
Studies in Computational Intelligence

1 3

470

Recent Advances
in Computational
Optimization

Stefka Fidanova (Ed.)

Studies in Computational Intelligence 470

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/7092

Stefka Fidanova (Ed.)

Recent Advances
in Computational
Optimization

ABC

Editor
Prof. Stefka Fidanova
Institute of Information and Communication Technology
Bulgarian Academy of Sciences
Sofia
Bulgaria

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-319-00409-9 ISBN 978-3-319-00410-5 (eBook)
DOI 10.1007/978-3-319-00410-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013936057

c© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews
or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its cur-
rent version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Every day we solve optimization problems. Optimization occurs in the minimizing time
and cost or the maximization of the profit, quality and efficiency. Many real world prob-
lems arising in engineering, economics, medicine and other domains can be formu-
lated as optimization tasks. Such problems are frequently characterized by non-convex,
non-differentiable, discontinuous, noisy or dynamic objective functions and constraints
which ask for adequate computational methods.

This volume is a result of very vivid and fruitful discussions held during the Work-
shop on Computational Optimization. The participants have agreed that the relevance
of the conference topic and quality of the contributions have clearly suggested that a
more comprehensive collection of extended contributions devoted to the area would be
very welcome and would certainly contribute to a wider exposure and proliferation of
the field and ideas.

The volume include important real problems like parameter settings for controlling
processes in bioreactor, robot skin wiring, strip packing, project scheduling, tuning of
PID controller and so on. Some of them can be solved applying traditional numerical
methods, but others needs huge amount of computational resources. Therefore for them
are more appropriate to develop an algorithms based on some metaheuristic method like
evolutionary computation, ant colony optimization, constrain programming etc.

April 2013 Stefka Fidanova
Co-Chair

WCO’2012

Organization

Workshop on Computational Optimization (WCO 2012) is organized in the framework
of FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION
SYSTEMS FedCSIS - 2012

Conference Co-chairs

Stefka Fidanova IICT (Bulgarian Academy of Sciences, Bulgaria)
Antonio Mucherino IRISA (Rennes, France)
Josef Tvrdik University of Ostrava (Czech Republic)
Daniela Zaharie West University of Timisoara (Romania)

Program Committee

Andonov, Rumen IRISA and University of Rennes 1, Rennes, France
Bartl, David University of Ostrava, Czech Republic
Brest, Janez University of Maribor, Slovenia
Hoai An, Le Thi University of Lorraine, France
Hosobe, Hiroshi National Institute of Informatics, Japan
Iiduka, Hideaki Kyushu Institute of Technology, Japan
Judice, Joaquim Instituto Telecomunicaes, Portugal
Kukal, Jaromir Czech Technical University in Prague, Czech

Republic
Lampinen, Jouni University of Vaasa, Finland
Lavor, Carlile IMECC-UNICAMP, Campinas, Brazil
Marinov, Pencho Bulgarian Academy of Science, Bulgaria
Mesjasz, Mariusz WUT, Poland
Neri, Ferrante University of Jyvskyl, Finland
Pardalos, Panos University of Florida, United States
Penev, Kalin Southampton Solent University, United Kingdom
Siarry, Patrick Universite Paris XII Val de Marne, France

VIII Organization

Stefanov, Stefan Neofit Rilski University, Bulgaria
Stuetzle, Tomas Universite Libre de Bruxelles, Belgium
Suganthan, Ponnuthurai Nanyang Technological University, Singapore
Vrahatis, Michael University of Patras, Greece
Zilinskas, Antanas Research Institute of Mathematics and Informatics,

Lithuania

Contents

Intuitionistic Fuzzy Logic as a Tool for Quality Assessment of Genetic
Algorithms Performances . 1
Maria Angelova, Krassimir Atanassov, Tania Pencheva

A Graph Optimization Approach to Item-Based Collaborative Filtering 15
Borzou Rostami, Paolo Cremonesi, Federico Malucelli

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 31
Samuel Deleplanque, Alain Quilliot

ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation
Model . 51
Stefka Fidanova, Olympia Roeva, Maria Ganzha

A Heuristic Based Algorithm for the 2D Circular Strip Packing Problem . . . 73
Hakim Akeb, Mhand Hifi, Dominique Lazure

Experimental Evaluation of Pheromone Structures for Ant Colony
Optimization: Application to the Robot Skin Wiring Problem 93
Davide Anghinolfi, Giorgio Cannata, Fulvio Mastrogiovanni,
Cristiano Nattero, Massimo Paolucci

Homogeneous Non Idling Problems: Models and Algorithms 115
Alain Quilliot, Philippe Chretienne, Benoit Bernay

Flow Models for Project Scheduling with Transfer Delays and Financial
Constraints . 135
Alain Quilliot, Hélène Toussaint

A New Hybrid GA-FA Tuning of PID Controller for Glucose
Concentration Control . 155
Olympia Roeva, Tsonyo Slavov

X Contents

Some Properties of the Broyden Restricted Class of Updates with Oblique
Projections . 169
Andrzej Stachurski

Author Index . 183

Intuitionistic Fuzzy Logic as a Tool for Quality

Assessment of Genetic Algorithms Performances

Maria Angelova, Krassimir Atanassov, and Tania Pencheva

Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences

105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
{maria.angelova,tania.pencheva}@biomed.bas.bg, krat@bas.bg

Abstract. Intuitionistic fuzzy logic (IFL) has been implemented in this
investigation aiming to derive intuitionistic fuzzy estimations of S. cere-
visiae fed-batch cultivation model parameters obtained using standard
simple (SGA) and multi-population (MpGA) genetic algorithms. Perfor-
mances of MpGA have been tested before and after the application of
the procedure for purposeful model parameters genesis at three different
values of generation gap, proven as the most sensitive genetic algorithms
parameter toward convergence time. Results obtained after the imple-
mentation of intuitionistic fuzzy logic for MpGA performances assess-
ment have been compared and MpGA at GGAP = 0.1 after the
purposeful model parameters genesis procedure application has been dis-
tinguished as the fastest and the most reliable one. Further, the promi-
nent MpGA at GGAP = 0.1 has been compared to SGA at GGAP = 0.1.
Obtained results have been assessed applying IFL and the most reliable
algorithm has been distinguished.

1 Introduction

Among a number of searching tools, genetic algorithms (GA) are one of the
methods based on biological evolution, inspired by Darwins theory of survival of
the fittest. GA [1] are directed random search techniques, based on the mechan-
ics of natural selection and genetics, and seek for the global optimal solution
in complex multidimensional search space by simultaneously evaluating many
points in the parameter space. Some properties such as hard problems solving,
noise tolerance, easiness to interface and hybridize, make GA a suitable and quite
workable tool especially for tasks which are not completely determined. Such an
intractable problem and a real challenge for researchers is the parameter iden-
tification of fermentation processes models [2,3,4,5,6]. Modeling of fermentation
processes, known as complex, dynamic systems with interdependent and time-
varying process variables, is a specific task, rather difficult to be solved. Failure
of conventional optimization methods to reach to a satisfactory solution for pa-
rameters identification of fermentation process model [2,5] provokes idea genetic
algorithms to be tested as an alternative technique.

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 1–13.
DOI: 10.1007/978-3-319-00410-5_1 c© Springer International Publishing Switzerland 2013

2 M. Angelova, K. Atanassov, and T. Pencheva

Goldberg [1] initially presents the standard single-population genetic algo-
rithm (SGA) inspired by natural genetics. SGA searches a global optimal solu-
tion using three main genetic operators in a sequence selection, crossover and
mutation. More similar to nature is multi-population genetic algorithm (MpGA),
since there many populations, called subpopulations, evolve independently from
each other. After a certain number of generations a part of individuals are dis-
tributed between the subpopulations (migration).

According to [1,7] structure of standard SGA could be shortly presented be-
low in eight steps:

Begin
1. [Start] Generate random population of n chromosomes
2. [Objective function] Evaluate the objective function of each chromosome x
in the population
3. [Fitness function] Find the fitness function of each chromosome x in the
population
4. [New population] Create a new population by repeating following steps:
4.1. [Selection] Select parent chromosomes from the population according to
their fitness function
4.2. [Crossover] Cross over the parents to form new offspring with a crossover
probability
4.3. [Mutation] Mutate new offspring at each locus with a mutation probability
5. [Accepting] Place new offspring in a new population
6. [Replace] Use new generated population for a further run of the algorithm
7. [Test] If the end condition is satisfied, stop and return the best solution in
current population, else move to Loop step
8. [Loop] Go to Fitness step.
End

In the case of MpGA the algorithm starts not with random population of n
chromosomes but with the generation of k random subpopulations each of them
with n chromosomes. After that all the steps are performed not for the popula-
tions but for the subpopulations. Additionally, a new step appears after Step 6
Replace, namely the step of

[Migration] Migration of individuals between the subpopulations after fol-
lowing isolation time.

When GA are applied for the purposes of model parameter identification,
there are many operators, functions, parameters and settings that may vary
depending on the considered problems [1,8]. In [8] generation gap, which is the
fraction of the population to be reproduced, has been investigated altogether
with crossover and mutation rate towards convergence time. Among them three,
generation gap (GGAP) has been distinguished as the most sensitive genetic
algorithm parameter. Up to almost 40% of the algorithm calculation time can

IFL to Genetic Algorithms Quality Assessment 3

be saved in the case of MpGA application using GGAP = 0.5 instead of 0.9
without loss of model accuracy. The same outcome has been achieved when
SGA is applied. Obtained promising results in [8] provoke the idea of subsequent
reduction of the generation gap value. Thus the topic of the present work is to
be investigated the MpGA quality of performance for three different values of
generation gap GGAP = 0.9, GGAP = 0.5 and GGAP = 0.1. Additionally, the
performance quality of SGA and MpGA at GGAP = 0.1 to be compared based
on IFL.

The quality of GA performance could be appraised by some representative
criteria such as the objective function value and the algorithm convergence time
As an alternative for assessing the quality of different algorithms intuitionistic
fuzzy logic (IFL) might be applied for various purposes. In order to construct the
degree of validity and non-validity it is required the algorithms to be performed
in two different intervals of model parameters variation. One interval could be
determined as so-called broad range known from the literature [6]. The other
one, called narrow range, is user-defined and might be obtained using different
criteria e.g. based on the minimum and maximum values, or on the average ones,
or after the implementation of the procedure for purposeful model parameters
genesis [9].

The aim of this study is intuitionistic fuzzy estimations to be applied for
assessing the multi-population genetic algorithm at three different values of gen-
eration gap. After that performance of standard SGA towards standard MpGA
to be compared at the most reliable GGAP value when GA have been imple-
mented in parameter identification of S. cerevisiae fed-batch cultivation.

Aiming to save decreased convergence time while keeping or even improving
model accuracy, intuitionistic fuzzy estimations overbuild the results obtained
after procedure of purposeful model parameters genesis.

2 Background

2.1 Intuitionistic Fuzzy Estimations

In intuitionistic fuzzy logic (IFL) [10,11] if p is a variable then its truth-value is
represented by the ordered couple

V (p) = 〈M(p), N(p)〉 (1)

so that M(p), N(p),M(p) +N(p) ∈ [0, 1], where M(p) and N(p) are degrees of
validity and of non-validity of p. These values can be obtained applying different
formula depending on the problem considered.

For the purpose of this investigation the degrees of validity/non-validity can
be obtained, e.g., by the following formula:

M(p) =
m

u
, N(p) = 1− n

u
, (2)

4 M. Angelova, K. Atanassov, and T. Pencheva

where m is the lower boundary of the narrow range; u - the upper boundary of
the broad range; n - the upper boundary of the narrow range.

If there is a database collected having elements with the form < p,M(p),
N(p) >, different new values for the variables can be obtained. In case of two
records in the database, the new values might be as follows:

Vopt = 〈max(M1(p),M2(p)),min(N1(p), N2(p))〉 , (3)

Vaver =

〈
M1(p) +M2(p)

2
,
N1(p) +N2(p)

2

〉
, (4)

Vpes = 〈min(M1(p),M2(p)),max(N1(p), N2(p))〉 , (5)

Therefore, for each p

Vpes(p) ≤ Vaver(p) ≤ Vopt(p).

In case of three records in the database, the following new values can be obtained:

Vstrong opt = 〈M1(p) +M2(p) +M3(p)−M1(p)M2(p)−M1(p)M3(p)−

−M2(p)M3(p) +M1(p)M2(p)M3(p), N1(p)N2(p)N3(p) 〉 , (6)

Vopt = 〈max(M1(p),M2(p),M3(p)),min(N1(p), N2(p), N3(p))〉 , (7)

Vaver =

〈
M1(p) +M2(p) +M3(p)

3
,
N1(p) +N2(p) +N3(p)

3

〉
, (8)

Vpes = 〈min(M1(p),M2(p),M3(p)),max(N1(p), N2(p), N3(p))〉 , (9)

Vstrong pes = 〈M1(p)M2(p)M3(p), N1(p) +N2(p) +N3(p)−N1(p)N2(p)

−N1(p)N3(p)−N2(p)N3(p) +N1(p)N2(p)N3(p)〉 (10)

Therefore, for each p

Vstrong pes(p) ≤ Vpes(p) ≤ Vaver(p) ≤ Vopt(p) ≤ Vstrong opt(p).

2.2 Procedure for Purposeful Model Parameter Genesis

The procedure for purposeful model parameter genesis (PMPG) has been origi-
nally developed and firstly applied for simple genetic algorithms [9]. Aiming to
obtain reliable results in parameter identification of a fermentation process model
when using genetic algorithms, a great number of algorithm runs have to be ex-
ecuted because of their stochastic nature. Firstly, the genetic algorithm searches
for solutions of model parameters in wide but reasonably chosen boundaries ac-
cording to the statements in [6]. When results from many algorithms executions
were accumulated and analyzed, they showed that the values of model parame-
ters can be assembled and predefined boundaries of model parameters could be
restricted. That provoked the idea for PMPG, which results in the defining of
more appropriate boundaries for variation of the model parameters values. The
procedure application leads to decrease convergence time while at least saving
or even improving the model accuracy.

IFL to Genetic Algorithms Quality Assessment 5

2.3 Procedure for Genetic Algorithms Quality Assessment
Applying IFL

As mentioned above, the implementation of IFL to assess the quality of genetic
algorithms requires constructing the degree of validity and non-validity in two
different intervals of model parameters variation: so-called broad range as known
from the literature and so-called narrow range which is user-defined. A procedure
for assessment of algorithm quality performance (AAQP) is proposed [12] to
evaluate the quality of genetic algorithms applying IFL. At the beginning, a
number of runs of each of the algorithms, object of the investigation, have to
be performed in both broad and narrow ranges of model parameters. Then the
average values of the objective function, algorithms convergence time and each of
the model parameters for each one of the ranges and each one of the investigated
algorithms are determined. Next the degrees of validity/non-validity for each of
the algorithms, object of the investigation, are determined according to (2).
Then, according to (3)-(5) in case of two objects considered, optimistic, average
and pessimistic values are defined; or, according to (6)-(10) in case of three
objects, strong optimistic, optimistic, average, pessimistic and strong pessimistic
values are calculated for each one of the model parameters. Next determined in
such way values are assigned to each of the model parameters for each of the
ranges for each of the algorithms. Finally, based on these assigns, the quality of
each one of considered algorithm is assessed.

2.4 Mathematical Model of S. cerevisiae Fed-Batch Cultivation

Experimental data of S. cerevisiae fed-batch cultivation is obtained in the Insti-
tute of Technical Chemistry - University of Hannover, Germany [2]. The cultiva-
tion of the yeast S. cerevisiae is performed in a 2 l reactor, using a Schatzmann
medium. Glucose in feeding solution is 35 g/l. The temperature was controlled
at 30◦C, the pH at 5.5. The stirrer speed was set to 1200 rpm. Biomass and
ethanol were measured off-line, while substrate (glucose) and dissolved oxygen
were measured on-line.

Mathematical model of S. cerevisiae fed-batch cultivation is commonly de-
scribed as follows, according to the mass balance [2]:

dX

dt
= μX − F

V
X (11)

dS

dt
= −qSX +

F

V
(Sin − S) (12)

dE

dt
= qEX − F

V
E (13)

dt = −qO2X + kO2

L a (O∗
2 −O2) (14)

dV

dt
= F (15)

6 M. Angelova, K. Atanassov, and T. Pencheva

where X is the concentration of biomass, [g/l]; S - concentration of substrate
(glucose), [g/l]; E - concentration of ethanol, [g/l]; O2 - concentration of oxygen,
[%]; O∗

2 - dissolved oxygen saturation concentration, [%]; F - feeding rate, [l/h];
V - volume of bioreactor, [l]; kO2

L a - volumetric oxygen transfer coefficient, [1/h];
Sin - glucose concentration in the feeding solution, [g/l]; μ, qS , qE , qO2 - specific
growth/utilization rates of biomass, substrate, ethanol and dissolved oxygen,
[1/h]. All functions are continuous and differentiable.

The fed-batch cultivation of S. cerevisiae considered here is characterized by
keeping glucose concentration equal to or below to its critical level (Scrit =
0.05 g/l), sufficient dissolved oxygen in the broth O2 ≥ O2crit (O2crit = 18%)
and availability of ethanol in the broth. This state corresponds to the so called
mixed oxidative state (FS II) according to functional state modeling approach
[2]. Hence, specific rates in Eqs. (11)-(15) are:

μ = μ2S
S

S + kS
+ μ2E

E

E + kE
, qS =

μ2S

YSX

S

S + kS

qE = − μ2E

YEX

E

E + kE
, qO2 = qEYOE + qSYOS (16)

where μ2S , μ2E are the maximum growth rates of substrate and ethanol, [1/h];
kS , kE - saturation constants of substrate and ethanol, [g/l]; Yij - yield coeffi-
cients, [g/g]; and all model parameters fulfill the non-zero division requirement.

As an optimization criterion, mean square deviation between the model output
and the experimental data obtained during cultivation has been used:

JY =
∑

(Y − Y ∗)2 → min, (17)

where Y is the experimental data, Y ∗ - model predicted data, Y = [X,S,E,O2].

3 MpGA Quality Assessment at Different Values of
GGAP

The procedure for purposeful model genesis has been applied to parameter iden-
tification of S. cerevisiae fed-batch cultivation using MpGA. Following model
(11)-(16) of S. cerevisiae fed-batch cultivation, nine model parameters have been
estimated altogether, applying MpGA with three different GGAP values, proven
as the most sensitive genetic algorithms parameter towards the algorithms con-
vergence time [8]. The values of other GA parameters and type of genetic op-
erators in MpGA considered here are tuned according to [8]. GA is terminated
when a certain number of generations is fulfilled, in this case 100. Scalar relative
error tolerance RelTol is set to 1e-4, while the vector of absolute error toler-
ances (all components) AbsTol - to 1e-5. Parameter identification of the model
(11)-(16) has been performed using Genetic Algorithm Toolbox [13] in Matlab 7
environment. All the computations are performed using a PC Intel Pentium 4
(2.4 GHz) platform running Windows XP.

IFL to Genetic Algorithms Quality Assessment 7

The quality of MpGA performance is assessed before and after application of
PMPG, that means that the narrow range is obtained applying PMPG. The ob-
tained results are firstly analyzed according to achieved objective function values
and convergence time. For each GGAP value the minimum and the maximum
of the objective function are determined, and the levels of performance accord-
ing to PMPG [9] have been constructed. According to the values of obtained
objective function there are only two levels of performance in MpGA. The best
results hit the interval [minJ ; minJ + Δ − ε] and they form the top level of
MpGA performance. The worse solutions for the objective function fall in the
interval [minJ+Δ;maxJ] and thus create the low level of performance. For each
of the levels, constructed in such a way, the minimum, maximum and average
values of each model parameter have been determined. The new boundaries of
the model parameters are constructed in a way that the new minimum is lower
but close to the minimum of the top level, and the new maximum is higher but
close to the maximum of the top level. Table 1 presents previously used broad
boundaries for each model parameter according to [6] as well as new boundaries
proposed based on PMPG when applying MpGA. Additionally, Table 1 consists
of intuitionistic fuzzy estimations, obtained based on (2).

Table 1. Model parameters boundaries for MpGA

Table 2 presents the boundaries (low LB and up UB) for the strong optimistic,
optimistic, average, pessimistic and strong pessimistic prognoses for the perfor-
mances of MpGA algorithm, obtained based on intuitionistic fuzzy estimations
(2) and formula (3)-(7).

Investigated MpGA has been again applied for parameter identification of S.
cerevisiae fed-batch cultivation involving newly proposed according to Table 1
boundaries at GGAP = 0.9, GGAP = 0.5 and GGAP = 0.1. Several runs have

8 M. Angelova, K. Atanassov, and T. Pencheva

Table 2. Prognoses for MpGA performance

been performed in order reliable results to be obtained. Table 3 presents the
average values of the objective function, convergence time and model parameters
when MpGA has been executed at three investigated here values of GGAP before
and after the application of PMPG.

Table 3. Results from model parameter identification before and after PMPG

The applied procedure for model parameter genesis reduces the convergence
time of MpGA with 6 to almost 10% but saving the model accuracy. Moreover,
the results hit the top level of presentation and have one and same reduced
objective function, thus showing good effectiveness of proposed procedure for
purposeful model parameter genesis when MpGA is applied.

Table 4 lists the number and type of the estimations assigned to each of the
parameters for three values of GGAP when MpGA is applied and before and
after the PMPG.

Table 4. Model parameter estimations before and after PMPG

IFL to Genetic Algorithms Quality Assessment 9

As seen form Table 4, there are no any strong pessimistic and pessimistic
prognoses. In four of the cases there are 4 strong optimistic prognoses, and in
three of them the next 5 prognoses are optimistic these are the cases of GGAP
= 0.5 before and after PMPG and GGAP = 0.1 after PMPG. In these three
distinguished as the most reliable cases, the value of the objective function is
equal to the lowest one that means they are with the highest achieved degree
of accuracy. But if one compares the time, the MpGA with GGAP = 0.1 after
PMPG is about three times faster than MpGA with GGAP = 0.5 before and
after PMPG and about 5 times faster than the slowest case of GGAP = 0.9
before PMPG. Thus, based on the intuitionistic fuzzy estimations of the model
parameters and further constructed prognoses, MpGA with GGAP = 0.1 and
after the procedure for the purposeful model parameter genesis is distinguished
as more reliable algorithm if one would like to obtained results with a high level
of relevance and for less computational time.

Fig. 1 shows results from experimental data and model prediction, respec-
tively, for biomass (a), ethanol (b), substrate (c) and dissolved oxygen (d) when
the procedure for the purposeful model parameter genesis has been applied for
MpGA with GGAP = 0.1.

(a) (b)

(c) (d)

Fig. 1. Model prediction compared to experimental data when MpGA at GGAP = 0.1
has been applied

10 M. Angelova, K. Atanassov, and T. Pencheva

The obtained results show that the highest achieved model accuracy can be
reached using MpGA with GGAP = 0.1 for much less computational time ad-
ditionally reduced after the application of purposeful model parameter genesis
procedure.

4 Assess the Performance of Standard SGA towards
MpGA at GGAP= 0.1

In this section, distinguished as the most reliable and the fastest one MpGA at
GGAP = 0.1 is going to be compared to SGA at GGAP = 0.1. Before applying
AAQP procedure towards SGA and MpGA at GGAP = 0.1, plenty of runs of
SGA in broad range has been performed. Based on the data collected, a new,
narrow range for the parameters variation have been defined in a way described
for MpGA. Two intervals of model parameters variation with corresponding low
boundaries (LB) and up boundaries (UB), as well as the degrees of validity/non-
validity for both algorithms accorgind (2) are shown in Table 5.

Table 5. Model parameters boundaries for SGA and MpGA at GGAP = 0.1

Table 6 presents the boundaries (low LB and up UB) for the optimistic, average
and pessimistic prognoses for the performances of SGA and MpGA algorithms,
obtained based on intuitionistic fuzzy estimations (2) and formula (6)-(10).

Table 6. Prognoses for SGA and MpGA performance

Investigated SGA has been again applied for parameter identification of S.
cerevisiae fed-batch cultivation involving newly proposed according to Table 5
boundaries at GGAP = 0.1. Several runs have been performed in order reliable

IFL to Genetic Algorithms Quality Assessment 11

results to be obtained. Table 7 presents the average values of the objective func-
tion, convergence time and model parameters when SGA and MpGA have been
executed at GGAP = 0.1 before and after the application of PMPG. Values for
the MpGA at GGAP = 0.1 are equal to those presented in Table 3, but are also
listed here for a completeness.

Table 7. Results from model parameter identification before and after PMPG

It is worth to note that in both considered here kinds of GA, running of algo-
rithms in narrow range leads to expecting decrease of the convergence time while
even improving the model accuracy. Running SGA at GGAP = 0.1 in narrow
range reduces the computation time 1.41 times compared to SGA in broad range.
Running MpGA at GGAP = 0.1 in narrow range reduces the computation time
1.06 times compared to MpGA in broad range. But it is obvious that the fastest
one SGA at GGAP = 0.1 in narrow range is almost twice faster (exactly 1.85
times) compared to the slowest one MpGA at GGAP = 0.1 in broad range.

Table 8 lists the number and type of the estimations assigned to each of the
parameters for SGA and MpGA at GGAP = 0.1 before and after the PMPG.

Table 8. Model parameter estimations before and after PMPG

As seen form Table 8, there are no any pessimistic prognoses. It is worth to
note that MpGA at GGAP = 0.1 in both ranges is assessed with only optimistic
prognoses. SGA at GGAP = 0.1 in both ranges is very close to MpGA perfor-
mance with 8 optimistic and only 1 average prognoses. Among the two leaders,
MpGA at GGAP = 0.1 in narrow range is 1.06 times faster compared to MpGA
in broad range. Moreover, the results when MpGA at GGAP = 0.1 in narrow

12 M. Angelova, K. Atanassov, and T. Pencheva

range is applied hit the highest level of model accuracy, thus showing good effec-
tiveness of proposed procedure for purposeful model parameter genesis. Thus,
based on the intuitionistic fuzzy estimations of the model parameters and fur-
ther constructed prognoses, MpGA with GGAP = 0.1 and after the procedure
for the purposeful model parameter genesis is distinguished as the most reliable
algorithm if one would like to obtained results with a high level of relevance.

Due to the fact that again MpGA with GGAP = 0.1 in narrow range is dis-
tinguished as the leader, results repeated those presented in Fig. 1 from experi-
mental data and model prediction, respectively, for biomass, ethanol, substrate
and dissolved oxygen.

5 Conclusions

In this investigation intuitionistic fuzzy logic has been implemented in order to
assess the quality of genetic algorithms performance for the purposes of parame-
ter identification of S. cerevisiae fed-batch cultivation. Aiming to save obtained
promising results, namely less convergence time at kept and even improved model
accuracy, intuitionistic fuzzy logic overbuilds the results obtained after the appli-
cation of recently developed procedure for purposeful model parameter genesis.
This procedure has been here applied to MpGA at three different values of GGAP
as the most sensitive genetic algorithms parameter. After the implementation of
intuitionistic fuzzy logic for obtaining of intuitionistic fuzzy estimations of model
parameters and further for construction of strong optimistic, optimistic, average,
pessimistic and strong pessimistic prognoses for the algorithm performances, re-
sults have been compared and MpGA with GGAP = 0.1 after the procedure for
purposeful model parameter genesis application has been distinguished as more
reliable. Among the distinguished three leaders, MpGA with GGAP = 0.1 after
PMPG is more than three times faster than MpGA with GGAP = 0.5 before
and after PMPG saving the highest achieved values of model accuracy.

