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Preface

It has been our pleasure to have been invited by René Carmona and Nizar Touzi
to edit this 5th volume of the Paris-Princeton Lectures on Mathematical Finance.
The present volume contains four chapters touching on some of the most important
and modern areas of research in mathematical finance: asset price bubbles; energy
markets; investment under transaction costs; and numerical methods for solving
stochastic equations.

In the first chapter, Philip Protter presents a comprehensive survey of the
Mathematical Theory of Financial Bubbles. Understanding, defining, and detecting
a bubble from observed prices is a long-standing challenge spanning ideas from
economics, stochastic analysis, mathematical finance, and statistics. This chapter
presents a broad review of the history and literature of the problem as well as the
mathematics and an empirical analysis of some recent data.

The second chapter, by Fred Espen Benth, concerns analysis and models for
energy markets, particularly electricity (or power) prices. Here, short-term spikes
are of paramount importance and the author describes using Lévy processes to try
and capture this. In particular, he focuses on introducing stochastic volatility effects
and on valuation of energy derivatives such as forwards and cross-commodity
spread options. This covers part of a growing area as energy markets become more
financialized and a greater part of the financial economy.

In the third chapter, by Paolo Guasoni and Johannes Muhle-Karbe, the problem
of investment choice in the presence of transaction costs is surveyed in the form
of a User’s Guide. The problem has a long history and brings interesting problems
in singular stochastic control when analyzed in the typical framework of continuous
time models. Recently there have been some important breakthroughs, involving the
so-called shadow prices, that have led to a burst of activity in understanding how to
optimally invest under this friction. The authors bring us up to date on this progress
and list some open problems.

The final chapter, by Crisan, Manolarakis and Nee, discusses numerical methods
for solving stochastic differential equations (SDEs) based on cubature. The theory
and analysis, including tools from Malliavian calculus, are introduced from scratch,
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and some financial applications are studied. The fourth section also develops
cubature methods for backward SDEs, including numerical examples demonstrating
the impressive performance.

We thank the authors for their outstanding contributions, as well as those we
enlisted as anonymous referees for their hard work and valuable suggestions that
improved the chapters.

Oxford, UK Vicky Henderson
Princeton, NJ Ronnie Sircar
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A Mathematical Theory of Financial Bubbles

Philip Protter

Recurrent speculative insanity and the associated financial deprivation and larger devasta-

tion are, I am persuaded, inherent in the system. Perhaps it is better that this be recognized

and accepted.

—John Kenneth Galbraith, A Short History of Financial Euphoria, Forward to the 1993

Edition, p. viii.
Abstract Over the last 10 years or so a mathematical theory of bubbles has
emerged, in the spirit of a martingale theory based on an absence of arbitrage,
as opposed to an equilibrium theory. This paper attempts to explain the major
developments of the theory as it currently stands, including equities, options,
forwards and futures, and foreign exchange. It also presents the recent development
of a theory of bubble detection. Critiques of the theory are presented, and a defense
is offered. Alternative theories, especially for bubble detection, are sketched.

1 Introduction

The economic phenomenon that the popular media refers to as a financial bubble has
been with us for a long time. A short adumbration of some economy wide bubbles
would include the following major events (see [55] for a comprehensive history of
bubbles through the ages):

Supported in part by NSF grant DMS-0906995.
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2 P. Protter

e The bubble known as Tulipmania which occurred in Amsterdam in the seven-
teenth century (circa 1630s) is the first documented bubble of the modern era.
Some merchants had excessive wealth due to Holland’s role in shipping and
world commerce, and as tulips became a fad, some rare and complicated bulbs
obtained through hybrid techniques led to massive speculation in the prices of
bulbs. One bulb in particular came to be worth the price of two buggies with
horses, the then equivalent of two automobiles. As often happens with economy
wide bubbles, when the bubble burst the economy of Holland went into a tailspin.

* In the eighteenth century, John Law advised the Banque Royale (Paris, 1716—
1720) to finance the crown’s war debts by selling off notes giving rights to the
gold yet to be discovered in the Louisiana territories. When no gold was found,
the bubble collapsed, leading to an economic catastrophe, and helped to create
the French distrust of banks which lasted almost 100 years.

* Not to be outdone by the French, the South Sea Company of London (1711-
1720) sold the rights to the gold pillaged from the Inca and Aztec civilizations in
South America, neglecting the detail that the Spanish controlled such trade and
had command of the high seas at the time. As this was realized by the British
public, the bubble collapsed.

* The real king of bubbles, however, is the United States. A list of nineteenth,
twentieth and now even twenty-first century bubbles would include the following,
detailing only the crashes:

— The 1816 crash due to real estate speculation.

— With the construction of the spectacular Erie Canal connecting New York to
Chicago through inland waterways, “irrational exuberance” (in the words of
Alan Greenspan) led to the Crash of 1837.

— Not having the learned its lesson in 1837, irrational exuberance due to the
construction of the railroad system within the U.S. led to The Panic of 1873.

— The Wall Street panic of October, 1907, where the market fell by 50 %, helped
to solidify the fame of J.P. Morgan, who (as legend has it) stepped into the
fray' and ended the panic by announcing he would buy everything. It also
had some good effects, as its aftermath created the atmosphere that led to the
creation and development of the Federal Reserve in 1913, via the Glass—Owen
bill.2

— And of course the mother of all bubbles began with Florida land speculation
as people would buy swamp land that was touted as beautiful waterfront

'More precisely, J.P. Morgan’s role was to organize and pressure a group of important bankers
to themselves add liquidity to the system and help to stem the panic. Ron Chernow describes the
scene dramatically, as a crucible in which every minute counted [28, pp. 124-125] as the 70 year
old J.P. Morgan’s prestige and personality prevailed to save the day.

2Even in 1907, in his December 30 speech in Boston, President Taft pointed out that an impediment
to resolving the crisis was the government’s inability to increase rapidly and temporarily the money
supply; one can infer from his remarks that he was already thinking along the lines of creating a
Federal Reserve system [149].
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property; this then segued into massive stock market speculation, ending with
The Great Crash of 1929.

— There was no runaway speculation in the US markets, nor major panics, in the
1940s and 1950s. But it began again with minor stock market crashes in the
1960s and 1980s.

— The marvel of “junk bond financing” led to the fame of Michael Milken, the
movie Wall Street and the stock market crash of 1987.

— While it did not occur in the U.S., we need to mention the Japanese housing
bubble, circa 1970-1989, which upon bursting led to Japan’s “lost decade,”
one of a stagnant economy and “zombie” banks.

— Back to the U.S. next, where speculation due to the commercial promise of
the internet led to the “dot com” crash, from March 11th, 2000 to October 9th,
2002. Many of the internet dot-coms were listed on the Nasdaq Composite
index, and it lost 78 % of its value as it fell from 5,046.86 to 1,114.11; a truly
dramatic crash.

— Finally, we are all familiar with the recent US housing bubble tied to subprime
mortgages, and the creation of many three letter acronym financial products,
such as ABS, CDO, CDS, and even CDO?Z. It is worth noting that the crash
of 2007/2008, along with the one of 1929, escaped the economic borders of
North America and thrust much of the world into economic depression.

It is of intrinsic interest to investigate the causes of financial bubbles, and there
is a wealth of often insightful economic literature on the subject. This is not the
purpose of this paper, which is rather to analyze prices and to try to determine if
or if not a bubble is occurring, regardless of how it came about. For those with
an understandable interest in the causes of bubbles, the author can recommend the
little book of J.K. Galbraith [55], where Galbraith makes the case that speculation
on a grand scale occurs when there is a new, or perceived as new, technological
breakthrough (such as trade with the new world, the building of canals, the advent
of railroads, junk bond financing, the internet, etc.) and that this can result in over
enthusiasm and uncontrolled speculation. The more modern analysis of economists
suggest that varied opinions among investors and short sales constraints can create
financial bubbles (see for example [26, 41, 118, 138], just as a sampling). And
recently, the interesting paper of Hong, Scheinkman, and Xiong [67] agrees with
the conclusions of Galbraith, but takes the analysis further, beyond an explanation
of simple overreaction on the part of investors to news. Hong et al. focus on the
relations between investors and their advisers, the latter being classified into two
types, “tech savvies” and “old fogies.” They discuss how reputation incentives create
an upward bias among the recommendations of the tech savvy investors, which are
taken at face value by those investors who are naive. For an interpretation of how
the recent housing bubble arose, one can consult [129]. Other interesting references
are [19,49, 139, 153,154, 158].

To mathematically model a bubble, we start small, and consider an individual
stock, rather than a sector (such as the technology sector), or an entire economy.
If there is a bubble in the price of the stock, then the price is too high, relative to
what one should pay for the stock. This seems intuitively obvious. But what is not
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obvious is: What then is the correct price of the stock? We assume such a stock is
traded on an established exchange, and the theory of rational markets tells us that the
price of the stock reflects exactly what the stock is worth, since if it were overvalued,
people would sell it, and if it were undervalued, people would buy it. Such a theory
eliminates the possibility of bubbles, and if we believe bubbles do in fact occur, we
are forced not to accept this idea wholesale. Therefore we need a fair value for the
stock.

This raises the question: Why does one buy a stock in the first place? Your
brother-in-law might have a start-up and want you to participate by buying some
stock in his company. This may be a bad investment, but good for your marriage.
We will simplify life by assuming one buys stocks based only on their perceived
investment potential. Moreover we will further simplify by assuming when one
buys a stock, one is not speculating, and tries to pay a fair price for a long term
investment, to the point where whether or not the stock goes up or down in the
short run is irrelevant, and the only issue that matters is the future cash flow of
the company. Nevertheless there is more of a risk in buying stocks than there is in
banking money (especially when the deposits are insured by the government), so
one can expect a rate of return with stocks that is higher than that of bank deposits,
at least in the long run.® This return premium for taking an extra risk to buy stocks
is known as “the market price of risk.”

So the compelling question we must first answer is: How do we determine what
we call a fundamental price for a stock?

Organization

After the introduction, we first explain in Sect.2 how to model the fundamental
price of a risky asset. Since the fundamental price is expressed as a conditional
expectation of future cash flows, with the conditional expectation being taken
under the risk neutral measure, it is more easily explained in a complete market,
since then the risk neutral measure is unique. We can then define a bubble as
the difference between the market price of the risky asset in question, and the
fundamental price. When the risky asset is simply a stock price, then the bubbles
are always nonnegative. In Sect. 3 we establish the relationship between strict local
martingales* and bubbles, and give a theorem classifying bubbles into three types.
In Sect.4 we give examples of mathematical models of financial bubbles by

3Classic economic theory tells us that it makes no difference in the short run whether or not a
company pays out dividends or reinvests its returns in the company in order to grow, in terms of
wealth produced for the stockholders. However eventually investors are going to want a cash flow,
as even Apple has recently discovered [160], and dividends will be issued.

4A strict local martingale is a local martingale which is not a martingale. More precisely, a process
M with My = 1, is a local martingale if there exists a sequence of stopping times (,),>1
increasing to 0o a.s. such that for each n one has that the process (M ., ),>o is a martingale.
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exhibiting a method of generating strict local martingales as solutions of a certain
kind of stochastic differential equation. This is based on a theorem of Mijatovic
and Urysov [116], and we provide a detailed proof of the theorem (Corollary 5
of Sect.4 in this paper). Special attention is given to the inverse Bessel process.
We also present results on strict local martingales in Heston type models with
stochastic volatility that go beyond the framework of Corollary 5, and we discuss
the multidimensional case. We end by giving a criterion to determine whether or not
the system is a strict local martingale through the use of Hellinger Processes.

In Sects.5 and 6 we consider incomplete markets arising from a risky asset
price process S = (S/);>0. Since incomplete markets have an infinite number of
risk neutral measures, and since the fundamental price is defined using “the” risk
neutral measure within the framework of complete markets, this is a bit of a thorny
issue. Hence we review the method of letting the market choose the risk neutral
measure originally proposed in [73] (see also [141,142]), which works essentially by
artificially completing the market through the use of call option prices. Once the risk
neutral measure is chosen and temporarily fixed, the analysis proceeds analogously
to the complete market case, with one important exception. The exception is that
we allow the market choice of the risk neutral measure to change at random times,
in a type of regime shift. This basically assumes the market is fickle, and while it
always prices options in internally consistent ways (since otherwise there would be
arbitrage), it can change this pricing from time to time, which actually represents
a change in the selection of the risk neutral measure, from the infinite number
of them compatible with the underlying risky asset price S. This method keeps
the coefficients of the underlying stochastic differential equation unchanged, but
we could equally and instead introduce a regime change where we change the
underlying SDEs; this too may alter the structure of risk neutral measures, or it
may not, depending on how dramatic is the change.

In Sect.7 we consider what happens with calls and puts in the presence of
bubbles. There are some surprising results, such as the loss of put-call parity (!)
when bubbles are present, and that Merton’s “No Early Exercise” theorem for
American calls no longer need hold, a fact first observed (to our knowledge) by
Heston et al. [63] and by Cox and Hobson [30]. An analysis of the behavior
of options in the presence of bubbles can be found in [122]. We then introduce
the concept, originally due to Merton in 1973 [114] but refined mathematically
successively in [88, 89], and finally in [131], and known as No Dominance. This
extra assumption restores put call parity. Section 8 is devoted to a study of bubbles
in foreign exchange, which is related to inflation. Here negative bubbles can occur,
and Sect. 9 covers forwards and futures. Section 10 covers the controversial topic
of trying to identify (in real time) when a given risky asset (such as a stock) is
undergoing bubble pricing. This seems to be a question of great current interest, as
the quotes given in this paragraph seem to indicate. Indeed, the quotations are from
none other than Ben Bernanke (Chairman of the U.S. Federal Reserve system),
William Dudley (President of the New York Federal Reserve), Charles Evans
(President of the Chicago Federal Reserve), and Donald Kohn, Federal Reserve
Board Vice Chairman.
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Finally, in Sect. 11 we attempt to defend the local martingale approach to the
study of bubbles from its critics. These criticisms seem to revolve around the use of
strict local martingales, and the (technically mistaken) belief that they exist only in
continuous time. Jacod and Shiryaev, in a 1998 paper [75], clarify the relationship
between local martingales and generalized martingales in discrete time, and give
necessary and sufficient conditions for a local martingale to be a martingale in
discrete time. It is true that when a finite horizon price process in discrete time
is nonnegative (such as a stock price) then as a consequence of the results of Jacod
and Shiryaev, a nonnegative discrete time local martingale is indeed a martingale.
So in this sense, when modeling stock prices (as we often are doing in this paper), it
is indeed true that strict local martingale models do not exist for discrete time. But
we argue in Sect. 11, as we have in [86], that this is just another reason of several
that discrete time models are in fact inadequate to understand the full range of ideas
required for a profound understanding of financial models.

We also discuss in Sect. 11 two of the leading alternative approaches to the
study of bubbles, the first associated with P.C.B. Phillips and his co-authors, and
the second associated with Didier Sornette and his co-authors. The key difference
between these alternative approaches (of Phillips et al. and Sornette et al.) with the
one presented here, is that both alternative approaches make assumptions (albeit
very different ones) on the drift that leads to bubbles (under their understanding of
what constitutes a bubble), whereas in our presentation the key assumptions related
to bubbles revolve around the diffusive part of the model.

2 The Fundamental Price in a Complete Market

We begin with a complete probability space (2, F, P) and a filtration F = (F;);>0
satisfying the “usual hypotheses.” We let r = (r,);>0 be at least progressively
measurable, and it denotes the instantaneous default-free spot interest rate, and

B, =exp (/ rudu) (D)
0

is then the time ¢ value of a money market account. We work on a time interval
[0, T*] where T* can be a finite fixed time 7', or it can be co. We find that it is
more interesting to consider a compact time interval (the finite horizon case, where
T* = T < 00), but for now let us consider the general case. Next we let t be
the lifetime of the risky asset (or stock, to be specific), where 7 is a stopping time,

5The “usual hypotheses” are defined in [128]. For convenience, what they are is that on the
underlying space (2, F, P) with filtration F = (F;),;>0, the filtration F is right continuous in the
sense that 7, = N, F,, and also Fy contains all the P null sets of F. For all other unexplained
stochastic calculus terms and notation, please see [128].
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and T < T*. t can occur due to bankruptcy, to a buyout of the company by another
company, to a merger, to being broken up by antitrust laws, etc.°

Next we let D = (D;)o<i<r > 0 be the dividend process, and we assume it
is a semimartingale. We let S = (S/)o<s<r be nonnegative and denote the price
process of the risky asset (again, we are thinking of a stock price here), and again,
we are assuming it is a semimartingale. Since S has cadlag paths,’ it represents
the price process ex cash flow. By ex cash flow we mean that the price at time ¢ is
after all dividends have been paid, including the time ¢ dividend. But now we have
to be a little more careful, since while the assumption that S is a semimartingale
on the stochastic interval [0.7) is necessary to exclude arbitrage opportunities, it
is not sufficient. (See for example [83, 98, 127, 130]). That is, only a subclass of
semimartingales exclude arbitrage opportunities. Let A € F; be the time t terminal
payoff or liquidation value of the asset. We assume that A > 0.

Finally, we let W be the wealth process associated with the market price of the
risky asset plus accumulated cash flows:

INT 1 Bl‘
W, = 1{t<r}St + B, B—dDu + B_Al{rft}- (2)
0 u T

Note that all cash flows are invested in the money market account.

It is standard (and desirable) to have a market which excludes arbitrage opportu-
nities. There are different mathematical formulations of an arbitrage opportunity,
but if one formulates them the right way then one has the validity of the first
fundamental theorem of asset pricing: namely that the absence of arbitrage is
mathematically equivalent to the existence of another probability measure Q, with
the same null sets, that turns the price process into a martingale, or more generally
a local martingale.® The correct formulation for the absence of arbitrage to hold
and for the first fundamental theorem to hold in full generality was established by
Delbaen and Schachermayer [34,35]. (See alternatively [127].) If is called No Free
Lunch with Vanishing Risk and if often referred to by its acronym NFLVR. Note
that it need not be applied directly to the price process S but can be assumed as a
hypothesis relative to any risky asset in question. In our case we want to assume that
NFLVR holds for the wealth process defined in (2).

Henceforth, we assume NFLVR holds (and hence there are no arbitrage oppor-
tunities) which implies there exists at least one probability measure Q, with the
same null sets as P (we write Q ~ P), such that under Q we have that W is a

%No company, government, or economic system can last forever. Of the original 12 companies from
the 1896 Dow Jones Industrial Average, only General Electric and Laclede Gas still exist under
the same name with remarkable continuity. National Lead is now NL Industries, and Laclede Gas
(a utility in St. Louis) was removed from the DJIA in 1899. See [51] for more details.

7Cadlag paths refers to paths that are right continuous and have left limits, a.s.

8In the general case one must also consider sigma martingales, but if the price process is assumed
to be nonnegative, we use the fortuitous fact that sigma martingales bounded from below are local
martingales (see for example [76] or [128]).
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local martingale. We make two more assumptions, both of which will be weakened
later:

1. The equivalent probability measure Q is unique (and hence the market is
complete; see e.g. [83] and Sect. 5).
2. The random variable W, = 14.S; + B, fot

to bein L'(dQ) foreacht,0 <t < T*.

3Dy + §-Alg <y is assumed

The (now assumed to be) unique equivalent probability measure Q is often called
a risk neutral measure, or the Equivalent Local Martingale Measure, sometimes
abbreviated with the acronym ELMM. The term “risk neutral” comes from equi-
librium theory. While individual people are risk averse when trading with their
own money (and this is often mathematically modeled using utility functions), and
perhaps people trading large sums with other people’s money are much less risk
adverse, nevertheless the market in the whole is assumed to have risk aversion. By
changing from the underlying probability P to an ELMM Q, we have an artificial
transformation that generates risk neutral pricing in the market.” We use this risk
neutral measure to give the market’s fundamental value for the risky asset; this
should be the best guess for the future discounted cash flows, given one’s knowledge
at the present time. If we take conditional expectations in (2) and rearrange the
terms, this translates into:

S*=E /MT*IdD-l—Al F: | B 3)
t 0 ; B, u B, {r<T*}| /1 t-

The superscript » will be used systematically to denote fundamental values.

Definition 1. We define §; by
,Bt = Sl‘ - St*’

the difference between the market price and the fundamental price. (In a well
functioning market, this difference is 0.) The process B is called a bubble.

?One way to think of risk aversion is to consider the following game one time, and one time only:
I toss a fair coin, and you pay me $2 if it comes up heads, and I pay you $5 if it comes up tails.
Most people would gladly play such a game. But if the stakes were raised to $20,000 and $50,000,
most people short of the 2012 US Presidential candidate and iiber rich Mitt Romney would not
play the game, unwilling to risk losing $20,000 in one toss of a coin. (In a 2012 presidential race
debate Romney offered to bet $10,000 about something an opponent said; he did it casually, as
if this were a frequent type of bet for him.) Exceptions it is easy to imagine are Wall Street and
Connecticut Hedge Fund traders, who deal with large sums of other people’s money; they might
well take advantage of such an opportunity for a quick profit (or loss) since the game is a good bet,
irrespective of the high stakes. The hedge fund traders are still risk averse of course, but in ways
quite different from the small “retail” investor.
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3 Characterization of Bubbles

Our first observation is that we always must have S; > S, ¢t > 0. This is of
course equivalent to saying that the bubble 8 has the property §; > 0 for all ¢,
i.e., bubbles are always nonnegative.'® This is an important point, so even though it
is quite simple, we formalize it as a theorem. For simplicity we consider only the
case where the stock pays no dividends, and the spot interest rate is 0. Note that it
is only for simplicity, and an analogous result holds if the spot rate is not 0, and
also if dividends are paid. If the spot rate is not 0, one needs to discount the final
term. In the case of futures however, it matters whether or not the interest rates are
deterministic, or random. We treat this is Sect. 9. For dividends, there are details to
keep track of (for example when the stock is ex dividend, etc.), but the ideas are the
same.

Theorem 1. Let S be the nonnegative price process of a stock and assume S pays
no dividends. Moreover assume the spot interest rate is constant and equal to 0.
Let Q be a risk neutral measure under which S is a local martingale (and hence a
supermartingale). Let S* be the fundamental value of the stock calculated under Q,
andlet B; = S, — S}. Then B > 0.

Proof. Under these simplifying hypotheses of no dividends and O interest, the
fundamental value of the stock is nothing more than

S = Eo(Alg<ra|F). “)
Since under Q the process S is a supermartingale, we have

Eo(S:|F) = S, &)

and since S; = Al <7+, combining (4) and (5) gives the result. O

We can classify bubbles into three types, as shown in the following theorem,
which was originally proved in [88]. For this theorem, we assume fixed a risk neutral
measure O under which both S and W are local martingales.

Theorem 2. [f in an asset’s price there exists a bubble B = (B;);>0 that is not
identically zero, then we have three and only three possibilities:

1. B; is a local martingale (which could be a uniformly integrable martingale) if
P(t = o0) > 0.

190ne can ask if it is not possible to have bubbles which are negative? In our models, for stocks, the
answer is no. However for risky assets other than stocks, such as foreign exchange, it is possible
to have negative bubbles. For example when the dollar is in a bubble relative to the euro, then the
euro would be in a negative bubble relative to the dollar.
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2. B¢ is a local martingale but not a uniformly integrable martingale if t is
unbounded, but with P(t < o0) = 1.
3. B: is a strict Q-local martingale, if T is a bounded stopping time.

Proof. Fix Q equivalent to P such that W is a local martingale under Q. Note that
W; is a closable supermartingale, so there exists Wy, € Ll(dQ) such that W, —
W almost surely. Also, since S is a nonnegative local martingale under the risk
neutral measure, lim,—,» S; = S exists a.s. (cf., e.g., [128, Theorem 10, p. 8]).
The fundamental wealth process is one’s best guess of future wealth, given today’s
knowledge: W,* = E(Wx|F:). Note that analogously, W exists, and W, =
W . Let

Bi = Wi — Eg[Wuo|Fi] = W, — W/ (6)

Then B is a (non-negative) local martingale since it is a difference of a local
martingale and a uniformly integrable martingale. It is simple to check that

Eg[Weol Fil = Eg[We|Fi] + E[Soo| Fi] = W* + E[Seo| Fi]. (M
By the definition of wealth processes and (6), (7):
ﬂt = St - St*
=W, - W*
= (Eo[Wool il + B;) — (Eg[Wool 7] — Eg[Sco| 1])
= B + Eg[Seol Fi.

®)

Ift < TforT € Ry, then Soo = 0. A bubble B, = B, = 0forz > v and in
particular 87 = 0. If B, is a martingale,

B: = E[Br|F]=0 Vi<T 9

It follows that 8. is a strict local martingale. This proves (1). For (2) assume that S,
is uniformly integrable martingale. Then by Doob’s optional sampling theorem, for
any stopping time tp < 7,

Bw = EolB:|F] =0 (10)

and since B is optional, it follows from (for example) the section theorems of P.A.
Meyer (see for example [39]) that 8 = 0 on [0, t]. Therefore the bubble does
not exist. For (3), E¢[S«|F;] is a uniformly integrable martingale and the claim
holds. O

As indicated, there are three types of bubbles that can be present in an asset’s
price. Type 1 bubbles occur when the asset has infinite life with a payoffat {t = oo}.
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Type 2 bubbles occur when the asset’s life is finite, but unbounded. Type 3 bubbles
are for assets whose lives are bounded.

Of the three types of bubbles, the most interesting are those on a compact time
interval, [0, T']. In this case we are dealing exclusively with Type 3 bubbles, and as
seen in Theorem 2 we have that 8 will be a strict local martingale. Since S* is a
true martingale, and § = S — S*, we have that 8 being a strict local martingale is
equivalent to the price process S being a strict local martingale. Indeed, we see that:

Corollary 1. We have a bubble on [0, T if and only if the price process S is a strict
local martingale.

For the important special case of a bounded horizon (that is, we are working on
a compact time interval, [0, T']), we can summarize as follows:

Theorem 3. Any non-zero asset price bubble B on [0,T] is a strict Q-local
martingale with the following properties:

1. B >0,

2. B, =0,

3. if B =0then B, = Oforallu>t, and
4. ifno cash flows, then

Br

S
! E)Bt"‘ﬁz‘_EQ(B_ -E)Bt
T

T

forany t <T <t <T"*.

This theorem states that the asset price bubble § is a strict Q- local martingale.
Condition (1) states that bubbles are always non-negative, i.e. the market price can
never be less than the fundamental value. Condition (2) states that the bubble must
burst on or before 7. Condition (3) states that if the bubble ever bursts before the
asset’s maturity, then it can never start again. Alternatively stated, condition (3)
states that in the context of our model, bubbles must either exist at the start of
the model, or they never will exist. And, if they exist and burst, then they cannot
start again. Requiring bubbles to exist since the beginning of the modeling period is
clearly a weak spot of the theory; fortunately this can be resolved within the context
of incomplete markets, which allow for the concept of bubble birth. For this reason
complete market models are ill suited to the study of bubbles, at least using our
models of them. We will return to this subject in Sect. 6.

4 Examples of Bubbles

Of course it is of interest to know if such phenomena as bubbles occur, both in
reality and in our models. We deal with our models first. Because we are working
on a compact time interval, the fundamental value S* will be a martingale as soon
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as A € L'(dQ), assuming no dividends and zero interest rate. In the presence of
dividends and interest rates, other assumptions on integrability with respect to a
given risk neutral measure enter the picture. Therefore the existence of a bubble
becomes equivalent to the stock price process being a local martingale, which
is not a martingale. (The space of all local martingales includes martingales as
a subspace.) However it is easy to generate local martingales. Let us make the
reasonable assumption that S follows a stochastic differential equation with a unique
strong solution of the rather general form

where B is standard Brownian motion. Since Brownian motion has martingale
representation, it generates complete markets (see, e.g., [83]). Therefore in this
Brownian paradigm there is only one risk neutral measure Q. Under mild hypothe-
ses on ¢ and b, including that ¢ never vanishes, (11) under Q becomes

dS[ = U(St)dBt, (12)

and we have that S is a strict local martingale if and only if

* X

for some € > 0. This (and much more) is proved in detail in the papers [101, 116].
The idea goes back to Delbaen and Shirakawa [38]; see also [69]. However this
is also easy to prove directly, using Feller’s test for explosions. We have the
following results, which are based on remarks made to us by Dmitry Kramkov [102].
Theorem 4 is classic:

Theorem 4. Let S be a nonnegative Q local martingale with Sy = 1. Then S is a
true martingale if and only if there exists a probability measure R, with R < Q,
and [%b:t = S;; otherwise S is a strict local martingale.

The intuition behind why Theorem 4 is true, is that S has to have an expectation
constant in time (and equal to one) in order to be a true martingale. Since it is
nonnegative, this turns out also to be sufficient. If the expectation decreases with
time, then R would be a sub probability measure, but not a true probability measure:
some “mass would escape to 0o.”

Following Jacod and Shiryaev [76, pp. 166ff], for a stopping time v we let P,
denote the restriction of P to the sigma algebra F,, and we define R <joc QO
if there exists a sequence of stopping times t, of stopping times such that ¢,
oo as. and R,, <« P, for each n. With the hypotheses of Theorem 4 one has
automatically that R <. Q. Indeed, we have a true martingale when R < Q
without the “local” caveat. Using Feller’s test for explosions for one dimensional
diffusions (see [97, 109] as in the recent treatment in [117]), we find the criterion of
Mijatovic and Urusov [116, Corollary 4.3].
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Theorem 5. Let B be a Q Brownian motion and let S be of the form
dS; = S,a(S;)dB;, under Q. (14)

Then S is a martingale if and only if

o0 1 X
‘[xmmwzﬁ TR thalinty

where o (x) = xa(x).

Proof. By Girsanov’s theorem, (14), under R becomes
ds, = S,a(S;,)dB, + S.a(S,)*dt, So =1

for an R Brownian motion . Mijatovic and Urusov show (though they are not the
first to do something like this) that S is a true martingale if and only if fot a(Sy)%ds <
oo a.s. (dQ). This implies S cannot explode. To use Feller’s test to see if S explodes,
we use the notation of Karatzas and Shreve [97]. Simple calculations show that in
this case their scale function p is given by p(x) = —% + C, and their speed measure
m is

2dx _ 2x2 d
PMa2(x) o2

m(dx) =
Finally their function v(x) = | ; (p(x) — p(y)) m(dy) equals
YOo11) 2y?
[(x y)ﬁmy
X 2
xX=y Y
:4’ 2y
. e
X y 2 /X yZ
= 2/ ——dy — — —d
. o) Tl 2;m®

and since in the second integral we have £ < 1 we get that v(+00) = +oo if and

X

only if [ > azy(y) dy = +o00. Taking o (x) = xa(x) means in this context

2 [T et
/c y2a(y)? ¢ ya(y)?

Therefore we see that by Feller’s test S does not explode if and only if

floo xa(lx)z dx = +o00, and we are done. -
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We end this discussion by noting that we do not really need to use Feller’s test, but
could have instead used the local time-space formula of stochastic calculus (see for
example [128]). Namely we have that

T [e9)
/ a(Ss)*ds = / a(x)’Lydx
0 0

where L7 is the local time in x at time 7" of §. Since for almost all @ we have
X + L7 (w) is a continuous function of x that vanishes off a compact set, and if the
function a never vanishes, we can conclude 0 < €(w) < L} (w) < K(w) < oo and
once again we can deduce the result. This approach is developed in detail in [116].

Of course one can ask for examples of bubbles coming from the markets. For
economy wide bubbles there are many, as we mentioned in the introduction. In
the case of individual assets, we detail examples in Sect. 10 later in this paper.
A recent paper of X. Li, M. Lipkin, and R. Sowers [106] has shown a way in
which bubbles can arise as a consequence of short squeezes related to bankruptcy
stocks. There are of course many more examples, as a simple Google Scholar search
will exhibit. Strict local martingales have received attention in the mathematical
literature irrespective of their connection to models of financial bubbles. See for
example [46, 137, 146].

Simulations for the Inverse Bessel Process

The inverse Bessel process is perhaps the most famous (or infamous) strict local
martingale. It goes back at least to the renowned 1963 paper of Johnson and
Helms [93] who gave it to provide an example of a nonnegative supermartingale
which is uniformly integrable but is not of “Class D”, the class proposed by
P.A. Meyer when he solved Doob’s decomposition conjecture, by showing it did
not hold in full generality, but that it did nevertheless hold for supermartingales of
Class D (the theorem is now known as the Doob—Meyer Decomposition Theorem of
Supermartingales). The construction of Johnson and Helms is now classical: Let W
be a standard three dimensional Brownian motion starting from the point (1,0, 0).
Let u(p) = 1/r, where r =| p ||, the Euclidean distance of p € R? to the origin.
Define a process X by X; = u(W;) fort > 0. That is,

1
I We Il

t (15)
Then X is a uniformly integrable nonnegative process, with finite values a.s. because
W never hits the origin with probability 1, and It6’s formula shows that X is a
local martingale, because u is the Newtonian potential and therefore a harmonic
function for Brownian motion in R3. However simple calculations show that ¢ +
E(X;) is not constant (these calculations are given in detail in the little book of
Chung and Williams [29]) and indeed E(Xy) = 1 while lim;+ E(X;) = 0. An
alternate representation for the inverse Bessel process is as a solution to a stochastic
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Simulation of 5 paths of the inverse Bessel Process
3 T T T T T T T T
simulation1 ——
simulation 2
simulation 3 ——
simulation 4 ——
simulation 5

price

Fig. 1 Five simulated sample paths of the inverse Bessel process

differential equation of the form
dX, = —X?dB,;; Xo=1 (16)

where B is a standard one dimensional Brownian motion, and therefore since (16)
is of the form of Corollary 5, we know from the Mijatovic—Urysov theorem that X
is a strict local martingale. Nevertheless, it is easier to simulate paths of X using the
representation given in (15), so it is nice to have both methods of representing X .
One can see the two representations [(15) and (16)] of X are equivalent by applying
1t6’s formula to the X given in (15).

To show that the inverse Bessel process has paths that can behave as if they are
paths of a stock price with bubbles, we have the following simulations'!' (Fig. 1).

Note that a roughly half of the simulations of the sample paths of the inverse
Bessel could reasonably represent a history of the price of a stock that underwent
bubble pricing. For clarity, we isolate one of these paths in Fig. 2:

Simulations for Stochastic Differential Equations

It is nice to go beyond the canonical case of the inverse Bessel process, and to
consider other simple models of local martingales, to see if their simulations agree
with one’s expectations for a model of a bubble price process. The theory tells us
that they should, but one can always ask: Do simulations back up the theory? In
this respect we are grateful to Jing Guo, who (at our request) simulated solutions of
SDEs of the form

"'We thank Etienne Tanre of INRIA for making these simulations of paths of the inverse Bessel
process.
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Simulation of a path of the inverse Bessel Process
25 T T T T T

T T T
simulation 3 ——

price

Fig. 2 An inverse Bessel sample path

Simulation of mean of 24 paths o{x)=x'** Process, a=0.03, =0.006
155 T . r T r r

price
-
w
L

Fig. 3 Average of 24 paths with « = 0.03

dX, = X **aB,

for various values of «, with of course « > 0 always. One of his observations is
that as o grows, the bubble peaks get more peaked: that is, they both get higher, and
they also get narrower. Figure 3 below illustrates what happens, with a graph of the
average of 24 paths, for@ = 0.3:

Note that we have not included the drift in the models used for these pictures, and
yet certainly in practice there is a drift, as far as the data is concerned. (The dynamics
under the risk neutral measure removes the drift, but the data should reflect the
dynamics under the objective measure, not the risk neutral measure.) When a drift
is present, it should diminish the future peaks that the simulations show occur after
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the initial primary peak, but we are not including here even more simulations in
order to illustrate that.

The Case of Stochastic Volatility

While the examples provided by equations of type (11) form a wide and useful class
of equations, several examples that include stochastic volatility already exist in the
literature. They provide examples of strict local martingales (and hence bubbles on
a compact time interval [0, 7']) for models with stochastic volatility.

Theorem 6 (Sin). Assume there are no cash flows on the underlying asset, B is
as in (2), that (W', W?) is a standard two dimensional Brownian motion, and let
(Sy,vy) satisfy

ds
?f = rdt + V¢ (01dW} + 02dW7})

t
dv: 1 2
— = p(b —vy)dt + a1dW, + a,dW;
Vi

under the risk neutral measure Q where Sy = x,vo =1, >0,0>0,b > 0, a;,
01, az, 0y are constants. Then, %i is a strict local martingale under Q if and only if
ajoy] + ayo, > 0.

For another example in this vein the reader can consult the work of B. Jourdain
[94]. Also, L. Andersen and V. Piterbarg [3], of Bank of America and Bar-
clay’s Capital respectively, consider a class of stochastic volatility models of the
form

dX; = AX,/Vid W, (17)
dV, = k(0 —V)dt + eV,;dW?

where (W', W?) is a two dimensional Brownian motion with correlation coeffi-
cient p.

Note that this is a generalization of the model of Sin above, and adds the
feature that the correlation coefficient of the noise processes plays an important role.
Anderson and Piterbarg in [3] are not trying to determine if a process is in a bubble
or not, but rather their main thrust is to determine if extensions of what is known
as the Heston model, a simple model using stochastic volatility, are reasonable
in a financial context or not; they find that it depends on a range of parameters.
And almost in passing, they discover a characterization of when the model forms
a true martingale, or is a strict local martingale. This inter alia provides a simple
test to determine if a process in their context is a strict local martingale, or a true
martingale. They establish the following result, among many others.
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Theorem 7 (Andersen-Piterbarg). For the model (17) above, if p < % orp > %
then X is a true martingale, and lf% >p> %, X is a true martingale for p < 0 and
it is a strict local martingale for p > 0. For the case p = % X is a true martingale
forp < %6)&_1, and X is a strict local martingale for p > %6)&_1

Perhaps the most definitive result already existing in the literature is that of
PL. Lions and M. Musiela [107]. Indeed, in their interesting paper they prove the
results in Theorem 8 and in the more general result Theorem 9.

Theorem 8 (Lions—Musiela). Let Z, = pW, + /1 — p2B, where (W,, B;) is a
standard two dimensional Brownian motion, and let (F, o) solve

dFt :O-thdu/[, F():F>O (18)
do; = u(o)dZ; + b(oy)dt, o9p—a >0 (19)
with
u(0) =0, b(0)=>0 (20)
w() >0, for& >0, and u is Lipschitz on [0, 00) 21
b)) <CA+E&)on|0,00), for some C >0 (22)

Suppose in addition that the following condition holds

li;n sup(pu(§)§ + b(£))§™" < oo (23)

then E(F;|In F;|) < 0o, E(supy<,<, | Fs|) < oo forallt > 0and F, is an integrable
nonnegative martingale. On the other hand, if the following holds:

1

24
5@ " 9

11;3 ggf(pu(i-‘)é + b(§))

for some smooth, positive, increasing function ¢ such that fg > %d & < oo, forall
€ > 0, then F, is a strict local martingale, and we have E(F;) < Fy forallt > 0.

We observe that in the special case that b = 0 and p(§) = af with @ > 0, then (23)
is equivalent to p < 0, while (24) is equivalent to p > 0 (take ¢ (§) = £2). Therefore
we see that the correlation coefficient p plays an important role in determining
whether or not the process (F;);>o is a strict local martingale.

Lions and Musiela go on to consider a more general case than that of Theorem 8.
Instead of (18) and (19), they consider the equations

dF; = o’ F,dW,, Fy=F >0 (25)
do, = yo!dZ; + b(o;)dt, oy=0>0 (26)



A Mathematical Theory of Financial Bubbles 19

and again they want conditions under which F; is a martingale, and conditions
under which F; is a strict local martingale. Their reasons for such an analysis
are again not really related to bubble detection, but instead address the important
issue as to whether or not certain stochastic volatility models are “well posed or
not.” As with Anderson and Piterbarg, in Theorem 7, they provide, inter alia, a
parametric framework for detecting whether or not a process is a martingale or
a local martingale, based an a range of parameter values. We have the following
theorem:

Theorem 9 (Lions—Musiela). With (F;),;>o given by (25) and (26), and W and Z
given as in Theorem 8,

1. If p>0andify + 6 > 1, we assume that b satisfies

+
lim sup M < 0. 27
£—>00

Then (Fy);>0 is an integrable nonnegative martingale and

E(F/|InF;]) <oco, E(sup |Fs]) <oco forallt>0.

0<s<t

2. If p> 0,y + 38 > 1and b satisfies

b o y+48
lim infM >0 (28)
g0 @(§)
for some smooth, positive, increasing function ¢ such that f:o @dé < 00, then
F,):>o is a strict local martingale (and not a true martingale), and we have
> 8 8

E(F,) < E(Fy) forallt > 0.

Removal of Drift in the Multidimensional Case, and Strict Local
Martingales

The multidimensional case is intrinsically interesting, since it is easy to imagine
contagion within bubbles. The most obvious case might be that instead of an indi-
vidual stock undergoing bubble pricing, the phenomenon might apply to an entire
financial sector, such as technology stocks, automotive stocks, telecommunications,
etc. Therefore it is interesting to understand some examples of multidimensional
bubbles.

Since we know from the one dimensional case that strict local martingales are
more likely if the coefficient o increases quickly to co, we assume that o is only
locally Lipchitz. This guarantees existence and uniqueness of solutions up to an
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explosion time £, which can be co but need not be in general. Let J/ = (0, c0) and
Ji be the ith copy of J, and let I = I1%_, J;, a subset of R?. We let

i=l1

w:l — R4 (29)

o:1 >R %xR?

where u and o are locally Lipschitz functions. We let W denote a d dimensional
Brownian motion, and then our stochastic differential equation takes the usual form

dsS; = u(S))dt + a(S;)dW,, fort < &, where £ is a possibly infinite explosion time.
(30)

We make the hypotheses that the solution process S lives in the positive orthant.
The simplest case is to assume the square matrix o is invertible. Then we can

find a vector § such that 0 x § = —u. We also assume that § is locally bounded. Our

candidate Radon Nikodym process will as usual be an exponential local martingale:

ENE 1 pEne )
Z, =elo 8(S)dWy—5% J5 " I18(So)l ds’ a1

where we set Z; = O on {t > £}.

We assume that fOEN | 8(S;) ||I> ds < oo on the event {t < £}, so that
Z is well defined. Z is of course a nonnegative local martingale (since it solves
a multidimensional exponential equation, with driving term being a continuous
stochastic integral), hence (by Fatou’s Lemma) a supermartingale, and since the

time horizon 7 is fixed, we have
Z = (Z;)o<i<r is a martingale, if and only if E(Z7) = 1.

Note that since we are in a multidimensional Brownian paradigm, by (for example)
the Kunita—Watanabe version of the martingale representation theorem, we know
that all local martingales have continuous paths, and cannot therefore jump to O,
even at the time 7'. (See for example [128, Theorem 43, p. 188].)

We next use a technique present in the book by Karatzas and Shreve [97,
Exercise 5.38, p. 352] for one dimension, and developed in much more generality
and for multiple dimensions in Cheridito et al. [27]. We repeat it here since for our
case, the argument is perhaps easier to follow than the more general one treated
in [27]. We let

1
1, = inf{r > 0|S, ¢ [—,n]?},
n

the first exit time from the solid [%, n]?. Note that 7, /' £ asn — oo, where
7, < & for each n. We next modify u and o, calling the new coefficients u, and o,
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where u, and 0, agree with 1 and o on [%, n]¢, and also are globally Lipschitz, and
0, is also invertible. We then have that there exists a unique, everywhere defined,
and nonnegative solution S” of the auxiliary equation

dS! = (1,(S")ds + 6, (S")dB, (32)

where B is again a Brownian motion. Next we define §, such that o, x §, = —u,,
and define

TN\
=" —ssham,
0
which is well defined globally since L” is a local martingale with

IAT,
(L7, L, = / 1812 (S™ds <] 8 | <o
0

2
oo (Lt

and hence [L", L"]; € L' and L" is actually a (true) square integrable martingale.
However by Novikov’s criterion (see for example [128]) we also have that the
stochastic (also known as the Doléans—Dade) exponential £(L") is a martingale.
We let

D = Do&(Ly) fort <&, and D{ = lim Dy

n—00 "
and again, D" is a (nonnegative) martingale, so there is no problem in asserting the
limit above exists. D" so defined is a supermartingale, by Fatou’s Lemma. We next
relate it to the process Z defined in (31). Forn > m we have D} = D" fort < 1,
and hence for t < § we define D, = lim D} > 0, as n — oo. Note that D, > 0 on
{t <&} N{Dy > 0}. Finally, fort < & we have D, = DO%. All this is preamble to

defining a sequence of new measures:

do" Dy

n

Dy’

ap V=

Using Girsanov’s theorem we have that W = W, 4 fot A §(SM)dsisa Q" Brownian
motion up to t,, giving rise to the SDE system (up to time t,,):
dW} = dW, + 8(S;")dt
ds; = o(S;)aw;

and using the uniqueness in law of the solutions we have that the Q" measures are
compatible and give an iiber measure Q with Q" = Q|#, for each n, with

dQ Dfn n
Elfrn =D, and Q|ﬁn =0, - (33)
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Theorem 10. With Z, Q, as defined above, and & the explosion time of S, we have

Ep(Zrlg-ry) = Q¢ >T).

Proof. Let A € Fr.Recalling that D = Z a.s. on the event {7 < £}, we have:
Dr
EP(ZTl{T<§}1A) = EP(D_ 1{T<‘§}1A)
0
Dr .
= EP(FO nlggo Lyr<r314)

. Dr
= nlglgo EP(FO Lir<z,314)
by the monotone convergence theorem; and using that

D7 = Dt aq, on li7 .3, the above equals
= lim Eo(lir<;14)
=Q0(ANT <¥§)

again by the monotone convergence theorem. The theorem follows by taking
A= Q. O

Corollary 2. Let S be as given in (30) and Z be as given in (31). With the notation
and assumptions of Theorem 10, if S does not explode under Q, then Z is a true
martingale. If S does not explode under P, then Z is a martingale if and only if S
does not explode under Q.

Proof. Let us first assume that S does not explode under Q. But Z is a martingale
if and only if E(Z7) =1, and this happens if and only if Q& >T)=1.
Next we suppose that S does not explode under P. Then Z is a supermartin-
gale, so Ep(Zr) < 1. Therefore if S does not explode under Q, we have
Ep(Zrlg-13) = 1. Howeversince Ep(Z7) < 1,and Zr = Oon {T > £} as., we
deduce the result. O

Why do we care whether or not Z is a martingale or only a local martingale? We
know that the solution S of (30) is nonnegative and let us suppose it does not explode
under P. We know that under a risk neutral measure the drift disappears and S is
always a vector of at least local martingales, and it is a vector of martingales if and
only if S does not explode in each of every component, and as we have seen by
Corollary 2, this is tied to whether or not Z is a martingale. This is nice to know,
but it is not much help in analyzing whether or not a given system is a martingale
or a strict local martingale, the key property for telling whether or not we have a
financial bubble.

We next give a criterion to determine whether or not the system is a strict local
martingale through the use of Hellinger Processes. We use freely results about



A Mathematical Theory of Financial Bubbles 23

Hellinger Processes from the book of Jacod and Shiryaev [76]. First we note that
if O and P are two probabilities, we can define R = # and then P <« R and

O <K R WeletX = % and Y = Z—%, with X = (X;);>0 and Y = (¥;):>0 being
their respective martingale versions, through projections onto the filtration. We set
U, = %’, and define

$#if 0<U- <00
=49 0 if U—=0 (34)
oo if U =00
While we do not reproduce the proof here, Younes Kchia has shown (2011, private
communication):

Theorem 11. Let the process Z be given as in (31), the process o be as given
in (34), and the probability Q be as given in (33). We then have that Z is a true
martingale if and only ifQ(h(%)T < 00) = land Q(supy<,<7 & < 00) = 1. Here
h(%)r is the Hellinger process of order % between P and Q.

We note that in the case considered above, if all processes are continuous and using
R = #, we have

111 1)
h(z) =3 (X + Y) -[X, X].
(See for example [76, p. 236].) We also note that these are much less practical
conditions to check than those we have in the one dimensional case. We will see
later that the one dimensional case presents its own formidable problems if we want
to check if a condition such as (13) holds, in order to determine whether or not S is
a strict local martingale.

For more ways to generate strict local martingales, as well as a study of
their asymptotic behaviors, we refer the interested reader to [122]. Related papers
involving strict local martingales include [11,15,30,50,96,108], as well as the recent
book [124].

5 Incomplete Markets: Choosing a Risk Neutral Measure

When we consider incomplete markets we immediately have a problem: How do
we choose a risk neutral measure so that we can well define the fundamental
value of a risky asset? The Second Fundamental Theorem of Finance states
that a market is incomplete if and only if there exists an infinite number of
equivalent risk neutral measures (see, e.g., [37], or [83]), so the question is not
a trivial one. Many different methods have been proposed to solve this question,
including (with sample references) indifference pricing (see for example the volume
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edited by R. Carmona [20]), choosing a risk neutral measure by choosing one
that minimizes the entropy (or alternatively the “distance”) between the objective
measure and the class of risk neutral measures (see for example the excellent paper
of Grandits and Rheinlander [60]), by minimizing the variance of certain terms
in the semimartingale decomposition, known as choosing the minimal variance
measure (see for example Follmer—Schweizer [53], or the subsequent results of
Monat and Stricker [119]). Each of these methods works but they all give the uneasy
feeling of arbitrariness, whose main value is a canonical procedure to choose a risk
neutral measure. Instead, and as an alternative, we will sketch here a procedure due
to Jacod and this author [73], which gives conditions under which it is apparent
that the market has itself chosen a unique risk neutral measure. A similar approach
(with a similar result) was taken in Schweizer and Wissel [141, 142], albeit in a
more restrictive case (i.e., restricted to the Brownian paradigm). When sufficient
conditions hold for the uniqueness of a risk neutral measure compatible with all
market prices, it seems intuitively reasonable to use that risk neutral measure for
pricing purposes, since it is the one the market itself is using.

The basic idea of the article [73] is to take an inherently incomplete market,
and to complete it artificially by including option prices. This is accomplished by
modeling the market price S of our risky asset together with a family of traded
options. In this way, the options can in theory “complete” the market, rendering the
choice of a compatible risk neutral measure unique. This idea is not new with [73],
and its beginnings can be traced to the late 1990s, with the works of Dengler and
Jarrow [40], Dupire [43], Derman and Kani [102], and also Schonbucher [140].
Note that if one ignores the options, the model depending only on the risky asset
price remains incomplete, with an infinite choice of risk neutral measures, and we
call this set Qg. Therefore if the option prices change, for whatever reason, they
could become compatible with a different choice of risk neutral measure in Qg,
and it is this flexibility that allows us to include bubble birth in our model, in the
incomplete case.

We assume the following model for the stock price X . First, in the continuous
case we suppose that

t t
X, = X0+/ asds+2/ oldW. (35)
0 ier V0

In the general case, when there are jumps, we suppose that

t 1

X = Xo+/ ast+Z/ oy dWi + (Ylgyi<iy) * (=) + (Ylgy =13) * i
0 ier /0

(36)

Here we are using established notation for stochastic integrals with respect to
Brownian motions W' and random measure i, or compensated random measure
n — v, see for example the book of Jacod and Shiryaev [76]. We assume also that
v factors: v(dt,dx) = dtF(dx). The index set [ is assumed finite. In (36) Xy > 0
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is non-random and the coefficients @, o and v are such that the integrals and sums
above make sense: that is, a and o' are predictable and v is P-measurable, and

/t <|a5| +Z|a;‘|2+/ (W (s, x)> A 1)F(dx)) ds<oo as. (37)
0

i€l

for all £. (We use P to denote the product o algebra® ® R on 2 x Ry x R.)

Of course these coefficients should also be such that X, > 0: this amounts to
saying that they factor as a, = X,—a, and o/ = X,_5! and ¥ (t,x) = X,—¥ (¢, x)
with Iﬁ > —1 identically, with a, &' and gﬁ satisfying (37), but it is more convenient
to use the form (36). Note that this represents the most general semimartingale
driven by u and the W’s that has a chance to satisfy the hypotheses NFLVR
(No Free Lunch with Vanishing Risk) of Delbaen and Schachermayer.

For options, we consider a fixed pay-off function g on (0, co) which is non-
negative and convex, and we denote by P(T), the price at time ¢ € [0, T'] of the
option with pay-off g(Xr) at expiration date 7. We also assume that g is not affine,
otherwise P(T); = g(X,) and we are in a trivial situation.

We denote by 7 the set of expiration dates 7' corresponding to tradable options
(always with the same given pay-off function g), and by 7, the time horizon up
to when trading may take place. Even when 7T, < oo, there might be options with
expiration date 7' > T,, so we need to specify the model up to infinity.

In practice 7 is a finite set, although perhaps quite large. For the mathematical
analysis it is much more convenient to take 7 to be an interval, or perhaps a
countable set which is dense in an interval. We consider the case where 7, < 0o
and 7 = [Ty, 00), with Ty > T,.

Apart from the fact that P(T)r = g(Xr), the prices P(T), are so far
unspecified, and the idea is to model them on the basis of the same Wi and W,
rather than with X. However, since these are option prices, they should have some
internal compatibility properties.

Indeed, if the option prices were derived in the customary way, we would have a
measure (Q which is equivalent to IP, and under which X is a martingale and g(X7)
is Q-integrable and P(T), = Eq(g(Xr)|F;) for t < T. Then of course P(T) is
a (Q-martingale indexed by [0, T']. But we can also look at how P(T), varies as a
function of the expiration date 7', on the interval [¢, co). That is, we are taking the
non customary step of fixing ¢, and considering P(T'), as a process where T varies.
Since X is a quasi-left continuous martingale and g is convex, then T +— g(X7)
is a quasi-left continuous submartingale relative to QQ, and this implies that 7
P(T), is non-decreasing and continuous for T > t. Observe that this property holds
Q-almost surely, hence P-almost surely as well because P and QQ are equivalent.

Remark 12. 'We wish to emphasize that, for example in the case of European call
options, the usual theory calls for P(T); = Eq-((Xr — K)4|F;) for some risk
neutral measure Q*. We do not make this assumption here. Indeed, the previous
paragraph is simply motivation for us to assume a priori that T +— P(T),
is non-decreasing and continuous. This seems completely reasonable from the
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viewpoint of practice, where (in the absence of dividends or interest rate changes
and anomalies) it is always observed that T +— P(T), is nondecreasing. In the
language of practitioners, if it were not it would imply a “negative pricing of the
calendar,” which makes no economic sense Lipkin, American stock exchange,
2007, private communication. Nevertheless we warn the reader that there are
pathological examples where this assumption does not hold: for example if X is
the reciprocal of a three dimensional Bessel process starting at Xo = 1, then X
is a local martingale for its natural filtration, but T + P(T), is not increasing,
since P(0)g = 0, P(T)y > O for T € (0,00), but limy_o P(T)y = 0, hence
T — P(T)y cannot be increasing for T > 0. Thus our assumption 7"+ P(T), is
increasing in 7T rules out the possibility of the market being governed by such price
processes. This is an important exception, since the inverse Bessel process is the
classic example of a strict local martingale, going back to the paper of Johnson and
Helms [93]. The inverse Bessel process is of course a canonical example of a strict
local martingale, fitting into the theory of when there are bubbles, so it would seem
that this particular theory is excluding precisely the case where there are bubbles
in call options, a topic treated in Sect. 7. Note however that in the proofs presented
in [73], the assumption that T + P(T), is increasing in T is not essential, and
could be replaced simply with T+ P(T), is absolutely continuous as a function
of T'. This change allows us to apply this theory to the more general case where
bubbles in option prices are included.

We write
T
P(T); = P(Ty), + f(t,s)ds. (38)
To

In this case, the inverse Bessel process and other local martingales are included.
The function f has the representation

ft,s) = f(0,s) +/0 a(u,s)du—i—Z/O yi(u,s)dWL

iel

F(D () gps<y) * (=) + (@D, ) Lps)>13) * M- 39

We further assume that the process P(Tp) is given for t < T, by

t t
Pty = P+ [ @ds+ Y [ viaw, (40)
0 0

iel

in the continuous case, and in the general case by

t t
i€l
(41)
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where the above coefficients are predictable and satisfy

T,
/ <|at| +Y P+ /(5(z,x)2 A l)F(dx)) dt < oo 42)
0

i€l

a.s., and further the (non-random) initial condition P (7}), and these coefficients are
such that we have identically

1e[0..] = P(To) = g(X). (43)

Finally we assume that we have fTZ x(s)r,ds < oo as. forall T > T, where

t
1o = | (|a(u,s>| F X @R + [ @xsy A 1)F(dx)) du.
0 iel

An example of the type of results obtained in [73] is when trading takes place up
to time 7,, and the expiration dates of the options are all 7 > T, where Ty >
T.. We denote M (T, Tp) the collection of risk neutral measures for X that are
compatible with the option structure so that no arbitrage opportunities exist. The
following result is shown in [73]:

Theorem 13. Consider a (T, Ty) partial fair model such that the set M,.(T\, Tp)
is not empty. Then this set is a singleton if and only if, for a good version of
the coefficients of the model, we have the following property: the system of linear
equations

Yol@p + [vwsymdr =0, @)

iel

S 7 @) + / F.s. 0y dx =0, (45)

iel

T>T, = Zai(s, T)(w)Bi + /qﬁ(a),s,x, T)y(x)dx =0, (46)

iel

where ((B8;),v) € Y'(w,s), has for its only solution B; = 0 andy = Oup to a
Lebesgue-null set.

A consequence is that we see when conditions such as those in Theorem 13 above
are met, the market prices for the options have uniquely determined a risk neutral
measure. Also, should the market change its collective mind about the pricing of
options, it could still choose a unique risk neutral measure, but a new one. Such
phenomena have been noticed by economists, and it is referred to colloquially as
the sun spot theory, since occasionally the sun gets sun spots, and they appear to
happen randomly and without explanation (see for example [7,22]).
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6 Incomplete Markets: Bubble Birth

We use the idea of the previous section to extend our model of the economy to
allow for the possibility of bubble “birth” after the model starts. A modification
involves the market exhibiting different local martingale measures across time. We
note that this is different from the usual paradigm of choosing an initial equivalent
local martingale measure, and remaining with it fixed as our choice for all time, but
we will see it is not that different from the standard notion of regime change. Indeed,
shifting local martingale measures corresponds to regime shifts in the underlying
economy (in any of the economy’s endowments, beliefs, risk aversion, institutional
structures, or technologies). For pedagogical reasons we choose a simple and
intuitive structure consistent with this extension.

To begin this extension, we need to define the regime shifting process. Let (07)i>0
denote an increasing sequence of random times with 09 = 0. The random times
(01)i>0 represent the times of regime shifts in the economy. It is important that
these times o; be totally inaccessible stopping times. (See for example [128] for
definitions and properties of totally inaccessible stopping times.) For if they were to
be predictable, traders could see the regime shifts coming and develop arbitrage
strategies around the shifts.'”> If we are working within a minimal Brownian
paradigm, then there are no totally inaccessible stopping times, so we would need
to consider a larger space that supports such times.

We let (Y);>0 be a sequence of random variables characterizing the state of the
economy at those times (the particular regime’s characteristics) such that (Y7);>¢
and (0);>0 are independent of each other. Moreover, we further assume that both
(Y")i>0 and (0);>0 are also independent of the underlying filtration F to which the
price process S is adapted.

Define two stochastic processes (N;);>o and (¥;);>0 by

N; = Zl{rzai} and Y; = ZYil{aisr<a.~+1}~ (47)

i>0 i>0

N, counts the number of regime shifts up to and including time 7, while ¥, identifies
the characteristics of the regime at time ¢. Let H be a natural filtration generated
by N and Y and define the enlarged filtration G = F v H (for example see [128]
or [120] for a discussion of some of the general theory of filtration enlargement).
By the definition of G, (07);>0 is an increasing sequence of G stopping times.
Since N and Y are independent of F, every (Q,F)-local martingale is also
a (Q, G)-local martingale. By this independence, changing the distribution of N
and/or Y does not affect the martingale property of the wealth process W. To
discuss a collection of ELMMs, however, it is prudent to work on a finite horizon
([0, T), and not on the infinite half line [0, co). Therefore, we do not speak of the

12We thank a referee for suggesting we include this remark.
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mathematically appealing set of ELMMs defined on G, but rather we fix a (non
random) horizon time 7" < oo and speak of the ELMM:s defines on Gr, and that
is a priori larger than the set of ELMMs defined on Fr. We are not concerned
with this enlarged set of ELMMs. We will, instead, focus our attention on the Fr
ELMM s and sometimes write M} (W) to recognize explicitly this restriction. With
respect to this restricted set, given the Radon Nikodym derivative Z; = j—g | 7, We
define its density process by Z, = E[Z7|F;]. Of course, Z is an F-adapted process.
Note that this construction implies that the distribution of ¥ and N is invariant with
respect to a change of ELMMs in M} _(W).

We will henceforth always be working in this section on the finite horizon case
[0, T'] with the non random time T chosen a priori and fixed. We will no longer make
special mention of this implicit assumption.

The independence of the filtration H from [ gives this increased randomness in
our economy the interpretation of being extrinsic uncertainty. It is well known that
extrinsic uncertainty can affect economic equilibrium as in the sunspot equilibrium
of Cass and Shell [7,22]. This form of our information enlargement, however, is
not essential to our arguments. It could be relaxed, making both N and Y pairwise
dependent, and dependent on the original filtration F as well. This generalization
would allow bubble birth to depend on intrinsic uncertainty (see Froot and Obstfeld
[54] for a related discussion of intrinsic uncertainty). However, this generalization
requires a significant extension in the mathematical complexity of the notation and
proofs, so we leave it aside.

We are now ready to discuss the fundamental price of a risky asset in the
incomplete market context. Of course to do this, we need to select a risk neutral
measure from an infinite selection of possibilities. We do this with the aid of
Theorem 13. Because the unique measure specified in Theorem 13 can change as the
regime shifts, so too might the fundamental value of the asset. Since the selection
of the risk neutral measure affects the fundamental value, and this can change as the
regime shifts, we can have the birth of price bubbles. More formally, we let the local
martingale measure in our extended economy depend on the state of the economy
at time ¢ as represented by the original filtration (F;);>0, the state variable(s) Y;,
and the number of regime shifts N, that have occurred. Suppose N; = i. Denote
Q' € My,.(W) as the ELMM *“selected by the market” at time ¢ given Y.

As in the complete market case, the fundamental price of an asset (or portfolio)
represents the asset’s expected discounted cash flows.

Definition 2 (Fundamental Price). Let ¢ € ® be an asset with maturity v and
payoff (A, 8"). The fundamental price A} (¢) of asset ¢ is defined by

S v
AN @) =) Eg [ / dAu+E”1{v<oo}‘f,} Lycnntelonoyy  (49)
i=0 t

Vt € [0, 00) where A} (¢) = 0.
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In particular the fundamental price of the risky asset S is given by

o T
St* = Z EQ" [/ dDu + X‘L'l{‘[<00}‘ -7:t:| 1{t<r}ﬂ{t€[6i,6i+1)}' (49)
i=0 !

To understand this definition, let us focus on the risky asset’s fundamental price. At
any time ¢ < 7, given that we are in the ith regime {0; <t < 0,4}, the right side
of expression (49) simplifies to:

T
St* = EQi [/ dD, + th{f<oo}‘.7:t:| .
t

Given the market’s choice of the ELMM is Q° € M} (W) at time 7, we see that
the fundamental price equals its expected future cash flows. Note that the payoff of
the asset at infinity, X;1{;—o), does not contribute to the fundamental price. This
reflects the fact that agents cannot consume the payoff X;1;;— ;. Furthermore note
that at time 7, the fundamental price S = 0. We emphasize that a fundamental price
is not necessarily the same as the market price S;. Under NFLVR the market
price S, equals the arbitrage-free price,'® but this need not equal the fundamental
price S/.

For notational simplicity, we can alternatively rewrite the fundamental price in
terms of an equivalent probability measure, indexed by time ¢, that is not a local
martingale measure because of this time dependence.

Theorem 14. There exists an equivalent probability measure Q'* such that

A (¢p) = Egre |:/ dA, + B0}
'

—7:t:| 1<y (50

Proof. Let Z' € Fr be a Radon Nykodym derivative of Q' with respect to P and
Z! = E[Z'|F;). Define

o0
A DINA P (1)
i=0

13What we mean by this is that if NFLVR holds, then one can neither find not exploit an arbitrage
opportunity in the short run by strategies of buying and selling the asset, or by using financial
derivatives
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Then Z%* > 0 almost surely and

00 00
EZ;"* =E |:Z Zil{fe[giﬁi+l)}:| = Z E[Zil{te[ﬁiﬁiﬁ)}]
i=0 i=0

M

E[Z'E Ve 00113
. ! (52)

o

Il
S

P(oi <t <0i41)

Il
—_

Therefore we can define an equivalent measure Q'* on Fr by dQ'* = Z!*dP. The
Radon Nykodim density Z!*on G; is

th*

zi =
dpP

o0
= E[Z™|F) =) ElZ'Lyclo,.0,4131G1]
G =

i=0 (53)

0
Z E[Z' Igt]l{te[mﬂiJrl)}'
i=0

Then

0 v
A (@) = ZEQi [/ dA, + Evl{v<oo}‘ fz} L cvynireforor )}
t

i=0

o v
=) Eg [/ dA, + E”l{woo}‘ g,} Ly<vintrefor.on} (54)
i=0 !

00 .
z! v )
=E |:(Z Z_;I{IE[UvaiJrl)}) (/t dAu + &= 1{u<oo}) gt:| 1{t<u}
i=0

and observing that

Z_i Zil{te[mﬂiﬂ)}

1 - s - - ’
Ztl {fe[Ux,(Tz-‘rl]} 220 Ztll{[e[gi'gi_i_l)}
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we can continue:

Z?SO Zil{te[o- oi+1)} (/v )
—E i=0 £ Ar€loio dA, + E'1,, G 1.,
(Z?io Z{ ey ) \Jr freet J17 | T

Zt* vV
() ([ o]
t t (55)

= EQt* |:/ dAu + Eul{u<oo}‘ gt:| 1{t<v}
t

v
= EQ’* |:/ dAu + Evl{u<oo}‘ﬁ:| 1{t<v}
t

O

We call Q"* the valuation measure at t, and the collection of valuation measures
(Q"™)>0 the valuation system.

In our new model with regime change, there is no single risk neutral measure
generating fundamental values across time. The valuation measures Q** and Q™*
at times s < ¢ are usually two different measures, and neither is an ELMM. The
* superscript is used to emphasize that Q'* is the measure chosen by the market,
and the superscript 7 is used to indicate that it is selected at time . In the i " regime
{o; <t < 0;41}, the valuation measure coincides with Q' € M]ZZC(W). Since Q'*
is a family of ELMMs and not one that is fixed, Q** ¢ M]E)C(W) in general, unless
the system is static.'*

Given the definition of an asset’s fundamental price, we can now define the
fundamental wealth process.

For subsequent usage, we see that the fundamental wealth process of the risky
asset is given by

AL
Wr=Sr+ / dDy + X:1g <. (56)
0

Then,

S T
VV;* = Z EQi |:/0 dD, + Xrl{r<T} -7:t:| l{te[a,-,ol-_;,_l)} (57
i=0

Vi €[0,00) and W = [; dDy + X 1<y

14Although the definition of the fundamental price as given depends on the construction of the
extended economy, one could have alternatively used expression (50) as the initial definition. This
alternative approach relaxes the extrinsic uncertainty restriction explicit in our extended economy.
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Alternatively, we can rewrite W,* by

S
W' = ZEQi [WTfI]:t] l{fE[UiqUi+1)} Vi € [0, 00). (58)
i=0

In general, the choice of a particular ELMM affects fundamental values. But, for
a certain class of ELMMs, when 7 < oo the fundamental values are invariant. This
invariant class is characterized in the following lemma. We let M y; (W) denote the
collection of equivalent measures that render W a uniformly integrable martingale.
In contrast, Myy;(W) denotes those equivalent measures that render W at least a
sigma martingale, but not a uniformly integrable martingale.

Lemma 1. Suppose t < T almost surely. In the i™ regime {o; <t < 0;41}, if the
market chooses Q' € My, (W), then the fundamental price of the risky asset S}
and fundamental wealth W,* do not depend on the choice of the measure Q' almost
surely.

Proof. Fix Q*, R* € MY, (W).t < T implies that Wy = W;*. Let W,Q* and W,R*
be the fundamental prices on {0; <t < 0;4+1} when Q' = Q* and R* respectively.
Since W is uniformly integrable martingale under Q* and R*,

=W, = Ep«[Wr|Fi]

. (59)
= ER*[WT |—7:t]
=Wk as.on{o; <t <0i41}

The difference of WtQ* and S,Q* does not depend on the choice of measure.
Therefore W,Q = WIR* implies SIQ = S,R* on{o; <t <041} O
This lemma applies to the risky asset only. If the measure shifts from Q' € M7, (W)
to R € M]{,I(W), then the fundamental price of other assets can in fact change.

The next lemma describes the relationship between the fundamental prices of the
risky asset when two measures are involved, one being a measure R* € MEUI(W).

Lemma 2. Suppose v < T. In the i regime {0; <t < 0,11}, consider the case
where Q' € My (W) and R' € Myy;(W). Then,

WIR* < WF‘, as.on {0; <t <0jq1}. (60)

That is, the fundamental price based on a uniformly integrable martingale measure
is greater than that based on a non-uniformly integrable martingale measure.
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Proof. Pick 0* € Myi(W) and R* € Myy(W). Since T < T almost surely,
Wr = W, Under R*, W is not a uniformly integrable non-negative martingale
and W, > Eg«[Wr|M;]. Therefore
W =W =Egu[Wf | M\ — Eps[Wf |M,]
=E o+ [Wr|M;] — Eg«[Wr|M;]
=W, — Eg«[Wg|M;]
>0.

