3.8 8.6 13.2
cubS(M=10) 6.9 16.9 26.3
cub3(M=20) 7.4 17.4 26.5
cubS(M=20) 13.7 335 53

Comparing these performance results, in conjunction with the information on the
errors, with Fig. 7(e), Fig. 8 of [4] we see that the cubature4+TBBA algorithm can
achieve similar accuracy in lesser time. On the other hand, we see that there is
a small bias (relative error of order 0.5 %) that the algorithm does not treat with
the increase in N. This bias is due to the discretization error (recall that we are
normalizing against the theoretical Black Scholes value).

Appendix
In this section we provide various proofs of results left outstanding from the main

body.
Proposition 20. Forany T >0, p€[l,00), o, B € A(m) andy € A, the following

hold
o |77
sup E [t—llyll/z ‘ B H < o0, (48)
1€(0,7)
P
sup E[z—“"“—"“")/z|ra,ﬂ(t,x)|] < 0. (49)
xeRN
1€(0,T]

Proof. The proof is done as follows: we first show an intermediate result that
holds for a general semimartingale. We then prove (48) and (49) via an inductive
argument. Assume that W is a one dimensional F;-adapted Brownian motion and
t — u(t, x), respectively t — u(t, x) are F;-adapted processes such that

sup B |ut,x)|)’ <oo, and sup E(@7|v(t, x)])? < oo,

x€RN x€RY
t€l0,T] t€l0,T]

2Numerical experiments were performed with single-threaded code on a Intel i7 processor at
2.8 GHz.
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for some constants, r,, r, € [0, 00). Next let £* be the process defined as

t t
£x :/ u(s, x)dW; +/ v(s, x)ds,
0 0

Then, for p > 1:

1 1 V4
X Pl —

E[l&" | ]—]E|: [0 u(s,x)dWS—i-/O v(s, x)ds i|
1) P t P
2] =] rea] ]§

+ /0 v(s, x)
(52) 2P_1{CP]E [(/Ot | u(s, x) |st)2} +,p—1E[/O' | v(s, x) |Pds”
(%) 2P—1%c,, ti'E [/r | u(s, x) |”ds:| + PR [/r |v(s, x) |”ds} }
0 0

@ ' t
< 2P—1{Cpt§(1’—1>/ E[|u(s, x) Ip]dSJrfp_l/ E[|V(S’x)|p]ds}’
0 0

t
/ u(s, x)dws
0

where we used the following: Holder’s inequality for finite sums for (1),
Burkholder’s inequality, Jensen’s inequality respectively, for (2), Jensen’s inequality
for definite integrals for (3), Fubini’s theorem for (4).

Now we observe that

E|u(s,x) |’ < ( sup E[s7™ |u(s, x) |]p)s1’”‘
x€RN
s€[0,T]

E | v(s,x) |p < ( sup E[s_"" | v(s,x) |]17)Sprv'
x€RN
s€[0,T]

And so,

t
El&17 < ép%fép_l( sup E[s™" |u(s, x) |]p)(/ s’”’“ds)
x€RN 0

s€[0,T]

+ t”_l( sup E[s™|v(s,x)|]” )(/rs””ds)}
xeRN 0

s€[0,T]
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<G et sup E[s™ u(s. x)|)”
xeRN
s€[0,T]

i tp_ltprv-l—l( sup ]E(S—l'v |V(sv X) | )P)}

x€RN
s€[0,T]

< @pw{tmﬂ) + ,p(rv+1>} _

That is, if we take r¢ = min{r, + % ry + 1}, then for all p € [1, c0),

sup E[(r77 &7 ()] < oo. (145)

x€RN
t€(0,T]

Proof of (48): We prove by induction on | y |. Observe that for | y | = 1, we have
that:

Ao B! if l,...,d

By =) B iy et h (146)
t ify=0

in which case, we split |y | = lintoy € {1,...,d} and y = 0. For the former we

apply the inductive step with ¥ = 1 and v = 0. Then we may choose 0 = r, < r,
to obtain:

sup E [(t_l/2 | B/ |)p] < 00.
ref0.7]

In the latter case we obviously have:

sup E[t_l \B,y Hp < 00.
t€l0,T]

We now assume that the result holds for some k € N, i.e. we have the following for
all y € Asatisfying |y | = k:

Ao P
sup E[z‘”y”/z B ] . (147)
1€(0.7]
Observe, that fori € {1,...,d}
A : t A .
B — / B 0 dB. (148)
0

o . 174 .
=/ B§Vd3;+§(3°y,3’> (149)
0

)
t



Cubature Methods and Applications 285

and noting that

BY _/ B aBv + <§°V/,BV"> .
0 t
It is clear that

t
A oy fo o1 Ao
B :/0 BYYdB, + 56, B v'*0),

Now |y' 0| = k, so BeU'*0) gatisfies (147) with ||y’ % 0] = [|/|| + 2 Moreover,

we can control fo ydB’ by using the inductive step with u(z, x) = B,” andv = 0,
so that 1 5 lvll = ru < ry, by the inductive hypothesis, and we have:
A olysi) |17
sup E I:t—ry*i B, (y*i) ] < 00,
1€(0,T]

where ryx; = min{([[y [ + D/2. Iyl +2)/2} = ||y =il /2. R
If i = 0, then we may apply the inductive step with u = 0 and v(¢, x) = B;”, so
that 1 5 Iyl = ry < ry, by the inductive hypothesis. In this case,

A o(yxi) |17
sup E I:t—ry*i Bt (y*i) ] < oo,

1€(0,T]
with, again, r,«; = ||y * i|| /2. Hence the result is proved.

Proof of (49): The proof of this result is similar to the induction carried out above.
We notice that the remainder term, as defined, is the sum of numerous iterated
Stratonovich integrals. We prove that the result holds for each element of the sum.
This may then be easily extended to the sum of multiple such objects. We have
already seen (cf. Proposition 42) that, for any «, 8 € A(m), p € [1,00),T > 0:

sup E|aaﬁ(t x)‘ < 00. (150)

x€RN
te€l0,T]

Moreover, since c(’;(’ p € CZIJ{H_M (R") is uniformly bounded, it follows that

sup B/, ,(X; )‘ < 0. (151)
x€RN
{€[0,T]

We again prove the result by induction on |y |. Assume |y | = 1. Using the

fact that thz*yﬁ (X7) and as g(t, x) satisfy (150) and (151) respectively, the product
must satisfy an analogous inequality (by Hormander’s inequality). Note that this
semimartingale will be comprised of integrands which are sums and products
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of objects like those in (150), (151), and hence if y € {l1,...,d} it has been
demonstrated already that (cf. the first part of the proof, i.e. r, = r, = 0),

r P
E[z"V/O c;*y,g(xg‘)ag,ﬂ(s,x) odB,V} < 00, (152)

where r, = min{%, 1} = % Now if y = 0, then we apply the step with # = 0 and
v(t,x) = cé*y’g(X;‘)agﬁ (t,x). Thatis, 0 = r, < ry, to obtain

r p
IE|:t"'V/O cé*yﬁ(X‘;")ag,,g(s,x)ds} < 00, (153)

where r, = 1. We now assume the result holds for some k € N. i.e. we have the
following for all y € A satisfying |y | = k:
i|1’