Further distinguished as the most reliable and the fastest one MpGA at GGAP
= 0.1 has been compared to SGA at GGAP = 0.1. AAQP has been applied to as-
sess the performance of both standard algorithms. As a result MpGA at GGAP
= 0.1 after PMPG has been distinguished as the most reliable algorithm for pa-
rameter identification of S. cerevisiae fed-batch cultivation with only optimistic
prognoses and the highest model accuracy achieved.

Presented here cross-evaluation based on IFL and applied both for assessment
of the influence of GGAP to the algorithm performance, as well as for the com-
parison of two algorithms, demonstrates the workability of intuitionistic fuzzy
estimations to assist in assessment of quality of GA performance. Thus, the esti-
mations based on intuitionistic fuzzy logic might be considered as an appropriate
tool for reliable assessment for other genetic algorithm parameters, for different
optimization algorithms as well as to be applied to various objects of parameter
identification.

Acknowledgements. This work is partially supported by National Science
Fund of Bulgaria, grants DID 02-29 and DMU 03-38.

IFL to Genetic Algorithms Quality Assessment 13

References

1. Goldberg, D.: Genetic algorithms in search, optimization and machine learning.
Addison-Wiley Publishing Company, Massachusetts (1989)

2. Pencheva, T., Roeva, O., Hristozov, I.: Functional state approach to fermentation
processes modelling. In: Tzonkov, Hitzmann, B. (eds.) Prof. Marin Drinov. Aca-
demic Publishing House, Sofia (2006)

3. Jones, K.: Comparison of genetic algorithms and particle swarm optimization for
fermentation feed profile determination. In: Proceedings of the CompSysTech 2006,
Veliko Tarnovo, Bulgaria, June 15-16, pp. IIIB.8-1–IIIB.8-7 (2006)

4. Adeyemo, J., Enitian, A.: Optimization of fermentation processes using evolution-
ary algorithms - a review. Scientific Research and Essays 6(7), 1464–1472 (2011)

5. Angelova, M., Tzonkov, S., Pencheva, T.: Genetic algorithms based parameter
identification of yeast fed-batch cultivation. In: Dimov, I., Dimova, S., Kolkovska,
N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 224–231. Springer, Heidelberg (2011)

6. Schuegerl, K., Bellgardt, K.-H. (eds.): Bioreaction engineering, modeling and con-
trol. Springer, Heidelberg (2000)

7. Gupta, D., Ghafir, S.: An overview of methods maintaining diversity in genetic
algorithms. International Journal of Emerging Technology and Advanced Engi-
neering 2(5), 56–60 (2012)

8. Angelova, M., Pencheva, T.: Improvement of multi-population genetic algorithms
convergence time. Monte Carlo Methods and Application, 1–10 (2013)

9. Angelova, M., Atanassov, K., Pencheva, T.: Purposeful model parameters genesis
in simple genetic algorithms. Computers and Mathematics with Applications 64,
221–228 (2012)

10. Atanassov, K.: Intuitionistic fuzzy sets. Springer, Heidelberg (1999)
11. Atanassov, K.: On intuitionistic fuzzy sets theory. Springer, Berlin (2012)
12. Pencheva, T., Angelova, M., Atanassov, K.: Intuitionistic fuzzy logic implementa-

tion to assess genetic algorithms quality. Submitted to Biochemical Engineering
Journal

13. Chipperfield, A.J., Fleming, P., Pohlheim, H., Fonseca, C.M.: Genetic algorithm
toolbox for use with MATLAB, Users guide, version 1.2. Dept. of Automatic Con-
trol and System Engineering, University of Sheffield, UK (1994)

A Graph Optimization Approach to Item-Based
Collaborative Filtering

Borzou Rostami, Paolo Cremonesi, and Federico Malucelli

Politecnico di Milano - DEI, Pizza Leonardo da Vinci, 32 Milan, Italy
{rostami,malucell}@elet.polimi.it, paolo.cremonesi@polimi.it

Abstract. Recommender systems play an increasingly important role in online
applications characterized by a very large amount of data and help users to find
what they need or prefer. Various approaches for recommender systems have
been developed that utilize either demographic, content, or historical informa-
tion. Among these methods, item-based collaborative filtering is one of most
widely used and successful neighborhood-based collaborative recommendation
approaches that compute recommendation for users using the similarity between
different items. However, despite their success, they suffer from the lack of avail-
able ratings which leads to poor recommendations. In this paper we apply a bi-
criterion bath optimization approach on a graph representing the items and their
similarity. This approach introduces additional similarity links by combining two
or more existing links and improve the similarity matrix between items. The two
criteria take into account on the one hand the distance between items on a the
graph (min sum criterion), on the other hand the estimate of the information re-
liability (max min criterion). Experimental results on both explicit and implicit
datasets shows that our approach is able to burst the accuracy of existing item-
based algorithms and to outperform other algorithms.

Keywords: Item-based collaborative filtering, Similarity measure,
Bi-criterion path problem, MinSum-MaxMin optimization.

1 Introduction

Recommender Systems (RS) play an increasingly important role in online applications
characterized by a very large amount of data - e.g., multimedia catalogs of music, prod-
ucts, news, images, or movies. Their goal is to filter a large amount of information to
identify the items that are likely to be more interesting and attractive to a user. Recom-
mendations are inferred on the basis of different user profile characteristics, including
either explicit or implicit ratings on a sample of suggested elements. Explicit ratings
confidently represent the user opinion; For instance, in a movie recommendation ap-
plication users can enter ratings explicitly after watching a movie, giving their opinion
on this movie. On the other hand, implicit ratings are inferred by the system on the
basis of the user-system interaction, which might not match the user opinion. For in-
stance, the system is able to monitor whether a user has watched a live program on
a certain channel or whether the user has uninterruptedly watched a movie. Despite
explicit ratings are more reliable than implicit ratings in representing the actual user in-
terest towards an item, their collection can be annoying from the user’s perspective. The

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 15–30.
DOI: 10.1007/978-3-319-00410-5_2 c© Springer International Publishing Switzerland 2013

16 B. Rostami, P. Cremonesi, and F. Malucelli

problem of recommending items has been studied extensively, and two main paradigms
have emerged. Content-based recommendation systems try to recommend items similar
to those a given user has liked in the past [4,5], whereas systems designed according
to the collaborative recommendation paradigm identify users whose preferences are
similar to those of the given user and recommend items they have liked [14]. There
are two major approaches to collaborative filtering: (i) neighborhood models and (ii)
dimensionality reduction models.

Neighborhood models base their prediction on the similarity relationships between
either users or item. Algorithms based on the similarity between users predict a user’s
preference on an item based on the ratings that item has received from similar users.
On the other hand, algorithms based on the similarity between items compute the user’s
preference for an item based on his/her own ratings on similar items. The latter is usu-
ally the preferred approach, as it usually performs better in terms of accuracy, while
also being more scalable [23].

Item-based systems suffer from the lack of available ratings. When the rating data
is sparse, it is possible to have items with few ratings in common; therefore, similarity
weights may be computed using only a small number of ratings and consequently the
item-based approach will make predictions using a very limited number of neighbors,
resulting in a biased recommendation.

Dimensionality reduction is one of the common approaches used to overcome the
problems of sparsity and scalability in CF. Decomposition of a user-rating matrix
[8,11,26] and decomposition of a sparse similarity matrix [10] are essentially two ways
in which dimensionality reduction can be used to improve recommender systems.

Graph-based approaches also have been introduced to overcome the problems aris-
ing in neighborhood collaborative filtering due to sparsity. These approaches make use
of a graph where nodes correspond to users, items or both, and edges represent the in-
teractions or similarities between users and items. Recommendations are then induced
by “transitive associations”, that is suitable paths in the graph that have the role to re-
duce graph sparsity. The transitive associations can be used to recommend items in two
different ways. In a first approach, the proximity of a user u to an item i in the graph is
used directly to evaluate the rating of u for i [16,28]. Following this idea, the items rec-
ommended to u by the system are those that are the closest to u in the graph. The second
approach considers the proximity of two item nodes in the graph as a measure of simi-
larity, and uses this similarity as the weights of a neighborhood-based recommendation
method [9,19].

In path-based similarity, the distance between two nodes of the graph is evaluated
as a function of the number of paths connecting the two nodes, as well as the length
of these paths. A recommendation approach that computes the similarity between two
users based on their shortest distance in a graph is the one described in [1]. In this
method, the data is modeled as a directed graph whose nodes are users, and in which
edges are determined based on the notions of horting and predictability. The number
of paths between a user and an item in a bipartite graph can also be used to evaluate
their compatibility [16]. This method of computing distances between nodes in a graph
is known as the Katz measure [17]. Another direction in collaborative filtering research
combines user-based and item-based approaches. For example, [29] clusters the user

A Graph Optimization Approach to Item-Based Collaborative Filtering 17

data and applies intra-cluster smoothing to reduce sparsity. Also in [12] a procedure
for computing similarities between elements of a database has been presented which
is based on a Markov-chain model of random walk through a graph representation of
the database. The presented similarity measures can be used in order to compare items
belonging to database tables that are not necessarily directly connected.

Based on the above discussion and in order to overcome sparsity in CF, we present
an optimization approach in item-based CF which is based on the item graph [27]. We
define a weighted graph where nodes correspond to items and arcs are similarity link
between items. For each arc a real numbers is assigned representing the reliability of the
arc. In order to find a new similarity link between two items with unknown similarity
in the item graph, first we formulate the problem as a bi-criterion path optimization
problem [24]. By applying an efficient polynomial algorithm [13] for bi-criterion path
optimization we find a subset of “efficient” paths in the graph as a best candidate set of
paths between these two nodes. Eventually we use the best path in the candidate set to
assign the similarity weight to the new link. The general framework of our work, like
other graph-based models, is based on finding one or more paths between two items.
However, in our method the similarity between items is found by considering not only
the distance between two items or the length of the path joining them but also by taking
to account the ”reliability” of the path which connects them.

The rest of the paper is organized as follows: Section 2 describes some collaborative
algorithms considered in our study, to provide the needed technical background for
the following sections. In section 3, we first formulate our problem as an optimization
problem then we present an efficient algorithm to find the bi-criterion path problem
in networks and apply this algorithm to our problem. The experimental results will be
provided in section 4. In section 5 the conclusion and discussion will be presented.

2 Collaborative Filtering

Collaborative filtering recommends items on the basis of the ratings provided by groups
of users. The main input to collaborative algorithms is the user rating matrix, where
each element rui is user u’s rating on item i (e.g., rui ∈ {1, ...,5} or rui ∈ {like,dislike}).
There are two major approaches to collaborative filtering: (i) neighborhood models and
(ii) dimensionality reduction models.

2.1 Neighborhood Models

Neighborhood models base their prediction on the similarity relationships between ei-
ther users or items. Algorithms based on the similarity between users predict a user’s
preference on an item based on the ratings that item has received from similar users.
On the other hand, algorithms based on the similarity between items compute the user’s
preference for an item based on his/her own ratings on similar items. The latter is usu-
ally the preferred approach (e.g., [23]), as it usually performs better in terms of accu-
racy, while also being more scalable. Both of these advantages are due to the fact that
the number of items is typically smaller than the number of users. Another advantage
of the latter algorithms is that the reason why a specific recommendation was made to

18 B. Rostami, P. Cremonesi, and F. Malucelli

a user can be explained in terms of the items previously rated by him/her. In addition,
basing the model on items (rather than on users) allows a seamless handling of users
and ratings that are new to the model.

Item based recommendation algorithm contains two main phases, the model build-
ing phase and the prediction phase. In the model building phase, the similarities be-
tween each pair of items are computed and for each particular item i, the algorithm will
store its k most similar items and their similarity values with i. Therefore the similar-
ity weights play a double role in the neighborhood-based recommendation methods: 1)
they allow for the selection of trusted neighbors whose ratings are used in the predic-
tion, and 2) they provide the means to give more or less importance to these neighbors
in the prediction.

The basic idea in similarity computation between two items i and j is to first consider
the users who have rated both of the items and then apply a similarity technique to
determine the similarity weight. The similarity si j between item i and item j is measured
as the tendency of users to rate items i and j similarly and can be defined in many
different ways. Here are three common approaches in [23].

– Cosine

si j =
∑
u

ruiru j√
∑
u

r2
ui

√
∑
u

r2
u j

(1)

– Adjusted cosine

si j =
∑
u
(rui − r̄u)(ru j − r̄u)√

∑
u
(rui − r̄u)

2
√

∑
u
(ru j − r̄u)

2
(2)

– Pearson correlation

si j =
∑
u
(rui − r̄i) (ru j − r̄ j)√

∑
u
(rui − r̄i)

2
√

∑
u
(ru j − r̄ j)

2
(3)

where r̄u is the average rating of the u-th user and r̄i (respectively, r̄ j) is the average
rating of the i-th (respectively, j-th) item. Summations in the cosine similarity are com-
puted over all the users. On the contrary, summations in both the adjusted cosine and
the Pearson similarities are computed only on users who have rated both items i and j –
the common raters – and the similarity is set to zero for pairs of items with no common
raters. In the typical case of a very sparse dataset, it is likely that some pairs of items
will have a poor support (i.e., a small number of common raters), leading to a non-
reliable similarity measure. This is why, if ni j denotes the number of common raters
and si j the similarity between item i and item j, we can define the shrunk similarity di j

as the coefficient
di j =

ni j

ni j +λ
si j (4)

where λ is a shrinking factor. A good value for λ is 100 [18].

A Graph Optimization Approach to Item-Based Collaborative Filtering 19

Neighborhood models are further enhanced by means of a kNN (k-nearest-neigh-
borhood) approach: when predicting a rating r̂ui for user u on item i, only the k items
rated by u that are the most similar to i are considered. The kNN approach discards the
items that are poorly correlated to the target item, thus decreasing noise for improving
the quality of recommendations. We denote the set of k items rated by user u, and most
similar to i, as Dk(u; i). We have focused our attention on two item-based neighborhood
algorithms, i.e., Non-Normalized Cosine Neighborhood and Direct Relations.

2.1.1 Non-Normalized Cosine Neighborhood (NNCosNgbr)
The NNCosNgbr algorithm predicts the rating r̂ui for user u on item i as the weighted
average of the ratings of similar items. Before computing the weighted average, we
normalize the ratings by removing different biases which mask the more fundamental
relations between items. The bias associated with the rating of user u to item i is de-
noted by bui and it is subtracted from rating rui. Such biases include item-effects, which
represent the fact that certain items tend to receive higher ratings than others, and user-
effects, which represent the tendency of certain users to rate higher than others. For
instance, a simple formulation for the bias could be

bui = r̄+(r̄u − r̄)+ (r̄i − r̄) (5)

where r̄ is the average of all the ratings in the user rating matrix, r̄u is the average rating
of the u-th user and r̄i is the average rating of the i-th item. By removing the bias effects,
the rating estimation is

r̂ui = bui +
∑ j∈Dk(u;i) di j (ru j − bu j)

∑ j∈Dk(u;i) di j
(6)

where di j is computed as (4), and si j is measured as the Pearson correlation coefficient.
Notice that the denominator in (6) forces the predicted rating values to fall within a

defined range, e.g., [1 . . .5] for a typical star-rating system. However, for a top-N rec-
ommendation task, exact rating values are not necessary. We simply want to rank items
by their appeal to the user. In such a case, we can simplify the formula by removing the
denominator. A consequential benefit of this is that items with many similar neighbors,
that is with a high value of ∑ j∈Dk(u;i) di j, which means in turn that we have a high con-
fidence in the recommendation, have higher rankings. Therefore, we propose to rank
items with the following rating estimation

r̂ui = bui + ∑
j∈Dk(u;i)

di j (ru j − bu j) (7)

Here r̂ui does not represent a proper rating, but is rather a value we can use to rank the
items according to user u’s taste. We should note that similar non-normalized neighbor-
hood rules have been mentioned by others [18,8].

20 B. Rostami, P. Cremonesi, and F. Malucelli

2.1.2 Direct Relations (DR)
An alternative and simple way of computing the similarity between pair of items i and
j in (7) is to count the number of users that rated both items, without any normalization
factor

di j = # users rating both items (8)

According to [2] this metric emphasizes the similarity between popular items.

2.2 Dimensionality Reduction Models

Recently, several recommender algorithms based on dimensionality reduction have been
proposed. Some of the most successful realizations of dimensionality reduction models
are based on matrix factorization. In its basic form, matrix factorization characterizes
items and users by vectors of factors inferred from item rating patterns. High correspon-
dence between item and user factors leads to a recommendation. These methods have
become popular since they combine predictive accuracy with good scalability.

In dimensionality reduction models, each item i is associated with a vector qi ∈ R f ,
and each user u is associated with a vector pu ∈ R f , where f is the number of latent
factors. For a given item i, the elements of qi measure the extent to which the item
possesses those factors, either positively or negatively. For a given user u, the elements
of pu measure the extent to which the user is interested in items that have high values
for the corresponding factors, again, either positively or negatively. The resulting dot
product, qT

i pu, captures the interaction between user u and item i, i.e., the user’s overall
interest in the item’s characteristics. This approximates user u’s rating of item i, leading
to the estimate rui = qT

i pu. The major challenge is to compute the mapping of each item
and user to factor vectors qi, pu. After the recommender system completes this mapping,
it can easily estimate the rating a user will give to any item.

Dimensionality reduction models based on matrix factorization informally known as
Singular Value Decomposition (SVD) models. Since conventional SVD is undefined in
the presence of missing values, which translate to unknown user ratings, several alter-
native solutions have been proposed. Earlier works fill the missing ratings with baseline
estimations (e.g., average user/item rating [22]). This however leads to a very large
and dense user rating matrix, whose factorization might be computationally infeasible.
More recent works learn the values from the known ratings through a suitable objective
function which minimizes the prediction error (e.g., RMSE). The proposed objective
functions are usually regularized in order to avoid over-fitting [21]. Typically, gradient
descent is applied to minimize the objective function. In this work we have considered
PureSVD techniques treats missing ratings as zeros and performs a traditional SVD.

2.2.1 PureSVD
PureSVD is a recently proposed latent factor algorithm [6]. Its rating estimation rule

is based on conventional SVD, where unknown ratings are treated as zeros. In terms of
predictive power, choosing zero is not very important, and we have received similar re-
sults with higher values. What is important is that the conventional SVD decomposition
of the user rating matrix becomes feasible, since all matrix entries are now non-missing

A Graph Optimization Approach to Item-Based Collaborative Filtering 21

and it can be performed using highly-optimized tools for conventional SVD on sparse
matrices. The user rating matrix R is estimated by the factorization [2]

R̂ =U ·Σ ·QT (9)

where U ∈ ℜn× f and Q ∈ ℜm× f are two orthonormal matrices representing, respec-
tively, the left and right singular vectors associated to the top- f singular values of R
with the highest magnitude. The top- f singular values are stored in the diagonal matrix
Σ ∈ ℜ f× f . As detailed in [6], once the user rating matrix has been decomposed, the
prediction rule for PureSVD can be written as

r̂ui = ru ·Q ·qi
T (10)

where ru denotes user u’s vector of ratings (where unknown ratings are filled with ze-
ros), and qi represents the i-th column of Q. Note that, similarly to (6), r̂ui is not a proper
normalized rating, but can be used to rank items according to user u’s interests.

3 Optimization Model

In this section we first describe the items and relationship between them by means of
a weighted graph, then we formulate the problem of finding the similarity between
items with unknown relationship as a bi-criterion path problem. Suppose that M =
{1,2, ...,m} is the set of users, V = {1,2, ...,n} is the set items and R ∈ ℜm×n is the
user-rating matrix where each entry ahk gives the rating that user h gave to itemk, if any.
Moreover, suppose that we are given the item similarity matrix S ∈ ℜn×n. For instance,
S can be obtained by Cosine similarity method. Based on similarity matrix we define a
weighted graph G with vertex set V and arc set E = {(i, j) ∈V ×V : si j > 0}. Each arc
(i, j) ∈ E is weighted by the similarity of two items.

Consider two non adjacent nodes a and b in the graph G that is two items with
unknown similarity. Our objective is to look for a similarity weight between items a
and b so as to improve the quality of the recommender system. This objective can be
translated as introducing one arc between nodes a and b in the graph G. A natural way
to find a new connection between two nodes in a graph is to find a path which connects
these two nodes. Selecting the ”best” path among all possible paths between these two
nodes lead us to solve an optimization problem.

Let N = {(i, j) ∈ V ×V : si j = 0} is the set of pair of items in G with unknown
similarity, (a,b)∈N and ∏ab be the set of all paths between a and b in G. The reliability
of a path P ∈ ∏ab is defined by the lowest similarity weight in the path:

reliability(P) = min
(i, j)∈P

si j (11)

This definition implies that finding a path with the maximum reliability between two
items a and b, corresponds to finding a path whose arc of minimum weight si j is maxi-
mum among all paths P ∈ ∏ab, giving rise to the following bottleneck path problem:

max
P∈∏ab

reliability(P) (12)

22 B. Rostami, P. Cremonesi, and F. Malucelli

One of the most critical issues with the previous problem is that the maximum reliability
path might be too long in terms of arcs. Although in our formalization paths are only
weighted by the value of the arc of minimum reliability, in practice it also makes sense
to require that the paths should be short in terms of the number of ”hops” in the path.
The realization of this idea yields the following optimization problem:

min
P∈∏ab

|P| (13)

Where |P| denotes the cardinality of P. By combining the two objective functions con-
sidered above we define the best path P∗ ∈ ∏ab.

Definition 1. A path would be selected as a ”best” path if it satisfies in the two follow-
ing criteria:
Criterion 1: Selected path must have the maximum reliability in ∏ab.
Criterion 2: Selected path must include the minimum number of ”hops”.

According to criterion 1 and criterion 2 we must find minimum cardinality path with
maximum reliability in G which is a kind of bi-criterion path optimization problem and
called MinSum-MaxMin bi-criterion path optimization problem [13].

As it is highly unlikely to find a path from node a, to node b which achieves both the
minimum cardinality and maximum reliability, we have to settle with something less,
namely finding the set of efficient paths from a to b.

Definition 2. A path P ∈ ∏ab is efficient if and only if no other path P′ ∈ ∏ab has a
better value for one criterion and not worse value for the other one.

A path which is not efficient is thus dominated by at least one efficient path. Hence two
efficient paths are equivalent if and only if their value agree for both criteria.

Definition 3. A set Cab ⊂ ∏ab of efficient paths is complete, if any path P′ /∈ Cab is
either dominated or equivalent to at least one efficient path P ∈Cab.

Definition 4. A complete set Cab is minimal if and only if no two of its efficient paths
are equivalent.

In order to find a new similarity link consider a given graph G = (V,E) with reliability
si j of its arcs, initial vertex a and terminal vertex b (e.i., (a,b) ∈ N) as nodes with
unknown similarity weight. Let C∗

ab = {P1,P2, ...,P�} be the complete set associated
with these two nodes and λ1, ...,λ� and μ1, ...,μ� be the reliability and cardinality of the
paths P1,P2, ...,P� respectively. Define

Θab = max{θi : θi = λi/μi, i = 1,2, ..., �} (14)

Then the similarity between items a and b, ξab, can be defined as follows:

ξab = λi : θi =Θab (15)

A Graph Optimization Approach to Item-Based Collaborative Filtering 23

3.1 Proposed Algorithm

As we defined before, a path P∈∏ab is efficient if and only if no other path P′ ∈∏ab has
a better value for one criterion and not worse value for the other one. In another word, a
path P is efficient for the MINSUM-MAXMIN problem if and only if ∏ab contains no
path P′ for which the cardinality is smaller and the reliability of the cheapest arc is not
smaller or for which the cardinality is not greater and the reliability of the cheapest arc
is larger. For any (a,b)∈ N, a minimal complete set contains at most |E| efficient paths.
The following algorithm, which is the revised version of the one in [13], yield the set
of all the efficient paths between a and b, new similarity weight, ξab, and exploits the
structure of the MINSUM-MAXMIN problem to avoid recomputing some labels when
it is not compulsory.

Labeling algorithm:

1. Start.
• Consider S as input similarity matrix and for all (a,b) ∈ N and a < b repeat:

2. Initialization.
• Define an ordered set T with |T | = n such that T (1) = a,T (n) = b,T (a) =

1,T (b) = n and T (j) = j for all j ∈V,1 < j < n and j �= a,b.
• Define two sets of label λ and μ . Let λa = 0,μa = ∞,λ j = ∞ and μ j = 0 for

j ∈V, j �= a.
• Set p j = 0 for j ∈V and smin =−1.
• Θ ′

ab = /0.
3. Smallest label and ending test.

Compute λ = Min{λ j : j ∈ T}.
• If λ = ∞ go to 7, all the efficient path between a and b have been found.
• Otherwise compute μ = Max{μ j : j ∈ T,λ j = λ} and select the vertex vk such

that k =Max{ j : j ∈ T,λ j = λ ,μ j = μ}. If k= b go to 5, otherwise T = T −{k}
and go to 4.

4. New label.
For all j ∈ T such that (j,k) ∈ E and sk j > smin

• If λ j > λk + 1 then set λ j = λk + 1 , μ j = min{μk,sk j} and p j = k.
• If λ j = λk + 1 and μ j < min{μk,sk j}then set μ j = min{μk,sk j} and p j = k.
• return to 3

5. Output of an efficient path.
• Print λn and μn. Also set j = p j, recursively print j and set j = p j until j = 0.
• Set Θ ′

ab =Θ ′
ab ∪{θ : θ = λk/μk}.

6. Suppression of arcs and updating of labels.
• Set smin = μn, V1 = { j : j ∈V,λ j < ∞,μ j ≤ smin} and T = T ∪V1.
• For each j ∈V1 let Pj = {k : (k, j) ∈ E,k ∈V −T,sk j > smin}.

– If Pj = /0 set λ j = ∞,μ j = 0 and p j = 0.
– Otherwise set:

· λ j = mink∈Pj{λk + 1}
· μ j = maxk∈Pj :λ j=λk+1 min{μk,sk j}
· p j = max{k : k ∈ Pj,λ j = λk + 1,μ j = min(μk,sk j)}

– return to 3.

24 B. Rostami, P. Cremonesi, and F. Malucelli

Fig. 1. Item-graph corresponding to a given similarity matrix

7. New similarity link.

ξab = λt : θt = max{θi : i ∈Θ
′
ab}.

Theorem 1. For each (a,b) ∈ N the labeling algorithm yields a minimal complete set
of efficient paths in O(|E|logn) operations.

Proof. See [13].

As an example consider the item graph in Figure 1 and suppose we are considering the
introduction of a similarity link between items 1 and item 6. According to the labeling
algorithm we find the minimal complete set C∗

16 = {P1,P2}. Where P1 = (1,2,4,6) with
λ1 = 0.1, μ1 = 3 and P2 = (1,2,4,5,6) with λ2 = 0.2, μ1 = 4. Θ16 = max{ 0.1

3 , 0.2
4 }. By

using (15) the similarity weight between items 1 and 6 is found as:

ξ16 = 0.2

corresponding to path P2.

4 Experimental Results

In this section we present the quality of our graph-based optimization algorithm and the
recommender algorithms presented in Section 2 on both kinds of implicit and explicit
datasets. As for the explicit dataset we selected two standard datasets: MovieLens [20]
and a subset of the Netflix [3]. Both are publicly available movie rating datasets which
collected ratings are in a 1-to-5 star scale. We also selected an implicit dataset, Fastweb,
collecting the watching behavior of TV user [2]. Table 1 summarizes their statistical
properties.