(61)

|

We can now finally define what me mean by a price bubble in an incomplete
market. As is standard in the economics literature,

Definition 3 (Bubble). An asset price bubble § for S is defined by
p=S-S" (62)

Recall that S; is the market price and S/ is the fundamental value of the asset.
Hence, a price bubble is defined as the difference in these two quantities. Within a
fixed regime, the theory simplifies to a complete market case where there is only
one risk neutral measure, since the measure chosen by the market is fixed. Thus we
have:

Theorem 15. Within a fixed regime, S admits a unique (up to an evanescent set)
decomposition

S=S8S"+p=58"+B' +p>+ 8. (63)

where B = (B:)i>0 is a cadlag local martingale and

1. B is a cadlag non-negative uniformly integrable martingale with B! — Xoo
almost surely,

2. B* is a cadlag non-negative non-uniformly integrable martingale with B> — 0
almost surely,

3. B3 is a cadlag non-negative supermartingale (and strict local martingale) such
that EB} — 0 and B} — 0 almost surely. That is, B is a potential.

Furthermore, (S* + B + B2) is the greatest submartingale bounded above by W .

As in the previous Theorem 2, B!, B2, B> correspond to the type 1, 2 and 3
bubbles, respectively. First, for type 1 bubbles with infinite maturity, we see that
the B! bubble component converges to the asset’s value at time 00, Xoo. This time
oo value Xo can be thought of as analogous to fiat money, embedded as part of
the asset’s price process. Indeed, it is a residual value to an asset that pays zero
dividends for all finite times. Second, this decomposition also shows that for finite
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maturity assets, T < 0o, the critical threshold is that of uniform integrability. This is
due to the fact that when t < o0, the ,32, ,33 bubble components converge to 0 almost
surely, while they need not converge in L'. Finally, the 8 bubble components are
strict local martingales, and not martingales.

As a direct consequence of this theorem, we obtain the following corollary.

Corollary 3. Within a fixed regime, any asset price bubble B has the following
properties:
1. B =0,

2. ,Btl{r<oo} =0,
3. if B; = 0then B, = O forallu > t, and
4. S; = Eo« [ST| R+ B} — Eg+ [ B3| 7] forany t <T <.

As in the complete market case, we still have that bubbles must be nonnegative,
even without regard to the regime being fixed or not:

Theorem 16. Bubbles are nonnegative. That is, if § denotes a bubble, then §; > 0
forallt > 0.

Proof. Fixt > 0. 0On {0; < t < 0;41}, the market chooses Q' as a valuation
measure and the fundamental price S;* is given by

T
S o <t<0;41y = Egi [/ dDy + X1 <o0} Ift} Lo <oy lioi<t<oi 11}
t (64)

_ *
=5, 1{0i§f<0i+1}’

where S denotes a fundamental price with valuation measure Q' € M,.(W) and

St* — Z St*il{aist<a,~+1} (63)
i
and
Bl = Z,Bi,tl{mst<6i+1} ©0
By Corollary 3, B; = S — S* > 0 for each i and hence f* > 0. 0

The next example illustrates how we can model bubble birth.

Example 1. Suppose that the measure chosen by the market shifts at time oy from
0 € My (W) to R € Mnui(W). To avoid ambiguity, we denote a fundamental
price based on valuation measures Q and R by W2* and W R*, respectively. By
Lemma 2, we can choose Q, R and ¢ such that the difference of fundamental prices
based on these two measures,

W2 —wk o, (67)
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is strictly positive with positive probability. Then, the fundamental price and the
bubble are given by

I/Vf* = I/VtQ’(l{l‘<tTo} + I/VuR*l{UoSf} (68)
B = B 1ge<sy- (69)

And, a bubble is born at time oy.

As shown in Lemma 1, a switch from one measure Q to another measure Q' such
that Q, Q' € Myi(W) does not change the value of W*. Therefore, if a bubble does
not exist under Q, it also does not exist under Q’. Bubble birth occurs only when a
valuation measure changes from a uniformly integrable martingale Q € My (W)
to a non-uniformly integrable martingale R € Myuyi(W).

Remark 17. The reader may well wonder if it is even possible that such a phe-
nomenon happens: that there exists a framework with a process X that is a uniformly
integrable martingale under one probability, and is a non uniformly integrable
martingale under an equivalent martingale measure. The answer is yes, and it is
provided in the work of Delbean and Schachermayer [36]. See alternatively [14].

We next wish to mention an alternative idea to treat the concept of bubble birth,
although it complicates the model. It is often believed that bubbles arise due to
“easy money,” when speculators have access to large pools of funds to invest. This
is reflected in the market by its having a high degree of liquidity. Therefore it seems
reasonable to try to combine the ideas of high liquidity and bubbles to see if the
former can help us understand the birth of the latter. A first mathematical attempt in
this direction is attempted in the research paper of R. Jarrow et al. [90]. See also the
Ph.D. thesis of A. Roch [133].

In Jarrow et al. [90, 135] the authors combine ideas for bubble birth with
mathematical models of liquidity issues presented for example in the work of Cetin
et al. [23,24] and Blais and Protter [16]. See also [136]. The idea, loosely put, is
to use a liquidity risk model developed in [133, 134] for highly liquid stocks with a
supply curve identified in [16], in order to gain insight into how liquidity can affect
bubble births and bubble bursts. Instead of an instant return to the price takers’
general asset price, in this model each trade engenders a short exponential decay
of its return time; in times of high liquidity these decays can overlap one upon
the other, thereby mounting and artificially raising the price above its fundamental
value. Whether or not this happens depends on whether or not key parameter values
reach certain ranges.

Remark 18. In very recent work of Biagini et al. [14], a concept of “slow bubble
birth” is developed. This differs from the regime change idea, which ultimately is an
abrupt change at a random time, but rather contains a slow and continuous transition
from one probability measure in My(W) to another in Myur(W).
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7 Calls, Puts, and Bubbles

Bubbles have surprising implications for financial derivatives, and these implica-
tions indicate that the standard no arbitrage assumption of NFLVR is ever so slightly
too weak. This was first noticed, to our understanding, by Heston et al. [63], and
underlined by A.M.G. Cox and David Hobson [30]. This also creates problems with
the numerical solutions of option prices under the risk neutral measure (see for
example [44,45]).

We consider three standard derivative securities all on the same risky asset: a
forward contract, a European put option, and a European call option. Each of these
derivative securities is defined by its payoff at its maturity date. A forward contract
on the risky asset with strike price K and maturity date 7" has a payoff [S, — K].
We denote its time ¢ market price as V,f (K). A European call option on the risky
asset with strike price K and maturity 7" has a payoff [S, — K], with time 7 market
price denoted as C;(K). Finally, a European put option on the risky asset with strike
price K and maturity 7 has a payoff [K — S;]*, with time ¢ market price denoted
as P,(K)."" Finally, let V;/ (K)*, C,(K)*, and P,(K)* be the fundamental prices of
the forward contract, call option and put option, respectively.

A straightforward implication of the definitions is the following theorem.

Theorem 19 (Put-Call Parity for Fundamental Prices).
Cr(K) = P} (K) = V" (K). (70)

Proof. The proof follows from the linearity of conditional expectation. At matu-
rity T',

Sr—K)*t—(K-Sr)t=8r—-K (71)

Since a fundamental price of a contingent claim with payoff function H is
Eoi[H(S)r|Fil,
C(K)— P(K) = Egr[(St — K)¥|Fi] = Eg«[(K — S1)*| 7]
= Eo[ST — K|F] (72)
= V/*(K).
O

Note that put-call parity for the fundamental prices holds regardless of whether or
not there are bubbles in the asset’s market price.

5To be precise, we note that the strike price is quoted in units of the numéraire for all of these
derivative securities.
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As noted by Heston et al. [63], put-call parity in market prices has been seen to
be violated in the presence of bubbles. Examples are provided by the work of Ofek
et al. [121] and that of Lamont and Thaler [105] who, in the words of Heston et al.,
“provide evidence that options on Palm and other stocks violated put-call parity at
the same time the stocks clearly had bubbles.”

We give an example to show what can happen mathematically under NFLVR.

Example 2. Let B!, i = {1,2,3,4,5} be independent Brownian motions. Let M/
satisfy

t ‘ LM :
Mtlzexp(Btl—E), M;=1+/0 Jﬁng 2<i<5 (73)

Consider a market with a finite time horizon [0, T']. The market is complete for
all five processes M’ with respect to the filtration generated by {(M/);>0};_, in
the sense that martingale representation holds, and hence all contingent claims in
L? are replicable in theory. Mt1 is a uniformly integrable martingale on [0, T'].
The processes {M,}>_, are non-negative strict local martingales that converge to
0 almost surely as ¢ — T. Let S;* = sup,_, M. Suppose the market prices in this
model are given by -

« S, =S+ M?

« C(K)=Cr(K)+ M}

« P(K)= P*(K)+ M}

« V(K) =V (K) + M

All of the traded securities in this example have bubbles. To take advantage of
any of these bubbles { M/ }?_, based on the time T convergence, an agent must short
sell at least one asset. However, to do this one would need to short an asset with a
type 3 bubble, and this is not an admissible strategy. Therefore such strategies are
not a free lunch with vanishing risk.

For a general contingent claim H, if we let V;(H) denote its market price at
time ¢, and V;* denote its fundamental price, then the bubble in a contingent claim
is defined by

§ = Vi(H)—V"(H) (74)

We now have that, as seen by Example 2, NFLVR is not a strong enough assumption
to eliminate the possibility of (a fortiori Type 3) bubbles in contingent claims. And,
given the existence of bubbles in calls and puts, we get various possibilities for
put-call parity in market prices.

e C/(K)— P(K)=V/(K)ifandonlyif 8 = 5 — 8"
« C/(K)— P,(K) =S, — K if and only if 5 = 8¢ — 8.
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This example validates the following important observation. In the well studied
Black Scholes economy (a complete market under the standard NFLVR structure),
contrary to common belief, the Black—Scholes formula need not hold! Indeed, if
there is a bubble in the market price of the option (M), then the market price
(C/(K)) can differ from the option’s fundamental price (C*(K))—the Black—
Scholes formula. This insight has numerous ramifications, for example, it implies
that the implied volatility (from the Black—Scholes formula) does not have to equal
the historical volatility. In fact, if there is a bubble, then the implied volatility should
exceed the historical volatility, and yet there exist no arbitrage opportunities. (Note
that this is with the market still being complete.) This possibility, at present, is not
commonly understood. However, not all is lost. One additional assumption returns
the Black—Scholes economy to normalcy. This is the assumption of No Dominance.

We have seen that put call parity need not hold in practice (as observed
in [105,121] as mentioned before), and that it need not hold mathematically
under NFLVR. Nevertheless it is rare that it does not hold in practice, and it is
distressing that the situation can invalidate (in some sense) the usual beliefs about
the Black—Scholes paradigm. The observations of Ofek et al. and Lamont and Thaler
notwithstanding, they are the exception, not the rule. The usual mathematical proof
of put-call parity is that of Theorem 19 above, since the usual model does not
account for bubbles and market prices, but simply implicitly assumes that market
prices and what we call fundamental prices, are the same. The NFLVR assumption
allows for market price put-call parity to be violated, but if one wants a model where
that cannot happen, then one needs to add an assumption, and the assumption that is
usually added is that of No Dominance. It dates back to R.C. Merton who proposed it
in 1973 (see [114]), although he proposed it only with a verbal description. Jarrow
et al. [88] first proposed a mathematical formulation of Merton’s idea, and it has
since been refined by Sergio Pulido [131], whose definition we give here.

Definition 4. A Price Operator is a (not necessarily linear) operator A such that
A:L®dP)—>R (75)

Definition 5. A price operator A satisfies the No Dominance condition ND if for
all f,g € L®(dP) suchthat P(f > g) = 1 and P(f > g) > 0 we have that
A(f) > A(g). We further say that the price operator A satisfies No Dominance at 0,
denoted NDy, if A is positive; that is, if for all f € L (dP) with P(f > 0) > 0
we have A(f) > 0.

Jarrow et al. [88,89] show that No Dominance implies NFLVR. This formulation
of the result is taken from Pulido [131], where S denotes the market price of our
risky asset. The sets K and C defined below are the now standard notations from
the formulation of NFLVR given by Delbaen and Schachermayer [34,35] and also
given in their book [37].

Theorem 20. Suppose a price operator A is lower semi continuous on L*°(dP),
satisfies NDo, and A(f) < O forall f € C, where
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A = the set of admissible strategies relative to S

K={H-S)r:HeA

C = (K- L%(dP)) N L>(dP) (76)
={g € L®(dP):g= f —hforsome f € Candh € L5 (dP).

Then NFLVR holds.

Proof. First we observe that NFLVR does not hold if and only if there exists a
sequence H" of processes in .4, and a sequence of bounded random variables f, and
a bounded random variable f such that H" - St > f, for all n, and f, converges
to f € L°°(dP), with P(f > 0) = 1 and P(f > 0) > 0. Therefore suppose
that NFLVR does not hold. By the preceding observation, we can find a sequence
of elements of C, call them (f,),>1, and an f € L(dP) such that f, — f in
L*°(dP) and P(f > 0) > 0. By hypothesis however,

0 < A(f) <liminf A(f,) <0,

which gives us a contradiction. So NFLVR must hold. O

With this assumption of No Dominance, we can prove the following useful
lemma.

Lemma 3. Assume No Dominance and NFLVR hold. Let J be a payoff function of
a contingent claim such that V;(J) = V;*(J). Then for every contingent claim with
payoff H such that H(S)r < J(S)r, V;(H) = V;*(H).

Proof. Since contingent claims have bounded maturity, we only need to consider
type 3 bubbles. Let £ be a collection of stopping times on [0, T]. Then for all
L e L, Vi(H) < V.(J) by No Dominance. Since {V;(J)};ejo,7] is a martingale
it is uniformly integrable martingale and of class (D) on [0, T']. Then {V,(H)} is
also of class (D) and it is a uniformly integrable martingale on [0, T']. (See Jacod
and Shiryaev [76, Definition 1.46, Proposition 1.47 in page 11]). Therefore type 3
bubbles do not exist for this contingent claim. O

This lemma states that if we have a contingent claim with no bubbles, and
this contingent claim dominates another contingent claim’s payoff, then the dom-
inated contingent claim will not have a bubble as well. Immediately, we get the
following corollary.

Corollary 4. If H(S)r is bounded, then V,(H) = V,(H*). In particular a put
option does not have a bubble.

Proof. Assume that H(S)r < o for some @ € R.y. Then applying Lemma 3 for
H(x) = a, we have desired result. O
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Theorem 21 (European Put Price). Forall K > 0,
P/(K) = P/ (K). (77)

The proof of this theorem is contained in Corollary 4. Hence, European put
options always equal their fundamental values, regardless of whether or not the
underlying asset’s price has a bubble.

We next consider the put call parity of market prices. We have already seen this
is violated occasionally in practice, and that it is not implied by the no arbitrage

assumption NFLVR. It is trivial algebraically that C7(K) — Pr(K) = VTf (K) =
St — K; what we want is for this relation to hold at intermediate times £,0 <t < T.

Theorem 22. Under NFLVR and No Dominance, we have put call parity of market
prices. That is,

Ci(K) = P(K) = Vi (K) = S = K (78)
Proof. We re-write equation (78) at time 0 as
C=P+V/=P+S-K, (79)

and we see that the left side and right side of (79) have the same cash flows.
Therefore if the left side is larger at time 0, the right side dominates the call. If the
left side is larger at time O, then the call dominates the right side of (79). Because
we are assuming No Dominance, these phenomena cannot happen, so the two sides
must be the same. The same argument works at intermediate times . (Note that this
cannot follow from NFLVR alone, because one would need to use a short selling
argument, and it would not be an admissible strategy, due to theoretically potential
unlimited losses.) ]

Theorem 23 (European Call Price). Forall K > 0,
Ci(K)—C/(K) = S — Egi[ST|F]. (80)
Proof.

v/ (K)=S-K
= (S: — Ege[ST|F]) + (Eg[ST|Fi] — K) 1)
= V/*(K) + (S, — Eg[Sr|F]).

Using put-call parity in fundamental prices:

CH(K) = P} (K) = V" (K) (82)
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Using put-call parity in market prices,

Ci(K) = P(K) = V! (K) (83)
By subtracting (82) from (83),

[C/(K) = G (K)] = [P (K) = P (K)) =V (K) = V™ (K)
= St = Eo[St|F1] (84)
=4,

since the put option has a bounded payoff, P,(K) = P*(K) and C,(K) —
Cr(K) =é. O

Since call options have finite maturity, call option bubbles must be of type 3, if they
exist. The magnitude of such a bubble is independent of the strike price and it is
related to the magnitude of the asset’s price bubble. In a static market, Corollary 3
shows that

S, — Egn[Sr|F] = B} — Eg= [ B3| 7]

where 87 is the type 3 bubble component in the underlying stock.!® Here, the call
option’s bubble equals the difference between the type 3 bubble in the underlying
stock less the expected type 3 bubble remaining at the option’s maturity.

American Options

The issue of American options is quite interesting, because one finds a surprise: we
will see that American call options do not have bubbles, even if there is a bubble in
the underlying asset. This is due to the special nature of American calls where early
exercise is possible. We will assume throughout our treatment of American options
that we are in one regime that does not change, so we will be dealing with one fixed
risk neutral measure. Also, because the time value of money plays an important
role in the analysis of the early exercise decision of American options, we need to
modify our notation to make explicit the numéraire. We denote the time ¢ value of a

money market account as
t
A; = exp (/ rudu) (85)
0

1Tn an analogous theorem in Jarrow et al. [89], they used the implicit assumption that T = ¢
which would imply that E gr+ [ﬂ%| ]—‘,] =0.
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where r is the non-negative adapted process representing the default free spot rate
of interest. To simplify comparison with the previous, we still let S; denote the risky
asset’s price in units of the numéraire. We choose and fix a risk neutral measure Q.
In the terminology of Sect. 6 the measure Q = Q"* lies within a fixed period for all
¢ in this period, in between possible regime shifts.

Definition 6 (The Fundamental Price of an American Option). The fundamen-
tal price VA" (H) of an American option with payoff function H and maturity T is
given by

VA (H) = sup EolH(S,)|F/] (86)
nelt.T]

where 7 is a stopping time and the market selected Q € M,.(S).

This definition is a straightforward extension of the standard formula for the
valuation of American options in the classical literature. It is also equivalent to the
fair price as defined by Cox and Hobson [30] when the market is complete. We
apply this definition to a call option with strike price K and maturity 7. Letting
C*(K) denote the American call’s fundamental value, the definition yields

. K
CM(K) = sup Eol(Sy — ) "I (87)
nelr.T] n

Let C4(K), be the market price of this same option, and C £ (K), the market price
of an otherwise identical European call.

Before we continue, we establish some technical results of which we will have
need. They are taken from [89].

Lemma 4. Let M, be a non-negative cadlag local martingale. Assume that there
exists some function f and a uniformly integrable martingale X such that

AM, = f(sup M)(1 + X,). (88)

I<r<u
where AM, = M, — M,_. Then for U,, = inf{u >t : M, > x,,},

mli_l)noo Eg [Muy, L, eq.r3|F] = My — Eo[Mr|F] (89)

Proof. To simplify the notation, we omit the Q subscript on the expectations
operator. Let T, be a fundamental sequence of M;. Then M,T” =FE [M{” | F:] and
hence

MtT” = Ml‘Tn 1{Um=t} + E[Mlg:p‘, 1{UmE(IsT)}I‘E] + E[M;" 1{Um=T}I‘E] (90)
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By hypothesis M/} < x,, + f(xu)(1 + AXy,) and M7" < xp + f(xn)(1 + X7).
By the bounded convergence theorem,

M, = lim M = M1, —n+E[My, Ly, cq.ryl Fl+EMrly,=r|F] O
Since X is a uniformly integrable martingale, it is in class D and (X 7). siopping times}

is uniformly integrable. Fix m. Then M In , My, T are bounded by a sequence of
uniformly integrable martingales. Therefore taklng the limit with respect to n and
interchanging the limit with the expectation yields:

M; = Tim E[My,1w,ecml ]+ E[Mr|F] 92)

O

Theorem 24. Let M be a non negative local martingale with respect to F such that
A M satisfies the condition (88) specified in Lemma 4. Let G(x,t) : Ry x[0,T] —
R4 be a function such that

e G(x,s) <Gx,t)forall0<s<t<T
e Forallt E [0, T], G(x,¢t) is convex with respect to x.
o limyosoo 852 = ¢ forallt € [0,T),

then

SI[JP]EQ[G(MT,T)Ift] = Eo[G(Mr, T)|Fi]+(cVO)(M,—Eo[Mr|F])  (93)
t€t, T

Proof of Theorem 24. To simplify the notation, we omit the Q subscript on the
expectations operator. Suppose ¢ < 0. Then by monotonicity with respect to ¢
and Jensen’s inequality applied to a convex function G and a non-negative local
martingale M.,

sup E[G(M:,7)|F] < sup E[G(M:,T)|F]

€t,T] T€[t,T]
<E[G(M7,T)|F:] (%94)
< sup E[G(M.,7)|F]
T€[t,T]
and
sup E[G(M,7)|F] = E[G(Mr, T)|F]. 95)
€(t,T]

Suppose ¢ > 0. Fix ¢ > 0. Then there exists £ > 0 such that ¢ > 03¢ > 0 such that
Vx > &, @ > ¢ — ¢ and hence G(" Y > ¢ —gforallu € [0,T]. Let {x,},>1 bea
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sequence in (£, o) such that x,, 1 co. Let
Vi=influ>1t: M,>x,} ANT. (96)

Without loss of generality we can assume that M; < Xx,. Since G(:,t) is
increasing in ¢,

sup E[G(M.,7)|F:] = E[G(My,, Sy)|Fi]
T€[t,T]

= E[G(M7,T) 1y, =1y|Fi] + E[G(My,, Vi), < | Fi
> E[G(M7,T)l,=1y|F] + E[G(My,,0) 1y, <1y |F7]
O7)

Since My, > x, > &, G(My,,0) > (c — &) My,. Next, let’s take a limit of n — oo.
By Lemma 4 applied with {V,} and the monotone convergence theorem,

lim sup E[G(M.,1)|F]

n—=>00 re[1,T]
> lim {E[G(Mr. T)ly,=ry| F) + (€~ ) E[My, Ly, )} ©98)

> E[(G(M7,T)|F] + (¢ — &)(M; — E[Mr|F:]).
Letting e — 0,

sup E[G(M:,7)|F] = E[G(Mr,T)|F] + cp 99)
T€[t,T]

To show the other direction, let G (x, u) = cx — G(x,u). G°(x, ) is a non-positive
increasing concave function w.r.t x such that

. G x)
lim =0 (100)
X—>00 X
By Jensen’s inequality,
E[G*(M7,w)|F,] < G (E[Mr|F,),u) < G(M,, u) (101)

Therefore
G(My,u) <c(M, — E[G (M7, u)|F.])
=cfu + E[G(Mr,u)| F.] (102)
=cpu + E[G(Mr,T)|F.]
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Since this is true for all u € [¢t,T], G(M,,7) < ¢f; + E[G(Mp,T)|F;] for all
7 € [t, T]. By the tower property of martingales, and a supermartingale property,

E[G(M:,0)|Fi] < Elcp. + E[G(M7, T)|F:]|Fi] < E[G(Mr,T)|F] + cp.

(103)
Therefore
sup E[G(M., )| F:] = E[G(M7,T)|F:] + cp; (104)
T€[t,T]
O

This theorem extends Theorem B.2 of Cox and Hobson [30] in two ways: First,
the assumption that a martingale M; be continuous is dropped; and second, the
payoff function G (-, x) permits a more general form and, in particular, an analysis
of an American option in an economy with a non-zero interest rate.

Then, the following theorem is provable using standard techniques.

Theorem 25. Assume NFLVR and No Dominance holds, and that the jump process
of the asset’s price, AS := (AS;)s>0, where AS; = S;—S;—, satisfies the regularity
conditions of Lemma 4. Then, for all K

CE(K) = CA(K) = CM(K). (105)
Proof. (i) By Theorem 24 with G(x,u) = [x — K/A,]™T,

C*(K), = sup E[(S. — K/A)T|F]

t<t<T
= E[(Sr — K/Ar)T|F] + (S: — E[ST|F])
=CF(K)+ B} — E[B}|F]
= CF(K)

(106)

The last equality is by Theorem 23. This equality implies, using Merton’s
original no dominance argument, that the American call option is not exercised
early. The reason is that the European call’s value is at least the value of
a forward contract on the stock with delivery price K, and this exceeds the
exercised value.

(i) A unit of an American call option with arbitrary strike K is dominated by a unit
of an underlying asset. Therefore by No Dominance (Definition 5),

C/(K) < S:. (107)

Lety, :== CA(K)—C tA' (K) be a bubble of an American call option with strike
K. Since American options have finite maturity, y, is of type 3 and is a strict



A Mathematical Theory of Financial Bubbles 47

local martingale. Then by (i) and a decomposition of S;,

CE*(K) + B7 = E[B7|F) + v = ' (K) + 1,
=CMK)<S; (108)
=S'+ B+ B+ B
and therefore
ve <187 = CF(K) + Bl + B7 — E[B717). (109)

The right side of (109) is a uniformly integrable martingale on [0, 7']. Hence
y is a non-negative local martingale dominated by a uniformly integrable
martingale. Therefore y, = 0. O

This theorem is the generalization of Merton’s [114] famous no early exercise
theorem, i.e. given the underlying stock pays no dividends, otherwise identical
American and European call options have identical prices. This extension is the
first equality in expression (105), applied to the options’ market prices. Just as in
the classic theory, this implies that an American call option on a stock with no
dividends is not exercised early.

The second equality is particularly nice; if the reader has ever wondered what
was the point of American call options, since they tend to behave similarly to
European call options, the second equality gives a nice response: it implies that
American call option prices exhibit no bubbles, even if there is an asset price bubble!
This result follows because the stopping time associated with the American call’s
fundamental value (as distinct from the exercise strategy of the American call’s
market price) explicitly incorporates the price bubble into the supremum. Indeed,
the fundamental value of the American call option is the minimal supermartingale
dominating the value function. If there is a price bubble, then the stopping time
associated with the American call option’s fundamental value is stopped early with
strictly positive probability. This is understood by examining the difference between
the fundamental values of the European and American call. If stopping early had no
value, then it must be true that CA*(K) = C£*(K). However, By Theorem 23, an
asset price bubble creates a difference between an American and European calls’
fundamental prices, i.e.

C/*(K)—CF*(K) = B} — Eo [ BF| 7] > .

The intuition for the possibility of stopping early is obtained by recognizing that the
market price equals the fundamental value plus a price bubble. The price bubble
is a non-negative supermartingale that is expected to decline. Its effect on the
market price of the stock is therefore equivalent to a continuous dividend payout.
And, it is well known that continuous dividend payouts make early exercise of (the
fundamental value of) an American call possible.
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Indeed, in the presence of bubbles we need no longer have that the classic “no
early exercise” theorem of Merton holds. S. Pal and P. Protter have shown the
following in this regard:

Theorem 26 (Pal-Protter [122]). Assume NFLVR holds. Suppose for a European
option, the discounted pay-off at time T is given by a convex function h(St) which
is sub-linear at infinity, i.e., limy_oo h(x)/x = 0. Then the price of the option
is increasing with the time to maturity, T, whether or not a bubble is present in
the market. In other words, E(h(St)) is an increasing function of T. For example,
consider the put option with a pay-off (K — x)*.

However, for a European call option, the price of the option E(St — K)* with
strike K might decrease as the maturity increases.

This feature may seem strange at first glance, but if we assume the existence
of a financial bubble, the intuition is that it is advantageous to purchase a call
with a short expiration time, since at the beginning of a bubble prices rise,
sometimes dramatically. However in the long run it is disadvantageous to have a
call, increasingly so as time increases, since the likelihood of a crash in the bubble
taking place increases with time.

As observed in [122], pricing a European option by the usual formula when
the underlying asset price is a strict local martingale is itself controversial. For
example, Heston, Loewenstein, and Willard [63] observe that under the existence
of bubbles in the underlying price process, put-call parity might not hold, American
calls have no optimal exercise policy, and look-back calls have infinite value. Madan
and Yor [110] have argued that when the underlying price process is a strict local
martingale, the price of a European call option with strike price K should be
modified as limy o0 E [(S7az, — K)T], where T, = inf{t > 0: S, = n},n € N,
is a sequence of hitting times. This proposal does however, in effect, try to hide the
presence of a bubble and act as if the price process is a true martingale under the
risk neutral measure, rather than a strict local martingale.

American calls in the presence of bubbles have also recently been studied in
a recent paper by Kardaras et al. [100]. They provide an analysis of the relation
between bubbles and derivative pricing, incorporating and explaining previous work
in the area. Also, using the approach pioneered by Fernholtz and Karatzas [50],
Bayraktar et al. [9] show how to price an American call option in a market that
does not necessarily admit an equivalent sigma martingale measure (i.e., in which
the condition NFLVR for the absence of arbitrage does not hold everywhere).
A subsequent work by Kardaras [99] studies exchange options, and here the
mathematics becomes both complicated and interesting, with the possible presence
of bubbles taken into account regarding the issue of put-call parity, a question
originally raised by Cox and Hobson [30].

Finally, we remark here that we can also apply these ideas to a study of forwards
and futures in the presence of bubbles. There are two unusual features that are
worthy of note here for forwards and futures depending on an underlying risky
commodity. First, a futures price can have its own bubble, one that is not present
in the forward price. And second, when the underlying risky commodity asset has a
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bubble, the present value of the forward price is “equivalent” to the spot commodity,
and therefore reflects all three types of bubbles, whereas the futures price is simply
a bet on the market price St of the commodity at time 7. When the futures price
is viewed from time ¢ the type 3 bubble component is excluded. For more, the
interested reader can consult [84] where an explicit expression relating forward
prices with futures prices, in the presence of bubbles and stochastic interest rates, is
presented.

Another point worth mentioning is an implicit relationship between futures and
bubbles. It is often believed that selling short should correct for bubbles, but we have
explained that selling short is inadmissible as a strategy and thus cannot correct
for bubbles. However just because selling short is too dangerous a strategy to be
admissible certainly does not mean it is not pursued and does not exists; history
is replete with examples of dangerous risks taken in the financial markets that lead
sometimes to great riches, and sometimes to large financial catastrophes. Sometimes
in the midst of a crash, such as the banking crisis of 2008, government imposed
restrictions on short selling occur. On the face of it, this seems silly, since in most
third world emerging markets, short selling is either not allowed or is not possible
due to inadequate financial infrastructures (see [17,25]), and we do not see more
or longer lived bubbles in these markets. Nevertheless it is often said that short
selling constraints on a given asset can be overcome by using trading strategies in
futures contracts on that asset in order to replicate a short position. While this is not
true in full generality, it is however largely true (see Jarrow et al. [91]). Therefore
restrictions on short selling, in the presence of a lively futures market, are doomed
to failure, even if in principle they could work. When bubbles crash, there appears
to be no current effective palliative.

8 Foreign Exchange

A study of foreign currency bubbles is undertaken in Jarrow and Protter [85], and it
is this approach we will follow here.!” Of course this is a topic long studied in the
academic literature, see for example the 1986 papers of Evans [48] and Meese [112].
Reasons for such bubbles to come into existence also have a long history in the
economics literature; see Camerer [19] or Scheinkman and Xiong [139] for reviews.
Using our martingale theory approach developed in this paper (with precedents in
the work of Loewenstein and Willard [108], and Cox and Hobson [30]), and some
of the resulting insights are the following:

1. A foreign currency exchange rate bubble is positive and its inverse exchange rate
bubble is negative. This implies that, in contrast to asset price bubbles (financial

7We wish to thank Roy DeMeo of Morgan Stanley for stimulating discussion on bubbles and
foreign exchange.
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securities and commodities) that can only be positive, foreign currency exchange
rates can have negative bubbles.

2. Foreign currency exchange rate bubbles are caused by price level bubbles in
either or both of the relevant countries’ currencies. Alternatively stated, foreign
currency exchange rate bubbles reflect “distorted” inflation in either or both
countries. By “distorted,” we mean that the inflation is due to trading activity
in the currency and not fundamental macroeconomic forces. This connection of
bubbles to inflation has been recently studied with remarkable results by Carr
etal. [21].

3. Domestic price level bubbles decrease the expected inflation rate in the relevant
country. This counter intuitive result is due to the fact that bubbles, being
supermartingales, are expected to decrease. Alternatively stated, bubbles are
expected eventually to burst, thereby reducing the price level and the inflation
rate.

Since we are dealing with foreign exchange, we need continually to specify
the currency of which we are speaking. We will work with U.S. dollars ($) and
Euros (€). To embed our foreign currency model in the previous model structure,
we begin with our standard assumptions, assumed throughout this article: We have
a filtered complete probability space (2, F,F, P) satistying the usual hypotheses
(see Footnote 5).

Let g, 7. be stopping times which represent the maturity (or life) of the U.S. and
the European Union, respectively. Define 7 = min(zs, t,), the economy’s maturity
date.

We assume trading in a dollar denominated money market account with value

A; = exp (/ rudu) (110)
0

where r; is the dollar default free spot rate of interest, and we let /f, denote a euro
denominated money market account with 7, the euro default free spot rate of interest.
Next we let Y, be the spot exchange rate of dollars per euro, and of course we assume
that all of these processes are adapted with respect to the filtration F.

The traded risky asset that we consider is the dollar value of the euro money
market account (€ mma), i.e.

~

S[ == Y[A[. (111)

Note that using the notation from the previous section, we have that D, = 0 for all
tand X, =Y, A . The dollar value of the euro money market has no cash flow and
a terminal value equal to the dollar value of the € mma at the economy’s maturity
(which could be +00).

We assume that there are no arbitrage opportunities (NFLVR holds), hence,
there exists an equivalent local martingale measure Q such that i_t, is a Q— local
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martingale.'® It is well known that the ELMM measure as identified herein depends
crucially on using the dollar as the numéraire. A change in numéraire to the
euro changes the perspective to a foreign investor, which in turn will change the
martingale measure employed (see Amin and Jarrow [2], Sect. 5, pages 321-322.).
In our context, fixing the numéraire determines the bubble’s characterization. This
dependency on the numéraire is necessary in the foreign currency context and it is
related to the resolution of Siegel’s paradox, a “paradox” that is well explained in
the little book of Sondermann [146, pp. 74-84].

In order to characterize an exchange rate bubble we begin by defining the
fundamental value of the dollar value of the € mma as

Y, A,
Sr=Eg ( I ]—}) A, (112)

T

The current market price is S; = Y,/f,. Hence, the traded asset’s price bubble (in
dollars) is

ﬂ[ ZSI—S; 20
Because this is a traded asset, the price bubble must be nonnegative. But this is not

the bubble in the exchange rate itself. To characterize the exchange rate bubble, we
define the fundamental (dollar/euro) exchange rate as

N Y. A, A,

t AI t

The fundamental exchange rate is just the fundamental dollar value of the € mma
divided by the euro value of the € mma. Hence, the (dollar/euro) exchange rate
bubble is then

v . Y. A, A,
Bl =Y, -V =Y, - Eo [ ——~|F )= =0 (114)
T t

We see that an exchange rate bubble exists if and only if the dollar value of the
€ mma has a price bubble. And, if it exists, the exchange rate bubble must be
nonnegative. This is because we are using the dollar as the numéraire.

8To consider foreign currency derivatives, one would want to include trading in default free zero-
coupon bonds in both dollars and euros. Then, the no arbitrage condition would be extended to
include the discounted dollar values of the dollar zero-coupon bonds and the dollar value of the
euro zero-coupon bonds (see Amin and Jarrow [2]).
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Next, we consider the (euro/dollar) exchange rate Yl, Defining the fundamental

(euro/dollar) exchange rate to be #, we see that the bubble in the (euro/dollar)
exchange rate is then given by

1 1 1
v —  — _ <0,
=)

which is negative. Hence, a negative bubble exists in this framework. Whether a
bubble is positive or negative is a matter of perspective.

Remark 27. At first glance, it might seem as though combining 1/Y with the
pricing measure associated to the dollar as numéraire seems artificial and does not
quickly lend itself to an economic interpretation. However in this modern world it
has immediate appeal. To give a banal example, imagine yourself as a world traveler.
You might feel the dollar is over valued in relation to the euro. If you are right, this
should reflect itself as a bubble in the dollar/euro exchange rate. Suppose you travel
to the euro zone for a period of time for work and get a large payment in euros.
When should you repatriate your euro earnings, by conversion into dollars? You
now realize that the exchange rate 1/Y, using your home currency the dollar as
numéraire, is in a negative bubble, so you may choose to wait until that bubble
ends. This applies analogously to businesses, of course. An example is that of
the company Apple. According to many sources (see for example [13]) Apple has
around $1 trillion in profits sitting overseas. Apple would have a large U.S. tax bill
were it to repatriate its profits, and claims to be waiting for the U.S. Congress to
give a tax holiday to American multinational companies that wish to repatriate their
foreign profits. Were the dollar to be in a bubble when such a holiday came (if it ever
does), then presumably Apple would realize that its holdings in foreign currencies
might be in a negative bubble, and the tax advantage of the tax holiday would be
reduced or possibly eliminated by the negative bubble. This could affect Apple’s
actions.

Foreign Currency Price Bubbles and Inflation

We illustrate the ideas by considering an economy with a single consumption good,
traded across economies. We let g and t, be stopping times which represent the
maturity (or life) if the U.S. economy and the Euro zone economy, respectively.
We let T = 15 A 7., the maturity of the joint economy. For interest rates, rg(?) is
the default free dollar spot rate of interest, and Bg(¢) is the dollar value of a dollar
money market account. We define a “real value” default rate free real spot rate of
interest 7 (¢), and B(t) is the “real value” of a money market account paying off in
consumption goods. For convenience, we define

R(t) = /Ot r(s)ds.
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By analogy for the dollar rates,

Rs(t) = /0 F(s)ds. (115)

and we let g (¢) be the dollar price level of the consumption good. In essence, g (¢)
is the (dollar/cg) exchange rate (cg = consumption good). The inverse of the dollar
price level, —— is the dollar deflator. The dollar deflator transforms dollars into

7s5(0)?
consumption goods—real values. The rate of change in the dollar price level dﬂ?}ig)

is the dollar inflation rate. We define the same objects for the euro economy, ., R,,
and m, analogously; these are of course denominated in euros.

The two traded assets of interest are the real value of the $mma and the € mma,
and these are

B$—(I) and B.()
ﬁ$(t) ”e(t),

(116)

respectively. Given the trading of inflation protected bonds, the assumption of
trading in these real-valued money market accounts is without loss of generality.
Assuming we have NFLVR, we know there exists an equivalent probability measure
0 such that

Bs) o Be®)
(1) B(1) 7. (t)B(1)

are () sigma martingales, in this case local martingales, since the processes are
nonnegative.

Note that when using the consumption good as the numéraire, the notion of no
arbitrage takes on a new interpretation. No arbitrage in real values is the natural
extension of purchasing power parity. Purchasing power parity states that the same
consumption good has the same real price across all economies, after adjusting for
the different currency exchange rates (see Taylor [150], Taylor and Taylor [151]).
Also note that given the existence and frequency of trading in Treasury Inflation
Protected Securities (TIPS), one can infer both the dollar and real term structure of
interest rates from market data (see Jarrow and Yildirim [87]).

Dollar Price Bubbles

Let the traded asset be the real value of the dollar mma ($mma) and its fundamental
Bs(1)
(1)

*
] , is equal to

) = (s
7s(1) ¢\ 7B

value [

ft) B(t). (117)
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The traded asset’s price bubble (in consumption goods) is

Bs(t) [B&;_(I)}*

7s(t) L)

Bs(t) = (118)

We note that the bubble in the traded asset’s price is nonnegative.
As before, this is not the bubble in the dollar price level. To derive this, we define
the fundamental dollar price level as

Bs (1)
g (t) = . 119
s (1)
The dollar price level bubble is then
Bs (1) = ms(1) — 7§ (1) = 0. (120)

Note that the dollar price level bubble is with respect to the consumption good as the

Bs(1)
ms(1)

*
numéraire. It is nonnegative as well, since both Bg(¢) and [ ] are nonnegative.

The dollar inflation rate can be computed as

drs(t) _ 73 () dmi() | dpi()
w(t)  ws(t) wd(t) me(r)

(121)
Taking expectations yields the expected dollar inflation rate
g (1) drg (1) dBz(t
F ) =3 "Fo| 2| A+ E ( :
) @) Q( m @ |7) T UBs@)

Given a strictly positive dollar price level bubble, we have n"” (( t))
dollar price level bubble is a supermartingale, we have that

dpg(t )
< 0.
Q( Bs) |
Combined, we get the following result:
dml(t)
Eo | — : 122
f,) < ( 10 ) (122)

That is, a dollar price level bubble decreases the dollar expected inflation rate from
its fundamental level. Of course, there is nothing special here about the dollar, and
the same analysis can be applied to the euro.

(dm;(t)

w5 (1)

)

< 1. Given that the

dms(t)
w5 (1)

If Bg(t) >0, then EQ(
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Currency Exchange Rate Bubbles

The dollar/euro exchange rate is given by

(1)
me(r)

One can understand why this is true by considering the units of this ratio, where
dollar

“cg” stands for consumption goods, i.e. %:i‘ﬁiﬁr
cg

. The fundamental dollar/euro

exchange rate is

g (1)
mE(t)

The dollar/euro exchange rate bubble is

s (1) ”§(t))

me(t)  wé(t)

B/ () = (

Recall that this is measured in consumption goods. In this context, we see that the
dollar/euro exchange rate bubble can be either positive or negative, depending upon
the magnitudes of the price level bubbles within each economy. However, if the
dollar/euro exchange rate bubble is positive, then the euro/dollar exchange rate will
be negative, and conversely. For much more on this subject, including the working
out of illustrative examples, see [85].

9 Forwards and Futures

Futures have become an important element in modern day finance, especially if
one judges by how much capital is tied up in them. The appeal of futures is that
they reduce one’s exposure to risk, since the accounts are settled in an ongoing
and daily basis. Each future is of course intrinsically attached a risk asset, or
basket of risky assets such as an index. Therefore it is interesting to examine
whether or not they reflect a bubble in the underlying asset(s) should one occur,
which is intuitively reasonable. However it might also be the case that futures
themselves could develop their own bubbles, independent of the presence (or not) of
a bubble in the underlying asset. This is perhaps less intuitive, but we will see that
mathematically and theoretically it is indeed possible. Forwards and Futures are
intimately related, and arose traditionally in relation to commodities, and for this
reason we distinguish between cash settlement of a future and physical settlement,
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where the goods in question must be physically produced.'” For this analysis, we
rely on the published article [84].

We recall our usual framework, assumed throughout this article: Let
(2, F,F, P) be a filtered complete probability space. We assume that the filtration
F = (F:)i>0 satisfies the “usual hypotheses.”(See Footnote 5). Once again t
is a stopping time which represents the maturity (or life) of a risky asset, and
D = (D;)o<t<: is a (cadlag) semimartingale adapted to F, representing the
cumulative cash flow process of the risky asset. AD; can be positive or negative
depending on the sign of the cash flows (e.g. storage costs are negative, dividends
are positive). As before, X; > 0 is an F;-measurable random variable representing
the time t terminal payoff or liquidation value of the asset. The market price of the
risky asset is given by the non-negative semimartingale S = (S;)o<s<,. Note that
for ¢ such that A D, # 0, S; denotes a price ex-cash flows, since S is cadlag.

Let r; be a non-negative semimartingale representing the default free spot rate of
interest. We define a money market account A, by

t
A; = exp (/ rudu) . (123)
0

Note that A, > 1 is continuous and non-decreasing.
One again W denotes a wealth process on ¢ € [0, 00) associated with the market
price of the risky asset, i.e.

INAT 1 X‘L’
W, = Stl{t<r} + At/ A—dDu + AtA_l{rft}- (124)
0 u T

The market value of the wealth process is the position in the risky asset plus all
accumulated cash flows, and the terminal payoff if # > 7.?° Note that the cash
flows are invested in the money market account to keep the wealth process self-
financing. We assume that (D, X) are such that W > 0, i.e. holding the risky asset
has non-negative value. This condition is needed to be consistent with the non-
negativity of the risky asset’s price process. Finally, we assume that there exists a
probability measure Q equivalent to P such that the wealth process % isa Q local
martingale, so that NFLVR applies, by the First Fundamental Theorem of Asset
Pricing.

Second, we do not assume such a Q is unique, hence the market is incomplete.
Instead, in order to uniquely identify the price of a derivative security, we assume
that the market selects a unique ELMM from the collection of all possible ELMMs.

The author spent over 20 years at Purdue University in Indiana, and there he developed an
appreciation for the importance of pork belly futures, for example.

20When considering non-financial commodities, this expression implicitly assumes that the risky
asset is storable.
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For example, this will be the case if enough static trading in call options exist as
discussed in Sect. 5.

The Market Price Operator

To study forward and futures contracts, we need the concept of a market price
operator. To do this we let T < oo represent some fixed future time that
exceeds the maturity dates of all relevant forward and futures contracts. Also ¢ =
Ar ftT % + ET denotes a time T payoff, starting at time ¢t < T, where: (a) A =
(At)o<t<r 1s an arbitrary semimartingale representing the asset’s cumulative cash
flow process, and (b) E” € Fr is a random variable that represents the asset’s
terminal payoff at time 7. Note that both of these quantities may be negative. The
payoff ¢ is in Fr. Then ®(¢) represents the collection of all these Fr measurable
random variables, where one begins at time ¢ when computing the payoff. Define
O(t) = {¢p € Do(t) : Eg(J¢]) < oo} where Eg(-) denotes expectation under Q.
By construction, ®(¢) is a linear space.

Define ®,,(t) C ®(¢) to be the linear combination of the random variables
generated by all admissible and self-financing trading strategies involving the risky
asset and money market account and all static trading strategies involving forward
and futures contracts, and European call and put options on the risky asset. Note that
both Wy, Ay € ®(0) where

TAT 1 X‘L’
Wr = iy ST + AT/ A—dDu + ATA_I{IST}-
0 u T
As written, this expression extends the time domain of the risky asset wealth process
beyond time 7.

We assume that we are given a unique market price operator’' A, : ®,,(t) —
LO(Q2, F,, P) that gives for each ¢ € ®,,(¢), its time ¢ market price A,(¢). Note
that (in the presence of bubbles) the uniqueness of the market price operator is an
additional assumption beyond the existence of an ELMM Q. We do not assume
that A, extends uniquely to the set ®(¢). For future reference, we note that by
the definition of the market price operator, we have that both A,(A7) = A, and
A, (WT) = 5.

We need to impose two additional assumptions on the market price operator.
Consistent with no arbitrage, the first is sometimes known as the “law of one price.”

Assumption 28 (Linearity). Given ¢',¢ € ®,,(¢t) and a,b € R, we have that
alh(¢") +bA,(p) = A, (ad’ + bo) forallt.

That is, we assume that a portfolio of two assets trades for the same price as the cost
of constructing the portfolio by trading in the individual assets themselves. We also

21]LO(Q , F;, P) is the collection of finite valued F;, measurable functions on 2.
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assume No Dominance, as defined in Sect. 7. In this framework, for ¢, ¢ € @, (1),
we say that ¢’ dominates ¢ if either of the following conditions holds

1. Q(¢' = ¢) = 1 and Q(¢' > ¢) > 0 and A, (¢') < A,(¢) for some ¢ almost
surely.
2. Q(¢' = ¢) = 1and A, (¢p) < A;(¢p) for some ¢ almost surely.

If ¢’ were to dominate ¢, then conceptually if one could short ¢ and go long ¢,
NFLVR would imply that no dominated assets exist in the economy. However,
because of the admissibility condition, one cannot always short ¢ and hold it until
time 7. For example, one cannot short sell the risky asset and hold it until time 7" if
the risky asset’s price process is unbounded above. This is the reason that we need
to assume no dominance directly.

Assumption 29 (No Dominance). There are no dominated assets in the market.
We can now define the fundamental price in terms of this market operator.

Definition 7 (Fundamental Price and Bubbles). Define the fundamental price
AF: Dp(t) = LAQ, F, P)of ¢ = Ar [ 42 1 BT € @,,(1) by

dn, ET
AF (@) = Eg (/ S — f,) A, and (125)
t Au AT
define its bubble §; : @, (t) — LO(Q, F;, P) by
§(9) = Ai(@) — AT (9). (126)

Note that, by construction, §; is a linear function and §7(¢) = 0, i.e. any bubble
disappears by time 7. The linearity follows from the linearity of both A; and A}.

In an NFLVR economy, all discounted market prices under a risk neutral
measure must be sigma martingales. 2> Hence, without loss of generality, we
assume

Assumption 30 (Local Martingale Bubbles). %‘f) is a Q sigma martingale.
Theorem 31 (Bounded Assets). If ¢ € ®,,(¢) is bounded, then §,(¢) = 0.

Proof. If ¢ is bounded, then there exists a > 0 such that )AT ftT % + ET‘ <a.

Then, investing a dollars in the money market account implies by no dominance
that A;(¢) < aA;(Ar) = aA;. This implies that the Q sigma martingale '(d’)
bounded, and hence a martingale (see [128]). By expression (126), 8;(¢) = O O

22 Sigma martingales are defined and discussed for example in [76, 128]. When a sigma martingale
is continuous, or bounded below, it is a local martingale. Otherwise, in general, local martingales
are a proper subset of sigma martingales.
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Forward Prices

A forward contract is a financial contract written on a risky asset S that obligates
the owner (the long) to purchase the risky asset on the delivery date 7' for a
predetermined price, called the forward price. If the contract is written at time ¢,
denote the forward price by f; r. The payoff to the forward contract at delivery is
[St — fi.r] € ©,,(¢). By market convention, the forward price is selected such that
the forward contract has zero initial value. We consider forwards to commodities.
For our analysis, we only consider underlying risky assets (commodities) whose
liquidation dates exceed the maturity of the contract, e.g. gold, oil, a stock index.
So, without loss of generality, we assume that 7 < t. We define
TAT 1
div, r = A,(AT/ A_dD")' (127)
u

t

where economically div, 7 represents the market price of the cash flow stream for
the time interval [¢, T']. We have in this context

St = At(ST) + diV[’T (128)

N T dD,
s=ro( G+ [

Consider Wr = Srlgrory + Ar [y " -dD, + Ar%:1<7y € ®,,(0). This
represents the time 7" payoff from buying the risky asset at time ¢. Then,

and

133
E)A,+ﬁ?—EQ(A—T
T

f,) A, (129)

X

TAT
S =M | Stlir<ny + AT/ —dD, + Ar 1<y | -
‘ Ay A

Let us define some simpler notation. Let
N X
St =Srlirny + ATA_tl{tsT}
T

and

T At 1
diV[’T = At(AT/ _dDu)
t Au

These represent the payoff to the risky asset at time 7' (less cash flows prior to 7')
and the market price of the cash flow stream between [¢, T], respectively. Then,
using linearity of the market price operator, we obtain

S, = A(Sr) + div, 7. (130)
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Here, A, (ﬁr) = S, — div, 7 represents the time ¢ market price of the payoff to the
risky asset at time 7.

Now, the payoff to the risky asset (S‘T + A7 ftTAz AL dDM) has the bubble
component given by

R T AT 1
8|S A —dD,
' ( T+ T[ A, )
n T AT 1 n T AT 1
= A (S +AT/ —ap,) - AF (8¢ +AT/ Lap,
t Au t Au

Sv TAT 1
T t u

E) A, (131)

TAT 1

We can relate the time ¢ bubble component of (S T+ Ar ft yi

dDM) to our usual

bubble of S;, since under the assumption that 7 < t we have that S’T = Sr,leading
to simplifications of the formulae. Using the fundamental price of the risky asset,
S, we have

T X;
t u T

and the asset price bubble is § given by
ﬁf = Sf - S[*s (133)

when §' > 0. Again, the above expressions simplify since Sr = Sr.
Given these definitions, and using the notation established in Sect. 3, we have
two simple theorems:

Theorem 32 (Forward Price).
fir-p.T) =S, —div,r (134)

Proof. By definition of the contract 0 = A,(Sy — f,.7). Linearity implies 0 =
A,(ST)— fi.rA:(17). Using (128) and the notation for the zero coupon bond yields
the final result. 0 = S; — div, 7 — firp(, T). O

Theorem 33 (Forward Price Bubbles).
ft.T . p(t’ T) = St* _divt.T + ﬂt where ﬂt = St - St*'

f,)At+/83—EQ(ﬁ

T 4D,
A, -8 A )
ATf,)t t(T/t AM)

S
fur - p(.T) = Eq (A—T
T
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Proof. By (134), we obtain f; 7 - p(¢,T) + div, 7 = S, the first property follows.
Finally, f,7-p(t. T) = A/(S1) = Eo (52| ) Ai+8,(S7) = Eo (S£| 7)) A+
B —E (ﬁ .7-") A =6 (A fT &) The last equality uses the identit

‘ o\ ap|Vt)Ar =0\ AT J, 1) quality y

R TArdD ,33
§|Sr+A / ”): S E (—T
t( r r t Au IB[ e AT

This yields the second property. O

}',) A, (135)

Futures Prices

A futures contract is similar to a forward contract. It is a financial contract written
on the risky asset S,with a fixed maturity 7. It represents the purchase of the risky
asset at time 7" via a prearranged payment procedure. The prearranged payment
procedure is called marking-to-market. Marking-to-market obligates the purchaser
(long position) to accept a continuous cash flow stream equal to the continuous
changes in the futures prices for this contract.

The time ¢ futures prices, denoted F; r, are set (by market convention) such that
newly issued futures contracts (at time #) on the same risky asset with the same
maturity date 7', have zero market value. Hence, futures contracts (by construction)
have zero market value at all times, and a continuous cash flow stream equal to
dF; . At maturity, the last futures price must equal the asset’s price Frr = Sr.
Note that even with zero market value at all times, a futures contract can be worth a
lot to an investor.

Let us construct a portfolio long one futures contract. The wealth process of this
portfolio at time 7 is given by

T
1
AT/ —dF, 7 € ®,(0). (136)
0 Au

Note that we do not a priori require futures prices (F; r):>o to be non-negative.

Our definition of the Futures price below is a definition which depends on the
processes themselves, and not (in the case of an incomplete market, where there are
an infinite number of risk neutral measures) on the choice of a risk neutral measure.
In this sense, we are following Definition 3.6 found in the book of Karatzas and
Shreve [98, p. 45]. Of course, this is in contrast to the classical definition of the
futures price, see Duffie [42, p. 143] or Shreve [144, p. 244], where futures price
bubbles are excluded by fiat. Using our futures price process characterization, we
can investigate the relationship between the futures price and the risky asset’s price
bubbles.
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Definition (Futures Price). The futures price process (F;r):>o is any cadlag
semimartingale process such that

T
1
AI(AT/ A_dF”*T) =0forallt €[0,T] and
t u
FT!T - ST.

Note that while this definition is the same as given in [84], it is different
from the original definition in Jarrow et al. [89], where a futures price process is
defined independently of the market price operator. The original definition does not
explicitly use the fact that the futures price is that price which makes the futures
contract have zero value. In contrast, the new definition does. The new definition
nevertheless yields the same theorem as in Jarrow et al. [89], Theorem 7.3, that
futures prices can have their own bubbles that are unrelated to any bubble in the
underlying asset’s price. In fact, a futures price bubbles can be positive or negative.
This is in contrast to bubbles in the underlying asset’s price process.

Theorem 34 (Futures Price Bubbles). Let (y,).>: be a local Q martingale with
y: = 0. Then,
For=Eg(Sr|F)+yr (137)

is a futures price process.

Proof. We need to show that A, (Ar ftT AidFu,T) =O0forallt € [0,T] and Frp =
S7. The second condition is true by inspection. To facilitate the notation, let F,* =
Eq (S| Fo).

T
0= At(AT/ A—dFu,T)
t u

=Af(4 /TldF )1+8(A /TldF )1
= 1\ Tt Au u,T At t Tt Au u,T At

=E /TldF*}' 1+E /Tld Fi 1+8(A/T1dF)1

S\ A e ) T A
But Eg (f;| -LdF}| 7))+ =0.5o,

8,(Ar ftT AldFu,T) =—-Egp (ftT Aldyu) .7-',) . This identity guarantees the value
of the futures contract is always zero. O

We record the following useful corollary which is a slight generalization of
Theorem 3.7, p. 45, of [98].
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1
Corollary 5. Let E ([F.,T, F.,T]f) < ooforall 0 <t < T. A futures contract
has no bubbles if and only if

Fir = Eo (Sr|F1). (138)
Proof. It F,7 = Eo (Sr|F;), then y; = 0 and the statement follows from the

theorem. If there are no bubbles then §, (A7 ftT AldFM,T)ALt = 0. But,

T
0= A(Ar / Larun
Y

= A¥(A /TldF ) 45,4 /TldF =
t Tt Au u,T A[ t Tt AM u,T A[

T
_E /_dFu, f).
Q(t Au T t

Hence, f(; AidF .7 = M, is a martingale (compute the conditional expectation).

1
Then, Y, = fot A,dM, = F;r — Fyr is a martingale since Eg ([Y, Y]tz) < 00

forall 0 < ¢ < T. (See [128].) This implies F; 7 = Eg (Sr|F;) is a uniformly
integrable ' martingale on [0, T']. O

Corollary 6. If a market is complete, futures processes price bubbles do not exist.

Proof. Assuming No Dominance in a complete market, it is a consequence of the
results of [88] that the process § is zero. So Corollary (5) gives the result. O

Theorem 35 (Futures Price Bubbles).
7)
3
+B: — [ﬁ? - EQ (ﬁ_T

T dp,
f,) A =5, (AT / )} Yy (139
T t Au

S
E,TzEQ(Aﬂﬁ)EQ(A—T
T

. S
For==Ep (Ar|F) (St* — dzvt,r) + covo (A—T, At
T

S
]—}) A; 4+ covyp (A—T, Ar
T

-7:1‘) + (140)

Proof. First, algebra yields
Eq (St|F) = Eq (Ar| F) Eq (5
This gives property (140).
Now, A, (S7) = Eq (j—; ‘ f,) A, + 8,(Sy). Hence,

Eg (S71F) = Eg (Ar| 7)) (A (Sr) = 8,(S1) + covg (5. 47| 7).

.7-',) + covg (j—;,AT‘ ]-}).
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But, At(ST) = St — divt!T, S[ = Sf* + ﬂt’ and
ﬂs T u
5:(S1) = B} — Eq (5| ) =8 (ar [ 42).
Substitution yields property (139). O

Property (139) shows that, modulo its own bubble y,, the futures price inherits the
first two types of bubbles present in the risky asset price B! + 2, but not the third
2. It omits the type 3 bubble because the futures price is a bet on the market price
of the risky asset St at time 7. And, when viewed from time ¢, this market price

3
already excludes [,3? —Ep (i—; }',) A — 6 (AT ftT %)]. Property (140) is just
the classical relationship between the futures and the spot price of the risky asset
modified for the existence of the futures price bubble.

Forward vs Futures Prices

This section relates forward and futures prices. In the classical literature (see [31]
and/or [82]) it is known that forward and futures prices are equal under deterministic
interest rates, but unequal (in general) otherwise. To facilitate a comparison with the
classical literature and to develop some intuition concerning forward and futures
price bubbles, we first study an economy with deterministic interest rates before
analyzing the general case.

Deterministic Interest Rates

For this subsection, we let the spot rate be a deterministic function of time. For this
section only, we assume that A7 (S7 — Fo.r) € ©,(0).

Theorem 36 (Deterministic Interest Rates).

For = fir forallt.

Proof. This logic is from Cox et al. [31].

Strategy 1: Let us consider the following trading strategy. At each time ¢ €
[0,T], go long N(¢) units of the futures contract. At each ¢ + dt¢, invest the
proceeds from the futures contract into the money market account (if negative,
short). This implies we purchase N (¢)dF; r dollars of the money market account
at time ¢ + dt, or %

Hold this position until time 7. Because futures contracts always have zero value

and reinvestment in the money market account has no cost, this strategy is self

financing. Let the value of this portfolio be denoted G(¢). Note G(0) = 0. Then

G(t) = A, fot ]\2:) dF, r. Of course, we are interested in time 7. Next choose

N(t) = A,. Then G(T) = Ay [, 4*dF,7 = Ar(Fr.r — For). But Fry = Sy

units. Note that A; is continuous, so A;44; = A;.
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whence G(T) = Ar(St — Fo.r). Note that by assumption, Ar (S — For) €
®,,(0).

Strategy 2:  Consider the following trading strategy with a forward contract. At
time 0 go long ﬁ forward contracts and hold until time 7. This is self
financing since it is a buy and hold position. Let the value of this portfolio be
denoted H(¢). Note H(0) = 0. Then H(T) = ﬁ(ST — for). Now we apply
the assumption of no dominance, and make a comparison at time 7.

G(T)=Ar(St—For), HT) = ﬁ(ST — for).

Under deterministic interest rates ﬁ = p(0, T'). Then both these strategies give
the same payoff at time 7. To avoid dominance, 0 = A¢(G(T)) = Ao(H(T)).
Linearity of Ao implies that For = for. O

This implies that under deterministic interest rates, the classical relation holds.

Stochastic Interest Rates

We now consider the general case.

Theorem 37 (Stochastic Interest Rates).

1 A
fir = fur e cone (51| 7) St =

:3? 13;" At T dDu
e Fe (A_T E) pa ) (AT/, a ) (4h

Proof. Using expression (135), we get:

1
ﬁr%ﬂtT)=E@(&WE)EQ(Z;

3 i
+82—Eo [ L
IBY 0 (AT

1
.7:,) A + covo (ST, —‘.E) A;
Ar

T 4D,
f’)A’_‘S’(AT/f AM)'

Combine this with expression (140) to get:

1
fir - p(t.T) = (Fur — y0) p(t. T) + covg (ST, »
T

(B

TdDu
- ff)Af—& (AT/t - )

Algebra generates the final result. O

-7:t) A; +13t3
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This theorem relates forward prices to futures prices. The first covariance term is
the classical difference between forward and futures prices. However, there are two
additional differences. First, a futures price can have its own bubble y, not present
in the forward price. Second, when the risky asset price has a bubble, there is an
additional difference reflecting the type 3 bubble. The reason for this difference is
that the (present value of the) forward price is “equivalent” to the spot commodity,
and hence reflects all three types of bubbles. In contrast, the futures price is a bet
on the market price St of the commodity at time 7. When viewed from time ¢, this
excludes the type 3 bubble component. Hence, expression (141).

We have not considered here how options interact with futures and bubbles. For
this and more, we refer the reader to [84].

10 Testing for Bubbles in Real Time

No matter how many symptoms of the coming trouble there may have been, panics always
come with a shock and a tremendous surprise and disappointment.

—President W.H. Taft, “The Panic of 1907,” a speech given before the Merchants Association
of Boston, Massachusetts, December 30, 1907; see [149, p. 212].

It might seem self evident that the presence of bubbles in the prices of risky
financial assets is an important phenomenon to understand. Economists have studied
it for a long time, but it is only within the last 10 years that the mathematical
finance community has been trying to understand and analyze the phenomenon, and
this paper is hopefully part of that effort. But going beyond understanding how it
happens to the detection of when it is happening (if not necessarily why it happens,
which is more properly the domain of economists [see for example [55] or more
recently [67]]) seems especially timely, given the often disastrous consequences
of the aftermath of large, economy or sector wide bubbles. But it also interesting
on a more individual level, both for investors for the obvious reasons, but also
for regulators for a more subtle reason. An example perhaps is that of banks and
large financial institutions. After the banking crisis in the U.S. in 2008, and the
banking crisis in much of Europe in 2011/2012, the detection of underlying bubbles
is especially important. One reason, for example, is in the evaluation of capital
reserves. Banks are required to hold capital reserves roughly in proportion to their
capital at risk.?® This is important for banking health, and helps to prevent runs on
banks, but it does cut into profits, since capital reserves are not available for risky
investment opportunities. Left to themselves, and in the presence of competition,
banks would whittle away at their capital reserves until they were meaningless;
thus it is important that government regulators ensure that proper capital reserves
are maintained. To do this, regulators must evaluate capital reserves, and if some

23How one measures capital at risk (involving Value at Risk and the theory of risk measures) is
another thorny issue that we do not even attempt to address in this article.



A Mathematical Theory of Financial Bubbles 67

significant proportion of those reserves are in assets undergoing bubble pricing, then
they are worth less than the face value at which they are undoubtedly evaluated,
through the marked to market procedures.

This might help to explain why the US Federal Reserve is repeatedly questioned
about what it plans to do on the subject of financial bubbles. Indeed, Federal Reserve
Chairman Ben Bernanke said in 2009 at his confirmation hearings [12]:

It is extraordinarily difficult in real time to know if an asset price is appropriate or not.

Dr. Bernanke is correct: Without a quantitative procedure, experts often have
different opinions about the existence of price bubbles. A famous example is the
oil price bubble of 2007/2008. Nobel prize winning economist Paul Krugman wrote
in the New York Times that it was not a bubble, and 2 days later Ben Stein wrote in
the same paper that it was.

William Dudley, the President of the New York Federal Reserve, in an interview
with Planet Money in 2010 [59] stated

...what I am proposing is that we try to identify bubbles in real time, try to develop tools
to address those bubbles, try to use those tools when appropriate to limit the size of those
bubbles and, therefore, try to limit the damage when those bubbles burst.

A third example is from a report by Claire Baldwin of Reuters [8] of June 2,
2011:

When LinkedIn shares jumped 109.4 % on their first day of trade, Chicago Fed president
Charles Evans said he was withholding judgment over whether a new dot-com bubble was
under way. “I have no way of knowing that those aren’t just exactly the right valuations,”
Mr Evans told reporters after a speech in Chicago.

And a fourth example (that we found in [125]) comes from Donald Kohn, Federal
Reserve Board Vice Chairman, who on March 24, 2010 declared:

Federal Reserve policymakers should deepen their understanding about how to combat
speculative bubbles to reduce the chances of another financial crisis.

S.M Davidoft, writing in 2011 in the New York Times [33] made a case for a gold
bubble, and then in the same article made a case for there not being a gold bubble;
this author found both of his arguments to be convincing(!). His article inspired the
investigation [80].

Finally we note that the method proposed here for bubble detection is only one
proposed of many. See for example [148] where the author (Matt Swayne, an eHow
contributor) purports to be able to detect a gold bubble. What perhaps distinguishes
the method presented in this paper from others such as that of Swayne is that it
is mathematically and statistically based; although this is not to say it is without
controversy. We discuss the leading two alternative methods, and some of this
controversy, in Sect. 11.

For a risky asset such as a given stock, we need to be able to tell whether or
not, under the risk neutral measure, the asset price is a martingale, or is only a local
martingale which is not a true martingale (called a strict local martingale). This is
incredibly hard to do, but there are a few situations where we have a chance to do so.
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Indeed, we have already presented these situations in Sect. 4. We have three cases:
that of the stock price following a stochastic differential equation of the form (where
B is a standard Brownian motion):

dX, = 0(X,)dB, + jdt;  Xo = x (142)

and the cases of the theorem of Andersen and Piterbarg (Theorem 7) and that of
Lions and Musiela (Theorem 8) which handle situations that fit into what is known
as the Heston paradigm of stochastic volatility. As far as we know, these last two
situations have not been exploited for the purposes of bubble detection, and they
might be quite difficult to analyze due to the precision required in order for the
confidence intervals to be of reasonable size. However the framework of (142) has
indeed been studied, and such an analysis appears in the articles [78—80]. We present
areview of it here. We note that we do not require the stock price to follow (142) at
all times, only during the period of investigation. One could have instead of (142)
a regime change model (for example, see [62]), where during different periods of
volatility the stock price might evolve according to different stochastic differential
equations.

Due to the presence of the drift term u,dt in (142) we can assume we are dealing
with an incomplete market model. However since all risk neutral measures in effect
remove the drift, under any risk neutral measure Q the price process X will follow
the same equation

dX; = o(X;)dB;; Xo=x (143)
By the results presented in Sect.4 under any of the risk neutral measures we have

that X in (143) is a strict local martingale if and only if the non-random calculus
integral

®  x
/ dx <oo; anya >0 (144)
« 0(x)?

Therefore to determine whether or not X of (143) is a strict local martingale,
we “only” need to know the function x — o(x), and in particular to know it
for asymptotically large values of x. This is an impossible task. First of all, it is
completely non-trivial to estimate accurately the function o (x) from data. The good
news is that this is the subject of a fair amount of research, and Jean Jacod has
effectively solved this issue in two important papers [71, 72]. We outline our own
approach to this problem as well. The bad news is that one can only “know” the
coefficient o(x) at those values x that the stock price X attains. Since any stock
price is a fortiori bounded in range, in a finite time interval, we cannot know the
asymptotic behavior of o (x) no matter how accurately we can estimate it for those
x in the range of X. At this juncture, we could simply give up; but instead we try
to do the best we can do, with the information we have. Therefore we smooth our
estimate of ¢ where we can know it, and we analyze its behavior. It seems to be
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often the case that the behavior of o is clear, and if it seems to be tending off to co
as x /" oo, then we make the leap that this behavior will continue even where we
do not see 0. Thus the problem reduces to the issue of the asymptotic rate in which
o tends to oo, when it does. We have tested this idea with data, and it seems to work
in almost all of the cases in which we have tested it. By “seems to work” we mean
that when the asset being tested went through a bubble, out test indicates that it did
so. When the asset did not go through a bubble, our test indicates that there was no
bubble. And when it is not obvious whether or not the asset went through a bubble,
our test gives any of three results: a bubble, no bubble, or the test fails to decide. So
let us now proceed to the method.

Estimation of the Diffusion Coefficient in a Bounded Domain

In addition to the work of Jacod discussed above [71, 72], many authors have
proposed estimators for the volatility function o(x). D. Florens—Zmirou [52]
proposed a non parametric estimator based on the local time of the diffusion process.
We present this estimator later in this section, when we treat the example of
Infospace. (See Theorems 44 and 45.) V. Genon Catalot and J. Jacod [56] proposed
an estimation procedure for parameterized volatility functions. M. Hoffmann [64]
constructs a wavelets based estimator.