< 00. (154)

sup E[I—nyu/z

x€RY
t€(0,7)

t Sk 52 .
/0/0 fo (~DI7le], s(X3)asp(si.x) 0 dBY! ... o dBI

To ease the notational burden, we write,
t Sk 52 ‘ | j
Z(t,x,y) = /0 /0 /o (=D equy 5(X5Dasp(s1,x) 0 dBy} ... 0 dBY,
fory = (y1,...,yx). Observe, that fori € {1,...,d}
t .
Z(t,x,y xi) = / Z(s,x,y) odB,
0
4 . 1 .
= /0 Z(s,x,y)dB, + E(Z("x’)/)’ Bl)f
t . 1 t
:/ Z(s,x,y)dB’S—i-Eé’yk,l,yk/ Z(s, x,y")dt
0 0
t . 1
= / Z(s,x,y)dB, + ESkal,},kZ(t,x,y/ * 0).
0

By the inductive hypothesis, Z(, x, y’ x0) satisfies (147) with r,rw0 = ([|¥'[|+2)/2,
and we also use the inductive step on the right-hand term with u(z, x) = Z(¢, x,y)
andv = 0, sothat r, > r, = ||y|| /2, with

sup B[t | Z(t,x,y xi) ]’ < oo,
xeRN
t€(0,7]
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lvll+t ly/l+2
2 2

where r,x; = min = ”V”TH If i = O then we may apply the

inductive step with u = 0 and v(¢, x) = Z(z, x, y), so that with ||y|| /2 =r, L 1y
we get

sup E[r7* | Z(t,x,y x0)]]’ < oo,
x€RN
1€[0.7]

lyll+2
2

where ryx0 = . Hence the result is proved.

Finally, note that a finite sum of these would also satisfy a similar inequality with
Fsum = min{rg; ri is optimal (i.e. (145) holds) for k-th sum member}. i.e.

P
sup E [t_(mH_”“”)/z | ra,p(t. x) ‘] < 00,

x€RN
te(0,T]

as required. O

A.1 Invertibility of the Malliavin Covariance Matrix

The aim of this section is to prove the following proposition from the main body.
The proof is demanding, but fundamental to the results, and so it is given its own
subsection.

Proposition 21. M(z, x) is P-a.s. invertible. Moreover, for p € [1,00), a,f €
A(m),

1 p
sup E[Ma,ﬂ(t,x)] < 0. (155)

t€(0,1], xeRN

For real-symmetric matrices such as M (¢, x) there is an elegant representation of the
minimal eigenvalue. The following lemma utilises this to simplify the requirements
for invertibility.

Lemma 64. The statement of the previous proposition holds, providing the follow-
ing can be shown for each p € [1,00): there exists C > 0 s.1.

IP’( inf (§, M(¢,x)§) < l) <Cn?,
l&1=1 n

foralln > 1, t € (0,1], and x € RV,
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Proof. We sketch this proof. It is obvious from what has gone before that elements
of the matrix M (rather than those of the inverse) satisfy (155). As the inverse matrix
is comprised of the inverse of the determinant multiplied with multilinear combi-
nations of elements of M, it suffices to show that the inverse of the determinant
satisfies (155). The element infj¢|—; (§, M(t, x)&) represents the smallest eigenvalue
of M and hence its —Nth power (where N is dim(M)) provides an upper bound for
the inverse of the determinant. Finally the expression in Lemma 64 may be used to
deduce the L? integrability (uniform over ¢ € (0, 1], x € R) of this upper bound, as
it provides the required tail decay. O

In view of these results, consider (§, M(¢, x)&). The determinant of M(z, x) is
non-negative and increasing with ¢. This means that if M (¢, x) is a.s. invertible for
some ¢ > 0, then it must be invertible thereafter. Let y > 1.

EME.0)E = Y EpMap(t.x)

a,BeEA(m)

= Y D ) k1),

a,fEA(m)

2
= DI )

a€A(m) H
2

= > g /M'(a?aw,,a)(u,x)du
0

a€A(m) H

2

Jall t/yA. 0
o ko / @, +r.o)(u, x)du| . (156)
0

a€A(m)

A%

H

Observe that, since y > 1, using the notation: S := {x € R**!: ||x| = 1},

2

lal t/y A
inf Z Eut™ / a.qo(u,x)du

fesNm—1
a€A(m) H

2

ller]l

t17 2 rtvn
> inf a | — a. o 7Xd
ST DO ) I R

a€A(m) Y H
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Now focus on the term appearing on the RHS:

_lel 2
t 2 t/y A.
S & H | autw
a€A(m) Y 0 H
1 'Z'_HLZH t/y A 2
ZE Z &y | — / a?a(u,x)du
a€A(m) L 0 H
Ll 2
t 2 t/y A.
T alr] [ rewd
a€A(m) LY 0 H
1 't'_Hizu t/y A. ?
> Y |- / a®, (u, x)du
a€A(m) L 0 H
t]y L i
e[ =] e
a€A(m) 0 a€A(m) i=1 y

Recall that aga (#,x) = 0 whenever o # i * y for all multiindices y. Moreover,

al, (u,x) = ByY wheni x y = . That is, as each multindex @ € A(m) satisfies
a el ..dy:

a®,(u, x) = (o,...,é;;n...,o).

It is now necessary to briefly discuss the first term on the RHS. The following result
is taken from Kusuoka and Stroock [33], but a comprehensive proof is provided in
the next section.

Proposition 65. Given m € N, there exist constants Cy,, jL, € (0, 00) such that for
allT >0

2
T
. _l_r Ao 1
P inf /0[ > TTo ZayB,y:| di < — | = G expi—n""}.

y€A)p(m—1)

(157)

Proof. The proof of this result requires a detour. For a detailed proof, consult the
next section of the appendix. O
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As a result of this strong bound, which is incidentally much stronger than that
which is required for invertibility, it is very easy to deduce the following two
equivalent properties:

Corollary 66. Foranym € N, and p € [1, 00), there holds:

2
T
) iy sy
E 1%5 /0 |: E T™72 7 2a,B, ]dl < 0. (158)

aeSNm—17! yeAyg(m—1)

And, equivalently, for all q € [1, 00)

=

2
! [F4] Aoy 1
i -5 - —q
P inf / [ Z T=2 B | di< — ) < Cngn™@.  (159)

aes¥n—17190 | ye Ay pm—1)