Table 1. Statistical properties of Movielens, Netflix and Fastweb datasets

Dataset Users Items Density

Movielens 6,040 3,883 4.26%
subset of Netflix 247,939 6,489 0.55%
Fastweb 47,526 583 0.92%

A Graph Optimization Approach to Item-Based Collaborative Filtering 25

4.1 Testing Methodology

We apply two different testing methodologies for explicit and implicit datasets respec-
tively. The testing methodology adopted in this study for explicit datasets is similar to
the one described in [6] while for implicit dataset we have adopted the k-fold method-
ology described in [7].

4.1.1 Testing Methodology for Explicit Datasets
For each explicit dataset, known ratings are split into two subsets: training set M and
test set T . The test set T contains only 5-stars ratings. So we can reasonably state that
T contains items relevant to the respective users.

The original Netflix dataset was released partitioned into two parts: training-set and
probe-set. Ratings in the training set M were a subset of the original Netflix training
set. Some items (and the corresponding ratings) were removed because of the lack of
complementary data, while other items were merged because of the different editions of
the same movie existing. Ratings in the test set T were a subset of the Netflix probe-set.
Again, some items and their corresponding ratings were removed or merged. Moreover,
only 5-star ratings (or 1-star ratings) were retained from the Netflix probe-set, thus
leading to the creation of two test sets T . The first test set only contained 5-stars and
was used for the computation of recall, while the second test set only contained 1-stars
and was used for the computation of fallout (see (16) and (17) for a definition of recall
and fallout).

We adopted a similar procedure for the Movielens dataset [20]. We randomly sub-
sampled 1.4% of the ratings from the dataset in order to create a probe set. The training
set M contains the remaining ratings. The test set T contains all the 5-star ratings from
the probe set.

The same training set was used across all the algorithms, and a standard hold-out
technique was adopted for the testing methodology. For each rating in the testing set,
we predicted the rating together with the ratings of an additional 1000 unrated random
items. The corresponding list was sorted and recommended to the user. Thus, the testing
methodology used the whole training set to build the model, and recommended a list of
1000+ 1 items to the user.

In order to measure recall, we first trained the algorithm using the ratings in M. Then,
for each item i in T that was rated 5 stars by user u, we followed these steps:

1. We randomly selected 1,000 additional items that were not rated by user u. We
assumed that the user u was not interested in most of them.

2. We predicted the ratings for the test item i and for the additional 1,000 items.
3. We formed a top-N recommendation list by picking the N items with the largest

predicted ratings.

Overall, we generated a number of recommendation lists equal to the number of ele-
ments in T . For each list we had a hit (e.g., a successful recommendation) if the test item
was in the list. Therefore, the overall recall r was computed by counting the number of
successful recommendations over the total number of recommendations

recall =
times the element is in the list

elements in T
(16)

26 B. Rostami, P. Cremonesi, and F. Malucelli

A similar approach was used to measure fallout, with the only difference being the
composition of the test set T . In this case it only contained part of the 1-star ratings.
Therefore we can reasonably state that this test set contained items that were not rele-
vant to the users. The fallout f was defined as

f allout =
times the element is in the list

elements in T
(17)

4.1.2 Testing Methodology for Implicit Dataset
In the k-fold methodology the user rating matrix is divided into k folds by partitioning
the rows (i.e., the users) into k disjoint sets (in our tests k = 2): k-1 folds are used to train
the algorithm while the remaining fold is used to evaluate the algorithm. The process
is repeated k times, selecting a different test fold at each iteration. Within the test fold,
users are tested by using a leave-one-out approach: for each tested user, each rated
item is removed in turn from the user profile, and recommendations are generated on
the basis of the remaining user ratings. If the removed item is recommended to the user
within the first N positions we have a hit (in our tests N ∈ {1, ...,10}). In implicit dataset
since we only have binary ratings, is not possible to compute the fallout; therefore, we
are forced to use classification accuracy metrics (e.g., recall) for the systems evaluation
and find a few specific items (top-N recommendation) which are supposed to be most
appealing to the user.

4.2 Results

4.2.1 Results for Explicit Datasets
To evaluate the algorithms we employed the receiver operator characteristic (ROC)
curve [25] advocated for recommender system evaluation by Herlocker [15]. To cre-
ate the ROC curve we vary the number of recommended items in a ranked list that we
use as recommendations. ROC curves plot the miss rate (fallout) on the x-axis against
the hit rate (recall) on the y-axis. Recall measures the percentage of items in the cata-
log interesting for the user and that the recommender system is able to suggest to the
user. Fallout measures the percentage of items in the catalog not interesting for the the
user and that the recommender system erroneously suggests to the user. Ideally, a good
algorithm should have high recall (i.e. it should be able to recommend items of interest
to the user) and low fallout (i.e. it should avoid recommending items of no interest to
the user).

Figures 2 and 3 represent the results by using ROC curves. For both explicit datasets,
the graph-based algorithm outperforms other algorithms, as the best results are obtained
when a curve is close to the upper-left corner of the diagram (i.e., low fall-out and large
recall).

The improvement of quality is more evident on the Netflix dataset. This is an ex-
pected result, as in our experiments the Netflix dataset is sparser than the Movielens
dataset and traditional CF techniques suffer from the sparsity problem. For instance, the
number of similarity links between items in traditional item-based algorithms – such as
NNCosKnn and DR – is low if the input user rating matrix is too sparse. On the con-
trary, our graph-based approach is able to overcame this problem by finding additional
similarity links.

A Graph Optimization Approach to Item-Based Collaborative Filtering 27

Fig. 2. Netflix data set: ROC curves

Fig. 3. MovieLens dataset: ROC curves

28 B. Rostami, P. Cremonesi, and F. Malucelli

4.2.2 Results for Implicit Dataset
We can’t employ the ROC curves to evaluate the implicit dataset, because fallout can
not be computed for binary ratings. Table 2 reports the recall of the algorithms on
the Fastweb dataset. Reported recalls show that our graph-based algorithm has better
accuracy among other algorithms. For instance, the recall of our algorithm at N = 10
is about 0.53, i.e., the model has a probability of 53% to place an appealing movie in
the top-10. The best algorithm among the non-graph approaches in terms of recall is
the NNCosNgbr which reach, at N = 10, a recall equaling about 0.50. This means that
about 50% of 5-star movies are presented in a top-10 recommendation.

Table 2. Recall for Fastweb dataset

N Graph NNCosNgbr PureSVD Dr

1 0.1934 0.1815 0.1467 0.1486
2 0.2664 0.2513 0.2067 0.2092
3 0.3214 0.3057 0.2543 0.2540
4 0.3663 0.3502 0.2942 0.2938
5 0.4037 0.3882 0.3287 0.3304
6 0.4360 0.4211 0.3593 0.3606
7 0.4628 0.4403 0.3868 0.3879
8 0.4881 0.4616 0.4112 0.4131
9 0.5093 0.4762 0.4332 0.4368
10 0.5289 0.5005 0.4538 0.4587

5 Conclusion

In order to overcome the problem of sparsity in item-based CF, we introduced a new
optimization approach which is based on the graph representation of the item similarity
matrix. To find a new similarity link between two items with unknown similarity, in the
item graph, we proposed two optimization criteria: (i) paths with maximum reliability
and (ii) paths with minimum cardinality in terms of number of ”hops”. By solving
a bi-criterion path optimization problem we found all possible efficient paths in the
graph then we chose the best similarity weight by using a simple optimization approach.
Eventually we use the best path in the candidate set to assign the similarity weight to
the new link. The experiments showed that our new bi-criterion optimization framework
is effective in improving the prediction accuracy of collaborative filtering and dealing
with the data sparsity problem.

References

1. Aggarwal, C.C., Wolf, J.L., Wu, K., Yu, P.S.: Horting hatches an egg: A new graph-theoretic
approach to collaborative filtering. In: Proc. of the 5th ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining, KDD 1999, pp. 201–212. ACM, New York (1999)

A Graph Optimization Approach to Item-Based Collaborative Filtering 29

2. Bambinip, R., Cremonesi, P., Turrin, R.: A recommender system for an iptv service provider:
a real large-scale production environment. In: Recommender Systems Handbook, pp. 299–
331. Springer (2010)

3. Bennet, J., Lanning, S.: The netflix prize. In: Proc. of the KDD Cup and Workshop (2007)
4. Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: Proc. of the 15th

Int. Conf. on Machine Learning, ICML 1998, pp. 46–54. Morgan Kaufmann Publishers Inc.,
San Francisco (1998)

5. Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Modeling and User-
Adapted Interaction 10(2-3), 147–180 (2000)

6. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n rec-
ommendation tasks. In: RecSys, pp. 39–46 (2010)

7. Cremonesi, P., Turrin, R.: Analysis of Cold-Start Recommendations in IPTV Systems. In:
RecSys, pp. 39–46 (2009)

8. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Transac-
tions on Information Systems 22(1), 143–177 (2004)

9. Fouss, F., Renders, J.M., Pirotte, A., Saerens, M.: Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Transac-
tions on Knowledge and Data Engineering 19(3), 355–369 (2007)

10. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative
filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

11. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins University Press
(1996)

12. Gori, M., Pucci, A.: Itemrank: A random-walk based scoring algorithm for recommender
engines. In: Proc. of the 2007 IJCAI Conf., pp. 2766–2771 (2007)

13. Hansen, P.: Bicriterion path problems. In: Multiple Criteria Decision Making: Theory and
Applications, pp. 109–127. Springer, Heidelberg (1980)

14. Herlocker, J., Konstan, J., Teveen, L., Riedl, J.: Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)

15. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for per-
forming collaborative filtering. In: Proceedings of the Conference on Research and Develop-
ment in Information Retrieval (1999)

16. Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the
sparsity problem in collaborative filtering. ACM Transactions on Information Systems 22(1),
116–142 (2004)

17. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43
(1953)

18. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proc. of the 4th ACM SIGKDD int. Conf on Knowledge Discovery and Data
Mining, KDD 2008, pp. 426–434. ACM, New York (2008)

19. Luo, H., Niu, C., Shen, R., Ullrich, C.: A collaborative filtering framework based on both
local user similarity and global user similarity. Machine Learning 72(3), 231–245 (2008)

20. Miller, B., Albert, I., Lam, S., Konstan, J., Riedl, J.: MovieLens unplugged: experiences with
an occasionally connected recommender system. In: Proc. of the 8th Int. Conf on Intelligent
user Interfaces, pp. 263–266 (2003)

21. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering.
In: Proc. of KDD Cup and Workshop (2007)

22. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of Dimensionality Reduction in
Recommender System-A Case Study. Defense Technical Information Center (2000)

23. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommen-
dation algorithms. In: Proc. of the WWW Conf. (2001)

30 B. Rostami, P. Cremonesi, and F. Malucelli

24. Steuer, R.E.: Multiple criteria optimization: theory, computation, and application. Wiley,
New York (1986)

25. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science (240), 1285–1293 (1988)
26. Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: Investigation of various matrix factorization

methods for large recommender systems. In: Proc. of the 2nd KDD Workshop on Large
Scale Recommender Systems and the Netflix Prize Competition (2008)

27. Wang, F., Ma, S., Yang, L., Li, T.: Recommendation on item graphs. In: Proc. of the Sixth
Int. Conf. on Data Mining, ser. ICDM 2006, pp. 1119–1123. IEEE Computer Society, Wash-
ington,DC (2006)

28. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern Vectors from Algebraic Graph Theory. IEEE
Trans. on Pattern Analysis and Machine Intelligence (2005)

29. Xue, G.R., Lin, C., Yang, Q., Xi, W., Zeng, H.J., Yu, Y., Chen, Z.: Scalable collaborative
filtering using cluster-based smoothing. In: Proc. of SIGIR (2005)

Constraint Propagation for the Dial-a-Ride

Problem with Split Loads

Samuel Deleplanque and Alain Quilliot

LIMOS, UMR CNRS 6158, Bt. ISIMA, BLAISE PASCAL university, France
{deleplan,quilliot}@isima.fr

Abstract. This paper deals with a new problem: the Dial and Ride
Problem with Split Loads (DARPSL), while using randomized greedy
insertion techniques together with constraint propagation techniques.
Though it focuses here on the static versions of Dial and Ride, it takes
into account the fact that practical DARP has to be handled accord-
ing to a dynamical point of view, and even, in some case, in real time
contexts. So, the kind of algorithmic solution which is proposed here,
aim at making easier to bridge both points of view. First, we propose
the general framework of the model and discuss the link with dynamical
DARP, second, we describe the two algorithms (DARP and DARPSL),
and lastly, show numerical experiments for both.

1 Introduction and Literature Review

Literature in the field of urban systems and geomatics hint a trend to a surge
of new on demand flexible transportation systems (ODT): ad hoc shuttle
fleets, vehicle sharing (AUTOLIB...), co-transportation (see for instance [17],
[4]). This trend reflects from both environmental (climate change, overcrowded
megalopolis) and economical concerns (surge of energy prices). It has also to
be associated with technological advances: internet, mobile communication, geo-
localization, which allow efficient monitoring of complex mobility system and
large sets of heterogeneous requests.

An important Operations Research model for the management of flexible re-
active transportation system is the DARP, which tries to optimize the way a
given fleet of vehicles meet mobility demands emanating from people, or, in
some cases from some combination of people and goods. DARP is a complex
problem, which admits several formulation, most of them NP-Hard. It usually
does not fit well the Integer Linear Programming framework [16] and one must
try do handle it through heuristic techniques: Tabu search [7], genetic algorithms
[18], partial branch/bound [16], Simulated Annealing [9], VNS techniques [20],
[13], Dynamic Programming [16]-[17], Insertion techniques [6]-[12].

A basic features of DARP is that it usually derives from a dynamic context.
So, algorithms for static DARP should be designed in order to take into account
the fact that they will have to be adapted to dynamic and reactive context,
which means synchronization mechanisms, interactions between the users and
the vehicles, and uncertainty about fore coming demands.

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 31–50.
DOI: 10.1007/978-3-319-00410-5_3 © Springer International Publishing Switzerland 2013

32 S. Deleplanque and A. Quilliot

In this paper, we use a generic DARP model with time windows to define the
new DARP with split loads, and we propose algorithms for this model based upon
randomized insertion techniques and constraint propagation. These algorithms
can be easily adapted to dynamic contexts, where demand packages has to be
inserted into (or eventually removed from) current vehicle schedules. This has
to be done in a very short time while taking into account some probabilistic
knowledge about fore coming demand packages.

The focus of the paper is to use constraint propagation on the time constraints
and to allow split loads in the DARP. Little has been published on this problem,
only [15]-[19]. The closest study is the Pickup and Delivery Problem with Splits
Loads (PDPSL). The PDPSL solution of solved instances can give a rate up to
25% fewer vehicles used compared to the classic PDP [10]. The Tabu search is
also used to solve the PDFSL [2]. For a recent review of this problem, refer to
[3].

The paper is organized as follows: we first introduce the problem and discuss
the link between static and dynamic formulations. Next, describe our formal
DARP with split loads model, together with the performance criteria which we
used. Then, we present the general insertion mechanism together with the con-
straint propagation techniques which we use in order to filter insertion param-
eters and to select the demands to be inserted. We conclude with experiments
and comparison of the two resolutions.

2 The Standard Dial a Ride Problem

2.1 General Dial a Ride Problem

A Dial a Ride Problem instance is essentially defined by:

– a transit network G = (V,E), which contains at least two nodes Depot,
for the departure and the arrival, and whose arcs e ∈ E are endowed with
riding times equal to the Euclidean distance between two nodes of V , i and
j, DIST(i, j) ≥ 0, and, eventually, with other technical characteristics;

– a fleet VH of K vehicles k with a capacity CAP ,
– a Demand set D = (Di, i ∈ I), any demand Di being defined as a 6-uple

Di = (oi, di, Di, F (oi), F (di), Qi), where:

• oi ∈ V is the origin node of the demand Di and the set of all the oi is
DE ,

• di ∈ V is the destination node of the demand Di and the set of all the
di is AR,

• Δi ≥ 0 is an upper bound (transit bound) on the duration of demand’s
processing (ride time),

• F (oi) is a time window related to the time Di starts being processed;
F .MIN oi and F .MAX oi are the two bounds;

• F (di) is a time window related to the time Di ends being processed,
• Qi is a description of the load related to Di such that qoi = Qi = −qdi,

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 33

– δj , j ∈ V is the non-negative service time necessary at the node j;
– tki is the time at which the vehicle k begins service in i,
– Δk is the route maximum time imposed on the vehicle k.

Then, we consider in G = (V,E) all the nodes corresponding to the oi ∈ V and
di ∈ V such that V = DE ∪ AR ∪ {0, 2 |D| + 1} with {0, 2 |D| + 1} the two
depot nodes respectively for the departure and the arrival, oi ∈ {1.. |D|}, and
di ∈ {(|D|+ 1)..(2 |D|)}. Moreover we denote by ζkj the total load of the vehicle
k leaving the node j, j ∈ V .

Dealing with such an instance means planning the handling demands of D, by
the fleetVH , while taking into account the constraints which derive from the tech-
nical characteristics of the network G, of the vehicle fleet VH , and of the 6-uples
Di = (oi, di, Di, F (oi), F (di), Qi), and while optimizing some performance crite-
rion which is usually minimizing the total distance or a mix of an economical cost
(point of view of the fleet manager) and of QoS criteria (point of view of the users).

Let xk
ij a boolean equals to 1 if the vehicle k travels from the node i to the

node j. Then, based on [5], the mathematical formulation is the following mixed-
integer program :

Min
∑
k∈K

∑
i∈V

∑
j∈V

DIST(i, j)xk
ij (1)

subject to

∑
k∈K

∑
j∈V

xk
ij = 1, ∀i ∈ DE (2)

∑
j∈V

xk
ij −

∑
j∈V

xk
|D|+i,j = 1, ∀i ∈ DE , k ∈ K (3)

∑
j∈V

xk
0j = 1, ∀k ∈ K (4)

∑
j∈V

xk
ji −

∑
j∈V

xk
ij = 1, ∀i ∈ DE ∪ AR, k ∈ K (5)

∑
i∈V

xk
i,2|D|+1 = 1, ∀k ∈ K (6)

tkj ≥ (tki + δi +DIST (i, j))xk
ij , ∀i ∈ V, j ∈ V, k ∈ K (7)

ζkj ≥ (ζki + qj)xij , ∀i ∈ V, j ∈ V, k ∈ K (8)

DIST (i, |(D)|+ i) ≤ tk|(D)|+i − (tki + δi) ≤ Δi, i ∈ DE (9)

F .MIN i ≤ tki ≤ F .MAX i, ∀i ∈ V, k ∈ K (10)

34 S. Deleplanque and A. Quilliot

tk2|D|+1 − tk0 ≤ Δk, ∀k ∈ K (11)

ζki ≤ CAPk (12)

xk
ij ∈ {0; 1}, t ∈ R+ (13)

The program above is a three index formulation (report to [5] for more expla-
nations about the objective function (1) and the constraints (2)-(13)), it exists
in literature several other mathematical formulations for the DARP, even some
with two index formulation [8]. But, the complexity of all these linear programs
doesn’t allow finding an exact solution with a solver, the operation is too time
consuming. In fact, it mixes a lot of booleans and plenty of fractional numbers.

All along this work, we are going to deal with homogeneous fleets and with
nominal demands, and we shall limit ourselves to static points of view but our
insertion process allows flexibility for using it in a dynamic context. Still, we
shall pay special attention to cases when temporal constraints are tight.

Discussion: Dynamic versus Static DARP. The problem is essentially a
problem which arise in dynamic contexts, and the trend is about reactivity delays
which become smaller and smaller [1]. Basically, one should consider a system
which is identified by a vehicle set V, a user community C, and a supervision
system S, which, because of advances in the field of geo-localization, mobile com-
munications and remote monitoring, permanently disposes of a full knowledge
about the current state of the vehicles (position, load, roadmap...) and main-
tains communication with both users and vehicles. All along the time, the system
(centralized or decentralized) receives user request, which, in the simplest case,
are characterized by a load, an origin and a destination node, and time windows
related load and unload transactions, as well as about trip duration. At some
instant t, supervisor S decides to launch a scheduling process P, which consider
as its input the current state E of the vehicles of V, together with the currently
waiting demand set D, and which, for any demand d in D, either rejects it or
insert it into the current schedule of some vehicle k in V, without modifying in
a significant way the way v is supposed to meet previous demands. Running P
require a δ computing time, and, at time t + δ , propositions are transmitted to
users and updated schedules are transmitted to the vehicles, which apply them
until instant t’, when the whole process takes place again. Meanwhile, it may
occur that some demands are dropped or that vehicles register failure (delays or
user fault) [11].

In any case, one see that, in case vehicles are moving inside a small area (a
urban area) and deal with a large size set of demands, process P has to insert in
a fast way a demand set D into a current schedule E, and that it has to do it in
a way which keeps most features of E, and preserves the ability of the system to
efficiently deal with fore coming demands, that means with demands which are
likely to be formulated after the instant t when P is launched. This point is the

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 35

key one which motivates the approach which is going to be described here. We
want an algorithmic framework which is going to be naturally compatible with
this context: the use of insertion techniques is clearly going to fit the input (E,
D) of the dynamic context, and the use of constraint propagation techniques is
going to make easier uncertainty about fore coming demands handling.

Also, one should notice that, under this prospect, the virtual complete network
which is going to be the key input data for the static model (see next section),
is, in practice, going to be a dynamic network.

2.2 The Framework

The Considered Network. We treat here the general Dial a Ride Problem
described above. It is known that we do not need to consider the whole transit
network G = (V, E), and that we may restrict ourselves to the nodes which are
either the origin or the destination of some demand, while considering that any
vehicle which visits two such nodes in a consecutive way does it according to a
shortest path strategy. This leads us to consider the node set {Depot , oi, di, i ∈ I}
as made with pairwise distinct nodes, and provided with some distance function
DIST, which to any pair x, y in {Depot , oi, di, i ∈ I}, makes correspond the
shortest path distance from x to y in the transit network G.

As a matter of fact, we also split the Depot node according to its arrival or
departure status and to the various vehicles of the fleet VH, and we consider the
input data of a Standard Dial a Ride Problem instance as defined by:

– the set {1..K = Card(VH)} of the vehicles of the homogenous fleet VH;
– the common capacity CAP of a vehicle in VH;
– the node set X = {DepotD(k), DepotA(k), k = 1..K} ∪ {oi, di, i ∈ I};
– the distance matrix DIST, whose meaning is that, for any x, y in X, DIST(x,

y) is equal to the length, in the sense of the length function l, of a shortest
path which connect x to y in the transit network G: we suppose that DIST,
satisfies the triangle inequality.

Moreover the following characteristics, which, to any node x in X, make corre-
spond:

– its status Status(x): Origin, Destination, DepotA, DepotD ; we set Depot =
DepotD ∪ DepotA;

– its load CH(x):

• if Status(x) ∈ Depot then CH(x) = 0;
• if Status(x) = Origin then CH(x) = Qi;
• if Status(x) = Destination then CH(x) = −Qi;

– its twin node Twin(x):

• if x = DepotA(k) then Twin(x) = DepotD(k) and conversely;
• if x = oi then Twin(x) = di and conversely;

– its time window F(x): for any k = 1..K, F(DepotA(k)) = [0, +∞ [=
F(DepotD(k)). Also, we suppose that any F(x), x ∈ X , is an interval, which
may be written F(x) = [F.min(x), F.max(x)];

36 S. Deleplanque and A. Quilliot

– its transit bound Δ(x): if x = oi or di, then Δ(x) = Δi, and Δ(x) = Δ else,
where Δ is an upper bound which is imposed on the duration of any vehicle
tour.

According to this construction, we understand that the system works as follows:
vehicle k ∈ {1..K}, starts its journey from DepotD(k) at some time t(DepotD(k))
and ends it into DepotA(k) at some time t(DepotA(k)), after having taken in
charge some subset D(k) ={Di, i ∈ I(k)} of D: that means that for any i in I(k),
vehicle k arrived in oi at time t(oi) ∈ F (oi), loaded the whole load Qi, and kept
it until it arrived in di at time t(di) ∈ F (oi) and unloaded Qi, in such a way that
t(di) − t(oi) ≤ Di. Clearly, solving the Standard Dial a Ride Problem instance
related to those data (X, DIST, K, CAP) will mean computing the subsets D(k)
= {Di, i ∈ I(k)}, the routes followed by the vehicles and the time values t(x),
x ∈ X , in such a way that both economical performance and quality of service
be the highest possible.

Discussion: Durations and Waiting Times. Many authors include what
they call service durations in their models. That means that they suppose that
loading and unloading processes related to the various nodes of X require some
time amount δ(x), (service time) and, so, that they distinguish, for any node
x ∈ X , time values t(x) (beginning of the service) and t(x) + δ(x) (end of the
service). By the same way, some authors suppose that the vehicles are always
running at their maximal speed, and make a difference between the time t*(x),
x ∈ X , when some vehicle arrives in x, and the time t(x) when this vehicle
starts servicing the related demand (loading or unloading process). We do not
do it. Taking into account service times, which tends to augment the size of the
variables of the model and to make it more complex it, has really sense only if we
suppose that the service times δ(x) depend on the current state (its current load)
of the vehicle at the time the loading or unloading process has to be launched.
Making explicitly appear waiting times t(x) - t*(x) is really useful if we make
appear the speed profile as a component of the performance criterion. In case
none of the situation holds, the knowledge of the routes of the vehicles and of the
time value t(x), x ∈ X , is enough to check the validity of a given solution and to
evaluate its performance, and then it turns out that ensuring the compatibility
of the model with data which involve service times and waiting times t(x) - t*(x),
x ∈ X , is only a matter of adapting the times windows F(x), the transit bounds
Δ(x), x ∈ X , and the distance matrix DIST.

Discussion: The Homogeneity of the Fleet. The general case of the Dial a
Ride Problem includes a homogeneous fleet of vehicles. The word ”homogeneous”
mean the vehicles come from (and come back to) the same depot, and have
the same capacity. Our model can integrate different depots and capacities for
each vehicle without changing in the framework. Moveover, DepotD and DepotA
locations could be different because all these nodes are independent for a given
route.

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 37

2.3 Modeling and Evaluation Techniques

The model described in this section needs some definitions, we set:

– First(Γ) = First element of Γ ; Last(Γ) = last element of Γ ;
– for any z in Γ :

• Succ(Γ , z) = Successor of z in Γ ;
• Pred(Γ , z) = Predecessor of z in Γ ;

– for any z, z’ in Γ :

• z �Γ z’ if z is located before z’ in Γ ;
• z �=

Γ z’ if z �Γ z’ or z = z’;
• Segment(Γ , z, z’) = the subsequence defined by all z in Γ such that
z �=

Γ z �=
Γ z’. If z = Nil, then Segment(G, Nil, z’) denotes the subse-

quence defined by all z in Γ such that z �=
Γ z’.

In any algorithmic description, we use the symbol ← in order to denote the
value assignment operator: x ← α, means that the variable x receives the value
α. Thus, we only use symbol = as a comparator.

In order to provide an accurate description of the output data of our standard
Dial a Ride Problem instance (X, DIST, K, CAP), we need to talk about tours and
related time value sets. A tour Γ is a sequence of nodes of X, which is such that: 3

– Status(First(Γ)) = DepotD ; Status(End(Γ)) = DepotA;
– For any node x in Γ , x �= First(Γ), End(Γ), Status(x) /∈ Depot;
– No node x ∈ X appears twice in Γ ;
– For any node x = oi (resp. di) which appears in Γ , the node Twin(x) is also

in Γ , and we have: x �Γ Twin(x) (resp. Twin(x) �Γ x).