In the article [78] we introduce a smooth kernel estimator, in the same spirit as
that of Jacod in [72]. The estimator is constructed from the two quantities:

VX——l T Sit1 —8i)? 45
= i§=0¢>( (S =S (145)
n—1
1 Si—x
Ly = E : 146
n nhn i=0¢)( hn ) ( )

The kernel function ¢ is a C® positive function with compact support and such
that fR+ ¢ = 1. We are interested in the convergence of V¥ and L} to o%(x)L*

and L* respectively, where h, satisfies nh2 — oo. The following theorem is

established in [78], where £, is a sequence of positive real numbers converging
to 0 and satisfying some constraints:

Theorem 38. If nh? — oo then S = Z—”: converges in probability to 0% (x) and

provides a consistent estimator of o> (x).
Remark 39. In [72] Jacod is able to take h, = \/L% and he also obtains a rate of

convergence and an associated Central Limit Theorem. His method of proof is a bit
more complicated that the one presented in [78].
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Estimation of the Diffusion Coefficient’s Asymptotic Behavior

Again we let h, be a sequence of positive real numbers converging to 0 and
satisfying some constraints. We construct an estimator of o (x) given by:

Z?:l 1{\Sr,-—x\<hn}n(Sti+1 - Sl‘i)z

Sn(x) =
> i1 Ly, —xl<hn}

(147)

The previous estimator for the volatility function o (x), presented in Theorem 38
is over a compact domain representing the observation interval. In this section, for
the stochastic differential equation (143) we relax this boundedness assumption
on the volatility function o(x). We now assume that o > 0 on I =]0, oo|, it is
identically null elsewhere and it satisfies ﬁ e Ll (I).

This is the Engelbert Schmidt condition (see, e.g., [47] or [97]) under which
the SDE has a unique weak solution S that does not explode to oo. We let P be
the law of the solution on the canonical space 2 = C([0, T], R) equipped with the
canonical filtration (F;);ep,7) and the canonical process S = (S;):ef0,7]. We also
assume that o is C3 bounded and with bounded derivatives on every compact set.
We add in passing that these hypotheses imply the existence of a strong solution,
as well. Let 7o(S) be the first time S hits zero. The next theorem is again taken
from [78].

Theorem 40. Suppose o(x) has three continuous derivatives. Assume that nh —
0 and nh, — oo. Then conditional on {to(S) > T}, S,(x) given in (147) converges
in probability to 6*(x). The same holds for our smooth kernel estimator under the
constraint nh’ — oc.

Sketch of a Proof. Let T, = inf{t.S, > q} and 7, = inf{t,S[ < %}. Then
lim, 500 T, = 70(S) and limy o0 T; = o0 since S does not explode to co. We
can take 0,, to be a function bounded above and below away from zero with
three bounded derivatives such that 0, ,(x) = o(x) for all % < x < q. Let
(S7")iei0.77 be the unique strong solution to the SDE dS7? = o,,(S/")dw,.
Introduce now S7¢ (x), the estimator computed on the basis of (Stp ’q),e[oﬁr] as
in (147) or using our smooth kernel estimator. Then under suitable constraints
on the sequence (h,),>1, S#¥(x) converges in probability to cr;’q (x). Moreover
Sy 4(x) = Sy(x)if T < T, At,. Then it follows that S, (x) converges in probability
to o%(x), in restriction to the set {T" < 7(S)}. O

Note that we have shown only the convergence of the estimators to the function
o. We can also obtain confidence intervals giving the accuracy of our predictions
using the central limit results of Jacod, as mentioned in the above Remark 39, but
we do not do so here. Such techniques are treated in detail in the recent book [74].
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Bubble Detection

As we already discussed in the first part of this section (Sect. 10), while we can
estimate o reasonably accurately, we can only do so on the part of the domain of
o that is given by the range of X. But whether or not X is a strict local martingale
under any and all risk neutral measures we need to determine whether or not the
integral allows one to decide whether or not the following integral converges:

/a #ds any a > 0. (148)

We recall that if (148) is finite, then X is a strict local martingale; otherwise it is a
true martingale. Therefore we need to know the behavior of x — o (x) as |x| — co.
Our procedure uses the theory of Reproducing Kernel Hilbert Spaces (RKHS) and it
consists of two steps:

e We first interpolate an estimate of ¢ within the bounded interval where we
have observations, and in this way we lose the irregularities of non parametric
estimators.

* We next extrapolate our function o by choosing a RKHS from a family of Hilbert
spaces in such a way as to remain as close as possible (on the bounded interval
of observations) to the interpolated function provided in the previous step.

This represents a new methodology which allows us to choose a good extrapolation
method. We do this via the choice of a certain extrapolating RKHS, which—once
chosen—determines the tail behavior of our volatility o. If we let (H,,;)en denote
our family of RKHS, then any given choice of m, call it m, allows us to interpolate
perfectly the original estimated points, and thus provides a valid RKHS H,, with
which we extrapolate o. But this represents a choice of m( and not an estimation.
So if we stop at this point the method would be as arbitrary as parametric estimation.
That is, choosing m is analogous to choosing the parameterized family of functions
which fits o best. The difference is that we do not arbitrarily choose m1. Instead we
choose the index m given the data available. In this sense we are using the data
twice. To do this we evaluate different RKHS’s in order to find the most appropriate
one given the arrangement of the finite number of grid points from our observations.

The RKHS method (see [65, 78]) is intimately related to the reconstruction of
functions from scattered data in certain linear functional spaces. The reproducing
kernel Q(x,x") that is associated with an RKHS H (D) in the spatial domain D,
over the coordinate x, is unique and positive and thus constitutes a natural basis for
generic interpolation problems.

Reproducing Kernel Hilbert Spaces

Let H(D) be a Hilbert space of continuous real valued functions f(x) defined on
a spatial domain D. A reproducing kernel Q possesses useful properties for data
interpolation and function approximation problems.
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Theorem 41. There exists a kernel function Q(x, x'), the reproducing kernel, in
H (D) such that the following properties hold:

(i) Reproducing property. For all x and y, and for all f € H(D),

(f(x), 0.2
(Qx.x). 0% .

fx)
Q(x,y)

The prime indicates that the inner product (-, -)/ is performed over x.

(ii) Uniqueness. The RKHS H(D) has one and only one reproducing kernel
Q(x,x). )

(iii) Symmetry and Positivity. The reproducing kernel Q(x,x ) is symmetric, i.e.
0(x',x) = Q(x.,x"), and positive definite, i.e.:

Z Zci O(xi, xk)e =0

i=1k=1

for any set of real numbers c; and for any countable set of points (X;)ie[1 n]-

For a proof of this theorem, we refer the reader to the classic works of N. Aronszajn
[5,6].

In this framework, interpolation is seen as an inverse problem. The inverse
problem is the following. Given a set of real valued data (f;)ieni am) at M distinct
points Sy = x;,i € [1, M] in a domain D, and a RKHS H(D), find a suitable
function f(x) that interpolates these data points. Using the reproducing property,
this interpolation problem is reduced to solving the following linear inverse
problem:

Vi e [1,M], f(x;) = (f(x), Q(x;, X)) (149)

where we need to invert this relation and exhibit the function f(x) in H(D). We
refer the reader to [65] for a detailed discussion.

We first present the normal solution that allows an exact interpolation, and second
the regularized solution that yields quasi interpolative results, accompanied by an
error bound analysis. Then in the next section, we will construct a family of RKHS’s
that enable us to interpolate not o (x) but ﬁ This transformation makes natural
the choice of the family of RKHS’s. Note that for every choice of an RKHS, one can
construct an interpolating function using the input data. For this reason, we define a
family of Reproducing Kernel Hilbert Spaces that encapsulate different assumptions
on the asymptotic forms and smoothness constraints. From this set, we choose that
RKHS which best fits the input data in the sense explained below.
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Normal Solutions: The most straightforward interpolation approach is to find the
normal solution that has the minimal squared norm || £||> = (f @), F&Y subject
to the interpolation condition (149).

That is, given a set of real valued data { f;},1 < i < K specified at K distinct
points in a domain D, we wish to find a function f that is the normal solution:

M
f(x) = ¢i0(xi.x)

i=1

where the coefficients ¢; satisfy the linear relation:

M
Vk € [1LM].)Y ¢ Q(xi.xk) = fi. (150)

i=1

If the matrix Q ), whose entries are Q(x;, xi) is “well conditioned,” then the linear
algebraic system above can be efficiently solved numerically. Otherwise, we use
regularized solutions.

Regularized Solutions: When the matrix Qs is “ill conditioned,” regularization
procedures may be invoked for approximately solving the linear inverse problem. In
particular, the Tikhonov regularization procedure produces an approximate solution
f«, which belongs to H(D) and that can be obtained via the minimization of the
regularization functional

10 = FIP +ellfIP

with respect to f(x).>* Note that here F is the data vector (f;) and the residual
norm ||Q f — F||? is defined as:

M
10f = FIP =Y (f(x). Q(xi.x)) = fi).

i=1

The regularization parameter « is chosen to impose a proper balance between the
residual constraint || Q f — F|| and the magnitude constraint || f||. The regularized
solution has the form

M
So¥) =) e O(xi, %) (151)

i=1

24See for example [65] for the details of how to go about this.
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where the coefficients ¢ satisfy the linear relation:

M
Vi € [1.M].Y el (Q(xi. xi) + edix) = fi (152)

i=1

where §;  is the Kronecker delta function. Note that for « > 0, O, whose entries
are [Q(x;, xx) + a; ;] is symmetric and positive definite and the problem can now
be solved efficiently. Also, the RKHS interpolation method leads to an automatic
error estimate of the regularized solution (see [65] for more details).

10.1 Construction of the Reproducing Kernels

We consider reciprocal power reproducing kernels that asymptotically behave as
some reciprocal power of x, over the interval [0, co[. We are interested in this type of
RKHS because this is a reasonable assumption for f(x) = a+m The CEV model®
dS; = SYdW, where y > 0 is a local volatility model proposed in the literature
and satisfies this assumption, with f.,(x) = x% We also assume that the function

f(x) possesses the asymptotic property
lim x* f®(x) =0,Vk € [1,n —1].
X—>00

for some n > 1 that controls the minimal required regularity. This property is often
satisfied by the volatility functions used in practice. For instance, xk fcg? (x) =
w converges to 0 as x tends to infinity, for all k. This is also satisfied
by many volatility functions that explode faster than any power of x, for example
o(x) = x’ef*, with y > 0 and B > 0. The condition appears restrictive only
when o and its derivatives explode too slowly or when o is bounded, however in
these cases, it is likely that there is no bubble and no extrapolation using this RKHS
theory will be required. We would like to emphasize that the asymptotic property
satisfied by f is the key point for the whole method to work as this may be seen
from Proposition 2 below.

Concerning the degree of smoothness, we usually take in practice n to be 1, 2 or
3. We can define now our Hilbert space

H, = H,([0,00]) = {f e C"([0,00]) | lim x* f®)(x) = 0,Vk € [1,n - 1]}.

25“CEV” stands for constant elasticity of volatility.
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We next need to define an inner product. A smooth reproducing kernel g®f(x, x/)
can be constructed via the choice:

oo ,n £(n) n ,(n)
<f,g>nm=/ Y W) ¥ g™ () dy
’ 0 n! n! w(y)

where w(y) = %,,, is the asymptotic weighting function. From now on we consider
the RKHS H, ,, = (H,, <, >5 m). The next proposition can be shown following the
steps in [65].

Proposition 1. The reproducing kernel is given by
R0 (x.y) = 2= " VB + Ln) oy (—n 4+ Lm + Ln+m+ 1,= =
Vl m

where x~ and x. are respectively the larger and smaller of x and y, B(a, b) is the
beta function and F 1(a, b, c, 7) is Gauss’s hypergeometric function.

Remark 42. The integers n — 1 and m + 1 are respectively the order of smoothness
and the asymptotic reciprocal power behavior of the reproducing kernel g% (x, ).
This kernel is a rational polynomial in the variables x and y and has only a finite
number of terms, so it is computationally efficient.

As pointed out above, any choice of n and m creates an RKHS H,, and
allows one to construct an interpolating function f, ,, (x) with a specific asymptotic
behavior. The following result gives the exact asymptotic behavior.

Proposition 2. For every x, g®F(x, y) is equivalent to y,ﬁ%B(m + 1, n) at infinity
as a function of y and

M
lim x" %' £, (x) = n*B(m + 1,n) Zcf‘

X—>00 4
i=l1

where f, is defined as in (151) and the constants c{* are obtained as in (152). Hence,
llele c¥ # 0, then fy(x) is equivalent to “ B(ffill 1) Z —

Choosing the Best m

The choice of m allows us to decide if the integral in (148) converges or diverges.
If m > 1, there is a bubble. This section explains how to choose m. Let us first
summarize the idea. We choose the RKHS by optimizing over the asymptotic weight
m that allows us to construct a function that interpolates the input data points and
remains as close as possible to the interpolated function on the finite interval D.
This optimization provides an 7z which allows us to construct o7(x). We employ a
four step procedure:



76 P. Protter

Procedure 43. (i) Non-parametric estimation over D: Estimate o(x) using our
non-parametric estimator on a fixed grid xi, ..., xpy of the bounded interval
D = [minS, max S] where minS and max S are the minimum and the

maximum reached by the stock price over the estimation time interval [0, T]. In

|
our illustrative examples, we use the kernel ¢ (x) = %e w21 for |x| < 1, where

¢ is the appropriate normalization constant. The number of data available n
and the restriction on the sequence (hy),>1 makes the number of grid points M
relatively small in practice. In our numerical experiments, 7 < M < 25.

(ii) Interpolate o(x) over D using RKHS theory: Use any interpolation method
on the finite interval D to interpolate the data points (0(X;))ie(i,m)- Call the
interpolated function o®(x). For completeness, we provide a methodology to
achieve this using the RKHS theory. However, any alternative interpolation
procedure for a finite interval could be used.

Define the Sobolev space: H" (D) = {u € L*(D) | Yk € [1,n],u® € LZ(D)}
where u® is the weak derivative of u. The norm that is usually chosen is
ull> = Y7 _ I u®)2(x)dx. Due to Sobolev inequalities, an equivalent and more
appropriate norm is ||ul| = [, u?(x)dx + T% fD(u(”))z(x)dx. We denote by K,‘{:f
the kernel function of H" (Ja, b[), where in this case D =la, b|. This reproducing
kernel is provided forn = 1 and n = 2 in the following lemma.

Lemma 5.

K¢ (x,y) =

,T

m cosh(z(b — x-)) cosh(z (x< —a))

K5 (x,y) = Ly (x2)

and L (t) is of the form Z?:l 214(:1 Lib; (Tt) by (Tx).

We refer to [152, Eq. (22) and Corollary 3 on page 28] for explicit analytic
expressions for Ly, and by, which while simple, are nevertheless tedious to write. In
both equalities, x~. and x - respectively stand for the larger and smaller of x and y.
In practice, one should check the quality of this interpolation and carefully study the

outputs by choosing different T’s before using the interpolated function o = \/lf_h

in the algorithm detailed above, where f?(x) = ZM ch KP (xi,x), forall x € D

i=1% T

and forallk € [1, M], Y1 ¢ D (xixk) = fi = m

(iii) Deciding if an extrapolation is required: If the interpolated estimate of o (x)
appears to be a bounded function and not tending to +00 as x +— oo, or if
the implicit extended form of the interpolated estimate of o (x) implies that the
volatility does not diverge to oo as x — oo and remains bounded on R,
no extrapolation is required. In such a case f:o UZL(X)dx is infinite and the
process is a true martingale. If one decides, however, that o (x) diverges to oo
as x — oo, then the next step is required to obtain a “natural” candidate for
its asymptotic behavior as a reciprocal power.
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(iv) Extrapolate o” (x) to Rt using RKHS: Fix n = 2 and define

= arg min / |6y — ob|2ds (153)
m=0 [a.00[ND

where f, = 2 is in the RKHS H,,, = (Hm ([0, 00]), {, )rP). By definition,
all o,, will mterpolate the input data points and o has the asymptotic behavior
that best matches our function on the estimation interval. a is the threshold
determining closeness to the interpolated function. Choosing a too small is
misleading since then it would account more (and unnecessarily) for the
interpolation errors over the finite interval D than is desirable. We should
choose a large a since we are only interested in the asymptotic behavior of
the volatility function. In the illustrative examples below, the threshold a in
(153) is chosen to be a = max S — %(max S —min S).

Ilustrative Examples from the Internet Dotcom Bubbles of 1998-2001

We illustrate our testing methodology for price bubbles using some stocks that are
often alleged [111,159] as experiencing internet dot com bubbles. We consider those
stocks for which we have high quality tick data. The data was obtained from WRDS
[161]. We apply this methodology to four stocks: Lastminute.com, eloys, Infospace,
and Geocities. The methodology performs well. The weakness of the method is
the possibility of inconclusive tests as illustrated by eZoys. For Lastminute.com and
Infospace our methodology supports the existence of a price bubble. For Infospace,
we reproduce the methodology step-by-step. Finally, the study of Geocities provides
a stock commonly believed to have exhibited a bubble (see for instance [111, 159]),
but for which our method says it did not. We now provide our analyzes.

Lastminute.com: Our methodology confirms the existence of a bubble. The stock
prices are given in Fig. 4.

The optimization performs as expected with the asymptotic behavior given by
m = 8.26, which means that o (x) is equivalent at infinity to a function proportional
to x* with « = 4.63. We plot in Fig. 5 the different extrapolations obtained using
different reproducing kernel Hilbert spaces H», and their respective reproducing
kernels quJﬁ.

Figure 5 shows that m is between 7 and 9 as obtained by the optimization
procedure. The orange curve labelled (sigma) is the interpolation on the finite
interval D obtained from the non-parametric estimation procedure where the
interpolation is achieved using the RKHS theory as described in step (ii) with the
choice of the reproducing kernel Hilbert space H (D) and the reproducing kernel
KTy S:maxS Then m is optimized as in step (iv) so that the interpolating function
om(x) is as close as possible to the orange curve in the last third of the domain D,
i.e. the threshold a in (153) is chosen to be a = max S — %(max S — min ).
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Fig. 4 Lastminute.com stock prices during the alleged dot com bubble
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Fig. 5 Lastminute.com. RKHS estimates of o (x)

eToys: While the graph of the stock price of eToys as given in Fig. 6 makes the
existence of a bubble plausible, the test nevertheless is inconclusive. Different
choices of m giving different asymptotic behaviors are all close to linear (see Fig. 7).

Because they are so close to being linear, we cannot tell with any level of
assurance that the integral in question diverges, or converges. We simply cannot
decide which is the case. If it were to diverge we would have a martingale (and
hence no bubble), and were it to converge we would have a strict local martingale
(and hence bubble pricing).

The estimated 71 is close to one. In Fig. 7, the powers « are given by %(m +1)
where m is the weight of the reciprocal power used to define the Hilbert space and
its inner product. We plot the extrapolated functions obtained using different Hilbert
spaces H, ,, together with their reproducing kernels qgfn. Figure 8 shows that the
extrapolated functions obtained using these different RKHS H, ,, produce the same
quality of fit on the domain D.
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Fig. 6 Etoys.com Stock Prices during the alleged Dotcom Bubble
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Fig. 7 eToys. RKHS estimates of o (x)

Infospace: Our methodology shows that Infospace exhibited a price bubble. We
detail the methodology step by step in this example. The graph of the stock prices
in Fig. 9 suggests the existence of a bubble.

We present a summary of the estimator of Florens—Zmirou. Her estimator is
based on the local time of a diffusion and is based on an analysis of local times.
The local time is given by

1T
Lr(x) = EIE;I}) 2_6 -/(; 1{|Ss—x|<e}d<Sa S)s
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Fig. 8 eToys. RKHS estimates of o (x), quality of fit
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Fig. 9 Infospace Stock Prices during the alleged Dotcom Bubble
where d (S, S)s = 02(S,)ds so that £7(x) = o%(x)Lr(x), and

.17
Lr(o) = lim 5o [ 1gss-ads

lr(x)

P. Protter

Hence, the ratio Ire) = 0% (x) yields the volatility at x. These limits and integrals

can be approximated by the following sums:

T n
n - 1 _
7(X) i D s, —xl<h

i=1

T
?(X) - W Z 1{|St,~ —X|<hn}n(Sl‘i+1 - Sti)2

i=1
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Fig. 10 Infospace. Non-parametric estimation using h, =

o]

n

where £, is a sequence of positive real numbers converging to 0 and satisfying some
constraints. This allows us to construct an estimator of o (x) given by:

Soio Lys, —xl<nyn(Siy, — S4)?
> im Ls, —xl<hy

Sp(x) = (154)

Indeed, Florens—Zmriou [52] proves the following theorems.

Theorem 44. If o is bounded above and below from zero, has three continuous and
bounded derivatives, and if (hy,),>1 satisfies nh, — 0o and nh;t — 0 then S, (x) is
a consistent estimator of o> (x).

The proof of this theorem is based on the expansion of the transition density.
The choice of a sequence /, converging to 0 and satisfying nh, — oo and nhﬁ —
0 allows one to show that L%(x) and ¢%(x) converge in L*(dQ) to Lr(x) and
0%(x)Lr(x), respectively. Hence S, (x) is a consistent estimator of o%(x), for any
x that has been visited by the diffusion.

Another result, developed in [78], is useful to obtain confidence intervals for the
estimator S, (x) of o (x).

Theorem 45. If moreover nhft — 0 then ,/N;’(S”(x) — 1) converges in dis-

02(x)
tribution to ﬁZ where Z is a standard normal random variable and N =
>i=1 Lais, —xl<hy-

(i) We compute the Florens—Zmirou’s estimator and our smooth kernel local time

based estimator, using a sequence 4, = -I-. The result is not smooth enough
n3
as seen in Fig. 10.
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Fig. 12 Infospace. Interpolation o®(x) on the compact domain
(i) We use the sequence h, = 1 to compute our estimators (the number of
7

points where the estimation is pnerformed is smaller, M = 11). Theoretically, we
no longer have the convergence of the Florens—Zmirou’s estimator. However,
as seen in Fig. 11, this estimator is robust with respect to the constraint on
the sequence h,. F-Z, LowerBound and UpperBound are Florens—Zmirou’s
estimator together with the 95 % confidence bounds her estimation procedure
provides. J-K-P is our estimator.

(iii)

We obtained in (ii) estimations on a fixed grid containing M = 11 points, and

we now construct a function o (x) on the finite domain (see Fig. 12) which
perfectly interpolates those points. Here the RKHS used is H'(D) where D =

[min S, max S] together with the reproducing kernels K

D
1,7°

where t takes the
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Fig. 13 Infospace. Final estimator and RKHS extrapolation

values 1, 3, 6 and 9. The functions obtained using these different reproducing
kernels provide the same quality of fit within D and we can use any of the four
outputs as the interpolated function, o, over the finite interval D.

(iv) Finally we optimize over m and find the RKHS H,, that allows the best
interpolation of the M = 11 estimated points and such that the extrapolated
function &(x) remains as close as possible to o (x) on the third right side of
D. Of course, the reproducing kernels used in order to construct the functions
0,, and minimize the target error as in (153) are qgfn. We obtainm = 6.17 (i.e.

i+l

2

o= = 3.58) and we can conclude that there is a bubble.

Remark 46. One might expect @ ~~ 1.8 as suggested by the green curve in Fig. 13.
But this is different from what the RKHS extrapolation has selected. Why? In
Fig. 13, we plot the RKHS extrapolation obtained when o« = 1.8. We have proved
that

m+1

M
X
lim —— =4B(m + 1,2 Ci.

358

The numerlcallcéomputanons give: 0(X) & 13555 When using optimization over m
ol

and 0(x) ~ £¢ when fixing « = 1.8. Independent of the power chosen, the ¢;’s
and hence the constant of proportionality are automatically adjusted to interpolate
the input points. But, as can be seen in Fig. 14, the power 3.58 is more consistent in

terms of extending “naturally” the behavior of 6 (x) to R*.

Geocities: Our methodology shows that this stock did not have a price bubble. The
stock prices are graphed in Fig. 15.
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Fig. 15 Geocities Stock Prices during the alleged Dotcom Bubble

This is an example where we can stop at step (iii) of Procedure 43: we do not need
to use RKHS theory to extrapolate our estimator in order to determine its asymptotic
behavior. As seen from Fig. 16, the volatility is a nice bounded function, and any
natural extension of this behavior implies the divergence of the integral f:o a+(x)dx'
Hence the price process is a true martingale.
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Fig. 16 Geocities. Estimates of o

More Recent Examples
The Case of the IPO of LinkedIn

After giving talks based on the results of [78] with the examples of the dot com
era, colleagues asked for examples from more recent and timely stocks. One of
the times this occurred, at a conference in Ascona, Switzerland, May 23-27, 2011,
we happened to read a New York Times article by Julie Creswell [32] discussing
whether or not in the aftermath of the LinkedIn IPO the stock price had a bubble.
Inspired by this controversy we obtained stock price tick data from Bloomberg.?
And, we used our methodology to test whether LinkedIns stock price is exhibiting a
bubble. We found, definitively, that there was indeed a price bubble in the opening
days of the stock.

To perform our test, we obtained minute by minute stock price tick data for the
4 business days 5/19/2011 to 5/24/2011 from Bloomberg. There are exactly 1,535
price observations in this data set. The time series plot of LinkedIn’s stock price
is contained in Fig. 17. The prices used are the open prices of each minute but the
results are not sensitive to using open, high or lowest minute prices instead.

The maximum stock price attained by LinkedIn during this period is $120.74 and
the minimum price was $81.24. As evidenced in this diagram, LinkedIn experienced
a dramatic price rise in its early trading. This suggests an unusually large stock price
volatility over this short time period and perhaps a price bubble.

Let us recall from our treatment of the dot com bubbles that we just treated
previously in this section, that our bubble testing methodology first requires us to
estimate the volatility function o using local time based non-parametric estimators.

26We thank Arun Verma of Bloomberg for quickly providing us with high quality tick data.
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Fig. 17 LinkedIn Stock Prices from 5/19/2011 to 5/24/2011. (The observation interval is 1 min)

Zmirou's estimator [
X sigma_Zmirou |lowerBound upperBound [LocalTime [NbrePoint:
84.855' 19.0354 17.8579 204816  0.0393737 414
91.5149 24.0447 22.6762 25.6951  0.0472675 497
98.3648 22.4606 20.9575 24.3417  0.0330968 348
1056.215 37.8995 34.9693 41.7162  0.0239666 252
112.065 86.192 68.0373 137.119 0.00199722 21
118.915 221.362 113.979 1e+006 9.51056e-005 1
125.764 0 0 1e+006 0 0|
IJKP Estimator|
X [sigma_JKP _|LocalTime

84.685| 13.4404  0.0619793
91.5149 19.1038 .0259636
98.3648 27.?474' _0223?1§

105.215 38.781  0.0229719
112.065 69.481 0.000708326
118.915/|3.95e+014 0
125.764|3.95e+014 0

Fig. 18 Non-parametric volatility estimates

We use two such estimators. We compare the estimation results obtained using
both Florens—Zmirou’s®’ estimator (see Theorems 44 and 45) and the estimator
developed in [78]. The implementation of these estimators requires a grid step A,
tending to zero, such that nh, — oo and nhi — 0 for the former estimator, and
nhﬁ — oo for the later one. We choose the step size h, = l% so that all of these

conditions are simultaneously satisfied. This implies a gridnof seven points. The
statistics are displayed in Fig. 18.

Since the neighborhoods of the grid points $118.915 and $125.764 are either
not visited or visited only once, we do not have reliable estimates at these points.
Therefore, we restrict ourselves to the grid containing only the first five points.

2THereafter referred to as Zmirou’s estimator.
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Fig. 19 Non parametric volatility estimation results

We note that the last point in the new grid $112.065 still has only been visited
very few times.

When using Zmirou’s estimator, confidence intervals are provided. The confi-
dence intervals are quite wide. Given these observations, we apply our methodology
twice. In the first test, we use a five point grid. In the second test, we remove the
fifth point where the estimation is uncertain and we use a four point grid instead.
The graph in Fig. 19 plots the estimated volatilities for the grid points together with
the confidence intervals.

The next step in our procedure is to interpolate the shape of the volatility function
between these grid points. We use the estimations from our non parametric estimator
with the five point grid case. For the volatility time scale, we let the 4 day time
interval correspond to one unit of time. This scaling does not affect the conclusions
of this paper. When interpolating one can use any reasonable method. We use both
cubic splines and reproducing kernel Hilbert spaces as suggested in [78], Sect. 5.2.3
item (ii). The interpolated functions are in Fig. 20.

From these,we select the kernel function K ; as defined in Lemma 10 in [78],
and we choose the parameter T = 6.

The next step is to extrapolate the interpolated function o using the RKHS
theory to the left and right stock price tails. Here we refer the reader to our treatment
given in Sect. 10.1, and do not repeat the necessities here. The reader desiring a
detailed treatment for this specific example is referred to the published article [79].
We mention only that we take f(x) = —'— and define the Hilbert space

o2(x)

H, = H,([0.00[) = {f € C"([0.00[) | lim x*f®(x) =0forall0 <k <n—1}

where n is the assumed degree of smoothness of f.
For n € {1,2} fixed, we construct our extrapolation ¢ = 0, as in [78], 5.2.3
item (iv), by choosing the asymptotic weighting function parameter m such that
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Fig. 20 Interpolated volatility using cubic splines and the RKHS theory
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Fig. 21 RKHS based extrapolation of o

Sn = UL% isin H, ,, 0,y exactly matches the points obtained from the non parametric

estimation, and o,, is as close (in norm 2) to o on the last third of the bounded
interval where o is defined. Because of the observed kink and the obvious change
in the rate of increase of o’ at the forth point, we choose n = 1 in our numerical
procedure. The result is shown in Fig. 21.

We obtain m = 9.42.

From Proposition 3 in [78], the asymptotic behavior of o is given by

M
lim x" ' f(x) =n>B(m + 1.n) Y ¢
X—>00 i1

where M = 5 is the number of observations available, B is the Beta function, and
the coefficients (c;)1<i<wm are obtained by solving the system
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Fig. 22 Extrapolated volatility functions using different reproducing kernels

M

> cigRh(xiox) = f(x) forall 1 <k <M

i=1

1
o2 (xk)
and o(xy) is the value at the grid point x; obtained from the non-parametric
estimation procedure. This implies that ¢ is asymptotically equivalent to a function
proportional to x* with ¢ = HT’", that is « = 5.21. This value appears very large,
but the proportionality constant is also large. The ¢;’s are automatically adjusted to
exactly match the input points (x;, f(x;))1<i<m-

We plot below the functions with different asymptotic weighting parameters
m obtained using the RKHS extrapolation method, without optimization. All the
functions exactly match the non-parametrically estimated points.

The asymptotic weighting function’s parameter m = 9.42 obtained by optimiza-
tion appears in Fig. 22 to be the estimate most consistent (within all the functions,
in any Hilbert Space of the form H, ,, that exactly match the input data) with a
“natural” extension of the behavior of ¢ to Rt. The power a = 5.21 implies then
that LinkedlIn stock price is currently exhibiting a bubble.

Since there is a large standard error for the volatility estimate at the end point
$112.065, we remove this point from the grid and repeat our procedure. Also, the
rate of increase of the function between the last two last points appears large, and we
do not want the volatility’s behavior to follow solely from this fact. Hence, we check
to see if we can conclude there is a price bubble based only on the first 4 reliable
observation points. We plot in Fig. 23 the function o (in blue) and its extrapolation
to RT, o (in red).

Now M = 4. With this new grid, we can assume a higher regularity n = 2 and
we obtain, after optimization, m = 7.8543. This leads to the power o« = 4.42715
for the asymptotic behavior of the volatility. Again, although this power appears to
be high given the numerical values (xi, f(xx))1<k<4, the coefficients (¢;)1<i<4 and
hence the constant of proportionality are adjusted to exactly match the input points.

where (x;)1<i<m is the grid of the non parametric estimation, f(xx) =
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Fig. 23 RKHS based Extrapolation of o

The extrapolated function obtained is the most consistent (within all the functions,
in any H, ,,, that exactly match the input data) in terms of extending “naturally” the
behavior of 0® to R*. Again, we can conclude that there is a stock price bubble.

The Gold Bubble: Or Not?

Our final example is for the recent increase in gold prices (see [33]). Again, we
obtained gold price tick data from Bloomberg?® for the period August 25, 2011 to
September 1, 2011. We used per second prices giving 73,695 data points. A graph
of the spot price of gold for this period is given in Fig. 24.

We graph our estimated local volatility function for gold prices with its 95 %
confidence interval in Fig.25. As seen in Fig. 25, the volatility function is in fact
decreasing as gold prices tend to oco. This shows that speculative trading is not
causing an increase in gold prices. Hence there is no gold price bubble.

Of course, our test only formally applies to the time period we have investigated,
and there could be a regime change before or after this period giving a new function
o which might change whether or not a bubble is occurring. If a price bubble existed
before our testing period, it may not be captured by our procedure. But, this is
only true to the extent that the estimated volatility function’s shape changes across
the different time periods considered. Recall that our testing procedure determines
the shape of the estimated volatility function for the observed asset price range.

28We thank Arun Verma of Bloomberg, again, for providing us with data.
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Fig. 24 Time series of gold spot prices
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Fig. 25 Non-parametric gold price volatility estimate with 95 % confidence intervals

This volatility function’s shape is then extrapolated to where the price becomes
unbounded.

For gold, there is no reason to believe that the shape of the volatility function
would change if we looked either backwards in time or used more current price
observations. To verify this hypothesis, we studied two additional time intervals:
July 4, 2011 to July 12, 2011 and September 26, 2011 to October 4, 2011. For each
of these time periods we repeated the same bubble detection tests. The spot prices
for gold are graphed in Figs.26 and 27, and the estimated volatility functions are
contained in Figs. 28 and 29, respectively. In both cases, the functions appear to be
nicely bounded, so there is no gold price bubble in either period.

Despite the speculation that gold prices are a bubble (see for example [33]),
our method shows that in fact there was not one, and that the bubbly fluctuations
fall within the normal bounds of trading, rather than being indicative of excessive
speculation. That our method can distinguish this bubbly appearance from the
reality (or lack thereof) of a bubble is precisely the point of our methodology.
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Fig. 26 Time series of gold spot prices—July 4, 2011 to July 12, 2011
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Fig. 27 Time series of gold spot prices—September 26, 2011 to October 4, 2011
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Fig. 29 Non-parametric gold price volatility estimate with 95 % confidence intervals—September
26, 2011 to October 4, 2011

But, going forward in time, the shape of an asset’s volatility function can
certainly change. Speculative trading can spontaneously increase due to a changing
economic environment. And, bubbles that exist at any one time, can certainly burst
and disappear. Whether or not a given time period’s trading activity applies to
other time periods, as discussed above, is beyond the capacity of our statistical
procedure. But fortunately for us, the stability of speculative trading activity can
be determined by an independent analysis of the economic environment. And, as
long as the speculative trading activity is stable and unchanging which reasoned
economic analysis should be able to determine, our method applies across time
periods as well.

Summary of the Examples

Given the price process of a risky asset that follows a stochastic differential equation
under the risk neutral measure of the form

dX; =o(X,)dW,

where W is a standard one dimensional Brownian motion, we provide methods
for estimating the volatility coefficient o(x) at the values where it is observed. If
the behavior of o(x) is reasonable, we extend this estimator to all of Ry via the
technology of Reproducing Kernel Hilbert Spaces. Having done this, we are then
able to decide on the convergence or the divergence of the integral

*® x
—~_dx,
/5 a2 "
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for any € > 0, which in turn determines whether or not the risky price process is
experiencing, or has experienced, a bubble. Unfortunately, the test does not always
work, since it depends on the behavior of o (x).

We illustrated our methodology using data from the alleged internet dot com
bubble of 1998-2001, the 2011 IPO of the stock LinkedIn, and the suspected gold
bubble of August, 2011. Not surprisingly, we find that all three eventualities occur:
in several cases we are able to confirm the presence of a bubble; in other cases
we confirm the lack of a bubble, and in one particular case we find that the test is
inconclusive.

11 The Issue of the Local Martingale Approach to Bubbles

There have been three rubrics of criticism to this approach. While the three are
intertwined, nevertheless they should be separated into two types: the first is a
criticism of the entire approach, and the second is a criticism of our bubble detection
methodology. Of course, our bubble detection technique is pointless if one does not
stipulate the validity (or at least the plausibility) of our mathematical approach, so
let us first address the criticisms of the entire idea of modeling bubbles with this
mathematical approach.

Discrete Time and Strict Local Martingales

There are two basic criticisms of the model. The first is based on an old controversy:
modeling in discrete time versus modeling in continuous time. There is a consistent
attitude, especially among economists, that continuous time is rather pointless, and
needlessly complicates and obscures ideas that are relatively straightforward in
discrete time; and besides, for implementation of continuous time models, often
at some point one needs to discretize in any event. This idea is derived from the
common belief that in economic theory both discrete and continuous time models
are equivalent in the sense that one can always be used to approximate the other, or
equivalently, any economic phenomena present in one is also present in the other.

One can indeed model stock prices, for example, as a discrete time series by
looking (for example) at close of day data, but if one wants to model tick data,
the data does not arrive in uniformly spaced time increments, and it seems more
natural to view tick data as a frequently sampled collection of observations from an
underlying continuous process. The sampling times are then stopping times in such
a model. Of course a really fine analysis shows that even this interpretation might
be naive due to the presence of microstructure noise, and/or rounding errors (see
for example [1,77,155], three of many recent papers on the subject). But while this
approach might be naive in this broader context, the noise does in invalidate it, but
rather adds new layers of complexity.
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Nevertheless some scholars have an issue with bubbles being the nuanced
difference between a strict local martingale and a true martingale. In discrete time, it
is widely believed that there are no strict local martingales; that all local martingales
are actually true martingales. Technically this is not true (see [75,95]) but “morally”
it is in fact true, because the standard definition of conditional expectation requires
an L' condition, and as a consequence local martingales in the traditional sense are
actually true martingales. This was shown by P.A. Meyer in 1973 [115]. To clarify,
we have (from the textbook of Shiryaev [143]) the following theorem:

Theorem 47. Let X = (X,)n=0.1...
following conditions are equivalent:

be an adapted process with Xy = 0. Then the

* X is alocal martingale;
* X is a generalized martingale, i.e. E(|X,+1||Fn) < 00, E(Xy+1|Fn) = X, for
alln =0,1,2,...

The condition that Xy = 0 in Theorem 47 is important: the theorem is no longer true
if Xy & L'. However this characterization of discrete-time local martingales holds
in the case when X is nonnegative and X, is integrable. We have then the corollary:

a martingale.

Since we are usually dealing with price processes that are nonnegative (certainly the
case for stocks), and typically X, is assumed to be non-random and hence trivially
in L', Corollary 7 does indeed give an equivalence between local martingales and
true martingales. And since we are mostly concerned with bubbles on compact
time intervals [0, 7] which must be strict local martingales to exist, the critics are
correct that such a subtle distinction is meaningless in discrete time. Where this
author disagrees with the critics is with the logical leap they make that this matters.
Even in a subject as mundane as differential calculus, there are no continuous
functions,? let alone differentiable ones, in discrete time; and try to teach the ideas
of calculus using finite sums instead of integrals. So shall we discard calculus by
the same reasoning? Another example of such reasoning would have us discard
the normal distribution, since it cannot possibly exist in a finite, discretized world.
Nevertheless, the normal distribution, and continuous functions and integrals can all
be approximated as limits of discrete sums. But so can strict local martingales be
approximated by discrete time processes; it is just that the discrete time processes
will be true martingales, the strict local nature only occurring in the limit, just as the
property of being a continuous function only occurs in the limit when approximating
by discretized functions. For a more detailed discussion of this question we refer the
interested reader to the recent article [86].

That is, there are no continuous functions except for trivialities such as using the discrete
topology and thereby making all functions continuous.
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The Critique of Fragility of the Model

This critique comes principally from one paper of P. Guasoni and M. Résonyi [61]
which addresses the “fragility” of both the mathematical concept of No Free Lunch
With Vanishing Risk, and that of the theory of mathematical bubbles presented in
this paper. The basic premise is that if one has a sophisticated model of an economic
phenomenon, it is by necessity of the subject only an approximation, and thus any
model should be “robust” in some appropriate sense. For economics models, this
makes sense at first blush, but one can stumble in the concept of robustness. The
authors of [61] use the idea of the paths of an alternative model could be only € close
(on a logarithmic scale) to the originally proposed model, and yet have very different
properties. The flaw in this logic (in this author’s opinion) is that the reasoning has
the reverse order of one that is appropriate. Indeed, their implicit assumption is that
mathematical models of economic phenomena arise simply from fitting curves to
graphs of data. We would contend they are anything but that: one comes up with a
model through economic and probabilistic reasoning, and then one checks later to
see if it is reasonable by testing if it matches data well, for example by a goodness of
fit procedure. If it does not, one tries to improve the reasoning, or call into question
the hypotheses that led to the model and change them appropriately, in order to
arrive at a better model. Indeed, in analogy with physics, the motion of a baseball
is based on calculations involving models that include major forces (initial velocity,
gravity, Newton’s laws of motion, friction with air resistance, etc.), usually ignoring
minor forces such as the gravitational pull of the moon on the baseball. One then
checks to see if predictions are valid and if observation is consistent with the model.
One does not then invalidate the model if one can come up with another essentially
arbitrary model that is “e close” to the same trajectories, but without the physics
reasoning and without some of the key properties of the original model.

The authors of [61] do have a point, however: robustness of a model is an
appropriate question to ask. A more reasonable way to frame the problem would
be, perhaps, that if one has a model given by an SDE of the form:

ds

?”‘ = 0(S,)dB; + u(S;)dt; So= x (155)
t

then one could approximate the coefficients with a sequence of functions oy, i,

n = 1,2,..., such that 0,, and u, converge to o and u respectively (and in an

appropriate sense), and consider the sequence of SDEs

ds"
St

= 0,(S")dB, + pn(Sdr;  S! = x (156)

and then as is well known, S” converges to S, so one can ask if, for some N large
enoughandn > N, do the processes S” possess the desired properties? For NFLVR,
itis clear that they do indeed possess NFLVR if S of (155) does, and if the functions
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Oy, Wy are reasonably (and not maliciously) chosen; for example one would want
the solutions of (155) and (156) all to have unique, strong solutions. As far as
bubbles are concerned, in the framework of (155), if the function o satisfies the
condition (142), then it is reasonable to choose approximating functions o, such
that, at least for n > N for some large N, the approximations o, have similar
asymptotic behavior and also satisfy (142) for n > N, and therefore establish the
robustness of the bubble property of the model.

Of course, there are other possible interpretations of robustness. For example,
one could approximate the differentials in an appropriate way, such as with Emery’s
semimartingale topology, or (better) using the techniques of Kurtz and Protter [103],
or alternatively those of Mémin and Slominski [1 13]1.%% In this case one would have
equations of the form

dsy

<t = 0(SOdB; + u(SHaAT Sy =x (157)
t

or even combine the two approximations to arrive at equations of the form

dsr*
Sn ,k
t

= 0, (S )dBE + 1, (S/F)dAK; Sy = x (158)

and again, if one were reasonable with the approximations (for example they should
satisfy the condition UCV of [103]), one could preserve NFLVR (for example, one
would have to choose dAlfC < d[B*, B¥]; as. for large enough k, in the case where
B¥ is a continuous local martingale), and also preserve the bubble property. We do
not provide details here, because this is only tangential to the purpose of this paper.

“No Empirical Test Can Reliably Distinguish a Strict Local
Martingale from a Martingale”

The title above is an actual quotation of a written report. It is true that any statistical
based procedure can never produce truth, but at best only a good likelihood of a
result. We assume this explains the presence of the word “reliably” in the quote
above. However for the stochastic differential equations presented in Theorems 7
and 8 it certainly seems possible a priori, via the strong law of large numbers
and the martingale central limit theorem, that one can identify (for example to the
95 % level) when the parameter is within the range where the solution is a true
martingale, and within the range where the solution is a strict local martingale,
even if nobody (to our knowledge) has yet tried to do so. (Indeed one should be

301t is shown in [104] that the two methods are equivalent.
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able to use modern semimartingale estimation techniques such as those presented
in [56] or more generally [72], especially for the cases of Theorems 7 and 8. For
a treatise on more advanced techniques see [74].) Probably however the quotation
above refers to the technique presented in Sect. 10. Of this technique, it would seem
that the method of the estimation of the diffusion coefficient is beyond reproach;
therefore the criticism is probably addressed to the extrapolation technique (and the
idea of such) presented in the subsection titled “Bubble Detection.” The idea is to
use the time honored method of Reproducing Kernel Hilbert Spaces (RKHS) made
famous within Statistics circles by E. Parzen and more recently by G. Wahba (see
for example [123, 156, 157]); however we use RKHS techniques in a new way here,
in order to extrapolate the diffusion coefficient function x + o (x) to an interval of
the form (Xmax, 00) where Xpnax denotes the largest observed value X. On the semi
infinite interval (Xy.x, 00) observation data does not exist. Since our conclusion is
based on this extrapolation, it is indeed beyond the usual domain of statistics, where
procedures are consistent, in the sense that they converge to a limit as the procedure
gets arbitrarily accurate. However since a consistent estimator is not possible here,
the method proposed is at least an attempt to resolve the issue, and it is further
enhanced by the fact that it seems to work, and to work well, when tested against
data. We do not claim it is a definitive answer to this problem, but we do think it is
an advance and represents the best possible method currently available. We eagerly
await the work of others who hopefully will improve on this method, or propose
alternative methods for the important problem of bubble detection.

A Brief Discussion of Some Alternative Methods

The literature, particularly the economics literature, concerning financial bubbles is
vast. We make no attempt to give a survey here, although we have provided refer-
ences to some key papers [19,48,49,54,55,63,68,108,112,138, 139,148, 154,158],
each of which in turn provides more references. Instead we limit ourselves to a
discussion of proposed alternative methods for bubbles detection.

We know of four alternative methods that propose a methodology to detect
financial bubbles.

The first method is that of “charges,” and is proposed in the papers of Jarrow
and Madan [81], Gilles [57], and Gilles and Leroy [58]. To explain this we need the
technical concept of a “price operator.” We let v represent some fixed and constant
(future) time. Let ¢ = (A, E”) denote a payoff of an asset (or admissible trading
strategy) where: (a) A = (A;)o<:<v is an arbitrary cadlag nonnegative and non-
decreasing semimartingale adapted to I which represents the asset’s cumulative
dividend process, and (b) E" € F, is a nonnegative random variable which
represents the asset’s terminal payoff at time v. V™ denotes the wealth process
corresponding to the trading strategy m. This recalls our original framework for
defining the fundamental price of an asset.
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Definition 8 (Set of Super-replicated Cash Flows).
Let @ := {¢ € &y : Iwadmissible,a € R4 suchthat A,+E” <a+V,]"}. (159)

The set ® represents those asset cash flows that can be super-replicated by trading
in the risky asset and money market account. As seen below, it is the relevant set of
cash flows for our no dominance assumption. We first show that this subset of asset
cash flows is a convex cone.

We start with a price function A; : ® — R that gives for each ¢ € @, its time
t price A;(¢). Let ®,, C P represent the set of traded assets. Take as our economy
®,, = {1, S}. The no dominance assumption implies the following:

Theorem 48. (Positivity and Linearity on ®) Let “>,” denote dominance at time t.

1. Let¢',¢p € ®. If ¢’ >, ¢ forallt, then Ai(¢') > N (@) for all t almost surely.
2. Leta,b € Ry and ¢',¢p € ®. Then, ah,; (') + bA,(¢) = A(ad’ + b) for all

t almost surely.

The next theorem is established in [89] and shows that the local martingale
characterization of market prices has a finitely additive market price operator if and
only if bubbles exist.

Theorem 49. Fixt € R,. The market price operator A; is countably additive if
and only if bubbles do not exist.

The second approach is that of Caballero et al. [18]. As described by Phillips
et al. [125], they use a “simple general equilibrium model without monetary factors,
but with goods that may be partially securitized. Date-stamping the timeline of the
origination and collapse of the various bubbles is a critical element in the validity of
this sequential hypothesis.” They “put forward a sequential hypothesis concerning
bubble creation and collapse that accounts for the course of the financial turmoil in
the U.S. economy.”

The third approach builds on the above approach of [18], Phillips et al. [125,
126] study bubbles more in the spirit that is presented in this paper. They posit the
existence of a dividend process D; that is a martingale under certain conditions and
such that it is “reflecting market conditions that generate cash flows.” They then
define a fundamental process F; by the relationship

F = /0 exp(—5(rr4s)) E{ D4 | F}ds (160)

Here (7,);>0 is the spot interest rate process, and 7p is an (assumed) constant growth
rate for the interest rates such that one has the relationship

E{D;+s|F:} = exp(rps) D, (161)
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and then if rp = 0 one has that D is a martingale. Combining (160) and (161) one
gets

F; :/ exp(—s(r;4+s —rp))Dids
0

Phillips et al. then make a key assumption on the exact structure of the spot discount
rate r;, and under this assumption F satisfies an SDE of the form

dF, = (1 —e™")c, Fydt + 0,dD, (162)

where y is such that (1 —e™")c, > 0. The solution of (162) can have an explosive
drift under certain assumptions on the structure of the interest rates, as it approaches
a special time #,. When the drift explodes this way, they claim one has a bubble.
They observe that “the discrete time path of F; ... is therefore propagated by
an explosive autoregressive process with coefficient p > 1.” They explain their
reasoning as follows:

The heuristic explanation of this behavior is as follows. As ¢ ' 1, there is growing
anticipation that the discount factor will soon increase. Under such conditions, investors
anticipate the present to become more important in valuing assets. This anticipation in turn
leads to an inflation of current valuations and price fundamentals F; become explosive as
this process continues.

The fourth and last approach we shall mention is that of D. Sornette and
co-authors (they have written many papers on financial bubbles; here is a sample
selection of a rather large armamentarium: [10, 66,92, 132, 147]). We are concerned
with their model known as the “Johansen—Ledoit—Sornette Bubble Model,” which
we find to be the most mathematical, and closest to the spirit of this paper (see [132]
for an exposition and discussion of this model). All quotations below are from the
paper [132].

Sornette, together with his many co-authors over a long series of papers, propose
that the dynamics of the price process satisfies a simple stochastic differential
equation with drift and jump:

i _ o dt + d W, — dj (163)

V4

where p is the stock market price, and W is a standard Wiener process, and j is
a point process with hazard rate /(¢). The point process has one jump only, and it
represents a market crash, and they introduce a random variable « to denote the size
of the crash. They assume that the aggregate effect of noise traders leads to a “crash
hazard rate” of the form, with 7. denoting the time of the crash:

h(t) = B'(t —t.)" '+ C'(t —t.)" " cos(y In(t —t.) — ¢') (164)
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The authors interpret (164) by stating, “the cosine part of the second term in (164)
takes into account the existence of possible hierarchical cascades of accelerating
panic punctuating the growth of the bubble, resulting from a preexisting hierarchy
in noise trader sizes and/or the interplay between market price impact inertia and
nonlinear fundamental value investing.” And assuming p is a martingale under the
risk neutral measure (no mention is made of local martingales) and conditional that
the crash has not yet occurred, the authors obtain the relation pu(¢) = xh(t), from
which (using (164)) one derives a log periodic power law (LPPL):

InE(p;)) =A+ Bt —1t)" +C(@t —1t.)" cos(y In(t —t.) — ) (165)

where B = «B’/m and C = —«C’//m? + y2. This model, known as the JLS
model, assumes that the parameter m is in between 0 and 1. Then a bubble exists
when the crash hazard rate accelerates with time.

The JLS model claims that the price follows a “faster-than-exponential” growth
rate during a bubble. For detection, the authors contend that financial crashes are
preceded by bubbles with fluctuations. This leads to the claim that “both the bubble
and the crash can be captured by the LPPL when specific bounds are imposed on
the critical parameters m and y.” This is elaborated upon in [10].

In a very recent paper of Hiisler, Sornette, and Hommes [70] the three authors
dismiss the bubble detection technique of [78] presented in this paper, by claiming
that an earlier paper by Andersen and Sornette [4] has “shown that some (and
perhaps most) bubbles are not associated with an increase in volatility.” However
an examination of their model (which is again a version of the JLS model) shows
that the assumed extreme simplicity of their model of the evolution of a risky asset
price, seems to make erroneous conclusions easy to reach.

Remark 50. The primary difference between the two alternative methods presented
above (those of Phillips et al. and of Sornette et al.), and the one presented in this
article, is that both alternative approaches make assumptions (albeit very different
ones) on the drifts in their models that lead to bubbles (under their [different]
understandings of what constitutes a bubble), whereas in our presentation the key
assumptions related to bubbles revolve around the diffusive part of the model. One
sees this in (162) for Phillips et al., and for the Sornette et al. model one sees it
with the inclusion of a hazard rate implicit in (163), as seen in (165). In addition,
the Sornette et al. alternative model above is inextricably tied to a relatively simple
and specialized Brownian paradigm. The Phillips model includes dividends in the
fundamental model as well as interest rates, but excludes what we have called X,
a final payoff in the event of bankruptcy or dissolution for some reason, such as a
merger or a payout.
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Abstract We give a short introduction to energy markets, describing how they
function and what products are traded. Next we survey some of the popular models
that have been proposed in the literature. We extend the analysis of one of these
models to include for stochastic volatility effects. In particular, we analyse a mean
reverting stochastic spot price dynamics with a stochastic mean level modelled
as an Ornstein—Uhlenbeck process. We include in this dynamics a stochastic
volatility model of the Barndorff-Nielsen and Shephard type. Some properties of
the dynamics are derived and discussed in relation to energy markets. Moreover,
we derive a semi-analytical expression for the forward price based on such a spot
dynamics. In the last part of these lecture notes we consider a cross-commodity
spot price model including jumps. A Margrabe formula for options on the spread is
derived, along with an analysis of the dependency risk under an Esscher measure
transform. An empirical example demonstrates that the Esscher transform may
increase the tail dependency in the bivariate jump part of the spot model.
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1 An Introduction to Energy Markets

There exist many markets for trade in power and related products. In Europe,
Australia and the US, the markets for selling and purchasing electricity have been
liberalized the last decades. For example, one has the NordPool market covering
generation and distribution of power in the Nordic countries, and the German
power exchange EEX. In the US, there are several markets, as well as new markets
emerging in Eastern Europe and Asia.

Typical fuels for power generation are oil, gas and coal. Oil in different qualities
has been traded for a long time at different exchanges, including for example
NYMEX and ICE in London. In recent years, gas and coal have been traded
at the ICE and EEX markets, opening for more competitive prices than in the
more traditional bilateral markets. Usually, when talking of energy markets, one
is thinking of the markets for power, gas, coal and oil.

With the recent decade’s attempt to regulate climate gas pollution, a market
for emission allowances have emerged. In Europe, one can for example trade
allowances for the emission of carbon dioxide at the European Climate Exchange
and EEX. A gas or coal fired power plant must match its emission of carbon dioxide
over a year with allowances, which can be bought at the exchange. This introduces
an additional variable cost to the production.

Most of the energy markets, including the emission markets, offer platforms for
trading in futures and forward contracts as well as call and put options on these.
This creates opportunities for the market participants to manage their risk exposure
towards fuel costs and power prices. However, a major risk factor in the energy
markets is weather. For example, in the Nordic region, the demand for power is
very dependent on the temperature. Cold winter temperature leads to an increase in
demand due to household heating. In the US, one has the similar effect of warm
summer temperature, where the demand for power goes up due to air-conditioning
cooling. On the other hand, rainfall fills up reservoirs for hydro power production,
while wind gives rise to wind power generation. In many markets, both hydro and
wind generation of electricity are major sources of power.

To manage weather risk, Chicago Mercantile Exchange (CME) organizes trading
in temperature futures contracts written on weather indices measured in various
cities world-wide. The typical temperature indices are the cumulative amount of
heating or cooling degree days. In addition to temperature futures, one can trade in
options on these futures at the CME. In 2007, the US Futures Exchange announced
that they would start a market for wind index futures contracts written on seven
regions in the US where there are wind farms in 2008, however, the exchange closed
down before this market came to be.

The power markets are interconnected through transmission lines. For example,
one can send power produced in the Nordic countries to the German market, and
vice versa, through air or sea-bed cables. This creates a dependency between the
EEX and NordPool power prices, since a big price difference can be exploited by
the producers and retailers in these two markets. Such opportunities are of course
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limited by the capacity in the transmission lines. However, an interesting effect of
these inter-market dependencies were observed in the fall of 2007. Power prices
at NordPool were higher than normal, attributed to the fact that from January 2008
carbon emission fees were to be introduced in the European Union, and power prices
would increase in the German market. In the NordPool market, power producers
could hold back production by storing water in the reservoirs and wait for the
expected higher prices. This led to less supply in the autumn, and hence higher
prices. The power spot prices in Germany, on the other hand, were not influenced
before the emission fees became effective in January. The autumn prices for clean
hydro power included emission fees in the Nordic market before these fees were
introduced, while “dirty” power in the EEX area remained unaffected. The EEX is
largely supplied by nuclear, coal and gas, and very little hydro power relative to the
Nordic market. In fact, the NordPool and the emission market got connected via the
transmission lines to the EEX market, although hydro power production does not
emit carbon dioxide. We refer to Benth and Meyer-Brandis [5] for a discussion and
mathematical modeling of this situation.

Transmission line capacity may also create price differences within a power
market due to congestion. In the NordPool market, area prices are settled for each
hour throughout the day to balance out the loss by transporting electricity through
the network. For example, Norway may have up to five different prices for a given
hour due to congestions between the different areas. Of course, the different area
prices are highly dependent, but there exist also periods of high price differences
even in neighboring areas.

The gas markets are also connected, via a network of pipelines for distribution
of gas from the hubs to the various regions of Europe. LNG, liquefied natural gas,
creates possibilities to transport gas from one continent to another by large tankers.
Hence, producers and retailers have the opportunity to play on price differences,
and ship the gas to the best markets. There is a market for freight called IMAREX,
providing access to risk management tools for transportation. As coal is shipped
from mines in Australia and Asia to continental Europe, the freight market will also
play an important role here.

As we have already mentioned, weather impacts both demand and production of
power, and therefore the power prices. A typical feature of electricity markets is the
spiky behaviour of the prices. Occasionally, prices may rise by several hundreds
of percent, and rapidly decay back to “normal levels”. On the other hand, the
seasonality of temperature creates a seasonally varying average price level. Both
spikes and seasonality of power prices are clearly visible in Fig. 1, where we have
depicted the spot prices at NordPool in the period April 1 1997 until July 14 2000.
The spikes are due to a sudden increase in demand due to a drop in temperature,
say, or a fall-out of a major nuclear power plant in Sweden. If a nuclear power plant
unexpectedly stops producing, prices will rise to compensate for the drop in supply.

'We have selected this rather old period of data for illustration only, since it was a period where
prices had a very apparent seasonality and spike pattern.
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Fig. 1 The system price at NordPool from April 1 1997 untill July 14 2000. The prices are
denominated in NOK per MWh

This will happen as a rather sharp increase since the supply is inflexible. However,
prices will rapidly revert back since more expensive coal and gas fired power plants
in Denmark will start operating and demand will decrease.

In the EEX market one has observed negative prices in the spot markets. The
reason for this is the priority given to wind generated power in the network. If there
is an unexpected increase in wind power generation, other producers may be forced
to dump their production. In fact, since it is rather costly to shut down and next
ramp up a coal fired power plant, say, it may be better financially to pay someone to
consume the electricity production rather than adjust the power generation.

Coming back to the NordPool market, a decisive factor for the price level is
reservoir filling. The amount of rain in the autumn and the snow levels during the
winter, determines the production capacity for cheap hydro power, and therefore the
prices during winter. A low reservoir filling, for example resulting from a very dry
autumn, may lead to excessive prices for power during winter times. This is usually
the period when spikes are observed in the NordPool market.

Let us move our attention to the specifics of the electricity market, where we
use the NordPool market as the case of discussion. At NordPool, one can trade in
spot electricity, forwards and futures contracts as well as plain vanilla call and put
options on these. This division into three markets, a spot, forward and option market,
is typical for most power markets, as well as other energy markets. The weather
market is an obvious exception here, since there is no natural possibility to trade in
“spot temperature”. The spot market of power is a physical market where one must
be either a producer or a consumer/retailer to participate. The two other segments
are financially settled, and thus attracts speculators like investment banks, say.
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Fig. 2 The hourly system price at NordPool on 23 November 2011

The spot market is auction-based, where producers and consumers are handing in
a limited amount of bids the day before. They can bid on buying or selling a certain
amount (measured in MW=mega Watt) of power for a given price transmitted at a
given hour the next day. Hence, the bids are for one or more of the 24 h the next
day, giving the volume to buy or sell and the price at which the transaction can take
place. The NordPool market is next feeding in all the bids and creating a demand
and supply curve for each of the 24 h the coming day, and by noon the system price
is settled for the next day. The system price is the spot price for delivery of 1 MW
of electricity in a specific hour. In Fig. 2 we show the hourly system price in Euro
per MWh at NordPool on November 23 2011. As is clearly seen, the power is most
expensive in the peak hours around 8 in the morning and 6 in the afternoon. The
evening and night prices are cheapest. This intra-day price pattern is rather typical.
It is noticeable from a modeling point of view that the spot price is a time series,
discretized at an hourly level. Furthermore, every day at noon 24 new prices for the
next day will be revealed, very much in a similar fashion as a forward market is
revealing prices for delivery at different times. In some markets, like the UK power
market, one trades in half-hourly spot prices.

The hourly system price at NordPool will, however, not be the actual trading price
for electricity in the market. Due to congestion, as discussed above, there will be
different prices for different areas balancing production, demand and transmission
capacity between these areas. These area prices will also be given for each hour, and
constitute the actual price for power in that area. In Fig. 3 we have taken a screen
shot from the web-page of the NordPool Spot market (see www.nordpoolspot.com),
showing the average system price in the different areas in NordPool on 23 November
2011.

The forward and futures market at NordPool delivers power over a specific period
of time. Unlike most other commodity markets that delivers the underlying asset
at a specific delivery time, power has to be delivered over a delivery period by
its physical nature. Hence, buying a future or forward contract will provide you
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Fig. 3 The average area prices at NordPool on 23 November 2011. Prices are denominated in
Euros per MWh

with power delivered over an agreed period. The NordPool exchange, similar to
most other exchanges, is organizing the settlement in financial terms rather than
actual physical delivery of power. Thus, buying a forward with delivery over the
next month, say, will entitle you to receiving a stream of money equivalent to the
spot price at each hour in the next month. If we denote by S(¢) the spot price at time
t, you receive

31x24

> S(w) (1)

i=1

where ] is the first hour in the next month, #, the second hour and so on throughout
the month (assuming 31 days). The system price (and not the area prices) are used
in settling the contract. In return, the owner of the forward will pay a fixed price,
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Fig. 4 Futures prices for contracts delivering over a quarter traded at EEX on 23 November 2011

called the forward price. It is the market convention to denote this price in terms
of Euro per MWh, which is the same denomination as the system price for a given
hour. Letting F (¢, T1, T) be this forward price, with 77 and 7, being the first and
last hour of the coming month, and # < 7 being the time of entry into the forward
contract, we must pay 24 x 31 x F(¢, Ty, T,) in return for receiving (1). Hence, we
see that a forward contract is essentially a swap of a floating spot price with a fixed
price. Often the forwards are called swaps in this market.

Since the forwards and futures contracts are financially settled, one does not
need to have any physical capacity for producing or receiving electricity in order
to participate in this market segment. Since the NordPool forward and futures are
economically equivalent to physically settled contracts, producers and consumers
may use them for hedging. But these contracts may also be traded by speculators,
for example investment banks and funds, providing more liquidity to the market.
This is also what has happened to some extent in the NordPool and EEX markets.
In Fig.4 we have plotted the futures prices for quarterly contracts at the EEX on
23 November 2011. As we clearly see, the prices for financial delivery of power in
the first and fourth quarters are more expensive than in the second and third. This
matches with the winter and summer periods, where one expects cold and warm
weather, respectively. The EEX market trades in quarterly futures for 2 years ahead.
The NordPool quarterly forward prices would follow a similar pattern.

NordPool offers both forward and futures contracts. The delivery periods offered
in the market ranges from short term daily and weekly delivery, to longer term
monthly, quarterly and yearly delivery. Yearly delivery contracts are offered for up to
3 years ahead, meaning that you can fix prices for delivery over 2014 today (which
is November 2011, at the time of writing), for example. The short term contracts
are futures-style, whereas the long-term are forward contracts. The market also
distinguishes between peak and base load contracts. Peak load contracts are settled
on the system price in peak hours, which are defined from 8 to 20 every working
day. These hours are the times when demand is highest. Base load contracts, on the
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other hand, are settled on all hours in the delivery period. On some of the forward
contracts, one can trade in European call and put options. The market for these
options have been rather thin.

Although the option trading on the power market is not so active, there exists an
abundance of various exotic option contracts traded OTC. So-called swing options,
where the holder has the right to buy power at favourable prices, at the same time
deciding the amount or volume to be traded, are very popular and appear in many
different kinds. For example, the flexible load contracts gives the owner the right to
buy electricity at a fixed price in a number of hours over a year. This is an American-
style option, where the holder can decide when to exercise within a year, however,
having multiple exercise rights. Each time the holder exercises, she also determines
the volume of power she wants to buy. Hence, in mathematical terms, the owner of
the flexible load contract must find an optimal strategy for the exercise times, and
an optimal volume control at each time of exercise. Naturally, there are constraints
on the volume to take out from the contract at each exercise, as well as a cumulative
volume constraint. Such contracts have been analysed in Benth et al. [11] using
stochastic control theory.

Spread options are very popular tools for managing cross-commodity risk. In the
energy markets they appear as spark and dark spread options, say, being options
written on the difference between power and gas/coal prices (or, rather the energy
equivalent). They may also be combined into swing option like instruments. A
typical example is the so-called tolling agreement, which is in effect a virtual power
plant. For example, one may get a contract which gives the holder a stream of money
every time she decides to produce power, in a virtual power plant using gas as
fuel. She decides when to produce, and how much within certain boundaries. When
producing, she will receive the spot price of power, in return to paying the spot
price of gas. Such options can also be used to value projects of building a gas-fired
power plant. Although most spread options are traded OTC, there exists a market
for spreads between different refined oil products at NYMEX, as well as contracts
on the difference between area prices in the NordPool market. The latter is called
Contracts-for-Difference (CfD), and are futures written on the price spread between
two areas. We refer to Carmona and Durrleman [14] for an extensive discussion and
analysis of spread options in energy markets, and Eydeland and Wolyniec [15] for
other exotic options.

There exist many other exotic options in the energy markets, like for example
various average-type options and so-called quanto options. The latter are options
written on an energy like gas or power, paying out in a call or put fashion. However,
the payout is triggered by a weather index, say. For example, one may have a call
option on the gas price, which is nulled if a temperature index falls within certain
bounds. The latter may provide a control of risk towards demand, while the call
structure provides a hedge against high prices of gas. Such products provide then a
hedge towards volume risk for the participants in the energy market.
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2 Stochastic Modeling of Energy Markets

We now outline some approaches to stochastic modelling of energy prices, without
any intention to be exhaustive in our presentation. The purpose of this subsection is
more to create a starting point to the topics presented in these lecture notes, namely
cross-commodity and stochastic volatility modelling.

As the basic model for stock prices is the geometric Brownian motion, the
Schwartz dynamics (see Schwartz [25]) is the canonical model in energy (and
commodity) markets. Suppose that the spot price follows the stochastic process

S(t) = A1) exp(X (1)), 2

fort > 0, where A(?) is a positive deterministic function modeling the average spot
price, also called the seasonality, and X(¢) follows the Ornstein—Uhlenbeck (OU)
process

dX(t) = —aX(t)dt + o dB(1). 3)

Here, o and o are positive constants and B(¢) is a Brownian motion defined on
a complete filtered probability space (2, F, {F;}i>0, P). We note that In S(¢), the
logarithmic spot price, will mean revert towards its mean In A(¢), at a speed o and
volatility given by o. A straightforward application of 1td’s Formula, assuming A(¢)
being differentiable, yields the dynamics

A1)
A(t)

das(t) = ( +alnA(t) + %az —aln S(t)) S(it)dt+aoS(t)dB(t). (4)
Thus, the Schwartz dynamics is a “geometric Brownian motion” with a state-
dependent drift which is mean-reverting to a seasonal level.

In our survey on energy markets, we saw that the spot prices of electricity were
discrete, quoting only prices for hourly delivery. A continuous-time model may
seem inappropriate in this context. However, it is rather standard to make such an
approximation. One may view the continuous price dynamics as an unobserved
price for immediate delivery of electricity, and the actual hourly spot price are
simply observations of this. There is a small problem with the filtration using such
a view, since the 24 hourly prices are settled the day before, and not according to
a stream of information arriving continuously over the day. On the other hand, it is
very practical to have a continuous-time model for the spot price dynamics, as one
is interested to derive forward prices based on this. The forward prices evolve in a
continuous-time market, and not at discrete hourly times.

The model in (2)—(3) has been suggested for NordPool spot prices by Lucia
and Schwartz [21]. In [21], they calibrated this model to spot price data, but also
extended it by introducing a second factor driving the spot price. They considered
the model

S(t) = A1) exp(X (1) + Y (1)) ®)
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for a non-stationary term Y (¢) = ut + nW(t), W(t) being a correlated Brownian
motion (see Schwartz and Smith [26] for a first application of this model to oil
markets). In their paper, Lucia and Schwartz [21] made an extensive study of both
spot and forward price modeling in the NordPool market.