The usefulness of the above might not be immediately clear, so turn attention back
to the lower bound obtained for (&, M (¢, x)&). The fact that any o € A(m) can be
expressedas o = j x y forsome 1 < j < d and y € Apg(m — 1) is used. This

allows the effective utilisation of the structure of a?a (, x).

llel 2

=5 pt/yA.
Z €a I:L:| /Oy a®, (u, x)du

a€A(m) Y H
2
d [—”Vﬁ*‘ t/y A
SN LR I
J=1y€Agp(m—1) Y 0 "
2
RN
= Z |:;:| / (gj*VBu )]= ~~~~~ a du
yeAop(m—1) H
2
s e
-1 > [ serr)  w
0 y€Agp(m—1) Y j=l...d H
d t/y A. t_”y|£+l ~ 2
> x B sesr]a
j=170 yeAgpm—1) LY
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It can also easily be shown that by taking inf¢es,, , of both sides:

llel 2

t17 2 rthvn
inf v | — a® u, x)du
B DN I RN

a€A(m) Y
A n il 5
. (17 o
= it Z/ [ > [_} juy B }d
=t 5= J0 yeAgpm—1) =Y
t/y A ; —7”y”2+1 T2
= _nf / [ > [—} ayB;V} du,
€508,y Jo yedgpm—1y b

recalling that N,S’(_Dl = N @1 + 2 This is precisely why the upper bound derived in
Proposition 65 was introduced It enables a precise control over the tail behaviour of

(&, M (¢, x)&). The various pieces of analysis are now synthesised. In what follows,
note that

1 1 1 1 1 1 1 1
P{l-X-Y<—-)=P|-X-Y<-Y<—-—|4+P|l=X-TY<-—-Y>-—
2 n 2 n n 2 n n

1 4
<P|Y=>=-)+P(X<—-].
n n

This gives:

]P’( inf (E M(t, x)E) < 1)

EesNm—
Iy ]I+t 2
tly t]7 2 A 4
<P inf / |: Z |:-:| a),B:V] du < —
“EN 400 Leaggim—n LY "
o . |
+P inf ; ,xX)du| > —
[T e[ 2 ] el -
a€A(m) a€A(m) i=1
[l +1 2
tly t1 . 4
=P inf / [ > [—} ayB;y] du < —
aesNr(;){gl“‘l_l 0 y€Agp(m—1) y "

Jel
+JP>/ > Z[} it X > -

a€A(m) i=1 n

The program is almost complete. The following is deduced from Proposition 20,
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Lemma 67. There holds, for all p € [1,00),

P
¢ d
sup E / Z Zt_ll"‘n_lri,a(u,x)zdu < o0.
txee(ﬂéﬁl] 0 a€A(m) i=1

Proof. We may apply the semimartingale rate bound obtained in the proof of

Proposition 20. Indeed, we observe that:
t t
& ::/ u(s, x)dBy +/ v(s, x)ds,
0 0

u(s,x) =0,

d
v(s, x) = Z Zf"“”ri,a(s,x)z.

a€A(m) i=1

Observe from Proposition 49, noting ||| < m,

sup E(™" |v(t, x) )P < oo,

x€RN x€RN
t€(0,7] t€(0,T]

sup E(@ "™ |ut, x)|)’ < oo,

where r, = 0 and r,, is arbitrarily large. Hence it follows that:

sup E(t7 £ )" < oo,

xeRN
te(0,T]

where re = r, + 1 = 1, as required.

The proof can now be completed.

A AL |2 ] e <d

aeSNm—171 0 yE€Agp(m—1) Y _ "
iy d ¢ 77l 1
+P / 2 ZH Fia(, x)’du = —
0 a€A(m) i=1 Y "

[l 41 2

t/y z_yz .
=P inf / Z - ayB” | du
a€sS 0@ 0 y
Ny Z 11 yeAy p(m—1)

N
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t]y O i Bl ] y
+ P /0 Z Z[—} ri,a(u,x)zduza

a€A(m) i=1 Y

4N\ nt\? 4N\ n\?
< Cpngl - Cngl— ) ZCungl— Cugl—1 -
"’(n) " ’q(y) - q(n) " ’q(y)
It is important to note that the above bounds hold V¢ € (0,1] and Vx € R¥. The

decision to introduce y > 1 should become clear. Without it, the analysis would
fail. Indeed, there is a clever choice of y such that Lemma 64 holds. Set

y = 4
so that

n_4

y_n

And finally, combining this with the above we obtain:

]P’( inf (&, M(t,x)§) < l) < Cp,p i
—1 n n4

£€SNm

as required.
In the next section regularity results about the inverse of the matrix are proved.
These results shall be fundamental to the integration by parts formula.

A.2 Diffuseness of Iterated Stratonovich Integrals

It was seen in the last section that invertibility of the Malliavin covariance matrix
can be achieved if Proposition 65 holds. Its statement is recalled and it is sought to
prove this result using the work of Kusuoka/Stroock in [33] as a guide.

Proposition 68. Foranym € N, and p € [1, 00), there holds:
2
r 1 so
E inf / Z 772 2a,B | dt| =Cn,<oo. (160)
0.0 o
y€A)p(m—1)
And, equivalently, for all q € [1, 00)

2
T
. N P RO 1 _
P inf /0 [ § T2 ZaVB,y:| dtf; < Cugn™®. (161)

esMnn ! Ao p(m—
a y€Agp(m—1)
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Proof. The proof of this important result is begun through simplification of the
problem. By considering the distribution of the iterated Stratonovich integrals one
is able to make a change of variable to the integral. Indeed, note that:

Hence it may be deduced:

2
T Il 1 ao
/ Y TTT e, B dt
0

y€Agp(m—1)
T 2
D 1 oy
= T 2a,B 4 dt
[z e

yE€A)p(m—1)

2
—_ 1 A~
u_é/T/ |: Z ayB;y] du.
0

y€Agp(m—1)

Hence, the problem is reduced to showing that for each p > 1, there exists C > 0
S.t.

2
1
- 1
P inf E B | du < — Cn?, 162
11&“11/0 |: ay u:| u<n <Cn (162)

aeSNm— yeAyp(m—1)

foralln > 1.

Iterated Stratonovich integrals arise in a very natural way from the geometry
of this problem. That said, one must often turn to the more established results
in stochastic integration to do an accurate analysis of them. These results are
almost always phrased in terms of [t integration and the semimartingales resulting
therefrom. Hence, attention is switched to iterated It6 integrals via the following
proposition. The moral of the story is that, although undoubtedly different objects,
iterated Itd and Stratonovich integrals are equally as diffuse.

Proposition 69. Define B" := (B*) o<1 and Bl = (B®)|uj<L. Then, for all
L € N there exist constant matrices Ay, Ap € RNUNL sych that
(i): Bt = A, BF and  (ii): BF = A B°*.
i.e. Ay is invertible with Azl = /IL.
Moreover, it follows that the existence of constants Cy,, by, € (0, 00)

2

1

. 1

Pl inf / Z a,B" | dt < —| < Cyexp{—n""},
> az=1Jo n

y€Agp(m—1)
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is equivalent to the existence of constants C‘m, m € (0, 00) such that

1

. 1 . .