This tour Γ is said to be load-valid iff:

– for any x in Γ , x �= First(G), we have
∑

y,y�Γx CH (y) ≤ CAP .

Moreover, this tour Γ is said to be time-valid iff it is possible to associate, with
any node x in Γ , some time value t(x), in such a way that: (E1)

– for any x in Γ , x �= Last(Γ), t(Succ(Γ, x)) ≥ t(x) +DIST (x, Succ(Γ, x));
– for any x in Γ , |t(twin(x)) − t(x)| <= Δ(x) ;
– for any x in Γ , t(x) ∈ F (x).

In case the tour Γ is time-valid, any time value set t = {t(x), x ∈ X}, which
satisfies (E1) is said to be a valid related time value set.

The tour Γ is said to be valid if it is both time valid and load valid.
For any pair (Γ , t) defined by some time-valid tour Γ and by some valid

related time value set t, we may set:

– Glob(Γ , t) = t(End(Γ)) - t(First(Γ)): this quantity denotes the global du-
ration of the tour Γ ;

– Ride(Γ , t) =
∑

i∈Γ (t(di) − t(oi)) ; this quantity may be viewed as a QoS
criterion, and denotes the sum of the duration of the individual trips of the
demanders which are taken in charge by tour Γ ;

38 S. Deleplanque and A. Quilliot

– Wait(Γ , t) = Glob(Γ , t) - (
∑

x,x �=Last(G) DIST (x, Succ(Γ, x))) : this quan-
tity denotes the waiting time of the vehicle involved in Γ , the waiting time
related to some node x being the time the vehicle is supposed to wait before
loading or unloading x in case it runs full speed on the route which connects
Pred(Γ , x) to x.

If A, B, C are three multi-criterion coefficients, we may define the performance
criterion CostA,B,C (Γ , t) as follows: CostA,B,C(Γ , t) = A.Glob(Γ , t) +
B.Ride(Γ , t) + C.Wait(Γ , t).

In the experiments section we will use different criteria in order to compare
with other techniques found in literature. Our insertion techniques allow some
flexibility for this change.

So, let us suppose that we deduced from the data G = (V, E), VH = (K,
CAP), D = (Di = (oi, di, Δi, F (oi), F (di), Qi), i ∈ I), a 4-uple (X, DIST, K,
CAP), and that we are also provided with 3 multi-criterion coefficients A, B
and C ≥ 0. Then we see that solving the related Standard Dial a Ride Problem
instance means computing:

– for any vehicle index k in 1..K, a valid tour T(k);
– a time value set t = {t(x), x ∈ X};

in such a way that:

– the restriction of t to any T(k), k = 1..K, defines a valid time value set
related to T(k);

– the tour set T = {T(k), k = 1..K} induces a partition of X;
– the quantity Perf A,B,C(T, t) =

∑
k=1..K CostA,B,C(T (k), t) is the smallest

possible.

3 Constraint Propagation into an Insertion Algorithm

3.1 Handling Constraints

Let Γ a tour. The algorithm which we are going to describe in this section will
essentially be based upon the use of insertion techniques. Thus, we must be
able to check in a fast way, whether the insertion of some demand Di inside Γ
will maintain the validity of Γ , and to get an evaluation of the quality of this
insertion. Since we want to pay a special attention to the case when temporal
constraints are tight, we are first going to provide ourselves with a package of
constraint handling tools for testing the valid tours.

First, checking the load validity of Γ is easy. In order to be able to test the
impact of the insertion of some demand into the tour Γ on the charge-validity of
this tour, we associate, with any such a tour, the quantities ζ(Γ, x) , defined by:

– for any x in Γ , ζ(Γ, x) =
∑

y,y�=
Γ x CH (y).

Then it comes that Γ is load-valid iff for any x in Γ , ζ(Γ, x) ≤ CAP .

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 39

Second, checking the time validity of Γ , according to a current time window
set FS = {FS(x) = [FS.min(x), FS.max(x)], x ∈ Γ} may be performed through
propagation of the following inference rules Ri, i = 1..5. We denote by NFact
a list of nodes related to time constraints non propagated. The five inferences
rules are:

Rule R1 (if (y = Succ(Γ , x))):

FS.min(x) + DIST(x, y) > FS.min(y)
|= FS.min(y) ← FS.min(x) + DIST(x, y); NFact ← y;

Rule R2 (if (y = Succ(Γ , x))):

FS.max(y) - DIST(x, y) < FS.max(x)
|= FS.max(x) ← FS.max(y) - DIST(x, y); NFact ← x;

Rule R3 (if (y = Twin(x)) and (x �Γ y)):

FS.min(x) < FS.min(y) - Δ(x,y)
|= FS.min(x) ← FS.min(y) - Δ(x,y); NFact ← x;

Rule R4 (if (y = Twin(x)) and (x �Γ y))

FS.max(y) > FS.max(x) + Δ(x,y)
|= FS.max(y) ← FS.max(x) + Δ(x,y) ; NFact ← y;

Rule R5 (if x ∈ Γ):

FS.min(x) > FS.max(x)
|= Fail.

Propagating these rules may be performed as follows:

Procedure Propagate
Input: (Γ : Tour, L: List of nodes, FS: Time windows set related to the node
set of Γ);
Output: (Res: Boolean, FR: Time windows set related to node set of Γ);
Not Stop;
While L �= Nil and Not Stop do
z ← First(L); L ← Tail(L);
For i = 1..5 do Compute all the pairs (x, y) which make possible
an application of the rule Ri and which are such that x = z or y = z;
For any such pair (x, y) do
Apply the rule Ri;
If NFact is not in L then Insert NFact in L;
If Fail then Stop;

Propagate ← (Not Stop, FS);

40 S. Deleplanque and A. Quilliot

Proposition 1
The tour Γ is time-valid according to the input time window set FS if and only
if the Res component of the result of a call Propagate(FS, Γ) is equal to 1. In
such a case, any valid time value set t related to Γ and FS is such that: for any
x in Γ , t(x) ∈ FS(x).

Proof
The part (only if) of the above equivalence is trivial, as well as the second part
of the statement. As for the part (if), we only need to check that if we set, for
any x in Γ :

– FS(x) = [FS.min(x), FS.max(x)];
– t(x) = FS.min(x);

then we get a time value set t ={t(x), x ∈ X(Γ)} which is compatible with Γ
and FS.

End-Proof.

We denote by FP(Γ) the time window set which result from a call Propagate(Γ ,
L, F). FP(Γ) may be considered as the largest (in the inclusion sense) time
window set which is included into F and which is stable under the rules Ri, i =
1..5, and is called the window reduction of F through Γ .

3.2 Evaluating a Tour

Let us consider now the tour Γ , provided with the window reduction set FP(Γ).
We want to get some fast estimation of the best possible value CostA,B,C(Γ, t) =
A.Glob(Γ, t) + B .Ride(Γ, t) + C .Wait(Γ, t), t ∈ Valid(Γ). We already noticed
that it could be done through linear programming or through general short-
est path and circuit cancelling techniques. Still, since we want to perform this
evaluation process in a fast way, we design two ad hoc procedures EVAL1 and
EVAL2:

– the EVAL1 procedure works in a greedy way, by first assigning to the node
First(Γ) its largest possible time value, and by next performing a Bellman
process in order to assign to every node x in Γ its smallest possible time
value.

– the EVAL2 procedure starts from a solution produced by EVAL1, and im-
proves it by performing a sequence of local moves, each move involving a
single value t(x), x ∈ Γ .

Γ being some valid tour, we denote by VAL1(Γ) and VAL2(Γ) the values re-
spectively produced by the application of EVAL1 and EVAL2 to Γ .

3.3 The Insertion Mechanism

The insertion process works in a very natural way. Let Γ be some valid tour, let
Di=(oi, di, Δi, F (oi), F (di), Qi) be some demand whose origin and destination

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 41

nodes are not in Γ , and let x, y be two nodes in Γ , such that x �=
Γ y. Then we

denote by INSERT(Γ , x, y, i) the tour which is obtained by:

– locating oi between x and Succ(Γ , x);
– locating di between y and Succ(Γ , y).

We say that the tour INSERT(Γ , x, y, i) results from the insertion of de-
mand Di into the tour Γ according to the insertion nodes x and y. The tour
INSERT(Γ , x, y, i) may not be valid. So, before anything else, we must detail
the way the validity of this tour is likely to be tested.

Testing the Load-Admissibility of INSERT(Γ , x, y, i)
We only need to check, that for any z in Segment(Γ , x, y) = {z such that
x �=

Γ z �=
Γ y} we have, ζ(Γ, x) + Qi ≤ CAP. It comes that we may set:

Procedure Test-Load(Γ , x, y, i):
Test-Load ← {For any z in Segment(Γ ,x, y), ζ(Γ, x) + Qi ≤ CAP};

Testing the Time-Admissibility of INSERT(Γ , x, y, i)
It should be sufficient perform a call Propagate(Γ , {oi, di}, FP(Γ)), while using
the list {oi, di} as a starting list. Still, such a call is likely to be time consuming.
So, in order to make the testing process go faster, we introduce several interme-
diary tests, which aim at interrupting the testing process in case non-feasibility
can be easily noticed:

– the first test Test-Node aims at checking the feasibility of the insertion of
a node u, related to some load Q, between two consecutive node z and z’
of a given tour Γ . It only provides us with a necessary condition for the
feasibility of this insertion.

– the second test Test-Node1 aims at checking the feasibility of the insertion
of an origin/destination node u, v, related to some load Q, between two
consecutive node z and z’ of a given tour Γ (e.g. into an empty tour). Again, it
only provides us with a necessary condition for the feasibility of this insertion.

So, testing the admissibility of a tour INSERT(Γ , x, y, i) may be performed
through the following procedure:

Procedure Test-Insert(Γ , x, y, i): (Test: Boolean, Val: Number);
If x �= y then
Test ← Test-Node(Γ , x, Succ(Γ , x), oi, Qi) ∧ Test-Node(Γ , y, Succ(Γ , y),
di, Qi);

Else Test ← Test-Node1(Γ , x, Succ(Γ , x), oi, di, Qi);
If Test = 1 then Test ← Test-Load(Γ , x, y, i);
If Test = 1 then (Test, F1) ← Propagate(Γ , {oi, di }, FP(Γ);
If Test = 1 then Val ← EVAL1(INSERT(Γ , x, y, i), F1).Val;

Else Val ← Undefined;
Test-Insert ← (Test, Val - Val1(Γ));

42 S. Deleplanque and A. Quilliot

3.4 The Insertion Process

So, this process takes as input the demand set D = (Di=(oi, di, Δi, F (oi), F (di),
Qi)), i ∈ I), the 4-uple (X, DIST, K, CAP), and 3 multi-criteria coefficients A,
B and C ≥ 0, and it works in a greedy way through successive insertions of
the various demands Di = (oi, di, Δi, F (oi), F (di), Qi) of the demand set D. The
basic point is that, since we are concerned with tightly constrained time windows
and transit bounds, we use, while designing the INSERTION algorithm, several
constraint propagations tricks. Namely, we make in such a way that, at any time
we enter the main loop of this algorithm, we are provided with:

– the set I1 ⊂ I of the demands which have already been inserted into some
tour T(k), k = 1..K;

– current tours T(k), k = 1..K: for any such a tour T(k), we know the re-
lated time windows FP(T(k))(x), x ∈ T (k), as well as the load values
ζ(T (k), x), x ∈ T (k), and the values VAL1(T(k)) and VAL2(T(k));

– the knowledge, for any i in J = (I - I1) of the set Ufree(i) of all the 4-uple
(k, x, y, v), k = 1..K, x, y ∈ T (k), v ∈ Q, such that a call Test-Insert(T(k),
x, y, i) yields a result (1, v). We denote by Nfree(i) the cardinality of the set
Kfree = {k = 1..K, such that there exists a 4-uple (k, x, y, v) in Ufree(i)}:
Nfree(i) provides us with the number of vehicles which are still able to deal
with demand Di.

Then, the INSERTION algorithm works according to the following scheme:

– First, it picks up some demand i0 in J, among those demands which are the
most constrained, that means which are such that Nfree(i0) is small: more
specifically, if there exists i such that Nfree(i) = 1, then i0 is chosen in a
random way among those demand indices i in J which are such that Nfree(i)
= 1; else we select randomly in a set of demands j with Nfree(j) inside {2,
NfreeMAX }. NfreeMAX becomes a parameter of the INSERTION. (E2)

– Next, it picks up (k0, x0, y0, v0) in Ufree(i0) which simultaneously corre-
sponds to one of the smallest values v, and to one of the smallest values
EVAL2(INSERT(T(k), x, y, i0)).Val - VAL2(T(k)): more specifically it first
builds the list L-Candidate of the N1 (up to five) 4-uples (k, x, y, v) in Ufree(
i0) with best (smallest value v). For any such a 4-uple, it computes the value
w = EVAL2(INSERT(T(k), x, y, i0)).Val - VAL2(T(k)), and it orders L-
Candidate according to increasing values w. Then it randomly chooses (k0,
x0, y0, v0) among those N2 ≤ N1 first 4-uples in L-Candidate. N1 and N2

become two parameters of the INSERTION procedure. (E3)
– Next it inserts the demand i0 into T(k0) according to the insertion nodes x0,

y0, which means that it replaces T(k0) by INSERT(T(k0), x0, y0, i0);
– Next it defines, for any i ∈ J , the set Λ(i) as being the set of all pairs (x, y)

such that there exists some 4-uple (k0, x
′
, y′, v) in Ufree(i), which satisfies:

• (x
′
= x) or ((x

′
= x0) and x

′
= Pred(T(k0), x)) or ((x

′
= x0 = y0) and

(x
′
= Pred(Pred(T(k0),x))));

• (y′ = y) or ((y′ = y0) and y′ = Pred(T(k0), y)) or ((y
′ = x0 = y0) and

(y′ = Pred(Pred(T(k0),y)))); (E4)

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 43

– Finally, it performs, for any pair (x, y) in Λ(i), a call Test-Insert(T(k0), x,
y, i), and it updates Ufree(i) and Nfree(i) consequently.

This can be summarized as follows:

Procedure INSERTION(N1 and N2 : Integer): (T: tour set, t: time value set,
Perf: induced Perf A,B,C(T, t) value, Reject: rejected demand set);

For any k = 1..K do
T(k) ← {DepotD(k), DepotA(k)};
t(DepotD(k)) = t(DepotA(k)) ← 0;

I1 ← Nil ; J ← I ; Reject ← Nil;
For any i ∈ J do
Nfree(i) ← K;
Ufree(i) ← all the possible 4-uple (k, x, y, v), k ∈ K, x, y ∈ {DepotD(k),
DepotA(k)}, x �T (k) y, v = EVAL2({DepotD(k), oi, di, DepotA(k)}).Val;

While J �= Nil do
Pick up some demand i0 in J as in (E2); Remove i0 from J;
If Ufree(i0) = Nil then Reject ← Reject ∪ {i0};
Else
Derive from Ufree(i0) the L-Candidate list and pick up (k0, x0, y0, v0)
in L-Candidate as in (E3);
T (k0) ← INSERT(T (k0), x0,y0,i0);
δ ← EVAL2(T (k0)).δ; Insert i0 into I1 ;
For any x in T(k0) do t(x) ← δ(x);
For any i ∈ J do
Λ(i) ← {all pairs (x, y) such that there exists some 4-uple (k0,x

′
, y

′
, v)

in Ufree(i), which satisfies (E4);
For any pair (x, y) in Λ(i) do
(Test, Val) ← Test-Insert(T(k0), x, y, i);
Remove (k0, x, y, v) from Ufree(i) in case such a 4-uple exists and
update Nfree(i) consequently;
If Test = 1 then insert (k0, x, y, Val) into Ufree(i) and update
Nfree(i) consequently;

Perf ← Perf A,B,C (T, t);
INSERTION ← (T, t, Perf, Reject);

Since the above (I1) and (I2) instruction may be written in a non deterministic
way, the whole INSERTION algorithm becomes non deterministic and may be
used inside some MONTE-CARLO framework:

RANDOM-INSERTION(N1, N2, P: Integer) Scheme;
For p = 1..P do
Apply the INSERTION(N1, N2) procedure;

Keep the best result (the pair (T, t) such that |Reject| is the smallest possible,
and which is such that, among those pairs which minimize |Reject|, it yields the
best Perf A,B,C (T, t) value).

44 S. Deleplanque and A. Quilliot

4 Dial-a-Ride Problem with Split Loads

4.1 Model and Framework updated

The Dial-a-ride problems with split loads means we allow related to some demand
to be split in several pieces and to transported separately. Such a situation may
occur in the case of good transportation (large scale load management) as well as
in the case of people transportation (group management). Difficulties start with
modeling, since the way loads Qi are divided into load-pieces Qi,j , j = 1..n(i),
is part of the problem.

We based on the general Dial-a-ride Problem defined above and we update :

– the set X which gives rise to a infinite set Z = Z(X), which derives from X
by replacing every node x such that Status(x) = {Origin, Destination}, by
nodes (x, s), s ∈ N . This splitting process will allow us to distinguish the
nodes of X which are related to some demand Di according to the load-pieces
Qi,j , j = 1..n(i): the meaning of node (oi, s) is that if a tour T(k) contains
this node (oi, s), then it will also contain the node (di, s), and vehicle k will
ensure the transportation of some load-piece Qi,j from oi to di.

– the DIST matrix which may be considered as extended in a natural way as
a DIST function which is defined on Z.Z;

– the Twin function : for any node z = (x, s) = (oi, s) ((di, s)) which appears
in Γ , the node Twin(z) = (di, s) ((oi, s)) is also in Γ , and we have: z <<
Twin(z) ((Twin(z) << z));

– the ride is computed by the duration between the first time’s origin node
and the last time’s destination node for a given demand;

– the maximum ride time could be considered in two different ways (for a given
demand) :
• it bounds the duration given by the first time’s origin node and the last
time’s destination node,

• each load-pieces is independent and bounded by the same maximum ride
time (like in our experiments).

So, the Dial-a-Ride Problem with split loads may be put in a formal way as
follows:

The Dial-a-Ride Problem with Split Loads
Input: the demand set D = (Di = (oi, di, Δi, F (oi), F (di), Qi), i ∈ I), the 4-uple
(X, DIST, K, CAP) which we defined above, and 3 multi-criteria coefficients A,
B and C ≥ 0;
Output: a triple (T, t, Q) where T = {T(k), k ∈ K} is a time valid tour family,
Q = {Q(k), k ∈ K} is a family of related valid load value sets Q(k) = {Q(k)(z),
z ∈ T (k)}, and t = {t(k), k ∈ K} is a family of related valid time value sets t(k)
= {t(k)(z), z ∈ T (k)} such that:

– for every i ∈ I, we have:∑
k=1..K

∑
(i,s) if oi∈T (k) Q(k)(oi, s) = −

∑
k=1..K

∑
(i,s) if di∈T (k) Q(k)(di, s)

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 45

– The quantity Perf A,B,C(T, t,Q) =
∑

k=1..K CostA,B,C(T (k), Q(k), t(k)) is
the smallest possible.

Active set related to a feasible triple (T, t, Q): it is the set of the active nodes
(x, s) in Z = Z(X), which means the nodes which belong to some tour T(k), k
= 1..K. The general algorithmic scheme INSERTION-SPLIT-LOADS will
come as follows:

Initialize (T, t, Q); Initialize the sets Ufree(i), i ∈ I;
Initialize the active Z-ACT: Z-ACT <- Nil;
J <- I; For any i in J, set Q-Auxi <- Qi; Reject <- Nil;
While J �= Nil do
Picks up some demand i0 in J; Remove i0 from J;
If Ufree(i0) = Nil then Reject <- Reject ∪ {i0, Q-Auxi0};
Else
Compute s0; Create two new active nodes (oi0 , s0) and (di0 , s0) and
insert them into Z-ACT;
Derive from Ufree(i0) a L-Candidate list;
Pick up (k0, x0, y0, v0, Q(k0)(oi0 , s0)) in L-Candidate; (E5)
T(k0) <- INSERT(T(k0), x0, y0, i0);
Update t and Q;
Update the sets Ufree(i), i ∈ J;
If Q(k0)(oi0 , s0) = Q-Auxi0 then Remove i0 from J else replace
Q-Auxi0 by Q-Auxi0 - Q(k0)(oi0 , s0);

4.2 Trade-Off between Load and Speed: The Load-Distribute
Problem

As a matter of fact, performing Instruction (E5) above, which means conve-
niently the parameters k0, x0, y0 and Q(k0)(oi0 , s0) of the insertion process,
also means defining some trade-off between the value Q(k0)(oi0 , s0), which we
would like to be the larger possible, and the quality of the insertion in relation
to the criterion measure Perf A,B,C(T, t) and to the values which are returned
by EVAL1 and EVAL2. In order to define this trade-off, we do not exactly follow
the above algorithmic scheme: instead, we proceed in a specific way, which con-
sists in handling the whole demand Di0 inside a same iteration, while eventually
splitting into several blocks and simultaneously distributing those blocks in an
ad hoc way between the different tours. In order to put it in a more precise way,
let us suppose that we are dealing as above with a demand index i0 in J, in such
a way that Q-Auxi0 = Qi0 and with a L-Candidate list which we derived from
the set Ufree(i0). The elements of L-Candidate are 5-uple (k, x, y, v, q), which
express the feasibility of the transportation by vehicle k of a load q from oi0 to
di0 , respectively inserted into the tour T(k) between x and Succ(T(k), x) and
between y and Succ(T(k), y), the number v providing us with the EVAL2 value
of this insertion. Then we try to solve the following problem:

46 S. Deleplanque and A. Quilliot

Load-Distribute Problem
{Select a collection Λ = {(k1, x1, y1, v1, q1),.., (ks, xs, ys, vs, qs)} of 5-uples

of L-Candidate, in such a way that:
- the kj , j = 1..s, are pairwise distincts;
-
∑

j=1..s qj ≥ Qi0 ;
-
∑

j=1..s vj is the smallest possible}

While this problem may be easily solved in an exact way through a bipartite
graph matching procedure, we deal with it in a fast way through a simple heuris-
tic Load-Distribute procedure. In case we don’t find any feasible solution to this
problem, then we reject the whole demand i0. Else, we create the active nodes
(oi0 , j), (di0 , j), j = 1..s , we add them to Z, and, for every index value j =
1..s, we replace the tour T(kj) by the tour INSERT(T(kj), xj , yj, i0), and we
consequently update the time value set t(ki) and the load value set Q(ki).

Remark 1. The failure of the Load-Distribute test does not completely mean
that the insertion of demand i0 cannot be performed: theoretically, one might
build instances which would make a distributed insertion possible, under the
condition that a same vehicle is going to support several distinct nodes (oi0 , j).
In such a case, we should perform the insertion of a first part of demand i0, and
next try again with the remaining part, while eventually using the same vehicle
as for the first part. Still, practically, such a configuration is likely to occur very
scarcely, and, so, we decide not to take it into account.

5 Computational Experiments

5.1 Experiment on the Classic Dial a Ride Problem

This first experiment deals with the two sets of instances defined in [5]. We
integrated the same mono criterion objective function given by Cordeau: the

Table 1. Resolution of the set a [5]

Inst. Lb Opti Ub c1(s) TI Gap Wait Ride c2(s)
a2-16 294.25 294.25 294.25 1.1 294.25 0.00 387.32 344.54 0.0
a2-20 344.83 344.83 344.83 2.6 344.83 0.00 605.44 455.32 0.1
a2-24 431.12 431.12 431.12 8.5 431.12 0.00 536.79 603.31 0.3
a3-18 300.48 300.48 300.48 4.6 300.81 0.11 196.65 419.35 0.7
a3-24 344.83 344.83 347.42 7.6 344.83 0.00 642.72 628.86 1.5
a3-30 494.85 494.85 494.85 9.8 495.26 0.08 721.21 732.86 16.3
a3-36 583.19 583.19 584.44 105.1 589.86 1.14 868.83 903.77 13.8
a4-16 282.68 282.68 282.68 5.6 283.10 0.15 100.72 307.00 0.3
a4-24 375.02 375.02 378.13 5.6 376.21 0.32 527.81 581.60 94.0
a4-32 485.5 485.5 487.81 30.7 487.10 0.33 593.75 796.45 29.4
a4-40 557.69 557.69 582.26 8328.5 565.95 1.42 1112.33 824.32 63.3
a4-48 668.82 NA 709.47 14542.6 700.30 NA 966.85 1132.92 30.8

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 47

minimization of the total distance. The instances have between 16 and 48 re-
quests which have to be supported by a fleet of 2 to 4 vehicles, and have been
divided into subsets a and b. In the first set, CAP = 3, the loads are all equal to
1, and the maximum riding time is 30min. For the second set, CAP = 6, the load
q is randomly chosen according to a uniform distribution such as q = 1..CAP ,
and the maximum riding time is 40min. All the demands are randomly chosen in
the square [-10,10].[-10,10] according to a uniform distribution, and all the rout-
ing costs between two nodes are equal to the Euclidean distance. The heuristics
proposed in this paper was implemented in C++ and compiled with GNU GCC.
Each replication was run on the same thread of an Intel Q8300 (2.5 GHz).

Table 1 shows the results obtained for the a first set of instances, and table
2 gives the results for the b second set. Lb, Ub, Opti, and TI are the best lower
bound, the best upper bound, the known optimal value ([5]-[14]), and the result
obtained with our insertion techniques respectively. The cpu times are in seconds
for the first table and in minutes for the second table. c1 is the literature best
cpu time and c2 is the cpu time obtained in our experiment. gap is the gap in
percentage between the optimal distance and our result.

Almost each time, our heuristic found the optimal solution known in the
literature and the worst gap obtained was 2,38%. We obtained these results
quickly, the cpu times are low compared to previous studies, and a good solution
is obtained in little time. Also, we show that our solution can be used with other
objective functions, proving one the flexibility aspects of our solution.

Table 2. Resolution of the set b [5]

Inst. Lb Opti Ub c1(m) TI Gap Wait Ride c2(m)
b2-16 309.41 309.41 309.61 0.2 309.41 0.00 386.45 448.66 0.7
b2-20 332.64 332.64 334.93 0.0 332.64 0.00 458.17 465.23 0.6
b2-24 444.71 444.71 445.11 0.1 444.71 0.00 475.88 674.12 2.6
b3-18 301.64 301.64 301.8 0.7 301.65 0.00 278.70 479.38 0.7
b3-24 394.51 394.51 394.57 3.6 397.47 0.75 609.62 572.61 3.5
b3-30 531.44 531.44 536.04 6.8 534.23 0.52 785.71 857.28 3.2
b3-36 603.79 603.79 611.79 62.1 603.79 0.00 919.58 942.81 0.9
b4-16 296.96 296.96 299.07 0.8 296.96 0.00 218.97 402.16 2.8
b4-24 371.41 371.41 380.27 5.9 371.41 0.00 490.06 567.75 0.1
b4-32 494.82 494.82 500.92 176.8 506.60 2.38 921.55 749.85 1.9
b4-40 591.76 656.6 662.91 240.0 662.74 0.94 1013.20 1021.47 3.5
b4-48 586.91 673.8 685.46 240.0 684.83 1.64 1458.76 1262.59 5.2

5.2 Experiment on the Dial a Ride Problem with Split Loads

In this section we present our instances generated in the same square [-10,10].[-
10,10] as above in order to test our heuristic that solves the DARPSL. In all
demands, the origin time window is tight (15 minutes) and the destination time
window is large. Moreover, their origin location are randomly located in the rect-
angle [-10,-9].[-10,10], and their destination location is generated in the square

48 S. Deleplanque and A. Quilliot

[9,10].[-0.5,0.5]. The depot point is located on the center of the main square. We
generated four sets of 10 instances (20 to 65 demands managed by 4 to 10 vehi-
cles). All the random generation has been computed by a uniform distribution.