The models suggested by Schwartz and co-authors above are driven by Brownian
motion, and unlikely to create the large price spikes that one observes in power
markets. Also in the gas market one may observe large price increases that may
be attributed as spikes, being a result of increase of demand and low storage. A
natural way to model spikes is to apply Lévy processes, which may produce a
sudden increase of the price from a large upward jump. For example, we may
substitute the Brownian motion B(¢) in (3) by a Lévy process L(z). The speed of
mean reversion o will then make sure that a large positive jump in L(¢), is followed
by an exponentially fast decrease in prices. Letting the speed of mean reversion be
sufficiently fast, we can obtain price paths with spikes, a feature which is typically
observed in real power price data. Since Lévy processes are rather flexible, one
may combine big jumps with many small, and even include a Brownian motion.
Alternatively, one may separate the spike behaviour with the “normal variations”
of prices, using Y (¢) as an OU process driven by Brownian motion rather than a
drifted Brownian motion. The choices are many, and the model must be selected by
properties of the data which vary considerably between markets. We refer to Benth
et al. [7] for a thorough analysis of multi factor models.

There is a debate whether power spot prices are stationary or not. The two-factor
model suggested by Lucia and Schwartz [21] above is clearly non-stationary, but
letting Y (¢) be an OU-process creates a stationary model. For example, in Barndorft-
Nielsen et al. [2], one finds a very good fit for a stationary one-factor dynamics using
the general class of Lévy semistationary (LSS) models. LSS models generalize OU
processes, and offer a great deal of flexibility to capture the probabilistic properties
of spot price data. An unfortunate effect of using stationary spot price models is that
the forward prices (theoretically) become constant in the long end of the market.
This is not a property one observes for actual forward prices. This could suggest that
non-stationary models are more appropriate, or that the connection between spot and
forward prices are far more complex in power markets than traditional modelling
and pricing suggests (see Benth et al. [8] for a discussion and an equilibrium
approach to power forward pricing).

In the EEX market we may have negative prices for the electricity spot. In fact,
the NordPool market also allows negative prices. The Schwartz model (2) is on an
exponential form, yielding positive prices at all times. An alternative specification
could be to state the spot prices directly as a one or two factor model, like for
example

S() = A@) + X(@) +Y(@). (6)
As it turns out, such a model may successfully calibrate the market data. Benth

et al. [10] has estimated such a model to EEX spot prices, using a stable Lévy
process driving a CARMA model X(¢), and a non-stationary Lévy processes to
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model Y (t). A CARMA model is a continuous-time autoregressive moving average
process, being a specific class of multi-dimensional OU-processes. Apart from
allowing for negative prices, such arithmetic models are useful when pricing power
forward contracts (which is done in Benth et al. [10]).

In these lecture notes we want to investigate stochastic volatility in a class of spot
price models based on the Schwartz dynamics. Leaving aside the issue of jumps,
we consider a two-factor model where the stochastic volatility (SV) is driven by a
superposition of subordinators, called the Barndorff-Nielsen and Shephard (BNS)
SV model. The dynamics generalizes the simpler one-factor stochastic volatility
model proposed and analysed by Benth [3], which was fitted gas prices in the UK.
In Hikspoors and Jaimungal [19], various stochastic volatility models are analysed
in the context of energy.

We will also consider a cross-commodity spot model, where each commodity (or
energy) is modelled as a two-factor process. The aim is to price spread options and
to analyse some effects of the dependency structure between the two commodities.
Although our models are rather simple and specific, we apply them as cases to
illustrate some of the main issues and challenges in mathematical finance applied to
energy markets.

In power markets, one cannot trade in the underlying spot price of electricity
since it is non-storable, and thus one cannot perform a buy-and-hold strategy to
hedge a forward position. The notion of convenience yield does not make sense
either (see Geman [17]). Thus, the relationship between the spot and forwards in
power markets is an open question with (yet) no clear answer. What we do know,
however, is that the dynamics of the forward price has to be a (local) martingale
under some pricing measure Q ~ P in order to ensure an arbitrage-free dynamics
of the forward price. Since the underlying spot is not tradeable in the financial sense
of the word, such a pricing measure does not have to be a (local) martingale measure
for the spot price dynamics. A forward contract with delivery of power at time 7" and
forward price f(t,T) agreed at time 0 < ¢ < T, will yield a payoff f(¢t,T)— S(T)
to the seller. From the arbitrage theory for pricing derivatives, we reach the definition
of the forward price with respect to the measure Q as

J@.T) =Eo[S(T) | Fil. (7

since the investment costs are zero. A forward contract delivering over [T7, T3] will
have a forward price F(t, T}, T») naturally defined as

T

T2 - Tl Ty

F@, T,.T) =Eg [ S(T) dTI]-",f:| , €]

where we use the approximation that the forward delivers continuously over the
delivery period rather than at the discrete hours. Of course, we need to impose
certain integrability conditions on the spot price dynamics under Q in order to make
these definitions well-posed.
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Interchanging expectation and integration leads to the equation

1
F.T.T) = —— [ j@.)ar. ©)
-1 Jg

which lends itself to the obvious interpretation of a power forward as a stream of
fixed-delivery forwards. In many cases, it is possible to derive the price f(¢, T') for
a given pricing measure Q rather explicitly, but there is no analytical formula for
the integral defining F'(¢, T}, T»). This is the case for exponential models of the type
in (2). Hence, one must perform numerical integration in order to obtain the prices
of power forwards. Recalling that the electricity spot prices are settled on an hourly
resolution, a natural numerical integration scheme would be a Riemann sum over
f(t, T;), where T; are the different hours of the delivery period. In fact, this would
point back to the very definition of a forward contract with delivery period in the
electricity market, where in practise the settlement is on the hourly spot prices in
the delivery period.

Using arithmetic models of the type (6) will in many interesting situations
give analytic power forward prices F(t, T1, T), at least up to knowledge of the
characteristics of the driving noise processes of the factors. This is an attractive
aspect of arithmetic models, paving the way for pricing of options on power
forwards using Fourier methods which are far more efficient than Monte Carlo
simulation, say.

Of course, to pin down the right forward price requires a specification of the
‘pricing measure’ Q. This is typically done by choosing a parametric class of
measures using Girsanov or Esscher transform (see Benth et al. [7]). From this,
one may be able to compute theoretical prices, which next can be fitted to observed
ones in order to estimate the parameters in the measure transform. This procedure is
targeted to explain the risk premium in the market, defined as the difference between
forward prices and the predicted spot:

1
Rt T, T,) = F(t,Tl,Tz)—E[;/ S(T)dT|f,:| . (10)
h—T Jg

Empirical studies of the risk premium in power markets reveal quite a complex
behaviour (see Benth et al. [8] for a discussion and references). In commodity
markets, one usually expects the risk premium to be negative, a result of hedging
pressure from producers accepting to pay a premium to the speculators for locking
in prices of their commodities. This is usually referred to as normal backwardation
in the market. However, in power markets we may encounter positive risk premia.
Such positive premia can be found in the short end of the forward market, that is,
for contracts which are close to delivery and with a relatively short delivery period.
The reason for this is that the consumers want to lock in prices to hedge the spike
risk. The producers are of course not afraid of excessively high prices, but this may
be harmful to retailers which may be engaged in fixed-price contracts with their
clients. The producers want to hedge using longer term contracts, which shows up as
anegative premium in the long end of the forward market. Hence, the picture we see
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in power markets is a risk premium which changes sign from positive to negative as
a function of time to delivery. We refer to Benth et al. [10] for a confirmation of this
in the EEX market based on a spot price modeling approach, and to Benth et al. [8]
for a simple equilibrium model explaining this along with an empirical case at the
EEX. Benth and Sgarra [6] show that the change in sign of the risk premium may
possibly be explained by a seasonality in the occurrence of spikes.

The Heath—Jarrow—Morton (HIM) approach in interest rate theory suggests to
model the forward rates directly rather than via the short rate of interest (see Heath,
Jarrow and Morton [18]). This idea was adopted to power markets by Benth and
Koekebakker [4], where forward prices are modelled directly rather than via spot
prices. The main challenge with the HIM methodology in power markets is the
inclusion of a delivery period in the dynamics.

As we have discussed several times already, forward contracts in power markets
deliver over various periods. These may in fact be overlapping. In the NordPool
market, one can trade in contracts for delivery in the months January, February
and March, say, but at the same time one can enter a contract delivering over the
first quarter of the year. Of course, the three monthly contracts overlap completely
with the quarterly contract. If 7;, i = 0, 1,2, 3 are the first of each of the months
January, February, March and April, we must have that the forward prices satisfy
the condition

2

F(t,Ty, T3) = Z

i=0

Tiy1—T;
—————F(t.T;,Tit1), 11
T, ( +1) (11

in order to avoid arbitrage opportunities between the four contracts. If, in an HIM
approach, we insist on specifying a model of F(¢, T, T,) for all possible delivery
periods [Ts, T,], with 0 <t < T, < T,, we are led to the no-arbitrage condition (see
Benth and Koekebakker [4])

F(ts TS? TE) =

T
F, T, T)dT. 12
Te—n/n . T.T) (12)

This condition comes in addition to the martingale restriction on the dynamics of
F(¢t, T, T,) under the pricing measure Q. Since F (¢, T, T) is the forward price of a
contract delivering at time 7', we are in a situation where any model of F (¢, T, T,)
is brought back to a model for f(¢, 7). Hence, it is natural to model fixed-delivery
power forward prices f(¢, T), although these do not exist in the market (see Benth
et al. [7] for a discussion on this, both analytically and empirically).

Alternatively, one may take a LIBOR modeling point of view (see for example
Brigo and Mercurio [13]), and simply focus on the traded delivery periods, that is,
to model only the forwards which are traded in the market. We first single out the
smallest delivery periods, and model these exclusively. For example, going back to
the case above, we model only the forward price dynamics of the three monthly
contracts, and let the quarterly contract has a forward price given by (11). This
program was proposed and studied in the context of the NordPool market in Benth
and Koekebakker [4], and further extended in Benth et al. [7].
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3 A Multi-factor Stochastic Volatility Model for Energy
Prices

Let us consider the question of modelling the spot price dynamics of an energy
commodity. We denote the price at time ¢ > 0 by S(¢), and choose to model the
dynamics in continuous time although it may be discrete in some markets like for
example electricity as discussed above. We focus our attention on a single market,
and propose a multi-factor model which accounts for many of the stylized facts
observed in power and energy markets. Inspired by Hikspoors and Jaimungal [19],
we analyse a spot price model of exponential type which incorporates stochastic
volatility, and where prices are mean-reverting towards a stochastic level.

To be slightly more specific, we suppose that the spot price on logarithmic scale
is given as an Ornstein—Uhlenbeck process reverting towards a stochastic level,
and driven by a Brownian motion scaled by a stochastic volatility. The stochastic
volatility follows the so-called Barndorff-Nielsen and Shephard (BNS) model, see
[1]. The level towards which the log-spot prices are reverting will be assumed to
be again an Ornstein—Uhlenbeck dynamics. Hikspoors and Jaimungal [19] assume
a Brownian-based dynamics of the stochastic volatility, including for example the
Heston model, and focus on an asymptotic analysis of derivatives. We now introduce
our model rigourously, starting out by defining the stochastic volatility part.

We denote by L;, j = 1,...,n, n independent subordinator processes, that is,
increasing Lévy processes. We choose to work with the RCLL version of the L ;’s.
Define for j = 1,...,n the Ornstein—Uhlenbeck process

de(t)Z—Aij(l)dl"FdLj(l), (13)

where A; > 0 is constant. The Lévy measure of L is denoted £;. Let w; > 0 and
wi + ...+ w, = 1, and define a volatility process o (¢) by

o?(t) =Y w;Y;(t). (14)
j=1

Note that since the L ;’s are subordinators, it follows that ¥;(¢) are non-negative
forall j = 1,...,n, and thus 0>(¢) is non-negative as well. Therefore, o(t), the
square-root of o%(t), is well defined. We shall assume that the subordinators are
driftless, that is, that L ; (1) have cumulant functions given by

¥ (0) :==InE [exp(i6L;(1))] = /0 (e — 114, (dz), (15)

forj =1,...,n.
Note that we have a constant volatility process o'(¢) whenever A; = Oand L; =
0 for all j. If only the latter holds, the volatility becomes deterministic, converging
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to zero with time. To account for possible seasonal effects one may allow for time-
dependent coefficients w; and A ;. However, we shall not consider this case, but
restrict our attention to constant coefficients.

In our spot price model we suppose that the seasonal level is modelled by a
bounded and measurable function A : [0, 00) — R_.. In case there is no seasonality,
A(t) is simply a constant, usually put equal to 1.

Define the spot price as

S(2) = A1) exp(X (1)), (16)

with
dX(t) = (Z(t) —aX(t)) dt + o(t)dB,(t) 17
dZ(t) = (n — BZ(1))dt + ndBa(1) . (18)

The Brownian motions B; and B, are correlated by a factor p, and independent
of the subordinators L;, j = 1,...,n. This means that the volatility process o ()
is independent of the stochastic drivers of the mean level and the log-spot price.
The deseasonalized log-spot prices are mean-reverting like in the one-factor model,
however, now towards a stochastic mean, which again is a mean reverting process.
From an applied point of view, it is natural to imagine that the stochastic mean is
slowly mean reverting, while the prices themselves mean revert at a higher speed.
Geman [17] argues for such a dynamics for oil prices using a Cox—Ingersoll-Ross
model for % (¢).

In the literature on energy spot price models (see Chap.3 in Benth et al. [7]
and the references therein) factor models are usually stated directly as a sum of
stochastic processes. A simple two-factor model for the spot price on exponential
form is given as

S(r) = A@t) exp(X1(1) + X2(1)),
with

de(t) = —OéiX,'(t) dt + o; dBl(l)
fori = 1,2. Letting X(¢) := X;(¢) + X2(¢), we find the dynamics of X(¢) to be

dx(t) = (a1 — ) Xo(t) — a1 X(¢)) dt + 01 dB1 (1) + (o1 — a2)02 dBy (1) -

Hence, by identifying Z(¢) = («; — a2) X»(¢) we see that we recover our mean-
reversion model with a stochastic level in (16). We remark in passing that the
two-factor model of Lucia and Schwartz [21] assumes the factor X,(¢) to be

non-stationary. We may incorporate that case by supposing X,(¢#) having zero
mean-reversion, o = 0. This would correspond to a stochastic mean-level being
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non-stationary, that is, equivalent to letting 8 = 0 in the process Z(¢) in the model
(16). The Lucia and Schwartz model was first proposed by Schwartz and Smith [26]
for spot oil prices.

In the analysis of our spot price model, we want to derive probabilistic properties
like the induced covariance structure, as well as the implied forward prices for
contracts written on the spot. In the sequel, we suppose that ¢« # B to avoid a
singular case. Our first result derives the explicit dynamics of X (¢), Z(¢) and Y, (¢),
j=1...,n

Lemma 3.1. Suppose that u +— o (u) exp(—a(u — t)) is It6 integrable on u € [s,t]
fors > t. The explicit dynamics of X(s), Z(s) and Y (s) given X(t), Z(t) and Y (t)
fors >t are

X(s) = X(6)e™ 6 4 /  Z(w)e " du + / o (5)e™ T dBy (u)

t t

N
Z(s) = Z(t)e—ﬂ(s—t) + %(1 _ e—ﬂ(S—t)) + / ne—ﬂ(s—u) dB,(u) .

t

and

s
Yi(s) = Yj(t)e ™67 4 / e T dL; (u) .

t
Proof. We apply 1td’s Formula on the process exp(cu) X (u) to find

dE€™ X)) = ae” X (u) dt + e**dX (u)
=e“Z(u)du + om)e*" dB(u) .

Integrating from ¢ to s yields the result for X(s). A similar computation shows the
result for Z(s). Finally, using the 1t6 Formula for jump processes (see Ikeda and
Watanabe [20]) yields the result for Y; (s). O

To this end, define the function

(e—ﬁu _ e—au) . (19)

u;a, B) =
(o p)=—— 3
This function will appear in several places in connection with the analysis of our
spot price model. It is simple to observe that y (u; «, §) is a non-negative continuous
function, with y(0;,8) = 0 and lim,— y(u;, f) = 0. Furthermore, by a
straightforward differentiation, it attains its maximum value at

. _ Inoe —Inp

a—p

u
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The maximal value can be computed to be

pblab
v p) = maxy(ua. f) =y p) =~ (20)
u> o

We shall make use of the properties of the function y throughout this section.
By applying the explicit form of Z(s) in Lemma 3.1, we can derive the following
explicit dynamics of X (s):

Lemma 3.2. The explicit dynamics of X(s) given X(t) for s > t can be repre-
sented as

X(s) = X(0)e ™0 4 (Z(z) - %) Vo=t ) + Sy - o)
+ / ' o (u)e ™ dB) (u) + / ' ny(s —u;a, B) dBa(u) .

Proof. From the explicit dynamics of Z(u) given Z(¢), u > ¢ in Lemma 3.1, we get

/ Z(u)e™ du = Z(l‘)/ ou—pu—t) du—i—/‘ ocu/;(l _ﬂ(u_t))du
t

+ 77/ / —Bu=) dB;(v)du.

Applying the stochastic Fubini theorem and the definition of the function y (u; o, B)
yield the result. O

We continue with analysing the covariance structure of the spot price dynamics.
For this study, we must suppose that the log-spot prices have finite variance. By
inspection of X(s) in the lemma above, the log-spot price has finite variance as long
as X(¢) is of finite variance. But X(¢) has finite variance if and only if the stochastic
integral with respect to B; has finite variance, since the other stochastic integral is a
simple Wiener integral of a deterministic function. By the It6 isometry, we find

t 2 f
E |:(/0 O—(u)e—a(t—u) dB](I/l)) ] =K I:/() 02(u)6—2a(t—u) du:|

t
= / E[o?(u)]e ™) du.
0

But, from the definition of o2(x), we have

Elo’w)] = Y w,E[Y; w)]

Jj=1

n n t
=Y ;Y0 + > wE [/ e~ =) dLj(u)i| .
j=1 j=1 0
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We know from Benth et al. [7] that

t t
E[ / e MY dLj(u)i| =E[L;(1)] / e M dy.
0 0

Hence, if L;(1) has finite expectation for all j = 1,...,n, then X(¢) has finite
variance. From the definition of the cumulant functions of L ; (1) in (15), L ; (1), j =
1,...,n have finite expectation if and only if

o0
/ z8j(dz) <oo,j=1,...,n. Q1)
0

From now on, we suppose that (21) holds. Under this condition we have the required
It6 integrability in Lemma 3.1.

In the next proposition we find the covariance between deseasonalized log-spot
prices at different time instances.

Proposition 3.3. Fort,t > 0, it holds that
Cov(X(t 4+ 1), X(1)) = a(t)e™ + b(t)e P",

where

a(r) = Var(X(1)) =b(1).  b(1) = —COV(Z(? ’ﬁX(t) ).
Proof. Since, by Lemma 3.1

T t+t
Xt +1)=X({t)e ™ + / Z(s)e T g / o(s)e T 4B (s)
t

t

we find
t+t
Cov(X(t + 1), X)) =e™* (VaI(X(t)) + / e =) Cov(Z(s), X (1)) ds)

since X (¢) and fttﬁ o(s)exp(—a(t + t — s)) dB;(s) are zero correlated due to the
independent increment property of Brownian motion. Recalling Z(s) given Z(¢) for
s >t in Lemma 3.1, we have

Cov(Z(s), X(t)) = e P DCov(Z(1), X (1)) .

since X(¢) and fts nexp(—pB(t — u)) dB, are independent. The proposition follows
after a straightforward integration. O

In the next lemmas we calculate the variance of X (¢) and the covariance of Z(¢)
and X(¢), and investigate their asymptotics when time goes to infinity.
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Lemma 3.4. It holds that
t
Var(X (1)) = / E[o2(s)]le 2% %) ds
0
t
+ ZpL/ Elo(s)] (e_(“+ﬁ)(’_s) — e_z‘w_s)) ds
a—pJo
2
1 1 2 2 (et 1 —2ar
—{—(1- - —(1- —(1— .
g e - g ¢ -

Proof. From Lemma 3.1 we compute using the It6 isometry,
t
Var(X(t)) = e > Var (/ Z(s)e™ ds)
0
t t
+ 2¢7**'Cov (/ o (s)e* dBy(s), / Z(s)e™ ds)
0 0

1
+ / E[o?(s)]e 2%~ ds .
0

We consider the first two terms. Applying the stochastic Fubini Theorem, it holds
that

/ 'z ds = 2D ey L & {l(e‘“ —1)-
0 a—p B la

1
(a—p)t
(& —1

1
- / e (@A _ 1) dB,(u).
a—BJo

Thus,

t 2 t
Var (/ Z(s)e™ ds) __ " / 2 (e @=P =) _ )2 gy |

0 (a—B)* Jo

which gives us the last term involving n?/(a — B)? in the expression of Var(X(z)).
Finally, by Itd’s isometry and the correlation between B; and B,, we find that

Cov (/t a(s)e* dBy(s), /t Z(s)e‘“ds)
0 0

t
= p_’? / E[o (5)]e? (e A=) _ 1)ds.
a—pB Jo

Hence, the lemma follows. O
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The covariance between Z(¢) and X (¢) is derived next:

Lemma 3.5. It holds that

Cov(Z(1), X(1)) = pn /(;’ Efo (s)]e—@+PU=9 gs

i DL SRR U
+oc—,3{2,3(1 ) a+pB

Proof. Using the expression for

(1 —e~@thnyt

/t Z(s)e** ds

0

calculated in the proof of Lemma 3.4, it follows that

Cov(Z(t), X(1))

2 t t
= n—ﬁe_(“+ﬂ)'C0v (/ efs de(s),/ e (e@ A=) _ 1) de(s))
0 0

o
t t

+ ne=@ P Coy ( / P dB, (s), / o(s)e” dBl(s))
0 0

2 !
_ T —atpr / @A) (e=B)=) _ 1) g
a—p 0

t
+ ,one_(‘”'ﬂ)’/ E[o (s)]e® ™" ds
0

where we have used the Itd isometry in the last equality. The lemma follows after a
straightforward integration. O

Notice that when p = 0, that is, when the noises of X and Z are independent,
the term involving E[o (s)] in Var(X (¢)) and Cov(Z(¢), X(¢)) disappears.

We want to show that X (¢) has a “stationary” autocorrelation function: observe
from Sato [24], Theorem 17.5, that oz(t) has a stationary distribution function with
cumulant

Yeol®) = Y /0 ¥ (O de,

J=1

as long as the condition

/ Inz{;(dz) < oo,
2
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holds for each subordinator L;, j = 1,...,n. But for z > 2,Inz < z, and by
our standing assumption of finite expectation of the L;(1), this condition holds
true. Hence, the stochastic volatility process %(¢) has a stationary distribution when
t tends to infinity, which will be supported on the positive real line. Hence, both
E[o%(t)] and E[o(¢)] = E[{/02(¢)] will have limits being strictly positive when
¢ tends to infinity. From the explicit expressions of ¥; in Lemma 3.1, it holds in
particular that

n
1 o0
. 2 _ o )
lim Efo?()] = > = /0 24 (dz).
j=1"
If £ > 0, we therefore find by L'Hopitals rule that

—>0o0

! : E[o?(0)]e®
. —&t 2 s 1
lim e /O]E[o (s)]e ds—tl_l)oo e E 5)& / zlj(dz).
Similarly,

t
lim e / E[o(s)]ef* ds = c/¢,
—>00 0

where c¢ is the limit of E[o(¢)]. In conclusion, both Var(X(¢)) and Cov(Z(¢), X(¢))
have limits when ¢ goes to infinity. Therefore, we see from Proposition 3.3 that

lim Corr(X(r + 1), X(1)) = c1e ™" + e F7 (22)
—>00

for two positive constants ¢, ¢, such that ¢; 4+ ¢; = 1. The autocorrelation function
of the deseasonalized log-spot prices is thus given as a sum of two exponentially
decaying functions. This can be utilized in calibration of the spot model, since we
can find the speeds of mean-reversion ¢ and B by minimizing the distance between
the theoretical and empirical autocorrelation functions. The characteristics of the
stochastic volatility o () and its square enter in ¢; and ¢, that is, in the weighting
of the two exponential functions.
We observe by Lemma 3.1 that for a small A > 0, it approximately holds

eAX(t+A)—X(t) ~ Z(t)A + o (t)AB\ (1),
with AB;(t) = B;(t+A)—B;(t). If we suppose that we can observe the mean-level
process Z(#) (using for example filtering), we can find observations of the residual

process o (t) A By (¢) by the relation

o()AB (1) ~ e X(t + A) — X(1) = Z(1)A.
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Note that X(f) = InS(f) — InA(¢), and therefore X(¢) is directly observable
from the spot prices given that we know the seasonality function A(¢). We have,
by independence between o (z) and B, (t), that o(#)AB(¢) is a variance-mixture
model, where o (t)AB;(t) conditioned on o%(¢) will be normally distributed with
zero mean and variance 0% (¢) A. Taking o%(¢) stationary, we can obtain a rich class
of heavy-tailed distributions for these residuals, including for example the normal
inverse Gaussian distribution. We refer to Barndorff-Nielsen and Shephard [1] for
an in-depth analysis of this, where methods for estimating the factors Y; of the
stochastic volatility model are presented and discussed.

3.1 Forward Prices

Recall from Sect. 2 that (¢, T') denotes the forward price at time ¢ > 0 of a contract
delivering the energy spot at time 7', where 0 < r < T. As argued in Sect. 2,
the arbitrage theory of mathematical finance tells us that the process ¢ — f(¢,T)
must be a martingale with respect to some equivalent probability Q. This led to the
definition

J@.T) =Eo[S(T)| F]. (23)

In the standard pricing theory, the underlying asset of the forward is also a tradeable
asset, and Q is therefore a martingale measure for S. However, in energy markets,
trading constraints like storage and transportation of the energy (in case of gas and
oil), or no-storage possibilities at all (in the electricity case) create an incomplete
market where the buy-and-hold hedging strategy in the spot cannot be applied.
Hence, the measure Q does not need to be a martingale measure for S. One typically
lets Q be part of the modelling, and chooses it in a parametric class of equivalent
probability measures, using (23) as the definition of the forward price dynamics.

Before deriving expressions for the forward price based on our spot price model,
we look at a parametric class of equivalent probability measures Q which changes
the Brownian motions in the spot model by a Girsanov transform. To simplify
our considerations, we have chosen not to consider any measure change of the
subordinators driving the stochastic volatility process o (¢).

Represent the Brownian motion B, as

By(t) = pBi(t) + V1 —p*U(1),

with U being a Brownian motion independent of Bj. Next, let 6;,6, be two
constants which we will call the market prices of risk, and define the adapted
stochastic processes
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= a6
01(1) = D)
A 02— pnfi(t)

é =
0=

Then, by the Girsanov Theorem, it is easy to see that there exists a probability O
such that W, and V defined as

dB\(t) = 6,(t) dt + dW,(t)
dU(t) = 6,(1) dt +dV(1),

are two independent Brownian motions on a finite time interval [0, Tyax] for any
Tmax < oo. Indeed, the Novikov condition for Girsanov’s Theorem is satisfied
since o (¢) is bounded from below by a weighted sum of exponential functions:
by Lemma 3.1 we have Y; (¢) > Y;(0) exp(—A;¢) for j = 1,...,n. Hence,

o?(t) = > w; Y (0)e M’

=1

Note that the characteristics of ¥; remain unaltered under the probability Q. This
means that we suppose the market price of volatility risk be zero, although there
are empirical studies showing that such a risk is present in energy markets (see
Trolle and Schwartz [27]). There exist many other risk neutral probabilities that can
be used, which can account for such risk premia as well. We refer to the class of
Esscher transformed measures that will be introduced later in Sect.4 as a possible
choice.

here we focus on the standard class of measure change frequently used in
commodity analysis.

We find the Q-dynamics of X and Z to be,

dX(t) = (1 + Z(t) —aX(t)) dt + o(t) dW(t) (24)
dZ(t) = (n + 6, — BZ(1)) dt + ndW (1), (25)

where W, 2 oW1 + /1 — p?V is a Q-Brownian motion correlated with W, by the
factor p. Computing as in Lemma 3.2, we find fort < s < T

X(s) = X(0)e™0 4 (Z(z) K ; 92) y(s — 20, B)
+ (91 + ;A 92) y(s—t;a,0)

Ay

- / e aW, () + / Y —we fydWaw).  (26)
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Before moving on to compute the forward price, we must ensure that S(7') is
integrable with respect to the probability Q. The integrability of S(7') is equivalent
to exponential integrability of X (7). Inspecting the explicit relation for X (s) in (26),
we see that X(7') is exponentially integrable as long as

T

Eo [exp (/ o(s)e T dWl(s))} < 00. 27
0
We claim that a sufficient condition for this to hold is that

o0 *

/ (™" 2eA)T 1) ¢ (dz) < 00, (28)
0

for j = 1,...,n, and y* defined in (20). To show this, first note that by double

conditioning using the o-algebra Gr generated by o%(s),s < T, we find by
independence between B; and o that

T
Eo |:exp (/ a(s)e_“(T_s) aw, (s))}
0
T
=Ep [}EQ [exp ( / o(s)e @@= dWl(s)) |gTH
0
=FE |:exp (% /OT o2(s)e 2T ds):| .

From Y (s) in Lemma 3.1 we have

T n T
/ 02 (s)e 279 gg = ij Y, (O)/ e20(T=)g=2j5 ¢
0 0

j=1
n T s
+Zw;/ e_z"(T_S)/ e MO AL (u) ds
o 0 0
T
=y(T;2a, 1) +/O y(T —u;200,A;)dL;(u),

after using the stochastic Fubini theorem. By independence of L;, j = 1,...,n,
we find that (27) holds whenever

1 T
E[exp(zfo y(T—u;Zoc,Aj)dLj(u)):| <oo,j=1,...,n.

But y(u;2a, A;) is a non-negative function which has the maximum y*(2a, A ),
and L ; being a subordinator implies the bound

T
/0 Y(T —u;20,A;)dL; (u) < y*Qa, A;)L;(T).
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Finally, under condition (28) we have that

E [exp (%y*(Za,)kj)Lj (T))i| = exp (T /Ooo{eo's”*(z""lf')Z —1}¢; (dz)) .

from the definition of the moment generating function of a subordinator. This shows
that (28) is a sufficient condition for the exponential integrability of X(7') with
respect to Q for all T < Tp.. Note that it also is a sufficient condition for
exponential integrability of X (7") with respect to the market probability P.

In the next proposition we state a semi-analytical expression for the forward
price:

Proposition 3.6. Assume condition (28) holds. Then the forward price f(t,T) at
time t > 0 of a contract maturing at time t < T < Ty is

f@.T) =A@, YO —1) SO "V exp (Z(t)y(T — 130, B))
x Ht,T,Y1(t),...,Yu(t))

where
H(t,T,y1,..., )
e —a(T—s))?
=E|exp 3 (ony(T — 530, B) + o (s)e )" ds ‘Yj(t) =y,
t

and

InAs(t,T) =InA(T) —e T 1nA(t)

[+ 6> _kt6

InOu) = (91 + ) y(u; 2, 0) y(u;a, B)

1 u
#3771 = ) [ psapras
0
Proof. The forward price is

f@t,T) =Eo[S(T) | F] = AT)Eq [eXD | 7] .

Apply the explicit expression for the Q-dynamics of X(7') given X (¢) and Z(t) in
(26), to obtain
Ep [e¥ P | 7] =exp (X(1)e "™ + Z(t)y(T — t;c. B))

[ %)
“+2ww—umm—“;2

X exp ((91 + y(T—t;oe,,B))
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T
xEq [exp ( f (py(T — 510 B) + 0 (5)e ™) dwl(s)) m}

T
xEg |:exp (n,/l—pZ/ y(T—s;oc,ﬂ)dV(s)) |}',] .

Here, we have made use of the adaptedness of X(¢) and Z(¢) and the independence
of W, and V. By the independent increment property of the Brownian motion V,
we easily compute the second conditional expectation to be

T
Eo |:exp (77\/1 —,02/ )/(T—s;oz,,B)dV(s)) |ﬁi|
T
= exp (%nz(l —pz)/ yAT —s;a, B) ds) .

Let now G, r be the product o-algebra generated by the paths o(s); s <t < T
and F;. By double condition, we have by independence of o (¢) and W) (¢) and the
independent increment property of W,

T
Eo [exp (/ ony(T —s;a, B) + cr(s)e_“(T_“) dWl(s)) ‘]—",f:|
T
=Eo [EQ [eXp (/ pny(T —s:0, B) + o (s)e "™ dWl(S)) ‘ Qz,r} ‘E}

1 (7 ,
—E [exp (5 / (py(T — ;0. B) + 0(s)e T2 ds) \ff} |

By the Markov property of Y;(s) we find the function H. The proof is hence
complete. O

The forward price is explicit as a function of both the spot price and the seasonal
level Z(t). Moreover, it also varies explicitly as a function of the volatility of S(¢)
through H which depends on each of the volatility factors Y(t),...,Y,(z). All
these factor dependencies add up to a complex forward price evolution. In addition,
we have two deterministic terms contributing to the shape of f(¢, 7). First, the
seasonal term A s (¢, T), which can be interpreted as the change in seasonal level
between today and maturity, adjusted by the mean-reversion between the two dates.
The final term ®(T — t) is coming from a drift contribution of Z(¢) as well as the
market prices of risk 8; and 6,. It is the only place where we see the effect of
the pricing measure Q explicitly in the forward price. The parameters 6; and 6,
are unknown, since they cannot be estimated from observations of the spot price
dynamics. The typical approach to estimate (or calibrate) the market prices of risk,
is to minimize the distance between theoretical and observed forward prices. We
remark that in practical situations, one would often prefer to use market prices of
risk which are time dependent in order to facilitate for exact calibration to observed
prices. At the expense of more technical computations and expressions, it is not a
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difficult task to extend our results to market prices of risk 6y, 6, being functions of
time.

In commodity markets, one is often interested in the risk premium, which is
defined as the difference between the forward price and the predicted spot price:

Ro(.T):= f@t.T)=E[S(T) | F]. (29)

Note that we indicate the dependency on the pricing measure Q in the notation for
the risk premium, which comes from the fact that we can express it as

Ro(t.T) =Eo[S(T) | Fi] - E[S(T) | 7] .

We obtain the predicted spot price from Proposition 3.6 simply by choosing 6; =
6, = 0. Hence, the risk premium becomes

Ro(t,T) = A p(t, T)Oy(T —1)S (1) =)
exp(Z(Oy(T =, BHE, T Y1(1), ..., Ya(0))

with

~ 1 u
o) = exp (%(y(u;a, 0~ yiua. B) + 521~ ) /0 V2 (s:a. B) ds)

: {exp ((91 + 2ypuin0) - @W;“’m) - 1} '
B B

Hence, we observe that all terms in the risk premium are positive, except possibly
the expression inside the curly brackets of @. The sign of this term is determined by
61 and 0,. In the simple case of 6, = 0, we obtain a negative risk premium R if and
only if 8; < 0. A negative risk premium means that forward prices are lower than
the predicted spot, which says that those selling the energy in the forward market
accept a reduced price compared to what they predict to get if selling in the spot
market instead. This can be a result of producers wishing to hedge their production
using the forward market, and thereby accepting a discount in prices compared to
the spot market. The risk premium can be interpreted as the insurance premium paid
by those producers. A negative risk premium corresponds to a market in so-called
backwardation.

The effect of 6, on the risk premium is similar: suppose again for simplicity that
01 = 0, and we see that the sign of the risk premium is negative whenever

O (y(u;a,0) —y(u;a, B)) <O0.

Define for the moment the function

gu) = yu:a,0) — y(u:a, B),

for u > 0. Note that g(0) = 0 and that g(u) tends to 1/a > 0 when u tends to
infinity. Since Z(¢) is the mean-level of the spot price, it is natural to suppose that
this mean-reverts slower than the actual spot price itself, yielding that « > B is
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a natural situation. We claim that g(u) is strictly positive for u > 0 in this case:
indeed, the derivative of g(u) is

g/(u) — e _ aiﬂ (ﬂe—ﬁu _ae—au) .

But, g’(0) = 2 and g’(u) = 0 in only one point, namely

« _ InQa—p)—Inp
ut = oy .

Since @ > B, we have that 20 — 8 > S, which implies that u* > 0. Hence,
the continuous function g(u) must be positive for # > 0 since it starts increasing
at u = 0 from the origin, has only one extremal point at u = u* > 0 and is
asymptotically converging to the positive constant 1/« at infinity. In conclusion, as
long as @ > B, it holds that the risk premium is negative as long as 6, < 0. We
obtain the same result in the case o < 8, but with the additional condition 2« > B,
ie,o < B <2a.

We return to the analysis of the forward price f(¢, T). First, we present the
dynamics of F':

Proposition 3.7. Assume condition (28). The dynamics of f(t,T) fort < T is

% = oD aWy(0) + (T — i, B) dWa(0)

— 17 Nj(dz dr).

(R (HET,Yi(t-),....Y (=) +z,.... Yu(t—))
+]X_:1/0{ H(, T.Yi(t—1),..., Y, (t—))

Proof. This follows from an application of It6’s Formula for jump processes
exploiting the simplifying fact that F is a Q-martingale. O

We observe that the forward price evolves as a geometric jump-diffusion model,
with the Brownian evolutions driven by the stochastic volatility o () discounted
by the mean-reversion. In addition, we have explicit jump terms coming from the
volatility. Although the spot price dynamics has continuous paths, the forward price
dynamics will have jumps. Every time there is a change in volatility of the spot
resulting from a jump in one or more of the subordinators L ;, the forward price will
jump accordingly as well as getting an increase in volatility. In fact, the forward
price will include a leverage effect in its price dynamics, since the volatility affects
directly its price level. For the sake of illustration, consider the case of n = 1, that
is, only one factor Y in the stochastic volatility specification. If p > 0 we find that
the function

y = (ony(T = s, B) + o (s)e T ™)?
is increasing, and therefore y — H(t, T, y) must be increasing as well. Thus, the
forward dynamics includes an inverse leverage effect in the sense that the forward
price increases with the volatility o(¢). The case p < 0 is more involved, and
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here we potentially may have a “classical” leverage effect where forward prices
are pulled down with higher volatility.

The price dynamics of the forward is semi-analytic in general, due to the function
H which is hard to compute explicitly. The problem is that the expectation in H will
involve a term

T
pn/ V(T —sia, Be T Vo(s)ds.
t

We know o (s) explicitly, however, o (s) is the square root of a sum of OU-processes
and the integral above seems hard to compute. In the case of no correlation between
B; and B», that is, p = 0, we can indeed obtain an explicit expression for H, and
thus for the forward price. This is the content of the next proposition:

Proposition 3.8. Assume condition (28), and suppose that p = 0. Then

1 n
H(t,T,yi1,...,yn) = exp Eijy(T—t;%t,/\j)yj
j=1

no Tt wj
+ i (—i— §; 200, A ds)
; /0 vj ) y( )
Proof. For p = 0, the function H defined in Proposition 3.6 reduces to
1 T
H@, T, y1,....y) =E [eXP (5/ o?(s)e 2T ds) ‘ Y;(t) = y]} .
t

From the explicit dynamics of Y (s) given Y;(#) = y; in Lemma 3.1, we find

T n T
/ o2 (s)e 2T =9 gg = Z wjyj/ e T gT2(T—s) gg
t

' i=1

n T ps
+ Z Wj/ / eflj(xfu) dL] (M)efzct(fo) ds
t t

J=1

= wiyy(T —1;2a,4))
j=1

n T T
+D W /, / e MO dydL ()
u

j=1

n n T
=Y wiyp(T —t;2a.4)) + Zw,-[ V(T —u; 2a, A} )dL (w),

J=1 J=1
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where we have invoked the stochastic Fubini theorem in the second step. The
Corollary follows by using the definition of the cumulant function of L; and
condition (28). ]

In the case of zero correlation between the driving Brownian motions, we also
observe that the long-term influence of H is simply a constant value,

T—t—o00

. . *° LWy
lim H(E T, y1,...,Y,) = exp Z v (—173/(5;20!,)&,‘)63) ;
j=1"°

as long as the indefinite integrals exist.

Recall that the function y(u; o, §) starts at the origin for # = 0, and tends to
zero when u — co. Moreover, it is non-negative and has a maximal value for u* =
(Ine —In B)/(a — B) > 0. Let now n = 1 in Proposition 3.8 above. We see that the
H function is depending on the states as

h(T —t) = exp (%y(T —t; Za,k)y) .

Hence, for T — ¢t = 0 we have #(0) = 1, and when time-to-maturity 7" — ¢ tends to
infinity, h(T — t) tends to one. But, for

Tt In(2a) —In A
20— A

we have a maximal value of / strictly bigger than one. In fact, this maximum will
be the product of the maximal value of y(u; 2c, 1) and the state y. Thus, we find
that A(T — t) has a so-called hump-shaped structure, where the size of the hump
will depend on the current state of the volatility, being 0> = y. Thus, if we are in a
market which currently is in a very volatile period, the model predicts a significant
hump in the forward prices implied from the function H(z, T, y). The hump will be
in the shorter or longer end of the market, depending on the relative size between
the speed of mean reversion o of the base component X () and the speed of mean
reversion of the volatility A.

Note from the expression of the forward price in Proposition 3.6 that it is also
explicitly a function of the current state of Z(¢), given by the term

G@.T) =exp(Z()y(T —t;. B)) .

As for the stochastic volatility, this term will also contribute with a hump shape,
where the location and size of the hump will be dependent on the parameters o and
B, and on the state of the stochastic mean level. If the mean level is very high, then
the hump will be very pronounced, whereas a low mean level in the market will lead
to a relatively small hump shape. Notice that for a given speed of mean reversion
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B of the mean level process Z(t), we find that the maximal value of y (u; &, B) will
have the property that

Ina —Inf

lim u* = lim 400

a—0 a—>0 o — ,3
Hence, the hump will be far out on the forward curve when the speed of mean
reversion of the logarithmic price process is very slow. On the other hand, a big o
relative to B will give a hump in the very short end of the market, as

. Ino—Inp
lim ———— =
a—>00 a—’B

0.

We recall from (20) the maximal value of the function y(u; @, §) to be y*(«, B).
Taking limits using L’Hopital’s rule reveals that

lim y*(a. B) = 7",
a—0
while
lim y*(a, ) =0.
o—>00

Hence, a hump in the short end of the forward curve (implied by o being very big),
is hardly visible except if the mean level is dramatically high. If the hump is far out
(implied by a very slow mean reversion «), we will see a hump basically given by
Z(t)/ B, which can become very large.

Remark that the terms A ¢ (¢, T') and ©(T —t) in the forward price will scale the
effects discussed above deterministically, as functions of the seasonality and market
prices of risk. We might have humps arising from these terms as well, but such
humps will occur at given times and of a given size. For example, a hump could
occur every winter due to a seasonality effect in the market. The factor involving the
current spot price S(¢) will yield a curve which decreases from the current spot in
the short end to 1 in the long end (or the other way, if S(¢) < 1).

In Fig. 5 we have plotted the forward curve of WTI crude oil monthly contracts
from February 28 2011. There is a clear hump shape in the forward curve, which
may be attributed to an increase on the mean level of crude oil prices. In this period,
the spot prices increased from about 90 Dollars per barrel to around 105, which
may be attributed to an increase in the mean level Z(¢) (and possibly the volatility
o (t)). Our model predicts in such a case a hump shape, which therefore may explain
the forward prices observed for WTI crude oil. (see Geman [17] for a discussion of
hump shaped forward curves for Brent oil).

We move on with our analysis of the forward prices with an investigation of the
effect of the correlation p. In the case when p < 0, we have the trivial majorization

(0()e™ T 4+ ppy(T — 51, B))* < 62 (s)e T + p* >y (T — 530, B) .
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Fig. 5 The WTI crude oil forward curve on February 28 2011

From Propositions 3.6-3.8, it follows that

f@.T) =< fot,T),

where fy denotes the forward price for p = 0. A negative correlation will lead to
more concentrated spot prices compared to no or positive correlation. Less variation
in spot price reduces the forward price. From the same arguments, the opposite holds
when p > 0, that is,

f@.T) = fot.T).

A positive correlation creates a bigger variation in the spot prices, and we recognize
the effect as higher forward prices compared to the benchmark at zero correlation.

For a negative correlation p, we have that the function H(¢, T, yi,..., y,) is
bounded by the expression given in Proposition 3.8 (being the function H with p =
0). This bound has a stationary limit under some mild hypothesis on the cumulant
functions of the subordinators driving the volatility. Hence, as time to maturity goes
to infinity, we find that the function H will be contained within the interval (1, ¢),
where c is the stationary limit of H for p = 0.

Let us consider the case with positive correlation p > 0. The lower limit for H
will be ¢, the limit of H in the zero correlation case. However, we can also bound
H from above. By elementary inequalities, it holds that

1
3 (ony(T = s:a. B) + 0(s)e™T=9)? < 22y 2(T — 510, B) + 02 (s)e 2T~
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Thus,

T—t
HTo 1o v) < exp (p2n2 / V(52 B) ds)
0

T
xE [exp (/ o?(s)e ™) ds) 1Y (1) = y,} :

As y(s; a, B) is the difference of two exponentially decaying functions, the first term
above has a limit. Appealing to the same arguments as in the proof of Proposition 3.8
reveals that the expectation operator also has a limit when 7" — ¢ tend to infinity.
Hence, H is bounded from above when 7" — ¢ becomes large, and there will be an
interval (c, d) within which H is contained. We leave the analysis of the asymptotic
limit of H when T — ¢ tends to infinity as an open question.

We end this Section with an example of a stochastic volatility specification. Let
n = 1, such that 6%(t) = Y(t), and assume that the subordinator L driving Y is a
compound Poisson process with exponentially distributed jumps, that is,

N(t)

Lt)=) T
k=1

where N () is a Poisson process with intensity § > 0 and {J} }, are independent and
distributed according to an exponential distribution with mean 1/a, a > 0. We first
compute the cumulant of J:

oo a
¥y (x) = mElexp(ixJ)] = ln/ e Vae Y dy = ln( - ) .
0 a —1x

We observe that the moment generating function ¢y (y) = ¥, (—iy) exists for all
y < a. By conditioning, we can next compute the cumulant of L(1):

Y(x) = InElexp(ixL(1)]
N(1)

=E | exp(ix Z Jx)

k=1
o0 8”
=Ine”® Z —'E[exp(ixj)]”
n!
n=0

=4 (e%(x) _ 1)

ix

=94 — .
a—ix
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Denoting by ¥/,2(,) (¢, x) the conditional cumulant of o2 (s) given F;, s > t, we find
by a direct computation that

Vo205 (. x) = InE [exp (ixo?(s)) | 7]

s
=IhE [exp (ixaz(t)e_x(“'_"‘) + / e~ dL(“)) |-7:t:|

t

s
=ixa?(t)e ™ + InE |:exp (ix/ e AT dL(u)):|

t

s—t
= ixo2(1)e ) + / v (xe ™) du
0

u

ST jxe™
=ixa?(t)e ) 4+ 5/ ————du
0

a —ixe M
8 a —ixe 2670
=ixo2(1)e ™ + —1n (—) .
A a—ix

Here we have used the F;-measurability of o2(¢) and the independent increment
property of L. As s —t — oo, we find that
. _ X/
Lim 2., x) =In(1 —i—) .
s—t—00 a
Hence, in stationarity o2(s) becomes I' distributed with shape parameter §/A and
scale 1/a. The probability density function of this distribution is given as

k
a 1 -
k 1e ax

prx;k,a) = % )

with k = 8/A.

Let us analyse o(¢), the volatility, in this case. We find that the characteristic
function of o (¢) is

E [eixa(t)] —E [ei““ /az(r)]
o0 .
= / elxﬁ P(Tz(l‘) (dy) s
0

with P2,y being the distribution function of o?(t). However, as we know from
above, Py (dy) — pr(y;k,a)dy ast — oo. Thus,

o0
lim E[ei"’“’(’)] = / VY pr(yik,a)dy.

—>00 0
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As this integral can be computed (yielding a very long expression consisting of
Whittaker parabolic and trigonometric functions), we find an expression for the
characteristic function of the stationary distribution of o(¢). The mean value of
the stationary distribution is, however, expressible in a rather compact form (using
Maple):

27 sec(km)
2k + 1)/aT ()T (—k — 1)

Jim Elo(1)] = -

The stationary mean of the volatility is therefore proportional to the square-root of
the mean jump size 1/a of L. For example, if § = A (implying that k = 1), we find

J7

[Aim E[o(1)] = —=

2Ja

Recall the analysis of the autocorrelation structure of X(¢) leading to (22), where
the stationary mean value of the volatility is appearing explicitly.

4 Cross-Commodity Derivatives

In this Section we focus on cross-commodity models of energy prices. We want
to investigate pricing of simple spread options in a cross-commodity multi-factor
model, as well as sensitivity measures and dependency risk.

4.1 A Margrabe Formula for Energy Markets

We want to derive a Margrabe formula for energy markets. In the energy markets,
there exist a plethora of various spread options, and we focus on exchange-type
options on spot, including spark and dark spreads. We recall that a stationary
model is the natural dynamics for energy spot prices rather than geometric Brow-
nian motions, calling for an extension of the classical Margrabe formula (see
Margrabe [22]). Moreover, spikes call for non-Gaussian models, which further
complicates the pricing of spread options for energy markets.

Letting S;(¢) and S,(¢) be the spot price dynamics of two energies, we are
interested in deriving a price for an option on the spread between them, that is,

P(t) = e " TR [(S((T) — hSAT) ™ | 7] (30)
where & > 0 is a constant, (x)™ = max(x,0) and r > 0 a constant risk-free interest

rate. For simplicity, we suppose throughout this Section that the pricing measure
Q is chosen to be the market probability P, Q = P, i.e., there is no market price
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of risk. We may view the situation alternatively as the spot being defined under the
pricing measure directly, interpreting P as this one. Obviously, we assume that S
and S, are integrable in order to make the expectation well-defined.

In the classical cases of energy spreads, S| may be the price of electricity, and
S>(t) the fuel. For example, we can have that S is the price of gas, and in that case
h is known as the heat rate, the factor converting the price of gas energy into the
electricity equivalent.

Suppose that the price dynamics of S;, i = 1, 2 are defined as

Si(t) = A (1) exp(X; (1) + Yi(1)), (3D

where
dX;(t) = (u; —o; X;(t)) dt + 0; dB; (1) (32)
dYi(t) = (yi — BiYi(t)) dt + dL;(¢) . (33)

Here, L = (L, L,) is a bivariate square-integrable Lévy process independent of
B, B;, which are two correlated Brownian motions with correlation coefficient p.
Furthermore, u;,o;, y;, B; and o;, fori = 1,2 are all constants, with «;, 8; and o;
assumed positive. In the next Lemma, we state the explicit dynamics of the OU-
processes:

Lemma 4.1. For0 <t <, it holds that

Xi(s) = X;(e™i070 4 Bl —ementomy 4 / 0760 dB; (u),
o t

1

and

. s
Yi(s) = Yi(n)e #1670 4 %(1 —ehiOT) ¢ / O 4L, (),
i

t
fori =1,2.

Proof. This is a straightforward application of It6’s Formula for jump processes.
O

In order for the spread option price to be well-defined, we need that (S;(7") —
S>(T))* has finite expectation, which is true if both S1(7") and S,(T) have finite
expectation. A sufficient condition for this to hold is that fot exp(—pBi(t —s)) dL; (s),
i = 1,2 have finite exponential moment. To this end, introduce the rectangle R C
R? including the origin defined as all pairs (a, b) such that

z{emby — 1} 4(dx, dy) < 00 (34)
RO

with £ being the Lévy measure of L. A sufficient condition for f(; exp(—B;i (t —
§))dL;(s),i = 1,2 to have finite exponential moments is that R = [0, 1]? in (34).
We assume this is true from now on.
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Hence, by appealing to F;-adaptedness, we find that the conditional expectation
for the price can be expressed as

E[(S1(T) - hSy(T)*| 7]
= E[(A(T)e DT i py (1)l DHm) | £

=Ci(t, T, X1 (1), Y1(2))

x [eaz(t,T)-f'\I/z(f,T) (eE1(I,T)—Ez(f,T)"r\I/](t,T)—\Ifz(t,T)

LG T X0, Ya(0))\
ha@ﬂxwxnm) m]

where

Ci(t,T.x,y) (35)
= A;i(T)exp (%(1 _ e—ai(T—f)) + ;_’(1 _ e—ﬂi(T—t)) + xe i (T—1) + ye—ﬂi(T—t)) ,
1 1
and

T
Eit.T)= / o, 4T 4B (u) (36)
t

T
U,(t,T) = / e P T=0 gL, (u), (37)
t

for i = 1,2. Hence, due to F;-adaptedness and independent increment property of
the Brownian motions and Lévy processes, the pricing P(¢) of the spread option
entails in computing the expectation

p(t.T.K) =E I:eEz(t,T)-i-\IJz(t,T) (eEl(t,T)—Ez(t,T)+\I/1(t,T)—\Ilz(t,T) _ K)+] . (38)

for a deterministic strike price K depending on the current states of the factors in
the spot prices as well as current time ¢ and maturity 7. We write K in the sequel
for simplicity.

In the next Proposition, we compute p(¢, T, K) in (38) using the change of mea-
sure technique with respect to Brownian motion (see Carmona and Durrleman [14]
for this idea, used to derive the classical Margrabe formula):

Proposition 4.2. The price p(t, T, K) defined in (38) is given by

2
p(l, T, K) = exp (0_2(1 _ e—20£2(T—t)))
40[2

xE[e®"DF(a@t,T), S, T),K;¥i(t,T) — Wa(t,T))]
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where F(a,b, K; x) is defined as

1 —InK —InK
Flab.Ki) = explatat g oI (p+ 22K )y (1E220E

b b

with N being the cumulative standard normal distribution. Furthermore,

2
010, (o2
a(t, T) =p 102 (1 _ e—(a1+0(2)(T—t)) _ 22 (1 _ e—ZOcz(T—t)) ,
ar + 20

and variance

2

o 010
EZ(Z, T) — 27;1(1 _ e—20£1(T—t)) _ 2pﬁ(l _ e—(a1+a2)(T—t))
2
+ 0_2(1 — e—2az(T—t)) )
20{2

Proof. Recall that (¥, V) and (&, E,) are independent, and hence by the tower
property of conditional expectation we find

E |:632(t,T)+\I/2(I,T) (eE1(f,T)—Ez(f,T)-i“lﬂ(t,T)—\Ifz(t,T) _ K)+]
—-F [ewz(r,T)E |:eEz(t,T) (eE1(t,T)—Ez(t,T)+\I/1(t,T)—\Ilz(t,T) _ K)+ W (2, T), War, T)]] ]

Thus, our first problem is to compute the inner conditional expectation, which
amounts to calculating the expectation

E [eaz(r,r) (eEl(t,T)—Ez(t,T)-i-m _ K)+] ,

for a constant m = W (¢, T) — W, (¢, T).
To this end, introduce the martingale process Z(s) ont < s < T as

K 2
Z(s) = exp (/ ore” 2T 4B, (u) — :—2(e_2°‘2(T_S) — e_Z“Z(T_”‘))) ,
(0%)

t

which, by Girsanov’s Theorem is the density process of an equivalent probability
P* and such that

dW(s) = dB»(s) — ore 2T gs |

is a P*-Brownian motion on s € [t, T]. Thus,
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E [esz(r,r) (eEl(t,T)—Ez(t,T)-l—m _ K)+]
"22 209 (T—1) +
= (1—e7 02U — = )
_ i (i-e R [Z(T) ((eul(t,T) E2(,T)+m _ K) ]
2
)

_ em(l—e*Mz(T*”)]E* [(eEl(t,T)—Ez(t,TH—m _ K)+]

where [, is the expectation operator under P*. Since B; and B, are correlated
Brownian motions, we find, for an independent Brownian motion B, that

Bi(t) = pBa(t) + V1 - p*B(1).

Hence,
T T
210 T)~ B0 T) = [ o T api )~ [ e )
t t
T
:/ pGle_al(T_M) —Uze_O‘Z(T_u) de(u)
t

T
+/ V1= p2oe™ T dB(u)
t

T
:/ pore” T _ gm0 (T=0 gy (y)
t

T
+/ V1= p2oe™ T gB(u)
t
T
n / 3y 2T (e &= (T=) _ g o= (T=
t

Note that B is a Brownian motion under P*, since it is independent of B,. Thus,
under P*, we have that (¢, T) — E,(¢, T) + m is a normally distributed random
variable, with mean equal to m + a(t, T') where

T
a(it, T) = / aze_“Z(T_“)(pole_“‘(T_“) — e 2Ty gy
t

2
— pﬂ(l _ e—(a1+az)(T—t)) _ 0_2(1 _ e—ZOéz(T—t))’

o + o 2065

and variance
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T
EZ(Z, T) — / (po_le—oq(T—u) _ O_ze—az(T—u))Z + (1 _ p2)0_126—2a1(T—u) du
t

2
= O (e @0y _gp NP2 (| —lartan)(T-)
2001 ap + o
2
T ‘7_2(1 _ 20Ty
20[2

Using the same line of derivations as for a call option price, we find that
E. [(eal(r.T)—sz(t,THm . K)+}

_ T AL (E(r, T)+ a@, T)+m— an) KN (a(r, T)+m— an)
(@, T) 2@, 7T)

Thus, by appealing to the definition of F, the proof is complete. O

In the Proposition above, we have reduced the problem of finding p(¢, T, K)
to computing an expectation of a function of the difference of two Lévy integrals.
Thus, we face the problem of pricing a spread option again, but now reduced to
being a spread between the jump terms only. As it turns out, one may again appeal
to a change of measure to express this expectation. Moreover, it is advantageous to
apply the Fourier transform to obtain a “closed-form” expression for p(z, T, K) that
is possible to compute numerically by fast Fourier transform methods.

To prepare for this, we make a small excursion into the Esscher transform for
bivariate Lévy processes. On ¢ € [0, T'], define the stochastic process

t t t
2 =exo ([ 0o + [ 60100~ [ o6 600a) .
0 0 0
(39)
with 61, 6, being two bounded measurable functions, and ¢ (x, y) the log-moment
generating function of L = (L, L,). Note that by our exponential integrability

assumption on L, ¢ (x, y) is well-defined, and it follows that Z(¢) is a martingale
process on [0, T']. We introduce the probability measure P with density

dP

—| =Z@),t<T.
ap =201 =

This is known as the Esscher transform of L. Define the conditional cumulant
function of L under P as

V(s tx,y) == InEp [exp (ix (L) — Li(s)) + iy(La(t) — La(5))) | Fi]
(40)

for T >t > s > 0. It turns out that L becomes a bivariate independent increment
process (see Benth et al. [7]) under P, with characteristics given in the next Lemma:
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Lemma 4.3. Under P, L has a conditional cumulant function

Vp(s.t,x,y) =/ I/f(x—iel(u)ay—i%(u))d“—/ ¥ (=101 (), —i6(u)) du ,

where W (x, y) is the cumulant of L under P.

Proof. With T >t > s > 0, the conditional characteristic function becomes, by
using Bayes’ Formula and the independent increment property of Lévy processes,

Ep [exp (ix(Li(t) — Li(s)) +iy(L2(1) — La(s))) | F]

—E [;8 exp (i (L1 (1) — Li(s)) + iy(La(t) — La(5))) | fs}
— e (- | 501w, B:(0) an)

<E [exp (/t ix + 0,(s)dLi (s) + [ iy + 6:u) sz(u)) m}
— e (- | 501w, B:(0) an)

<E [exp (/t ix + 0,(s)dLi (s) + [ iy + 6:u) sz(u))i|

— exp ( / V(x = 10 (). y — 105()) it — / V(=61 (1), —i6(u)) du)

Hence, the proof is complete. O

By the Lévy—Kintchine formula for L, we have that
N
Vilsit,x,y) = i< / €+ / (el — 1} €(dz)) du, w>
t lz|]<1
N
* / () — 1 —i(z, w11} 0(dz) du,
t JR?

where w := (x,y), O(u) = (01(u), 02(u)), £ € R? is the drift of L and £(dz) is the
Lévy measure of L defined on R? \ {0}. The drift will change from £ to

/ S(s+ / ‘ e _ 12 0(dz)) du,
t zl<1

under P. Moreover, L will have a time-dependent jump measure under P given by

€ 5(dz, du) = =) ¢ (dz) du.
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One refers to this measure as the compensator measure of L. Since the compensator
measure is time-dependent, but deterministic, L is an independent increment
process under P. If 6, #, are supposed to be constant, then L will have stationary
increments under P, and therefore becomes a P-Lévy process in that case. We
remark in passing that we could use the Esscher transform to change measure for
the subordinators driving the stochastic volatility model discussed in Sect. 3, and
thereby modelling the market price of volatility risk.

Before analysing p(t, T, K) further, let us discuss the function F(a,b, K; x)
defined in Proposition 4.2. Recall from the proof of Proposition 4.2 that we can
express F as

F(a.b,K:;x) =E[(exp(a + bU + x) — K)*] ,

where U is a standard normally distributed random variable. We note here that b is
strictly positive. It is then simple to see that exp(—cx) F'(a, b, K; x) is integrable on
R for any ¢ > 1, as the next Lemma proves:

Lemma 4.4. For any constant ¢ > 1, we have that exp(—cx)F(a,b,K;x) €
L'(R).

Proof. By Tonelli’s theorem, it holds,

/ e “F(a,b,K;x)dx=E / e~ (U — k)T dx:|
R LJR

=F /OO e X (eu+bU+x _ K) dxi|
LJIn K—a—bU
r [e%e)
< E ea+bU/ e—(c—l)x dx:|
L In K—a—bU
1

— ea—(c—l)(ln K—a)E [eth] < 00,
c—1
where in the last step we have used that a standard normal distributed random
variable has finite exponential moments of all orders. Hence, the Lemma follows.
O

In the next Lemma we find the Fourier transform of the function exp(—cx) F(a, b,
K; x) for ¢ > 1. For this purpose, we apply the definition of the Fourier transform
of a function g € L'(R) given in Folland [16];

80y = /R g (e dx. @1)

Notice the sign in the complex exponent. With this definition, it holds that the
inverse Fourier transform can be expressed as
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1.
¢ = 5 [ 20er ay. )
T JR

as long as ¢ € L'(R).
Lemma 4.5. The Fourier transform of F.(a, b, K; x) := exp(—cx)F(a,b, K; x) is

. ca—(iy +e=1)(n K—a)+ $p2(1+(iy+(c—1))? o=y +e)in K—a)+ § b2 (iy+e)?
F.(a,b,K;y) = - —K -
(c—=1)+iy c+iy

forevery c > 1.

Proof. By the Fubini—Tonelli Theorem, we compute as follows:

/ e “F(a,b.K;x)e ™ dx=F |:/ e (et Uy — K)+ ey dxi|
i R

o0
_E |:ea+bU / (=D +iy)x dx}
In K—a—bU

o© .
— KE |:/ g (eHinx dx:| .
In K—a—bU

Hence, the Lemma follows after a straightforward integration of exponentials. O

Note that the Fourier transformed function I:} (a,b,K;-) € L'(R) since both
terms will consist of expressions involving exp(—hb?y?/2). Hence, using the inverse
Fourier transform, we find

1 . .
F(a,b,K:x) = 2—/ F.(a,b,K;y)e®™To% gy (43)
T JR

We are ready for our next proposition on the derivation of p(z, T, K) in (38):

Proposition 4.6. For a given ¢ > 1, suppose that (c,c + 1) € R. Then it holds that
o2
p(z" T’ K) = exp (_2 (1 _ e—2a2(T—t)))
40(2

« L / Foa(t.T). S(.T). K: y) exp (ST —1. 7)) dy.
21 R

where a(t, T) and X (t, T) are defined in Proposition 4.2, and ®(z, y) is given by
T
D(r,y) = / ¢ ((iy + c)e—ﬁlu’ iy +c+ 1)e—ﬁzu) du
0

Proof. First, define the density process

Z(t) = exp (/Ot e P2(T—u) dL,(u) — /Ot #(0, e—ﬂz(T—u)) du) ,
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corresponding to letting 6(x) = 0 and 6,(u) = exp(—P2(T — u)) in the
Esscher transform defined above. According the Lemma 4.3, this is a measure
transform giving rise to an equivalent probability Pg such that (L, L,) becomes
an independent increment process under Pg, with explicitly known conditional
cumulant function. Observe that

(1)

! —Pa2(T—u)
70 = exp (‘l’z(l,T)—/t ¢(0,¢e )du) .

Denoting g the expectation operator under Pg, we find from the Fourier inversion
formula and Fubini—Tonelli,

02 T—t
p(t.T.K) = exp (4732 (1—e7220=0) 4 40, e 7 du)
X Eﬂ [F(a(ts T)v E(Zv T)v K; \Ijl(tv T) - “IJZ(Zv T))]

2 T—t
= exp (% (1 - e—Zaz(T—r)) 4 i ¢(0’ e—ﬁzu) du)

1 .
X —/ Fo(a(t,7),2(,T7),K;y)
2 R

x Eg [exp ((iy + c)(W1 (1. T) — ¥2(1. T)))] dy
with a(¢, T) and X (¢, T) defined in Proposition 4.2. But, appealing to the definition
of the measure Pg, we find

T—t

InEg [exp ((iy + o) (W1 (1. T) —¥2(2, 7)))] = _fo $(0,¢P) du

T T
+InE {exp ( / iy + c)e PrT=1 ar, (u) + / (iy + ¢ + e T sz(u))i|
t t

T—t T
= —/ $(0, e P2y du + / ¢ ((iy +0)e PT=0 iy 4 ¢ 4 l)e_ﬁZ(T_”)> du,
0 t

where we used the independent increment property of the Lévy process L. But then
the result follows. O

We collect everything together, to state the Margrabe formula for energy spread
options:

Theorem 4.7. Suppose for a ¢ > 1 that (c,c + 1) € R in condition (34). Then the
price P(t) for the spread option is given by

P(t) =" T70CI(1, T, X, (1), Yi (1) p(t, T, K)
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where p(t, T, K) is given in Proposition 4.6 and

_ hCZ(Zv Ts XZ(t)v YZ(t))
Cl(t7 Tv Xl(t)7Y1(t))

with Ci (¢, T, x;, y;), i = 1,2 defined in (35).

Let us discuss the asymptotic properties of this generalization of Margrabe’s
formula. Indeed, from the definition of C;(¢, T, x;, y;), i = 1,2 defined in (35),
we find that

Ci(t. T.x.y) ~ A(T) exp (ﬂ + ﬁ) ,
i Bi
when T' — t tends to infinity. This means that the strike K behaves asymptotically
for maturities far in the future as

Ay (T) (Mz Hi o 2 Vl)
exp .

A(T) o o B B

Furthermore, from Proposition 4.6 and supposing natural integrability hypotheses,
we find after letting T — ¢ — oo

K~h

1 9 [ A _ = .
P, T, K)~2—e4“22 / Fu(@. 2, K1 y)exp (B(»)) dy.
T R

with
~ 0102 022
a=p————— — —,
o1 + oy 2005
and
2 2
~ o 0107 o
S =1 _9, "7 4 72
20 )] + ar 200
Moreover,

() = /0 by + e iy + ¢ + De ) du

This integral is well-defined under logarithmic integrability hypothesis of the jump
processes, see Sato [24]. In conclusion, we have that the option price behaves
asymptotically as

Ao (T)
A(T)

P(t) ~ kle—’<T—f>A1(T)/ E. (&, S, ko )exp (®(y)) dy.
R
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for constants k; and k, independent of ¢ and T. The option prices will not be
influenced by the current spot price levels when we are far from exercise. This is
an effect of the stationary processes driving the spot dynamics.

4.2 Computing Sensitivity Measures of Cross-Commodity
Options

With the (semi-)explicit price for the spread option in Theorem 4.7 at hand, one
can start to derive the “Greeks” for risk management purposes. By inspecting the
price, we see that to find the Greek of P(¢) with respect to X (¢), say, will involve
differentiation of the function C, (¢, T, X1(¢), Y1(¢)), which appears both explicitly
and inside the inverse Fourier transform in the expression of the strike price K.
To differentiate inside the inverse Fourier transform would yield an expression
analogous to differentiating first the payoff function of the derivative and then apply
Fourier methods to compute the resulting expectation.

In this Subsection we want to investigate a different approach based on the
so-called density method (see Glasserman [17]). The density method allows for
differentiation of option prices for many particular models, where one does not
need to differentiate the payoff function. Our analysis will be valid for a rather
general class of cross-commodity options, that is, European-style options written
on the underlying bivariate commodity prices (S, S2). Noting that each of the
two price processes has a Brownian motion driven factor, one can exploit this by
a conditioning argument to obtain expressions for the derivatives with respect to all
four factors X;(¢),Y;(¢), i, j = 1,2. This approach, called the conditional density
method, was suggested and analysed for options written on one underlying asset in
Benth et al. [9]. It was later extended to multi-factor models and applied to energy
markets in Benth et al. [12]. We apply it here in our particular multi-factor cross
commodity model, but remark that its potential is much larger.

Consider a cross commodity option paying g(S:(7"), S2(7T")) at time 7, for some
(nice) function g : Rﬁ_ — R4. By a simple reformulation, we can express this
payoff function as

§(Si(T), $2(T)) = g(T. X\(T) + Yi(T), Xo(T) + Yo(T)) .

for a function g. From now on, we suppress the dependency on 7T in this function
(it comes from the seasonality functions), and suppose that

E[lg(Xi(T) + Yi(T), Xo(T) + Yo(T))[] < 0.
Our problem now is to find the derivative of the price functionals
P(t) =" TVE[g(X1(T) + 1(T). Xo(T) + Ya(T) | F] . (44)

For simplicity, we let r = 0 in the rest of this subsection.



Stochastic Volatility and Dependency in Energy Markets: Multi-Factor Modelling 155

By the Markov property of the factors, we find that
P(1) = P(t. X1(2), Y1(1). X2(2), Y2(2)) .
where

P(t,x1,y1,%2,2) = E[g (xie™ T 4 3P T L B¢, T) + W, (1, T),

xpe” 2T 4y P00 L By (1, T) + Ua(t, T))]
(45)

after using Lemma 4.1 and (36)-(37). By conditioning, we have the following
representation:

Proposition 4.8. It holds that

P(t,x1,y1,x2,y2) =E [/2 g(z1,2) pe(z1(x1, ¥1), 22(x2, ¥2)) dz1 d22:|
R

where
G(xiy) =z —xe 1T — ye T 00, T

fori = 1,2, and pz(z1,z2) is the density function of the bivariate normal random
variable (E,(t,T), E,(t, T)).