P| inf / E ayB] | dt < — | < Cyexp{—nt}.
Yai=1Jo

yE€Ayp(m—1)

Proof of (i) (adapted from the proof of Lemma A.12 in Kusuoka and Stroock [33]).
(1) is approached by using an induction argument on L. Clearly if L = 1 then there
is little to prove as B°L = Bl. Hence, as A; = Iyxq = Ay. Now assume that
the result holds for L < k. i.e. for all & such that ||¢| < k there holds, for some
deterministic constants: aé‘[ﬂ, 18I < k.

=Y at, B!

IBIl=<k

It is clear one need only prove, for suitable constants ak+l 1Bl <k +1for || =
k+1

Z ak+1Bﬁ

Bl <k+1

Leta = (¢/,a*) where ||| =k — lifa* =0,and |o/|| = kifa* € {1,...,d}.
The cases ax = 0 and ax € {l,...,d} are treated separately. Assume first that
a* = 0. Then

t
1§,°“:/0 é;"/ds:/ Z a,ﬂB° ds

BlI<k

k h B*0
= D ay Bl

Bll<k

k h B*0
= Z aa/ﬁ/Btﬂ*

IBll<k+1
Bx=0

k A
= Z aa:Eleﬂ’

IBll<k+1

k o, iffx=0
where af{};l _ ) ! p
: 0 iffx#£0.
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Now assume a* € {1,...,d}:
~ ! ~ / ! ~ 7 1 ! ~ 17
Bov = / B o B = / B aper + L / B ds 1 ey
0 0 2 Jo

t
:/ > db yBPaBe

0
8=k

1 [ .
+ E/ Z az//ﬁdes 1{a*=(a/)*}
O |pll<k

. | P A
= Z aé‘/ﬁ/Btﬂ + w Z ag//,ﬂ/Btﬂ
Bll<k+1 IBll<k+1
Br=ax* Bx=0

k+1 5
= > afBl
IBl=k+1

ag,ﬁ, if ax = Bx,
where aﬁ}}l = %a];;jﬁ, if Bx = 0,ax = (o) *,
0 otherwise.
This completes the argument. As (ii) can be proved in an analogous manner, its
proof is omitted. It is now shown how (i), (ii) imply the remaining equivalence
result. Note that if A, is invertible, then A7 is also invertible with (47)™! =

(A7YHT. Moreover, from invertibility

0 < cmin := |I§n|1=nl | AZE ‘ :

Adopting the shorthand notation ét"L, l?tL employed above, there holds:

1 1
inf / (6. BL)dt = inf / (€, ALBF) di
0 0

[§1=1 [§1=1

1
= inf/ (AT, BF)di
l§1=1Jo

1
. AL\2
> mf/ (v,B,L) dr ¢k,
LJo

lvl=
A similar estimate can be made from (ii). These estimates prove the remaining claim
of the proposition. O

Before tackling Proposition 65 in earnest, some supplementary results about
iterated Itd integrals are required.
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Lemma 70. Fix ! € N. There exists C; < oo and v; > 0 such that for all @ € A

with ||| = [, there holds:
1
zn) < exp(—zn‘”), (163)

Proof (adapted from the proof of Lemma A.7 in Kusuoka and Stroock [33]).
Fundamental use of the following martingale inequality is made. For K;, K, > 0

P| sup l?;”
1€(0,1]

foralln > 1.

K2
Pl sup [ Mr|> K, (M)r<K,|< 2exp%——l} )
1€(0,T] 2K,
This result is proved by expressing the above martingale as time-changed Brownian
motion (run at the “speed” of its quadratic variation, see Karatzas and Shreve [26,
Theorem 3.4.6]), and then using the following two inequalities:

P( sup |B;| > K) <2P(Br > K),
t€(0,7]

/ e 2/ dl/l < e Az/z X > 0
= ) —_ Y.
X VZJT

The latter is seen by splitting consideration into two cases: x € [0, 1) and x > 1.
The relation in question can be obtained by iterative applications of this
martingale inequality. Define vy = 2, and in what follows allow v; to be chosen

optimally afterwards. First assume that o € {1,...,d W
P[ sup l?;” zK]

1€(0.1]

<P[ sup | B*| > Kk, (BY), < K"N] +]P’[(l§°‘)1 > K”N]
-1€(0,1]
_ R Ny Lo 2

=P sup | 82| > k. (B), <K”N]+P[/ ’Bf‘ dtzK”N]
L re(0.1] 0

§]P’- sup l?f > K, (é“/)l < K"N]+]P’[ sup l?f‘/ > K”N/Z]
-1€(0,1] t€(0,1]

< Z P[ sup é;}cm+l_"> ‘ > KW/Z, (éa(i_”)l < K\Ji—l:l
1 t€(0,1]
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where o) denotes that shortening of the multi-index @ = (a,...,ay) by i. i.e.
a) = (ay,...,ay—;) (additionally: &© = ).
Now choose v; fori = 1,..., N given that vy = 2 and vg > 0. In fact, vy

can be chosen arbitrarily for K > 1. If it is assumed that v; — v;_; = § > 0 for
i=1,...,N,then

l 2

Zl),’—l),'_lzN8 = 8:Na

i=1
and v; = i,—’ Assembling these facts gives:

A 1 2
]P’( sup | B*| > K) <oNexp( — K7, (164)

1€(0.1] 2

for arbitrary |« | = N. Assuming instead that ||¢| = [ and noting that |« | < |||

so that é < |a| <1 gives the same upper bound with N replaced by /. i.e. C; = 2]
andv; =2/1.
Now observe that if ¢; = 0 for somei = 1,..., N the situation is even simpler:

P(sup [ B | = K) < PCsup | B0 | = K),
t€(0,1] t€(0.1]

as sup;e(o,7j ‘ fot éf‘dt‘ < T'sup,e,1] ‘ éf ‘ Therefore, one needs only apply the

martingale inequality Card {i : o; # 0} times. i.e. (2|« | — ||||) times. Hence, for
a general «,
N 1 2
]P’( sup | B | > K) <20Q|a|- ||ot||)exp(— -sz—uun).
1€(0.1] 2
However, for any o such that ||| = [ the identified constants in (164) are still
appropriate, as sup, = (2 [a | — [lal]) = 1. O

The main consequence of the above lemma is the following:

Proposition 71. It suffices to show the existence of Cy,, |Ln, Such that foralln > 1,
there holds

1 2
. 1
sup P > auBY|dr<—) < Cuexp{—nt}.  (165)
0 n

0,9
Nyp—1~1 a€Ag g5 (m—1)

a€sS

Adapted from the proof of Lemma 2.3.1 in Nualart [51]. There is some constant M,,
Y
such that foralln > 1, S NaZi=1 contains some finite set X (n) with
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0,9
| Z(n)| < Myun*" and  SY=tc () By,
ceX(n)