Table 3. Instances solved by the DARP’s heuristic

K |D| Glob Ride Dist RSucc RInsert cpu(s)
4 20 836.3 953.8 416.9 71.2 98.1 0.3
6 35 1366.7 1590.7 714.2 58.0 98.0 0.7
8 50 1831.0 2203.1 1038.4 28.4 96.3 1.4
10 65 2349.7 2758.5 1347.2 25.2 95.8 2.4
Av. 1595.9 1876.5 879.2 45.7 97.0 1.2

The optimization uses a mono criterion : the minimization of the total dis-
tance. Our two algorithms proposed in this paper were applied to the four sets,
each instance has been solved with 100 runs. Table 3 and table 4 report the
results obtained with the classic problem and the problem with split loads re-
spectively. Glob and Ride are the times reported from the best run, Dist is
the best total distance obtained, RSucc (%) is the insertion average rate (over
the runs) of all the demands, RInsert (%) the average rate of insertion for each
demand, and cpu(s) is the time in seconds for the 100 runs.

Table 4. Instances solved by the DARPSL’s heuristic

K |D| Glob Ride Dist RPart RSucc RInsert cpu(s)
4 20 856.3 1113.1 356.8 1.205 93.2 99.6 0.5
6 35 1269.2 1787.2 605.5 1.216 78.4 98.8 1.3
8 50 1689.7 2542.1 850.2 1.216 53.6 97.8 2.6
10 65 2024.7 2981.0 1100.3 1.220 47.6 97.1 4.2
Av. 1460.0 2105.9 728.2 1.214 68.2 98.3 2.1

We report the average number of divisions per demand (RPart). So, for the
four sets, this rate is 1,214 (each demand is divided by 1,214 on average).

We observed that the split loads gives us better solutions, we obtained dis-
tances 20% less than the other problem. Glob also decreased (the average number
of vehicles leaving the depot is lower than the classic problem). Ride increased
because it is computed on the difference between the last date of the pickups at
the destination point and the first date of the pickups at the origin point.

6 Conclusion

The static multi-vehicle DARP with Time Windows requires approximate solu-
tions in order to be solved in a reasonable time. We have described an implemen-
tation of some insertion techniques using constraint propagation. This solution

Constraint Propagation for the Dial-a-Ride Problem with Split Loads 49

makes it possible to obtain good results in little time. In addition, we formulate
an objective function which optimizes the combination of QoS and cost’s mini-
mization. But, in order to compare with tests found in literature, we prove the
flexibility of our framework by changing the objective function without modifi-
cation of the framework itself. Despite this change, we show that our solution is
effective.

We also propose a new problem: the Dial a Ride Problem with split loads.
This problem gives us better solving method compared to the classic DARP, we
get 20% shorter routes with the resolution of the DARPSL with our instances.

In a future work, we could solve instances in real context, and improve our
solution by integrating inserability demand calculator.

Acknowledgments. We wish to thank you the Conseil Regional d’Auvergne
and the FEDER of the European Union.

References

[1] Ghiani, G., Laporte, G., Attanasio, A., Cordeau, J.F.: Parallel tabu search heuris-
tics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing 30(3),
377–387 (2004)

[2] Hertz, A., Archetti, C., Speranza, M.G.: A tabu search algorithm for the split
delivery vehicle routing problem. Transportation Science 40(1), 64–73 (2006)

[3] Speranza, M.G., Archetti, C.: The split delivery vehicle routing problem: A sur-
vey. In: The Vehicle Routing Problem: Latest Advances and New Challenges,
pp. 103–122. Springer, US (2008)

[4] Chevrier, R.: Optimisation de transport à la demande dans des territoires po-
larisés. PhD. Thesis. Université d’Avignon et des Pays de Vaucluse, 242p (2008)

[5] Cordeau, J.-F.: A branch-and-cut algorithm for the dial-a-ride. Operation Re-
search 54(3), 573–586 (2006)

[6] Jaw, J., Odoni, A., Psaraftis, H., Wilson, N.: A heuristic algorithm for the multi-
vehicle many-to-many advance request dial-a-ride problem. Transportation Re-
search B 20B, 243–257 (1986)

[7] Laporte, G., Cordeau, J.-F.: A tabu search heuristic algorithm for the static multi-
vehicle dial-a-ride problem. Transportation Research B 37, 579–594 (2003)

[8] Laporte, G., Cordeau, J.F.: The dial-a-ride problem: models and algorithms. An-
nals of Operations Research (2007)

[9] Stone, J.R., Baugh Jr., J.W., Kakivaya, D.K.R.: Intractability of the dial-a-ride
problem and a multiobjective solution using simulated annealing. Engineering
Optimization 30(2), 91–124 (1998)

[10] Trudeau, P., Dror, M.: Savings by split delivery routing. Transportation Sci-
ence 23(2), 141–145 (1989)

[11] Schrijver, A., Grötschel, M., Lovász, L.: Geometric algorithms and combinatorial
optimization. Springer (1988)

[12] Rygaard, J., Madsen, O., Ravn, H.: A heuristic algorithm for the a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Annals
of Operations Research 60, 193–208 (1995)

[13] Moll, R., Healy, P.: A new extension of local search applied to the dial-a-ride
problem. European Journal of Operational Research 83, 83–104 (1995)

50 S. Deleplanque and A. Quilliot

[14] Parragh, S.: Introducing heterogeneous users and vehicles into models and algo-
rithms for the dial-a-ride problem. Transportation Research Part C: Emerging
Technologies 19(5), 912–930 (2011)

[15] Parragh, S.N.: Solving the dial-a-ride problem with split requests and profits. CO
2012 (2012)

[16] Psaraftis, H.: An exact algorithm for the single vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science 17, 351–357 (1983)

[17] Chatonnay, P., Josselin, D., Chevrier, R., Canalda, P.: Comparison of three algo-
rithms for solving the convergent demand responsive transportation problem. In:
ITSC 2006, 9th Int. IEEE Conf. on IntelligentTransportation Systems, Toronto,
Canada, pp. 1096–1101 (2006)

[18] Bergvinsdottir, K.B., Jorgensen, R.M., Larsen, J.: Solving the dial-a-ride problem
using genetic algorithms. Journal of the Operational Research Society 58(10),
1321–1331 (2007)

[19] Quilliot, A., Deleplanque, S.: Dial a ride problem avec transbordement et division
du chargement. 14e conférence ROADEF. 14-15-15 Février (résumé accepté, 2013)

[20] Hartl, R.F., Parragh, S.N., Doerner, K.F.: Variable neighborhood search for the
dial-a-ride problem. Computers & Operations Research 37, 1129–1138 (2010)

ACO and GA for Parameter Settings of E. coli
Fed-Batch Cultivation Model

Stefka Fidanova1, Olympia Roeva2, and Maria Ganzha3

1 IICT-Bulgarian Academy of Science,
Acad. G. Bonchev Str., bl. 25A,

1113 Sofia, Bulgaria
stafka@parallel.bas.bg

2 IBFBMI-Bulgarian Academy of Science,
Acad. G. Bonchev Str., bl.105,

1113 Sofia, Bulgaria
olympia@biomed.bas.bg

3 System Research Institute,
Polish Academy of Sciences,

Newelska Str. 6, 01-447 Warsaw, Poland
maria.ganzha@ibspan.waw.pl

Abstract. E. coli plays significant role in modern biological engineering
and industrial microbiology. In this paper the Ant Colony Optimization
algorithm and Genetic algorithm are proposed for parameter identifica-
tion of an E. coli fed-batch cultivation process model. A system of nonlin-
ear ordinary differential equations is used to model the biomass growth
and the substrate utilization. We use real experimental data set from
an E. coli MC4110 fed-batch cultivation process for performing param-
eter optimization. The objective function was formulated as a distance
between the model predicted and the experimental data. Two different
distances were used and compared – the Least Square Regression and
the Hausdorff Distance. The Hausdorff Distance was used for the first
time to solve the considered parameter optimization problem. The results
showed that better results concerning model accuracy are obtained using
the objective function with a Hausdorff Distance between the modeled
and the measured data. Although the Hausdorff Distance is more time
consuming than the Least Square Distance, this metric is more realistic
for the considered problem.

Keywords: ant colony optimization, genetic algorithm, least square dis-
tance, Hausdorff distance.

1 Introduction

A lot of proteins are produced by the modified genetically microorganisms. One of
the most used host organisms in the process is the Escherichia coli [47]. Further-
more, the E. coli is still the most important host organism for the recombinant

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 51–71.
DOI: 10.1007/978-3-319-00410-5_4 c© Springer International Publishing Switzerland 2013

52 S. Fidanova, O. Roeva, and M. Ganzha

protein production. In many cases, cultivation of recombinant micro-organisms
e.g. the E. coli, is the only economical way to produce pharmaceutical biochem-
icals such as: interleukins, insulin, interferons, enzymes and growth factors, etc.
Simple bacteria, like the E. coli, are manipulated to produce these chemicals so
that they are easily harvested in vast quantities for use in medicine. Scientists
may know more about the E. coli than they do know about any other species on
earth. Research on the E. coli accelerated after 1997, after publication of its entire
genome.The scientists were able to survey all 4,288 of its genes, discovering how
groups of them worked together to break down food, make new copies of the DNA
and do other tasks. However, despite decades of research, there rest a lot more to
know about the E. coli. In 2002, they formed the International E-coli Alliance, for
organization of projects that many laboratories could work together. As knowl-
edge of the E. coli grows, scientists are starting to build models of the microbe
that capture some of its behavior. It is important to be able to simulate how fast
the microbe will grow on various sources of food, and how its growth changes if in-
dividual genes are knocked out. These questions are best answered by application
of mathematical modeling.

Modeling of biotechnological processes is a common tool in process technol-
ogy. It is obvious that the model is always a simplification of the reality. This
is especially true when trying to model natural systems containing living organ-
isms. However, for many industrial relevant processes, detailed models are not
available due to the insufficient understanding of the underlying phenomena.
These models can be too complicated and/or impossible to be solved. Therefore
the specialists try to separate the most important components, and to create
simplified models, which are as close as possible to the real processes. The math-
ematical models are very useful and effective tools in describing those effects.
They are of great importance for control, optimization, or for understanding of
the process. Thus the numerical solution of the models is fundamental for the
development of powerful, though economical, methods in the fields of bioprocess
design, plant design, scale-up, optimization and bioprocess control [40,30]. Some
of the recent researches and developed models of the E. coli were presented
in [10,21,22,27,31,42].

A common approach to model cellular dynamics is by systems of nonlinear dif-
ferential equations. Obviously, parameter identification of a nonlinear dynamic
model is more difficult than the linear one, as no general analytic results ex-
ist. The difficulties that may arise are such as: convergence to local solutions if
standard local methods are used, over-determined models, badly scaled model
function, etc. The problem is NP-hard and it is unpractical to be solved with ex-
act or traditional numerical method. Therefore, existing research results indicate
that the most useful solution method is by application of some metaheuristics.
During the last decade metaheuristic techniques have been applied in a vari-
ety of areas. Heuristics can obtain suboptimal solution in ordinary situations
and optimal solution in particular cases. Since the considered problem has been
known to be NP-complete, using heuristic techniques can solve this problem more
efficiently. Three best known (and most studied) heuristic approaches are: the

Parameter Settings of E. coli Cultivation 53

iterative improvement algorithms, the probabilistic optimization algorithms, and
the constructive heuristics. In this context, the evolutionary algorithms like: (a)
Genetic Algorithms (GA) [18,19,25], (b) Evolution Strategies, (c) Ant Colony
Optimization (ACO) [12,13,14,17], (d) Particle Swarm Optimization [46], (e)
Tabu Search (TS) [49], (f) Simulated Annealing (SA) [23], (g) estimation of dis-
tribution algorithms, (h) scatter search, (i) path relinking, (j) greedy randomized
adaptive search procedure, (k) multi-start and iterated local search, (l) guided
local search, and (m) variable neighborhood search are - among others - often
listed as examples of classical metaheuristics [6,44,45].

Obviously, they all have individual historical backgrounds and follow different
paradigms and philosophies [7]. In this work the ACO and GA are chosen as the
most common direct methods used for the global optimization.

The ACO is a rapidly growing research area of population-based metaheuris-
tics that can be used to find approximate solutions to difficult optimization
problems. It is applicable for a broad range of optimization problems, can be
used in dynamic applications (adapts to changes such as new distances, etc.)
and in some complex biological problems [15,16,41]. Recall that the ACO can
compete with other global optimization techniques like GAs and SA. Overall, the
ACO algorithms have been inspired by the real-world ant behavior. In nature,
ants usually wander randomly, and upon finding food return to their nest while
laying down pheromone trails. If other ants find such a path, they are likely
to not continue traveling at random, but to follow the trail instead, returning
and reinforcing it (if they eventually find food). However, as time passes, the
pheromone starts to evaporate. Therefore, the more time it takes for an ant
to travel down the path and back again, the more time the pheromone has to
evaporate and the path becomes less noticeable. A shorter path, in comparison,
will be visited by more ants and thus the pheromone density remains high for
a longer time. The ACO is usually implemented as a team of intelligent agents
which simulate the ants behavior, walking around the graph representing the
problem to solve using mechanisms of cooperation and adaptation.

The GA is one of the oldest and well learned metaheuristics. The idea for it
comes from the Darwinian theory for evolution. The two parents combines in
a random way. If the ancestors are better than the parents they survive and if
they are worst they will dye. Thus during the time the population improves.

In this paper the ACO and GA are applied for parameter identification of a
system of the E. coli fed-batch cultivation process, described in terms of a mathe-
matical model. Specifically, a system of nonlinear ordinary differential equations
is proposed to model the E. coli biomass growth and substrate (glucose) uti-
lization. The parameter optimization is performed using real experimental data
set from the E. coli MC4110 fed-batch cultivation process. The cultivation was
performed in the Institute of Technical Chemistry, of the University of Han-
nover, Germany during the collaboration work with the Institute of Biophysics
and Biomedical Engineering, BAS, Bulgaria, and was funded by a grant DFG.
The experimental data set includes records for the substrate feeding rate, con-
centration of biomass and substrate (glucose), and the cultivation time. In the

54 S. Fidanova, O. Roeva, and M. Ganzha

nonlinear mathematical model considered here, the parameters that should be
estimated are the maximum specific growth rate (μmax), the saturation constant
(kS), and the yield coefficient (YS/X).

The parameter estimation is performed based upon the use of a modified
Hausdorff Metric [39] and the most commonly used metric – the Least Square
Regression. The Hausdorff Metrics are used in the geometric settings for mea-
suring the distance between sets of points. They have been used extensively in
areas such as computer vision, pattern recognition and computational chem-
istry [48,43,26,9]. The modified Hausdorff Distance is proposed to evaluate the
mismatch between the experimental and the model predicted data. The results
from both metrics are compared and analyzed.

The rest of the paper is organized as follows. The optimal parameters set-
ting problem is formulated in Section 2. The ACO algorithm for the considered
problem is defined in Section 3. The GA algorithm is described in Section 4.
The numerical results and the discussion are presented in Section 5. Concluding
remarks are introduced in Section 6.

2 Problem Formulation

The costs of developing mathematical models for the bioprocess improvement
are often too high and the benefits too low. The main reason for this is related
to the intrinsic complexity and non-linearity of biological systems. In general,
mathematical descriptions of growth kinetics assume extensive simplifications.
These models are often not accurate enough to correctly describe the underlying
mechanisms. Another critical issue is related to the nature of the bioprocess
models. Quite often, the parameters involved are not identifiable. Additionally,
from the practical point of view, such identification would require data from
specific experiments, which are themselves difficult to design and to realize.
However, the estimation of model parameters with high parameter accuracy is
essential for successful model development.

The real parameter optimization of simulation models, has become a research
field of great interest in recent years. Nevertheless, after all completed research,
this task still represents a very difficult problem. This mathematical problem,
the so-called inverse problem, is a big challenge for the traditional optimization
methods. In this case only the direct optimization strategies can be applied,
because they exclusively use information about values of the goal function. Ad-
ditional information about the goal function, like its gradients, etc., which could
be used to accelerate the optimization process, is not available. Since an evolu-
tion of a goal for one string is provided by one simulation run, completing of
the optimization algorithm may require a lot of computation time. Therefore,
various metaheuristics are used as an alternative to surmount the parameter
estimation difficulties.

Parameter Settings of E. coli Cultivation 55

2.1 Problem Model

The general state space dynamical model of the process of interest was described
by Bastin and Dochain in [4]. It is accepted as representing the dynamics of an
n components and m reactions bioprocess:

dx

dt
= Kϕ(x, t)−Dx+ F −Q. (1)

Here, x is a vector representing the state components; K is the yield coefficient
matrix; ϕ is the growth rates vector; the vectors F and Q are the feed rates and
the gaseous outflow rates. The scalar D is the dilution rate, which will be the
manipulated variable, and which is defined as follows:

D =
Fin

V
(2)

where Fin is the influent flow rate and V is the bioreactor volume.
Application of the general state space dynamical model [4] to the E. coli

cultivation fed-batch process leads to the following nonlinear differential equation
system [33]:

dX

dt
= μmax

S

kS + S
X − Fin

V
X (3)

dS

dt
= − 1

YS/X
μmax

S

kS + S
X +

Fin

V
(Sin − S) (4)

dV

dt
= Fin (5)

where:

X – biomass concentration, [g/l];
S – substrate concentration, [g/l];
Fin – feeding rate, [l/h];
V – bioreactor volume, [l];
Sin – substrate concentration in

the feeding solution, [g/l];
μmax – maximum value of

the specific growth rate, [h−1];
kS – saturation constant, [g/l];
YS/X – yield coefficient, [-].

The mathematical formulation of the nonlinear dynamic model (Eqs. (3) - (5))
of the E. coli fed-batch cultivation process is described according to the mass
balance and the model is based on the following a’priori assumptions:

– the bioreactor is completely mixed;
– the main products are biomass, water and, under some conditions, acetate;

56 S. Fidanova, O. Roeva, and M. Ganzha

– the substrate glucose is consumed mainly oxidatively and its consumption
can be described by the Monod kinetics;

– the variation in the growth rate and the substrate consumption do not signif-
icantly change the elemental composition of the biomass, thus only balanced
growth conditions are assumed;

– parameters, e.g. temperature, pH, or pO2, are controlled at their individual
constant set points.

For the parameter estimation problem the real experimental data of the E.
coli MC4110 fed-batch cultivation process is used. Off-line measurements of the
biomass and on-line measurements of the glucose concentration are used in the
identification procedure. The cultivation condition and the experimental data
have been published in [34]. Here only the fermentation conditions described.

The fed-batch cultivation of the E. coli MC4110 is performed in a 2l bioreac-
tor (Bioengineering, Switzerland), using a mineral medium [3], in the Institute
of Technical Chemistry, University of Hannover. Before inoculation, a glucose
concentration of 2.5 g/l is established in the medium. Glucose in the feeding
solution is 100 g/l. The initial liquid volume is 1350 ml. The pH is controlled
at 6.8 and the temperature is kept constant at 35◦C. The aeration rate is kept
at 275 l/h air, the stirrer speed at start 900 rpm, and after 11 hours the stirrer
speed is increased in steps of 100 rpm. At end the stirrer sped reaches 1500 rpm.
Oxygen is controlled at around 35%.

Off-line analysis
For the off-line glucose measurements, as well as the biomass and the acetate
concentration determination, samples of about 10 ml are taken approximately
at every hour. Off-line measurements are performed by using the Yellow Springs
Analyser (Yellow Springs Instruments, USA).

On-line analysis
For the on-line glucose determination a flow injection analysis (FIA) system has
been employed, using two pumps (ACCU FM40, SciLog, USA) for the contin-
uous sample and the carrier flow rate. To reduce the measurement noise the
continuous-discrete extended Kalman filter was used [3].

Glucose measurement and control system
For on-line glucose determination, the same FIA system has been employed for
the continuous sample and the carrier flow rate at 0.5 ml/min and 1.7 ml/min
respectively. A total of 24 ml of cells containing the culture broth were injected
into the carrier stream and mixed with an enzyme solution of 350 000 U/l of
glucose oxidase (Fluka, Germany) of a volume of 36 ml. After passing a reac-
tion coil of 50 cm length, the oxygen uptake was measured using an oxygen
electrode (ANASYSCON, Germany). To determine the oxygen consumed by
cells only, no enzyme solution were injected. Calculating the difference of both

Parameter Settings of E. coli Cultivation 57

dissolved oxygen peak Heights, the glucose concentration can be determined.
The time between sample taking and the measurement of the dissolved oxygen
was Δt = 45 s.

For the automation of the FIA system, as well as glucose concentration de-
termination, the software CAFCA (ANASYSCON, Germany) was applied. To
reduce the measurement noise the continuous-discrete extended Kalman filter
was used. This program was running on a separate PC and got the measure-
ment results via a serial connection. A PI controller was applied to adjust the
glucose concentration to the desired set point of 0.1 g/l [3].

The initial process conditions were [3]:
t0 = 6.68 h, X(t0) = 1.25 g/l, S(t0) = 0.8 g/l, Sin = 100 g/l.

2.2 Optimization Criterion

From the practical perspective, modeling studies are performed to identify simple
and easy-to-use models that are suitable to support the engineering tasks of
process optimization and, especially, of control. The most appropriate model
must satisfy the following conditions:

(i) the model structure should be able to represent the measured data in a
proper manner;

(ii) the model structure should be as simple as possible, while remaining com-
patible with the first requirement.

On account of that, the cultivation process dynamic is described using a sim-
ple Monod-type model, the most common kinetics applied for modelling of the
cultivation processes [4].

The optimization criterion is a certain factor, value of which defines the qual-
ity of an estimated set of parameters. To evaluate the mishmash between the
experimental and the model predicted data, a modified Hausdorff Distance and
the Least Square Regression are proposed.

In this work the Hausdorff Metric is used for the first time to solve the pa-
rameter optimization problem involving cultivation processes models.

Hausdorff Distance. When talking about distances, it usually means the
shortest: for instance, if a point X is said to be at distance D of a polygon
P , it is generally assumed that D is the distance from X to the nearest point of
P . The same logic applies for polygons: if two polygons A and B are at some dis-
tance from each other, it commonly understood that the distance is the shortest
one between any point of A and any point of B. That definition of distance be-
tween polygons can become quite unsatisfactory for some applications. However,
it would be natural to expect that a small distance between two polygons means
that no point of one polygon is far from the other polygon. Unfortunately, the
shortest distance concept carries very low informative content.

58 S. Fidanova, O. Roeva, and M. Ganzha

In mathematics, the Hausdorff Distance, or the Hausdorff Metric (named after
Felix Hausdorff), also called Pompeiu-Hausdorff Distance [39], measures how far
two subsets of a metric space are from each other. It turns the set of non-empty
compact subsets of a metric space into a metric space in its own right. Informally,
two sets are close in the Hausdorff Distance if every point of either set is close to
some point of the other set. In other words, the Hausdorff Distance is the longest
distance you can be forced to travel by an adversary who chooses a point in one
of the two sets, from where you then must travel to the other set. Thus, it is the
farthest point of a set that you can be at, to the closest point of a different set.
More formally, the Hausdorff Distance from set A to set B is a maxmin function
defined as:

h(A,B) = max
a∈A

{
min
b∈B

{d(a, b)}
}
, (6)

where a and b are points of sets A and B respectively, and d(a, b) is any metric
between these points. For simplicity, in this work, the d(a, b) as the Euclidean
distance between a and b is taken. If sets A and B are made of lines or polygons
instead of single points, then h(A,B) applies to all defining points of these lines
or polygons, and not only to their vertices. The Hausdorff Distance gives an
interesting measure of mutual proximity, by indicating the maximal distance
between any point of one set to the other set. IN this way it is better than the
shortest distance, which applied only to one point of each set, irrespective of all
other points of the sets.

Least Squares Regression. The objective of the modeling process consists of
adjusting the parameters of a model function to best fit the data set. A simple
data set consists of n points (data pairs) (xi, yi), i = 1, 2, . . . , n, where xi is an
independent variable and yi is a dependent variable value of which is found by
observation. The model function has the form f(x, β), where the m adjustable
parameters are held in the vector β. The goal is to find the parameter values
for the model which “best” fits the data. The least squares method finds its
optimum when the sum S of squared residuals:

S =

n∑
i=1

r2i

is at a minimum. A residual is defined as the difference between the actual
value of the dependent variable and the value predicted by the model. A data
point may consist of more than one independent variable. For example, when
fitting a plane to a set of height measurements, the plane is a function of two
independent variables, x and z. In the most general case there may be one or
more independent variables and one or more dependent variables at each data
point.

ri = yi − f(xi, β).

Parameter Settings of E. coli Cultivation 59

3 Ant Colony Optimization (ACO)

The ACO is a stochastic optimization method that mimics the social behavior of
real ants colonies, which manage to establish the shortest rout to feeding sources
and back. Real ants foraging for food lay down quantities of pheromone (chemical
cues) marking the path that they follow. An isolated ant moves essentially at
random but an ant encountering a previously laid pheromone will detect it and
decide to follow it with high probability and thereby reinforce it with a further
quantity of pheromone. The repetition of the above mechanism represents the
auto-catalytic behavior of a real ant colony, where the more the ants follow a trail,
the more attractive that trail becomes. The original idea comes from observing
the exploitation of food resources among ants, in which ants’ individually limited
cognitive abilities have collectively been able to find the shortest path between
a food source and the nest.

Basic of Ant Algorithm
The ACO is usually implemented as a team of intelligent agents, which simulate
the ants behavior, walking around the graph representing the problem to solve,
using mechanisms of cooperation and adaptation. The requirements of the ACO
algorithm are as follows [6,13]:

– The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilistic
transition rules, based on the amount of pheromone in the trail and other
problem specific knowledge.

– A problem-dependent heuristic function, that measures the quality of com-
ponents that can be added to the current partial solution.

– A rule set for pheromone updating, which specifies how to modify the
pheromone value.

– A probabilistic transition rule based on the value of the heuristic function
and the pheromone value, that is used to iteratively construct a solution.

The structure of the ACO algorithm is shown by the pseudocode below (Figure
1). The transition probability pi,j , to choose the node j when the current node
is i, is based on the heuristic information ηi,j and the pheromone trail level τi,j
of the move, where i, j = 1, , n.

pi,j =
τai,jη

b
i,j∑

k∈Unused

τai,kη
b
i,k

, (7)

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the

more profitable it is to select this move and resume the search. In the beginning,
the initial pheromone level is set to a small positive constant value τ0; later,
the ants update this value after completing the construction stage. The ACO
algorithms adopt different criteria to update the pheromone level.

60 S. Fidanova, O. Roeva, and M. Ganzha

Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j +Δτi,j , (8)

where ρ models evaporation in the nature and Δτi,j is new added pheromone
which is proportional to the quality of the solution. Thus better solutions will re-
ceive more pheromone than others and will be more desirable in a next
iteration.