Proof. First observe that by assumption, W; (¢, T') are independent of E;(¢,7),i =
1, 2. By conditioning, we find from properties of the conditional expectation that

P(t,x1,y1,x2,y2) = E [E [g ()Cle_al(T_t) + yle_ﬂ‘(T_’) + Y+ E1(¢,T),
x2e” 2070 1y I oy 4+ Es(1, 7))
[yi =Wi(e,T),i =1,2]] .
We see that the inner expression is an expectation of a function of (E,(¢,7T),
E,(t,T)), and the result follows. O

From the definition of E;(¢,7), i = 1,2, in (36) we find that it has expected
value zero and variance given by the Ito isometry as

T 2 2
vi(T — 1) A E |:(/ O,ie—oti(T—S) dB; (S)) :| = 20_’ (1 _ e—Zai(T—t)) . (46)
t i

Furthermore, since By and B, are two correlated Brownian motion, the Ito isometry
yields the covariance between E,(¢, T) and E,(¢, T) as

vioT = 1) BE[E (0. T)Ea(t. T)] = pe (1 — e @+ T0) - (47)
o)+ o
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This gives a full specification of the variance—covariance matrix V(7T —t) € R>*?
of (81(¢,T), Ea(t, T)), and its bivariate probability density becomes

—lz*V_l(T — t)z) , (48)

1
pe@a) = T P ( 2

with z = (21, 22)* and * meaning the transpose. It is easily seen that the gradient of
) is

Vpz(z1.22) = —pz(z1.22) (] V 'z, €5V 7 '2) (49)

wheree;,i = 1,2, are the Euclidean basis vectors in R2. We are now ready to derive
the sensitivity of the option price with respect to the various factors.

For the sake of illustration, suppose we want to find the derivative of the option
price with respect to X;(¢), the first factor of the first commodity (energy) in the
option. This is given via the derivative dP (¢, x1, y1, X2, y2)/0x;. By Proposition 4.8
this is now straightforwardly calculated. We find

OP(t, X1, y1, X2, 2) _
3x1

E [Az gz, ) pe(zi(x1, ¥1), 22(x2, ¥2))
xef V(2 (x1, y1). 22 (32, y2)) e TV dzy dzp| - (50)

According to Folland [16], Theorem 2.27, we can commute differentiation and
integration in the above derivation as long as the integrand in (50) has a majorization
uniformly in x;. But this holds at least when restricting x; to a bounded subset of
R. Tracing back, we get

AP (t,x1,y1,X2,¥2)
axl

= e uT-DE [g (xie71 @0 4y P T0 4 By (1 T) + W11, T),

106720 4 yoe T 4 20, T) + Ws(, 7)) € VT @11, T), B2, T
1)

Observe that the above Greek does not involve any differentiation of the payoff
function g, and lends itself easily to Monte Carlo pricing. In fact, we are almost
back to pricing the option itself, except for the additional weight functional

eV (E (. T), Balt, T))*,

that enters the expectation operator, and a “discounting” term given by the speed of
mean reversion o .

Of course, the derivatives with respect to the other factors are calculable in the
exact same fashion. Indeed, we can also compute derivatives with respect to some of
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the parameters, like for example the speeds of mean reversion using this approach.
This would, however, yield more technically complex expressions, and we refrain
from analyzing this further here.

4.3 Cross-Commodity Dependency Risk and Copulas

In this Subsection we consider the dynamics (32)-(33) defined under the market
probability P, and focus on how to do a measure change from P to Q for
bivariate jump process. In particular, we are interested in the potential effects on
the dependency structure.

The Esscher transform (as previously introduced) is the standard approach
to produce a parametric class of measure changes for jump processes. For the
Brownian motions, one naturally applies the Girsanov theorem to change measure.
To this end, we suppose that & = (6;,60,) € R? and n = (11,1) € R? are two
constant vectors. Define the martingale process Zp(¢) fort < T

Zp(t) = exp (0131(1) + 6,B(1) — %(912 +63) r) )

Then, by Girsanov’s Theorem, we find that Z(¢) is the density process of an
equivalent probability measure Q g such that

dWi(t) = dB;(t) — 6 dt,i = 1,2, (52)

are Q g-Brownian motions on [0, 7]. Observe that the correlation between B
and B, is preserved under this measure change, so that W, and W, also become
correlated by the same factor p. The characteristics of the Lévy processes L1, L,
remain unchanged under Q p.

Recall the Esscher transform defining a measure via a density process Z(¢) as
in (39). We shall here focus on a constant measure change, and define the process
Zp(t)fort <T as

Zp(t) =exp(mLi(t) +mLa(t) — d(1, m2)1) , (53)

where ¢ (x, y) is the logarithm of the moment generating function of the bivariate
random variable (L(1), L»(1)). Choosing n = (n1,1n2) € R (see (34)) implies
that Z; (¢) is a martingale with expectation equal to one, and therefore the density
process of an equivalent probability Q. This measure transform of (L (t), L(t))
preserves the Lévy property of (L (¢), L»(¢)) (recall Lemma 4.3 above). The change
of measure from P to O does not affect the Brownian part since the jump process
and the Brownian motions are supposed independent.
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We characterize the Lévy process (L(t), L»(¢)) under Q. By a direct compu-
tation, we find the logarithm of the moment generating function to be

$o(x,y) =InEg, [exp(xLi1(1) + yL2(1))]
= InE[exp ((x +n1)L1(1) + (¥ + n2) L2(1))] — ¢ (01, 12)
=¢(x +n,y +n)—d(n.m).

To make this derivation rigorous, we must assume that (x +7;, y +12) € R.If L(?)
has drift given by the vector £ € R? and a Lévy measure denoted by £(dz;, dz,), we
find from the Lévy—Kintchine representation that

do(x.y) =&ix + &y + / (xz1 + yzp) (emzl+nzzz _ 1) 0(dz1, dz)

lzl<1

+/ / {902 — 1 — Ly (a1 + y2)} U(dzr. dza)
Ro J/Ro
where | - | is the norm on R?. Hence, the drift of L = (L, L») is

& +/ 2 {emz1+nzzz - 1} (dz1,dzp), §2+/ P {emZ1+nzzz _ 1} ((dz1,dz))
lz]<1

lz|<1

under Q, whereas the Lévy measure is
Lo(dzi,dw) = MUt Y (dzy dzy) .

We see that the effect of the Esscher transform is a linear shift in the drift and an
exponential tilting of the Lévy measure.

We define a pricing measure Q ~ P as Q = Qp X Q, which then will have a
Radon-Nikodym derivative with density

dQ
— | =Zp(t)Z.(1), 54
Py = 280210 (54)
for ¢t < T. We know the characteristics of L and B;, B, under Q.
We next compute the forward price dynamics for a contract delivering the spot
at time 7. By definition, we set the forward price at time ¢t < T on commodity 7,
denoted f; (¢, T), as

fit, T) = Eo [Si(T) | F] - (55)

Proposition 4.9. Suppose that (n; + 1,7, + 1) € R. Then, the forward prices
fi@,T), i =1,2 are given by

[t T) = Ai(T)exp (X; (0)e™ T + Y;(1)e P T D) (T — )0, (T —1),
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where

2
i —a; i —B. O; S Yo
InY; (1) = —Z_ (1—e ") + —;_(1 —e ) (e
1 1

1

and
i 0; o u _ A
in0:w) = 21—+ [ g+ Lymne ™+ e ) = gl md
1

with0<u<T.

Proof. From Lemma 4.1 and adaptedness of X;(¢) and Y; (¢) to F; we find
fi@.T) = Ai(T)exp (Xi(1)e ™0 + ¥ (1)e P 7)

0.0 :
X exp (%(1 —e ") 4 %(1 - e_ﬂf“))

T T
xEg [exp (/ oie 4T qw; (v) + / e Pl gL, (V)) |fri| .
t t

Focusing on the conditional expectation, we first recall that W; and L; have
independent increments under Q, and moreover are independent. Hence,

T T
Eo [exp (/ o;e % T gy, ) +/ e—Bi(T—v) dL; (v)) |]:t:|

t t

T T
=Eg, [exp (/ oie % T qw; (v))i| xEg, |:exp (/ e ATV qr, (v))i| .

The first expectation is simple to compute after observing that the Wiener integral
is normally distributed. Hence,

T 2
Eo, [exp (/ o;e TV qw; (v))} = exp (f—’(l - e_z‘)"'(T_’))) :
t o

The last expectation is computed by appealing to the measure change Q; and the
definition of the logarithm of the cumulant function

T
Eo, [exp (/ e ™ ar, (V)):|

T
=FE [exp (/ e PiT—) dLi(v) + m(L(T) — L1(2)) + n2(L2(T) — Lz(t)))i|

t

x exp (= (i, n2)(T —1)) .
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Observe that we must require that (17, + exp(—pBiu), n2 + exp(—pBau)) € R for
0 < u < T for this to hold. However, the condition in the proposition is sufficient
for this. Hence, the proof is complete. O

We observe that 6 and 7 describe the risk premium in the sense of determining
the market price of risk. For the sake of illustration, suppose that = (0, 0), and we
find that the risk premium becomes

Ri(t,T) = Ai(T)exp (Xi (1)e T + Yi(t)e P TD) 1,(T — 1)

X {exp (Gi—ei(l —e_“i(T_t))) - 1} .
o

Hence, as o;, the volatility, is naturally positive, we find a positive risk premium
whenever the market price of risk 6; is positive, and vice versa. Opposite, by setting
6 = (0,0), we can obtain similar conclusions on the risk premium as a function of
n. We refer to Benth and Sgarra [6] for a detailed analysis of the jump market price
of risk. In fact, they show that in the case of seasonally occurring spikes, one may
obtain a change in the sign of the risk premium from positive to negative. We refer
to [6] for details.

We specialize our discussion next to compound Poisson processes, and investi-
gate their dependency structure in light of our measure transform. As we shall see,
there is an effect on the dependency structure when using the Esscher transform,
contrary to what we find for the Girsanov transform.

Let N(t) be a Poisson processes with intensity A > 0, and (J!, J?) a bivariate
random variable with (J', J?),i = 1,... being independent copies of it. Let F;(x)
be the probability distribution function of J?, i = 1,2. Define the compound
Poisson processes

N(r)
Lio)y=)_J'. (56)
i=1
N(@)

Ly(t)y =) J2. (57)

i=1

Suppose that the distribution function of (J', J?) is defined via a copula function
C, thatis,

Fia(x,y) = C(Fi1(x), Fa(y)) -

Simply put, a copula C is a bivariate uniform distribution function (see Nelsen [23]
for an introduction to copulas). We assume furthermore that there exist densities
p1. p2 and ¢(x, y). As long as exponential moments exist for the jumps (J ', J?2),
we find
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E [e“l”ﬂ] - /2 T2 (Fi(z1), Fa(22)) p1(21) p2(z2) dzi dza
R,

0

Hence, the log-MGF of (J !, J?) is

Pra(x.y) & 1ﬂ/2 et (Fi(z21), Fa(22)) p1(z1) p2(22) dz dzs -
R

Since

¢(x,y) =hnE [exL1(1)+yL2(1)] = (e¢1.z(x,y) _ 1) ,

161

(58)

we find that the Lévy measure of the bivariate compound Poisson process

(L1(1), La(1)) is

L(dz1,dzz) = Ac(F1(21), F2(z2)) p1(21) p2(22) dz1 dzo

On the other hand, one finds that the log-MGF of (L(¢), L,(¢)) under Q is

¢Q(X, y) =2 /2 (ex11+yzz _ 1) emzl+nzzzF1,2(dzl,d22) .
R

Now, introduce the probability densities

p2(x) 2 ke py(x)

A -
PE () k3™ pa(y),
with k; and k, being normalizing constants. Letting
Ao £ Akiks
we find the Lévy measure of L under Q to be

Lo(dzi,dz) = Aoc(Fi(21), Fa(22) pL (1) p2(22) dzy dza .
Finally, introduce the copula density under Q as
co(x.y) & ¢ (RUFRZ ). RUFY (1))
Then,

Lo(dzr.dzz) = Agco(FP (z1). F(22) pf (21) pL (22) dzy dza .

(59)
(60)

(61)

(62)

(63)
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From this we conclude that (L;(z), L»(¢)) is a bivariate compound Poisson process
under Q with jump intensity Ao, and (J!, J?) having a distribution given by

F&(x,y) = Co(F(x), (),

where Co(x, y) is the copula with density co (x, y).

Let us investigate a simple example: assume that J! and J? are marginally
exponentially distributed with means 1/a and 1/b, resp., a,b > 0. Then, from
the analysis above we find

F2(x) =1—¢l@am»

FzQ (y)=1- e~ (b=m)y

and

cQ(x,y):c(l—exp( a ln(l—x)),l—exp( b ln(l—y)))
n b—m

a—mn
=c (1 —(1- x)“/(a—m)’ 1—(1- y)b/(b—ﬂz)) )

Hence, the density c€ is nothing but a nonlinear transformation of the coordinates
of c¢. The effect the change of measure on the copula density is to move the mass of
¢ from coordinate (x, y) to the coordinate (1 — (1 —x)%/4~" 1 —(1—y)?/>=m) The
function g(x) = 1 — (1 — x)4 for ¢ > 0 is monotonely increasing with g(0) = 0
and g(1) = 1. It holds that g’(0) = ¢, while g’(1) = 0 as long as ¢ > 1 and
g'(1) = +oo for ¢ < 1. Obviously, the case ¢ = 1 yields the identity mapping
g(x) = x. Since g(x) is concave for g > 1, it holds that ¢(x) > x for x € [0, 1].
Hence, if a/a — n; > 1, then the first coordinate of the copula density c is pushed
towards higher values after transforming to the pricing measure Q. For0 < g < 1
we find g(x) < x, and the first coordinate of the copula density c is pushed to lower
values when O < a/a —n; < 1. For example,ifa/a—n; > landb/b—1n, > 1, we
move the mass of ¢ at a point (x, y) towards the point (1, 1), meaning that we obtain
more big jumps appearing together. By making 7, and 7, close to a and b, resp., we
can obtain a concentration of extreme tail dependency in the copula density cp.
Hence, under Q we get both an emphasize on bigger marginal jumps, but they will
also appear more often together. Interpreted in a power market context, this means
that positive market risk premia 7, and 1, will lead to more spikes, occurring more
often in both markets at the same time, compared to the situation under the physical
probability P. If, on the other hand, we choose 7, and 7, negative, we can reduce
any tail dependency of ¢ under Q, since in this case a/a — n; and b/b — n, will
become less than 1, and the mass of ¢ at (x, y) will be moved towards the origin
(0,0). In a power market, this would mean that under the pricing measure, we get
less occurrence of spikes, being reduced in size marginally, and at the same time the
spikes in the two markets will become more decoupled.
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Fig. 6 The Gumbel copula density function for y = 1.5

In order to gain further understanding, we include a numerical example using
the Gumbel copula. The Gumbel copula is defined as a parametric class of copula
functions given as

Cy(x.3) = exp (= (= Inx)” + (—Iny))""") (64)
for y > 1. The density is directly computable as

—_ — -1 1
¢ (roy) = €, (e, ) EDCIINTT (1 r 4 iy
Xy

x {((=nx)? + (= Iny)")7 + (y = ) (65)

In Fig. 6 we have plotted the Gumbel copula density for y = 1.5. Next, we choose
jump terms in S; and S, with a = b = 0.9091, which corresponds to an expected
jump size of 1.1. Since exp(1.1) ~ 3.0, we are looking at jumps which are on aver-
age scaling the price dynamics by 300 %, meaning spikes on average of the size of
about 300 % price increase. For the sake of illustration, we use market prices of risk
n = n2 = 0.3. As s clear from Fig. 7, the mass of ¢y has been transported towards
(1, 1), yielding more emphasis on common big jumps under Q than under P.

In the market place, there exist many swap contracts traded OTC, for example
spark and dark spread swaps exchanging power with the energy equivalent of gas
and coal, respectively. Furthermore, at NYMEX, one can trade in plain vanilla call
and put options written on refined oil products. An analysis on the effect of Q on
the dependency structure is valuable for pricing purposes.

Another interesting application of the above results is the valuation of a so-called
contracts-for-difference (CfD) traded in the NordPool market. The CfD’s are futures
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Fig. 7 The Gumbel copula density function for y = 1.5 under the Esscher transform proba-
bility Q

contracts written on the spread between two area prices in the Nordic market.
Different spot prices for different, pre-defined, areas are the result of transmission
congestions in the market, where geographical separation of production and demand
is resolved by differentiation in pricing. The CfD contract is a swap, where one area
price is exchanged for another, yielding a payoff at time 7" given by S;(7") — S2(7T')
for area spot prices S| and S,. The CfD swap price femp(f,T) at time t < T is
therefore given by

Jen(t, T) =Eg [SI(T) — S2(T) | F]

But from Proposition 4.9, we can easily derive an expression for this swap price
dynamics. Recalling the discussion above with the Gumbel copula and exponen-
tially distributed jumps, the effect of choosing an Esscher transform as the pricing
measure Q will be more concentration of spot prices, thus reducing the swap price
volatility compared with the choice Q = P. It is an interesting question to look
at market data for CfD swap prices together with area spot prices to see how they
interact.

5 Conclusions

In energy markets like gas and electricity, spot prices are typically mean reverting
towards a seasonal mean. Further, spikes in prices occur as a result of sudden
imbalances between supply and demand. Stochastic volatility effects like clustering
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are observed as well in price changes. These stylized facts on energy spot prices call
for sophisticated stochastic models.

We have proposed an exponential two-factor model with stochastic volatility to
model energy spot prices. The deseasonalized logarithmic spot prices are governed
by an Ornstein—Uhlenbeck process reverting towards a stochastic mean level, again
being an Ornstein—Uhlenbeck process. The mean level is slowly varying, whereas
the short term factor can typically revert faster, and thus can potentially give bigger
fluctuations in prices over short time. Both Ornstein—Uhlenbeck processes are
governed by correlated Brownian motions, where the short term process is assumed
to have stochastic volatility defined by the Barndorff-Nielsen and Shephard model.
This will enable us to model leptokurtic residuals, which is a main characteristic in
energy prices.

The proposed spot price model allow for semi-analytic forward prices. In the
particular case of independent Brownian motions driving the mean level and short
term dynamics, the forward prices are analytic. However, the general case requires
the computation of an expectation functional in the derivation of the forward price
dynamics. The main complication is the dependency on an integral of the linear
combination of the volatility process and its square (the variance). However, we are
able to analyse properties of the forward prices, showing among other things that the
forward curves allow for humps which size depends on the state of the mean-level
and/or the stochastic volatility. Humps in the forward market has been observed
in energy markets, for example in oil, and we provide an explanation for this by
stochastic volatility and randomness in the mean level of prices.

There are close dependencies between different energy prices. For example, the
electricity markets are connected to gas and coal, as these are used as fuels in power
production. Different electricity markets are connected via transmission lines. We
study a simplified version of our proposed spot price model set in a bivariate market
context. More specifically, the marginal demesnial logarithmic spot price dynamics
is defined by a two-factor Ornstein—Uhlenbeck process driven by a Brownian motion
and Lévy process. When considering two energy spot prices, we assume that both
the Brownian motions and the Lévy processes are dependent. Using the Girsanov
and Esscher transforms we are able to compute the price of spread options on the
two energy spot prices. The price is derived based on the Fourier transform, and can
be expressed in terms of the characteristics of the bivariate Lévy process. The trick
in the derivation is a measure change, which reduces the bivariate option pricing
problem into a problem of pricing a call option on a single underlying. Our pricing
formula will extend the classical Margrabe formula for the price of a spread option
on two correlated geometric Brownian motions. Sensitivity measures for the spread
option is derived using a conditioning technique which exploits the independence
between the Lévy processes and the Brownian motions. Spread options are traded
on exchanges and bilaterally to a large extent, and their pricing and hedging is
important in risk management.

The selection of the right pricing measure Q is a fundamental problem in energy
markets. The challenge is to find a probability Q which are able to explain the
risk premium. We focus on a specific issue related to this in the cross-commodity
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market setting, namely the question of the dependency risk premium. Looking at a
bivariate compound Poisson process, we model the joint jump size distribution by a
copula and analyse the change in characteristics of this particular Lévy process after
performing an Esscher transform. It is known that marginally the Esscher transform
will increase the spike intensity and size in the case of a positive market price of risk.
We show that additionally, the jumps will happen more often in the two markets, that
is, there will be a concentration of big jumps happening simultaneously in the two
markets. In a numerical exercise, we illustrate this using the Gumbel copula, for
which we observe an increase in the extremes for positive market prices of risk after
doing an Esscher transform. These findings are of importance when pricing options
on spreads and other cross-commodity derivatives.

The complexity of energy markets make them challenging to model. Cross-
commodity models must account for both marginal price behaviour as well as
dependencies between prices. The risk premium, in particular the dependency risk,
is a delicate issue. Extensive data studies are called for to reveal the true nature of
this risk premium. However, as models for the underlying spot are complex and the
available data for spread options currently are rather limited, this remains a difficult
task to solve.
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Portfolio Choice with Transaction Costs:
A User’s Guide*

Paolo Guasoni and Johannes Muhle-Karbe

Abstract Recent progress in portfolio choice has made a wide class of problems
involving transaction costs tractable. We review the basic approach to these
problems, and outline some directions for future research.

1 Introduction

Transaction costs, originally considered one of many imperfections that are best
neglected, have now become a very active and fast-growing theme in Mathematical
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Finance.! From the outset, such a growth may seem puzzling, since over the same
period transaction costs have dramatically declined across financial markets, as
stock exchanges have been fully automated, and paper trades replaced by electronic
settlements. In fact, the interest for transaction costs reflects both the increased
attention to robustness of financial models, and the growing role of high-frequency
trading. The decline of bid-ask spreads has sparked a huge increase in trading
volume, and high-volume strategies require a careful understanding of the effects
of frictions on their returns.

At the same time, transaction costs help understand trading volume itself. In
frictionless models, investors continuously rebalance their portfolios, as to hold a
constant mix of assets over time. Since trading volume is proportional to the total
variation of a portfolio, and prices follow diffusions that have infinite variation,
such models lead to the absurd conclusion that trading volume is infinite over any
time interval. With transaction costs, even small trading costs make it optimal for
investors to trade infrequently, allowing wide oscillations in their portfolios.

This paper reviews a recent approach, which has made portfolio choice with
transaction costs more tractable, and which appears to be applicable in more
complex settings. This approach is not based on any new revolutionary concept,
but it rather tries to combine several ideas that were previously used in isolation.
Thus, we present a new toolbox that contains several used tools. In a nutshell,
we argue that a natural approach to portfolio choice problems with transaction
costs entails four steps: (a) heuristic control arguments to identify the long-run
value function, (b) construction of a candidate shadow price using marginal rates of
substitution, (¢) verification and finite-horizon bounds using the myopic probability,
and (d) asymptotic results from the implicit function theorem.

The advantages of this approach are threefold. First, it combines the dimension-
reduction and higher tractability of the long-horizon problem with exact finite-
horizon bounds, which keep a firm grip on the robustness of the solution. Second,
we show that the free-boundaries arising with transaction costs can sometimes be
identified explicitly in terms of a single parameter, the equivalent safe rate, which
remains the only non-explicit part of the solution. This reduction is useful both
for theoretical and for practical purposes, as it helps to simplify proofs as well as
calculations. Third, this approach leads to the simultaneous computation of several
related quantities, such as welfare, portfolios, liquidity premia, and trading volume.

The paper proceeds as follows: in the next section, we present a brief timeline of
related research, which is far from exhaustive, and only aims at putting the paper in
context. The following section introduces the main problem, discussing the relative
advantages of the three main models with terminal wealth, consumption, and long-
horizon. This section also discusses the typical heuristic arguments of stochastic
control that lead to an educated guess for the value function, and the identification

IThe Mathscinet database shows only nine publications with “transaction costs” in their title in
the eighties (1980-1989). This figure rises to 52 in the nineties (1990-1999), and to 278 in the
naughties (2000-2009).
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of the corresponding free boundaries. For the long-run problem, the following
section shows the passage from the heuristic calculations to a verification, which
relies on two central ideas. The first one is the construction of a shadow market,
an imaginary frictionless market, built to deliver the same optimal strategy as the
original market with transaction cost. This shadow market harnesses transaction
costs by hiding them inside a more complex model, without transaction costs, but
in which investment opportunities are driven by a state variable that represents
the portfolio composition of the investor. This insight—that transaction costs are
essentially equivalent to state-dependent investment opportunities—in turn allows
to exploit the approach to verification based on the change of measure to the myopic
probability.

We conclude with a deliberately speculative section on three open problems:
multiple assets, return predictability, and option spreads. We argue that with
transaction costs, multivariate models present both a substantial technical challenge,
and a potentially fertile ground for novel financial insights, which may alter the
conventional wisdom on fund separation. Likewise, transaction costs may help
reconcile statistical evidence on return predictability with the poor out-of-sample
performance of market-timing strategies. Finally, the large bid-ask spreads observed
in options on highly liquid assets still lack a theoretical basis, and transaction costs
are a natural avenue to search for an explanation.

2 Literature Review

Portfolio choice with transaction cost starts with the seminal papers of [8,35], and
[17], in the wake of the frictionless results of [36, 37]. From heuristic arguments,
these early studies gleaned central insights that held up to subsequent formal proofs.
First, optimal portfolios entail a no-trade region, in which it is optimal to keep
existing holdings in all assets. Optimal portfolios always remain within this region,
and hence trading should merely take place at its boundaries. The no-trade region is
wide, even for small transaction costs, implying that investors should accept wide
fluctuations around the frictionless target. Second, the large no-trade region has a
small welfare impact [8], because the displacement loss is small near the frictionless
optimum, and the wide no-trade region minimizes the effect of transaction costs.
On the mathematical side, Taksar et al. [44] reduce the maximization of loga-
rithmic utility from terminal wealth at a long horizon to the solution of a nonlinear
second-order ODE with free boundaries, to be determined numerically. Davis and
Norman [15] accomplish this feat for power utility from consumption with infinite
horizon. Shreve and Soner [40] extend their analysis with viscosity techniques,
removing some parametric restrictions. Shreve and Soner [40] and Rogers [39]
study the size of the no-trade interval and the utility loss due to transaction costs.
They argue that these are of order O(¢'/?) and O(¢?/3), respectively, where ¢ is the
proportional cost, in line with the numerical results of [8] alluded to above. Building
on earlier heuristic results of [24, 46] explicitly determine the coefficients of the
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leading-order corrections around the frictionless case ¢ = 0. In a general Markovian
setting and for arbitrary utility functions, Soner and Touzi [42] characterize the
corresponding quantities in terms of an ergodic control problem. All these papers
employ stochastic control as their main tool.

A new strand of literature, which finds its roots in the seminal work of [14, 25],
seeks to bring martingale methods, now well-understood in frictionless markets, to
bear on transaction costs. This idea has already shown its promise in the context
of superreplication: Guasoni et al. [22] prove the face-lifting theorem of [43] for
general continuous processes, using an argument based on shadow prices. Kallsen
and Muhle-Karbe [26] explore this approach for optimal consumption from loga-
rithmic utility, showing how shadow prices simplify verification theorems. Gerhold
et al. [19] exploit this idea to obtain the expansions of [24] for logarithmic utility,
but with an arbitrary number of terms. The present study reviews the approach put
forward by [18], who prove a verification theorem and derive full asymptotics for
the optimal policy, welfare, and implied trading volume in the long-run model of
[17]. The duality-based verification is based on applying the frictionless long-run
machinery of [21] to a fictitious shadow price, traded without transaction costs.
Compared to [18], finding a candidate shadow price is greatly simplified by applying
a observation originally made by [34]: Given a smooth candidate value function, it
can simply be obtained via the marginal rate of substitution of risky for safe assets
for the frictional investor. (Also cf. [23, 33] for applications of this idea to related
problems.)

3 The Basic Model

3.1 Objectives

Let X[ denote the wealth of an investor who follows the portfolio 7;, and let ¢; his
consumption rate, both at time 7. The three typical objectives for portfolio choice
with power utility U(x) = x'77 /(1 — y) are:

@xp' .
max E - | (terminal wealth) €))
T -V
00 Cl—}/
max E / " (consumption) 2)
e 0 =y
1 1
max th—1>icgf T log E [(X’TT)I_”] = (long run) 3)

Expected utility from terminal wealth (1) has attracted the attention of most of
the semimartingale literature (see, for example, [28] and the references therein).
This objective is the simplest for abstract questions, such as existence, uniqueness,
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well-posedness, and stability, which are by now largely understood. It is also
relevant for problems such as retirement planning, which entail a known horizon
and no intermediate consumption. Expected utility from intertemporal consumption
(2) is more appealing for applications to macroeconomics, because it yields an
endogenous consumption process ¢;, and therefore has testable implications for
consumption data.

The long run objective is probably the least intuitive, in view of the limit in (3).
To understand its economic interpretation, note first that, for a fixed horizon T, the
quantity E [(X7)'77] ™ coincides with the certainty equivalent U™'(E [U(XF)])
of the payoff X7. If we match this certainty equivalent with xefrT, that is, the
investor’s initial capital x compounded at some constant rate pr for the same
horizon 7', we recognize that:

1

pr = %logE [(xP) ]

Thus, the limit in (3) has the interpretation of an equivalent safe rate, that is, the
hypothetical safe rate that would make the investor indifferent between investing
optimally in the market, and leaving all wealth invested at this hypothetical rate.

Both the consumption and long-run problems are stationary objectives, in
that they lead to time-independent solutions (as long as investment opportunities
are also stationary). Of course, the advantage of stationary problems is that the
resulting optimization problems have one less dimension than similar nonstationary
problems, such as utility maximization from terminal wealth. Both objectives model
an investor with an infinite horizon, but with some important differences. First,
the consumption objective involves the additional time-preference rate §, which
does not appear in the long-run objective. Second, in typical models (even in a
Black—Scholes market, compare [6]), the consumption objective may not be well
posed if risk aversion y is less than the logarithmic value of one, and investment
opportunities are sufficiently attractive. By contrast, the long-run objective is
typically well-posed under more general conditions.

The irony of portfolio choice is that its most natural objectives are also the least
tractable: the terminal-wealth problem admits closed-form solutions only in rare
cases (cf., e.g., [31]). Even when such solutions exist, they are often too clumsy
to yield clear insights on the role of preference and market parameters. Unfortu-
nately, the consumption objective admits explicit solutions primarily in complete
markets, or with investment opportunities independent of asset prices, a fact that
severely limits our understanding of the effects of partial return predictability on
consumption.

The good news is that the long-run problem admits explicit solutions in many
situations in which the other two problems do not, its optimal portfolio is almost
optimal even for the other objectives, and bounds on the resulting utility loss are
available. This general insight is crucial in markets with frictions, such as transaction
costs.
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3.2 Control Heuristics

We now examine the differences in the Hamilton—Jacobi—Bellman equations aris-
ing from the three objectives (1)—(3), in the basic model with one safe asset growing
at the riskless rate r > 0, and a risky asset with ask (buying) price S; following
geometric Brownian Motion:

ds
Tt = (u+r)dt +0cdW;, p,o>0. 4)
t

The bid (selling) price is (1 — ¢)S;, where ¢ € (0, 1) is the relative bid-ask spread.

Denote the number of units of the safe asset by ¢ and write the number of units

of the risky asset ¢, = (p,T - qo,¢ as the difference between cumulative purchases and

sales. The values of the safe position X; and of the risky position ¥, (quoted at the
ask price) evolve as:

dX, =rX,di — Sidg! + (1 —¢)S,dg}. ©)

dY, =(u + r)Y,di + oY,dW, + S,dg! — S,d}. (©)

The second equation prescribes that risky wealth earns the return on the risky asset,
plus units purchased, and minus units sold. In the first equation the safe position
earns the safe rate, minus the units used for purchases (at the ask price S;), and plus
the units used for sales (at the bid price (1 — ¢)S;).

For the maximization of utility from terminal wealth, denote the value function
as V(t,x,y), which depends on time ¢, on the safe position x, and on the risky
position y. Itd’s formula yields:

1
dV(t, X, Y,) = Vidt + VedX, + VydY, + 2 Viyd (YY), 7

0.2
— (V, +rX, Ve +(u+nrY,V, + ?Y,ZVW) dt (8)
+8,(Vy = Voyde! + Si(1— &)V — Vy)do! + 6X,VydW,, (9)

By the martingale optimality principle of stochastic control, the value function

V(t, X;, Y;) must be a supermartingale for any choice of purchases and sales (p,T , (,o,¢ .

Since these are increasing processes, this implies V,—V, < 0and (1—¢)V,—V, <0,
which means that

(10)

IA
B[P
IA
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In the interior of this “no-trade region”, where the number ¢, = qo,T — (,o,¢ of

risky shares remains constant, the drift of V (¢, X;, ¥;) cannot be positive, and must
become zero for the optimal policy. This leads to the HIB equation:

2 v 1
I/,f+rX,fo+(u+r)nVy+%1@2Vyy=0 ifol<t <. (D
e

Next, the value function is homogeneous in wealth, i.e. V(t, X;,Y;) = (X))
v(t,Y:/X,), whence setting z = y/x:

2
o . 1=y, z 1
— v +pzv.+r(l—yw+v, =0 if 1+z<( IV )< +z.
2 v,(t,2) 1—¢
(12)

Now, suppose that the no-trade region {(¢,z) : 1 + z < % =< l—is + z}
coincides with some interval /(t) < z < u(t) to be found. At I(¢) the left inequality
in (12) holds as equality, while at u(¢) the right inequality holds as equality, leading

to the boundary conditions:

A+ Dv,(t,1)— A —y)v(, 1) =0, (13)
1/ —¢) +uyv,(t,u) — (1 — y)v(t,u) = 0. (14)

These conditions are not sufficient to identify the solution to the optimization
problem, since they can be matched for any trading boundary /(¢), u(¢). The optimal
boundaries are identified as the ones that satisfy the smooth-pasting conditions.
These conditions can be seen as limits of the optimality conditions for an impulse
control problem with a infinitesimally small cost [16]. In practice, they are derived
by differentiating (13) and (14) with respect to z at the respective boundaries z = /
and z = u:

14+ Dv(t,1) + yv,(t,1) =0, (15)
(1/(1 = &) + uve (¢, u) + yv(t,u) = 0. (16)

This system defines a two-dimensional, linear free-boundary problem in (¢,7) €
[0, T] x R, which is not tractable in general. Liu and Loewenstein [32] obtain
a semiexplicit solution with the randomization approach used by [5] to price
American options.

With utility maximization from infinite-horizon consumption, the value function
depends only on the safe and risky positions X, ¥Y,—the problem is stationary. Cal-
culations are similar, with some minor differences: first, the self-financing condition
(6) must include the term —c,dt in the cash balance, to account for consumption
expenditures. Then, the martingale optimality principle takes the following slightly
different form. Since utility is not only incurred at maturity but from consumption
along the way, not the value function itself but the sum of past consumption
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e, /(1 — y)du and the value function e~ V(X,, Y,), representing future
consumption, should be a supermartingale for any policy and a martingale for the
optimizer. Here, § is the time-preference parameter in (2). Then, the term V; in (8)

1
and in turn (11) has to be replaced by % — ¢V, — 8V . Pointwise maximization

yields the optimal consumption rate ¢; = Vx_l/ ¥, Plugging this expression back
into the HJB equation and accounting for homogeneity in wealth, the corresponding
free-boundary problem for the reduced value function v(z) then reads as:
o, 14 1-1
71 Vzz + U2V, + ((1 - V)r - S)V + E((l - )/)V - sz) 4
1-— 1
_1=yv@) _

=0 if 1+z
Vz(z) l—¢

+z (17)

This is the one-dimensional, nonlinear free-boundary problem studied by [15], who
prove a verification theorem, and find a numerical solution. Still, this problem is
nontrivial, because the free boundaries points /, u are not easy to identify in terms
of the model parameters, and the second order, nonlinear equation (17) does not
admit a known explicit solution for given initial conditions.

The long-run problem (3) gives the best of both worlds, and more. But it
requires more audacious heuristics, and nonstandard arguments to be made precise.
Puzzlingly enough, this approach was proposed very early in the transaction costs
literature by [17,44], but its potential has not become clear until recently.

We start from (11), derived for a fixed horizon 7T, and note that the value
function V' should grow exponentially with the horizon. This observation, combined
with homogeneity in wealth, leads to guess a solution of the form V (¢, X;,Y;) =
(X)'"77v(Y;/ X,)e~1=C+PI Tt is clear that such a guess in general does not solve
the finite-horizon problem, as it fails to satisfy its terminal condition. But it is
reasonable to expect that it governs the long-run problem, for which the horizon
never approaches. With the above guess, the HIB equation reduces to

2 _
Cy—zzv”(z)+,uzv’(z)—(1—y),Bv(z) =0 if 14z < 1= yv < !
2 V'(2) 1—c¢

+2z,
(18)

which is a one-dimensional, linear free-boundary problem—the best of both worlds.
Note that in this system f is not exogenous, but an unknown parameter that deter-
mines the growth rate of the value function, and which has to be found along with
the free boundaries /, u. Indeed, r + B is the equivalent safe rate which makes a long-
term investor indifferent between the original market and this alternative rate alone.

The two crucial advantages of the long-run problem are that the free boundaries
[, u have explicit formulas in terms of f, and that it reduces to solving a Cauchy
problem for a first-order ordinary differential equation. Depending on the problem at
hand, this equation may even have an explicit solution, a fact that is useful although
not essential for asymptotics. To derive the free boundary /, substitute first (15) and
then (13) into (18) to obtain
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2 2

——( -V a+i?

v+ p(l—y) v—(1—-y)pv=0.

1+

Now, observe that m— = [ /(1 + [) is precisely the risky portfolio weight at the buy
boundary, evaluated at the ask price. Factoring out (1 — y)v, it follows that (cf. [17])

2
—%ni tpun.— B =0. (19)
Likewise, a similar calculation for u shows that the other root of (19) is 74 =
u(l —e)/(1 + u(1 — ¢)), which coincides with the risky portfolio weight at the sell
boundary, evaluated at the bid price.
After these calculations, the boundaries /, u, or equivalently 7_, 7, are uniquely
identified as solutions of the above equation, once the parameter f is found:

B/ —=2y0?p

yo?

T+ =

The formulas become even clearer by replacing the parameter f with A =
V2 —2yo?B. With this notation, in which A = 0 corresponds to the frictionless
setting, 8 = (u?> — A?)/2yo? and the buy and sell boundaries have the intuitive
representation

+A
me =222 (20)
yo
from which / = 7— and u = 1—151 : are obtained directly. Thus, it remains to
— +

find A to identify both the free-boundaries and the equivalent safe rate r + 8. To this
end, it is convenient to apply the substitution

I()e?v' (I(A)e”)
(I =ywR)e)’

which reduces the free-boundary problem to a Cauchy problem with a terminal
condition:

Y A
W) + (1= y)w(y) + (i—’j - 1) Ww(y) —y (“ ) (&) _o

log(z/ (A
(=) [T w3y

ie., w(y) =

viz) =e

yo? yo?
€ [0,logu(A)/L(M)], 21)
—A
wo) = =2, (22)
Yo

A
wlog(u()/ 1) = & +2

(23)
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In other words, the correct value of A is identified as the one for which the
above first-order Riccati equation satisfies both the initial and the terminal value
conditions. For a fixed ¢, such a value is the solution of a scalar equation obtained
from the explicit solution of the Riccati equation (cf. Lemma 3.1). For ¢ ~ 0,
the asymptotic expansion of A(g) follows from the implicit function theorem—and
some patient calculations (see Lemma 3.2 below).

Now, one could argue that the advantage of the nonlinear, first-order equation
(21) over the linear, second-order equation (18) is only marginal. In fact, the variable
w has the additional advantage, albeit still hidden at this point, that it coincides with
the optimal shadow risky portfolio weight (cf. Lemma 4.4), a fact that is hinted at
by its boundary conditions. Furthermore, and as a result, for y = 1 (21) recovers
the case of logarithmic utility [19], while (18) does not.

3.3 Explicit Formulas

Let us now show that the reduced value function w and the quantity A are indeed
well-defined. To this end, first determine, for a given small A > 0, an explicit
expression for the solution w of the ODE (21), complemented by the initial
condition (22).

Lemma 3.1. Let 0 < u/yo? # 1. Then for sufficiently small . > 0, the function

a() tanh[tanh™ (b(1) fa () —a(W)y)+ (L5 — 1)

iny(O.l)andy%<10ry>1andﬁ>l,

y—l1
a(A) anftan=" (b(1) /a(A))Fa(M)y]+(L — 1) .
Wk, y) = i 222y s land e (-1 -1 141 1=,
a(}) coth[coth™! (b(l)/a(l))fa(l)y]vL(a% -1
y—l1

otherwise,

with

_ pr—A% 1 2 1o pm—A
am-\/\(y—l)v—(z—;)\ and b(h) = 5= H=DE

is a local solution of
2 _ 92

H_
yo? '

w () + (1= (y) + (2—M - 1) w(y)— a =0, w()= (24)

o2 yot
Moreover, y — w(A,y) is increasing (resp. decreasing) for i/yo? € (0,1) (resp.
w/yo? > 1)

Proof. The first part of the assertion is easily verified by taking derivatives. The
second follows by inspection of the explicit formulas. O
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Next, establish that the crucial constant A, which determines both the no-trade
region and the equivalent safe rate, is well-defined. For small transaction costs
e ~ 0, its asymptotics are readily computed by means of the implicit function
theorem.

Lemma 3.2. Let 0 < ju/yo? # 1 and w(A, -) be defined as in Lemma 3.1, and set

w—A 1 w4+ A
D= T =)

D=y

Then, for sufficiently small ¢ > 0, there exists a unique solution A of

W (A,log (%)) - ”y;’\ —o. (25)

As ¢ | O, it has the asymptotics

3 2 2 1/3
A=yt () (1=~ '3 4+ 0(e).
4y \ yo? yo?

Proof. Write the boundary condition (25) as f(4, &) = 0, where:

A
FGhe) = k. log(u(A)/1(1))) — “;2 .

Of course, f(0,0) = 0 corresponds to the frictionless case. The implicit function
theorem then suggests that for sufficiently small ¢ there exists a unique zero A(g)
with the asymptotics A(e) ~ —ef:/ f, but the difficulty is that f; = 0, because A
is not of order ¢. Heuristic arguments [39,40] suggest that A is of order £'/3. Thus,
setting A = §'/3 and f (8,8) = f(8'3,¢), and computing the derivatives of the
explicit formula for w(A, x) (cf. Lemma 3.1) shows that:

4
3ulo? — 3yuct’

— vl .
F0.0)= PUZYT) g0y =
Yo

As aresult:

£00,0)  3p2 (n—yo?)
5(€)~—ji( )e: o (H2 )2/ ) & whence
/5(0,0) dyto

1/3

3u2 (1 — yo?)’

A(e) ~ (% /3 O
Yo
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Henceforth, consider small transaction costs ¢ > 0, and let A denote the constant
in Lemma 3.2. Moreover, set w(y) = w(A,y),a = a(A), b = b(A), and u =
u(A), Il = I(A). In all cases, the function w can be extended smoothly to an open
neighborhood of [0, log(u/ [)] (resp. [log(u/ 1), 0] if u/ya* > 1). By continuity, the
ODE (24) then also holds at 0 and log(u//); inserting the boundary conditions for
w yields the following counterparts for the derivative w':

Lemma 3.3. Let 0 < ju/yo? # 1. Then, in all three cases,

— _ 2 2
wi(0) = ’uycrz)k B (’uy—ozk) W (log (;)) - My—c’r_z)k B (My-c’r_zx) '

3.4 Discussion

The above heuristics offer a practical approach to portfolio choice problems with
transaction costs, and can be adapted to accommodate additional model features.
More importantly, they yield results that are robust to the model specification. In
view of (20) and the asymptotics for A in Lemma 3.2, the no-trade boundaries have
the expansion:

3 , n 1/3
o=y <_ (Lz) (1 - Lz) ) &L 0e).  26)
yo 4y \ yo yo

This expansion coincides with the one obtained by [24] in the model with con-
sumption. In other words, the long-run and the consumption models yield exactly
the same solution at the leading order for small transaction costs. The expansions
do differ at the second order, but such differences tend to have a modest effect for
typical parameter values.

A major advantage of the long-run objective is the possibility to reduce the
solution to a single algebraic equation for the parameter A, in terms of which
the free boundaries are found explicitly. In principle, one could attempt the same
reduction in the consumption problem, by substituting equations (13) and (15) into
(12). The result is a scalar equation for / in terms of v(/), the value of the reduced
value function at the trading boundary. Alas, the equation does not have an explicit
solution. Also, the value of v(/) is identified as the only one for which the solution to
the differential equation (which also has no explicit solution) matches the analogous
boundary condition at u. The situation is disappointingly more complicated than
(19), which immediately identifies both boundaries in terms of a single parameter.
In summary, the consumption problem yields a solution which is strikingly similar
to the long-run problem, but in a much less tractable setting. Vice versa, the long-run
solution provides a tractable first-order approximation to the consumption problem.

In the same vein, the long-run optimal portfolio is not far from optimal for
utility maximization with terminal wealth. Indeed, Gerhold [18] show that the
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wealth corresponding to the long-run optimal portfolio matches the value function
for any finite horizon T [3] at the leading order ?/3 for small transaction costs
¢ (compare Theorem 4.8 below). Hence, finite horizons—Ilike consumption—only
have a second-order effect on portfolio choice with transaction costs.

To apply the heuristic steps above to more complex problems with transaction
costs, it is worth distinguishing the aspects that are special to the specific problem
at hand from the ones that are flexible enough to be useful in other models. First, in
general one cannot expect that a single, simple equation like (19) identifies both free
boundaries. But the same argument that leads to this equation (the substitution of
the boundary and smooth pasting conditions into the HIB equation) will generally
lead in a long-run problem to some scalar equation for each boundary, in terms of
the equivalent safe rate 8 of the problem. Such equations may be solved explicitly
(as in the case of (19)) or not, but in the latter case an asymptotic solution will still
be available, expanding the scalar equation around the frictionless values of (7, ).

Second, the reduced HIB equation may not be autonomous or have an explicit
solution, which are two special features of (21). If the equation is not autonomous,
the Cauchy problem cannot be started at some arbitrary point (zero in the previous
example) without a further change of variable. If the free boundaries admit explicit
solutions in terms of B, sometimes a careful choice of notation can lead to a simple
expression for at least one boundary, which is a natural choice for the starting point
of the Cauchy problem. The correct value of f is then identified as the one for which
the remaining boundary condition is satisfied. Even if the differential equation has
an explicit solution, this condition in general involves a scalar equation that cannot
be solved explicitly. Regardless of an explicit formula, asymptotic expansions can
be derived by substituting a series expansion for w in the differential equation.

4 Shadow Prices and Verification

We justify the heuristic arguments in the previous section by reducing the portfolio
choice problem with transaction costs to another portfolio choice problem, without
transaction costs. To do so, the bid and ask prices are replaced by a single “shadow
price” S, evolving within the bid-ask spread, which yields the same optimal policy
and utility. Evidently, any frictionless market extension with values in the bid-
ask spread leads to more favorable terms of trade than the original market with
transaction costs. To achieve equality, the particularly unfavorable shadow price
must match the trading prices whenever its optimal policy transacts. The latter is
then also feasible and in turn optimal in the original market with transaction costs,
motivating the following notion.

Definition 4.1. A shadow price is a frictionless price process S, evolving within the
bid-ask spread ((1—¢)S; < 5, < S; as. for all £), such that there is an optimal strat-
egy for S, which is of finite variation and entails buying only when the shadow price
S equals the ask price S;, and selling only when S; equals the bid price (1 —¢)S,.
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Once a candidate for such a shadow price is identified, long-run verification
results for frictionless models (cf. Guasoni and Robertson [21]) deliver the opti-
mality of the guessed policy.

4.1 Derivation of a Candidate Shadow Price

With a smooth candidate value function at hand, a candidate shadow price is
identified as follows. By definition, trading the shadow price should not allow the
investor to outperform the original market with transaction costs. In particular, if
S, is the value of the shadow price at time ¢, then allowing the frictional investor
to carry out at single trade at time ¢ at this frictionless price should not allow her
to increase her utility. A trade of v risky shares at the frictionless price S; moves
the investor’s safe position X; to X, — vS; and her risky position (valued at the ask
price S;) from Y; to ¥; + v.S;. Then—recalling that the second and third arguments
of the candidate value functions V' from the previous section were precisely the
investor’s safe and risky positions—the requirement that such a trade does not
increase the investor’s utility is tantamount to:

V(t, X, —vS,. Y, +vS) <V(t,X,.Y,), VveR.

A Taylor expansion of the left-hand side for small v then implies that —vS, V, +
vS; V), < 0. Since this inequality has to hold both for positive and negative values
of v, it implies that

-V,
S, = ViS" (27)

That is, the multiplicative deviation of the shadow price from the ask price should
be the marginal rate of substitution of risky for safe assets for the optimal frictional
investor. In particular, this formula immediately yields a candidate shadow price,
once a smooth candidate value function has been identified. For the long-run
problem, we derived the following candidate value function in the previous section:
V(. X, Y,) = e 000 () 1270 0 s
Using this equality to calculate the partial derivatives in (27), the candidate shadow
price becomes:

o w()

T Ty )

where Y; = log(X,//X?) denotes the logarithm of the stock-cash ratio, centered
in its value at the lower buying boundary /. If this candidate is indeed the right one,
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then its optimal strategy and value function should coincide with their frictional
counterparts derived heuristically above. In particular, the optimal risky fraction 7,
should correspond to the same numbers ¢! and ¢, of safe and risky shares, but now
measured in terms of S, instead of the ask price S;. As a consequence:

- w(Y;) w(Yy)
. 0 S _ @St 7w A=t _ =Ty —w(Y)). (29)
- 060 + S~ - 050 S w(X;) - 1 w(Y) i
@r Oy (AT (e + @t tler(l—w(T,)) + T—w(Yy)

where, for the third equality, we have used that the optimal frictional stock-cash ratio
©:S; /92 S? equals [e Yt by definition of Y. We now turn to the corresponding value
function V. By the definition of shadow price, it should coincide with its frictional
counterpart V. In the frictionless case, it is more convenient to factor out the total

wealth X, = @2S? + ¢, S; (in terms of the frictionless risky price S,) instead of the

safe position X; = ¢°S?, giving

1=y
V(. X, Y) = V(t,X,.Y,) = e e +hr g1y (%) (1= Jo" wiy)dy.

t

Since X;/ X : = 1—w(7Y;) by definition of S~t, one can rewrite the last two factors as

1=y
( X ) o= I W)y

Xi

T,
— exp ((1 ) [Iog(l _w(T) + /0 w(y)dyD

Y /
= a=woyexp (- [ (w0 - 0 Y ay).

Then, setting w = w — %, the candidate long-run value function for S becomes

Vt, X, 1) = e—(l—y)(r+ﬂ)t)2tl—}/e(l—)’)foTt cv-(y)dy(l —w(0))" 1.

Starting from the candidate value function and optimal policy for S, we can now
proceed to verify that they are indeed optimal for S;, by adapting the argument from
[21]. But before we do that, we have to construct the respective shadow processes.

4.2 Construction of the Shadow Price

The above heuristic arguments suggest that the optimal stock-cash ratio Y;/X; =
©:S;/92S? should take values in the interval [/,u]. Hence, Y, = log(Y:/[X,)
should be [0, log(u/[)]-valued if the lower trading boundary / for the stock-cash
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ratio X;/ X to is positive. If the investor shorts the safe asset to leverage her risky
position, the stock-cash ratio becomes negative. In the frictionless case, and also
for small transaction costs, this happens if the Merton proportion 1/yo? is bigger
than 1. Then, the trading boundaries / < u are both negative, so that the centered
log-stock-cash ratio Y; should take values in [log(x/ ), 0]. In both cases, trading
should only take place when the stock-cash ratio reaches the boundaries of this
region. Hence, the numbers of safe and risky units (pt0 and ¢; should remain constant
and Y, = log(g,/1¢?) + log(S;/S?) should follow a Brownian motion with drift
as long as Y; moves in (0,log(u/ 1)) (resp. in (log(u/1),0) if u/yo? > 1). This
motivates to define the process Y; as reflected Brownian motion:

dY, = (u—0%/2)dt + 6dW,; +dL, —dU,, Y, € [0,log(u/1)], (30)

for continuous, adapted local time processes L and U which are nondecreasing
(resp. nonincreasing if /yo? > 1) and increase (resp. decrease if u/yo? > 1)
only on the sets {Y; = 0} and {Y, = log(u//)}, respectively. Starting from this
process, whose existence is a classical result of [41], the process S is defined in
accordance with (28):

Lemma 4.2. Let (£°,€) € Rﬁ_ be the investor’s initial endowment in units of the
safe and risky asset. Define

0, if1€°SY = £S,,
y = log(u/1), if ut’Sy < £So, 3D
log [ESO/(EOS(?I)], otherwise,

and let Y be defined as in (30), starting at Yo = y. Then, S = S%, with
w as in Lemma 3.1, has the dynamics

dS(1)/S(X) = (R(Yy) + r)di + & ()dW,,
where [i(-) and & (+) are defined as

ow' (y)
w1 —w(y))

2./ /
() = a’*w'(y) (W(y)

Moreover, the process S takes values within the bid-ask spread [(1 — €)S, S].

Note that the first two cases in (31) arise if the initial stock-cash ratio £Sy/ (soSg)
lies outside of the interval [/, u]. Then, a jump from the initial position (qog_, ©o—) =
(€9, £) to the nearest boundary value of [/, u] is required. This transfer requires the
purchase resp. sale of the risky asset and hence the initial price S is defined to
match the buying resp. selling price of the risky asset.
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Proof. The dynamics of S‘t result from It6’s formula, the dynamics of Yy, and the
identity

w'(y) = 2(y — Dw/' ()w(y) — 2u/o? — DHw'(y), (32)

obtained by differentiating the ODE (24) for w with respect to x. Therefore it
remains to show that S, indeed takes values in the bid-ask spread [(1 — &) S}, S;]. To
this end, notice that—in view of the ODE (24) for w—the derivative of the function

g(y) :==w(y)/le” (1 —w(y)) is given by

W) —w) W) Y= 255w + (- A /ye!
gy = ler(1—w(y)?> 1o (L —w()?

Due to the boundary conditions for w, the derivative g’ vanishes at 0 and log(u/ ).
Differentiating its numerator gives 2yw'(y)(w(y) — #) For # € (0,1) (resp.
# > 1), w is increasing from ‘)‘/—;? < # to ’;—‘:21 > # on [0,log(u/1)]
(resp. decreasing from ’;—‘:21 to ’;—;? on [log(u/1),0]); hence, w' is nonnegative
(resp. nonpositive). Moreover, g’ starts at zero for y = 0 (resp. log(u/1)), then
decreases (resp. increases), and eventually starts increasing (resp. decreasing) again,
until it reaches level zero again for y = log(u/1) (resp. y = 0). In particular, g’
is nonpositive (resp. nonnegative), so that g is decreasing on [0, log(u/ /)] (resp.
increasing on [log(u/ 1), 0] for # > 1). Taking into account that g(0) = 1 and
g(log(u/1)) = 1 — &, by the boundary conditions for w and the definition of u and

[ in Lemma 3.2, the proof is now complete. O

4.3 Verification

The long-run optimality of the candidate risky weight 7(Y;) = w(Y;) from (29)
in the frictionless market with price process S; can now be verified by adapting
the argument in [21]. The first step is to determine finite-horizon bounds, which
provide lower and upper estimates for the maximal expected utility on any horizon
T, by focusing on the values of the candidate long-run optimal policy and long-run
optimal martingale measure.

These bounds are based on the concept of the (long-run) myopic probability, the
hypothetical probability measure under which a logarithmic investor would adopt
the same policy as the original power investor under the physical probability. The
advantage of this probability is to decompose expected power utility (and its dual)
into a long-run component times a transient component. This decomposition is
similar in spirit to the separation of logarithmic utility into a long-run component
plus a transitory component. To see the analogy, consider the logarithmic utility of
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a portfolio 7(®,) traded in a frictionless market with expected excess return ji(®;)
and volatility 6 (®;) driven by some state variable ®;:

T ~2 T
log XX = x + / (ﬁ(@),)n(@,) - @#(@,)) dr + / 5(©,)7(0,)dw,.
0 0

Now, if ®, follows an autonomous diffusion d®; = b(®,)dt + dW,, the above
stochastic integral can be replaced by applying It6’s formula to the function I1(y) =
i 6 (x)m(x)dx:

T 1 T
M(©7) - T1(8) = [0 (a(®,>n(®t)b<®t>+5(&:1)’(@») di+ /0 5 (@0)7(O)dW;.

Indeed, solving the second equation for the stochastic integral, and plugging it into
the first equation yields:

e
- (zo—t)ﬂz(&)—

T ~ V(@
log X7 = x +/0 ((/1((*);) —6(0)b(0,))7(0,) — M) dt

2
+ (II(O7) — T(Oy)).

This decomposes the logarithmic utility into an integral, which represents the long-
run component, and a residual transitory term, which depends only on the initial
and terminal values of the state variable. If the function IT is integrable with respect
to the invariant measure of ®, the contribution of the transitory component to the
equivalent safe rate %E [log X7] is negligible for long horizons.

The myopic probability is key to perform a similar decomposition with power

utility. Again, denote by ji the risky asset’s drift under the original measure, and
by [i its counterpart under the myopic probability; the corresponding volatility &
of course has to be the same under both equivalent measures. With logarithmic
utility, the optimal portfolio is 7, = [,/ even if fi, and &, are stochastic [37].
As the definition of the myopic probability requires that the corresponding log-
optimal portfolio 77, coincides with the optimal portfolio 77, for power utility under
the original probability, Girsanov’s theorem dictates that the measure change from
the original to the myopic probability is governed by the stochastic exponential of
fOT (—% + 6 w)dW;. This measure change shifts the asset’s drift by the same amount,
times &, thereby yielding a myopic drift of 527, which yields the same optimal
policy. Given this guess for the myopic probability, the finite-horizon bounds follow
by routine calculations carried out in the proof of the following lemma:
Lemma 4.3. For a fixed time horizon T > 0, let f = % and let the function w
be defined as in Lemma 3.1. Then, for the shadow payoff Xr corresponding to the
policy 7(Y,) = w(Y;) and the shadow discount factor My = e~ £(— Jo %dW,)T,
the following bounds hold true:
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E[Xl V] 1 V(= V)(r+ﬁ)TE[e(l y)(G(Yo)— lI(TT))] (33)

E [M;‘q — oI=NC+AT [e@—l)(q(n))—q(n))]y’ (34)

where G(y) := foy w(z) — li/v(vz('l))d zand E [] denotes the expectation with respect

to the myopic probability P, defined by

dp Troatn)
ap =P (/0 (_cmm * “(T’)”m)) Wi

LT pn) 2
—5/0 ( N(Tt) + (T,)n(n)) dt).

Proof. First note that fi, 6, and w are functions of Y}, but the argument is omitted
throughout to ease notation. Now, to prove (33), notice that the frictionless shadow

S . . X, S, ds? .
wealth process X, with dynamics % = w% + (- w)S—(i satisfies:
t t t
)271__)/ — X’g_}’e(l—}/)./;)T(r+ﬁvv—fw2)dt+(l y)fo ade,
Hence:

Xl — gl d_PefOT((l—y)(r-l-/lw—%wz)-i-%(—%+5w)2)dr+for((l—y)&w—(—f+0w))dW;
T ° ap
Inserting the definitions of [ and &, the second integrand simplifies to (1 —
y)o(l‘fw — w). Similarly, the first integrand reduces to (1 — y)(r + ”—;(l‘fw)z -
/ 2
(1 —y)o? 322 + (1 — y)%w?). In summary:

1—w

dP

X;y:i$ﬂ UVMMW h%ﬁ%lwﬁq&ﬂwZVWlekahwﬂMM

(35)

The boundary conditions for w and w' imply w(0) — l‘f(o) = w(log(u/1)) —

w(0)
M = 0; hence, It6’s formula yields that the local time terms vanish in
w(log(u/1))

the dynamics of ¢ (Y;):
§(Tr) = 4(Yo) = /0 (n-%) (v )

T
21— 7”2
+%2<w’——w ((ll_vtj)tw )dt—i—/ O'(

0

;fw) dW,.  (36)
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Substituting the second derivative w” according to the ODE (32) and using the
resulting identity to replace the stochastic integral in (35) yields

X7 = Xl %eu—wf0T<r+%w’+<1—y>%w2+<u—%)w)dre(1—y><q<m—z§<rr>>.

After inserting the ODE (24) for w, the first bound thus follows by talking the
expectation.
The argument for the second bound is similar. Plugging in the definitions of

i and &, the shadow discount factor M7 = e"TE(— fo %dW)T and the myopic
probability P satisfy:

~1-1 1—y (T ji 1—y (T i2
]‘/[Tl Ve o G o (r i)t

S - B S -
dP =y (TR 2By gaw,+ 5 Jo 0+ 55 sl (— B 4aw) e

= —e 7 o 1=y
dpP
2 - / - 2 v/ w’w 2
B L e e R = AL
dP ’

Again replace the stochastic integral using (36) and the ODE (32), obtaining

1 P - 2 2 2 . -
7177 AP S [ g ) S S G Of) =G (Tr)
;= :

Inserting the ODE (24) for w, taking the expectation, and raising it to power y, the
second bound follows. O

With the finite horizon bounds at hand, it is now straightforward to establish th~at
the policy 77(Y;) is indeed long-run optimal in the frictionless market with price S;.

Lemma 4.4. Let 0 < u/yc? # 1 and let w be defined as in Lemma 3.1. Then, the
risky weight w(Y,) = w(Y}) is long-run optimal with equivalent safe rate r + B
in the frictionless market with price process S,. The corresponding wealth process
(in terms of S;), and the numbers of safe and risky units are given by

%, = (6950 + £50)€ ( /0 (r + w(T)A(T,))ds + /0 | w(n)&(mdws) ,

t
vo- =& @ =w(X)X,/S, fort=>0,
oo- =& @' =1 —-w(r)X,/S’ fort>0.

Proof. The formulas for the wealth process and the corresponding numbers of
safe and risky units follow directly from the standard frictionless definitions. Now
let ]\71, be the shadow discount factor from Lemma 4.3. Then, standard duality
arguments for power utility (cf. Lemma 5 in [21]) imply that the shadow payoff
X ,d’ corresponding to any admissible strategy ¢, satisfies the inequality
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[(X¢)1 V]‘ 7 < E[MVVTVV. 37)

This inequality in turn yields the following upper bound, valid for any admissible
strategy ¢, in the frictionless market with shadow price S;:

P 1 do\1—y ~VT_1
11Tn_1)1or<1)f(1_—)logE[(X) ]<11n_1)1£)fmlogE[MT . (38)

Since the function g is bounded on the compact support of Y}, the second bound in
Lemma 4.3 implies that the right-hand side equals 7 + . Likewise, the first bound in
the same lemma implies that the shadow payoff X, (corresponding to the policy ¢;)
attains this upper bound, concluding the proof. O

The next Lemma establishes that the candidate S, is indeed a shadow price.

Lemma 4.5. Let 0 < j1/yo? # 1. Then, the number of shares ¢, = w(Y,)X,/S,
in the portfolio 7w (X;) in Lemma 4.4 has the dynamics

d - A
ﬂz( e )dL,—(l s )de (39)
o vo yo?

Thus, ¢ increases only when Y; = 0, that is, when S equals the ask price, and
decreases only when Y, = log(u/ 1), that is, when S; equals the bid price.

Proof. 1t6’s formula and the ODE (32) yield
dW(Y,) = —(1 — y)o*w (Y)w(Y)dt + ow' (X)dW, +w'(X,)(dL, — dU,).

Integrating ¢; = w(Y;)X;/S, by parts twice, inserting the dynamics of w(Y}), X,
S;, and simplifying yields:
dg _ w(T)

@1 - w(Y;) d(Le = Un).

Since L, and U, only increase (resp. decrease when u/yo? > 1) on {Y; = 0}
and {Y, = log(u/!l)}, respectively, the assertion now follows from the boundary
conditions for w and w'. a

The optimal growth rate for any frictionless price within the bid-ask spread must
be greater or equal than in the original market with bid-ask process ((1 — €)S;, S;),
because the investor trades at more favorable prices. For a shadow price, there is an
optimal strategy that only entails buying (resp. selling) stocks when S, coincides
with the ask- resp. bid price. Hence, this strategy yields the same payoff when
executed at bid-ask prices, and thus is also optimal in the original model with
transaction costs. The corresponding equivalent safe rate must also be the same,
since the difference due to the liquidation costs vanishes as the horizon grows in (3):
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Proposition 4.6. For a sufficiently small spread e, the strategy (¢, ¢;) from
Lemma 4.4 is also long-run optimal in the original market with transaction costs,
with the same equivalent safe rate.

Proof. As ¢, only increases (resp. decreases) when S, = S, (resp. S; = (1 —¢)S,),
the strategy (¢?, ;) is also self-financing for the bid-ask process ((1 — ¢)S;, Sy).
Since S, > S§; > (1 — ¢)S; and the number ¢, of risky shares is always positive, it
follows that

00 +9, S = @!SP+ot (1) Si—¢; S, = (1- 1= 7 (V) (@S +¢.S51).  (40)

The shadow risky fraction 7(Y;) = w(7Y;) is bounded from above by (u +
A)/yo? = pu/yo? + O(e'/?). For a sufficiently small spread &, the strategy (¢, ¢r)
is therefore also admissible for ((1 — ¢) S, S;). Moreover, (40) then also yields

. 1 _ _
11Tnj)gfm log E (9757 + ¢F (1 —&)St — 97 S7)' 7]

R TP 1 0 g0 S \1—y
_thlgfmlogE[(wTSTJr@TST) ]. (41)

that is, (¢°, ¢) has the same growth rate, either with S; or with [(1 — €)S;, S/].

For any admissible strategy (¥, ¥;) for the bid-ask spread [(1 — ¢)S;, S;], set
1}? =y) - fot S/ S%dy,. Then, (1%0 , V) is a self-financing trading strategy for
S, with 1}1‘0 > 9. Together with S; € [(1 —¢)S;, S,], the long-run optimality of
((pto, ¢, ) for S~t, and (41), it follows that:

] o e
liminf 77— log B (W87 + v (1 —e)Sr — ¥751)' 7]
Lo 70 0 & \1—y
< llTn_l)g(l)f?m log E [(Y7S7 + ¥rSr)' 7]
] & -
=iy e ELRSE S

o1 1 _ _
= 11Tnj>gf7m10gE [(©9.5) + of (1 —&)St — o7 S7)' 7]

Hence (¢?, ¢;) is also long-run optimal for ((1 — €)S;, S;). O
By putting together the above statements we obtain the following main result:

Theorem 4.7. For a small spread ¢ > 0, and 0 < u/yc?® # 1, the process S, in
Lemma 4.2 is a shadow price. A long-run optimal policy—both for the frictionless
market with price S; and in the market with bid-ask prices (1 — €)S;, S;—is to keep
the risky weight 7, (in terms of S;) in the no-trade region
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w—A p+A
[n_,m:[ ]

yo? ' yo?

As ¢ | O, its boundaries have the asymptotics

1 31\ w2\
=2 4= (£ 1 & 13 1 0(e).
T Yo (4)/ (V02) ( Vaz)) crrow

The corresponding equivalent safe rate is:

2 2 2
N e 1"
r+B=r+ = _r+2y02

5 2 2\ 2/3
yoo [ 3 [ u M 2/3 4/3
‘7(@(@) (“W)) e oET).

If w/yo? = 1, then S, = S, is a shadow price, and it is optimal to invest all
wealth in the risky asset at time t = 0, never to trade afterwards. In this case, the
equivalent safe rate is the frictionless value r + B = r + u?/2yo>.

Proof. First let 0 < p/yo? # 1. Optimality of the strategy (¢, ;) associated
to #(Y;) for S; has been shown in Lemma 4.4. The asymptotic expansions are
an immediate consequence of their counterpart for A (cf. Lemma 3.2) and Taylor
expansion. Next, Lemma 4.5 shows that S, is a shadow price process in the sense
of Definition 4.1. Proposition 4.6 shows that, for small transaction costs &, the same
policy is also optimal, with the same equivalent safe rate, in the original market with
bid-ask prices (1 — ¢)S;, S;.

Consider now the degenerate case jt/yo? = 1. Then the optimal strategy in the
frictionless model 5, = S, transfers all wealth to the risky asset at time ¢ = 0, never
to trade afterwards (0 = 0 and ¢, = & + £°S7/S, for all # > 0). Hence it is of
finite variation and the number of shares never decreases from the unlevered initial
position, and increases only at time ¢ = 0, where the shadow price coincides with
the ask price. Thus, S, = S, is a shadow price. The remaining assertions then follow
as in Proposition 4.6 above. O

The trading boundaries in this paper are optimal for a long investment horizon,
but are also approximately optimal for finite horizons. The following theorem,
which complements the main result, makes this point precise:

Theorem 4.8. Fix a time horizon T > 0. Then, the finite-horizon equivalent safe
rate of the liquidation value E? = ¢2SP + (;S;'(l — A)St — ¢7 St associated to
any strategy (¢°, ¢) satisfies the upper bound

&, e

1 _ €
FIOgE[(E?)l V] <r+ H*

~ = 4/3
yo? T +0E™),
(42)

1
Tyor T T 108(@0- +do-So) +
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and the finite-horizon equivalent safe rate of our long-run optimal strategy (¢°, )
satisfies the lower bound
2 2

I - -
Flog E[(E))' 7] =r+ &

1
+ T log(¢g- + @o-So)

21 ®o—So ) € 4/3
(22 4 B0 )4 0Etd). @3
(V02 0)- +¢o-So) T . @)

In particular, for the same unlevered initial position (¢o- = @o— > 0, ¢8_ =
90— > 0), the equivalent safe rates of (¢°,$) and of the optimal policy (¢°, ¢)
for horizon T differ by at most

1 I I o=y 3u € 4/3
7(1ogE[(aT) Y] —log E[(ES)'™]™ ) < o7 T 7+ 06,
(44)

This result implies that the horizon, like consumption, only has a second
order effect on portfolio choice with transaction costs, because the finite-horizon
equivalent safe rate matches, at the leading order €>/3, the equivalent safe rate of the
stationary long-run optimal policy, and recovers, in particular, the first-order asymp-
totics for the finite-horizon value function obtained by Bichuch [3, Theorem 4.1].