Observe, for fixed a¢ € sli-1 A B, /3,(¢), there holds

2

1
min coBY | dt
ceE(n)/() Z «r

a€A) g(m—1)

2

1
= min/ Z (cq —ay +al)Bf | dt
0

. a€Ag g (m—1)

1 2 1 2
<2 mi —aS)BY | dr cBY| dt
< cénxl?n) /(; |: Z (ca —ag) By ] +/0 [ Z Ay by ]

€A p(m—1) a€Agg(m—1)
1 2 1 2
5203121&)/ > (ca—al)BY dt+20énxi&)/ > alBy| ar
0 aEA(),(;;(m—l) 0 aEA(),(;;(m—l)
2
1 .12 1 .
SZCénEi?n)k—aﬂZ/ > ‘Bg dt-I—ZCénEi?n)/ > ayBy| dr
0 wedygm—1) 0 | aeAgp(m—1)
2
1 ! DO 2 ! ¢ po
<2 ‘B di +2 min / B | dr.
sn X [Efavemn [0S aB
a€Ag p(m—1) a€Ag p(m—1)

Now, the above upper bound holds for any a¢ € S N2 g 1//3n (c), in particular,

¥ Y/

it must hold upon taking the infimum over all a € SNrgfl_l, as SNr?rfl_l
0.9

Uecerm) SNn=1=1'N By ),2(c). This gives:

1 2 1
A 1 ~ 12
Cénzi&)/[ 3 caB,”‘:| dthm/ 3 )B;‘ dt
0 Laedgyon—1) 0 wedyy(m—1)
1 R 2
+2  inf / [ > aaB,"} dt.
aes¥n—17170 Loea yom—1)

(166)
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Furthermore, it is evident that:

1 2
. 1
]P’[ 11(1)% /0[ > aaB,“dt} 5;}

aeSNm—171 a€A) g (m—1)

1 2
A 3
<P i CB¥dt| < —
- (cénrlg«)/o [ 2. @b } _n)

a€Ag g (m—1)
2
dt>n).

—HP’(/Ol L

a€Ag g (m—1)

Using (166) to proceed, it is seen that:

1 R 2 1
P inf / |: aaBt“dt] < -
09 _. Jo n

gesNm—171 a€ Ay g(m—1)
1 . 2 3 2 ]
<P| min /[ > caB,‘)‘dt] <=|+P [ > B,“ dt >n
ceX(n) Jo n
a€Ay p(m—1) a€Agp(m—1)
1 . 2 3 A 12
< Z P / [ Z canldti| <—|+P| sup BY| =n
ceX(n) 0 Laedgpm—1) " | (€O ge gy (m—1) ]

INOY 1 ~ 2 3
< MpuK* =1 sup P / [ > aan‘dt] <=
0 n

09 a€Ay g(m—1)

SESNm 11
: :|
— A70.0
Nm—l

Ml'ﬂ 0@ ~
] ) + N, kénax P| sup Bf“z

lell= ' "
Hom c 1 n El
W Cnee (3|

+ ng’gl max P
a€Ay p(m—1) te(O 1]

0.9
< anZNm—l B, exp (

0.9
< anZNmfl B, exp (

< A, exp (—nA”’) s

for some (large) constant A,, and (small) A,, > O, for all » > 1. Both (163) and
(165) have been used. ]

The goal is now reasonably clear. If inequality (165) can be proved, then the
claim will have been justified. Before turning to this proof in earnest, another
supporting result is proved. Note that the rest of the proof is, unless otherwise stated,
taken from the appendix (p. 73 and onwards) of Kusuoka and Stroock [33].
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0.0
Lemma 72. Assume a € SVn—17" such that |ag| < 1.'> Then there are constants
Om < oo and vy, > 0 such that:

1 2 |a | - v 0
. 1 1 o i
IP’(/ [ > aaB,“} dlf—)SQmeXP{—E @ }
O Laedgpim—1) " 1—61%
(167)

Proof. The starting point is noting that:

(/01[ > aaéfrdt)éimm—(/:[ > aal:?f‘irdz)z

a€Ag g (m—1) I<|lalsm—1

1
zlaal—\/l—a%/[ > |8
0

1<|ell<m—1

> lag|—+/1—a} sup|: Z ‘éf‘

1€OIL <o zm—1

Consequently,

2

1
1 pa? 2
A 12 [laﬂl_(IO [ZOLGAOV)(W—UCZO‘BI] dt) :IVO
su B | > Y
Py |Br] = o
€O <ol <m—1 L=

In particular,

P(/Ol[ > aaéf‘:rdtf%)

a€A)g(m—1)

2

2 ((lani=F5) vo )

>

5]?( w Y|
€O <palzm—1 1 —aj

2V

o enfoy )

2 ,ll—a%

for some Q,,, vy, where (163) has been used. O

3Indeed, the consideration is trivial if this condition is violated.
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A semimartingale inequality from Norris [50] is now recalled, which plays an
identical role to a similar martingale inequality in Kusuoka and Stroock [33].

Lemma 73. Assume a,y € R. Let B = (B)i>0 be a one-dimensional previsible
process, and lety = (y; := (L ...,y )0, u = (u = (ul,...,ul))>0 be
d-dimensional previsble processes. Moreover, assume B = (Bi);>0 is a
d-dimensional Brownian motion. Define,

t t
bt=b+/ ,BSds+/ yldB,
0 0

t t
Y=y +/ byds +/ u.dB:.
0 0

Then for any q > 8 and some v < (q — 8)/9, there is a constant C = C(q,v)
(independent of K ) such that

nl/‘I’t

1 1 1 1
P[[ Y7di < —, f b P+ u Pdt = ——. sup B[V |y | Vb |Vu|<n
0 n 0 €(0.1]
< C exp{—n"}. (168)

Remark 74. Upon checking the above result in Norris [50], the keen reader would
observe that the result is stated in a different fashion. Namely, the bound

sup [ B[V Iy VIb|VIu| <M,
1€(0,T]

is assumed up to some bounded stopping time 7', as an extra condition. The resulting
statement is then phrased in terms of some constant, which depends on M. i.e.
C = C(q,v, M) in (168). This constraint has been circumvented by letting the
constant M depend also on n (indeed: M = n). The observation that C is then
of the form C = C (g.v)n' for some [ € N, is then made. This observation is a
result of tracking the constant in the proof of the lemma. This does not affect (168)
as there is some larger constant C and smaller ¥, which can be chosen such that
é'(q, v)n! exp{—n"} < C(q,v) exp{—n"}, foralln > 1.