4 Genetic Algorithm

GA originated from the studies of cellular automata, conducted by John Holland
and his colleagues at the University of Michigan. Holland’s book [19], published
in 1975, is generally acknowledged as the beginning of the research of genetic
algorithms. The GA is a model of machine learning which derives its behavior
from a metaphor of the processes of evolution in nature [18]. This is done by the
creation within a machine of a population of individuals represented by chromo-
somes. A chromosome could be an array of real numbers, a binary string, a list
of components in a database, all depending on the specific problem. The GA are
highly relevant for industrial applications, because they are capable of handling
problems with non-linear constraints, multiple objectives, and dynamic compo-
nents – properties that frequently appear in the real-world problems [24,18].
Since their introduction and subsequent popularization [19], the GA have been
frequently used as an alternative optimization tool to the conventional methods
[18,29] and have been successfully applied in a variety of areas, and still find
increasing acceptance [28,11,1,5,37,38,2].

Basic of Genetic Algorithm. GA was developed to model adaptation pro-
cesses mainly operating on binary strings and using a recombination operator
with mutation as a background operator. The GA maintains a population of
individuals, P (t) = xt

1, ..., x
t
n for generation t. Each individual represents a po-

tential solution to the problem and is implemented as some data structure S.

Parameter Settings of E. coli Cultivation 61

Each solution is evaluated to give some measure of its “fitness”. Fitness of an
individual is assigned proportionally to the value of the objective function of
the individuals. Then, a new population (generation t + 1) is formed by select-
ing more fit individuals (selected step). Some members of the new population
undergo transformations by means of “genetic” operators to form new solution.
There are unary transformations mi (mutation type), which create new individ-
uals by a small change in a single individual (mi : S → S), and higher order
transformations cj (crossover type), which create new individuals by combining
parts from several individuals (cj : S × . . . × S → S). After some number of
generations the algorithm converges - it is expected that the best individual rep-
resents a near-optimum (reasonable) solution. The combined effect of selection,
crossover and mutation gives so-called reproductive scheme growth equation [18]:

ξ (S, t+ 1) ≥ ξ (S, t) · eval (S, t) /F̄ (t)

[
1− pc ·

δ (S)

m− 1
− o (S) · pm

]
.

Differences that separate genetic algorithms from the more conventional opti-
mization techniques could be defined as follows [18]:

1. Direct manipulation of a coding – GA work with a coding of the parameter
set, not the parameter themselves;

2. GA search in a population of points, not a single point;
3. GA use payoff (objective function) information, not derivatives or other aux-

iliary knowledge;
4. GA use probabilistic transition rules (stochastic operators), not deterministic

rules.

Compared with traditional optimization methods, GA simultaneously evaluates
many points in the parameter space. It is more probable to converge towards
the global solution. A genetic algorithm does not assume that the space is dif-
ferentiable or continuous and can also iterate many times on each data received.
A GA requires only information concerning the quality of the solution produced
by each parameter set (objective function value information). This characteristic
differs from optimization methods that require derivative information or, worse
yet, complete knowledge of the problem structure and parameters. Since GA do
not demand such problem-specific information, they are more flexible than most
search methods. Also GA do not require linearity in the parameters which is
needed in iterative searching optimization techniques. Genetic algorithms can
solve hard problems, are noise tolerant, easy to interface to existing simulation
models, and easy to hybridize. Therefore, this property makes genetic algorithms
suitable and more workable in use for a parameter estimation of considered here
cultivation process models. Moreover, the GA effectiveness and robustness have
been already demonstrated for identification of fed-batch cultivation processes
[8,36,35,32].

The structure of the GA is shown by the pseudocode below (Figure 2).
The population at time t is represented by the time-dependent variable P ,

with the initial population of random estimates being P (0). Here, each deci-
sion variable in the parameter set is encoded as a binary string (with precision

62 S. Fidanova, O. Roeva, and M. Ganzha

begin
i = 0
Initial population P (0)
Evaluate P (0)
while (not done) do (test for termination criterion)
begin

i = i+ 1
Select P (i) from P (i− 1)
Recombine P (i)
Mutate P (i)
Evaluate P (i)

end
end

Fig. 2. Pseudocode for GA

of binary representation). The initial population is generated using a random
number generator that uniformly distributes numbers in the desired range. The
objective function (see Eq. (15)) is used to provide a measure of how individuals
have performed in the problem domain.

5 Numerical Results and Discussion

In this section, a more precise description, concerning the application of the ACO
and GA for the parameter optimization of the E. coli cultivation process model,
is presented. Here, the parameters μmax, kS and YS/X have to be estimated. For
applying ACO first, the problem is represented by a graph. It is needed to find
the optimal values of three parameters which are interrelated. Therefore, the
problem is represented with three-partitive graph. The graph consists of three
levels. Every level represents a search area of one of the parameters that will
be optimized. Every area is thus discretized, to consists of 1000 points (nodes),
which are uniformly distributed in the search interval of every parameter. The
first level of the graph represents the parameter μmax. The second level repre-
sents the parameter kS . The third level represents the parameter YS/X . There
are arcs between nodes from consecutive levels of the graph and there are no
arcs between nodes from the same level. The pheromone is deposited on the arcs,
to indicate how good is this parameter combination. Every level of the graph
of the problem consists of 1000 points, thus the number of possible solutions is
109, therefore is unpractical to apply the exact methods.

5.1 ACO for Parameter Optimization

Here the proposed ACO approach is very close to real ant behavior. Starting to
create a solution, the ants chose a node from the firs level in a random way. Next,
for nodes from the second and the third level, they apply the probabilistic rule.

Parameter Settings of E. coli Cultivation 63

The transition probability depends only on the pheromone level. The heuristic
information is not used. Thus the transition probability is as follows:

pi,j =
τi,j∑

k∈Unused

τi,k
, (9)

The ants prefer the node with maximal probability, which is the node with
maximal quantity of the pheromone on the arc (starting from the current node).
If there is more than one candidate for next node, the ant chooses randomly
between the candidates. The process is iterative. At the end of every iteration
the pheromone on the arcs is updated. The quality of the solutions is represented
by the value of the objective function. In this case the objective function is the
mean distance between the simulated data and the experimental data, which are
the concentration of the biomass and the concentration of the substrate. The aim
of the process is to minimize it, therefore the new added pheromone by ant i is:

Δτ = (1− ρ)/J(i) (10)

where J(i) is the value of the objective function according the solution con-
structed by ant i. Thus the arcs corresponding to solutions with the lesser value
of the objective function will receive more pheromone and will be more desirable
in the next iteration.

The values of the parameters of the ACO algorithms are very important,
because they manage the search process. Therefore, it is necessary to find ap-
propriate parameter settings, where the number of ants is the main parameter.
In the ACO a small number of ants between 10 and 20 can be used, without need
to increase the number of iterations to achieve good solutions. The next param-
eter is the initial pheromone. Normally it has a small value. The last parameter
is the evaporation rate, which shows the importance of the last found solution,
as related to the previous ones. Parameters of the ACO were tuned based on
several pre-tests according considered here optimization problem. After tuning
procedures the main algorithm parameters are set to the optimal settings. The
parameter settings for the ACO are shown in Table 1.

Table 1. Parameters of ACO algorithm

Parameter Value

number of ants 20

initial pheromone 0.5

evaporation 0.1

5.2 GA for Parameter Optimization

The strings of artificial genetic systems are analogous to chromosomes in bio-
logical systems. Thus a chromosome representation is needed to describe each

64 S. Fidanova, O. Roeva, and M. Ganzha

individual in the population. The representation scheme determines the genetic
operators that are used. Each individual or chromosome is made up of a sequence
of genes from a certain alphabet. Here applied alphabet consists of binary digits
0 and 1. A binary 20 bit representation is here considered.

A common selection approach assigns a probability of selection, Pj , to each
individual j. A series of N random numbers is generated and compared against

the cumulative probability, Ci =
i∑

j=1

Pj of the population. The appropriate indi-

vidual, i, is selected and copied into the new population if Ci−1 < U(0, 1) ≤ Ci.
Roulette wheel, developed by Holland [19] is the first selection method. The
probability, Pi, for each individual is defined by:

P [Individual i is chosen] =
Fi

PopSize∑
j=1

Fj

, (11)

where Fi equals the fitness of individual i and PopSize is the population size.
The genetic operators provide the basic search mechanism of the GA. The

operators are used to create new solutions based on existing solutions in the
population. There are two basic types of operators: crossover and mutation. The
crossover takes two individuals and produces two new individuals. The mutation
alters one individual to produce a single new solution. Let X and Y be two m-
dimensional row vectors denoting individuals (parents) from the population. For
X and Y binary, the following operators are defined: binary mutation and simple
crossover.

Binary mutation flips each bit in every individual in the population with
probability pm according to Eq. (12) [20]:

xi =

{
1− xi, if U(0, 1) < pm
xi, otherwise

. (12)

Simple crossover generates a random number r from a uniform distribution from
1 to m and creates two new individuals X ′ and Y ′ according to Eqs. (13) and
(13) [20].

x′
i =

{
xi, if i < r
yi, otherwise

. (13)

y′i =
{
yi, if i < r
xi, otherwise

. (14)

In proposed genetic algorithm fitness-based reinsertion (selection of offspring) is
used. The GA moves from generation to generation selecting and reproducing
parents until a termination criterion is met. The most frequently used stop-
ping criterion is a specified maximum number of generations. Values of genetic
algorithm parameters are listed in Table 2.

In this paper two different measures – the Least Square Regression and the
modified Hausdorff Distance are compared. The modified Hausdorff Distance,

Parameter Settings of E. coli Cultivation 65

Table 2. Parameters of GA

Parameter Value

ggap 0.97

xovr 0.75

mutr 0.01

nind 100

maxgen 200

which is conformable to the considered problem is applied. There are two sets of
points, the simulated (model predicted) and the measured (experimental) data,
which form two lines. The Euclidean distance d(t) between points from the two
lines, corresponding to the same time moment t, is calculated. After that, the
Euclidean distance from the point of one of the lines in time t to the points from
other line in the time interval (t− d(t), t+ d(t)) is calculated, and the minimal
of these distances is taken. This is the distance between the two lines in the
time moment t. Thus, the number of calculations, compared with the traditional
Hausdorff Distance, is decreased, due to the fact that the distance to the points
out of the interval (t−d(t), t+d(t)) will be large. At the end all distances between
the points and the lines are combined. Thereby, eventual larger distance in some
time moment, due to the measurement noise, is eliminated.

Thus, the objective function is presented as a minimization of the modified
Hausdorff Distance measure J1 between experimental and model predicted values
of the state variables, represented by the vector y:

J1 =

m∑
i=1

h (yexp(i),y mod (i))
2 → min (15)

where m is the number of state variables (biomass and glucose concentrations);
yexp is the known experimental data; while y mod model predictions with a given
set of the parameters.

In the case of the Least Square Regression the objective function is:

J2 =

m∑
i=1

(yexp(i)− y mod (i))
2 → min (16)

5.3 Numerical Results

All experiments have been conduced on a PC with Intel Core 2 2.8 GHz, 3.5 GB
Memory, Linux operating system and using the Matlab 7.5 environment.

Because of the stochastic characteristics of the applied ACO and GA algo-
rithms, a series of 30 runs for each algorithm was performed.

To study the algorithm performance, the worst the best and the average results
of the 30 runs, for the objective function values of the two variants of ACO and
GA algorithms are studied. For a realistic comparison, the number of iterations is

66 S. Fidanova, O. Roeva, and M. Ganzha

Table 3. ACO and GA with Least Square Regression and Hausdorff Distance

Method Average Worst Best

ACO Least Square – 4.8866 6.7700 3.3280
Hausdorff 2.3875 4.1290 1.7218

ACO Hausdorff – 1.8744 2.5322 1.6425
Least Square 3.9706 4.4283 3.4276

GA Least Square – 4.8341 5.4234 4.7314
Hausdorff 1.7510 2.0224 1.7025

GA Hausdorff – 2.0299 2.3326 1.7657
Least Square 4.3549 4.8872 3.5464

fixed to be 100. The average, worst and best values of the objective functions are
shown on Table 3. In the first line of the second row, the average, worst and best
value of the objective function are shown when Least Square Regression is used
with ACO. The second line in the second row depicts the calculated Hausdorff
Distance between the same solutions achieved when the objective function is the
Least Square Regression. The first line of the third row shows the average, best
and worst values of the objective function when it is the Hausdorff Distance with
ACO. The second line of the third row represents the Least Square Distance
of the same solutions achieved when the objective function is the Hausdorff
Distance. Comparing the two rows it can be observed that the average and the
worst achieved results are much better using the Hausdorff Distance than the
Least Square Regression. The best achieved solutions are similar. In the best
achieved solutions it can be seen that the Hausdorff Distance between achieved
solutions is smaller when the objective function is Hausdorff, but the Least
Square Distance is smaller when the objective function is the Least Squares
Regression. During a number of runs of the algorithm the same phenomenon was
observed – a small Hausdorff Distance between modeled and measured data and
at the same time a big Least Square Distance between the data. When the Least
Squares Regression is applied as the metric, the distance between the two lines
can be very big, and in the same time it is seen that they are geometrically close
to each other. It can happen especially in the steep parts of the lines. Applying
the Hausdorff Metrics it can not happen, because it measures the geometrical
similarity. Overall, the Hausdorff Distance is more time consuming than Least
Square Distance, but much more realistic for the type of problems considered
here. It can be concluded that ACO algorithm proposed in this paper performs
better when the objective function is the Hausdorff Distance. We do the similar
analysis when we apply GA. In this case there is very small difference between
achieved results when we apply Hausdorff distance and Least Square Regression.
We can conclude that GA is less sensitive according used measures.

In Table 4 the best parameter values (μmax, kS and YS/X), obtained using the
ACO with the objective function based on the Hausdorff Distance, are presented.

The obtained model dynamics compared to the real experimental data is
presented in Fig. 2 and Fig. 3.

Parameter Settings of E. coli Cultivation 67

Table 4. Best parameter values of the model

Parameter Value

μmax 0.5283

kS 0.0174

YS/X 2.0300

6 7 8 9 10 11 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time, [h]

S
ub

st
ra

te
, [

g/
l]

Results from optimization

measured data
modeled data

Fig. 3. Time profiles of the substrate: experimental data and models predicted data

In Figure 3, the modelled substrate is represented by the dash line, while by
solid line the measured substrate is depicted. In Figure 4, line represents values
of the modelled biomass, while stars represent values of the measured biomass.

The presented figures show a very good correlation between the experimental
and model predicted data and confirm the obtained results.

6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9
Results from optimization

Time, [h]

B
io

m
as

s,
 [g

/l]

Fig. 4. Time profiles of the biomass: experimental data and models predicted data

6 Concluding Remarks

In this work the ACO and GA algorithms for a parameter setting of the E.
coli fed-batch cultivation process model ware proposed. The methods are chosen

68 S. Fidanova, O. Roeva, and M. Ganzha

as the most common direct methods used for global optimization. The process
model is presented as a system of nonlinear ordinary differential equation describ-
ing the biomass and the substrate dynamics. In the identification procedures, the
real experimental data was used. The objective function was formulated as the
difference between the modeled and the measured data. When solving the opti-
mization problem, two different measures were used – the commonly used Least
Square Regression and, for the first time applied to this type of problem, the
Hausdorff Distance. To adapt the Hausdorff Distance to the considered problem
a modification of this metric was proposed. Comparison of the results shows that
the Hausdorff Distance is more time consuming than the Least Square Distance.
However, at the same time, the highest parameter accuracy is achieved when
the objective function is measured as the Hausdorff Distance between the model
predicted and the real experimental data, especially when ACO algorithm is
applied.

Acknowledgment. This work has been partially supported by the Bulgarian
National Scientific Fund under the Grants DID 02/29 ”Modeling Processes with
Fixed Development Rules (ModProFix)” and DMU 02/4 ”High quality con-
trol of biotechnological processes with application of modified conventional and
metaheuristics methods”. Work presented here is a part of the Poland-Bulgarian
collaborative Grant ”Parallel and distributed computing practices”.

References

1. Akpinar, S., Bayhan, G.M.: A Hybrid Genetic Aalgorithm for Mixed Model Assem-
bly Line Balancing Problem with Parallel Workstations and Zoning Constraints.
Engineering Applications of Artificial Intelligence 24(3), 449–457 (2011)

2. Al-Duwaish, H.N.: A Genetic Approach to the Identification of Linear Dynamical
Systems with Static Nonlinearities. International Journal of Systems Science 31(3),
307–313 (2000)

3. Arndt, M., Hitzmann, B.: Feed Forward/feedback Control of Glucose Concentra-
tion during Cultivation of Escherichia coli. In: 8th IFAC Int. Conf. on Comp. Appl.
in Biotechn, Canada, pp. 425–429 (2001)

4. Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors
Els. Sc. Publ. (1991)

5. Benjamin, K.K., Ammanuel, A.N., David, A., Benjamin, Y.K.: Genetic Algorithm
using for a Batch Fermentation Process Identification. J. of Applied Sciences 8(12),
2272–2278 (2008)

6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

7. Brownlee J.,: Clever Algorithms. Nature-Inspired Programming Recipes, LuLu, p.
436, 978-1-4467-8506-5 (2011)

8. Carrillo-Ureta, G.E., Roberts, P.D., Becerra, V.M.: Genetic Algorithms for Op-
timal Control of Beer Fermentation. In: Proc. of the 2001 IEEE International
Symposium on Intelligent Control, Mexico City, Mexico, pp. 391–396 (2001)

Parameter Settings of E. coli Cultivation 69

9. Chen, S., Lovell, B.C.: Feature space Hausdorff distance for face recognition. In:
Proc. of 20th International Conference on Pattern Recognition (ICPR), Istanbul,
Turkey, pp. 1465–1468 (2010)

10. Covert, M.W., Xiao, N., Chen, T.J., Karr, J.R.: Integrating Metabolic, Transcrip-
tional Regulatory, and Signal Transduction Models in Escherichia coli. J. of Bioin-
formatics 24(18), 2044–2050 (2008)

11. da Silva, M.F.J., Perez, J.M.S., Pulido, J.A.G., Rodriguez, M.A.V.: AlineaGA - A
Genetic Algorithm with Local Search Optimization for Multiple Sequence Align-
ment. Appl. Intell. 32, 164–172 (2010)

12. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-heuristic. In: Corne,
D., Dorigo, M., Glover, F. (eds.) New Idea in Optimization, pp. 11–32. McGrow-
Hill (1999)

13. Dorigo, M., Stutzle, S.: Ant Colony Optimization. MIT Press (2004)
14. Fidanova, S.: ACO algorithm with additional reinforcement. In: Dorigo, M., Di

Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 292–293.
Springer, Heidelberg (2002)

15. Fidanova, S., Lirkov, I.: 3D Protein Structure Prediction. J. Analele Universitatii
de Vest Timisoara, Seria Matematica-Informatica XLVII(2), 33–46 (2009) ISSN
1224-970X

16. Fidanova, S.: An Improvement of the Grid-based Hydrophobic-hydrophilic Model.
Int. J. Bioautomation 14(2), 147–156 (2010) ISSN 1312-451X

17. Fidanova, S., Alba, E., Molina, G.: Hybrid ACO algorithm for the GPS surveying
problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS,
vol. 5910, pp. 318–325. Springer, Heidelberg (2010)

18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley Longman, London (2006)

19. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press,
Cambridge (1992)

20. Houck, C.R., Joines, J.A., Kay, M.G.: A Genetic Algorithm for Function Optimiza-
tion: A Matlab Implementation. Genetic Algorithm Toolbox Toutorial (1996),
http://read.pudn.com/downloads152/ebook/662702/gaotv5.pdf

21. Jiang, L., Ouyang, Q., Tu, Y.: Quantitative Modeling of Escherichia coli Chemo-
tactic Motion in Environments Varying in Space and Time. PLoS Comput.
Biol. 6(4), e1000735 (2010), doi:10.1371/journal.pcbi.1000735

22. Karelina, T.A., Ma, H., Goryanin, I., Demin, O.V.: EI of the Phosphotrans-
ferase System of Escherichia coli : Mathematical Modeling Approach to Analysis
of Its Kinetic Properties. Journal of Biophysics 2011, Article ID 579402 (2011),
doi:10.1155/2011/579402

23. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science, New Series 220(4598), 671–680 (1983)

24. Kumar, S.M., Giriraj, R., Jain, N., Anantharaman, V., Dharmalingam, K.M.M.,
Sheriffa, B.: Genetic algorithm based PID controller tuning for a model bioreactor.
Indian Chemical Engineer 50(3), 214–226 (2008)

25. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
2nd Exended edn. Springer, Heidelberg (1994)

26. Nutanong, S., Jacox, E.H., Samet, H.: An Incremental Hausdorff Distance Calcu-
lation Algorithm. Proc. of the VLDB Endowment 4(8), 506–517 (2011)

27. Opalka, N., Brown, J., Lane, W.J., Twist, K.-A.F., Landick, R., Asturias,
F.J., Darst, S.A.: Complete Structural Model of Escherichia coli RNA
Polymerase from a Hybrid Approach. PLoS Biol. 8(9), e1000483 (2010),
doi:10.1371/journal.pbio.1000483

 http://read.pudn.com/downloads152/ebook/662702/gaotv5.pdf

70 S. Fidanova, O. Roeva, and M. Ganzha

28. Paplinski, J.P.: The Genetic Algorithm with Simplex Crossover for Identification
of Time Delays. Intelligent Information Systems, 337–346 (2010)

29. Parker, B.S.: Demonstration of using Genetic Algorithm Learning. Information
Systems Teaching Laboratory (1992)

30. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford Uni-
versity Press (2002)

31. Petersen, C.M., Rifai, H.S., Villarreal, G.C., Stein, R.:Modeling Escherichia coli and
Its Sources in an Urban Bayou with Hydrologic Simulation Program – FORTRAN.
Journal of Environmental Engineering 137(6), 487–503 (2011)

32. Ranganath, M., Renganathan, S., Gokulnath, C.: Identification of Bioprocesses
using Genetic Algorithm. Bioprocess Engineering 21, 123–127 (1999)

33. Roeva, O.: Parameter estimation of a monod-type model based on genetic algo-
rithms and sensitivity analysis. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.)
LSSC 2007. LNCS, vol. 4818, pp. 601–608. Springer, Heidelberg (2008)

34. Roeva, O., Pencheva, T., Hitzmann, B., Tzonkov, S.: A Genetic Algorithms Based
Approach for Identification of Escherichia coli Fed-batch Fermentation. Int. J.
Bioautomation 1, 30–41 (2004)

35. Roeva, O.: A Modified Genetic Algorithm for a Parameter Identification of Fermen-
tation Processes. Biotechnology and Biotechnological Equipment 20(1), 202–209
(2006)

36. Roeva, O.: Multipopulation genetic algorithms: A tool for parameter optimization
of cultivation processes models. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov,
G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 255–262. Springer, Heidelberg (2007)

37. Roeva, O.: Improvement of Genetic Algorithm Performance for Identification of
Cultivation Process Models. In: Advances Topics on Evolutionary Computing,
Book Series: Artificial Intelligence Series-WSEAS, pp. 34–39 (2008)

38. Roeva, O., Slavov, T.: Fed-batch cultivation control based on genetic algorithm
PID controller tuning. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010.
LNCS, vol. 6046, pp. 289–296. Springer, Heidelberg (2011)

39. Rote, G.: Computing the minimum Hausdorff distance between two point sets on
a line under translation. Information Processing Letters 38, 123–127 (1991)

40. Schuegerl, K., Bellgardt, K.-H.: Bioreaction Engineering: Modeling and Control.
Springer, Heidelberg (2000)

41. Shmygelska, A., Hoos, H.H.: An ant colony optimization algorithm for the 2D and
3D hydrophobic polar protein folding problem. BMC Bioinformatics 6(30) (2005),
doi:10.1186/1471-2105-6-30

42. Skandamis, P.N., Nychas, G.E.: Development and Evaluation of a Model Predicting
the Survival of Escherichia coli O157:H7 NCTC 12900 in Homemade Eggplant
Salad at Various Temperatures, pHs, and Oregano Essential Oil Concentrations.
Applied and Environmental Microbiology 66(4), 1646–1653 (2000)

43. Sugiyama, M., Hirowatari, E., Tsuiki, H., Yamamoto, A.: Learning figures with the
hausdorff metric by fractals. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T.
(eds.) ALT 2010. LNCS, vol. 6331, pp. 315–329. Springer, Heidelberg (2010)

44. Syam, W.P., Al-Harkan, I.M.: Comparison of Three Meta Heuristics to Optimize
Hybrid Flow Shop Scheduling Problem with Parallel Machines. World Academy of
Science, Engineering and Technology 62, 271–278 (2010)

45. Tahouni, N., Smith, R., Panjeshahi, M.H.: Comparison of Stochastic Methods with
Respect to Performance and Reliability of Low-temperature Gas Separation Pro-
cesses. The Canadian Journal of Chemical Engineering 88(2), 256–267 (2010)

Parameter Settings of E. coli Cultivation 71

46. Umarani, R., Selvi, V.: Particle Swarm Optimization: Evolution, Overview and
Applications. Int J of Engineering Science and Technology 2(7), 2802–2806 (2010)

47. Viesturs, U., Karklina, D., Ciprovica, I.: Bioprocess and Bioengineering, Jeglava
(2004)

48. Yedjour, H., Meftah, B., Yedjour, D., Benyettou, A.: Combining Spiking Neural
Network with Hausdorff Distance Matching for Object Tracking. Asian Journal of
Applied Sciences 4, 63–71 (2011)

49. Yusof, M.K., Stapa, M.A.: Achieving of Tabu Search Algorithm for Scheduling
Technique in Grid Computing using GridSim Simulation Tool: Multiple Jobs on
Limited Resource. Int J of Grid and Distributed Computing 3(4), 19–31 (2010)

A Heuristic Based Algorithm for the 2D

Circular Strip Packing Problem

Hakim Akeb1, Mhand Hifi2, and Dominique Lazure2

1 ISC Paris School of Management
22 Boulevard du Fort de Vaux, 75017 Paris, France

2 Université de Picardie Jules Verne, UR EPROAD, Équipe ROAD
7 rue du Moulin Neuf, 80039 Amiens, France

Abstract. This paper solves the strip packing problem (SPP) that con-
sists in packing a set of circular objects into a rectangle of fixed width
and unlimited length. The objective is to minimize the length of the
rectangle that will contain all the objects such that no object overlaps
another one. The proposed algorithm uses a look-ahead method com-
bined with beam search and a restarting strategy. The particularity of
this algorithm is that it can achieve good results quickly (faster than
other known methods and algorithms) even when the number of objects
is large. The results obtained on well-known benchmark instances from
the literature show that the algorithm improves a lot of best known
solutions.

Keywords: Cutting and packing, 2D strip packing, beam search,
heuristic.

1 Introduction

Cutting & Packing (C&P) problems are well known in Operations Research
since they have many practical applications. They are for example encountered
in the storage and transportation of objects of different shapes (Baltacioglu et
al. [1]; Bortfeldt and Homberger[2]; Castillo et al. [3]; Conway and Sloane [4];
Lewis et al. [5]). In this case, the objective is to arrange these objects in order
to save space. C&P problems are also used in the industry when a set of pieces
of predetermined shapes have to be cut from a rectangular plate (Menon and
Schrage [6]). The objective in this second example is to minimize the waste due
to the space between the pieces to cut.