Proof (Proof of Theorem 4.8). Let (¢°, ¢) be any admissible strategy starting from
the initial position ((pg_, @o—). Then as in the proof of Proposition 4.6, we have
Eq; < X ? for the corresponding shadow payoff, that is, the terminal value of
the wealth process thp = ¢>8 + $oSo + fot ¢sd S, corresponding to trading ¢ in
the frictionless market with price process S;.Hence, Lemma 5 in [21] and the second
bound in Lemma 4.3 imply that

1 1
———logE[(8))'] = — log(¢®_ + ¢o_S
=T ¢ (E7)77 | =r+ B+ 7 logleg + @o-S0)
Y 5[, =D@Er)—4(rr)
+ tog £ [ | @
(I-yT
For the strategy (¢°, ¢) from Lemma 4.5, we have 2% > (1 — f:’%ﬁ)i? by the

proof of Proposition 4.6. Hence the first bound in Lemma 4.3 yields

1 1 .

—  _logE[(E®)!7] > — log(? _S

T [ED'™] = r+ B+ = loglgg- + ¢o-So0)
1

+———logE [eu—y)(q(ro)—qwr»]
(I=yT

€ ,u+k)

1
—1 1 — 46
+T0g( 1—¢ yo? (46)
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To determine explicit estimates for these bounds, we first analyze the sign of w(y) =
w — = and hence the monotonicity of G(y) = f; w(z)dz. Whenever w = 0, i.e.,

w' = w(l — w), the derivative of W is

W’:w/—W//(l_W)+W/2:(I_ZY)W/W—F?’_I;W/_ W 2:2w L—W
(1—w)? T—w T—w v ’

where we have used the ODE (32) for the second equality. Since w vanishes at
0 and log(u/!) by the boundary conditions for w and w’, this shows that the
behaviour of w depends on whether the investor’s position is leveraged or not. In
the absence of leverage, j1/yo? € (0,1), w is defined on [0, log(u/[)]. It vanishes
at the left boundary 0 and then increases since its derivative is initially positive
by the initial condition for w. Once the function w has increased to level j/yo?,
the derivative of w starts to become negative; as a result, w begins to decrease
until it reaches level zero again at log(u/!). In particular, w is nonnegative for
n/yo? € (0,1).

In the leverage case j1/yo? > 1, the situation is reversed. Then, w is defined on
[log(u/!), 0] and, by the boundary condition for w at log(u/[), therefore starts to
decrease after starting from zero at log(u/ [ ). Once w has decreased to level u/yo?,
w starts increasing until it reaches level zero again at 0. Hence, w is nonpositive for
w/yo? > 1.

Now, consider Case 2 of Lemma 3.1; the calculations for the other cases follow
along the same lines with minor modifications. Then u/yc? € (0,1) and § is
positive and increasing. Hence,

log(u/1)
Y [ (l—l)@(ro)—q(rr))] 1 / -
— ' _locE ey < — d 47
-7 ogE |e =7/, w(y)dy 47)
and likewise
U ogk [e0-ncra-icn] > 1 / . @)

Since w(y) = w(y) —w'/(1 — w), the boundary conditions for w imply
log(u/1) log(u/1) N 2
[ s = [T o og (B2 ) )
0 0 pw+A—yo?

By elementary integration of the explicit formula in Lemma 3.1 and using the
boundary conditions from Lemma 3.3 for the evaluation of the result at O resp.
log(u/ 1), the integral of w can also be computed in closed form:

log(u/1) A1
— 22 L (M (p=r=yo?) 1 (42 (u+A—yo?)
/0 wy)dy = 5= log (Ew—mwﬂ—yo%) + a5 log ( w—mw—A—yo%)‘

(50)
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As € | 0, a Taylor expansion and the power series for A then yield

log(u/ 1) ~ W o
/ Ww(y)dy = —¢e+ 0(*).
0 Yo

Likewise,

-2
log|1— £ K Z—L€+O(84/3),
1—¢ yo? yo?

as well as

- _S
log(@)_ + 9o-So) > log(@)_ + ¢o—S0) — —— o0 ¢ + O(e?),

®o— + ©o—So

and the claimed bounds follow from (45) and (47) resp. (46) and (48). O

5 Open Problems

In this section we mention three problems for which, in our view, the above approach
holds promise, and the effect of transaction costs is likely to be substantial. Of
course, only future research can shed light on this point.

5.1 Multiple Assets

In sharp contrast to frictionless models, passing from one to several risky assets is
far from trivial with transaction costs. The reason is that, since in the free boundary
problem the unknown boundary has one dimension less than the number of risky
assets, with one asset it reduces to two points only, but with two assets it already
becomes an unknown curve. More importantly, multiple assets introduce novel
effects, which defy the one-dimensional intuition, as we now argue. For example,
consider a market with two risky assets with prices S and S?:

as!

< =widt + o1dW! (51)

t

dSt2 1 2 2

5 =podt + 002dW, + 02/ 1 — 0*dW, (52)
t

where u1,01, 2,02 > 0,0 € [-1, 1], and W', W2 are two independent Brownian
motions. Even for this simple model with power utility, the solution to the portfolio
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choice problem is unknown. Some recent papers, e.g., [1,2, 4,29, 38], offer some
insights—and raise a number of questions.

Recall that the frictionless portfolio in the above model is & = %E_l M, where
= (w1, 42) is the vector of excess returns, and X is the covariance matrix defined
as T1; = 0}, 12 = Ty = 00102, and Ty = o3 In other words:

Lo M —Bius  — w2 — Bapr
1= V5> 2=
y(1—*ot y(1— 0?03
where B8, = (00102)/ criz are the betas of each asset with respect to the other. In

particular, for two uncorrelated assets the portfolio separates, in that the optimal
weight for each risky asset in the market with all assets equals the optimal weight
for the risky asset in a market with that risky asset only. This separation property
is intuitive and appealing, and reduces the analysis of frictionless portfolio choice
problems with multiple uncorrelated assets to the single asset case. Liu [30]
and Guasoni and Muhle-Karbe [20] show that such a separation carries over to
transaction cost models with exponential utility.

Surprisingly enough, separation seems to fail with constant relative risk aversion,
in that the width of the no-trade region for each asset is affected by the presence
of the other, even with zero correlation and logarithmic utility. For example, the
heuristics in [29] yield the following width for the no-trade region of the first asset,
compare their equation (50):

3¢ [(1 '
H = (F [(—M/E_lu—}—of) nf—ulnfiD : (53)
on 2

This quantity clearly depends also on u, and o, through the total squared Sharpe
ratio /¥ ~' i1, even with zero correlation, and hence differs from the width of the
no-trade region with a single risky asset:

1/3
h = (37487{12(1 — m)z) ) (54)

Further, a simple calculation shows that, if o = 0, then:

(e’
H} —h} = —; : 55
b o (alaz) (53)

In other words, the no-trade region in the larger market is always wider than the
no-trade region with one asset, and they coincide only if either asset is useless (i =
0 or up, = 0). In all other cases, the presence of an independent asset increases
the no-trade region of the others, presumably because the variation of the position
in each asset becomes less important for the overall welfare of the investor than
with a single asset. This observation clearly runs against the common wisdom of
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fund-separation results for frictionless markets, and has potential implications for
intermediation and welfare.

Note that in a frictionless market an investor with power utility is indifferent
between trading two uncorrelated assets with Sharpe ratios u;/oy, p2/0, and
a single asset with Sharpe ratio \/(u1/01)? + (2/02)2, that is, squared Sharpe
ratios and in turn equivalent safe rates add across independent shocks. The above
observation suggests that this property no longer holds with transaction costs, and
an important open question is to understand the welfare difference between the two
markets. If the two-asset market is more attractive, then investors benefit from access
to individual securities rather than only to a limited number of funds, in contrast
to classic fund-separation results. Of course, the question is whether this effect is
indeed present and large enough to be relevant.

5.2 Predictability

Can future stock returns be predicted with public information? And what increase in
welfare can one expect from this information? Predictably enough, these questions
have generated a voluminous literature, which evaluates the statistical significance
as well as the in-sample and out-of-sample performance of several predictors that
focus either on stock characteristics, such as the dividend-yield and earnings-price
ratio, or interest rates, such as the term-spread and the corporate-spread.

Perhaps less predictably, this voluminous literature remains divided between the
weak statistical significance of several models, and the strong economic significance
of parameter estimates. On the one hand, the standard errors of the predictability
parameters are of the same order of magnitude as the parameter estimates them-
selves; on the other hand, these estimates—if valid—imply a substantial welfare
increase. These opposing viewpoints are discussed in [45], who offer a critical
view of the empirical literature, and find that most models have poor out-of-sample
performance, and [7], who argues that the absence of predictability in dividend
growth implies the presence of return predictability.

Kim and Omberg [27] introduce a basic model with predictable returns, based on
one asset with price S;, and one state variable 6,:

def - — K@tdt + dB[ (57)

Here 6, represents a state variable, like the dividend yield, that helps predict future
returns, in that the conditional distribution of S7/S; at time ¢ depends on 6,. The
two Brownian motions W and B typically have a substantial negative correlation g.
The parameter « controls the predictability of returns, with @ = 0 corresponding to
the classical case of IID returns.
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In such a market, expected returns change over time, mean-reverting to the
average (. Such variation is detrimental for an investor who adopts the constant
policy & = #, which is optimal for ¢ = 0, because time-varying returns increase
the dispersion of the final payoff. However, the investor can benefit from market
timing, that is the ability to adopt an investment policy that depends on the current
value of the state variable 6,. This point is easily seen for logarithmic utility, for
which the optimal portfolio is 7, = (i +a6,)/0?, and the corresponding equivalent
safe rate has the simple formula:

112 o?
202 4ko?’

1 ”
Aim TE [log X7 ] = (58)
This expression shows that the investor benefits from stronger signals (larger «¢) and
from slower mean reversion of the return rate (smaller «), and the same conclusion
broadly applies to power utility, even though the formulas become clumsier, as the
optimal portfolio includes an intertemporal hedging component that is absent in the
logarithmic case.

The above calculation underlies most estimates of the economic significance
of predictability, but obviously ignores transaction costs. This omission may be
especially important, as market timing requires active trading, which in turn entails
higher costs. In short, while the potential benefit of predicability is clear from the
frictionless theory, its potential costs are blissfully ignored, but may be substantial,
and a priori may or may not offset benefits.

Remarkably enough, the above model with transaction costs has never been
solved, even for logarithmic utility. Intuitively, the solution of this model should
lead to a buy curve 7_(6) and to a sell curve 74 (6), which describe the no-trade
region for each value of the state variable 6,. Still at an intuitive level, the width
of the no-trade region should be wider for values of 6 that are farther from zero,
since the portfolio is increasingly likely to return towards the frictionless optimum
without trading.

At the technical level, the model includes two state variables: the predictor
6;, and the current risky weight 7,. The presence of two state variables in turn
implies that the value function satisfies an elliptic linear partial differential equation
within the no-trade region, along with the boundary and smooth-pasting conditions
at the boundary. The difficulty is to characterize the shape of the no-trade interval
[r—(0), 7+ (0)], as a function of the state 6;, along with its implied equivalent
safe rate.

Solving such a model can contribute to the predictability debate by clarifying the
extent to which the ability to forecast future returns can translate into the ability to
deliver higher returns by trading. When transaction costs are included, it may turn
out that potential benefits of market timing are minimal, even if return predictability
is statistically significant.
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5.3 Options Spreads

Options listed on stock exchanges display much wider bid-ask spreads than their
underlying assets. While the spread on a large capitalization stock is typically less
than ten basis points, even the most liquid at-the-money options have spreads of
several percentage points. To the best of our knowledge, there seems to be no
theoretical work that links the bid-ask spread of an asset to the spread of its options.
The closest research appears to be that on stochastic dominance bounds [9—11],
which should be satisfied in equilibrium among utility maximizers. Interestingly,
Constantinides et al. [12, 13] report frequent violations of these bounds, even among
commonly traded options.

Of course, in a frictionless, complete market, both spreads are zero, and the
option is replicated by a trading strategy in the underlying asset. The problem is
that introducing a bid-ask spread for the underlying asset immediately makes the
notion of option price ambiguous. Even if the asset follows a geometric Brownian
motion, with transaction costs the superreplication price of any call option equals the
stock price itself [43]. Similarly, the subreplication price is zero. Thus, one cannot
interpret the bid and ask prices of the option as replication bounds, if the intention
is to obtain a realistic spread.

In contrast to the previous two problems, in which the model is clear and the
challenges are mathematical, this question poses some conceptual issues at the
outset. One possibility is to interpret the bid and ask prices of the options as marginal
prices in a partial equilibrium setting. For example, suppose that the bid and ask
prices of the asset are exogenous, and follow geometric Brownian motion, with a
constant relative bid-ask spread. Suppose also that a representative investor freely
trades this asset, and a European option with maturity 7', as to maximize utility from
terminal wealth, either at the same maturity, or at some long horizon.

Since options, unlike stocks, exist in zero net supply, assume that the represen-
tative investor’s optimal policy is to keep a zero position in the option at all times.
In a complete frictionless market, this condition uniquely identifies the option price
as the unique arbitrage-free price. With transaction costs, it leaves more flexibility
in option price dynamics. Indeed, consider the shadow price corresponding to the
utility maximization problem. Since the shadow market is complete, the shadow
asset price uniquely identifies a shadow price for the option as the conditional
expectation under the risk-neutral probability. For an option of European type with
payoff G(S7), the latter will then be a function g(z, S;, ¥;) of time, the current stock
price, and the current value of the state variable measuring the ratio of risky and safe
positions.

Now, suppose that to the original (not shadow) market one adds the option,
with a price dynamics equal to the shadow option price, and zero spread. This
market is equivalent to the one with the asset only: by contradiction, if some trading
strategy delivered a higher utility than the optimum in the asset-only market, the
same strategy would also deliver the same or higher utility in the shadow market
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(by domination), thereby contradicting the definition of a shadow market. Now, the
shadow option price depends on the state variable, which is unobservable since
market makers cannot see the private positions of market participants. However,
taking the pointwise maxima g(¢,S,) = max,cp,iog/1) &, Si,¥) and minima
g(t, S;) = minyeoog(u/1)) (¢, S, y) over all values of Y; € [0,log(u/!)], one can
obtain observable upper and lower bounds on the option price, which depend on the
asset price alone. Such bounds are natural candidates for bid and ask prices of the
option, because they are the minimal observable bounds that an option price needs
to satisfy if its net demand has to be zero.

The question is whether this construction can predict bid-ask spreads that are
consistent with the ones observed in reality, hence much wider than those of the
underlying asset.
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Cubature Methods and Applications

D. Crisan, K. Manolarakis, and C. Nee

Abstract We present an introduction to a new class of numerical methods
for approximating distributions of solutions of stochastic differential equations.
The convergence results for these methods are based on certain sharp gradient
bounds established by Kusuoka and Stroock under non-Hormader constraints on
diffusion semigroups. These bounds and some other subsequent refinements are
covered in these lectures. In addition to the description of the new class of methods
and the corresponding convergence results, we include an application of these
methods to the numerical solution of backward stochastic differential equations.
As it is well-known, backward stochastic differential equations play a central role
in pricing financial derivatives.

1 Introduction

Stochastic differential equations (SDEs) are ideal models for the evolution of
randomly perturbed dynamical systems. Such systems pervade a variety of areas
of human activity, including biology, communications, engineering, finance and
physics.

The solution of an SDE is amenable to numerical approximations even in high
dimensions. Classical methods such as the Euler method work well provided the
distribution of the SDE and the function that we wish to integrate are sufficiently
smooth. In particular, when the SDE is driven by non-singular noise, the conver-
gence properties of classical numerical methods are well understood. However, in
the 1980s, Kusuoka and Stroock [34] relaxedthe conditions under which some of
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the smoothness properties of the semigroup associated to the solution of the SDE
remain valid. They replaced the classical Hérmander condition requirement by a
weaker condition: the so-called UFG condition. Essentially, this condition states
that the Lie algebra generated by the vector fields appearing in the noise term
of the equation is finite dimensional when viewed as a module over the space of
bounded infinitely differentiable functions. Kusuoka and Stroock showed that the
semigroup remains smooth in any direction belonging to the above algebra. This
fundamental result forms the theoretical basis of a recently developed class of high
accuracy numerical methods. In the last 10 years, Kusuoka, Lyons, Ninomiya and
Victoir [29,36,49] developed several numerical algorithms based on Chen’s iterated
integrals expansion. These new algorithms generate approximations to the solution
of the SDE in the form of the empirical distribution of a cloud of particles with
deterministic trajectories. They work under a weaker condition (termed the UFG
condition, see Sect. 2.3 for details) rather than the ellipticity/Hormander condition
and are faster than the corresponding classical methods. Let us describe briefly the
framework and structure of these methods:
In the following, let (2, W, IP) be the standard (d-dimensional) Wiener space:

Q = {w € C([0,00): RY), w(0) = 0}, W = B(C([0, 00); RY)),
where C([0, 00);R?) is the set of R?-valued continuous paths endowed with the

corresponding Borel o-algebra B(C ([0, o0); R?)) and IP is the probability measure
such that the coordinate mapping process:

B ={B, = (B)"_,.t €[0,00)}, Bi/(w) = w(t) == (wj(t) :i =1,...,d)
is a d-dimensional Brownian motion under . We define B? := ¢ for notational
simplicity.

Let Vo, Vq,...,V,; € C(RN; RMbed +1 Lipschitz vector fields and
X ={X",t €[0,00),x € RV}

be the solution of the following stochastic differential equation

d ¢
XF=x+ Z/ Vi (XF)dB.. (1)
i=0"0

Equation (1) has a unique solution (see, for example, Theorem 2.9 page 289 in[26]).
To be more precise, there exists a unique stochastic process adapted with respect to
the augmented filtration generated by the Brownian motion B for which identity (1)
holds true. The measurability property of X is crucial. However, this condition is
sometimes overlooked and treated as a rather meaningless theoretical requirement.
In effect, the condition means that there is a B(C([0, t]; R?))/B(R")-measurable
mapping o; ., : C([0,¢]; R?) — RY such that
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X =o;x(Bpy), P—as. 2)

Hence X is determined by the driving noise { By, s € [0, ¢]}. Put differently, if we
know B then (theoretically) we will also know the value of X*.!

Example 1. For the following equations, one can explicitly write the solution of the
SDE as a function of the Brownian motion B:

t t
X¥=x +/ aXrdB® + / bX'dB!, X; = xexp (bB} + (a —b*/2)B})
0 0

(3)
! ! 0 d 0 0
X' =x+ / aX'dB’ + / bdB!, X, = xe™® + b / e BB 4p!
0 0 0
4)
th’l xl /t a 1 /t 0 2
= dB dB: 5
(th,z) (x2)+ o \0 ot o \bX] ’ ©)
X! _(x'+aB} ©)
X2 ) 7\ x>+ [y b(x' + aB!)dB?

In general it is not possible to have explicit formulae for the solution of the
stochastic differential equation, in other words the mapping o, , appearing in the
representation (2) is not known. Hence accurate numerical approximations of X
are highly desirable. In particular, we are interested in computing quantities of the
form

E[(p(XtV)] = E[(p O Ut x (B[Ot])] = /Q(P O O x (Cl)) P(dw)v (7)

where ¢ is a given test function and P is the probability distribution of the Brownian
motion (the Wiener measure). The computation of expectations of the form (7)
has particular relevance in mathematical finance through the pricing of financial
contracts. Indeed, calculating the expected value of functionals of the solution of
a stochastic differential equation (which would be assumed as the model of the
underlying price process) in a very short time is a standard problem in finance
and is one which has ruled more exotic models out of practical implementation in
industry.

Computing quantities of the form (7) is also relevant for the estimation of
infinite dimensional random dynamical systems. The theory of infinite dimensional

'The process X is uniquely identified by (1) only up to a set of measure 0. Two processes X! and
X2 satisfying (1) are indistinguishable: the set {@ € Q3¢ € [0, 00) such that X, (w) = X*(w)}
is a P-null set (has probability zero). Similarly, the identity (2) holds P-almost surely, i.e. there can
be a subset of €2 of probability zero where (2) does not hold.
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random dynamical systems shares many of the concepts and results with their
finite dimensional counter-parts. Many examples are determined by stochastic
and deterministic partial differential equations. These partial differential equations
have solutions u(z, x) that admit certain representations, called Feynman—Kac
representations, in terms of certain functionals integrated with respect to the law
of a stochastic process:

u(t, %) = B[A« (X))l @®)

A large class of such PDEs exhibit the common feature that the process X appearing
in (8) has a representation of the form (2) hence their solution u(z, x) can be
represented as

u(t, x) = E[(Arx o arx) (Bpoa)l, )]

where the functional Aj, = A, o o, is nonlinear and, possibly, implicitly
defined. Examples, include linear PDEs, semilinear PDEs such as those appearing
in the pricing of financial derivatives under trading constraints, McKean—Vlasov
equations, Navier—Stokes equation, Burgers equation, Zakai equation, etc.

It follows that the computation of u(¢, x) requires the approximation of the law of
the process X if the Feynman—Kac formula (8) is used, or the law of the Brownian
motion B if one uses (9) instead. However this is not enough. The functionals A; .
respectively A; . do not have a closed form, in other words they cannot be explicitly
described and, more importantly, integrated with respect to the approximating law.
One needs to approximate them with versions whose integral with respect to the
corresponding approximating law can be easily computed. Obviously, the error of
the approximation of the solution of the PDE obtained in this manner will depend
on both the error introduced when approximating the functional and that introduced
when approximating the law of the process. Care must be taken so as not to
compound the corresponding errors. In practice both approximations are performed
simultaneously. Nevertheless, when it comes to estimating the approximation error
it helps to separate them. The numerical methods discussed in the following entail
the following three steps:

* Replacing the law of B with the law of a simpler process B. The process B
will have bounded variation paths and its so-called “signature” will approximate
that of the original B. The support of the law of the process g[o,r] is chosen
to have finite support. In other words, there are only a finite number of paths,
w; 1[0,1] = R?,i =1,...,n, such that

A’i,t = ]P)(B[Ot] = (I)j) > 0.2

20f course the sum of the weights Aigis 1, ie., ST Ai, =1

i=l
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* Approximating A; , with an explicit/simple version A;V Here we will exploit the
smoothness properties of the functional A} .. Such properties will be analyzed in
the next chapter by using Malliavin Calculus techniques.

* Integrate /~\’ with respect to the law of B. This step consists in computing the
average of A
have

- estimated over the n, realizations of g[o,z]- In essence, we will

u(t,x) ~E [A B[o ,] Za, ,Atx(a),
i=1

If the number of paths 7, contained in the support of l;’[oyf] is above a threshold
that depends on the capabilities of the hardware on which the algorithm is run,
then an additional procedure is required to reduce n, to a manageable size. One can
employ a Monte Carlo procedure similar to that used in the classical schemes (e.g.
Euler—Maruyama) or the so-called “tree based branching algorithm” [14], a minimal
variance selection procedure analysed in Sect. 3.

To understand the choice of the simple process B, let us introduce briefly the
classical Euler-Maruyama method.? For this we choose a partition IT of a generic
interval, say, [0, T']

NI : 0=gp<1<...<tmy<...tv=1T.
and we denote by § the mesh of the partition § = max;=;__n(7; — 7;—1). We do
not specify the choice of the partition. However if the partition is equidistant, then

= T/N and it is also called the time step. Let Y* = {Y;*, ¢ € [0, T]} be the
continuous time process satisfying the evolution equation

[ d
Y =Y} +/ Vo (YS¥)ds + / S’ds t € [ty Tut1]»
FEYE ) (¥ ; _w_tn
(10
where {E};, i =1,....,d, n =0,...,N — 1} are mutually independent random
variables whose moments match the moments of a standard Gaussian random

variable up to order 3 and with initial value Y;* = x. More precisely we require
that the random variables £, must be independent, with moments satisfying,

Blg) = E[@)] =0 2[E)]-1. an

In particular, £ can be chosen to have the Bernoulli distribution

3To be more precise, following the phraseology of [27], we describe here the simplified weak Euler
scheme for a scalar SDE driven by a multi-dimensional noise.
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P (g ==£1)= 5 (12)

We can recast the evolution equation of the process Y* in a similar manner to that
of X*.Let B = {B,,t € [0,00)} be the d-dimensional stochastic process*

[N1]
By = &wnt —tivr) + ) 1 /T — Tt (13)
n=1

where the last term is chosen to be 0 if [NT] = O and {§,, n = 0,...,N} are
d-dimensional random vectors with corresponding entries &, = ( ,}, e, &‘,‘j’ ) Then

B has piecewise-linear trajectories and, if we use an equidistant partition, the
support of B; has n, = 2" paths for ¢t € (7,—1,t,],n = 1,...,[NT]. Then Y is
the solution of the following ordinary differential equation

Yy —x—}—Z/ “)d B, (14)

where, as in (1), we defined 1;’,0 := t. Under suitable conditions, the process Y ¥, is
a first order approximation of the equation (1) associated with the partition IT (see,
for example Theorem 14.1.5, page 460 in [27]). More precisely, we have

[E[p(X)] = Elp(Y)]| = Cpé, 1 €[0,T].
The paths {w, ..., ®,, } in the support of B are the realizations of a random walk
(linearly interpolated between jumps). Then A, ; := P(Bp, = w;) = % and
Elp(Y)] = > Aiao(¥;),
i=1

where Y * is the solution of the ordinary differential equation (14) corresponding
to the path w;. That is

t'—x—i—Z/ (Y5) do] (5).

If the ordinary differential equation (14) has no explicit solution, one can
choose without loss of accuracy, a process Z* which satisfies an explicit/implicit

“In (13) and subsequently, [z] denotes the integer part of z € R.
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discretization of (14). For example

d
Zr =2+ Vo(ZY) @i — ) + ) _Vi(Z) &t — . (195)

i=1

The solution of (15) is customarily called the Euler—Maruyama approximation of X
and has the same order of approximation as Y (order 1). The ODE (14) has solutions
that evolve in the support of the original diffusion so it manifests good numerical
stability conditions. Classical higher order approximations of (1) such as those
described in Chaps. 14 and 15 in [27] no longer have this property. The question that
arises is whether it would be possible to produce a high order approximation that
still has this property. The answer is yes and this is exactly what a cubature method
does. One can replace the process B by a “better” approximation of B which, in
turn, will lead to a high order approximation of the solution of (1). To understand
in what sense B is an approximation of B and how can it be improved we need to
explain in brief the concept of a signature of a path. Let

o0 m

T (Rd) — @ (Rd)@, Tm (Rd) — @(Rd)ebi

i=0 i=0

be the tensor algebra of all non-commutative polynomials over R¢ and, respectively,
the tensor algebra of all non-commutative polynomials of degree less than m + 1.
For a path @ : [0, 00) — R¢ with finite variation we define its signature Sy, (w) €
T (]Rd) to be the corresponding Chen’s iterated integrals expansion:

Si(@) = Z/ do, ® ... ®dwy,

k=0 S<tti <t

where

/ do, ® ... ®dw, = Z (/ dw,il‘...dwf,’:)eil®...®e,~k,
0<ty...txp <t i1 0<ty...tp <t

and (e;, ® ... ® e;),i1,...,ix € {1,...,d}, is the canonical basis of (R?)®*.

Similarly we define its truncated signature S, (w) € T™ (R?) to be

m

S;",,(w)zzf oy, ® ... & do,.
k=0 Y s<tdk <t

Similarly the (random) signature and, respectively, the truncated signature of the
Brownian motion are
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Ss((B) = Zf dB; ® ...®dBy, SI'(B) = Zf dB, ® ...® dBy,.

S<Iy..0p <t S<t]..tp <t
(16)

In (16), the stochastic (iterated) integrals are of Stratonovitch type.
The expected value of S;,(B) uniquely identifies the law of B, i.e., the Wiener
measure.’ Moreover, if B is a process such that

E[ S8 ges(B)] = BISE s Bk = 0.1 N =1, (17)

then for certain classes of functionals A’, E[A’(B’)] is a high order approximation
of E[A’(B)]. In particular, if A] _ is the functional that gives the solution of the SDE
(1)fort = N§,ie., A] .(B) = ¢(X[), then

[E[p(X7)] -

(18)

where Y, is the solution of the ordinary differential equation (14) driven by B. We
prove this result in Sect. 3 of the current lecture notes. In particular, the process B
as defined (13) satisfies (17) withm = 3.

The proof of (18), requires the smoothness of the (diffusion) semigroup {P;, ¢ €
[0, 00)} defined as

(Pip)(x) = E[p(X)], xeR’ >0,

where ¢ is an appropriately chosen test function. If the vector fields satisfy the
ellipticity or, more generally, the uniform Hormander condition, P;¢ is smooth for
any bounded measurable function ¢ and ¢ > 0. Many of the classical numerical
schemes rely on this property and so Hormander’s paper [24] is a major contribution
to this field. A probabilistic version of this result led Malliavin [40] to develop
his celebrated stochastic calculus of variations through which one can prove,
probabilistically, the sufficiency of Hérmander’s condition.

The work of Kusuoka and Stroock [32-34] in the 1980s provided an extension
of Malliavin’s results. In it, they proved precise gradient bounds that are valid under
a general condition termed the UFG condition, see Sect. 2.3 for details. The UFG
condition imposed on the vector fields {V;,i = 0,...,d} essentially states that
the C° (R¥)-module M generated by the vector fields {V;,i = 1,...,d} within
the Lie algebra generated by {V;,i = 0,...,d} is finite dimensional. The UFG
condition implies Hormander’s hypoellipticity condition, but not viceversa. There
are explicit examples for which Hérmander’s condition fails to hold, but for which
the UFG condition is satisfied (see Example 15). In particular, the condition does
not require that the vector space {W(x)|W € M} is homeomorphic to R? for

3See Proposition 118 in [18].
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any x € RZ. Moreover, under the UFG condition, the dimension of the space
{W(x)|W € M} is not required to be constant over R?. Such generality makes
any Frobenius type approach to prove smoothness of the solution very difficult.
Indeed the authors are not aware of any alternative proof of the smoothness results
of the solution of P,¢ (under the UFG condition) other than that given by Kusuoka
and Stroock. Kusuoka and Stroock prove that, under the UFG condition, P;¢ is
differentiable in the direction of any vector field W belonging to M and deduce
precise gradient bounds of the form:

Ck
[Wi ... Wi Piglloo < t—,||€0||p, (19)

where / is a constant that depends explicitly on the vector fields W; € M, i =
1,...,k and |l¢||, is the standard L , norm of the function ¢.

Whilst the Kusuoka—Stroock result does not suffice to justify the convergence
of classical numerical schemes, it is tailor-made for the cubature methods. The
global error of numerical schemes depends intrinsically on the smoothness of P, ¢,
but only in the direction of the vector fields W belonging to M. As a result, the
cubature methods are proved to work under the more general UFG condition, unlike
the classical numerical methods.

The lecture notes are structured as follows: In the following section, we provide
a “clean” treatment of the (sharp) gradient bounds of the type (19) deduced under
the minimal smoothness requirements on imposed on the vector fields {V;,i =
0,...,d}. Suchresults are intrinsically related to the solution of the linear parabolic
partial differential equation

d
du(t, x) = %Z V2u(t, x) + Vou(t, x), (t,x) € (0,00) xR, (20)

i=1

We show how the Kusuoka—Stroock approach can be used to recover the smoothness
of the solution of (20) under the Hormander condition. In the Hormander case,
it is straightforward to show that P;¢ is indeed the (unique) classical solution of
(20) with ¢ being the initial condition of the PDE. In particular we show that
u is differentiable in any direction including direction V;. The situation is more
delicate in the absence of the Hormander condition. Under the UFG condition, (20)
may not have a solution in the classical sense. As explained in [44], it turns out
that P, remains differentiable in the direction Vy := 9; — V, when viewed as a
function (f,x) — P;¢(x) over the product space (0, 00) x R?. This together with
the continuity at 1 = 0 implies that P;¢ is the unique (classical) solution of the
equation

d
Vou(t, x) = % > V2u(t.x), (t.x) € (0,00) x RY. 1)

i=1
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In Sect. 3, we incorporate cubature methods into a larger class of methods, and
deduce their convergence rates under the UFG condition and an additional constraint
called the Vy condition. We also deduce the convergence rates of the cubature
methods combined with an algorithm for controlling the computational effort—the
tree based branching algorithm (or TBBA for short). The section is concluded with
an application of the cubature and TBBA method to the approximation of a call
option on a Heston model price process.

Section 4 is dedicated to the application of cubature methods to the numerical
solution of backward stochastic differential equations.

The lecture notes are concluded with an appendix comprising a number of
technical lemmas and a proof of the convergence of the cubature method in the
absence of the V; condition.

2 Sharp Gradient Bounds

In this chapter we give a full and self-contained proof of Kusuoka’s gradient bounds
(cf. [30]). The main difference between what is done there and what is presented
here, is that we relax the restrictive assumptions on the SDE coefficients (in [30]
they are assumed to be smooth and uniformly bounded). In later chapters, we shall
apply these results to prove convergence of the cubature method.

2.1 Framework

Recall that (2, W, P) is the standard (d-dimensional) Wiener space:
Q = {w € C([0, 00); RY), w(0) = 0}, W = B(C(]0, o0); RY)),
where C([0, 00); R?) is the set of R?-valued continuous paths endowed with the

uniform norm topology, W is the corresponding Borel o-algebra B(C([0, 00); R?))
and P is the probability measure such that the coordinate mapping process:

B ={B;,t €[0,00)}, Bi(w) =w() = (wi(t):i=1,...,d)
is a d-dimensional Brownian motion under P. We define B := ¢ for notational
simplicity.

Let k be a positive integer to be determined at a later stage. Assume that
Vi,...,Vg € Cf“(RN;RN)f’ and Vy € Cf(RY;R") are d + 1 vector fields and let

SFor any positive integer m, the set Cj' (R%; R?) is the set of all bounded continuous functions
¢ : R* — R?, m-times continuously differentiable with all derivatives bounded.
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X ={X,t €[0,00), x € RV} be the following stochastic flow
d t
XF=x+ Z/ Vi(X7) o dB. (22)
i=0Y0

t
In (22) the stochastic integrals / Vi(X}) o dBi, i =1,...,d are Stratonovitch
0

t
integrals whereas / Vo(X?Y) o dB is a standard Riemann integral.
0

Remark 2. In the following, we will view the vector fields Vy, V1,..., V; as both
vector-valued functions and first order differential operators defined as follows: for
Vi(x) = (VX(x),...,V¥(x))T the corresponding first order differential operator
will be

N
Vi= Y V05 Vi) = VIV, where Vf(x) = @1 (). 0N f(X).
ji=1
Using this notation, from (22) we have the standard chain rule

d o
FOX) = )+ / Vi f(X7) o dB!
i=0 Y0

for any f € Cg (RV,R). We remark that the different levels of differentiability
chosen for V; and Vi,...,V,; ensure that the corresponding It6 equation has
C}’)‘ (RY; RV) coefficients.

It is a classical result that the stochastic flow X = {X,7 € [0,00),x € RV} is
differentiable in the space variable x. See for example Kunita [28] or Nualart [51,
Theorem 2.2.1, p. 119]. We state the required result in the following:

Theorem 3. Let X = {X},t € [0,00),x € RN} be the solution of (22). Then X
has a modification (again denoted by X ) such that the mapping

xeRY — X* eRY

is k-times continuously differentiable, for each t, P-almost surely. Moreover the
Jacobian of X,(') at x, J,(') = (0; X;’('))lgi,jgN satisfies the matrix stochastic
differential equation’:

7In (23) and subsequently, dV; is the matrix valued map V; := (9, V™)1 <pm<n-
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{ dJi = Z;j=0 Vi (X7)J o dBi’ (23)

Jr=1

The Jacobian is almost surely invertible (as a matrix) and its inverse, (J*)7!,
satisfies the SDE

N = = YTV o B, (24)
UH =1
In addition, the following integrability result holds
glvixx|”
sup E ! <Crp, Yp>1,T>0,0<|y| <k VxeR"
1€[0,7] axv
(25)

2.2 Malliavin Differentiation

For an absolutely continuous path 2 € C([0, 00); R?), we denote by 4’ its derivative.
Let H be the space

H = {h € Q, habsolutely continuous, &’ € L*([0,00); R%)} C Q.
H is endowed with a Hilbert structure under the inner product

o0
(h.g)u = (N, &) 120.00)ma) = /0 h'(u) - g’ (u)du

and is called the Cameron—Martin space. We use this space to define the Malliavin
derivative.

Definition 4 (Malliavin Derivative). Let /' € C°(R",R), hy,...,h, € H and
F : Q — R be the functional given by:

F)=f ( /0 1, (t)dB, (), ... /O h,’,(t)dBt(a))), (26)

where, for any h; = (h} . ..., hi ),

00 d 0o X
/ hj(t)dB, == / h} ;(t)dB].
0 =070 ’
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Any functional of the form (26) is called smooth and we denote the class of all such
functionals by S. Then the Malliavin derivative of F', denoted by DF € L*(Q; H)
is given by:

DF =Y 0. f ( /O ” R\ (u)dB,. ..., /O ” ! (u)dBu) hi 27)
i=1

We will often make use of the notation: D, F := (DF, h)y for h € H. Observe
that Dy, F is the directional derivative of F in the direction / as

d 00 00
DiF(@) = ;aif( /0 W WdBo(®). ... /0 h;(u)dBu(w)) iy

d o0
= &f (/o hy(w)dB, () + €(h, h') 12(0.00)-

--,/0 h,, (w)dB,(w) + e(h;sh/>L2([O,oo))

e=0

and, since B;(w + ¢h) = B; (w) + ¢h (), this yields

Hence

D, F(w) = %f (/Ooo I, (w) dB,(w + €h), .. "/Ooo !, (u) dB, (o + sh))

=0

= %F(a)—f—eh)

(28)
e=0

If F € Sand h € H, then the following basic integration by parts formula holds

E [F /OOO h/(t)dB,} = E[(DF, h) ]. (29)

The proof of this formula is very simple: It uses an integration by parts formula for
the finite dimensional Gaussian density (see, e.g., Lemma 1.2.1 in Nualart [51]).

The set of smooth functionals (random variables) S is dense in L?(2), for any
p > 1. That s, for any F € L?(S2) there exists { F,,} C S such that

| F — Fllzr @) — 0.

This result is available in, for example, Nualart [51]. Its proof relies on showing that
a subset of S (the Wiener polynomials) is dense in L”(£2). This is done by using
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Hermite polynomials and the Wiener—It6 chaos expansion. The density property
of S is used to extend the definition of the Malliavin derivative to the set of all
square integrable random variable for which there exist an approximating sequence
of smooth random variables such that the corresponding Malliavin derivatives
converge too. This approach works as the Malliavin derivatives of two convergent
sequences of smooth random variables converging to the same L?(Q2)-limit have
the same L2([0, 0o) x Q)-limit. To be more precise we have the following (see, e.g.,
Nualart [51]) :

Proposition 5 (Closability of the Malliavin Derivative operator). The Malliavin
derivative, a linear unbounded operator D : S — L?*([0,00) x Q;RY) is
closable as an operator from L*(2; R?) into L*([0, 00) x Q;R?). In other words if
{F.} C S is a sequence of smooth random variables such that: || Fy | 12y — 0 and
| DEull120.00)x) IS convergent then it follows that

| DF, ||L2([0,oo)x9) — 0.

More generally, the Malliavin derivative operator is closable as an operator from
L?(Q:R?) into L?(Q2; H) for any p > 1. For p # 2 we use with the norm:

”DF”il’(Q;H) =E [”DF”}{]] . (30)

The proof of the closability of the Malliavin operator relies on the basic
integration by parts formula (29).

We denote by D'*? the domain of the Malliavin derivative operator as an operator
from L?(Q;R?) into L?(Q; H) for any p > 1. More precisely, D"? is the closure
of the set S within L?(2;R?) with respect to the norm:

1
IF Il = (E[IFI7] + E[IDFII31) 7 .

The higher order Malliavin derivatives are defined in a similar manner. For smooth
random variables, the iterated derivative D¥F, k > 2, is a random variable with
values in H ®* defined as

DFi= > .. ikf(/ h’l(u)dBu,...,/ h;(u)dBu)hil®...®h,-k,
0 0

iip=1

where h;(\) = fo h!(s)ds. The above expression for D¥F coincides with that
obtained by iteratively applying the Malliavin differential operation. Indeed, for
h € H, F € S, it is easily seen that Dy FF € S. As per (28), it can be shown
that,

Dy Dy ... Dy F = (D*F, by @ ... ® hy) yer.
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In an analogous way, one can close the operator D¥ from L?(Q) to L?(Q; H®%).
So, for any p > 1 and natural £ > 1, we define D¥P to be the closure of S with
respect to the norm:

k
IF(12,, :=E[FI?]+ Y E[|D!F| ;1.

J=1

Note that for p = 2 the following isometry holds L?(Q x [0,00)*;R?) ~
L?(: H®"). Hence one may identify D* F as a process: D, F.

A random variable F is said to be smooth in the Malliavin sense if F € D*? for
all p > 1 and all k > 1. We denote by ID*° the set of all smooth random variables in
the Malliavin sense. For example, the solution X to (22) satisfies X/ € D*? for all
t €[0,00) and p > 1 provided Vg, ..., Vg € C°(RY;R") (see Theorem 8 below).

Moreover, there is nothing which restricts consideration to R?-valued random
variables. Indeed, one can consider more general Hilbert space-valued random
variables, and the theory would extend in an appropriate way. To this end, denote
D*P(E) to be the appropriate space of E-valued random variables, where E is
some separable Hilbert space. For more details, see [51], where also the proof of the
following chain rule formula can be found:

Proposition 6 (Chain Rule for the Malliavin Derivative). If ¢ : R” — R is
a continuously differentiable function with bounded partial derivatives, and F =

(F1, ..., Fy,) is a random vector with components belonging to D' for some p>1.
Then o(F) € D"?, with

Dg(F) = (Vo)(F)DF = ) 3;¢(F)DF;,

i=1
where Vo is the row vector (01¢,...,0,¢) and DF is the (column) vector
(DFi,...,DF,)".

Lemma 7 (The Malliavin derivative and integration). Assume that E is a
separable real Hilbert space. Consider f : [0,00) x Q — E, and suppose that
foreacht € [0, T] we have f(t) € D'*(E) andt — f(t) is adapted with respect
to the natural filtration of B.® Moreover; suppose that:

T T
E /0 IfO2di<co  E /0 1DF) apdr < o 31)

8 Although not used in the sequel, the result holds for general f : [0,00) X Q — E such that
f(t) € DV2(E) forany ¢ € [0, T}, i.e., not necessarily adapted with respect to the natural filtration
of B.In this case, the F;(T) is the Skorohod integral and not the It6 integral of f'. See, for example,
Proposition 1.38 page 43 in [51].
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Then F,(T) := [\ f(t)dB} € D'"*(E) foralli = 0,1,...,d, with

T
DFy(T) = / Df(t)dB’
0
T ) TA.
DF,-(T):/ Df(t)dB: + f(s)ds, i=1,....d.
0 0
Also

T
DyFo(T) = /0 Dy f(1)dB’

T 4 T
DhFi(T)zfo th(z)dB;Jr/O FOR@ydr, i=1,....d.

Moreover, assuming that

T T
E /0 1D (1) 2 pond < 00, E /0 1D (0] g yndt < o0

one has for the iterated Malliavin derivative operator D*:

T
D¥Fy = / D* f(t)aB?
0

T TA.
DkFi(T):/ D¥ f(t)aB! + D f(syds, i=1,....d.
0 0

Proof. The proof is done using an induction argument. See Kusuoka and Stroock
[32] for details. O

Theorem 8. Assume X is the stochastic flow which solves (22), where the coeffi-
cients Vi,...,Vq € C;TYRY;RY) and Vy € CKRY;RN). Then X;*' € D*? for
allt € [0,00),i = 1,...,N and p > 1. Furthermore, the matrix valued process
DXY = (D’ X;"")i=1...N;j=1...a Satisfies the stochastic differential equation:

d ! IA.
DX; =Y /0 dV;(X)DX* o dB! + ( /0 V; (X;)du) . (32)
i=0

j=ld

Hence,

d t d t
DpX[ =) /0 Wi (X)) DXy 0dBl, + ) /O Vi (XH, ()du.  (33)
i=0 k=1
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If the vector fields Vy, ..., Vy are uniformly bounded then the following bound on
the norms of the derivatives can be shown to hold:

sup E[||D"Xf||g®k] <Cip Ypelloo), T >0 (34)
t€l0,T]
x€RN
If, however; the vector fields Vy, ..., V; are globally Lipschitz continuous but not

necessarily bounded, then it may only be deduced that the following holds:

sup E [||D"X," ||j;®k] <C,(1+|x)?. Vpelloo), T>0. (35
1€[0,T]

Proof. See Nualart [51, pp. 119-124]. O

Corollary 9. For any (¢, x) € [0,00) x RY, we have that

IN.
(J,;")_IDXj‘ = (/ (J;‘)‘WQ(X?)ds) . (36)
0 j=1..d

Proof. This is a simple result of applying integration by parts to the product
(J)"'DX7}, using the SDEs from the respective processes. For a complete proof
see, for example, Nualart [51, Sect. 2.3.1]. O

Definition 10 (Lie Bracket of Vector Fields). Let V, W < C'(RY;R") be two
vector fields. The Lie bracket of V and W is a third vector field, [V, W], defined by:

[V.W]:= 0W.V — aV.W,

where V' := (3;V")1<; j<n and the multiplication is that of a matrix by a vector.

The Lie bracket is a bilinear differential form [.,.] : C"™ x C™2 — C™/~"2~1 where
1 < my,my < oo, which satisfies the identities:

[V.W]=—[W.V] and [U.[V.W]]+ [W.[U V] +[V.[W.U]] = 0.

The latter is known as the Jacobi Identity.
Corollary 11. Let W € C3(RV;RV) then there holds:

d
d[(N)TWEH] == (I W V(X o dBY. (37)
k=0
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Proof. Note that
Y
WX = W)+ / IW(XI)WVi(XF) o dBF.
k=00
Thus, by an analogous formula for matrix—vector SDEs we have:
t t
G = [[uneawoe + [ aun e Wi
0 0

d t
=3 [unawa o) oast
k=070
d t
-3 / (IO V(XE)W(XT) o dB
k=070

d t
=3 [ o st 0
k=00

The alternative representation (36) for (J,*)"'DX¥ will be used in deriving
the integration by parts formula and Lie brackets are a natural occurrence in this
analysis. We may apply Corollary (11) iteratively to expand an expression for
(J)"Wi(XF) fori = 1,....,d, as far as the differentiability constraints on the
vector fields permit. The divergence operator—which is the adjoint of the Malliavin
derivative—plays a vital role in the construction of our integration by parts formula.
This operator is also called the Skorohod integral. It coincides with a generalisation
of the Itd integral to anticipating integrands. A detailed discussion of the divergence
operator can be found in Nualart [51].

Definition 12 (Divergence operator). Denote by § the adjoint of the operator D.
That is, § is an unbounded operator on L?(2 x [0, 00); R?) with values in L?(Q)
such that:

1. Dom § = {u € L*(Q x [0, 00); RY); |[E((DF, u) ;)| < c|Fll;2@). YF € D'}
2. For every u € Dom §, then §(u) € L*(R2) satisfies:

E(Fé(u)) = E((DF,u)y).

The following important results are shown in Sect. 1.5 of Nualart [51]:

1. D is continuous from D*?(E) into D*~'"?(H ® E)
2. (DF,DF),, € D®if F,G € D®
3. § is continuous from D*°(H) into D*°.
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Remark 13. Tf u = (u',...,u?) € Dom § has the property that t — u(-,t) is F;-
adapted, then the adjoint §(u), is nothing more than the It6 integral of u with respect
to the d-dimensional Brownian motion B, = (B,l, e B,d ). i.e.

d o0 . .
S(u) = Z/O u' (-, 5)dB.

i=1

2.3 The UFG Condition

Define A to be the set of all n-tuples of natural numbers of any size n with the
following form: 4 = {1,...,d} U U {0, 1,...,d}k. We endow A with the

keNy
product:

axf = (a,...,q,B1,...,PB1), wherea = (ay,...,0), B =(B1,...,01) € A

Define Ago := A U {0, 0}. We consider the following n-tuples lengths:

k, ifa=(ai,...,o),
la]:= ,
0, ifaa=2a.
el == || +card{i :e; =0,i =1,...,d}.

We also introduce the sets
Am) ={a e A:|la| <m} Ago(m) = {a € Ago : |laf| <m}.
We now define the vector field concatenation V], @ € Ag inductively, as follows:

Vig) := 0,
Vip == Vi, i=0.1,....4d,
V[a*i] = [‘/[0(]7 I/l]s l = Os 17"'9d'

In a similar vein to the above, we also define the Stratonovich integral concatenation,
B, t €[0,00), & € A

inductively:
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We now introduce the main assumption for the gradient bounds analysis: the
UFG condition. The purpose of the UFG condition, in its purest form, is to
truncate the expansion obtained when considering the expression (J;*)~'V; (X)),
fori = 1,...,d. Recalling the work of the previous section, this appears when
considering the product (J;*)"!DX;" between the Malliavin derivative and the
inverse of the Jacobian of the stochastic flow. The UFG condition is a “finite
generation” assumption, which helps to provide integration by parts formula.

Definition 14 (UFG Condition). Let {V; : i = 0,...,d}, be a system of vector
fields such that Vi,...,V; € CAT/(RN;RY) and V € CF(RY;RV). We say that
{Vi :i =0,...,d} satisfy the UFG condition if, there exists m € N,m < k — 1,
suchforanyaw € A, = o' xi,a’ € A(m)andi = 0,...,d, there exist uniformly
bounded functions ¢, g € C§+1_IQI(RN ,R), with 8 € A(m) such that

V@) = >~ 0up(x)Vig(x).

BeA(m)

Heuristically, the UFG conditions states that higher order Lie brackets can be
expressed as a linear combination of lower order Lie brackets, for some fixed order
m. The uniform Hérmander condition implies the UFG condition, but not vice versa
as we can see from the following example, taken from Kusuoka [30]:

Example 15. Assume d = 1and N = 2. Let 1, V; € C°(R?; R?) be given by

0 d
Vo(x1,x2) = sinxj — Vi(x1, x2) = sin x| —
0x1 0x2

Then {1}, V1} do not satisfy the Hormander condition. However the UFG condition
is satisfied with m = 4.

Remark 16.

1. The UFG condition is defined in such a way (i.e. with m < k — 1) that the
elements V|, are well-defined and such that we may apply Corollary 11 to V|
for all o € A(m).

2. The regularity of the coefficients ¢, g is chosen in accordance with what one
would expect, given the regularity of V.

3. We draw attention to the fact that we have assumed the coefficients are uniformly
bounded. Although this assumption does not materially restrict the strength of
the results, it does make them more presentable and reduces the complexity
in the proof. Essentially the boundedness of the coefficients means there is a
natural and elegant description for how the gradient bounds may increase as a
function of |x|. We endeavor to draw attention to the effects of this assumption
where appropriate. In many examples of interest, this assumption imposes no
unnecessary restrictions.
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2.4 The Central Representation Formula

From Corollary (11) and the UFG condition, we have, for each o € A(m),

d[(J) " V(X)) = —Z(J") [Viey- ViI(X7') © dB,

d

= > ) Vi) (X[ 0 dB;
i=0

d
Y3 Ay XNUN T V(X)) 0dBl . (38)

i=0 BeA(m)

where the coefficients cl’;ﬁ, a,p e A(m),i =0,...,d are given by

-1 ifoxie Am)and B = « *i
chp(x) =120 ifoxic A(m)and B # o *i - (39)
—@axip faxi g A(m)

We note, in particular, that ¢! wf € Ck+1 ol (RY,R) are uniformly bounded.
We obtained a representation of the vector fields Viyj, « € A(m) (estimated at (X))
in terms of the Lie brackets Vigxi] := [V|o, Vil @ € A(m), i = 0,...,d, which
where then reverted back to the original set of vector fields Vj,, o € A(m) via
the UFG condition. Without the UFG condition, the resulting representation would
potentially be infinite. Indeed, the Hormander approach relies on showing that, after
a certain number of iterations (taking Lie brackets of the resulting vector fields), the
remainder term arising from the expansion becomes very small. The UFG condition
is more general than Hormander’s (see [24]) famous criterion for hypoellipticity of
linear differential operators and it allows us to take a different approach. We can
view (38) as a linear system of SDEs whose coefficients are of suitably chosen
differentiability whose solutions are the processes t — (J;*) ™'V (X[%), & € A(m).
This enables us to represent these processes in terms of their initial values Vjyj(x),
a € A(m) and the corresponding representation facilitates the integration by parts
formula. Moreover, we shall see how the same representation leads to the classical
non-degeneracy result: The gradient bounds obtained under the UFG condition shall
implicitly recover Hormander’s result, see Theorem 70.

By considering the above as a closed linear system of equations, we are able to
equivalently view it as the matrix SDE:

d ¢
Y(t,x) = Y(0,x) + Z/ C'(X¥)Y(s,x) o dB., (40)
i=0"0
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where Y (0,x) = V(x) := (Vg (x))aeA(m) € RV» x RN (N, = card(A,) ) and

C': RN — RV @ RV are given by
C'(x):= (c(’x X ) .
(x) £ e e

We are able to take advantage of the linear nature of this system of SDEs by
considering in more generality the matrix which produces such vectors. Namely,

Lemma 17. Assume that A(t,x), (t,x) € [0,00) x RY is the N,, x N,,-matrix
which is the unique solution to the matrix stochastic differential equation

d
dA(t.x) =) C'(X)A(t.x) o dB], (41)
i=0
where A(0,x) = I. Then Y(t,x) = A(t,x)Y (0, x).
Proof. We need only show that A(z, x)Y (0, x) solves equation (40), then by the

uniqueness of SDE solutions (see, for example Karatzas and Shreve [26]), the result
follows. But,

d(A(t,x)Y(0,x)) = A(t,x) odY(0,x) 4+ odA(t, x)Y(0,x) = odA(t, x)Y (0, x)

d
=Y C'(X"A(t.x)Y(0.x) o dB
i=0
and, clearly, A(0, x)Y (0, x) = Y (0, x). O

The above results show that all the relevant information about the solution (40)
is captured by the solution (41). We can apply classical results about solutions of
SDE:s to obtain the following proposition.

Proposition 18. The matrix stochastic differential equation (41) has a unique
solution, A = (aq.g)apeAom) With components aqp : [0,00) x RY — R, a,p €
A(m) that satisfy the mutually dependent SDEs:

d t
agp(t,x) = 8up + Z Z /0 Chy (Xi)ayp(u, x) 0 dB,.

i=0yeA(m)

Moreover aqp(t,.) : RN — R are a.s. k — m times differentiable in x for fixed
1 €[0,00) and aq (., .) is jointly continuous in [0, 00) x RN with probability one,
foreach o, B € A(m) and
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alvl

ax—yaaﬂ (t, x)

P
sup E|: :|<oo, Vpell,o0), T >0, (42)
x€RN
{€[0,T]
for any multi-index y with |y| < k — m. Finally, foranyl <k —m

sup IE[”Dlaaﬁ(t,x)HZ@,] <C,(1+|x])? Vpell.oo), T>0, (43)
tel0,7]

Furthermore, the matrix A = (ag.8)a.peAm) IS invertible, and its inverse B =
(ba,g)a.peA(m) satisfies the matrix SDE:

d ¢
B(t,x)=1— Z/ B(u,x)C'(XX) o dB!.
i=0v0

Moreover, the components by g, o0, B € A(m), are a.s. k —m times differentiable in
x for fixed t € [0, 00), jointly continuous in (t, x) and

sup E
t€[0.7]
x€RN

foreach p € [1,00), T >0, |y | < k —m and some constant Cr.,p,. Finally, for any
I <k—m

[yl

v

ba,lg(l,x)

P
:| < Cr,p, (44)

sup E[||D’ba,ﬁ(r,x) ||f1®l] <C,(1+|x)? Vpelloo), T >0, (45)
1€[0.7T]

Proof. This is very similar to Theorem 8. The only difference here is that the
bounds on the norms of the iterated Malliavin derivatives are now bounded only
linearly in | x |. This is obvious once one considers Theorem 8 and, in particular,
inequality (34). It is clear from this equation that the norm of the Malliavin
derivatives inherits the linear growth of the vector fields. All higher order Malliavin
derivatives inherit this linearity from the first order Malliavin derivative, but given
the boundedness of the derivatives of the vector fields, have no worse than linear
growth. O

Remark 19. (a) The above proposition highlights an idiosyncratic difference
between the Malliavin derivative and the normal derivative for the solutions
of such SDEs. It stems from the fact that the Malliavin derivative of X;* has
an unbounded norm over x € R¥, as it has Lipschitz continuous coefficients.
However, the same result for the norm of the classical derivative of X} is
bounded over x € R¥. Note this difference would not appear if we assumed
the vector fields were uniformly bounded.
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(b) Although not used in the sequel, identities (42)—(45) hold true with the
supremum taken inside the expectation.

We now seek to study the solution to (41), whose elements will be absolutely
fundamental to our analysis. We note initially, that although this matrix is potentially
very large, with potentially significant mutual dependence, many of the terms which
make up this mutual dependence are zero. This allows us to get a good handle on
the matrix. Note that for fixed «, 8 € A(m) we have

d ¢
Aup(t.X) =8up+ Y /0 ¢l (XD)ayp(s.x) o dB. (46)

i=0 yeA(m)

The coefficients c;,y identified in (39) lead to the following:
For ||o|| < m — 2 there holds: || % i|| < mforalli =0,...,d, so c(’;é’y # 0 only

when y = & * i. In which case ¢}, , = —1.i.e.

d t
aoc,ﬂ(ts x) = Saﬂ - Z/ aa*i,ﬁ(ss X)o dBlS
i=0"0

For ||a|| = m—1thereholds: ||« x i|| = mfori = 1,...,d, with |« * 0| = m+1.
Hence o xi € A(m) fori = 1,...,d,and a x 0 & A(m). i.e.

d t t
A p(t, x) = up — Z/o Aoxi g(s,x) o dB — Z /0 Qax0,y (X )ayp(s, x)ds.

i=1 y€A(m)

For ||| = m there holds: ||a % i|| > m fori = 0,...,d. Hence a xi & A(m) for
i=0,...,d.1e.

d !
tupt.¥) = 8= Y /0 Gy (X2)ay (5, %) 0 dB.

i=0yeA(m)

An explicit form for a, g is sought and is easy to identify from (46). In fact, each
element of the matrix A can be split up into a sum of two terms: the term which
arises from 8,4—a iterated Stratonovich integral of a constant—and a remainder
term. That is, for any «, B € A(m),

A p(t,x) = agﬁ(t,x) + rap(t, x), (47)
where

(_1)|V\l§;’y if 8 = o * y for some y € A(m)

0
a, 4(t,x) =
op otherwise
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and

rept)= Y 3 /0, /Osk.../osl(—l)Y'cg;*y’g(xg)

y€A,j=0,...d S€A(m)
s.t. laxy||l<m
ly*jll=m+1—|ll

xasg(s,x) odBl o dB!" .. .dB¥

The following proposition is a good indicator of how we are able to identify the
explicit short-time asymptotic rates in terms of time, 7.

Proposition 20. For any T > 0, p € [1,00), a,8 € A(m) and y € Ay, the
following hold

Aoy [\ P
sup E[<t—||1/||/2 ) B ) ] < 00, (48)
1€(0,T]
p
sup E [(t_(m-Fl—“a”)/Z ‘ ra,ﬂ(l,x) |) ] < 00. (49)
xeRY
1€(0,T]
Proof. The proof of these result is left for the appendix. O

We are now ready to derive the integration by parts formula. Let f* € C;° (RY,R),
then, using (36), we get

Df (X)) = V f(X])DX;
= V(f o X)(x)(J")'DX?
= V(f o X)(x) (/ '(JYX)_IVi(X‘;V)dS)
0 i=1,..d

The idea is to develop the preceding equality to isolate terms involving V(f o
X;)(x). Once isolated, the operators of the Malliavin calculus will be used to derive
an integration by parts formula. Now we note that, from Lemma 17:

UDTViXD) = (A, 0)V()); = ) aip(t, x)Vg ().
peA(m)

Hence,

DFCX) = V(f 0 X)(x) / S s 0 Vg (0)ds

BeA(m)
=V(foX)(x) Z Vigy (x) (/ .ai,ﬂ(S,)C)dS)
BeA(m) 0 i=l,..d

= Y Vig(f o X)(@)kg(t, x),

BEA(m)
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where

We re-write the previous equation into a linear system of equations by taking the H
inner product with k, (¢, x) for all « € A(m). i.e.

(DA k@), = D Vis(f o X)) (ks (2, x), kay (2, x)

BeA(m)

(DFX) ka6 )y = D Vigi(f o X)) (kg (2, %), ko (2, %))

BeA(m)

(DFCX) koo (0.0) ;= S Vigi(f © X)) k(2. x). kaqa) (. ))
BeA@m)

Define, for « € A(m):

D@ F(X[) == (D (X)) ka(t.))
Mgt x) 1= =042 (ke (1 3y ey (1, ),

d ot
_ ~(lal+Ipl/2 Z/ 1.0 (5, X)ai 5 (5, x)ds.
i=170

This leaves us with

D(“)f(X,X) - Z t(”“”"'”ﬁ”)/zMaﬁ(t,x)V[ﬂ](f o X))(x).
BeA(m)

The above can be seen as a linear system of equations driven by a random matrix
M(t,x) = (M g(t,X))ap-

The invertibility of this matrix is a major step forward towards an integration by
parts. For then there would hold, P-a.s:
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Vi) (f © X)(x) = (7102 = W12 M i, ) DB f (X)),
peAm)

Proposition 21. M (z, x) is P-a.s. invertible. Moreover, for p € [1,00) and o, B €
A(m), there holds

sup E [(M;l(z, x))f’] <0 (50)
1€(0,1],xeRN '
Proof. The proof of invertibility is lengthy and is left to the appendix. O

2.5 Kusuoka-Stroock Functions

We introduce now a class of functions which we shall call Kusuoka—Stroock
functions. Such functions play the central role in the deduction of the integration
by parts formulae (IBPF) and the control of the derivatives of the semigroup P;.
In particular we will show that if (z, x) — ®(¢, x) is a Kusuoka—Stroock function,
then there exists another Kusuoka—Stroock function (¢, x) — @4 (¢, x), @ € A(m)
such that:

E[®(t, x) Vi (f 0 X)) (x)] = ¢t 1I2E[@, (1, x) £(X}1)].

This class of functions is closed under the operations which are taken during the
formation of the IBPF. As a result this space supports iterative applications of the
above formula.

Definition 22 (Local Kusuoka-Stroock functions). Let E be a separable Hilbert

space and let ¥ € R, n € N. We denote by K!°°(E, n) the set of functions: f :

(0,T] x RN — D" (E) satisfying the following:

1. f(t,.) is n-times continuously differentiable and %(.,.) is continuous in
(t,x) € (0,T] x RN as. for any o € A satisfying |a| < n

2. For any K compact subset of RY and k € N, p € [1,00) with k < n — |a],
we have

o | 0% f
—r/2

t — 4

sup Py

t€(0.T].xeK

< oo. (51
Dk-2 (E)

If (51) holds globally over RY, we write f € K,(E,n) and denote ICi””(n) =
ICi”" (R, n) and, respectively, K, (n) := K, (R, n).

The functions belonging to the set IC,I,”" (E, n) satisfy the following properties which
form the basis of the integration by parts formula.
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Lemma 23 (Properties of local Kusuoka-Stroock functions). The following
hold

1. Suppose [ € Kl°(E,n), where r > 0. Then, fori = 1,...,d,
/0 f(s.x)dB. € K (E.n) and /0 f(s.x)ds € K (E. n).

2. Aup.bagp € Iq(|)|78||—||a||)v0(k —m) for any a, B € A(m).

3 ky € ICfl‘g'” (H,k —m) for any o € A(m).

4. D@y = (Du(t,x), ko) y € ICi"i”a”(n A [k — m]) where u € K“(n) and
o € A(m).

5. If M~ (t, x) is the inverse matrix of M(t,x), then Ma_é € ICé”“(k —m), a, B e
A(m).

6. If fi € ICi’I_’C(n,‘)fori =1,...,N, then

N N
It . It .
[15 ekt 4, (minn;)  and > fiek (minn;).

i=1 i=1

Moreover, if we assume the vector fields Vy, ..., Vg are also uniformly bounded,
then (2)—(5) hold with KC'°¢ replaced by K.

Proof. This is proved in the appendix. O

2.6 Integration by Parts Formulae

In this section we synthesise the developed results to obtain various integration by
parts formulae, in a way which should now be familiar. We note that some of the
stated results are for iterated derivatives of the semigroup P; (cf. Corollary 28) along
vector fields of the Lie algebra. Seeing as the purpose of this section is to look at
derivatives of the semigroup, we shall always assume that Vig,], ..., Viey ul have
sufficient smoothness for this operation to be well-defined.

Theorem 24 (Integration by Parts formula I). Under the UFG condition, for any
® € K(n) and for any o € A(m), there exists @, € K'°((n — 1) A (k —m — 1))
such that:

E[®(1, x) Vi (f o X)(x)] = t T VIPE [, (1, x) f(X1)], t>0,x e RY (52)
forany [ € C}?O(RN; R). In addition, for any q > p

sup E[| @ (r,x)[7] < Cpg(1+[x ) sup E[| @, 2)lIF,, 1. (53)
1€(0,T] t€(0,7]
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Moreover, if ® € K,(n) and the vector fields V;, i = 0,1,...,d are uniformly

bounded, then ®, € IC,((n — 1) A (k —m — 1)). In particular

sup sup E[| @q(t,x)|”] < oo.
1€(0,T] xeRN

Proof. We showed in the previous section that

Vi) (f 0 X)(x) = ¢71elz == W2 p i ) DB (£(X)))
BeA(m)

holds P-a.s. By the product rule for the Malliavin derivative:
DO (@, x) My j(t.x) f(X))) = DPO(1, x) My (1, %) f(X])

+ @(1.x) DPM (. x) f(X))

+ ®(t,x) My 3(t.x) DPF(X]).

Then
E[@(1.x)Vieg (f © Xo)(x)]
= Y A E[ewmgep® )]
BEA(m)
= 8 [0, 0 X)),
where

Ot x)= Y IR {cb(z,x) MZA(t, x)8(kg (2, x)
BeA(m)

—0(t, ) DPM (1, x) — DPD(t, x) M}, x)} .

(54)

The claim ®, € K'((n — 1) A (k —m — 1)) follows from a diligent application
of Lemma 23, namely, parts 3—6. Note that the only term unbounded in x in the
expression for @ is DWM (¢, x) which has linear growth in x. Finally, the bound

(53) can be proved by observing that, due to (43)

sup B[ DM A0 | < ca+1x ).
1€(0.T) ’

(55)
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Hence, the bound

sup E| @y (t,x) 7 < Cp(1+[xD? sup [|D(. 0I5,
1€(0,T] t€(0,7]

follows by applying the following to the expression for ®,(¢, x): (55), Holder’s
inequality, and the uniform boundedness of the L" norm of M~ and k, over
(t,x) € (0,T] x RN foreachr > 1. O

Remark 25. Following from Remark 13, the adjoint 6(k,, (¢, x)) is the Itd integral of
k, (z, x) with respect to the d-dimensional Brownian motion B, = (B}, ..., BY) as
the process s — ky (z, x)(s) is F;-adapted for almost all (7, x) € (0, T] x R¥. That
is, we have that

8(ky(t.x) =Y / ky(t,x) (s)dB..
i=170

It follows that for processes with values in K"(E) which are a.e. adapted as
stochastic processes in H, that §(f) := §(f(.,.)) € Kr41(E).

Corollary 26 (Integration by Parts formula II). Under the UFG condition, for
any ® € K'“(n) and for any a € A(m), there exists @/, € K'°(n—1) A (k—m—1))
such that:

E[®(t, x)(Viy £)(X)] = 7 1I2E[@) (1, x) f(X)]. t>0.x eRN  (56)
forany [ € Cb°°(RN; R). In addition, for any g > p

sup E[| @, (t.x)|"] < Cpg(1 +|x])? sup E[|®@. 0)II7,,]- (57)
t€(0,7] t€(0,7]

Moreover, if ® € K,(n) and the vector fields V;, i = 0,1,...,d are uniformly
bounded, then @/, € KC,((n — 1) A (k —m — 1)). In particular,

sup sup E[| @t x)|"] < cc. (58)
t€(0,T] xeRN

Proof. The first observation is the following relationship:
(Vi )(XT) = V(X)) Vi (X[)
= (IS 0 X)) Vi (X))
= V(f o X)) () Vi (X]),
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where (J*)~T := ((J;*)~1)T. At this point refer back to the closed linear system of
equations, which induced the expression:

I Vig(X) = Y ap(t.x) Vg (x).
BeA(m)

Again, the central position of the UFG condition is emphasised, as

V(f o X)) V(X)) = D dap(t, )V(f 0 X)(x)Vigy(x)

BEA(m)
= Y aapt.X)Vig(f o X)(x).
BeA@m)
From Lemma 23, aq g € Kt(ﬁjsn—uau)vo(k — m). Hence, it has been shown that:

E[®1 )V f(X)] = Y B[O X)aupt, x)Vig (f © X)(x)].