The proof of the bound in Proposition 71 is done via a strong induction argument.
The base case m — 1 = 0 is trivial. Assume therefore, that (165) holds for 0 <

m—1<k-—1.Leta € SN/?M_I. Define, using the notation of Lemma 73, the
following:

Y, := Z aaﬁ;’,

llecll <k
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b; := Z aaéf‘/,

1<||ell<k
a®=0
u = E a, B
T o t
1=|lell<k
a*=i
’\a//
B: = E agBy , for |a| > 2,
1<l <k
a®=0,(a’)*=0
i '\a//
Y, = E ag B, for |a| > 2,
1<|lell<k
a*=0,(a")*=i
y = ag,
b:=0.

With these definitions it is easy to see
t t . .
b; :b—i—/ ,BSds—}—/ y.dB;,
0 0

t t
Y=y +/ asds—}—/ u'dB..
0 0

Using Lemma (72) consideration may be split into two separate cases. Assume first
that 1 —a} < n~"/2%, where ¢ > 1. So that

J1—ak <n /%,
and

lag| > {(1 —n~"?7) v 0}!/2

1
= [Iaﬂ——}V02(1—2n_1/2q)v0.

Jn
Then, by (167):

P(/Ol [ > aaéf‘]zdt < %) < lexp§ _ %nuk/zq([l ~ nqu] VO)M}

a€ Ay g(k)

< Prexp {—nk"} ,
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for some (large) constant Py and (small) Ay, as required. Suppose now that 1 —a% >
1/n'/?4. Then it is clear that

/01[ > aaéf‘]zdtf

lell<k

C Ei1UE,U Ej3,

I | =

where

1 1
1 1
Bt [ [inr s uraz oo
0 n 0 n'/d

sup |ﬁt|v|y,|v|bt|v|ut|5n},
t€(0,1]

EZ:{ sup |,3,f|\/|y,|\/|b,f|V|u,f|>n},
t€(0,1]

1
1
_ 2 2
E3—{/O|b[| +|I/lt|dt<_nl/q}.

It is now shown that P(E;) < C; exp{—n"i} fori = 1,2,3.Fori = 1,2, Lemma 73

and Lemma 70 imply respectively, the required bounds (i.e. independent of a €
S N::'K)l_l). The case i = 3 is handled using the inductive hypothesis.

Define

. § : 2
Nj = a,
1=<llell<k=IIG)H
a*=j

As Z?:on = 1—aj > 1/n'/4, there exists jy € {0,...,d} such that N;, > 1/
2
. Thus, using

A

o
2 islel=k=lGol du B]

a™=jo

(d + Dn'/24 Moreover, | b; | + |u; | >

the inductive hypothesis,

1
P(E;3) < ]P’(/
O Tigllal <kl kol

a*=jo
(. /
=p(—
Njo 0

< Cr— exp{_(Njonl/q)vkil}
< Crorexp{—(n'?1/(d + 1))~}

< Cy exp{—n"F},

Al
ao Bf*
1=]lell<k=I[l(ko)l
a*=jo
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for some Cy, vi. In applying the inductive hypothesis, care has been taken to check

that (Zlfnanfk_n(ko)n ai)/Nko = 1. This finishes the proof. O
a*=kg

We now move on the prove Lemma 23 which was fundamental to establishing

relationships between the elements of our integration by parts formula. This is done

in two stages: in the first stage we focus on demonstrating the result for /C,, that

is, those elements which are smooth processes. We then supplement this for the

non-smooth case with additional comments/proofs where appropriate.

Lemma 75 (Properties of Kusuoka—Stroock Smooth Processes). The following
hold

1. Suppose f € K,(E), wherer > 0. Then, fori = 1,...,d,

/ f(s.x)dB € Ky+1(E) and / (s, x)ds € Ky 12 (E).
0 0

Qo> b € K(ig)~llalyvo Where a, B € A(m).

ky € /C”a” (H), where o € A(m)

D@y := (Du(t,x). ko) y € Ky+)a where u € K, and o € A(m).

If M~\(¢, x) is the inverse matrix of M(t, x), then Ma_é € Ko, a, B € A(m).
If fiekK, fori =1,...,N, then

ISR S

i=1 i=1

Proof: (1) It is clear that if f(z,.) is smooth and 9, f(.,.) is continuous then the
same is true of [; f(s,x)dB; fori =0,...,d, with

aa/O f(s,x)dB; :/o 0y f (s, x)dB.

Fork > 1, p €[l,00),i = 1,...,d, we have (note that the dependence of the
norms on the Hilbert space E has been suppressed):

p

/ 0 S5, xX)dB' / /G, x)dB;
0 0

p
k.p

k

+;]E HD//O 3o f (s, x)dB!

J

p

(169)
H®J

Focussing for a moment of the LHS, and assuming w.l.o.g. p > 2 (as there
holds monotonicity of norms in p), we see that for j = 0, ..., k, there holds
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. t P
EHDJ [/ 3af(s,x)dB§]
0 H®J
t . ) ¢ ' )
:EH/ D]aaf(s’x)dBH/ DI f(5.x) ® eids
' 0 H®J/QE
t . X V4 ¢ ' )
= [E H/ D7 da /(s )dB, +E H/ D/ 7109, f(5,x) ® eids ]
" e 0 H®J
<68 [ 00 | sen] g, #1770
=0y 0 o J (S, H® o (S, you—n &
e T R A YT
= ~p o o B Iy A A o £ (s, U ‘
t
< C,,z%(p—l)/ ||aaf(s,X)||;fpds
0 R
t
SC”t%(p_l)/ s7P% sup v o f (0, ds
0 x€RN ,
ve(0,1]
< G+,

where we have used Burkholder—Davis—Gundy inequality, Jensen’s inequality
and Holder’s inequality for finite sums. Note that the above holds for j = 0 by
taking D/~ to be the zero map. The upper bound is independent of x € RY
and by a simple rearrangement, and combining with (169), the result follows.
Note that the result for fd f(s, x)ds is proved similarly.

(2) The fact that aq g(Z, .), bag(t,.) are smooth with partial derivatives which are
jointly continuousin (7, x) € (0, 1]xR" and thataq g, b g : [0, T|XRY — D>
follows from Proposition 18. The fact that the appropriate bound holds for a, g
with rate r = (||8|| — [l|]) A O follows from applying the expression for a, g,
given in (47), and Proposition 20. The corresponding result for b, g is derived
in an analogous way to ay g.

(3) This follows easily from (1) and (2).