This paper studies the problem of cutting (or packing) a set N = {1, .., n} of
n circular pieces Ci of known radii ri, i ∈ N, from (or into) a strip S of fixed
width W and unlimited length L. The objective is to place the n pieces inside the
smallest rectangle R of dimensions W × L∗ such that no piece overlaps another
one and no piece exceeds the limits of the rectangle. This problem is known
as the Strip Packing Problem or SPP (see Wäscher et al. [7]). Fig. 1 shows an
instance containing nine circles (N = {1, .., 9}) to try to pack inside a rectangle
of dimensions W ×L. Fig. 2 shows two feasible solutions in which all the circles

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 73–92.
DOI: 10.1007/978-3-319-00410-5_5 c© Springer International Publishing Switzerland 2013

74 H. Akeb, M. Hifi, and D. Lazure

4
1

3

5 6

2
W

L

S
7 8

9

Fig. 1. Example of a set of nine circles to pack inside a rectangle W × L

9

8

7
2

5

3

6

1

4

7 4

1
3

5
6

2

8 9

(a) (b)

Fig. 2. Two feasible packings of the nine circles

were packed into the rectangle. Note that a rearrangement of the circles inside
the rectangle may decrease its length. Indeed the solution displayed in Fig. 2 (b)
is a rearrangement of the circles of the solution indicated in Fig. 2 (a). Note
also that the most-right circle (5) in Fig. 2 (b) does not touch the right border
of the rectangle, this means that the width of the rectangle can be decreased.
This means also that this second solution (Fig. 2 (b)) is better than the one
indicated in Fig. 2 (a) since the width of the rectangle is smaller. But a good
rearrangement is not easy to be achieved because of the continuous characteristic
of the variables (see below).

The mathematical formulation for SPP is as follows:

min L (1)√
(xi − xj)2 + (yi − yj)2 ≥ ri + rj , for j < i, (i, j) ∈ N2 (2)

ri ≤ xi ≤ L− ri, ∀i ∈ N, (3)

ri ≤ yi ≤ W − ri, ∀i ∈ N, (4)

L ≥ π

W
×

n∑
i=1

r2i (5)

2D Circular Strip Packing Problem 75

Equation 1 indicates the objective to minimize, i.e., the length of the target
rectangle that will contain the n pieces. Equation 2 means that any pair of
distinct circles Ci and Cj do not overlap each other, i.e., the euclidean distance
between their centers must be greater than or equal to the sum of their radii
ri + rj . Equations 3–4 mean that any circle Ci does not exceed the container
boundary. Finally, Equation 5 indicates that the objective to minimize (L) has
a lower bound value, denoted by L, which is equal the sum of the surfaces of the
n circles divided by the width of the rectangle W . Any value for L cannot then
be smaller than this lower bound otherwise this will mean that there is no space
between the circles and between the circles and the container boudary.

A solution for the strip packing problem consists to find the minimum value
for the length of the rectangle that will contain all the pieces while verifying the
constraints represented by Equations 2–4.

2 Literature Review

The problem of packing circular objects of different radii into a container is well
known and very studied in the literature. Since there is no method calculating
exact solutions, the authors use generally heuristic-based approaches in order
to compute approximate solutions for the problem. Two main categories of con-
tainers can be distinguished: the first one corresponds to a circle and the second
one to a rectangle. In addition, the circular pieces may have the same radius or
have different radii.

Packing different-sized circles into the smallest circle was for example studied
by Huang et al. [8] where the authors proposed greedy algorithms based on
the Maximum Hole Degree (MHD) heuristic. Hifi and M’Hallah [9] proposed
a dynamic adaptive local search where the radius of the containing circle is
increased when placing the circles. For the same problem, Akeb et al. [10] used
beam-search based algorithms. Packing equal circles inside a circle was studied
by several authors. Graham et al. [11] proposed two methods in order to pack a
set of congruent circles inside the unit circle. The first method is called Billiards
simulation and the second one is based of the Energy Function Minimization.
Liu et al. [12] proposed a heuristic based on a technique called Energy landscape
paving in order to pack equal circles inside the smallest containing circle.

The problem of packing circles of different radii into a rectangular container
is more studied in the literature because of its various applications. For example
George et al. [13] proposed several rules based essentially on the use of a ge-
netic algorithm as well as a random strategy. Stoyan and Yaskov [14] designed
a mathematical model whose objective is to search for feasible local optima
by combining a tree-search procedure and a reduced gradient. A genetic algo-
rithm was also used by Hifi and M’Hallah [15]. Huang et al. [16] designed two
greedy algorithms for the strip packing problem, the algorithms, denoted by B1.0
and B1.5, are based on the Maximum Hole Degree (MHD) heuristic. Birgin et
al. [17] used a non-linear approach for placing circles inside a rectangle. Kubach
et al. [18] proposed a parallel version for the MHD heuristic for tackling the

76 H. Akeb, M. Hifi, and D. Lazure

strip packing problem. Finally, Akeb et al. [19] proposed a beam-search based
algorithm coupled with a restarting strategy for solving SPP.

Packing equal circles inside a square and/or a rectangle was for example stud-
ied by Huang and Ye [20], the authors proposed a stochastic method in order to
place up to 200 circles. E. Specht [21] proposes a deterministic method in order
to compute high density packings of equal circles in a rectangle. Several years
before, Locatelli and Raber [22] used a branch-and-bound algorithm in order to
pack a given number of equal circles into the unit square.

Some authors proposed several methods in order to place circles inside con-
tainers of different shapes. This is for example the case of López and Beasley [23]
who used a non-linear formulation, involving Cartesian and polar coordinates,
solved by the SNOPT solver. Birgin and Sobral [24] proposed several results
for packing circles and spheres inside 2D and 3D containers. Finally, Birgin and
Gentil [25] considered the packing of unitary radius circles inside triangles, rect-
angles, and strips.

In this paper, an improved algorithm is proposed for the strip packing prob-
lem. This algorithm combines beam search, a restarting strategy, and a look-
ahead method. The objective of the look-ahead is to accelerate the search to
obtain quickly solutions. In addition, the parameters of the restarting and the
look-ahead strategies are studied in order to adapt them to the characteristics
of each instance.

The rest of the paper is organized as follows. Section 3 explains how to use
beam search in order to resolve the strip packing problem (SPP). Section 4 re-
turns on some existing beam-search based algorithms for SPP. Section 5 details
the improved algorithm denoted by IA. Section 6 discusses the results obtained
by IA on the most known instances in the literature. Finally, Section 7 summa-
rizes the results obtained and indicates some orientations for future work.

3 Beam Search for Resolving SPP

Beam search (BS) [26] is a tree-based search and is an adaptation of the best
first search. BS selects, at each level � of the tree, the most promising nodes to
expand in order to create the nodes of the next level �+1. So a criterion, allowing
to evaluate each node, must be defined. The number of the nodes chosen at each
level is denoted by ω and is called the beam width.

A standard implementation of the BS method is given in Algorithm 1. BS
receives two parameters: the root node B0 that contains a starting solution
(partial solution) and the value of the beam width ω. The algorithm’s output is
a feasible solution if it succeeds, or the empty set if not.

At line 1 of Algorithm 1, the root node is assigned to B (the set of nodes of
the current level). The set of offspring nodes, i.e., the descendants of the nodes
in B, is denoted by Bω. After that, at line 2, the value of the best solution z∗

is initialized to the best known solution if this one exists, otherwise z∗ is set to
+∞, meaning that the problem at hand is a minimization (for a maximization,
z∗ is set to −∞).

2D Circular Strip Packing Problem 77

At each level of the search tree, i.e, the while loop (Lines 3–14), each node
η ∈ B generates several descendant nodes. Theses ones are inserted into the set
Bω (line 4). If a node in Bω is a leaf (no branching is possible from it), then its
solution value is computed (line 6) and the best solution z∗ is updated if a better
one is found. After that, the node is removed from Bω (line 10). The other nodes
in Bω are after that evaluated by calculating their solution values and only the
best ω nodes are kept, the other nodes are removed (line 12). The nodes chosen
are then assigned to the set B and Bω is reset to the empty set (line 13). The
instructions in lines 3–14 are repeated until no branching is possible, i.e., B = ∅.
At line 15, the algorithm returns the best solution found so far.

Note that the method described above is a width-first implementation of
beam-search. Of course there also exists a depth-first implementation where the
exploration goes as far as possible along each branch before backtracking. For
more details, see [27].

Require: The root node B0 (starting solution) and the beam width value ω.
Ensure: A feasible solution if such one is reached, the empty set otherwise.

1: Let B = B0 be the set of nodes of the current level and Bω the set of offspring
nodes;

2: If a feasible solution is known then set z∗ to its value, otherwise set z∗ = +∞;
3: while (B �= ∅) do
4: Branch out of each node η ∈ B and insert the resulting (offspring) nodes into

Bω;
5: if a node ηi ∈ Bω is a leaf then
6: compute zηi the value of node ηi;
7: if zηi < z∗ then
8: update the best solution z∗ (z∗ := zηi);
9: end if
10: Remove zηi from Bω;
11: end if
12: Keep only the ω best nodes in Bω (those having the best values of z) and

remove the others;
13: B := Bω and Bω := ∅;
14: end while
15: return the best solution if it exists, otherwise the empty set;

Algorithm 1. The Beam Search Method

The rest of this section is organized as follows. First, the different notations
used throughout the paper are given. After that, a greedy procedure, denoted
by MLDP (Minimum Local Distance Position) is described. The objective of
MLDP is to try to place the n circles inside the current rectangle R = W × L,
i.e., when the length of the rectangle is fixed to a given value L.

3.1 Notations

In order to simplify the reading of the paper, here are the different notations
used throughout the document:

78 H. Akeb, M. Hifi, and D. Lazure

1

2

)3(
3p

)1(
3p

)3(
3

ˆ
p

δ

)2(
3

ˆ
p

δ

)2(
3p

)1(
3

ˆ
p

δ

Fig. 3. The MLDP strategy

1. N = {1, ..., n} is the set of circles to pack into the strip S placed with its
bottom left corner at point (0, 0) in the Euclidean plan,

2. M = {1, ...,m} is the set of circle types (the set of different radii in the
instance),

3. Sleft, Stop, Sright, and Sbottom are the four edges of S,
4. The circular piece Ci of radius ri is placed with its center at coordinates

(xi, yi),
5. Ii corresponds to the set of circles already packed inside the strip (|Ii| = i),
6. Ii contains the circles not yet placed (Ii ∪ Ii = N),
7. PIi is the set of distinct corner positions for the next circle to place Ci+1

given the set Ii,
8. A corner position pi+1 ∈ PIi for Ci+1 is computed by using two elements

e1 and e2. An element is either a piece already placed (set Ii) or one of the
three edges of S (Sleft, Stop, Sbottom). Tpi+1 denotes the set composed of
both elements e1 and e2.

3.2 The MDLP Greedy Procedure

The Minimum Local Distance Position (MLDP) procedure can be used as a
greedy algorithm in order to compute a solution. Indeed, given the set Ii of
circles already placed inside the current rectangle and the set of corner positions
Pi+1 for the next circle Ci+1, MLDP selects the best corner position for this circle.
This process is repeated until all the circles are placed or no additional circle can
be placed. Fig 3 explains the mechanism of MLDP where two circles are already
placed, thus i = 2 and I2 =

{
C1, C2

}
. There are also three possible positions to

place the next circle C3: PI2 =
{
p
(k)
3 , k = 1, .., 3

}
. The first corner position p

(1)
3

touches circle C2 and the top-edge of the strip Stop, then T
p
(1)
3

= {C2, Stop}. For
the two others corner positions, T

p
(2)
3

= {C1, C2} and T
p
(3)
3

= {C1, Sbottom}.
Let Ci+1 be the circular piece to place at position pi+1 and δi+1(edge), edge ∈

Eedge = {Sleft, Sbottom, Stop}, the three distances defined as follows: δi+1(Sleft) =
xi+1 − ri+1, δi+1(Sbottom) = yi+1 − ri+1, and δi+1(Stop) = W − yi+1 − ri+1.

2D Circular Strip Packing Problem 79

The euclidean distance from the edge of the next circle to pack Ci+1 (when
positioned at pi+1) and Cj is denoted by δi+1(j) and is computed as follows:

δi+1(j) =
√
(xi+1 − xj)2 + (yi+1 − yj)2 − (ri+1 + rj) (6)

The MLDP of the circular piece Ci+1 when placed at pi+1 ∈ PIi is calculated as
follows:

δ̂pi+1 = min
α∈Ii∪Eedge\Tpi+1

{δi+1(α)} (7)

Equation (7) gives the MLDP of Ci+1 which is computed by using the distances
between the piece to place at position pi+1 and the elements of the set Ii ∪
{Sleft, Sbottom, Stop}\Tpi+1 containing the pieces already placed, the three edges
of the strip, but by excluding the two elements of Tpi+1 used for computing the
coordinates of Ci+1 because the corresponding distance is always equal to zero.
Note however that the MLDP is equal to zero when Ci+1 touches more than two
elements because one of the three elements does not belong to the set Tpi+1 and
then the distance to this element can be taken into account. Fig. 3 indicates the

MLDP δ̂
p
(k)
3

of each position p
(k)
3 , k = 1, 2, 3.

For calculating a packing of the pieces when using the MLDP procedure, the
following process is executed: MLDP starts by placing the first circular piece C1

at the bottom-left corner (at coordinates (r1, r1)), the n−1 remaining pieces are
successively packed by using the MLDP rule as explained above. For example,

in Fig. 3, C3 will be placed at position p
(1)
3 since the corresponding MLDP has

the minimum value.

4 Beam Search-Based Algorithms for SPP

Akeb et al. [19] proposed an augmented beam search algorithm, denoted by SEP-
MSBS, for the strip packing problem. SEP-MSBS combines two main techniques:

– A strategy based on the use of separate beams that aims to diversify the
search space compared to the standard beam search,

– A restarting strategy that consists to rerun the search by changing the first
circle to place. The objective of this second technique is to escape from local
optima.

The separate-beams mechanism is displayed in Fig. 4. The root node η1 at level
� = 1 contains the starting configuration (one circle placed in the bottom-left
corner of the rectangle) as well as the possible positions for the n− 1 remaining
circles. The best positions (having the smallest MLDP values) are chosen for
branching, this creates the second level � = 2 (note that each branching consists
to choose a position where to place the next circle). From this second level,
separate beams are initiated. More precisely, a beam of width ω = 1 is initiated
from the first node (the best node), a beam of width ω = 2 is initiated from the
second best node, and so on. Thus, the node at position i in the second level is
explored by applying a beam search of width ω = i. This is to say that the best

80 H. Akeb, M. Hifi, and D. Lazure

nodes do not require an extensive search, the beam width has then a small value,
unlike the last nodes in the level that need larger values for the beam width.
The separate-beams strategy was shown in [19] to be better than the standard
beam search.

Even if SEP-MSBS obtains good results (often the best results in the litera-
ture) on the instances used, its run time remains too large. This is mainly due
to the restarting strategy, which is executed m times (the number of different
circles (radii) in the instance).

5 An Improved Algorithm for SPP

In this paper, we try to improve the SEP-MSBS algorithm by adding a look-
ahead strategy. The look-ahead-basedmechanism will be described in Section 5.1.
The proposed improved algorithm, denoted by IA, will be given and explained
in Section 5.2. Some adjustments are introduced in algorithm IA in order to
reduce the computation time, these adjustments concern the number of corner
positions to explore by the look-ahead strategy as well as the number of circles
to take into account in the restarting strategy.

5.1 A Look-Ahead Based Algorithm

Algorithm SEP-MSBS [19] selects, at each level of the tree, the best nodes by
using the MLDP rule (Sect. 3.2). This can be assimilated to a local evaluation,
the packing process does not take into account the remaining circles to place. The
look-ahead proceeds differently. Indeed, given the set of nodes B = {η1� , ..., ηω� }
of the current level � in the tree, each node ηi� is characterized by the set I�i of �
circles already placed in the current rectangle and the set P�i of corner positions
for the remaining circles, the look-ahead evaluates each position p ∈ P�i by
continuing the placement of the remaining circles by using the MLDP rule.
The objective is to compute final solutions which will help to choose the actual
positions for branching from the current level �. This strategy is implemented in
the Look-Ahead Branching Procedure (LABP) displayed in Algorithm 2.

In addition to the set of nodes B, LABP (Algorithm 2) receives as input
parameter an indicator feasible set to the value false as well as a real number
0 < ψ ≤ 1. Parameter ψ serves to determine the proportion of corner positions
to evaluate by the look-ahead, for example, if ψ = 0.8, then only the best 80%
of corner positions (those having the smallest MLDP values) are evaluated. The
objective of this parameter is to accelerate the algorithm for large instances
(those containing a large number of circles, and therefore a large number of
corner positions at each step).

The set Π of positions to evaluate by the look-ahead, as explained above, is
constructed in Steps 2 and 3. After that, LABP considers each position pj ∈ Π
(Step 4) by packing the corresponding circle in pj (Step 5). This generates a new
node η�+1 that is added to the set of offspring nodes Bω. The new node is then
processed by placing the remaining circles by using the MLDP rule (Step 6).
Two cases may then be distinguished:

2D Circular Strip Packing Problem 81

– A feasible packing is obtained (Step 7), meaning that the n circles were
successfully placed inside the current rectangle. In this case, the procedure
stops with feasible=true (Steps 8 and 9), meaning that the length L of
the rectangle could be decreased;

– A feasible packing was not obtained (the n circles cannot be placed into the
current rectangle by MLDP). In this second case, the procedure assigns to
the node η�+1 the density of the circles placed (Step 11). The density of a
given packing is equal to the sum of the surfaces of the circles placed divided
by the surface of the rectangle L×W.

Finally, when all the corner positions are processed without obtaining a feasible
packing, then the ω best nodes (those that have led to the highest densities) are
returned (Steps 14, 15). This means that the current length of the rectangle is
too small and should be increased.

Note that procedure LABP (Algorithm 2) is called by a beam search algorithm
denoted by BSLA (Algorithm 3, Line 10). BSLA implements a width-first beam
search. It uses an interval search [L,L] in order to compute the best length of
the rectangle containing all the circles. BSLA receives several input parameters:
the starting node η� containing the starting configuration, the beam width value
ω, the values of the interval search, and parameter ψ indicating the proportion
of corner positions to process by LABP.

BSLA calls, at Step 10, the LABP procedure (Algorithm 2) for each value
of the rectangle’s length L∗. If LABP has computed a feasible packing with
the current value of L, then the best length (Lbest) is updated (Step 12) and

Require: A set B = {η1
� , ..., η

ω
� } of ω nodes, a boolean indicator feasible=false,

and 0 < ψ ≤ 1

Ensure: A feasible solution if feasible=true, or a set Bω of ω nodes (those leading
to the highest densities through the MLDP packing procedure).

1: Let P�i denotes the set of corner positions of node ηi
� ∈ B;

2: Let Π be the set of all corner positions of B, i.e., Π =
⋃

P�i ;
3: Reduce Π to the �ψ × |Π |� best corner positions (having the best MLDP values);
4: for all corner positions pj ∈ Π do
5: Pack C�+1 in pj and insert the resulting node η�+1 into Bω;
6: Place in η�+1 the remaining circles by using the MLDP packing procedure;
7: if all circles are placed then
8: feasible = true;
9: exit with a feasible solution;
10: else
11: Assign to η�+1 the density obtained by MLDP;
12: end if
13: end for

14: Reduce Bω to the ω nodes that led to the highest densities by MLDP;
15: return Bω.

Algorithm 2. The Look-Ahead Branching Procedure (LABP)

82 H. Akeb, M. Hifi, and D. Lazure

the upper bound of the interval search L is set equal to the current length.
Otherwise, level � is incremented by 1, the best expanded nodes returned by
LABP (Step 10) replace the nodes of the current level in the tree (B = Bω), and
Bω is reset to the empty set (Step 14). If LABP did not succeed to compute a
feasible packing with the current value of the rectangle’s length (Step 17), then
the lower bound of the interval search L is set equal to the current value of L,
i.e., L = L∗ (Step 18) meaning that the rectangle’s length is too small. Finally, it
is to note that the binary interval search is stopped when the difference between
L and L becomes less than or equal to a given gap δ.

5.2 The Improved Algorithm (IA)

The improved algorithm, denoted by IA, is given in Algorithm 4. It combines
three main techniques: separate beam search, a restarting strategy, and look-
ahead. Fig.4 shows how algorithm IA works.

IA receives as input parameters the beam width ω, parameter τ that serves to
indicate the proportion of circles taken into account by the restarting strategy,

Require: A node η�, the beam width ω, the bounds of the interval search (L,L),
and 0 < ψ ≤ 1

Ensure: The best value for the rectangle’s length (Lbest) and the corresponding
feasible packing.

1: Let B denote the set of nodes to be considered;
2: Let Bω denote the set of descendants of the nodes in B;
3: Let Lbest be the best length found so far;
4: Let feasible be a boolean indicator;

5: while (L− L > δ) do
6: Set B = {η�}, where η� is a starting node of level � characterized by I�, I�, and

PI� ;
7: L∗ = (L+ L)/2;
8: feasible = false;
9: while (B �= ∅ and feasible=false) do
10: Bω = LABP(B, feasible, ψ);
11: if feasible=true then
12: Lbest = L∗; L = L∗;
13: else
14: � = �+ 1; B = Bω; Bω = ∅;
15: end if
16: end while
17: if feasible=false then
18: L = L∗;
19: end if
20: end while

Algorithm 3. Beam Search Look-Ahead algorithm (BSLA)

2D Circular Strip Packing Problem 83

Require: The beam width ω, parameters τ and ψ
Ensure: A feasible packing with the best length Lbest for the strip

1: Lbest = L; L = (π ×
∑n

i=1 r
2
i)/W ;

2: Rank the pieces of N in decreasing value of their radii;
3: Let T be the set of circle types (different circles in N);
4: Reduce T by keeping only �τ × |T |� circles;
5: Set iorder = 1, where iorder is the index of the first circular piece of the set T ;

6: while (iorder ≤ |T |) do
7: Generate the node η1, characterized by I1, I1, and PI1 , by placing the first

circle Ciorder inside the current rectangle and let B = η1;
8: Branch out of B and generate the list of offspring nodes Bω;
9: Let B = min(ω, |Bω|) nodes having the best MLDPs and corresponding to

distinct corner positions and reset Bω = ∅;
10: Let η2 be the node at position ω in B;
11: feasible = BSLA(η2, ω,L, L, ψ);
12: if feasible= true then
13: L and Lbest are updated if a better length is obtained by BSLA;
14: end if
15: L = (π ×

∑n
i=1 r

2
i)/W ;

16: iorder = iorder + 1;
17: end while

18: exit with the best target length Lbest.

Algorithm 4. The Improved Algorithm (IA)

and parameter ψ used to choose the proportion of corner positions to evaluate
by the look-ahead branching procedure LABP (Algorithm 2). The output of
algorithm IA is a feasible packing and the corresponding best length of the
rectangle Lbest.

At Step 1 of algorithm IA, the best length Lbest is set equal to the upper
bound of the length L which is computed by an Open Strip Generation Solution
Procedure (OSGSPa) [28]. The lower bound of the interval search L is set equal
to the natural lower bound, i.e., L = (π ×

∑n
i=1 r

2
i)/W which corresponds to a

density equal to 1, this density is of course not possible to obtain because there
is always a non-occupied space between the circles and between the circles and
the edges of the rectangle. The pieces are then ranked by decreasing value of
their radii (Step 2). The set of circle types T to use in the restarting strategy
is constructed in Steps 3 and 4. The index serving to indicate the first circle to
place in the bottom-left corner of the current rectangle is initialized in Step 5.

The root node η1 (cf. Fig. 4) is generated in Step 7. This corresponds to
the placement of circle Ciorder in the bottom-left corner of the rectangle. In
Step 8, the list of offspring nodes Bω is generated. The set B is after that set
equal to the ω best nodes of Bω, this correspond to level � = 2 in Fig. 4. Since
the separate-beams mechanism is used, then only the node at position ω in
this level is explored. The node chosen (η2) is then transmitted to the Beam

84 H. Akeb, M. Hifi, and D. Lazure

level ℓ=2

level ℓ=3

level ℓ=4

level ℓ = n

BSLA with
 = 1

.

.

.....

.....

.....

BSLA with
 = 2

BSLA with
 = 3

.

Starting node 1, level ℓ=1

Fig. 4. Separate beams and Look-ahead

Search Look-Ahead algorithm BSLA (Algorithm 3) in order to try to compute
a feasible solution (Step 11). If BSLA have reached a feasible packing, then the
upper bound L of the interval search and the best solution Lbest are updated
(Step 13). Indeed, the upper bound L is set to the best value obtained Lbest.
After that the lower bound L is reset to the natural lower bound (Step 15). In
Step 16, the next circle in set T is chosen in order to restart the algorithm.

It is to note that the main interest of the look-ahead strategy is that it allows
algorithm IA, for which the mechanism is described in Fig.4, to compute feasible
solutions from the second level (� = 2) in the search tree in opposite to the other
beam search-based algorithms where feasible solutions are obtained in the last
level (� = n).

6 Computational Results

The algorithms are coded in C++ language and run on a computer with a
3-GHz processor and 256 MB of RAM. Eighteen instances are considered con-
taining from 20 to 200 circles (note that the problem is considered to be large
when the number of pieces is at least n = 100). The first six instances, denoted
by SY1, SY2, SY3, SY4, SY5, and SY6, contain from 20 to 100 circles. They
were proposed by Stoyan and Yaskov [14] and are the most known ones in the
literature for the strip packing problem, they were for example used in [14],
[16], [28], [18], and [19]. Twelve additional instances were proposed by Akeb and
Hifi [28], these instances are obtained by concatenating the six original instances
of Stoyan and Yaskov and contain from 45 to 200 pieces.

It is to note that all these instances are strongly heterogeneous, i.e., the pieces
are practically all of different radii (m � n) where n is the number of circles in
the instance and m the number of circle types (different radii).

2D Circular Strip Packing Problem 85

6.1 Varying the Beam Width When the Look-Ahead Is Used

In a standard beam-search based algorithm, like for algorithm BSBIS [28], it is
difficult to know in advance what value to use for the beam width (ω). Indeed,
increasing the value of ω does not necessarily improve the solution, even if that
increase the search space. This can be explained by the fact that a standard
beam search is based on a local evaluation (e.g. MLDP rule) for branching from
the current level of the search tree in order to create the next level. As a result,
the value of the solution (the length of the rectangle L) oscillates when increasing
the beam width. An example is shown in Fig. 5 where BSBIS was executed on
instance SY 13 (n = 55, m = 54 pieces) for all the values of 1 ≤ ω ≤ 30. Note
that this phenomenon concerns also algorithm SEP-MSBS [19] since this one is
based on the MLDP selection strategy.

30

30.5

31

31.5

32

32.5

0 5 10 15 20 25 30

Length (L)

Beam width ()

BSBIS

BSLA

Fig. 5. Comparison between the standard beam search (BSBIS) and BSLA (including
look-ahead) on instance SY13 (n = 55, m = 54 pieces)

But when the look-ahead is introduced (see Algorithm 3, BSLA), the solution
L oscillates much less (as indicated in Fig. 5) and the value of L often decreases
when the value of the beam width ω increases. In addition, the solution obtained
by the look-ahead (BSLA) is practically always better than that given by BSBIS
and the example shown in Fig. 5 is very representative since this phenomenon
was shown for all the instances. It is then not necessary to run a look-ahead-
based algorithm with all the possible values of ω. In fact, the computational
investigation showed that starting with the value ω = 10 and increasing this
value by step of 5, i.e., (ω = 10 + 5 × k, k ∈ N) corresponds to a good setting.
Then, the proposed algorithm (IA) is run with these values of ω.