BEA(m)

The integration by parts formula (52) can then be applied N,, times, after noting

1
that the product ®a, g € Ile’i[(”ﬂ”_”a”)vo]((n —1) A (k —m —1)). And so,

B[00 )V f(XH] = 3 1B [w,0, 0 £(X0)]

BeA(m)

_ Z t—"’i”r“"z"ﬂ”E[z leli—]lel \I‘ﬂ(l,X)f(th):|

BeA(m)

llell

=172 B [®,(t.x) f(X9)].

where
lloll— (18
o/, = Z A Wy e K°((n — D) A (kK —m —1)).
BEA(m)
The bounds (57), (58) can be deduced from the previous theorem. O

Corollary 27 (Integration by Parts formula III). Under the same conditions as
Theorem 24, the following integration by parts formula holds:

VuE[®(, x) f(X)] = T WIPE[@!(1, x) f(X)], t>0,x eRY, (59
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where ®!! € K1¢((n — 1) A (k — m — 1)). In addition, for any q > p:

sup E[|®(t,x)|"] < Cpg(1+ [x )7 sup (1. )7, (60)
t€(0,T] t€(0,T]

Moreover, if ® € K,(n) and the vector fields V;, i = 0,1,...,d are uniformly
bounded, then @) € K, ((n — 1) A (k —m — 1)). In particular,

sup sup E[| ®(t,x)|"] < oo. (61)
1€(0.T] xeRN

Proof. Observe that
Vi BL®(1, ) f(X])] = B [Vig) ((t, %)) f(X7) + (¢, %) Vg (f 0 X)(x)]
= E[Vig (¢, %)) f(X) + 1714120 (2, %) £(X})]
= PRy (1, x) £(X))),
where
@) (1, x) = 112V (B(t, x)) + Pyt x) € K1*((n = 1) A (k —m — 1)),

It is also clear from the previous results that @/, satisfies (60). ]

Corollary 28 (Integration by Parts formula IV). Under the same conditions as
Theorem 24, the following integration by parts formula holds form; +my < k —m
anday, ..., 0m +m, € A(m):

I/[U‘l] R ‘/[a”,I]Pt(I/[am1+1] tc I/[O‘mlerz]f)(‘x)

= i altectlen D 2E [@y, L 0 FXN] (@)

where ®, . Sy 4y € IC(I)”C((k —m —my —my)). Moreover,

I
sup ]E[‘ Do, .....cm; +my (t,x)‘ ] < Cp(1 + |x])imtmar, (63)
1€(0.T]
If the vector fields Vi, i = 0,1,...,d are uniformly bounded, then @, oy €
Ko((k —m — m; —my)). In particular,
P

sup sup ]E[‘ Dy, aml+mz(t,x)‘ ] < o0. (64)

t€(0,T] xeRN



Cubature Methods and Applications 235

Proof. Once it is noted that constant functions are in Ky, the proof follows from
my applications of Theorem 24 followed by m; applications of Corollary 26.
The bounds (63), (64) follows likewise. O

Remark 29. Observe that we are able to quantify exactly how the derivatives
explode (when ¢ tends to 0)—as functions of x-based on an analysis of the
integration by parts factors. In the next section, we shall use the above bounds to
deduce sharp gradient bounds for the diffusion semigroup ;.

2.7 Explicit Bounds

We discuss now how the integration by parts formulae allow the acquisition of
several explicit gradient bounds. This section is by no means exhaustive, and for a
more complete synopsis of obtainable gradient bounds, one should consult Nee [44].
We will use the following norms and semi-norms

o

oxi

[flloo = sup [F(O. IV oo =

, fECPRY,R)
XERN ie{l,.d}

o0

Il =Y > Ve ViadS o i €N T RY) ={f : I f]ly; < oo}

u=1l oy,..0,€EA
lloey ... % e, || =i
p .
1A, =D IVifle. feEC®Y.R), peN (65)
i=1
i _ ¥ f
A o /’I,'rgﬁ ,,,,, a3 [l 0xjy ... 0% o

1 lpoo = 1/ llee + 111, f €CP®RY.R).

Remark 30. Note that || Ve flloo < C || f ||y forany & € Aand f € CL“'(RN,R),
hence

lelly;, <Clell;, i€N.

Corollary 31. Let f € CP(RV,R) and oy, ... 0 +m, € A(m) be such that
my + my < k —m. Then there is a constant C such that, for anyt € [0, T],

|I/[al] A ‘/[aml]Pt(I/[aml-ﬁ-I] e I/[anzl+zn2]f)(x)|
— C||f||OOZ_(”a1”+~~~+”aml+mz ||)/2(1 + | x |)m1+mz' (66)
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Moreover, if the vector fields Vy, ..., Vy are uniformly bounded, then there is a
constant C such that, forany t € [0, T},

” I/[al] et ‘/[aml]Pt (I/[an11+1] et I/[an11+zﬂ2]f) ||00 = C ”f ||OOZ‘_(”O[1 ”+~~~+”U‘m1+mz ”)/2
(67)
Proof. This now follows easily from Corollary 28. O
The following result will be of use in the next section:

Corollary 32. Assume thatO < p <n <k —m, andlet f € CEO(RN,R) . Then
there is a constant C < oo such that for oy, . ..,a, € A(m) andanyt € [0,T],

C tP/?
IV[a11-~~V[an1Ptf(x)|§mllfllp(lﬂxl)”. (68)

Moreover, if the vector fields Vy, ..., Vy are uniformly bounded, then there is a
constant C such that, forany t € [0, T},

C tP/?
Vie] - - Vi1 Pr )|l oo = m”f”p- (69)

Proof. We prove the result for p = 1 as the general case follows along the same
lines. The idea behind this gradient bound is that one can “sacrifice” the derivative
along V|, to obtain a new integration by parts formula involving the gradient of f.
Observe,

N
Vi P f(x) = D Vi ()FE[(f 0 X,)(x)]

i=1

N
= [a JFEXDD V[j;n](x)(f;‘)j,i}

i=1

[0, F(X1)D/ (. x)].

N
ZIE
j=1

N
ZIE
j=1

where ®/(t,x) = YIL, Vi (x)(J;)i € Ki(k — m). Hence, following n — 1

=1 " o]
applications of Theorem 24 to the above expression, we see that:

N
Vies] - - - Vi Pr f(x) = (el 4 llen—11)/2 ZE [aj f(XtX)CDél,...,anfl (t, x)] )
i=1



Cubature Methods and Applications 237

And therefore

Vier - - - Vi Pr f(x)| < € enltclenmiD2 g 1 4 oy

Ct'/? )
= etz VA + 12D
The last inequality follows because ¢(!=llenlD/2 > 7 (=lelh/2, .

The gradient bounds presented above play the central role in determining the
rates of convergence of the numerical approximations presented in the following
chapters. In addition, we can use them to deduce the Hormander’s criterion in
the particular case when the vector fields V;, i = 0,1,...,d satisfy the uniform
Hoérmander condition.

2.8 Smoothness of the Diffusion Semigroup

In this section, we shall assume for simplicity that the vector fields V;, i =
0,1,...,d are smooth and uniformly bounded. We prove that, under the assumption
of Hormander’s criterion, x — P; f(x) is a smooth function. This implies the
existence and smoothness of the density of the law of the corresponding diffusion.
To show this, we make use of the following proposition, provided by Malliavin
in [40]:

Proposition 33. Let 1 be a finite measure defined on the Borel o-algebra B(RY).
Assume that for every multi-index o , there is a constant Cy, such that

‘ / 8 O] < Calf 1o

for every smooth f with compact support. Then |4 has a density with respect to the
Lebesgue measure which is smooth on RN . In particular, if for every multi-index a,
there is a constant C,, such that

IE[0a SHXO] ] = Ca 1 flloo » (70)

for every smooth f with compact support, then the law of X;* has a density, which
is smooth on RV

Remark 34. One can “localize” the result in Proposition 33 in the following
standard way: Assume that for every R > 0 and every multi-index o there is a
constant Cy g, such that

‘ / B FOORE)| < Car | flloo
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for every smooth f with compact support in the ball B(0, R). Then p has a density
with respect to the Lebesgue measure which is smooth on RY . To justify this, one
uses Proposition 33 to show that for every R > 0, 1|p(o,r) has a smooth density
with respect to the Lebesgue measure.

In particular, if for every R > 0 and every multi-index « there is a constant Cy g,
such that

| E[(0e /)X = Cor 1 f lloo - (71)

for every smooth f with compact support in the ball B(0, R) then the law of X*
has a smooth density with respect to the Lebesgue measure.

Gradient bounds such as (70), (71) may be deduced from the techniques of Kusuoka,
provided some extra assumptions are made.

Theorem 35. Assume that the following holds for all x € RV :
Span{V[a] (x):ae€ A(m)} =RN, (72)

Then the law of X} has a smooth density with respect to the Lebesgue measure.

Note that we may restate (72), as the property that there exists € = €(x) > 0
such that

3 (V). = elg ], (73)

a€A(m)

forall ¢ € R", or equivalently: the matrix (V' V) (x) is invertible Vx € R, where
V(x) := (V}}))j=1...v. Note: upon taking the infimum over all | | = 1, the LHS

we A(m)
of (73) is the minimum eigenvalue of this matrix. The inverse must have smooth

entries (by the inverse function theorem) and be bounded on compact sets.

Proof. Showing (71), amounts to deriving an integration by parts formula for the
partial derivatives d;. This can easily be iterated to obtain any combination of higher
partial derivatives. We claim that there exist smooth functions C;, such that:

0= Y Clx)VwX),

a€A(m)

for all x € R™. This can be re-written in matrix form as 9; = VC', where V(x) :=
(Vi (x))j;zk(.;lj;/, and C'(x) = (CL(X))yea(m But it holds that (VV7)(x) is
invertible for all x € RV . Therefore, we may choose

Ci — VT(VVT)_lai ,
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that is, Ci(x) = (VT(VVT)719;,)q(x). Clearly, C/ is smooth by the inverse
function theorem and it is also bounded on compacts. Let ¢ be a smooth function
with compact support in the ball B(0, R). Observe that

E[@)(X)] = D E[CVue)X)] = D E[(ArCLVime)(X)].
a€A(m) a€A(m)

where Ag : RY — R is a smooth “truncation” function such that A r(x) = 1if
x € B(0,R) and A, (x) = 0if x & B(0,2R). We can therefore assume without loss
of generality that both C! and V], are bounded. By Corollary 26 we deduce that
there exists @, , such that:

E [(ARCiVie) (X)) = t T 1IPE[@], (1, x)e(X)] (74)
and
sup sup E[| @), x(t,x) ‘p] < oo. (75)
1€(0,T] xeRN

Hence there exists a constant C; g, such that

[E[(0: ) (X < Cirl¢lloo (76)
with

Cip=171912"3" sup E[| @] x(1.x)[] < co.

a€A(m) xeRN

The same argument can be done for any partial derivative and the procedure can be
iterated for any multi-index «. The result follows by Remark 34. O

2.9 The VO Condition

Under the UFG condition alone, one cannot gauge any differentiability properties
in the direction V. Even if we have differentiability in the direction V}, the norm
IVoP¢l|lo may explode with arbitrary high rate. Kusuoka has given an explicit
class of examples where, for arbitrary integers / > 2, it holds

1 _1
2 @lloe = VoPrglloo = C172 l@lloo

for some constants ¢, C > 0 (see Propositions 14 and 16 in [30]). However the
following condition allows us to have a suitable control in the direction Vj.
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Definition 36 (The V0 Condition). Let{V; :i =0,...,d}, be a system of vector
fields such that Vi,...,V; € CAH'(RV;RY) and V, € CK(RV;RY). We say that
{Vi ©i = 0,...,d} satisfy the VO condition if, there exist uniformly bounded
functions g € Cf (RY,R), with B € A(2) such that

) = Y o)V (). (77

BEAQ2)

Condition VO states that ¥ can be expressed as a linear combination of the
vector fields {V1,...V;} U {[V,-,Vj],l <i<j< k}. This premise is weaker
than the ellipticity assumption and has been used, for example, by Jerison and
Sanchez—Calle [25] to obtain estimates for the heat kernel. Under the VO condition
all results presented above extend to the differentiability in the direction V}, as well.
For example we have the following equivalent of the corollary 28:

Proposition 37. Under the same conditions as Theorem 24 and the VO condition,
the following integration by parts formula holds for m; + my, < k — m and
01y oo s Omi4m, € .A(m) U {(0)}

I/[al] e ‘/[aml]Pt(I/[aml-ﬁ-I] e I/[an11+zn2]f)(x)

= t_(”f)tl”+...+”0¢m1+m2”)/2]E I:q)al,...,amlerz (t, -x)f(th)] , (78)

where g, . Sy 4y € ICIO""((k —m —my —my)). Moreover,

P (m1+m2)p
Sup ]E ¢a1 ..... a,,ll+,,,2 (ts'x) E Cp(l + I'x |) . (79)
1€(0.7]
Moreover, if the vector fields Vi, i = 0,1,...,d are uniformly bounded, then
Doy +my € Kol((k —m —my —my)). In particular,
P
sup sup E| Dy, a, 4, X) } < 00. (80)
1€(0.T] xRN

From Proposition 37 one can deduce the following corollary similar to
Corollary 32

Corollary 38. Assume n < k —m, and let f € CEO(RN,R) . Then, under the
UFG+VO0 conditions, there is a constant C < oo such that foray, . ..,o, € A(m)U

{0}

Cll/2
W] -+ Vi) Pr f(X)] = m”vf”oo(l +[x M. (81)
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Moreover, if the vector fields Vy, ..., Vy are uniformly bounded, then there is a
constant C such that

Ct'/?
Vier - - Ve e F)lloo = m”vfﬂ- (82)

and for any integer p > O there is a constant C,, such that

Cp
”V[ozl]---V[an]Ptf)”oo:m”f”p- (83)

3 Cubature Methods

3.1 Introduction

In this section we will be concerned with numerical approximations of solutions
of stochastic differential equations (SDEs). There are two classes of numerical
methods for approximating SDEs. The objective of the first is to produce a pathwise
approximation of the solution (strong approximation). The second method involves
approximating the distribution of the solution at a particular instance in time
(weak approximation). For example when one is only interested in the expectation
E[p(X;)] for some function ¢, it is sufficient to have a good approximation of
the distribution of the random variable X; rather than of its sample paths. This
observation was first made by Milstein [42] who showed that pathwise schemes
and L? estimates of the corresponding errors are irrelevant in this context since the
objective is to approximate the law of X;. This section contains approximations that
belong to this second class of methods.

Classical results in this area concentrate on solving numerically SDEs for which
the so-called “ellipticity condition”, or more generally the “Uniform Hormander
condition” (UH), is satisfied. For a survey of such schemes see, for example,
Kloeden and Platen [27] or Burrage, Burrage and Tian [6]. Under this condition,
for any bounded measurable function ¢, P,¢ is smooth for any ¢ > 0. It is this
property upon which the majority of these schemes rely.

For example, the classical Euler—Maruyama scheme requires P;¢ to be four times
differentiable in order to obtain the optimal rate of convergence. Talay [57,58] and,
independently, Milstein [43] introduced the appropriate methodology to analyse
this scheme. They express the error as a difference including a sum of terms
involving P;¢. Their analysis also shows the relationship between the smoothness
of ¢ and the corresponding error. Talay and Tubaro [59] prove an even more precise
result showing that, under the same conditions, the errors corresponding to the
Euler-Maruyama and many other schemes can be expanded in terms of powers
of the discretization step. Furthermore, Bally and Talay [2] show the existence of
such an expansion under a much weaker hypothesis on ¢: that ¢ need only be
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measurable and bounded (even the boundedness condition can be relaxed). Higher
order schemes require additional smoothness properties of P,¢ (see for example,
Platen and Wagner [52]).

As explained in the previous chapter, Kusuoka and Stroock [32,33, 34] studied
the properties of P,¢ under the UFG condition which is weaker. A number of
schemes have recently been developed to work under the UFG conditions rather
than the ellipticity condition, their convergence depending intrinsically on the
above estimates of V|y,] ... Vo, Pr¢. A further advantage of this new generation of
schemes is a consequence of the classical result stating that the support of X (x) is
the closure of the set S = {x : [0, 00) — R?} where x¥ solves the ODE,

t d t
x? :x+/ Vo(xf)ds—i—Z/ Vi (x9)g (s) ds
0 =170

and ¢ : [0,00) — R? is an arbitrary smooth function (see Stroock and Varadhan
[54-56], Millet and Sanz-Sole[41]). These schemes attempt to keep the support of
the approximating process on the set S. In this way, stability problems that are
known to affect classical schemes can be avoided. For example, Ninomyia and
Victoir [49] give an explicit example where the Euler-Maruyama approximation
fails whilst their algorithm succeeds (see Example 43 below for their algorithm).
Their example involves an SDE related to the Heston stochastic volatility model in
finance.

In this chapter we give a general criterion for the convergence of a class of weak
approximations incorporating this new category of schemes. The criterion is based
upon the stochastic Stratonovich—Taylor expansion of ¢(X;) and demonstrates how
the rate of convergence depends on the smoothness of the test function ¢.

For smooth test functions, an equidistant partition of the time interval on which
the approximation is sought is optimal. For less smooth functions, this is no longer
true. We emphasize that the UFG+VO conditions are not required for smooth test
functions.

3.2 M-Perfect Families

In this section we introduce the concept of an m-perfect family. Such families
correspond to various weak approximations of SDEs, including the Lyons—Victoir
and Ninomiya—Victoir schemes. The main result appears in Theorem 46 and
Corollary 47.

Fora = (i1,....i;) € Aand ¢ € C/(R"), let f, 4 be defined as f, _i)p =
Vi, ... Vi,p and I s, (¢) be the iterated Stratonovich integral

t S0 Sr—2 ) . .
Iy, (1) :=/0 /0 ( A fa,w(Xs,l)odWQLI) o---0dWi™' odWy,
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forz > 0. 1f iy = O then I, (¢) is well defined for ¢ € CI’;(RN). However, if i} #

0 then Iy, (¢) is well defined provided ¢ € C;“(RN ), since the semimartingale
property of f,,(X) is required in the definition of the first Stratonovich integral
Sr—2

o Jee(Xs_)) o dW";,‘M. Note that the Stratonovich integrals are evaluated
innermost first. Finally let

! 50 Sr—=2 . . .
I (1) 12/0 /0 (/0 IOdW’Slr—l)O"'OdW’S’I“ o dWy .

Leta = (i1,...,i;) € Ap be an arbitrary multi-index such that ||¢| = m € N
(and || = r € N). If m is odd, then E[/,(¢)] = 0 and if m is even then

t% . m.,r
o ifa € A"
E[l,(1)] = { 2% @) o (84)
0 otherwise

where A{'" is the set of multi-indices @ = a * -« % an € Ao (m) such that each
a; = (0) or (j, j) forsome j € {1,...,k}. Note that r — 7 is equal to the number
of pairs of indices (j, j) occurring in .. A proof of this result can be found in [19].

We state three further results in (85), (86) and (88). The proofs are all elementary
and can be found in [19]. The first two give an upper bound on the L? norm of
Iy, ,(t) for smooth ¢. The third provides an explicit form for the remainder of ¢ (X;)
when expanded in terms of iterated integrals.

For ¢ € C}‘ylaH“(RN) and any multi-index &« = (iy,...,i;) € Ap such that
i1 # 0, we have®

115, O, < |l favl o P CZ Vi foy | 1 e )

i=1

for some constant ¢ = c(«) > 0. For ¢ € C}UO‘H(RN ) and any multi-index o =
(i1,...,i;) € Ap such that i{ = 0 we have

@l < e fuploot (86)

Form e N, ¢ € CZ’H(RN) and x € RY, we define the truncation,

o) =)+ Y fup () La(0). (87)

a€Ay(m)

°In the following, we allow for the constant ¢ to take different values from one line to another.
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Then for ¢ > 0 the remainder is

Rug(®) =pX)—g")=| > + > Iy, @).
lell=m+1  |lal=m+2,a=0B.||]|=m
(88)

In the following, we define a class of approximations of X expressed in terms of
certain families of stochastic processes, X (x) = {X; (x)}se[0.00) for x € RY, which
are explicitly solvable. In particular, we can explicitly compute the operator,

(0:9)(x) = E[p(X;(x))]. (89)

The semigroup Pr will then be approximated by Q;' Q) ... Qj' where {hj =
tj—tj—1})i—and m, = {1; = (%)VT}’}ZO for n € N, is a sufficiently fine partition
of the interval [0, T]. In particular #; € [0,1) for j = 1,...,n. The underlying
idea is that Q¢ will have the same truncation as P;¢.

So let X (x) = {X, (%) }ref0.00)» Where x € RV, be a family of progressively
measurable stochastic processes such that, lim, X, () = X (x0) P-almost
surely, for any t+ > 0 and xy € RY. As a result, the operator Q; defined in
(89) has the property that Q,¢ € C,(R") for any ¢ € C»(R"). In particular,
0, : Cp(RY) — Cp(RY) is a Markov operator.

Definition 39. For m € N, the family X (x) = {X, (x)}/ef0.00) Where x € R" is
said to be m-perfect for the process X if there exist a constant ¢ > 0 and an integer
M > m + 1 such that for ¢ € C;"™ (RY),

M
sup |Qip(x) —Elg" ][ < ¢ Y ol - (90)
xRV i=m+1

As we can see from (90), the quantity E[¢;"(x)] plays the same role as the
classical truncation in the standard Taylor expansion of a function. Using (84) we
deduce that,

Elp?(x)] = ¢(x)
Elp?(x)] = ¢(x) + Lo(x)t

2
Elp*(x)] = p(x) + Lo(x) + L%o(x)%,

where L = V) + %Zflzl V2. Furthermore, since E[I,(¢)] = 0 for odd |«, it
follows that E[p} (x)] = Elg{ (x)]. E[¢; ()] = El? (x)] and E[? (x)] = Elg(x)]-
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3.3 Examples

There now follow some examples of m-perfect families corresponding to the semi-
group { P };¢[0.00), the Lyons—Victoir method and the Ninomiya—Victoir algorithm.

Example 40. The family of stochastic processes {X; (x)}se[0.00), Where x € RV,
is m-perfect. More precisely, there exists a constant ¢ > 0 such that for ¢ €
C;/,m-l-Z (RY),

m—+2
sup |Pio(x) —Elp/" ()] <c Y 1ol O1)
veRY i=m+1
Proof. For ¢ € C;’”H(RN),
|Pio(x) —Elp!" (0)]| = |E[Rmp)]| = [E[( D+ > My, , (0]

llall=m~+1 ||a||=m+2,ot=0*ﬁ,||ﬁ||=m

Applying inequality (85) to the first sum,

k
Y @l s X tel a4 e Vit
i=1

lel|l=m+1 loel|=m~+1

m+2

<c Y el (92)

i=m+1

for some constant ¢ > 0. Applying result (86) to the second sum,

> |17, @], = > ¢ [ fur oot

lall=m~+2.a=0%B.||Bll=m lall=m+2.a=0%p.|8ll=m
m+2
<clellympat 7 - (93)

The result for ¢ € C;/ ’m+3(RN ) follows from combining (92) and (93). Since none
of the terms in (91) depend on partial derivatives of order m + 3, the inequality is
also valid for any ¢ € C Z 2RV (a standard approximation method can be used).

|

In the following example, the family of processes X (x) = {X, (x)}ref0,1), Where
x € R, corresponds to the Lyons—Victoir approximation (see [36]). The example
involves a set of / finite variation paths, w;, ..., w; € Cg([O, 1], Rd), forsome/ € N,
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!
together with some weights A1,...,A4; € R* such that )~ A; = 1. These paths
j=1
are said to define a cubature formula on Wiener Space of degree m if, for any

a € Ag(m),
i
El[l(D]=) A, 1.7 (1),
j=1

where,

) L rso Sr—2 . . .
19 ()= /0 /0 (/0 4o (s7-1)) -+ dw'r (s1)do” (50).

From the scaling properties of the Brownian motion we can deduce, for z > 0,

l
E[lo(0]=) A 1" (1),

Jj=1

where w; 1, ..., w;; € C([0,1],R?) is defined by w; ; (s) = Viw; (%), s € [0,1].
In other words, the expectation of the iterated Stratonovich integrals I, (¢) is the
same under the Wiener measure as it is under the measure,

1
Q= Ajbu,
j=1

Example 41. If we choose X to be the stochastic flow defined in (1), but with the
driving Brownian motion replaced by the paths w1, ..., ®,; defined above then
the family of processes, { X, (x)}sef0,1], with corresponding operator (0,0)(x) :=
Eq, [¢(X,(x))], is m-perfect. More precisely, there exists a constant ¢ > 0 such that

for ¢ € CbV’m“(RN),
m—+2 )
sup [Q,0(x) —Elg" )] <¢ Y ol
x i=m+1

For example, if (A sy, j) are chosen such that for / = 2¢ the paths are @, ; : t
t(1,2},..,29) for j = 1,...,2¢ with points z; € {—1,1}* and weights A; = 27,
we obtain a cubature formula of degree 3 and a corresponding 3-perfect family.
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|

Proof. Let us first observe that I, (1) = ¢ > I’ (1) Hence, for ¢ € C,""*(RY),

[0,0(x) = Elg" ()] = [Eq, [Rur.o ()]
=)+ > ) fo oo [Ea ],

llall=m+1 ||a||:m+2,ot:O*ﬁ,||ﬁ||:m

1
<( ) + > ) ol A 2877 @1

llell=m~+1 ||a||:m+2,ot:O*ﬁ,||ﬁ||:m j=1

<Y + > Ve | fuploo -

llall=m-+1 ||a||=m+2,ot=0*ﬁ,||ﬁ||=m

[
where ko = Y. A; |1 (D], o
j=1

Remark 42. (i) There has been no change to the underlying measure in the
example above. Merely a representation in terms of the measure (Y, has been
introduced to ease the computation of af. More precisely, the family of
processes {Y,f (x)} where x € RV is constructed as follows. We take,

t€[0,1]
Xo(x) = x
and then randomly choose a path w;, from the set {wy 1, ..., ;} with corre-
sponding probabilities (A1, ..., A;). Each process then follows a deterministic

trajectory driven by the solution of the ordinary differential equation,

d
dX, =Vo(X)di+ ) V;(X)dw],.
j=1

We can therefore compute the expected value of a functional of X, (x) as
integrals on the path space with respect to the Radon measure ;. Hence the
identities,

0,¢(x) = E[p(X, (x))] = Eq, [¢(X; (x))]

(i) The approach adopted by Lyons and Victoir to construct the above approx-
imation resembles the ideas developed by Clark and Newton in a series of
papers [10, 11, 45, 46]. Heuristically, Clark and Newton constructed strong
approximations of SDEs using flows driven by vector fields which were
measurable with respect to the filtration generated by the driving Wiener
process. In a similar vein, Castell and Gaines [8] provide a method of strongly
approximating the solution of an SDE by means of exponential Lie series.
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(iii) The family of processes X (x) = {X; (%) }¢ref0,1).xerv} corresponding to the
Lyons—Victoir approximation (see [36]) have the fundamental property that
they match the expectation of the truncated signature as sketched in the
Introduction. In [36], Lyons and Victoir constructed degree 3 and degree
5 approximations in general dimensions. More recently, Gyurko and Lyons
developed in [22] higher degree approximation (degree 7, 9 and 11) in low
dimensions and show how to extend the cubature method to piece-wise smooth
test functions.

For the following example, we will denote by exp(V't) f the value at time ¢ of
the solution of the ODE y’ = V (y), y(0) = f where V € C°(RY,R"). In
particular, exp(V't) (x) isexp(Vt) f for f being the identity function. The family
of processes ¥ (x) = {¥; (x)}e[.1] below corresponds to the Ninomiya—Victoir
approximation (see [49]).

Example 43. Let A and Z be two independent random variables such that A is

Bernoulli distributed P(A = 1) = P(A = —1) = J and Z = (Z')\_ is a

standard normal k-dimensional random variable. Consider the family of processes
Y (x) ={Y, (-x)}te[o,l] defined by

k
exp(%t)‘]_[ exp(Z'Vit!/?) exp(L1)(x) ifA =1
Y, (x) = T ‘
exp(21) [T exp(ZF 1 Vit ) exp(21) (x) if A = —1

i=1

with the corresponding operator (Q;¢)(x) := E[p(Y;(x))] . Then there exists a
constant ¢ > 0 such that for ¢ € C bV’S(RN )

sup [Q,¢(x) — Elg;()]] < ¢’ [l9]lyg

Hence {Y; (x)}:e[o.1] is 5-perfect.
Proof. See [13]. O
The following lemma is required to prove the main theorem below.

Lemmadd. For 0 < s < t < 1 and any m-perfect family {X, (X)}te.1] with
corresponding operator Q = {Q,}:e(.1] we have,

M .
1112
IP:(Pgp) = Q:i(Pp)lloo < cllll, D —=5 (94)
j=m+15 2

where ¢ € Cf(RN)for 0 < p < oo and some constant ¢ > 0. In particular, for
¢ € C)' (RY),

m+1
[P (Psp) — OQi(Ps@)lloo Sl 2 2. 95)
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Proof. Since C{°(RY) is dense in C; (R9) in the topology generated by the norm
|| ,00 it suffices to prove (94) and (95) only for a function ¢ € CP(RN).
By Corollary 32, we have

J
1Pl =Y D0 Vil Vi Pre o

i=1 o,..a €A
oy ... i |=

C C
<Y X et <
- o kLR || — - =P
i=1 o,..a €A t : l P r2
llory ... 0e; | =

Then (94) and (95) follow from the definition of an m-perfect family. |

The family of processes X (x) = {X; (x)}ref0.00) below corresponds to the
Kusuoka approximation. We recall that Kusuoka’s result requires only the UFG
condition.

Example 45. A family of random variables {Z, : « € Ay} is said to be m-moment
similar if E[ | Z,|"] < oo forany r € N, « € Ag and Z(g) = 1 with,

ElZe, ... Zo;] = Elly, ... 1o,]

forany j = 1,...,manday,...,a; € Agsuch that ||| +---+ “O‘J'H < m where
1, is defined as above.

Let {Zy : @ € Ay} be a family of m-moment similar random variables and let
X (x) = {X, (x)}ref0.00) be the family of processes,

Nt -+ [l |

_ 21 .
X, (x) = § :7 § : t 2 (P ...ng)(V[al]...V[aj]H)(x)
— j!

llovt |4+ ||y || <m
(96)

where H : RY — R is defined H(x) = x and

le (- 1)1+1

0= ||~ 12 > Zp ... 2Zg,

Brx..xB;=a
with the corresponding operator Q = {0, }:¢(0.1] defined by,
0:9(x) = Ep(X; (x))]

for ¢ € Cy(R"Y) Then,
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mm-‘rl t]/z
1Prsp = Qi Pstllos < IVollow Y. —= 97
j=m+18 2

for some constant ¢ > 0.
Proof. See Definition 1, Theorem 3 and Lemma 18 in Kusuoka[29] for (97). O

The family X (x), x € RY as defined in (96) is not m-perfect. However,
inequality (97) is a particular case of (94) where p = 1 and M = m™ !, Since (94)
is the only result required to obtain (98), we deduce from the proof of Theorem 46
that (98), with p = 1, holds for Kusuoka’s method as well. Similarly part (ii) of
Corollary 47 holds for Kusuoka’s method. For numerical algorithms related to the
family X (x), x € RN as defined in (96) see [31,47,48]. In particular, paper [48]
uses a control on the computational effort based on the same algorithm (the TBBA)
as the one employed in Sect. 3.5.

The set of vector fields appearing in (96) belong to the Lie algebra generated
by the original vector fields {Vy, Vi,...,V;}. Ben Arous [1] and Burrage and
Burrage [5] employ the same set of vector fields to produce strong approximations
of solutions of SDEs. Notably, the same ideas appear much earlier in Magnus [39],
in the context of approximations of the solution of linear (deterministic) differential
equations. Castell [7] also gives an explicit formula for the solution of an SDE in
terms of Lie brackets and iterated Stratonovich integrals.

3.4 Rates of Convergence

We now prove our main result on m-perfect families, the gist of which can be
conveyed by the concept of local and global order of an approximation. Local order
measures how close an approximation is to the exact solution on a sub-interval of the
integration, given an exact initial condition at the start of that subinterval. The global
order of an approximation looks at the build up of errors over the entire integration
range. The theorem below states that, in the best possible case, the global order of an
approximation obtained using an m-perfect family is one less than the local order.
More precisely, for a suitable partition, the global error is of order ’"T_l whilst the
m+1

local error is of order .

Let us define the function,

p—2 min(yp.(m="D) jf yp #£m—1

Y’ (n) = .
(n) n~™=Y21nn  foryp =m—1

In the following,

EM (@)= |Pre— O O1  ...00e|

fory e R,n e N.
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Theorem 46. Let T,y > 0 and m, = {t; = (%)YT};? —o be a partition of the
interval [0, T| where n € N is such that {h; =t; — tj—l}’}=1 C (0, 1]. Then for any

m-perfect family {X, (X)}tefo,r) with corresponding operator Q = {Q;}ie.1] we
have, for ¢ € Cf(RN) where p = 1,...,m,

E (@) <eX? ) lel, + | Pne — Ohel (98)

for some constant ¢ = c(y, M, T) > 0 where M > m + 1, as in Definition 39.
In particular, if y > mT_l then,

£ (p) < = loll, + [ Prno — Qo]
n

Proof. We have,

EM (@) = Py, (Pr—p, @) — Qp (Pr—pn,®)
n—1
+ Z thn - thj+1(PT_hj+l_"'_hn(p - th] PT—h‘/—---—h,,QO)
j=1
= Phn (Ptnfl(p) - Q;[’:Y(Ptnfl(p)

n—1
+Y o 0n L Of L (P, (Py_y9) — O (Py_y0)).
=1

By Lemma 44, there exists a constant ¢ > 0 such that,

M 1/2
| o, (Pry0) = O (P @) o < cllell, Y =
I=m+1 tn—l
Since P is a semigroup and QZ’/ is a Markov operator for j =2,...,n —1,

|oh - efy By (Pyie) = O (P = By (Poie) = 2 Pyl

M hl/Z

J

<clel, Y. 5
I=m+1 ¢.2

—_

J

for some ¢ > 0. Finally, since O Z’j is a Markov operator, it follows from (102) that,

loi ... 0% (Pune—Qro)|,, < | Pue—0rel.
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Combining these last four results gives,

1/2

M
5y’”(<ﬂ)=HPT</J—QZZmQ2”1¢H HPhl(ﬂ Q;w” +C|I<ﬂ|lpz >

I=p "
j=2l=m+1p,2)

It follows, almost immediately from the definition of /; that,

TG — 1)y~ i r=l
hj :—y (j ) / ( .M ) dM,
nv j—1 \J —1

=1 < max]( ]1)7 1] < max[2”~!, 1]. Hence for

but for j € {2,..
l=m+1,...,M,

]_

hlj/2 (}/T(jn—yl)y_1 maX[Zy_l, 1])//2
<
(=p)/2 — . (=p)/2
G
T =Dl yi=p) yp—l
= C(ny) = C(—) (G-D'7

where ¢ = max[1, (y max[2" 7!, 1])™/2]. It follows that,

M hl/z 1 % M ,

j . p—=

> WEC(;) > (=1
1=m+1Lj—1 I=m+1

. M . yp—l yp—= (m+1) +1 _1 .
Since 3L, (j = D7 = (=1 AR Ve T
yr— (m+1)

1) M we have,

Yp
2

l h'/? 1 yp—(n+1)
J . yp—mT’)
Z W =M (;) (G- > 99)

I=m+1"j—1

We now consider (99) for three different ranges of y.

m— n . yp—(m+1)
Fory € (0.251), X,/ = D™ = 22, - 1)
series on the right hand side is convergent, we have,

= (m+

and since the

n
_r . yp—(m+1 _w
n- 2 E (=12 <c¢n 2

j=2

for some constant ¢ = ¢(y, M) > 0.
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Fory = mT_l, Z’}:z(j — 1)7! < ¢Inn for some constant ¢ = ¢(y, M) > 0 so we
have,

n
_yr . yp—(m+1) (m 3]
no2 E G-1 =2 <c Inn.
j=2
Fory > =1 we have
P

—1 yp (m+l) 1 1 yp—(m+1) ! 1+ yp—(m—1)
E ( - <c x 2 dx=c X 2 dx < o0
n 0 0

S0,

yp—(m+1)

n .
m+1) _m— _1 2 1 m—
%Z(,_l)”( - z‘z(_fn) Lot o
j=2

We observe that the rate of convergence is the controlled by the maximum

between Y (n) and the rate at which H Pro—0re H converges to 0. We define
o0

Ykika () := Yk (n) + n_%. We have the following corollary:

Corollary 47. (i) Forany ¢ € Cg’[ (RM),

EM () < X" () (@]l -

for some constant ¢ > 0. In particular, if y > 1, then E"" (p) < +%1 el a-
(ii) If there exists a constant ¢ > 0 independent of t such that,

sup |X; (x) — x| < v/, (100)

X€RN

then, for any ¢ € Cg (RM),

EM () < XM () llolly

for some constant ¢ > 0. In particular, if y > m — 1, then E"" (@) <
m Tm=1 ||(p||l
(iii) lf there exist constants ¢, ¢ > 0 independent of t such that,

IPrp — O ¢lloe < ct? o], . (101)
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then, for any ¢ € C}ZJ(RN) where 1 <1 < M, we have

EM (@) <Y () o),

for some constant ¢ > 0, In particular, if y > m — 1, then E"" (p) <
==t llell; -
n 2

Proof. (i) The result follows from Theorem 46 and the definition of an m-perfect
family.
(ii) If ¢ € Cy»(RN) is Lipschitz then,

1019(x) = ¢ ()] = ¢ |IVelloo V7 (102)
hence,
| Pro — Oo|l, < cllell, V1.
(iii) The result follows from Theorem 46 and (101). O

Finally we define u, to be the law of X, that is u,; (p) = E [p (X;)] for ¢ €
Cy(RY). We also define u¥ to be the probability measure defined by,

i @) =B[QF07 - 0w (X0 = [ OF.07_ ... 0} () 10 (@)

for ¢ € Cp(R") and introduce the family of norms on the set of signed measures:

lul, =sup{{u @) .0 € CLRY). |loll; o < 1}, > 1.

Obviously, |u|; < |ulp if I < I'. In other words, the higher the value of /, the
coarser the norm. We have the following:

Corollary 48. (i) For | > M, we have |, —ul|, < Y"1 (n). In

[4
—1

particular, if y > 1, then |,u, — ,ufv‘] <

(i) If (100) is satisfied then ‘u, — N |[ < YU (n). In particular, if y > m — 1,

then i/“Ll‘ _I"Ll{v|[ ==

m—1
n 2 _
(iii) If (101) is satisfied then |,u, — N |l < Y3 (n). In particular, ify > m — 1,

then |pe — Y|, < <=
n 2

Remark 49. We deduce that there is a payoff between the rate of convergence and
the coarseness of the norm employed: the finer the norm the slower the rate of
convergence. Hence intermediate results such as part (iii) of Corollaries 47 and 48
may prove useful in subsequent applications. The additional constraint (101) holds,
for example, for the Lyons—Victoir method, as a cubature formula of degree m is
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also a cubature formula of degree m’ for m’ < m. Similarly, it holds for Kusuoka’s
approximation since an m-similar family is also m’-similar for any m’ < m.

3.5 Cubature and TBBA

In this section we discuss an algorithm that is used to control the computational
effort required for the implementation of the Lyons—Victoir cubature method. This
method suffers from the usual drawback of any tree based method, namely an
exponentially increasing support. This is not an issue in low dimensional problems
or when only a sparse partition is used. However, the exponential growth is a
major hurdle in more complex and/or high-dimensional problems. To the best of
our knowledge, currently, there exist two methods that may be applied to control
this growth: The recombination method of Litterer and Lyons [35] and the tree
based branching algorithm (TBBA) of Crisan and Lyons [14]. The application of
the former to the cubature method has been extensively discussed in [35], where as
here, we focus on the TBBA. !0

The idea behind the TBBA is to construct a finite random measure with a
support of size less than a pre-determined value that is an unbiased, minimal
variance estimator of the original measure. The method insures that every point
in the support of the original measure remains in the support of the resulting
measure with a probability (approximately) proportional to its original weight. To
fix ideas, let us consider the cubature measure Q' of degree m > 3 supported
on the paths oy, ..., w.m with corresponding weights Ay ,)chz, cl € Ni. As
usual we may consider by scaling, cubature measures Q)" on any interval [0, ¢]. Let
Bix(w), o€ Copy ( [0, 1]; R? ) denote the solution at time ¢ of the ODE

d .
dyt,x = Zj=0 I/J(Yt,x)dw](t) . (103)
Yox = X
Consider also a partition 7 := {0 = #p < t; < ... < t, = t} of [0,7]. By

iterating the cubature measure along this partition and solving the successive ODEs
(see Remark 42), we generate a collection of discrete measures {Q’t’; Yk <n, Where the
I . k
cardinality of the support of the measure Q" is (' )". i
We wish to replace the measure Q7 by a random measure Q' whose support
is included in the support of the measure Q7' and whose cardinality is at most N

. k ~ . .. .
(with N < (cd’”) ). Moreover we want QZ: to be an unbiased minimal variance
estimator of Q7! in a sense that we will make explicit below. To handle the additional

10The TBBA has also been _used to control on the computational effort for a class of numerical
algorithm using the family X (x), x € R? as defined in (96), see [47] for details.
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randomness we introduce an additional probability space ( Q. F

the random probability measure @’t’; We will require that E [@Z:

denotes integration with respect to IP. Let
d
:’Z = Z/\jé’yj, Vi =wsi) ... ws ;,, forsomeiy,....ir =1,...,c),
=1

where w; ® w; denotes the concatenation of two paths. We will construct a random
probability measure Q! such that

LNQg ()] . o
- — with probability 1 — {NQ7*(y)} -
Q) =3 weloun . ok »y € supp(Q7),
—*——  with probability {NQy' (y)}

(104)

where for any real number y, |y| denotes the lower integer part and {y} the
fractional part, {y} = y — | y]. As a result each point in the support of Q}'(y) has
either mass O (i.e. it does not appear in the support of @’I’Z or its mass is an integer
multiple of 1/N. Since @jﬁ is a probability measure, its support cannot therefore

have cardinality larger than N and is included in the support of Qf'. If @’I’Z (y) has
distribution described by (104) for any y € supp(Qy), it is clearly an unbiased

estimator of QZ: , that is E [QZ: ] = Z: Moreover it has minimal variance amongst

all unbiased estimators of Q! for which the mass associated to any element in the

support of the original measure takes values in the set {0, %, %, ..., 1}.See [14] pg.

344-345 for further optimality properties of @jﬁ

The algorithm that produces the random probability measure @’k” from Q)" such
that (104) is satisfied for every element in the support of the cubature measure
is the subject of Theorem 2.6 of [14]. The idea is to embed the support of the
cubature measure into a binary tree and distribute the weights recursively, targeting
distribution (104) at every nod/leaf.

Each element in the support of Q;! is associated to the end nodes or leaves
of the binary tree. We associate a weight to each leaf equal to the mass of the
corresponding element in the support of Q7. We then recursively associate a weight
to each of the (intermediate) nodes, equal to the sum of the weights of its offspring
nodes. Eventually we associate weight 1 to the root node (the sum of the masses
of all the elements in the support of Q). We note that any tree (not necessarily a
binary one) can be embedded into a binary tree as follows: For each intermediate
node, we separate the set of its offsprings nodes in two sets. On the left, we take a
singleton consisting of the first of the offsprings nodes and on the right we add a
new intermediate node with offsprings corresponding to the rest of the offsprings of
the original node. We then apply the same procedure to the intermediate node and
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repeat the process until we are left with only two offspring nodes which we keep

as part of the new tree. The next example explain this procedure further through a
concrete example.

Example 50. Let us consider the cubature method of order 3 in dimension 2.
Starting from xg (the initial condition for the forward diffusion) we take on step
forward say at time 1. This produces a measure with four elements in its support
(see Example 41), as there are four paths that define the cubature formula,!! all
carrying equal weight. Schematically, Q' looks as in the figure below

(20, 1.)

(E1.a0 (w1), 0.25) (Bro(w2),0.25) (Z1,20 (w3), 0.25) (E1,20 (wa), 0.25)

We embed the above tree into the following (by no means unique) binary tree:

(:E[)v 1)
(El-,la (Wl)v 025) ({El,zn (Wz), El,zn (UJ3), El,rn (w‘4)}, [)75)
~—_————
leaf nod
(El-,-fo (u}g), 025) ({ ELID (L’A}g), El,l‘o (w4)}, 05)
~—_———
leaf nod

-

(ELIO(W(';),O.QE)) (ELIO(WA;),O.QE))
leaf leaf

Notice how every node carries the total weight of all of its offspring leaves.

We will next describe how one distributes the mass according to TBBA per
family, hence achieving the distribution (104) at every point in the support of the
measure. The reasoning relies of course on the structure of the binary tree.

Any path y € supp (Q’,:1 ) carries the weight A, = Q}'(y) which is the product
of the cubature weights that correspond to the ODEs we solve to arrive at x =

B x,(y) along the path y. Assume that we have assigned to x the random weight

Ay = Q’I’Z (y) distributed according to (104). The following algorithm shows how
one assigns the corresponding weights to any of the offsprings of x:

These are the straight lines connecting the origin with (—1, —1), (1,—1), (—1,1), (1,1).
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Algorithm 1 TBBA(x, A1, Ay)

Require: Aq,..., Acl}’ {The cubature weights and ¢/}’ is the cubature dimension. }
Define 1;., = thd;l Aj
Declare il, A )Atc.;n and )Atlx.;n, A i(.L,,l;C;n

A~

{)Atl, .+« A store the TBBA weights at every leaf}
whereas the il;(,m ..... )Atcm_l;(,m store the TBBA weights at every nod.}
d d d g Ty
Set i];(-g' = ix.
for i =1to N, —1do
u; (x) ~ U[0,1], {Draw uniform}

if (VA = (LA + (VA A 417} ) then

. Nicki
if (ui (x) < —{[fmxim;} ) then

R ~ [NA A m |
NAcAi i
A= A Ay —
else
o — INAA
i = TN
end if
else
if (uf (x) < —IL;,{V’X%;%':}) then
X Ifcll
~ ~ [NAcA;.m J+1
NAh+1
Ai = % +Ai:cd’" _ Td
else
1 = LA+
i= N
end if
end if

if (A; > 0) then
Solve the ODE (103) in the direction of path w;
Store offspring (x;, Axi,i,-), Ay = AxA;
end if R .
Set digrien = Ajzem — A
end for

Remark 51. All uniform random variables used in Algorithm 1 are drawn indepen-
dent of each other.

We apply Algorithm 1 recursively until all nodes in the support of the cubature
measure are assigned their corresponding random weights A,. We continue in this
way until we reach the leaves of the tree. Recall that there can be at most N elements
in the support of the original measure that get assigned a positive weight by the
TBBA, hence indeed the new measure @? will have a support of cardinality at
most N.

We denote the set of all nodes corresponding to the (original) cubature tree at
time #; by
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We denote by Cx the set of remaining nodes after the TBBA is applied
ék = {x € (y, ;\X > 0},

where )Akx is the random weight computed by Algorithm 1. In other words, Cr is
the set of all nodes to which the TBBA assigns a positive weight. Finally, we shall
also use the notation

(f,f = ék ﬂ{ children of x}, x Eék_l, k=1,...,n.

We collect in the following Lemma some properties of the random weights
constructed via the Algorithm 1. In particular, the algorithm produces an unbiased
estimator of the pure cubature measure and the random weights are sampled with
minimal variance.

Lemma 52. For any point x € | J/_, é,-, algorithm 1 produces a random weight

~

Ay, that is distributed according to (104), i.e.,

VA ; 7
i = { S with probability 1 — {N A} (105)

% with probability {N A}

where A is the original cubature weight. Moreover

E[ix] = Ax, E[(ix—xx)z} _ {ka}(iv—z{NAx}).

Finally, the random weights that correspond to different leaves are negatively
correlated, i.e.

E[(ix—kx)(;\y—/\y)]fO, X #y, x,yeéi,i: 1,...,n.

A proof of the previous Lemma can be found in the appendix of [15].

Theorem 53. Let w := {0 =ty < t1 < ... <ty = T} be a partition of the
time interval [0, T] on which we use a cubature formula of degree m to construct
cubature measures along the partition 7, {thl Vo1, hi =t —ti_1. Let N € Ny be

a given parameter which we use to define the cubature+TBBA measures {@;"h T
supported on an additional probability space (Q, F, If") Then for any function

¢ € Cbl (Rd) we have

- ~ 2712 1 n
[ |rro-ref | <c(im+ 7).
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Proof. The first term in the control of the error is explained via Corollary 47 as the

error between the diffusion semigroup operator and the cubature measure.
1/2

. .27V . 12 - .2
E[\Pm—@%\ } <2E[| Prg - Q7o ] +m“@'¥¢—@?¢\ }
and hence we can focus on the second term. We proceed with the usual telescopic
sum expansion
~ n_l ~ ~ ~ ~
re-Qro=> Q.. Qrar, ...Qre-Q...Qr, Q... Qe
i=1

From the Markov property of the cubature method and TBBA algorithm we
understand that taking expectations under the family {Qfl } composes in the obvious

manner, i.e.

,.’;:1 @Z:‘P — Z ixl Z ;xz Z ikxi ¢(Xi) = Z ixiqb(-xi)

xleél XzEC;l *1 Ni—1 X1 xiEéi

x; €C;
In this way, we see that every term in the telescopic sum, may be written as
., Qe - QL O, Q8
=ap ... (@, - O, ) O, 6
( s A )Q?_,i+l¢(xi+1)

=Y i >

~ Axi
x; €C; x,'+1€CiiH

b

Next, by using the identity

a d-—a a N
——=—+4+ —=(b-D)),
b b bb( )

S|

we can re-write the above generic term of the telescopic sum as

Y G = A QP Bt

xi41€Cip
. .
+ 2 G =) D QL i)

Xi+1 Eéﬁﬁ-l

x; €C;

We can then take squares in the above, and using the fact that the random TBBA
weights are negatively correlated as well as the expression on the variance of the
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error (see Lemma 52) and the fact that ¢ (X7) has a finite second moment under the
pure cubature measure (this is quite trivial to show), we have that

B B B B B ) 1/2
E“@%...Q%Qﬁm...@Z’M—@Z’l...Qfm@ﬁiﬂ...@ﬁnd)}} <C/JN

and the result follows. O

3.6 Numerical Simulations Under the Heston Model

In this section we present the application of the cubature and TBBA method for the
approximation of a call option on a Heston model price process. This is a favorable
set up since the Heston model is well known for capturing the volatility dynamics
in various asset classes and hence has received a lot of attention by practioners and
academics. On the other hand, pricing call options under the Heston model admits
semi closed solutions (see [23]) against which we can compare the efficiency of
our method. Let us recall briefly the Heston model. In the following, we consider
X ={(X! (x), X} (x)),1 >0, x € R?} satisfying

X (x) =x'+ / rX! (x)ds + / X! (x) /X2 (x)dB! (106)
0 0

X2 (x) = x2 +/0 o (6 — X2 (x)) ds +/0 B/ X2 (x) (deg +/1 —pZdBf) :
(107)

where x',x2 > 0 are positive values, (Bl, BZ) is a standard two dimensional
Brownian motion and «, 6, i are positive constants satisfying

200 — B2 >0
to ensure the existence and uniqueness of a solution of the SDE (107) which never
hits 0. This is a two factor stochastic volatility model with p being the correlation

between the two random noises, |p| < 1. The payoff of a vanilla call option with
maturity 7 > 0 and strike price K > 0 is given

C(T,K)ZE[(X}—K)+].

In the numerical example below we consider the following values for the various
parameters

Xo r o 0 B o T
100. 0.05 1 0.4 0.2 0 1.
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We price a call option with strikes varying between K = 80, 90, 100 and 110.
We keep the (maximal) number of particles that the TBBA allows to survive fixed
at N = 200000. For every strike price and any number of steps, we launch the
algorithm 10 times and average out the results. In other words if ¢(K, Xy, N, n)
denotes the value computed by our algorithm when N particles and n steps for the
discretization of time are used for a call option with strike K and spot at X, at time
0, we report on

10
Y 1@ (K, Xo, N.n) = c(K, Xo)) /e(K, Xo),

i=1

where ¢; (K, Xo, N, n) is the result of the i-th run of our algorithm and ¢(K, Xj) is
the value of the call option in the Heston model. We plot the results for the various
strikes and varying number of steps in the figure below:

.1073
T ;
4F » —— K=80
\ = K=90
3 —o— K =100 Ll
* ——K=110

Relative error
[\

steps

In all different strikes, we see that the algorithm behaves satisfactorily. It achieves
an accuracy between 10~ and 10~ in the relevant error when 15 or more steps are
used to discretize time. Recall that an at-the-money call is in general more difficult
to approximate than in or out of the money calls, as its derivatives oscillate more as
we approach maturity. However our algorithm does not seem affected by this.

4 Backward SDEs

In this section we present a brief overview to the theory of backward stochastic
differential equations (BSDEs). These objects have received considerable attention
over the last 20 years as they are intrinsically connected with three areas of
stochastic analysis where research is very active: Non linear pricing, stochastic
control and probabilistic representations of (viscosity) solutions of nonlinear PDEs
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and associated numerical methods. We will not go deep into the subject of BSDE:s.
Rather, we present some key points, mostly for ready reference, as in the following
section we discuss an algorithm designed for the numerical solution of a BSDE
(equivalently of a non linear PDE) based on the cubature and TBBA method.

4.1 The General Framework for Backward SDEs

Let (2, F,P) be complete probability space endowed with a filtration that satisfies
the usual conditions {F;},;>¢. Let W be a d-dimensional, {F; }-adapted Brownian
motion and let (X,Y,Z) = {(X;.Y:.Z;),t € [0,T]} be the solution of the
(decoupled) system, called a Forward—-Backward SDE:

' d ¢
X = Xo+ / Vo(Xs)ds + Z/ Vi(Xy) o de;, forward component (108)
0 0

i=1

T d T
Y, = &(X7) +/ f(s, X, Y, Zs)ds — Z ZidWi, backward component.
t i1 Yt

(109)

In (108)4-(109), the process X is d-dimensional, Y is one dimensional and Z is
d-dimensional. The coefficients V; : RY — R are smooth vector fields with V; €
Cr° (Rd), i =0,1,...,d. The stochastic integrals in (108) are Stratonovitch type
integral. The quantity ®(Xr) is called the final condition, whilst f : [0, T] x R? x
R x R? — R is a Lipschitz function called “the driver”.

Initially, existence and uniqueness for solution of equations of the form
(108)4-(109) was shown under a general Lipschitz assumption on the coefficients.
This has since been relaxed considerably but here, we will only consider systems
whose coefficients satisfy at least the following Lipschitz assumptions:

(A) The coefficients of the forward SDE V; : R — R i = 0,1,...,d and the
driver f are globally Lipschitz with respect to the spatial variables. Further on,
the driver is 1/2-Holder continuous with respect to ¢.

(B) The coefficients of the forward SDE V; : RY — R¢,i = 0,1,...,d have all
entries belonging to C;)”(Rd), the space of bounded m times differentiable
functions with all partial derivatives bounded. The value of the parameter m
shall be determined further on.

(C) The final condition @ is Lipschitz continuous.

We denote by K the bound associated with all assumptions (A), (B), (C).

Theorem 54 (Pardoux and Peng (1990)). Under assumptions (A),(C) there exists
a unique F;-adapted solution (X, Y, Z) of the system (108) 4+ (109).
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Let us consider the simplest form of BSDE

T d T
Y, = &(X7) + / fs. Xds =Y / Zidw,. (110)
t =Yt
By the Martingale Representation Theorem, for

T
£ = <I>(XT)+/O £(s, Xy)ds

there exists a unique J;-adapted process Z such that the martingale M = {M,,t €
[0, T']} defined as M, = E [§|F;], t € [0, T] has the following representation

d t
mo=s+ ) [ ziaw,
i=170
Define Y = (Y;,t € [0, T]) to be the F;-adapted process

Y, =M, —/ f(s, Xy)ds. (111)
0

It is the straightforward to show that the pair (Y, Z) are the unique solution of (110).
Indeed from (111) we deduce that

T
Yr = My —/ f(S, Xs)ds
0

3

T T
=E <I>(XT)+/0 f(s, Xs)ds | Fr —/O f(s, Xy)ds = ©(X7),

hence

Y; Yr

/—YL 4 T
Y~ (X7) = (M, — /0 (5. X,)ds) —(My — /0 (5. X,)ds)

d .1 T
=-> / Zidw, + / £(s, Xy)ds.
i=1"! !

Thus (Y, Z) satisfies (110). The martingale representation theorem, as applied
above, lies at the heart of the Picard iteration style argument for the proof of
Theorem 54.
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A celebrated result in the theory of BSDEs, is a theorem due to Pardoux and
Peng that links their solution to the (viscosity) solution of semilinear PDEs. This
is achieved by a Feynman—Kac type representation and it has since been extended
to obstacle problems [16], quasi-linear PDEs [38] and indeed recently to fully non-
linear PDEs [9,53]. Here we restrict ourselves to the simplest possible case, namely
the one corresponding to semilinear PDEs (equivalently decoupled FBSDEs). Let
us consider the following semilinear PDE,

@ +Lu=—f(txu (VuV)(x)), tel0,T) xecR?

(112)
u(T,x) = ®(x), xeR?
In (112), L is the second order differential operator
Lv:Vo—i—lZd:Vz (113)
2 i=1 s
V is the matrix valued function with columns V; (x),i = 1,...,d, V* (x) is the

transpose of V' (x) and u has final condition u(T, x) = ®(x).

Theorem 55 (Pardoux and Peng 1992). Under additional smoothness assump-
tions on its coefficients, the unique solution of the Cauchy problem (112) admits the
following Feynman—Kac representation

T
ut,x) =Y =E [q>(XfT~") +/ fs. XP¥ Y, Zé”‘)} , (114)
t

where (X', Y, Z"") is the stochastic flow associated FBSDE (108) + (109), i.e.,

d

N

X =x+ / Vo(X ¥ )du + )
t

i=1

N
/I/i(X;”‘)odWL, selt,T]. (115)

t

T d T
Y = d(X5Y) + / f(u, X;’“‘,YM”X,ZZ’"")du—Z / (ZL5)Yaw'.  (116)

N i=1 S

Moreover ZI* = Vu(s, X!)V(XIY) fors € [t, T

The representation for Y is true even if u exists only in the viscosity sense. Given
such a viscosity solution, Ma and Zhang [37] show that the representation for Z
holds as well, provided that the driver and the terminal condition are continuously
differentiable. Numerical algorithms that are designed for the approximation of
solutions of BSDEs are, in effect, probabilistic methods for solving semilinear
PDEs.
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4.2 Discretization of Backward SDEs

The Feynman—Kac representation (114) is instructive as it implies that the solution
to a BSDE can be expressed as an integral against the law of the forward diffusion.
Indeed taking expectations in a BSDE and substituting for Z, we have,

T
Y/ = E[CD(X}’X) + / Fs, X5 uls, X1, Vs, X;"‘)V(Xj”‘))ds}
t

As Y/ is adapted to {F*} _ _;, the filtration associated to X", it is almost surely
deterministic and there exists a functional A, : C [¢t, T] — R such that

Ytt,x — E[At (X't,x)]’

where C [t, T] is the space of continuous functions « : [¢, T] — R? and X is the
path valued random map

weQ— (X (w),set,T]}.

Obviously the functional A, is only implicitly defined by the dynamics of the
backward equation. Hence, a numerical method for the approximation of ¥,
should rely on two components : A method that substitutes A; with an explicitly
computable functional and an approximation of the law of the forward diffusion to
integrate against.

We approximate A; in the following manner: Consider a partition 7 = {0 =
to<...<ty_1 <t,=T}of[0,T] withh; :=t;—t;_,i = 1,...,n. Assume that
we know the values of Y, Z attime t; 41, Yi+1, Z;+1. Consider the BSDE between
times ¢;, tiy1

lit1 li+1
Yti = Yt,~+1 + f(Xs’ Y, Zs)ds _/ Zy - dBy
ti

t

and discretize the Riemann integral using the left hand side point (the so called
implicit Euler scheme of Bouchard—Touzi [3]), thus leading to an implicit equation
for Y;, and the stochastic part in the usual way, to obtain

}]ti jad }]ti+1 + hi+1f(Xl‘iv Yt,’v Zl‘i) - Zl‘i * AI/I/I'-I—I- (117)

By conditioning (117) with respect to J;, we obtain a first order approximation
for Y,

Yt,' :E[}]ti+1‘ﬁi]+hi+1f(xtia }]l‘i?Zl‘i)’ (118)
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but for the presence of Z;,. To treat the Z,,, we can multiply both sides of (117) by
AW/, |, I =1,...,d and condition with respect to F;,, to obtain

AW}
Ztl,- >~ I[-E[Yti+l - it+1
i+1

f,,.:|, I=1,....d. (119)

Inspired by (118), (119) we define the family R; : Cp;p (]Rd) — Crp (Rd) i =0,
1,...,n — 1 of operators defined on the set of Lipschitz continuous functions
CLip (Rd )Z

Rig(x) =E [g (Xf,."fl)]

1 .
+M+Lf(mx,&gcm,E;:E[g(Xgl)oﬂﬁl—w@ﬂ). (120)

The iteration of this family of operators R;.,—; := R;...R,—| gives rise to an
explicitly defined functional AZ ,i=0,....,n—1,

E[AT (X5)] = Rizyo1 ®(x).

The operator R;.,—; applied to the boundary data ®(-) and evaluated at x = X, ™,
can be viewed as a discretized version (corresponding to the partition ) of ¥,/ ™
In fact the above discretization is merely the Euler scheme for BSDEs (it should
be clear that the Riemann integral is discretized in an Euler fashion). Relative to
this, we have the following convergence result due to Bouchard and Touzi [3]
and independently to Zhang [60]. This results were further refined by Gobet and
Labart [20], where an error expansion, under additional smoothness assumptions,
was obtained.

Theorem 56 (Bouchard and Touzi, Zhang). Ser Y, = Ro.,—1 ®(x). Under assu-
mptions (A), (C)

[Yg™ =Ygl = CVlixl,

where ||t || is the size of the partition mesh.

Remark 57. Originally, the proof of the convergence of the Euler scheme for
BSDEs required an ellipticity assumption on the diffusion matrix of the forward
component. However, the proof can be redone without this at least in the Markovian
case. All one needs to show is that the value functions describing Y;, Z; as functions
of time and X; are smooth enough for the relevant stochastic Taylor expansions to
be applied.

Theorem 58 (Gobet and Labart). Let assumption (B) hold true with m > 3 and
assume also that the partial derivatives of the driver with respect to space are
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Holder continuous. Assume also that the terminal condition is twice continuously
differentiable with bounded partial derivatives. Then

Yo =Ygl < Cl=ll.

To obtain a fully implementable scheme, a method of computation for the
expectations appearing in (120) involved needs to be introduced. We will present
next an algorithm that uses the cubature method to approximate the law of the
forward diffusion and the TBBA algorithm to control the computational effort. Both
of these when combined with the Euler style discretization (118), (119) provide a
fully implementable scheme for BSDEs.

4.3 Cubature on BSDEs

We will use a cubature formula of degree m, supported on paths wi, ..., @
[0,1] — R<. We also fix throughout a parameter N to be used in the application
of the TBBA. Using this cubature formula and TBBA we build (see Sect. 3.5) the
sequence of explicit measures {@Z’}?: |- Substituting integration against the Wiener
measure, with integration against the explicit measures {@Z’ y7_, in (120), we can
define the following family of operators:

Rig (x) = Egplg(X;/}")]

1
+hisi f (z,,x Rig (x). —Egy | (X)W, — W,,-)])

(121)

where g : R? — R. Computations of the involved expectations in (121) are done in
the obvious way, namely we work our way backwards along the cubature+TBBA
tree.

Recall from the Sect. 3.5 the sets (f,, i =1,...,nandforevery x € C; the subset
of its children C*. Given that we are standing at depth i (equivalently, at time 7;), we
need to evaluate the operator R,, when applied to R,+1 21— P, at all points x € C
We have

s .
Egnlg (X)) = Egp [¢(Xiy)IX, = x] = ) 8, xed
xeCiy, !
YRR .
Egp [ §(Xi)AW, LlX =x]= ) Te®bw) 5 xeCl=1,...d
zecy,,

(122)
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where a),ll - is the [-th coordinate of the path wp, 1. 7 in the cubature formula, that

was used in the ODE that lead to the point X € Cx i+10 scaled over the time interval

[, ti+1). It should then be clear how one computes R, n—1P(x) for x € C

Estimating the global error Roln_ldD(xo) YOX" requires standard numerical
analysis arguments as well as some knowledge of the behavior of the solution to
PDE (112). As estimating the errors of cubature formulas is done with the help of
Taylor expansions, the derivatives of the involved functions need to be estimated.
In other words, we need gradient bounds, in the spirit of Sect.2 but here for the
semilinear PDEs. For elliptic PDEs, such bounds are of course well known for a
long time. But when one wishes to step into the realm of degenerate PDEs/SDESs the
subject becomes quite technical and difficult. Recently, these issues were addressed
in Crisan and Delarue [12] and we are able to report here on this gradient bounds
for semi linear PDEs without discussing its proof.

Theorem 59 (Crisan and Delarue [12]). Let assumption (B) hold true and con-
sider an m > 3. Assume further that the vector fields {V; : i = 0,...,d} satisfy
the UFG condition. Assume also ® € C}" (Rd ) Define u(t, x) = Y;"*. Then u is
differentiable in all the direction that appear in (112). Moreover; for any multi-index
o € AL, there exist increasing function cy, ¢ : [0, 00) — [0, 00) such that for any
o e C;J” (Rd ), we have

WVttt Voo <o | D IVa®@ll | (123)
a€A,
.

| Vau(t, )l o < Ca (I Pllsip) tel0,7), (124)

(T —t )(Ilall—l)/2’

In analyzing the error we split it into two parts: The error between the solution
of the BSDE and the Euler scheme and the error between the Euler scheme and its
cubature and TBBA realization. The first part of the error is treated by Theorem 56.
The second part of the error is split to the error due to cubature method and the error
due to TBBA. Let us define the family of intermediate operators

Rig (x) = Eqplg(X;;))]

1
i f (100 Rig () By [0 0, = W) ] )
(125)

which is merely the equivalent definition to the family {Ié;}lsisn but using
the pure cubature measures. It is obvious that in quantifying the error between
Riy—1®, Riyy—1®,7 =0,...,n — 1 we need to quantify the errors

Egplg (XD = Elg(X; 7)) Eqr [g(Xi 1) AW 1] = Elg (X[ [)AW; 4], i = 0,....n — 1.
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We have already seen in Sect. 3 that

m—+2
is is /2
sup [E[¢(X/ )| ~Egp, [exiin][=C 3w s Vigleo:
x fR— TEA()\AG =)

(126)

For the second term, we also have

E I:g(Xl‘tiifl)Au/il-H:I —Eep I:g(X;iifl)AH/il-i-l]‘

m+2 (127)

i +1)/2
<C Y RIEVE T sup Viglloo
i T€A(\AG-1)

sup
X

Proof of (127) Let us fix a value [ € {1,...,d}. Since the function g is smooth
it admits the Stratonovich—Taylor expansion. An easy application of It6’s formula,
shows that the product of an iterated Stratonovich integral and a Brownian motion
can be expressed as a sum of higher order iterated integrals (see for example
Proposition 5.2.10 of [27]).

k
([ otw)w=3 [ it
AK[0,1] =0 AKF10,¢]

where for any multi index o = (i1, ..., ix) we denote

/ odW* := / oth’;‘ ...0 dWﬁ:.
Ak[0,¢] 0<ty <..<tp <t

Hence, we have that

k

O = 3 Vg X [ odweiitisseio
) =0 Ak+1[0,t]

+ Rm(ts-xs g)Vth-

Using this formula the error is

’IE [g(X: (0. ) W] — Eqp [g(Xt(O’ x))Wfl]‘

< [E[Ru(t.x. W] + [Eqp [Ru(t. x. 0)W/]]

k
Ve[ T S Vst [ eawitn]|

k
(1onit) €A =0 AkF10.4]
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According to estimates of Lemma 8 in [36] and (88), we have that

sup, E[Rn(t, x, 2)2]" Al
PERMCX T 0 S e G gl
sup, By [| Ruve”] jmmt [EAUNAGD

An application of Holder’s inequality gives us

m+2
sup\E [Rm,t,gl/vt]i 5 Z t(j_H)/z sup ”VOtg”OO
X j=m4+1 acA(H\A(G—1)

To estimate the term Eq [ Ry, W; | observe that

Rm,t,g = Z Vil ...Vikg(th(O,x))odWill 0--.OdWi1;_
(i2emip) €Ay ¥ AF104]
(i1 ik)¢Am

So that, with [ € {1,...,d} fixed,
[Eqy [Runse W/ ]|
N
=DIE DD
j=1

(1240 sik )EA
(@i1,eees lk)¢Am

/ Vii.. Vi g (Xt1 (0, x)(wflsj))
AK[0,1]

dopl, 1) .. do, ol o).

Performing a change of variables to the paths w; ; to pass back to the paths that
define the cubature formula on [0, 1] we obtain the estimate

m+2
sup [Egp [RuagWe]| <C D2 tU*2 sup  |[Vaglleo.  (129)
x [ R—rt a€A(H\A(G—1)

where the constant C depends on the bounds on the total variation of the paths

wi, ...,wy. We now focus on the last term of (128).
]E EQm Z Vag(X) OdWa I/Vfl]l
a€A(m) AF0.1]
=| 2 Veg() (E—Eg) Z / odW/it-=-t---it)
a€A(m) AKF1{0,1]

i1,.... 1.1
= Z Vag(x) (E —Egr) Z/Ak+l[0t]OdW(‘ i)

a€A(m)\A(m—1)
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since the terms corresponding to ¢« € A(m — 1) are 0 by definition of the
measure Q.