(4) From Nualart [51][Proposition 1.3.3] we have the following:

(Du, ko) y = ublky) —8(uky)

Moreover, we know that u, k, € D, and that § : D®° — D! hence it is
clear that (Du, k,); € D*. The existence of regular derivatives of all orders
follows from direct differentiation. The required bounds follows easily from 6.
(5) Our first observation is that if f € K. (E), where r > 0, then g(¢,x) :=
t75/2 f(t, x) satisfies g € K,_;(E). This is obvious, and from this basic
observation we note that My g (1, x) := t~IIFIBD/2 (i, (2, x), kg (2, x)),, must

14¢f. Proposition 1.5.4 in Nualart [51]
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satisfy My g € Ko. This comes from applying the above observation, along with
(3) and (4) of this Lemma. To prove the same about elements of the inverse
of M(¢t, x) we first note that smoothness (in x) and joint continuity (in (, x))
follows from the inverse function theorem. To prove Malliavin differentiability
and the corresponding bounds, we use the ideas of the proof of Nualart [51,
Lemma 2.1.6]. That is, we seek to prove the following:

Lemma 76. Let A(.,.) be a square random matrix, which is invertible almost surely
and such that | detA(t, x) |_l € L? forall p > 1. Assume further that the elements
of Aap(t,x) € D™ and satisfy:

sup || Aap(s, x) ka < 00.

x€RN
s€[0,1]

Then A;}B (t,x) € D* and the elements satisfy:

sup

x€RN
s€[0,1]

AL (s, ) Hkp < 0. (170)

The proof of this lemma is almost identical to the proof of Nualart [51,
Lemma 2.1.6]. One merely needs to take care in showing (170). This is done
easily by using a Holder-type inequality for the seminorms ||.[|; , (cf. Nualart [S1,
Proposition 1.5.6].

Remark 77. If we hadn’t chosen to mutliply and divide the elements of the matrix

M(t,x) := ((ko(t,x),kg(t, x))) by t“uutllﬁ”, when forming the matrix M, then

more care would have been required to ensure that the rate of decay of the inverse (as
a Kusuoka Stroock process) is independent of the dimension of the matrix. Indeed, it
can be shown the inverse of the determinant of M is bounded above by a rate which
is dimension dependent. However, this dimensionality dependence disappears when
one considers the product with the adjugate matrix, which has the equal and opposite
dimensionality dependence.

(6) It is clear that smoothness, joint continuity and Malliavin differentiability are
inherited from the constituent functions. The second property remains to be
shown. Consider ]_[f\;1 f;- It may be shown that for the kth Malliavin derivative
the following Leibniz-type rule holds:

N
k i i

i=1 it+..+in=k

Now noting that, if i; + ... + iy = k, we have

N
D" fi®...® D fv]l yoe = [T 1DV £l oy -
j=1
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so that

]_[f(t x)

i=1

P k N P
=E nﬁ(t,x) SO 2 N RAGEY!
i=1 =1 i=1 H®J
N P k . N ' r
—s|[Tren| +X0 > (, 7., )@ s
i=1 ot i qin=j NN T 4
N p ’ N - P
<E|[[A@x)| +Y_C0p.0) | Q) D" fult, x)
i=1 m=1 H®J

< H LA )]0 g + Zc<p J) 1‘[ ID™ fout. ) |2 @i -

i=1

where p~! = pi' + ... py', applying Holder’s Generalised Inequality.
Whence, letting r = ") r(i) we see that

)2

N
sup ] A <H sup 1 Bl A [
t€(0,1],x€RN i=1 kp = 11€(0.1
’ eR
+Zc<p 1)1‘[ sup 1 D . )| 5o
m= re
IXE]R\
< Q0.

To see that vazl fi € Knin(r....ry)- We note that £, C K, for r < s. Hence,

it should clear that the sum is contained in that /C, in which all of its terms are

contained. Namely, Kpin(r,....ry)- A full proof is omitted. ]
We now extend the result to coincide with the stated one

Lemma 23 (Properties of Kusuoka—Stroock processes).

1. Suppose [ € K(E,n), where r > 0. Then, fori = 1,....,d,
/0 f(s.x)dB! € K (E.n) and /0 f(s.x)ds € K%, (E. n).

2. Aup.bagp € ICé‘l’fﬂ”_”a”)vO(k — m) where o, B € A(m).
3k, € ICfl‘;C” (H,k —m), where a € A(m).
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4. DWWy = (Du(t,x). ko) y € lCi”f_”a”(n A [k — m]) where u € K'“(n) and
o € A(m).

5. If M~'(¢t, x) is the inverse matrix of M(t, x), then Ma_é € ICf)"C(k —m),a, B €
A(m).

6. If f; € lCﬁ‘l_"'(ni)fori =1,...,N, then

N N
[15 ekt 4., (minn;) and > fiekl, (minn;).

i=1 i=1

Moreover, if we assume the vector fields Vy, ...,V are also uniformly bounded,
then (2)—(5) hold with KC'°¢ replaced by K.

Proof. The proof of this lemma is very similar to the corresponding lemma in the
second chapter. Notes are made on where the proof differs, rather than providing a
full and extensive reproof, to avoid repetition.

Proof of 1. It is clear that if f(z,.) n-times differentiable and 9, f(.,.) is
continuous then the same is true of fs f(u,x)dB, fori =0,...,d, with

0 [ f(u,x)dB! = [ o f (u, X)dB'..

The remainder of the proof is analogous.

Proof of 2. The fact that aq g(Z, .), ba g (¢, .) are k-times differentiable with partial
derivatives of order | y |, which are jointly continuous in (¢, x), and which are in
D177 for all p > 1 follows from Proposition 18. The appropriate bounds can
be seen to hold by observing the expression for a, g and applying Proposition 20.
The corresponding result for by g is derived in an analogous way.

Proof of 3. This follows easily from (1) and (2).

Proof of 4. From Nualart [51][Proposition 1.3.3] we have the following:

(Du. kg = u8(ky) — 8(uky)

Moreover, we know that for each p > 1, there holds u € "7, k,, € D*="=D.p,
and that § : D7 — D*=17 (see, e.g. Proposition 1.5.4 in Nualart [51]), hence it
is clear that (Du, ko) € D""*="=Dd for any g > 1. The existence of regular
derivatives of orders less that n A (k —m — 1) follows from direct differentiation,
and the required bounds follow from 6.

Proof of 5. The k-times differentiability of the inverse (in x) and joint continuity
(in (¢, x)) is a result of the inverse function theorem. The Malliavin differentia-
bility of the matrix inverse can be deduced by extending Lemma 76, for square
matrices with elements of general Malliavin differentiability.

Proof of 6. It is clear and straightforward to demonstrate that the differentiability
and joint continuity are inherited from the constituent functions. The level of
differentiability is a result of the product rule for differentiation. The second
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property of a K-S-process can be shown in a similar way, making sure to take
care of the finite level of differentiability.

A.3 Convergence of the Cubature Method in the Absence
of the Vy-Condition

The proof of the convergence of the cubature methods hinges on the control of the
Ly-norms of the iterated integrals Iy, ,(¢), @« = (i1,...,i;) € A in terms of the
supremum norm of the gradient bounds of fo, = Vi, ... V,@ and Vi fo 0, i =
1,...,d with the function ¢ being replaced by P;¢. In particular we need to be
able to control V) P;¢ (and higher derivatives involving V) P;¢). However, under the
UFG condition, gradient bounds are available only for derivatives in the directions
Vo], @ € A which explicitly excludes V, (see Sect. 2.3 for the definition of A and
Corollaries 31, 32 and respectively 38 for the corresponding bounds). We need
to find a way to “hide” V. We succeed to do this by employing the Stratonovitch
expansion not of P,¢,butoft — Pr—_,¢(X;),t € [0, T]. Assume g € C*°([0, T'] x
RY). Then, by applying It6’s lemma for Stratonovich integrals, we see that

d !
g(T—r,X;‘>=g<T,x>+Z/O Vig(T =5, X)) odB,  (171)
i=0

where V;, i = 0,...,d are the vector fields on [0, T] x RY defined as:
Voi=Vo—0, Vii=Vi, i=1,....4d.
Equation (171) may be iterated to obtain the following expansion for g(T" — ¢, X/°):

gl —1.X) = Y (Va@)(T.X)B* + Ry(t.x.8). m=23.....

{e, lall<m}

(172)

where V,, = V;, ... V; fora = (i1.....i,) and

Ry(t,x,8) = > I7,(0) (173)
lof=m+1
loll=m+2.a=0%p.|| | =m

In (173), I ,(t), @ = (i1, ..., i,) is defined as

5 L rso Sr—=2 . . ;
Iy (1) := / / (/ Vog(T —sr—1, X ) o dev‘rl)o- odW{ = odWY .
0 Jo 0



Cubature Methods and Applications 311

This Taylor expansion will in due course be applied to the diffusion semigroup P; f.
Note, in particular, that the cubature measure of order /, where | > m, agrees with
the Wiener measure on the iterated Stratonovich integrals of (172). Therefore the
convergence rate will be given by their difference on the “remainder term” R,,.
Indeed, it is a simple exercise to show that:

VE[R,(1,x,8)°] < C > 12|V, gll, (174)

llerll=m—+1
lecll=m-+2.a=0%B.1Bll=m

where

IVogll = sup  |Vog(T —s,%)|.

s€[0,¢],x€RN

The expectation E[R,, (¢, x, g)?] in (174) can be exchanged with the expectation
with respect to the cubature measure Q, that is, Eq, [R;,(Z, x, g)*] with the result
still holding. The following inequality is therefore immediate:

m—+2
[Ele(T =1 x1)] ~Eq [¢(T —1.x0]| =€ Y o7 Sup [IVagl. (175
j=m+1 o=/

The above is an upper bound for the error of a finite measure based on a single
application of the cubature formula. Iterated applications of the cubature over the
partition D will give us the correct rate. The Markovian property of the cubature
method and the semigroup property of the diffusion allow us to deduce the required
uppers bounds based on (175). Again, we emphasize that the difference between
what is done here and the earlier proof is that the control on V, P;¢ is no longer
necessary. Instead we need a control along the vector field 170 = 9, — V, which
is available as P; f is smooth along the vector fields V1, ..., V; and also for each
(t,x) € (0,T] x RN

d
@ — Vo) P f(x) = Y VAP f(x) = ;E [/£(X)®i(1,%)] (176)

i=1

for a suitably chosen Kusuoka function @, (¢, x) (see Corollary 28). This result may
be iterated to prove a corollary similar to Corollary 32.

Corollary 78. Let f € C;° (RN, R) . If the vector fields Vi, ..., Vy are uniformly
bounded then, under the UFG condition, there exists a constant C, < oo such that:

~ C,
1V Pof oo = g 19/ oo (177)
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Proof. The proof hinges on the observation that V, P [ satisfies the following
convenient identity

o
VaPif = > Caprpi Vigr) - - Vigi) Pr f. (178)

i=1  Bi.pB

where ¢y g,...5; € R. This is proved by induction over the “length” m of the multi-
index «, m = | «||. The case ||| = 1 is trivial and ||@| = 2 follows from the
first identity in (176). We outline next the inductive step. If & = (i1, ..., i,), ||¢| =

m+ 1,m > 1and i; # 0, then by the inductive hypothesis

llell—1

f/a P f = Z Z Clz...ar). BB V[illv[ﬁll s V[ﬂi]Pff’

i=1 Bl...Bi €A,
181+ +lBi 1=l -1

as, by definition V};;; = V;,. If i1 = 0, note that

@ = Vo)Vig - Vig = [ = Vo), VignlViga) - - Visr +Vis (3= Vo) Viga) - - - Vigi
= VigronViga -+ Vien + Vi (3 = Vo)Vigay - - Vg

since, as d; commutes with V{g,}, we have

[0 — Vo). Vignl = —[Vo. Vigl = V101

By applying the same procedure to the second term and iterating, we obtain
eventually that

@ = Vo)Vigyy--- Vi P f
= VigoonVigar - - - Vign o f + oo+ VigVigar - Vigon P f

d
+ D Vg Vg Vi Vi Pf ().

J=1

The last identity together with the induction hypothesis gives us (178) also for the
case i} = 0. From (178) we deduce (177) by using Corrolary 32. O

It is important to note that derivatives along 170 = 0, — Vy add 1 to the rate
as a power of r. Let O, be the Markov operator defined in (89) corresponding
to the m-perfect family of stochastic processes, X (x) = {X, (X)}ref0.00) for
x € R?, constructed by the cubature method as described in Example 41. The
following result simply tells us that Lemma 44 holds true also in the absence of the
Vo condition.
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Lemma 79. Under the UFG condition the exists a constant C = Cr > 0
independent of s,t € [0, T'] such that

m+2 A
12
1P (Psp) = Q(Ps@) oo < C IVOllow Y. — (179)
j=m+15 2
where ¢ € Cg (RY,R).
Proof. Immediate from (175) and Corollary 78. O

Following Lemma 79, it is now immediate that the same rates of convergence
such as those described in Sect. 3.4 are valid for the approximation given by the
cubature method in the absence of the cubature measure. Let 7,y > 0 and 7, =
{t; = (ﬁ)”T};‘. —o be a partition of the interval [0, 7] where n € N is such that
{hj =t; — tj—l}'}=1 C (0, 1]. Just as in the Sect. 3.4, let us define the function,

n—%min(y,(m—l)) ify #m—1

Y!(n) =
) n~m=D21nn fory =m—1

and let £ (¢) be the cubature error In the following,

£ () = | Pro — 03, O, - Qi o,

for y € R, n € N. The proof of the following theorem is identical with that of
Theorem 46 and Corollary 47.1

Theorem 80. Under the UFG condition, there exists a constant C = C(y,T) > 0
such that, for any ¢ € Cg (RN, R),

E" (9) = CY' () [IV@lloo + [ P — Qo o (180)

In particular, if y > m — 1 there exists a constant C' = C'(y, T) > 0 then,

/

C
&) = = Vol -
n o2
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