Hence, to obtain the estimate, observe that, for any « € A(m)\A(m — 1) the
terms under the cubature measure satisfy

Em [/ odW Ll ik)i|
‘ i AktL[0.1]

since they are iterated integrals along paths of bounded variation and hence, with

similar arguments to the ones we used to derive (129), we may show that they are

of order 1™+ 1/2_ As for the ones under the Wiener measure, they are either 0 or of

order ¢+ 1/2 according to (84). The bounds on the derivatives of the vector fields

complete the proof. O
We can now report on the main cubature for BSDEs error estimate

< Cymtn/2

Theorem 60. Consider a fixed m > 3 and assume that the system (115)+ (116)
satisfies assumption (B) and (C). Given a partition w we consider the family of
operators {R; Yo<i<n—1 along it and consider a p > 1. Then, there exists a constant
C independent of the partition, such that

n—2 4
Yo Bl = €3 | " sup 1Viuth)lee
Il=j

i=0 \j=3
m+2 )
+ >0 WG sup [Viud e
jemrt =i
_ p /P
+Eqp_, [\Ytn,l — R ® (X, )| ] (130)

where Yoﬂ = Ro;n_lcb (XO) s X() = X0-
The proof of the theorem requires the following lemma:

Lemma 61. Consider two measurable functions g, g : R? — R. The operators
{Ri}!_, 1 =0,...,n enjoy the following property

1+ Chiy

Rigi— R; < FTlivl
|Ri g1 &l (x) = 1 — Khity

Eonllg1 — gl (g(X; )" (131)
for any p > 1, where C is a constant which depends on the bounded variation

constants of the paths w;, j = 1,..., N that define cubature on the Wiener space
and K is the Lipschitz constant of the driver f.

Proof. The Lipschitz property of f tells us that there exists bounded deterministic
functions v(x), ¢(x) such that
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(1= hi 410 (X)) (Ri g1 (x) — R; g2(x))
= Eor [(&1 = £ (X[ | + £ - Eon [ (61 = £ (XD AW |

Hence, for h; 4, small enough,
(1= Khi41)|Rig1(x) — R g2(x)]

< Eor |91 — &2l (X[ AW - £(0) + 1]

1/p 1/2k
< Egr [(g1 =&l ()] Eon [(AWiga - 200 + DF]7,

where k > ¢/2 and ¢q is the conjugate of p. Observe that Egn[AW; ]
E[AW; 1] = 0, since AW;4; can be written as a stochastic integral of length 1.
For any higher powers of the Brownian increment, it holds that

Eon [(AW4) | s ChG vi=1,..d.

To see this, observe that for any r < m we may express the increment (AW/ )" as
a linear combination of iterated integrals of length less than m. The estimate then
follows from the definition of the measure Q”. Hence,

1/2k
]

Egn [(AWig1-2(x) + D™ < (1 + Chiyy)

and this completes the proof. O

Proof of Theorem 60. To begin with, set

thf:l”/z sup |Viulti, Moow i=0,....n—1.
1=

We expand the error as a telescopic sum

lit1*

Yo — Roy—1®(x) = Z Ro:im1 Y — R Y, (132)

The size of each of the terms Ro:i—lYt?’ RO,Y 0.x

4., 1s then controlled using
Lemma 61. We have, with for p > 1,

n—1

Yo — Y| <cZEQm[

i=0

Y, i~ Rthfiﬁti ’

]W. (133)
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Observe that forany i € {0,...,n — 1} and x € R?, by taking expectations on the
backward part of (109), we have

lit1
lit1

Y, =E [Y” FACID (R S Z;""")ds} :

i

The above together with the definition of R; tells us
t ti t it 1, t t
X i i i X X X
Y, —R; Y T (IE - EQ;?+1)[I/,,+I] /t Ef(s, X/, Y, Z]")ds

1
_hin(ti’x’RYl‘tlJrlh Eay, [ 'f+1AW+1])

We now fix a value fori = 0, ...,n —2. To compare the drivers we need to add and
subtract the right terms:

ti . x t, ti,
Yfi R Yf+1 (E_EQZ+1)[YYI+1]
lit1 ) )
+ / E[f(s, X[ Y[, Z05) — f(6,x, Y, Z;™)] ds
ti
+hi+l (f(ti , X, Yt?’xs Ztt,lY)
1
—f (. x, R; thlJrl hi+ EQerrl [ t:+1AW+1:|)
SR KA LR L (134)
with the obvious definition for the / ]:" *’s. To estimate each of these terms the non
linear Feynman—Kac formula for BSDE’s plays a central role.
Since (112) has a classical solution on [0, T') x R¢, it holds that
Y5 = u(s, XY, Z = Vu(s, X!HV(XD).

We can apply Itd’s formula to the function Fit, x)— f(t, x,u(t, x), Vu(t, x)V(x))
to control /5,

ti41 s _ _
) = 'E [ [ [ adexm + vif e xiars
ti ti

d d
s 1 _ B '
+/t,- (5 Z V2 f(r X[ )dr + Z Vif(r, X,”"x)dW’r) ds:|

i=1 i=1

(135)
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Hence

sup | 13| < iy (nvof + 0 loo + max V2] Hoo)
reRd P=led (136)

<Chiyy sup |Viuo .
I71=3

where, the latter estimate follows by the chain rule. To estimate 13" ~ we use the
mean value theorem, so that we can find two points 6; € R, 6, € R¢ such that

1 = i (f (%, 00,00 = RV

fit1

. 1 .
+fo(ti, x, 01, 0,) - (Zfﬁ’x - EEQ;’;JH I:thlJ:iAVVi+l]))

fit1

157 < Khigy ()Y - RY,
hi

L |
+ ‘Zfi'x ——Eq, [ AW]

)

(137)
since the partial derivatives of f are bounded by K. As a next step observe that

y 1
hit1 Ztt,l i (138)
i+

Eqy,, [Yt?jAm+l]

=

hi1Zi —E [Y””‘AMHH n ‘E [Y”'"‘AI/I/,-+1] ~Eqr,, [Y,jf:jAWm]‘

li1 li+1 i

As before, th’+‘l =u(ti+1, X tt,-ifl) and we may apply the stochastic Taylor expansion
to the latter, to treat the first term above. In particular, we do so using the hierarchical
set A,. Let us fix an integer value [ = 1,...,d and denote by Z ,tl’” the /-th entry

of the vector Z ,tl’ . We then have,

hi+1Z§;'”"[ —E [“(fi+1’ X )AW:’[+1]‘

X
+1

x d lit1 )
]’l,‘+1Ztt;’x’ —E u(t;, x) + Z Viu(t;, x) / OdW‘lY (139)
i=0 li

d ti+1 pt . .
+ Z ViV]‘M(li,x)[ [ OdW’SOdW{ 4+ Ry(hit1,x,u) AI/ViI_H

ij=1

Observe that

d fit1 . ;
E Zviu(zf,m[ odWi AW}, | = i1 Viute, x).

i=1
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Moreover, according to Proposition 5.2.10 of Kloeden and Platen [27] we have that
forany k,r =1,...,d,

li+1 pt
/ / odWX o dWI AW/, | = Joern W gy + Jer gy Wi i + T sy
t t;

and the three terms on the right hand side will have expectation 0 according to (84).
Due to the non linear Feynman- Kac formula we have fori = 0,...,n — 2 that
Z,fi" o= Vu(t;, x)* - Vi(x) = Viu(t;, x). Hence, (139) together with (138) and the
estimate on the remainder process, give us

o
hl+l Ztt,'lw - h__H ti41 (140)

Egp,, [Yi5 AWt ]

1 ti . x
< CE Ryt %, ) AW | + 5 (IE —E@;¢+l) I:u(ti+1,Xti+l)AVV,-+1]‘

Equations (140) and (139) are plugged in (138) and the resulting estimate (137).
The latter together with (136) and (134) gives us

i3 Xij
(1—=hi1K)Eqr [ f+1'

< [| (2B, ) [ ][]

1i, Xy
i

Y,

_ pl/p
- R:Y, ]

Xy, pl/p (141)
+]EQZ~ZI:‘(]E_]EQZ'Z+1)I:Yfi+llAI/I/i+l]‘ ] + €;
m+2 )
<a+C Y WP s Vigle i=0....n-2.
j=m+1 T€AjNAj—

where we have used the estimates (126) and (127). This completes the proof. O

We have already discussed how a non even partition can compensate for the
explosion in the gradient bounds, in the linear case. In view of Theorem 59, we
have a similar result in the semilinear case. In the more interesting case where
the terminal condition is only Lipschitz continuous, we have to appeal to the
derivative bounds (124). In this case the control on the derivatives of u explodes
as ¢ approaches T'. To compensate for this negative impact of the derivative bounds
on the error estimate we shall use a non equidistant partition that becomes denser as
we approach 7.

Corollary 62. Let (A) and (B) hold true, fix and m > 3 and assume further that
the vector fields {V; : i = 0,...,d} satisfy the UFG condition and that the final
condition ® is Lipschitz. We consider the family {R; }o<i<n—1 along the partition 7 :
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i\P
ti =T l—(l——) , i=0,...,n, B>2.
n

Then, there exists an increasing function c¢ : [0,00) — [0, 00) independent of the
partition such that

| Yo — Ron—1®(x0) | < c(deiﬂ

Proof. Let us assume first that ® € C;" (R?). In the following, the functions ¢; :
[0,00) — [0, 00) are all strictly increasing. Given the estimates of Theorems 130,
59, it is straightforward to see that the dominating term in our error bound is
h? SUp|4) =3 I Vett|loc- On the above partition we have, for a given multi index o
with ||| = 3,

|—i=l 2
B 1
2 ) T2 -1 - -
(1 = i1 Vattloo < c1(1@]1) T (/1 Bs ds) TP

C .
_ (1@l
= 2
On the other hand, for the term corresponding to #,—; we may argue, using the mean
value theorem, that,

_ 1/
Eop, [ [ = R0, 1% 7]
: 1 pVp
< CY Eg , [|(E—Egy) [@X,)aW/1X, ., ]|"]
1=0

from elementary properties of the Wiener and cubature measure, it is clear that

(E - EQ,”,Z ) [q)(an)AWr”anfl ] = (E - EQ,”; ) [(q)(th) —®(X,,_))) AWnl|th4 ]

and hence, standard estimates on the increments of the forward diffusion together
with the Lipschitz property of &, lead to

_ y ol
[’Y’"—l = Ry ®(Xi, )Xo, |p] 7 _ Ul ®Pliip)

Eqy = B2

n—1
which concludes the proof for the case of smooth terminal conditions. Assume
next that & is Lipschitz. Via a standard mollification result, one can construct a
sequence of smooth functions {®,, } >0 that converge uniformly to ¢ and such that
|®nllLipy < I|P|lLip for all m > 0. Using the continuity properties of both Y, and
Ry, as functions of the final condition, it follows that
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C(”q)”Lip)

Yo — Romp1®(x0) | = Jlim | Y — Rozp1 @™ (x0) | < "

where Y;" is the solution of the BSDE corresponding to the final condition ®,,.
Crucially in the above inequality the function c¢ is independent of m. The proof is
complete. O

It remains to estimate the error Rg.,—i D(x0) — Ron—1 ®(xp), i.e. the error due to
the application of the TBBA. In this case one needs only to combine the arguments
of the previous proof with the arguments that were presented in the proof of
Theorem 53. Such analysis can be found in [15]. We report here on the this estimate.

Theorem 63. Let assumptions (A) and (B) hold true and assume that ® is Lipschitz
continuous. Consider the family {Ié, Yo<i<n defined with N particles. With the usual
notation, on the iteration of operators, there exists a constant C independent of the
partition, such that

Cn

=T 142
= N (142)

_ B R 2 1/2
E [ ‘ Ry ©(x0) — Rown @ (x0) ’ }

4.4 Numerical Simulations

In this section, we apply our numerical scheme for BSDEs in one and multidimen-
sional problems where the involved coefficients can be smooth or non smooth. This
empirical study helps us to validate the method described above.

One Dimensional Numerical Examples

Firstly, we consider the following popular non-linear example from finance, the
problem of pricing with differential interest rates. In this set up, one is able to invest
money in the money account at an interest rate » and borrow at an interest rate R
with R > r. The underlying asset price evolves as a geometric Brownian motion
under the objective probability measure:

t t
X0 = / X 0ds + / o X dW;.
0 0

It is shown in El Karoui et al. [17] that a self-financing trading strategy of portfolio
Z and wealth process Y solves a BSDE with driver

Jt.x,y.2) == (ry +20 = (R—r)(y —z/0)-)
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where (x)_ denotes the negative part of x and 8 = (i —r)/o. The problem of pric-
ing a call option corresponds to a terminal condition of the form ®(x) = (x — K) 4.
We test our algorithm with parameters

u r R o XoK
0.03 0.06 0.08 0.2 10 10

As explained in Gobet et al. [21], in such an economy the issuer of the call option
keeps borrowing money to hedge the call option so that the price of the option is
the Black—Scholes with interest rate R. Hence we have the favorable set up of a
non linear driver, but yet we know Y. Moreover we see that, even though the driver
is not differentiable our algorithm still produces very good estimates. In the figure
below, we plot the ratio of the computed value over the Black Scholes price against
the number of steps.

1072
— :
—e—cub3
oL —=—cub5 ||
g 1t .
()
[
2
= 0f B
o)
o~
1k i
—9L i
1 1 1 1
5 10 15 20

steps

Since this is only a one dimensional set up, we manage to achieve an accuracy of
1073 with only a few time discretization steps and hence the application of TBBA
to control the computational effort is not necessary here.

Since pure cubature can be applied successfully in one dimensional examples,
we can next try to monitor the effect that TBBA has on the overall error. We do so
in a smooth example. We consider a FBSDE system with smooth coefficients and a
non linear driver for the backward part:

t t
X[O,xo =x0+/ MXsds+/ \/1+Xt2dWl‘a 0<t=<T
0 0
T

Y,O'x" = arctan(X%x") — / rYs +e" T (u—1 )XSO’""0 (Z?’x0 )2 ds

t

T
- / Z0%0qw, (143)

t
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It is easy to check , by means of It6’s lemma, that the solution to the above system
is given by

e (T—1)

Y,O’x0 = e_r(T_’)arctan(X,O’x"), Z,O’x0 = =
0.
(X0

We test our example with parameters

Tu r X
1.0.020.12 °

We denote by N the (maximal) number of paths that the support of the “pruned”
cubature measure is allowed to hold, at every point on the partition. Let ¥y =
e~'T arctan(X,) denote the solution of (143) at time 0. We denote by )7(])\’ = ﬁév (w)
the result we get at time O by solving the BSDE along the tree produced by one
launch of the algorithm. In other words

P = R ®(x0).

We also fix a further parameter M that counts the number of times the algorithm
is launched. Obviously all the launches of the algorithm are independent of each
other. Let %v " denote the result on the m-th run of the algorithm, m = 1,..., M.
Our approximation is then

| M

~N.M SN,

Yo ZMZYO "
m=1

AN, -
The figure below, monitors the error (we plot yo.—o_yo) on example (143), when
using cubature of order 3, 5 with and without sampling, against the number of steps.
In this case the parameters N, M are fixed as N = 100000, M = 10.

1072
T

2+ —— cub3 H

—u—cub3 + TBBA
—o— cub5
5 15EF —— cub5 + TBBA ||
5
o
2
=
T 1r B
o~
0.5 B
1 1 1 1 1 1 1
8§ 10 12 14 16 18 20
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In particular we see that no accuracy is lost when applying the TBBA. Next
we turn to a multidimensional example. The goal here is to show that the method
produces good estimates but also to compare its performance with existing methods
for solving BSDE. In a recent publication of Bouchard and Warin [4] the authors
study the application of three other numerical methods (quantization, Malliavin
integration by parts and regression on function basis) for BSDEs on the pricing
of American/Bermudan options. In particular, we consider the case where the
underlying is a Geometric Brownian motion and the payoff is a call or a put written
on geometric/arithmetic averages. Here we shall consider the equivalent European
pricing problem. In terms of computational complexity (on which the authors of
[4] report), there is no significant difference. Indeed, the pricing of the Bermudan
counterpart amounts to checking for optimal exercise on every point in the support
of the underlying measure which would be negligible given the overall complexity
of the algorithm.

We look at a five-dimensional example:

t
X! x3+/uixjds+o,-xgdw§, i=1,...,5
0

(144)

5 1 1
n:(]—[xf—K) —/ rYs+9ZSds—/ Z, - dW,
t t
+

i=1

where 6, = (u; —r)/o;, i = 1,...,5 is the market price of risk. The theoretical
value for Y can be produced with the usual Black Scholes methodology. Again we
fix the number of steps to 10 and we do a plot the usual relative error. Of course
we normalize against the Black Scholes price.

1072
T T T I T I T
2 —eo—cub3,M=10
—=— cub5, M =10
—— cub5
1.5F ——cub5 + TBBA H

Relative error

1 1 1 1 1 1
02 04 06 08 1 12 14 16

N -10°
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As far as the computational time is concerned, we report on the following values
(the computational time is measured here in seconds)'?:

N 40000 100000 160000
cub3(M=10) 3.8 8.6 13.2
cubS(M=10) 6.9 16.9 26.3
cub3(M=20) 7.4 17.4 26.5
cubS(M=20) 13.7 335 53

Comparing these performance results, in conjunction with the information on the
errors, with Fig. 7(e), Fig. 8 of [4] we see that the cubature4+TBBA algorithm can
achieve similar accuracy in lesser time. On the other hand, we see that there is
a small bias (relative error of order 0.5 %) that the algorithm does not treat with
the increase in N. This bias is due to the discretization error (recall that we are
normalizing against the theoretical Black Scholes value).

Appendix
In this section we provide various proofs of results left outstanding from the main

body.
Proposition 20. Forany T >0, p€[l,00), o, B € A(m) andy € A, the following

hold
o |77
sup E [t—llyll/z ‘ B H < o0, (48)
1€(0,7)
P
sup E[z—“"“—"“")/z|ra,ﬂ(t,x)|] < 0. (49)
xeRN
1€(0,T]

Proof. The proof is done as follows: we first show an intermediate result that
holds for a general semimartingale. We then prove (48) and (49) via an inductive
argument. Assume that W is a one dimensional F;-adapted Brownian motion and
t — u(t, x), respectively t — u(t, x) are F;-adapted processes such that

sup B |ut,x)|)’ <oo, and sup E(@7|v(t, x)])? < oo,

x€RN x€RY
t€l0,T] t€l0,T]

2Numerical experiments were performed with single-threaded code on a Intel i7 processor at
2.8 GHz.
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for some constants, r,, r, € [0, 00). Next let £* be the process defined as

t t
£x :/ u(s, x)dW; +/ v(s, x)ds,
0 0

Then, for p > 1:

1 1 V4
X Pl —

E[l&" | ]—]E|: [0 u(s,x)dWS—i-/O v(s, x)ds i|
1) P t P
2] =] rea] ]§

+ /0 v(s, x)
(52) 2P_1{CP]E [(/Ot | u(s, x) |st)2} +,p—1E[/O' | v(s, x) |Pds”
(%) 2P—1%c,, ti'E [/r | u(s, x) |”ds:| + PR [/r |v(s, x) |”ds} }
0 0

@ ' t
< 2P—1{Cpt§(1’—1>/ E[|u(s, x) Ip]dSJrfp_l/ E[|V(S’x)|p]ds}’
0 0

t
/ u(s, x)dws
0

where we used the following: Holder’s inequality for finite sums for (1),
Burkholder’s inequality, Jensen’s inequality respectively, for (2), Jensen’s inequality
for definite integrals for (3), Fubini’s theorem for (4).

Now we observe that

E|u(s,x) |’ < ( sup E[s7™ |u(s, x) |]p)s1’”‘
x€RN
s€[0,T]

E | v(s,x) |p < ( sup E[s_"" | v(s,x) |]17)Sprv'
x€RN
s€[0,T]

And so,

t
El&17 < ép%fép_l( sup E[s™" |u(s, x) |]p)(/ s’”’“ds)
x€RN 0

s€[0,T]

+ t”_l( sup E[s™|v(s,x)|]” )(/rs””ds)}
xeRN 0

s€[0,T]
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<G et sup E[s™ u(s. x)|)”
xeRN
s€[0,T]

i tp_ltprv-l—l( sup ]E(S—l'v |V(sv X) | )P)}

x€RN
s€[0,T]

< @pw{tmﬂ) + ,p(rv+1>} _

That is, if we take r¢ = min{r, + % ry + 1}, then for all p € [1, c0),

sup E[(r77 &7 ()] < oo. (145)

x€RN
t€(0,T]

Proof of (48): We prove by induction on | y |. Observe that for | y | = 1, we have
that:

Ao B! if l,...,d

By =) B iy et h (146)
t ify=0

in which case, we split |y | = lintoy € {1,...,d} and y = 0. For the former we

apply the inductive step with ¥ = 1 and v = 0. Then we may choose 0 = r, < r,
to obtain:

sup E [(t_l/2 | B/ |)p] < 00.
ref0.7]

In the latter case we obviously have:

sup E[t_l \B,y Hp < 00.
t€l0,T]

We now assume that the result holds for some k € N, i.e. we have the following for
all y € Asatisfying |y | = k:

Ao P
sup E[z‘”y”/z B ] . (147)
1€(0.7]
Observe, that fori € {1,...,d}
A : t A .
B — / B 0 dB. (148)
0

o . 174 .
=/ B§Vd3;+§(3°y,3’> (149)
0

)
t
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and noting that

BY _/ B aBv + <§°V/,BV"> .
0 t
It is clear that

t
A oy fo o1 Ao
B :/0 BYYdB, + 56, B v'*0),

Now |y' 0| = k, so BeU'*0) gatisfies (147) with ||y’ % 0] = [|/|| + 2 Moreover,

we can control fo ydB’ by using the inductive step with u(z, x) = B,” andv = 0,
so that 1 5 lvll = ru < ry, by the inductive hypothesis, and we have:
A olysi) |17
sup E I:t—ry*i B, (y*i) ] < 00,
1€(0,T]

where ryx; = min{([[y [ + D/2. Iyl +2)/2} = ||y =il /2. R
If i = 0, then we may apply the inductive step with u = 0 and v(¢, x) = B;”, so
that 1 5 Iyl = ry < ry, by the inductive hypothesis. In this case,

A o(yxi) |17
sup E I:t—ry*i Bt (y*i) ] < oo,

1€(0,T]
with, again, r,«; = ||y * i|| /2. Hence the result is proved.

Proof of (49): The proof of this result is similar to the induction carried out above.
We notice that the remainder term, as defined, is the sum of numerous iterated
Stratonovich integrals. We prove that the result holds for each element of the sum.
This may then be easily extended to the sum of multiple such objects. We have
already seen (cf. Proposition 42) that, for any «, 8 € A(m), p € [1,00),T > 0:

sup E|aaﬁ(t x)‘ < 00. (150)

x€RN
te€l0,T]

Moreover, since c(’;(’ p € CZIJ{H_M (R") is uniformly bounded, it follows that

sup B/, ,(X; )‘ < 0. (151)
x€RN
{€[0,T]

We again prove the result by induction on |y |. Assume |y | = 1. Using the

fact that thz*yﬁ (X7) and as g(t, x) satisfy (150) and (151) respectively, the product
must satisfy an analogous inequality (by Hormander’s inequality). Note that this
semimartingale will be comprised of integrands which are sums and products
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of objects like those in (150), (151), and hence if y € {l1,...,d} it has been
demonstrated already that (cf. the first part of the proof, i.e. r, = r, = 0),

r P
E[z"V/O c;*y,g(xg‘)ag,ﬂ(s,x) odB,V} < 00, (152)

where r, = min{%, 1} = % Now if y = 0, then we apply the step with # = 0 and
v(t,x) = cé*y’g(X;‘)agﬁ (t,x). Thatis, 0 = r, < ry, to obtain

r p
IE|:t"'V/O cé*yﬁ(X‘;")ag,,g(s,x)ds} < 00, (153)

where r, = 1. We now assume the result holds for some k € N. i.e. we have the
following for all y € A satisfying |y | = k:
i|1’

< 00. (154)

sup E[I—nyu/z

x€RY
t€(0,7)

t Sk 52 .
/0/0 fo (~DI7le], s(X3)asp(si.x) 0 dBY! ... o dBI

To ease the notational burden, we write,
t Sk 52 ‘ | j
Z(t,x,y) = /0 /0 /o (=D equy 5(X5Dasp(s1,x) 0 dBy} ... 0 dBY,
fory = (y1,...,yx). Observe, that fori € {1,...,d}
t .
Z(t,x,y xi) = / Z(s,x,y) odB,
0
4 . 1 .
= /0 Z(s,x,y)dB, + E(Z("x’)/)’ Bl)f
t . 1 t
:/ Z(s,x,y)dB’S—i-Eé’yk,l,yk/ Z(s, x,y")dt
0 0
t . 1
= / Z(s,x,y)dB, + ESkal,},kZ(t,x,y/ * 0).
0

By the inductive hypothesis, Z(, x, y’ x0) satisfies (147) with r,rw0 = ([|¥'[|+2)/2,
and we also use the inductive step on the right-hand term with u(z, x) = Z(¢, x,y)
andv = 0, sothat r, > r, = ||y|| /2, with

sup B[t | Z(t,x,y xi) ]’ < oo,
xeRN
t€(0,7]
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lvll+t ly/l+2
2 2

where r,x; = min = ”V”TH If i = O then we may apply the

inductive step with u = 0 and v(¢, x) = Z(z, x, y), so that with ||y|| /2 =r, L 1y
we get

sup E[r7* | Z(t,x,y x0)]]’ < oo,
x€RN
1€[0.7]

lyll+2
2

where ryx0 = . Hence the result is proved.

Finally, note that a finite sum of these would also satisfy a similar inequality with
Fsum = min{rg; ri is optimal (i.e. (145) holds) for k-th sum member}. i.e.

P
sup E [t_(mH_”“”)/z | ra,p(t. x) ‘] < 00,

x€RN
te(0,T]

as required. O

A.1 Invertibility of the Malliavin Covariance Matrix

The aim of this section is to prove the following proposition from the main body.
The proof is demanding, but fundamental to the results, and so it is given its own
subsection.

Proposition 21. M(z, x) is P-a.s. invertible. Moreover, for p € [1,00), a,f €
A(m),

1 p
sup E[Ma,ﬂ(t,x)] < 0. (155)

t€(0,1], xeRN

For real-symmetric matrices such as M (¢, x) there is an elegant representation of the
minimal eigenvalue. The following lemma utilises this to simplify the requirements
for invertibility.

Lemma 64. The statement of the previous proposition holds, providing the follow-
ing can be shown for each p € [1,00): there exists C > 0 s.1.

IP’( inf (§, M(¢,x)§) < l) <Cn?,
l&1=1 n

foralln > 1, t € (0,1], and x € RV,
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Proof. We sketch this proof. It is obvious from what has gone before that elements
of the matrix M (rather than those of the inverse) satisfy (155). As the inverse matrix
is comprised of the inverse of the determinant multiplied with multilinear combi-
nations of elements of M, it suffices to show that the inverse of the determinant
satisfies (155). The element infj¢|—; (§, M(t, x)&) represents the smallest eigenvalue
of M and hence its —Nth power (where N is dim(M)) provides an upper bound for
the inverse of the determinant. Finally the expression in Lemma 64 may be used to
deduce the L? integrability (uniform over ¢ € (0, 1], x € R) of this upper bound, as
it provides the required tail decay. O

In view of these results, consider (§, M(¢, x)&). The determinant of M(z, x) is
non-negative and increasing with ¢. This means that if M (¢, x) is a.s. invertible for
some ¢ > 0, then it must be invertible thereafter. Let y > 1.

EME.0)E = Y EpMap(t.x)

a,BeEA(m)

= Y D ) k1),

a,fEA(m)

2
= DI )

a€A(m) H
2

= > g /M'(a?aw,,a)(u,x)du
0

a€A(m) H

2

Jall t/yA. 0
o ko / @, +r.o)(u, x)du| . (156)
0

a€A(m)

A%

H

Observe that, since y > 1, using the notation: S := {x € R**!: ||x| = 1},

2

lal t/y A
inf Z Eut™ / a.qo(u,x)du

fesNm—1
a€A(m) H

2

ller]l

t17 2 rtvn
> inf a | — a. o 7Xd
ST DO ) I R

a€A(m) Y H
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Now focus on the term appearing on the RHS:

_lel 2
t 2 t/y A.
S & H | autw
a€A(m) Y 0 H
1 'Z'_HLZH t/y A 2
ZE Z &y | — / a?a(u,x)du
a€A(m) L 0 H
Ll 2
t 2 t/y A.
T alr] [ rewd
a€A(m) LY 0 H
1 't'_Hizu t/y A. ?
> Y |- / a®, (u, x)du
a€A(m) L 0 H
t]y L i
e[ =] e
a€A(m) 0 a€A(m) i=1 y

Recall that aga (#,x) = 0 whenever o # i * y for all multiindices y. Moreover,

al, (u,x) = ByY wheni x y = . That is, as each multindex @ € A(m) satisfies
a el ..dy:

a®,(u, x) = (o,...,é;;n...,o).

It is now necessary to briefly discuss the first term on the RHS. The following result
is taken from Kusuoka and Stroock [33], but a comprehensive proof is provided in
the next section.

Proposition 65. Given m € N, there exist constants Cy,, jL, € (0, 00) such that for
allT >0

2
T
. _l_r Ao 1
P inf /0[ > TTo ZayB,y:| di < — | = G expi—n""}.

y€A)p(m—1)

(157)

Proof. The proof of this result requires a detour. For a detailed proof, consult the
next section of the appendix. O
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As a result of this strong bound, which is incidentally much stronger than that
which is required for invertibility, it is very easy to deduce the following two
equivalent properties:

Corollary 66. Foranym € N, and p € [1, 00), there holds:

2
T
) iy sy
E 1%5 /0 |: E T™72 7 2a,B, ]dl < 0. (158)

aeSNm—17! yeAyg(m—1)

And, equivalently, for all q € [1, 00)

=

2
! [F4] Aoy 1
i -5 - —q
P inf / [ Z T=2 B | di< — ) < Cngn™@.  (159)

aes¥n—17190 | ye Ay pm—1)

The usefulness of the above might not be immediately clear, so turn attention back
to the lower bound obtained for (&, M (¢, x)&). The fact that any o € A(m) can be
expressedas o = j x y forsome 1 < j < d and y € Apg(m — 1) is used. This

allows the effective utilisation of the structure of a?a (, x).

llel 2

=5 pt/yA.
Z €a I:L:| /Oy a®, (u, x)du

a€A(m) Y H
2
d [—”Vﬁ*‘ t/y A
SN LR I
J=1y€Agp(m—1) Y 0 "
2
RN
= Z |:;:| / (gj*VBu )]= ~~~~~ a du
yeAop(m—1) H
2
s e
-1 > [ serr)  w
0 y€Agp(m—1) Y j=l...d H
d t/y A. t_”y|£+l ~ 2
> x B sesr]a
j=170 yeAgpm—1) LY
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It can also easily be shown that by taking inf¢es,, , of both sides:

llel 2

t17 2 rthvn
inf v | — a® u, x)du
B DN I RN

a€A(m) Y
A n il 5
. (17 o
= it Z/ [ > [_} juy B }d
=t 5= J0 yeAgpm—1) =Y
t/y A ; —7”y”2+1 T2
= _nf / [ > [—} ayB;V} du,
€508,y Jo yedgpm—1y b

recalling that N,S’(_Dl = N @1 + 2 This is precisely why the upper bound derived in
Proposition 65 was introduced It enables a precise control over the tail behaviour of

(&, M (¢, x)&). The various pieces of analysis are now synthesised. In what follows,
note that

1 1 1 1 1 1 1 1
P{l-X-Y<—-)=P|-X-Y<-Y<—-—|4+P|l=X-TY<-—-Y>-—
2 n 2 n n 2 n n

1 4
<P|Y=>=-)+P(X<—-].
n n

This gives:

]P’( inf (E M(t, x)E) < 1)

EesNm—
Iy ]I+t 2
tly t]7 2 A 4
<P inf / |: Z |:-:| a),B:V] du < —
“EN 400 Leaggim—n LY "
o . |
+P inf ; ,xX)du| > —
[T e[ 2 ] el -
a€A(m) a€A(m) i=1
[l +1 2
tly t1 . 4
=P inf / [ > [—} ayB;y] du < —
aesNr(;){gl“‘l_l 0 y€Agp(m—1) y "

Jel
+JP>/ > Z[} it X > -

a€A(m) i=1 n

The program is almost complete. The following is deduced from Proposition 20,
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Lemma 67. There holds, for all p € [1,00),

P
¢ d
sup E / Z Zt_ll"‘n_lri,a(u,x)zdu < o0.
txee(ﬂéﬁl] 0 a€A(m) i=1

Proof. We may apply the semimartingale rate bound obtained in the proof of

Proposition 20. Indeed, we observe that:
t t
& ::/ u(s, x)dBy +/ v(s, x)ds,
0 0

u(s,x) =0,

d
v(s, x) = Z Zf"“”ri,a(s,x)z.

a€A(m) i=1

Observe from Proposition 49, noting ||| < m,

sup E(™" |v(t, x) )P < oo,

x€RN x€RN
t€(0,7] t€(0,T]

sup E(@ "™ |ut, x)|)’ < oo,

where r, = 0 and r,, is arbitrarily large. Hence it follows that:

sup E(t7 £ )" < oo,

xeRN
te(0,T]

where re = r, + 1 = 1, as required.

The proof can now be completed.

A AL |2 ] e <d

aeSNm—171 0 yE€Agp(m—1) Y _ "
iy d ¢ 77l 1
+P / 2 ZH Fia(, x)’du = —
0 a€A(m) i=1 Y "

[l 41 2

t/y z_yz .
=P inf / Z - ayB” | du
a€sS 0@ 0 y
Ny Z 11 yeAy p(m—1)

N
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t]y O i Bl ] y
+ P /0 Z Z[—} ri,a(u,x)zduza

a€A(m) i=1 Y

4N\ nt\? 4N\ n\?
< Cpngl - Cngl— ) ZCungl— Cugl—1 -
"’(n) " ’q(y) - q(n) " ’q(y)
It is important to note that the above bounds hold V¢ € (0,1] and Vx € R¥. The

decision to introduce y > 1 should become clear. Without it, the analysis would
fail. Indeed, there is a clever choice of y such that Lemma 64 holds. Set

y = 4
so that

n_4

y_n

And finally, combining this with the above we obtain:

]P’( inf (&, M(t,x)§) < l) < Cp,p i
—1 n n4

£€SNm

as required.
In the next section regularity results about the inverse of the matrix are proved.
These results shall be fundamental to the integration by parts formula.

A.2 Diffuseness of Iterated Stratonovich Integrals

It was seen in the last section that invertibility of the Malliavin covariance matrix
can be achieved if Proposition 65 holds. Its statement is recalled and it is sought to
prove this result using the work of Kusuoka/Stroock in [33] as a guide.

Proposition 68. Foranym € N, and p € [1, 00), there holds:
2
r 1 so
E inf / Z 772 2a,B | dt| =Cn,<oo. (160)
0.0 o
y€A)p(m—1)
And, equivalently, for all q € [1, 00)

2
T
. N P RO 1 _
P inf /0 [ § T2 ZaVB,y:| dtf; < Cugn™®. (161)

esMnn ! Ao p(m—
a y€Agp(m—1)
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Proof. The proof of this important result is begun through simplification of the
problem. By considering the distribution of the iterated Stratonovich integrals one
is able to make a change of variable to the integral. Indeed, note that:

Hence it may be deduced:

2
T Il 1 ao
/ Y TTT e, B dt
0

y€Agp(m—1)
T 2
D 1 oy
= T 2a,B 4 dt
[z e

yE€A)p(m—1)

2
—_ 1 A~
u_é/T/ |: Z ayB;y] du.
0

y€Agp(m—1)

Hence, the problem is reduced to showing that for each p > 1, there exists C > 0
S.t.

2
1
- 1
P inf E B | du < — Cn?, 162
11&“11/0 |: ay u:| u<n <Cn (162)

aeSNm— yeAyp(m—1)

foralln > 1.

Iterated Stratonovich integrals arise in a very natural way from the geometry
of this problem. That said, one must often turn to the more established results
in stochastic integration to do an accurate analysis of them. These results are
almost always phrased in terms of [t integration and the semimartingales resulting
therefrom. Hence, attention is switched to iterated It6 integrals via the following
proposition. The moral of the story is that, although undoubtedly different objects,
iterated Itd and Stratonovich integrals are equally as diffuse.

Proposition 69. Define B" := (B*) o<1 and Bl = (B®)|uj<L. Then, for all
L € N there exist constant matrices Ay, Ap € RNUNL sych that
(i): Bt = A, BF and  (ii): BF = A B°*.
i.e. Ay is invertible with Azl = /IL.
Moreover, it follows that the existence of constants Cy,, by, € (0, 00)

2

1

. 1

Pl inf / Z a,B" | dt < —| < Cyexp{—n""},
> az=1Jo n

y€Agp(m—1)
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is equivalent to the existence of constants C‘m, m € (0, 00) such that

1

. 1 . .

P| inf / E ayB] | dt < — | < Cyexp{—nt}.
Yai=1Jo

yE€Ayp(m—1)

Proof of (i) (adapted from the proof of Lemma A.12 in Kusuoka and Stroock [33]).
(1) is approached by using an induction argument on L. Clearly if L = 1 then there
is little to prove as B°L = Bl. Hence, as A; = Iyxq = Ay. Now assume that
the result holds for L < k. i.e. for all & such that ||¢| < k there holds, for some
deterministic constants: aé‘[ﬂ, 18I < k.

=Y at, B!

IBIl=<k

It is clear one need only prove, for suitable constants ak+l 1Bl <k +1for || =
k+1

Z ak+1Bﬁ

Bl <k+1

Leta = (¢/,a*) where ||| =k — lifa* =0,and |o/|| = kifa* € {1,...,d}.
The cases ax = 0 and ax € {l,...,d} are treated separately. Assume first that
a* = 0. Then

t
1§,°“:/0 é;"/ds:/ Z a,ﬂB° ds

BlI<k

k h B*0
= D ay Bl

Bll<k

k h B*0
= Z aa/ﬁ/Btﬂ*

IBll<k+1
Bx=0

k A
= Z aa:Eleﬂ’

IBll<k+1

k o, iffx=0
where af{};l _ ) ! p
: 0 iffx#£0.
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Now assume a* € {1,...,d}:
~ ! ~ / ! ~ 7 1 ! ~ 17
Bov = / B o B = / B aper + L / B ds 1 ey
0 0 2 Jo

t
:/ > db yBPaBe

0
8=k

1 [ .
+ E/ Z az//ﬁdes 1{a*=(a/)*}
O |pll<k

. | P A
= Z aé‘/ﬁ/Btﬂ + w Z ag//,ﬂ/Btﬂ
Bll<k+1 IBll<k+1
Br=ax* Bx=0

k+1 5
= > afBl
IBl=k+1

ag,ﬁ, if ax = Bx,
where aﬁ}}l = %a];;jﬁ, if Bx = 0,ax = (o) *,
0 otherwise.
This completes the argument. As (ii) can be proved in an analogous manner, its
proof is omitted. It is now shown how (i), (ii) imply the remaining equivalence
result. Note that if A, is invertible, then A7 is also invertible with (47)™! =

(A7YHT. Moreover, from invertibility

0 < cmin := |I§n|1=nl | AZE ‘ :

Adopting the shorthand notation ét"L, l?tL employed above, there holds:

1 1
inf / (6. BL)dt = inf / (€, ALBF) di
0 0

[§1=1 [§1=1

1
= inf/ (AT, BF)di
l§1=1Jo

1
. AL\2
> mf/ (v,B,L) dr ¢k,
LJo

lvl=
A similar estimate can be made from (ii). These estimates prove the remaining claim
of the proposition. O

Before tackling Proposition 65 in earnest, some supplementary results about
iterated Itd integrals are required.
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Lemma 70. Fix ! € N. There exists C; < oo and v; > 0 such that for all @ € A

with ||| = [, there holds:
1
zn) < exp(—zn‘”), (163)

Proof (adapted from the proof of Lemma A.7 in Kusuoka and Stroock [33]).
Fundamental use of the following martingale inequality is made. For K;, K, > 0

P| sup l?;”
1€(0,1]

foralln > 1.

K2
Pl sup [ Mr|> K, (M)r<K,|< 2exp%——l} )
1€(0,T] 2K,
This result is proved by expressing the above martingale as time-changed Brownian
motion (run at the “speed” of its quadratic variation, see Karatzas and Shreve [26,
Theorem 3.4.6]), and then using the following two inequalities:

P( sup |B;| > K) <2P(Br > K),
t€(0,7]

/ e 2/ dl/l < e Az/z X > 0
= ) —_ Y.
X VZJT

The latter is seen by splitting consideration into two cases: x € [0, 1) and x > 1.
The relation in question can be obtained by iterative applications of this
martingale inequality. Define vy = 2, and in what follows allow v; to be chosen

optimally afterwards. First assume that o € {1,...,d W
P[ sup l?;” zK]

1€(0.1]

<P[ sup | B*| > Kk, (BY), < K"N] +]P’[(l§°‘)1 > K”N]
-1€(0,1]
_ R Ny Lo 2

=P sup | 82| > k. (B), <K”N]+P[/ ’Bf‘ dtzK”N]
L re(0.1] 0

§]P’- sup l?f > K, (é“/)l < K"N]+]P’[ sup l?f‘/ > K”N/Z]
-1€(0,1] t€(0,1]

< Z P[ sup é;}cm+l_"> ‘ > KW/Z, (éa(i_”)l < K\Ji—l:l
1 t€(0,1]
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where o) denotes that shortening of the multi-index @ = (a,...,ay) by i. i.e.
a) = (ay,...,ay—;) (additionally: &© = ).
Now choose v; fori = 1,..., N given that vy = 2 and vg > 0. In fact, vy

can be chosen arbitrarily for K > 1. If it is assumed that v; — v;_; = § > 0 for
i=1,...,N,then

l 2

Zl),’—l),'_lzN8 = 8:Na

i=1
and v; = i,—’ Assembling these facts gives:

A 1 2
]P’( sup | B*| > K) <oNexp( — K7, (164)

1€(0.1] 2

for arbitrary |« | = N. Assuming instead that ||¢| = [ and noting that |« | < |||

so that é < |a| <1 gives the same upper bound with N replaced by /. i.e. C; = 2]
andv; =2/1.
Now observe that if ¢; = 0 for somei = 1,..., N the situation is even simpler:

P(sup [ B | = K) < PCsup | B0 | = K),
t€(0,1] t€(0.1]

as sup;e(o,7j ‘ fot éf‘dt‘ < T'sup,e,1] ‘ éf ‘ Therefore, one needs only apply the

martingale inequality Card {i : o; # 0} times. i.e. (2|« | — ||||) times. Hence, for
a general «,
N 1 2
]P’( sup | B | > K) <20Q|a|- ||ot||)exp(— -sz—uun).
1€(0.1] 2
However, for any o such that ||| = [ the identified constants in (164) are still
appropriate, as sup, = (2 [a | — [lal]) = 1. O

The main consequence of the above lemma is the following:

Proposition 71. It suffices to show the existence of Cy,, |Ln, Such that foralln > 1,
there holds

1 2
. 1
sup P > auBY|dr<—) < Cuexp{—nt}.  (165)
0 n

0,9
Nyp—1~1 a€Ag g5 (m—1)

a€sS

Adapted from the proof of Lemma 2.3.1 in Nualart [51]. There is some constant M,,
Y
such that foralln > 1, S NaZi=1 contains some finite set X (n) with
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0,9
| Z(n)| < Myun*" and  SY=tc () By,
ceX(n)

Observe, for fixed a¢ € sli-1 A B, /3,(¢), there holds

2

1
min coBY | dt
ceE(n)/() Z «r

a€A) g(m—1)

2

1
= min/ Z (cq —ay +al)Bf | dt
0

. a€Ag g (m—1)

1 2 1 2
<2 mi —aS)BY | dr cBY| dt
< cénxl?n) /(; |: Z (ca —ag) By ] +/0 [ Z Ay by ]

€A p(m—1) a€Agg(m—1)
1 2 1 2
5203121&)/ > (ca—al)BY dt+20énxi&)/ > alBy| ar
0 aEA(),(;;(m—l) 0 aEA(),(;;(m—l)
2
1 .12 1 .
SZCénEi?n)k—aﬂZ/ > ‘Bg dt-I—ZCénEi?n)/ > ayBy| dr
0 wedygm—1) 0 | aeAgp(m—1)
2
1 ! DO 2 ! ¢ po
<2 ‘B di +2 min / B | dr.
sn X [Efavemn [0S aB
a€Ag p(m—1) a€Ag p(m—1)

Now, the above upper bound holds for any a¢ € S N2 g 1//3n (c), in particular,

¥ Y/

it must hold upon taking the infimum over all a € SNrgfl_l, as SNr?rfl_l
0.9

Uecerm) SNn=1=1'N By ),2(c). This gives:

1 2 1
A 1 ~ 12
Cénzi&)/[ 3 caB,”‘:| dthm/ 3 )B;‘ dt
0 Laedgyon—1) 0 wedyy(m—1)
1 R 2
+2  inf / [ > aaB,"} dt.
aes¥n—17170 Loea yom—1)

(166)
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Furthermore, it is evident that:

1 2
. 1
]P’[ 11(1)% /0[ > aaB,“dt} 5;}

aeSNm—171 a€A) g (m—1)

1 2
A 3
<P i CB¥dt| < —
- (cénrlg«)/o [ 2. @b } _n)

a€Ag g (m—1)
2
dt>n).

—HP’(/Ol L

a€Ag g (m—1)

Using (166) to proceed, it is seen that:

1 R 2 1
P inf / |: aaBt“dt] < -
09 _. Jo n

gesNm—171 a€ Ay g(m—1)
1 . 2 3 2 ]
<P| min /[ > caB,‘)‘dt] <=|+P [ > B,“ dt >n
ceX(n) Jo n
a€Ay p(m—1) a€Agp(m—1)
1 . 2 3 A 12
< Z P / [ Z canldti| <—|+P| sup BY| =n
ceX(n) 0 Laedgpm—1) " | (€O ge gy (m—1) ]

INOY 1 ~ 2 3
< MpuK* =1 sup P / [ > aan‘dt] <=
0 n

09 a€Ay g(m—1)

SESNm 11
: :|
— A70.0
Nm—l

Ml'ﬂ 0@ ~
] ) + N, kénax P| sup Bf“z

lell= ' "
Hom c 1 n El
W Cnee (3|

+ ng’gl max P
a€Ay p(m—1) te(O 1]

0.9
< anZNm—l B, exp (

0.9
< anZNmfl B, exp (

< A, exp (—nA”’) s

for some (large) constant A,, and (small) A,, > O, for all » > 1. Both (163) and
(165) have been used. ]

The goal is now reasonably clear. If inequality (165) can be proved, then the
claim will have been justified. Before turning to this proof in earnest, another
supporting result is proved. Note that the rest of the proof is, unless otherwise stated,
taken from the appendix (p. 73 and onwards) of Kusuoka and Stroock [33].
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0.0
Lemma 72. Assume a € SVn—17" such that |ag| < 1.'> Then there are constants
Om < oo and vy, > 0 such that:

1 2 |a | - v 0
. 1 1 o i
IP’(/ [ > aaB,“} dlf—)SQmeXP{—E @ }
O Laedgpim—1) " 1—61%
(167)

Proof. The starting point is noting that:

(/01[ > aaéfrdt)éimm—(/:[ > aal:?f‘irdz)z

a€Ag g (m—1) I<|lalsm—1

1
zlaal—\/l—a%/[ > |8
0

1<|ell<m—1

> lag|—+/1—a} sup|: Z ‘éf‘

1€OIL <o zm—1

Consequently,

2

1
1 pa? 2
A 12 [laﬂl_(IO [ZOLGAOV)(W—UCZO‘BI] dt) :IVO
su B | > Y
Py |Br] = o
€O <ol <m—1 L=

In particular,

P(/Ol[ > aaéf‘:rdtf%)

a€A)g(m—1)

2

2 ((lani=F5) vo )

>

5]?( w Y|
€O <palzm—1 1 —aj

2V

o enfoy )

2 ,ll—a%

for some Q,,, vy, where (163) has been used. O

3Indeed, the consideration is trivial if this condition is violated.
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A semimartingale inequality from Norris [50] is now recalled, which plays an
identical role to a similar martingale inequality in Kusuoka and Stroock [33].

Lemma 73. Assume a,y € R. Let B = (B)i>0 be a one-dimensional previsible
process, and lety = (y; := (L ...,y )0, u = (u = (ul,...,ul))>0 be
d-dimensional previsble processes. Moreover, assume B = (Bi);>0 is a
d-dimensional Brownian motion. Define,

t t
bt=b+/ ,BSds+/ yldB,
0 0

t t
Y=y +/ byds +/ u.dB:.
0 0

Then for any q > 8 and some v < (q — 8)/9, there is a constant C = C(q,v)
(independent of K ) such that

nl/‘I’t

1 1 1 1
P[[ Y7di < —, f b P+ u Pdt = ——. sup B[V |y | Vb |Vu|<n
0 n 0 €(0.1]
< C exp{—n"}. (168)

Remark 74. Upon checking the above result in Norris [50], the keen reader would
observe that the result is stated in a different fashion. Namely, the bound

sup [ B[V Iy VIb|VIu| <M,
1€(0,T]

is assumed up to some bounded stopping time 7', as an extra condition. The resulting
statement is then phrased in terms of some constant, which depends on M. i.e.
C = C(q,v, M) in (168). This constraint has been circumvented by letting the
constant M depend also on n (indeed: M = n). The observation that C is then
of the form C = C (g.v)n' for some [ € N, is then made. This observation is a
result of tracking the constant in the proof of the lemma. This does not affect (168)
as there is some larger constant C and smaller ¥, which can be chosen such that
é'(q, v)n! exp{—n"} < C(q,v) exp{—n"}, foralln > 1.

The proof of the bound in Proposition 71 is done via a strong induction argument.
The base case m — 1 = 0 is trivial. Assume therefore, that (165) holds for 0 <

m—1<k-—1.Leta € SN/?M_I. Define, using the notation of Lemma 73, the
following:

Y, := Z aaﬁ;’,

llecll <k
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b; := Z aaéf‘/,

1<||ell<k
a®=0
u = E a, B
T o t
1=|lell<k
a*=i
’\a//
B: = E agBy , for |a| > 2,
1<l <k
a®=0,(a’)*=0
i '\a//
Y, = E ag B, for |a| > 2,
1<|lell<k
a*=0,(a")*=i
y = ag,
b:=0.

With these definitions it is easy to see
t t . .
b; :b—i—/ ,BSds—}—/ y.dB;,
0 0

t t
Y=y +/ asds—}—/ u'dB..
0 0

Using Lemma (72) consideration may be split into two separate cases. Assume first
that 1 —a} < n~"/2%, where ¢ > 1. So that

J1—ak <n /%,
and

lag| > {(1 —n~"?7) v 0}!/2

1
= [Iaﬂ——}V02(1—2n_1/2q)v0.

Jn
Then, by (167):

P(/Ol [ > aaéf‘]zdt < %) < lexp§ _ %nuk/zq([l ~ nqu] VO)M}

a€ Ay g(k)

< Prexp {—nk"} ,
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for some (large) constant Py and (small) Ay, as required. Suppose now that 1 —a% >
1/n'/?4. Then it is clear that

/01[ > aaéf‘]zdtf

lell<k

C Ei1UE,U Ej3,

I | =

where

1 1
1 1
Bt [ [inr s uraz oo
0 n 0 n'/d

sup |ﬁt|v|y,|v|bt|v|ut|5n},
t€(0,1]

EZ:{ sup |,3,f|\/|y,|\/|b,f|V|u,f|>n},
t€(0,1]

1
1
_ 2 2
E3—{/O|b[| +|I/lt|dt<_nl/q}.

It is now shown that P(E;) < C; exp{—n"i} fori = 1,2,3.Fori = 1,2, Lemma 73

and Lemma 70 imply respectively, the required bounds (i.e. independent of a €
S N::'K)l_l). The case i = 3 is handled using the inductive hypothesis.

Define

. § : 2
Nj = a,
1=<llell<k=IIG)H
a*=j

As Z?:on = 1—aj > 1/n'/4, there exists jy € {0,...,d} such that N;, > 1/
2
. Thus, using

A

o
2 islel=k=lGol du B]

a™=jo

(d + Dn'/24 Moreover, | b; | + |u; | >

the inductive hypothesis,

1
P(E;3) < ]P’(/
O Tigllal <kl kol

a*=jo
(. /
=p(—
Njo 0

< Cr— exp{_(Njonl/q)vkil}
< Crorexp{—(n'?1/(d + 1))~}

< Cy exp{—n"F},

Al
ao Bf*
1=]lell<k=I[l(ko)l
a*=jo




Cubature Methods and Applications 305

for some Cy, vi. In applying the inductive hypothesis, care has been taken to check

that (Zlfnanfk_n(ko)n ai)/Nko = 1. This finishes the proof. O
a*=kg

We now move on the prove Lemma 23 which was fundamental to establishing

relationships between the elements of our integration by parts formula. This is done

in two stages: in the first stage we focus on demonstrating the result for /C,, that

is, those elements which are smooth processes. We then supplement this for the

non-smooth case with additional comments/proofs where appropriate.

Lemma 75 (Properties of Kusuoka—Stroock Smooth Processes). The following
hold

1. Suppose f € K,(E), wherer > 0. Then, fori = 1,...,d,

/ f(s.x)dB € Ky+1(E) and / (s, x)ds € Ky 12 (E).
0 0

Qo> b € K(ig)~llalyvo Where a, B € A(m).

ky € /C”a” (H), where o € A(m)

D@y := (Du(t,x). ko) y € Ky+)a where u € K, and o € A(m).

If M~\(¢, x) is the inverse matrix of M(t, x), then Ma_é € Ko, a, B € A(m).
If fiekK, fori =1,...,N, then

ISR S

i=1 i=1

Proof: (1) It is clear that if f(z,.) is smooth and 9, f(.,.) is continuous then the
same is true of [; f(s,x)dB; fori =0,...,d, with

aa/O f(s,x)dB; :/o 0y f (s, x)dB.

Fork > 1, p €[l,00),i = 1,...,d, we have (note that the dependence of the
norms on the Hilbert space E has been suppressed):

p

/ 0 S5, xX)dB' / /G, x)dB;
0 0

p
k.p

k

+;]E HD//O 3o f (s, x)dB!

J

p

(169)
H®J

Focussing for a moment of the LHS, and assuming w.l.o.g. p > 2 (as there
holds monotonicity of norms in p), we see that for j = 0, ..., k, there holds
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. t P
EHDJ [/ 3af(s,x)dB§]
0 H®J
t . ) ¢ ' )
:EH/ D]aaf(s’x)dBH/ DI f(5.x) ® eids
' 0 H®J/QE
t . X V4 ¢ ' )
= [E H/ D7 da /(s )dB, +E H/ D/ 7109, f(5,x) ® eids ]
" e 0 H®J
<68 [ 00 | sen] g, #1770
=0y 0 o J (S, H® o (S, you—n &
e T R A YT
= ~p o o B Iy A A o £ (s, U ‘
t
< C,,z%(p—l)/ ||aaf(s,X)||;fpds
0 R
t
SC”t%(p_l)/ s7P% sup v o f (0, ds
0 x€RN ,
ve(0,1]
< G+,

where we have used Burkholder—Davis—Gundy inequality, Jensen’s inequality
and Holder’s inequality for finite sums. Note that the above holds for j = 0 by
taking D/~ to be the zero map. The upper bound is independent of x € RY
and by a simple rearrangement, and combining with (169), the result follows.
Note that the result for fd f(s, x)ds is proved similarly.

(2) The fact that aq g(Z, .), bag(t,.) are smooth with partial derivatives which are
jointly continuousin (7, x) € (0, 1]xR" and thataq g, b g : [0, T|XRY — D>
follows from Proposition 18. The fact that the appropriate bound holds for a, g
with rate r = (||8|| — [l|]) A O follows from applying the expression for a, g,
given in (47), and Proposition 20. The corresponding result for b, g is derived
in an analogous way to ay g.

(3) This follows easily from (1) and (2).

(4) From Nualart [51][Proposition 1.3.3] we have the following:

(Du, ko) y = ublky) —8(uky)

Moreover, we know that u, k, € D, and that § : D®° — D! hence it is
clear that (Du, k,); € D*. The existence of regular derivatives of all orders
follows from direct differentiation. The required bounds follows easily from 6.
(5) Our first observation is that if f € K. (E), where r > 0, then g(¢,x) :=
t75/2 f(t, x) satisfies g € K,_;(E). This is obvious, and from this basic
observation we note that My g (1, x) := t~IIFIBD/2 (i, (2, x), kg (2, x)),, must

14¢f. Proposition 1.5.4 in Nualart [51]
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satisfy My g € Ko. This comes from applying the above observation, along with
(3) and (4) of this Lemma. To prove the same about elements of the inverse
of M(¢t, x) we first note that smoothness (in x) and joint continuity (in (, x))
follows from the inverse function theorem. To prove Malliavin differentiability
and the corresponding bounds, we use the ideas of the proof of Nualart [51,
Lemma 2.1.6]. That is, we seek to prove the following:

Lemma 76. Let A(.,.) be a square random matrix, which is invertible almost surely
and such that | detA(t, x) |_l € L? forall p > 1. Assume further that the elements
of Aap(t,x) € D™ and satisfy:

sup || Aap(s, x) ka < 00.

x€RN
s€[0,1]

Then A;}B (t,x) € D* and the elements satisfy:

sup

x€RN
s€[0,1]

AL (s, ) Hkp < 0. (170)

The proof of this lemma is almost identical to the proof of Nualart [51,
Lemma 2.1.6]. One merely needs to take care in showing (170). This is done
easily by using a Holder-type inequality for the seminorms ||.[|; , (cf. Nualart [S1,
Proposition 1.5.6].

Remark 77. If we hadn’t chosen to mutliply and divide the elements of the matrix

M(t,x) := ((ko(t,x),kg(t, x))) by t“uutllﬁ”, when forming the matrix M, then

more care would have been required to ensure that the rate of decay of the inverse (as
a Kusuoka Stroock process) is independent of the dimension of the matrix. Indeed, it
can be shown the inverse of the determinant of M is bounded above by a rate which
is dimension dependent. However, this dimensionality dependence disappears when
one considers the product with the adjugate matrix, which has the equal and opposite
dimensionality dependence.

(6) It is clear that smoothness, joint continuity and Malliavin differentiability are
inherited from the constituent functions. The second property remains to be
shown. Consider ]_[f\;1 f;- It may be shown that for the kth Malliavin derivative
the following Leibniz-type rule holds:

N
k i i

i=1 it+..+in=k

Now noting that, if i; + ... + iy = k, we have

N
D" fi®...® D fv]l yoe = [T 1DV £l oy -
j=1
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so that

]_[f(t x)

i=1

P k N P
=E nﬁ(t,x) SO 2 N RAGEY!
i=1 =1 i=1 H®J
N P k . N ' r
—s|[Tren| +X0 > (, 7., )@ s
i=1 ot i qin=j NN T 4
N p ’ N - P
<E|[[A@x)| +Y_C0p.0) | Q) D" fult, x)
i=1 m=1 H®J

< H LA )]0 g + Zc<p J) 1‘[ ID™ fout. ) |2 @i -

i=1

where p~! = pi' + ... py', applying Holder’s Generalised Inequality.
Whence, letting r = ") r(i) we see that

)2

N
sup ] A <H sup 1 Bl A [
t€(0,1],x€RN i=1 kp = 11€(0.1
’ eR
+Zc<p 1)1‘[ sup 1 D . )| 5o
m= re
IXE]R\
< Q0.

To see that vazl fi € Knin(r....ry)- We note that £, C K, for r < s. Hence,

it should clear that the sum is contained in that /C, in which all of its terms are

contained. Namely, Kpin(r,....ry)- A full proof is omitted. ]
We now extend the result to coincide with the stated one

Lemma 23 (Properties of Kusuoka—Stroock processes).

1. Suppose [ € K(E,n), where r > 0. Then, fori = 1,....,d,
/0 f(s.x)dB! € K (E.n) and /0 f(s.x)ds € K%, (E. n).

2. Aup.bagp € ICé‘l’fﬂ”_”a”)vO(k — m) where o, B € A(m).
3k, € ICfl‘;C” (H,k —m), where a € A(m).
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4. DWWy = (Du(t,x). ko) y € lCi”f_”a”(n A [k — m]) where u € K'“(n) and
o € A(m).

5. If M~'(¢t, x) is the inverse matrix of M(t, x), then Ma_é € ICf)"C(k —m),a, B €
A(m).

6. If f; € lCﬁ‘l_"'(ni)fori =1,...,N, then

N N
[15 ekt 4., (minn;) and > fiekl, (minn;).

i=1 i=1

Moreover, if we assume the vector fields Vy, ...,V are also uniformly bounded,
then (2)—(5) hold with KC'°¢ replaced by K.

Proof. The proof of this lemma is very similar to the corresponding lemma in the
second chapter. Notes are made on where the proof differs, rather than providing a
full and extensive reproof, to avoid repetition.

Proof of 1. It is clear that if f(z,.) n-times differentiable and 9, f(.,.) is
continuous then the same is true of fs f(u,x)dB, fori =0,...,d, with

0 [ f(u,x)dB! = [ o f (u, X)dB'..

The remainder of the proof is analogous.

Proof of 2. The fact that aq g(Z, .), ba g (¢, .) are k-times differentiable with partial
derivatives of order | y |, which are jointly continuous in (¢, x), and which are in
D177 for all p > 1 follows from Proposition 18. The appropriate bounds can
be seen to hold by observing the expression for a, g and applying Proposition 20.
The corresponding result for by g is derived in an analogous way.

Proof of 3. This follows easily from (1) and (2).

Proof of 4. From Nualart [51][Proposition 1.3.3] we have the following:

(Du. kg = u8(ky) — 8(uky)

Moreover, we know that for each p > 1, there holds u € "7, k,, € D*="=D.p,
and that § : D7 — D*=17 (see, e.g. Proposition 1.5.4 in Nualart [51]), hence it
is clear that (Du, ko) € D""*="=Dd for any g > 1. The existence of regular
derivatives of orders less that n A (k —m — 1) follows from direct differentiation,
and the required bounds follow from 6.

Proof of 5. The k-times differentiability of the inverse (in x) and joint continuity
(in (¢, x)) is a result of the inverse function theorem. The Malliavin differentia-
bility of the matrix inverse can be deduced by extending Lemma 76, for square
matrices with elements of general Malliavin differentiability.

Proof of 6. It is clear and straightforward to demonstrate that the differentiability
and joint continuity are inherited from the constituent functions. The level of
differentiability is a result of the product rule for differentiation. The second
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property of a K-S-process can be shown in a similar way, making sure to take
care of the finite level of differentiability.

A.3 Convergence of the Cubature Method in the Absence
of the Vy-Condition

The proof of the convergence of the cubature methods hinges on the control of the
Ly-norms of the iterated integrals Iy, ,(¢), @« = (i1,...,i;) € A in terms of the
supremum norm of the gradient bounds of fo, = Vi, ... V,@ and Vi fo 0, i =
1,...,d with the function ¢ being replaced by P;¢. In particular we need to be
able to control V) P;¢ (and higher derivatives involving V) P;¢). However, under the
UFG condition, gradient bounds are available only for derivatives in the directions
Vo], @ € A which explicitly excludes V, (see Sect. 2.3 for the definition of A and
Corollaries 31, 32 and respectively 38 for the corresponding bounds). We need
to find a way to “hide” V. We succeed to do this by employing the Stratonovitch
expansion not of P,¢,butoft — Pr—_,¢(X;),t € [0, T]. Assume g € C*°([0, T'] x
RY). Then, by applying It6’s lemma for Stratonovich integrals, we see that

d !
g(T—r,X;‘>=g<T,x>+Z/O Vig(T =5, X)) odB,  (171)
i=0

where V;, i = 0,...,d are the vector fields on [0, T] x RY defined as:
Voi=Vo—0, Vii=Vi, i=1,....4d.
Equation (171) may be iterated to obtain the following expansion for g(T" — ¢, X/°):

gl —1.X) = Y (Va@)(T.X)B* + Ry(t.x.8). m=23.....

{e, lall<m}

(172)

where V,, = V;, ... V; fora = (i1.....i,) and

Ry(t,x,8) = > I7,(0) (173)
lof=m+1
loll=m+2.a=0%p.|| | =m

In (173), I ,(t), @ = (i1, ..., i,) is defined as

5 L rso Sr—=2 . . ;
Iy (1) := / / (/ Vog(T —sr—1, X ) o dev‘rl)o- odW{ = odWY .
0 Jo 0
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This Taylor expansion will in due course be applied to the diffusion semigroup P; f.
Note, in particular, that the cubature measure of order /, where | > m, agrees with
the Wiener measure on the iterated Stratonovich integrals of (172). Therefore the
convergence rate will be given by their difference on the “remainder term” R,,.
Indeed, it is a simple exercise to show that:

VE[R,(1,x,8)°] < C > 12|V, gll, (174)

llerll=m—+1
lecll=m-+2.a=0%B.1Bll=m

where

IVogll = sup  |Vog(T —s,%)|.

s€[0,¢],x€RN

The expectation E[R,, (¢, x, g)?] in (174) can be exchanged with the expectation
with respect to the cubature measure Q, that is, Eq, [R;,(Z, x, g)*] with the result
still holding. The following inequality is therefore immediate:

m—+2
[Ele(T =1 x1)] ~Eq [¢(T —1.x0]| =€ Y o7 Sup [IVagl. (175
j=m+1 o=/

The above is an upper bound for the error of a finite measure based on a single
application of the cubature formula. Iterated applications of the cubature over the
partition D will give us the correct rate. The Markovian property of the cubature
method and the semigroup property of the diffusion allow us to deduce the required
uppers bounds based on (175). Again, we emphasize that the difference between
what is done here and the earlier proof is that the control on V, P;¢ is no longer
necessary. Instead we need a control along the vector field 170 = 9, — V, which
is available as P; f is smooth along the vector fields V1, ..., V; and also for each
(t,x) € (0,T] x RN

d
@ — Vo) P f(x) = Y VAP f(x) = ;E [/£(X)®i(1,%)] (176)

i=1

for a suitably chosen Kusuoka function @, (¢, x) (see Corollary 28). This result may
be iterated to prove a corollary similar to Corollary 32.

Corollary 78. Let f € C;° (RN, R) . If the vector fields Vi, ..., Vy are uniformly
bounded then, under the UFG condition, there exists a constant C, < oo such that:

~ C,
1V Pof oo = g 19/ oo (177)
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Proof. The proof hinges on the observation that V, P [ satisfies the following
convenient identity

o
VaPif = > Caprpi Vigr) - - Vigi) Pr f. (178)

i=1  Bi.pB

where ¢y g,...5; € R. This is proved by induction over the “length” m of the multi-
index «, m = | «||. The case ||| = 1 is trivial and ||@| = 2 follows from the
first identity in (176). We outline next the inductive step. If & = (i1, ..., i,), ||¢| =

m+ 1,m > 1and i; # 0, then by the inductive hypothesis

llell—1

f/a P f = Z Z Clz...ar). BB V[illv[ﬁll s V[ﬂi]Pff’

i=1 Bl...Bi €A,
181+ +lBi 1=l -1

as, by definition V};;; = V;,. If i1 = 0, note that

@ = Vo)Vig - Vig = [ = Vo), VignlViga) - - Visr +Vis (3= Vo) Viga) - - - Vigi
= VigronViga -+ Vien + Vi (3 = Vo)Vigay - - Vg

since, as d; commutes with V{g,}, we have

[0 — Vo). Vignl = —[Vo. Vigl = V101

By applying the same procedure to the second term and iterating, we obtain
eventually that

@ = Vo)Vigyy--- Vi P f
= VigoonVigar - - - Vign o f + oo+ VigVigar - Vigon P f

d
+ D Vg Vg Vi Vi Pf ().

J=1

The last identity together with the induction hypothesis gives us (178) also for the
case i} = 0. From (178) we deduce (177) by using Corrolary 32. O

It is important to note that derivatives along 170 = 0, — Vy add 1 to the rate
as a power of r. Let O, be the Markov operator defined in (89) corresponding
to the m-perfect family of stochastic processes, X (x) = {X, (X)}ref0.00) for
x € R?, constructed by the cubature method as described in Example 41. The
following result simply tells us that Lemma 44 holds true also in the absence of the
Vo condition.
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Lemma 79. Under the UFG condition the exists a constant C = Cr > 0
independent of s,t € [0, T'] such that

m+2 A
12
1P (Psp) = Q(Ps@) oo < C IVOllow Y. — (179)
j=m+15 2
where ¢ € Cg (RY,R).
Proof. Immediate from (175) and Corollary 78. O

Following Lemma 79, it is now immediate that the same rates of convergence
such as those described in Sect. 3.4 are valid for the approximation given by the
cubature method in the absence of the cubature measure. Let 7,y > 0 and 7, =
{t; = (ﬁ)”T};‘. —o be a partition of the interval [0, 7] where n € N is such that
{hj =t; — tj—l}'}=1 C (0, 1]. Just as in the Sect. 3.4, let us define the function,

n—%min(y,(m—l)) ify #m—1

Y!(n) =
) n~m=D21nn fory =m—1

and let £ (¢) be the cubature error In the following,

£ () = | Pro — 03, O, - Qi o,

for y € R, n € N. The proof of the following theorem is identical with that of
Theorem 46 and Corollary 47.1

Theorem 80. Under the UFG condition, there exists a constant C = C(y,T) > 0
such that, for any ¢ € Cg (RN, R),

E" (9) = CY' () [IV@lloo + [ P — Qo o (180)

In particular, if y > m — 1 there exists a constant C' = C'(y, T) > 0 then,

/

C
&) = = Vol -
n o2
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