6.2 Values of Parameters ψ and τ

Another investigation was conducted. It concerns the values of parameter ψ
corresponding to the proportion of positions to evaluate by the look-ahead

86 H. Akeb, M. Hifi, and D. Lazure

branching procedure (see Algorithm 2) at each level of the tree, and param-
eter τ that indicates the proportion of circles to use for restarting algorithm IA
(see Algorithm 4).

Each parameter ψ and τ was varied in the discrete interval {0.5, 0.75, 1},which
gives 9 possibilities. The nine possibilities were tested on 3 sets of instances:

– the two smallest instances SY2 (n = m = 20) and SY3 (n = m = 25),

– two medium-sized instances SY23 (n = m = 45) and SY14 (n = m = 65),

– two large instances SY6 (n = 100,m = 98) and SY1234 (n = 110,m = 105).

Table 1 indicates the best values for parameters ψ and τ according to the size
of the instance. For example, when considering a small-sized instance (n < 40),
then all the corner positions have to be processed by the look-ahead (ψ = 1)
and each circle type have to be used by the restarting strategy (τ = 1). The
results of algorithm IA presented in Table 2 and Table 3 are obtained by using
the values indicated in Table 1.

Table 1. Best values for parameters ψ and τ according to the size of the instance

Instance size ψ τ

small (n < 40) 1 1

medium (40 ≤ n < 100) 0.75 0.75

large (n ≥ 100) 0.5 1

6.3 Solution Quality of Algorithm IA

Table 2 shows the results obtained by algorithm IA as well as those obtained by
different other algorithms. Column 1 (Inst.) contains the name of the instance.
Column 2 (n) gives the size of the instance and Column 3 (m) is the number
of circle types in the instance. Column 4 (MHD) represents the best length of
the rectangle obtained by the Maximum Hole Degree (MHD) heuristic (Huang et
al. [16]). The next column (B16) contains the result obtained by a parallel version
of MHD (Kubach et al. [18]), symbol “–” means that the result of B16 is not
known for the corresponding instances. Column 6 indicates the result obtained
by the Beam Search Binary Interval Search algorithm (Akeb and Hifi [28]),
the value between parentheses correspond to the value of the beam width with
which the solution was obtained. The solution obtained by algorithm SEP-MSBS
(Akeb et al. [19]) is given in Column 7 as well as the corresponding beam width.
Column 8 (Best Lit.) shows the best known solution in the literature for the
studied instances. Finally, the last column contains the result obtained by the
Improved Algorithm (IA), the corresponding beam width (ω) is also indicated
between brackets. Values in bold characters indicate which algorithm obtains
the best solution.

2D Circular Strip Packing Problem 87

Table 2. Solution quality of algorithm IA

Inst. n m MHD B16 BSBIS SEP-MSBS Best Lit. IA

SY1 30 30 17.291 17.247 17.2315 (45) 17.2070 (50) 17.2070 17.0954 (20)

SY2 20 20 14.535 14.536 14.6277 (86) 14.5287 (24) 14.5287 14.4548 (15)

SY3 25 25 14.470 14.467 14.5310 (78) 14.4616 (44) 14.4616 14.4017 (80)

SY4 35 35 23.555 23.717 23.6719 (42) 23.4921 (66) 23.4921 23.3538 (10)

SY5 100 99 36.327 35.859 36.0796 (95) 36.1818 (22) 35.8590 36.0045 (15)

SY6 100 98 36.857 36.452 36.8456 (85) 36.7197 (26) 36.4520 36.5573 (10)

SY12 50 48 30.067 – 29.7011 (52) 29.6837 (61) 29.6837 29.7024 (30)

SY13 55 54 30.891 – 30.6371(100) 30.3705 (68) 30.3705 30.4231 (20)

SY14 65 65 38.265 – 38.0922 (79) 37.8518 (63) 37.8518 37.6187 (10)

SY23 45 45 28.270 – 27.8708 (98) 27.6351 (89) 27.6351 27.7148 (35)

SY24 55 54 34.605 – 34.5476 (26) 34.1455 (49) 34.1455 34.0970 (30)

SY34 60 59 34.901 – 34.9354 (39) 34.6859 (43) 34.6859 34.5983 (25)

SY56 200 193 69.979 – 64.7246 (65) 65.2024 (06) 64.7246 64.6904 (10)

SY123 75 72 43.626 – 43.2558 (64) 43.0306 (25) 43.0306 43.1709 (15)

SY124 85 82 49.335 – 48.8927 (90) 48.8411 (35) 48.8411 48.6432 (10)

SY134 90 88 49.721 – 49.3954(100) 49.3362 (27) 49.3362 49.2238 (10)

SY234 80 78 45.888 – 45.9526 (83) 45.6115 (39) 45.6115 45.4260 (10)

SY1234 110 105 61.906 – 60.2613 (48) 60.0564 (25) 60.0564 60.0036 (10)

It is to note that the beam-search based algorithms (BSBIS, SEP-MSBS, and
IA) were run by using a beam width limit ω̄ = 100 and a computation time limit
of thirty hours (as in [19]). For a fair comparison, MHD was also run (on the
same computer) by using a time limit of thirty hours.

From the results of Table 2, we can see clearly that the new algorithm (IA)
has improved twelve results out of eighteen, i.e, 67% of the best known results
in the literature. Algorithm SEP-MSBS remains better on four instances (SY12,
SY13, SY23, and SY123) and algorithm B16 is better on instances SY5 and SY6.

The computation time is not indicated in Table 2 for algorithm IA because the
limit of thirty hours was reached for all the instances except for the smallest one
(SY2, n = m = 20) for which the algorithm has attained the beam width limit
(ω̄ = 100) and terminated after 13 hours. For the SEP-MSBS algorithm [19],
the time limit was reached for thirteen instances out of eighteen (except for in-
stances SY1, SY2, SY3, SY4 and SY23), i.e., when n ≤ 45. The reason for which
algorithm IA reached the time limit is that the look-ahead strategy consumes a
lot of time.

What will be the behavior of the proposed algorithm (IA) when fixing a rela-
tively short time limit? Another investigation, in which the time limit was fixed
at thirty minutes, was conducted. Table 3 displays the comparison between the
beam search-based algorithms (BSBIS, SEP-MSBS, and IA) when using this new
time limit. The first column (Inst.) contains the name of the instance. Column 2
contains the best value obtained by the BSBIS algorithm (based on a standard
beam search) as well as the corresponding beam width. Column 3 (t∗) indicates
the cumulative computation time (in seconds) in order to obtain the best value

88 H. Akeb, M. Hifi, and D. Lazure

Table 3. Solution quality of algorithm IA when fixing the time limit at 30 minutes

BSBIS SEP-MSBS IA %imp. %imp.

Inst. L t∗ L t∗ L t∗ BSBIS SEP-MSBS

SY1 17.2315 166 17.2145 1463 17.2029 1790 0.17% 0.07%

SY2 14.6277 222 14.5287 155 14.4548 216 1.18% 0.51%

SY3 14.5310 308 14.4616 1253 14.4106 750 0.83% 0.35%

SY4 23.6719 211 23.5335 1662 23.3538 1007 1.34% 0.76%

SY5 36.4042 445 36.3362 1324 36.1707 1432 0.64% 0.46%

SY6 36.9387 1637 37.2555 669 36.9232 1135 0.04% 0.89%

SY12 29.7011 875 30.0447 650 29.9744 1800 -0.92% 0.23%

SY13 30.7415 165 30.7843 1800 30.6149 1710 0.41% 0.55%

SY14 38.3573 885 38.2962 851 37.9690 1501 1.01% 0.85%

SY23 27.9146 1116 28.0388 885 27.8493 1768 0.23% 0.68%

SY24 34.5476 266 34.6732 766 34.3544 675 0.56% 0.92%

SY34 34.9354 720 34.9614 1304 34.7531 914 0.52% 0.60%

SY56 65.5565 1022 65.7608 1800 65.3079 1800 0.38% 0.69%

SY123 43.4907 1745 43.5815 1412 43.4793 1511 0.03% 0.23%

SY124 49.3281 456 49.6348 1720 49.1915 1661 0.28% 0.89%

SY134 49.8705 1536 49.9136 1397 49.8184 1621 0.10% 0.19%

SY234 45.9913 775 46.1901 880 45.9209 1321 0.15% 0.58%

SY1234 60.9055 565 60.8783 1800 60.5660 1369 0.56% 0.51%

L in Column 2. The results obtained by the two other algorithms (SEP-MSBS
and IA) are indicated in Columns 4–7. Column 8 gives the percentage of im-
provement obtained by the new algorithm IA on BSBIS, the improvement is
computed as LBSBIS−LIA

LBSBIS
× 100%. In the same way, the last column contains the

percentage of improvement obtained by algorithm IA on algorithm SEP-MSBS.
From Table 3, we can see clearly that when using a relatively short time limit

(which is more practical), the proposed algorithm (IA) is practically always the
best one (in 17 cases out of 18), except for the instance SY12 where BSBIS
remains better. The good results obtained by algorithm IA can be explained by
the fact that the look-ahead strategy computes quickly feasible solutions, i.e.,
from level � = 2 in the search tree (see Fig. 4) when BSBIS and SEP-MSBS
obtain feasible solutions at level � = n only. So, even if algorithm IA is stopped
after a short computation time, it will have calculated a lot of feasible solutions,
increasing the probability to obtain good ones.

Fig. 6 shows the evolution of the best solution obtained by algorithms BS-
BIS, SEP-MSBS, and IA on instance SY124 (85 circles) when the computation
time is limited to thirty minutes (1800 seconds). Algorithm SEP-MSBS is taken
as a reference and the x−Axis indicates the cumulative computation time for
this algorithm for each value of ω (the beam width). For example, SEP-MSBS
needs 108 seconds for a complete run with ω = 1 and 1699 seconds for the five
first values of ω. Then after each run of SEP-MSBS with a given value of ω, the

2D Circular Strip Packing Problem 89

49.1
49.2
49.3
49.4
49.5
49.6
49.7
49.8
49.9
50.0
50.1

108 331 670 1124 1699

Length (L)

time (sec)

SEP-MSBS
IA
BSBIS

Fig. 6. Evolution of the solution on instance SY124 in the interval of 30 minutes

best length achieved is compared to that obtained by the two other algorithms
(BSBIS and IA) for the same cumulative computation time. The results indicate
that algorithm BSBIS is better than SEP-MSBS when ω > 2 but within thirty
minutes (SEP-MSBS is better on this instance when using a large computation
time as indicated in Table 2). Algorithm IA is better than the two others (BSBIS
and SEP-MSBS) until t = 670 seconds. After that BSBIS achieved a better
solution than IA. But IA outperforms BSBIS when t > 1300 seconds.

Fig. 7 displays the solution obtained by the proposed algorithm (IA) on the
smallest instance (SY2) that contains 20 circles. The new best length is L =
14.4548, the previous best known value in the literature was L = 14.5287. Fig. 8
shows the new solution obtained by algorithm IA on a medium-sized instance
(SY14) that contains 65 circles with L = 37.6187. Finally, Fig. 9 displays the
solution obtained by algorithm IA on the largest instance (SY56) that contains
200 circles. The new best length is L = 64.6904.

Fig. 7. Solution obtained by the proposed algorithm IA on the smallest instance SY2
(n = m = 20, L = 14.4548)

90 H. Akeb, M. Hifi, and D. Lazure

Fig. 8. Solution obtained by algorithm IA on a medium-sized instance SY14 (n = m =
65, L = 37.6187)

Fig. 9. Solution obtained by algorithm IA on the largest instance SY56 (n = 200, m =
193, L = 64.6904)

7 Conclusion

In this paper an improved algorithm, denoted by IA, was proposed in order
to solve the strip packing problem. IA is a beam-search based algorithm that
includes a look-ahead strategy in order to improve the selection mechanism at
each level of the tree. In addition, a restarting strategy was also used.

The computational investigation, conducted on a set of well-known instances
in the literature, showed the effectiveness of the proposed algorithm since it has
succeeded to improve 67% of the best known solutions in the literature. In addi-
tion, another experimentation indicated that the look-ahead obtains good solu-
tions more quickly, i.e., faster than the existing beam-search based algorithms.
More precisely, algorithm SEP-MSBS, that does not implement the look-ahead
strategy, works well when the computation time is large but its performance
decreases when using a relatively short computation time (thirty minutes for
example) where algorithm BSBIS is better than SEP-MSBS on more than half
of the instances used. The proposed algorithm (IA), thanks to the look-ahead
and the optimization of the parameters of this strategy as well as those of the
restarting one, achieve good results even for short computation time.

As a future work, it would be interesting to use a parallel algorithm in order
to reduce the computation time.

2D Circular Strip Packing Problem 91

References

1. Baltacioglu, E., Moore, J.T., Hill, R.R.: The distributor’s three-dimensional pallet-
packing problem: a human intelligence-based heuristic approach. Int. J. Oper.
Res. 1, 249–266 (2006)

2. Bortfeldt, A., Homberger, J.: Packing first, routing seconda heuristic for the vehicle
routing and loading problem. Comput. Oper. Res. 40, 873–885 (2013)

3. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global
optimization: Numerical results and industrial applications. Eur. J. Oper. Res. 191,
786–802 (2008)

4. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. A Series of
comprehensive studies in Mathematics, vol. 290, 703 pages. Springer (1999)

5. Lewis, R., Song, S., Dowsland, K., Thompson, J.: An investigation into two
bin packing problems with ordering and orientation implications. Eur. J. Oper.
Res. 213, 52–65 (2011)

6. Menon, S., Schrage, L.: Order allocation for stock cutting in the paper industry.
Oper. Res. 50, 324–332 (2002)

7. Wäscher, G., Haussner, H., Schumann, H.: An improved typology of cutting and
packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)

8. Huang, W.Q., Li, Y., Li, C.M., Xu, R.C.: New heuristics for packing unequal circles
into a circular container. Comput. Oper. Res. 33, 2125–2142 (2006)

9. Hifi, M., M’Hallah, R.: A dynamic adaptive local search algorithm for the circular
packing problem. European J. Oper. Res. 183, 1280–1294 (2007)

10. Akeb, H., Hifi, M., M’Hallah, R.: A beam search based algorithm for the circular
packing problem. Comput. Oper. Res. 36, 1513–1528 (2009)

11. Graham, R.L., Lubachevsky, B.D., Nurmela, K.J., Österg̊ard, P.R.J.: Dense pack-
ings of congruent circles in a circle. Discrete Math. 181, 139–154 (1998)

12. Liu, J., Xue, S., Liu, Z., Xu, D.: An improved energy landscape paving algorithm
for the problem of packing circles into a larger containing circle. Comput. Ind.
Eng. 57, 1144–1149 (2009)

13. George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a
rectangular container. Eur. J. Oper. Res. 84, 693–712 (1995)

14. Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of opti-
mization problem of placement of rectangles and circles taking into account special
constraints. Int. Trans. Oper. Res. 5, 45–57 (1998)

15. Hifi, M., M’Hallah, R.: Approximate algorithms for constrained circular cutting
problems. Comput. Oper. Res. 31, 675–694 (2004)

16. Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for packing unequal
circles into a rectangular container. J. Oper. Res. Soc. 56, 539–548 (2005)

17. Birgin, E.G., Martinez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders
into a rectangular container: A nonlinear approach. Eur. J. Oper. Res. 160, 19–33
(2005)

18. Kubach, T., Bortfeldt, A., Gehring, H.: Parallel greedy algorithms for packing
unequal circles into a strip or a rectangle. Cent. Eur. J. Oper. Res. 17, 461–477
(2009)

19. Akeb, H., Hifi, M., Negre, S.: An augmented beam search-based algorithm for the
circular open dimension problem. Comput. Ind. Eng. 61, 373–381 (2011)

20. Huang, W.Q., Ye, T.: Greedy vacancy search algorithm for packing equal circles
in a square. Oper. Res. Lett. 38, 378–382 (2010)

92 H. Akeb, M. Hifi, and D. Lazure

21. Specht, E.: High density packings of equal circles in rectangles with variable aspect
ratio. Comput. Oper. Res. 40, 58–69 (2013)

22. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global
optimization approach. Discrete Appl. Math. 122, 139–166 (2002)

23. López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety
of containers. Eur. J. Oper. Res. 214, 512–525 (2011)

24. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere
packing problems. Comput. Oper. Res. 35, 2357–2375 (2008)

25. Birgin, E.G., Gentil, J.M.: New and improved results for packing identical uni-
tary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37,
1318–1327 (2010)

26. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. Int. J. Prod. Res. 26,
35–62 (1988)

27. Akeb, H., Hifi, M.: Adaptive algorithms for circular cutting/packing problems. Int.
J. Oper. Res. 6, 435–458 (2009)

28. Akeb, H., Hifi, M.: Algorithms for the circular two-dimensional open dimension
problem. Int. Trans. Oper. Res. 15, 685–704 (2008)

Experimental Evaluation of Pheromone

Structures for Ant Colony Optimization:
Application to the Robot Skin Wiring Problem

Davide Anghinolfi, Giorgio Cannata, Fulvio Mastrogiovanni, Cristiano Nattero,
and Massimo Paolucci

Department of Informatics Bioengineering, Robotics and Systems Engineering,
University of Genoa, Via Opera Pia 13, 16145, Genoa, Italy

{davide.anghinolfi,giorgio.cannata,fulvio.mastrogiovanni,
cristiano.nattero,massimo.paolucci}@unige.it

Abstract. The problem of optimally routing the wiring in large-scale
modular skins for robots is gaining much attention in the literature.
Theoretically, the problem is NP-hard. On the basis of previous work [3],
[37], we solve the skin wiring problem using an Ant Colony Optimization
approach. In this Chapter, we address the problem of designing a good
pheromone structure: we propose five alternatives, which are validated
using both real and artificially generated problem instances.

Keywords: ant colony optimization, robotics, pheromone structures,
skin wiring.

1 Introduction

In order to provide humanoid robots with tactile sensing capabilities, the de-
velopment of robot skins has been an active field of research in the past few
years [15]. A robot skin is a sensing device composed of a huge number of net-
worked tactile sensors. Robot skins are expected to enable new means of physical
human-robot interaction [5].

Different transduction principles are usually exploited, namely pressure, prox-
imity or temperature [15]. However, to design a robot skin is a hard engineering
task, since it requires to deal with such conflicting requirements as resolution
[42], reaction dynamics and bandwidth [6], weight, energy consumption, optimal
placement and calibration [11], as well as reliability and real-time SW perfor-
mance [10], [47].

The reference robot skin [12], [41] exploits capacitance-based transducers. In
the current HW design, up to 12 tactile elements (i.e., taxels) are hosted by
a triangular module, which is made by flexible Printed Circuit Board (PCB)
and hosts also the read-out electronics, as shown in Figure 1a. Each triangu-
lar module can be interconnected to up to 3 other triangular modules to cover
large robot body parts, thereby forming a skin patch (Figure 1b). A patch can
be composed of up to C = 16 interconnected triangular modules. Each patch

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 93–114.
DOI: 10.1007/978-3-319-00410-5_6 c© Springer International Publishing Switzerland 2013

94 D. Anghinolfi et al.

(a) (b)

Fig. 1. (a) a skin triangular module PCB, front and rear sides; (b) a parch of inter-
connected modules

is managed by an external micro-controller, which is responsible for the trans-
mission of tactile sensory data to an embedded PC for further data processing,
thereby implementing high-level tactile-based behaviours [9], [16]. The data net-
work between triangular modules and the patch micro-controller is embedded
within the PCB. Thanks to I/O ports on triangular module sides, tactile sensory
data can be sent to and forwarded from adjacent modules, eventually reaching
a specific I/O port of the patch connected to the external micro-controller.

In order to reduce the wiring complexity inside the PCB, in the reference
technology each micro-controller can be directly connected to one element of a
patch only, which is referred to as the entry point, whereas the signal cables of
other triangular modules are routed via neighbouring modules. Each module can
route the signals related to the managed taxels to a single micro-controller. The
skin wiring problem consists in finding an appropriate routing of the connections
between adjacent triangular modules, in order to optimally link each triangu-
lar module to an appropriate micro-controller, possibly satisfying (at the same
time) a number of functional requirements, namely power consumption and fault
tolerance. The former is achieved by reducing the number of micro-controllers
to the strictly necessary minimum needed to control all of the triangular mod-
ules, whereas the latter prescribes that, in case of failure, at least a graceful
performance degradation of the robot skin subsystem must be achieved.

The failure of a micro-controller is considered as the most critical situation,
since it affects all the associated triangular modules. The failure of a micro-
controller can cause large parts of the sensing surface to stop working. Intuitively,
as it has been discussed in [3], in order to reduce the effects of such a failure it is
advisable to (i) uniformly distribute the load among micro-controllers, and (ii)
spread the triangular modules assigned to a micro-controller as much as possible
with respect to the robot surface that must be covered.

The concepts above lead to the formulation of skin wiring as an optimization
problem with three distinct but interconnected aspects [3]: (i) assign each tri-
angular module to a micro-controller; (ii) identify an entry point in the patch
for each micro-controller; (iii) define wire routing in terms of interconnections
between I/O ports.

Experimental Evaluation of Pheromone Structures for ACO 95

A general optimization technique based on Ant Colony Optimization (ACO)
has been discussed in [3], [37]. The main contribution of this Chapter is a compu-
tational analysis of different pheromone structures for the same ACO algorithm.
The Chapter is organized as follows. A graph theoretical problem definition is
given in Section 2, followed by a review of relevant literature in Section 3. Section
4 reports a Mixed Integer Programming (MIP) formulation for the problem. We
describe a multi-start heuristic and an ACO based approach, together with five
different pheromone structures, in Section 5. In Section 6 we discuss the perfor-
mance of the five heuristic approaches, and we draw conclusions in Section 7.

2 Problem Statement

A robot skin patch can be represented using a graph G = (V,E) where V =
{v0, . . . , vn} is a set of nodes and E = {e0, . . . , em} is a set of edges linking
adjacent triangular modules.

1

2 3

6
4

5

7 8
9

1 1
1 0

1 2

(a)

1 | 1

1 | 2

1

1 | 3
2

2 | 6
1 | 4

3

2 | 5 5

1 | 7 1 | 8

4

2 | 9

4

2 | 1 1

5

2 | 1 0

3

2

2 | 1 2

1

(b)

Fig. 2. (a) an example of a graph representing a patch; (b) a possible solution of the
associated skin wiring problem

An example of a graph associated with a patch is given in Figure 2a. The graph
is symmetric (i.e., no direction is defined between two connected elements) and
planar. If border nodes are neglected, then G is also a regular graph. Given
a patch and a corresponding graph G, Dij represents the Euclidean distance
between the centroids of each pair of triangular modules (i, j) ∈ V × V . Finally,
a set K = {1, . . . , q} of q micro-controllers is given.

The skin wiring problem can be modelled as a Constrained Spanning Forest
problem: the set of modules assigned to a micro-controller k corresponds to a set
of nodes Tk, such that |Tk| ≤ C (i.e., the maximum number of modules managed
by a micro-controller), and the wiring defines an acyclic connected sub-graph

96 D. Anghinolfi et al.

Sk(Tk, Ek) in G induced by Tk, i.e., a tree. Any node v in Tk can be chosen as root
and used as entry point for the micro-controller k. The solution is then a forest F
corresponding to the collection of all the trees Sk. The connections of modules in
a patch to a set of micro-controllers and the consequent wire routing correspond
to a constrained spanning forest on the graph associated with the patch. As an
example, Figure 2b shows a possible wiring for the patch graph of Figure 2a
using two micro-controllers. In the Figure, node labels (k|v) denote the micro-
controller index followed by the node index, whereas the number associated with
the edges represents the order of assignment of a connection to a micro-controller.

3 Related Work

The Problem of Wiring in Robot Skin Design. Thanks to the relative design sim-
plicity, research activities on large-scale tactile sensing exploited square regular
grid wiring patterns [2], [32], [28], [22], [13], [19], [43], [31]. However, solutions
based on grid-like regular patterns are not efficient when scaling-up to large sur-
faces of robot skin including hundreds or thousands tactile sensors, since the
number of wires quadratically increases with the size of the tactile array. To this
aim, it is often suggested to introduce multiplexing components, which are able
to provide taxel readings at the price of a lower tactile data acquisition rate [30],
[38], [21].

The problem of wiring in robot skin design has been addressed in a principled
way only in [26], [27], [41], [34], [3]. All of these approaches represent examples of
modular skin design. In order to build large-scale tactile surfaces, it is necessary
to interconnect a (typically) huge number of basic units. Such an interconnec-
tion is also used to transmit local tactile data to a centralized processing node.
To this aim, each basic module must provide a well-defined signal routing such
that, when interconnected with other modules, the overall network is consistent
and efficient. The work described in [26], [27] provides a solution for a specific
shape of basic modules. Although the solution proves to be efficient, the design
is not characterized by any optimality principle (i.e., robustness, efficiency, fault-
tolerance) leading to good wiring. The same can be said for the work presented
in [41], where the wiring between modules is fixed. Self-configuration capabilities
as far as wiring is concerned have been implemented in the Hex-O-Skin technol-
ogy [34]. However, it can not be proved that the obtained configuration is able to
enforce any optimality principle. Starting from the robot skin design introduced
in [41], we presented heuristic algorithms in [3] to provide a good trade-off be-
tween the need for a modular design and (to a limited extent) the requirements
associated with robustness and fault-tolerance. In particular, the main proposed
algorithm is based on an Ant Colony Optimization (ACO) approach, which we
recently improved in [37].

Constrained Spanning Forests. The Maximum Weight Forest (MaxWF) prob-
lem consists in defining a spanning forest that maximizes the sum of the weights
associatedwith each edge. Although it is possible to solveMaxWF in polynomial-
time with a greedy algorithm [39], the introduction of constraints makes the prob-
lemmuchmore difficult. TheMaximumWeight t-restricted Forest (MaxWCF(t))

Experimental Evaluation of Pheromone Structures for ACO 97

problem, consisting in finding the MaxWF constrained to have no more than t
edges in each tree, has been shown to be NP-hard [23]. Furthermore, the authors
give a 1/4 approximating greedy algorithm. The work in [29] deals with theMini-
mumWeighted Constrained Spanning Forest (MinWCF(p)) problem, which con-
sists in computing the spanning forest of minimum weight such that every tree
component contains at least p nodes. In particular, they demonstrate that the
problem is NP-hard, ∀p ≥ 4, whereas in [35] it is shown that MinWCF(p) is
NP-hard even with p = 3. The work in [7] address the unweighted version of the
same problem (MinCF(p)) and show that it is NP-hard for any p ≥ 4, even on
planar bipartite graphs of maximum degree 3. Moreover, they demonstrate that,
by dropping the condition of planarity, the problem becomes APX-hard for any
p ≥ 3, even on graphs with maximum degree 3.

Despite a number of similarities, the skin wiring problem differs both from
MaxWF and MinWCF (as well as from MinCF). As a matter of fact, the
problem considered here is to find a constrained spanning forest F that serves
all nodes, minimizing a cost function with two components: (i) the sum, for all
the trees Sk ∈ F , of the absolute value of the difference between the number of

nodes |Tk| and the desired average number of nodes per tree, defined as λ �
⌈
|V |
|K|
⌉

(where |K| is the number of trees), which is expected to favor the micro-controller
load balancing; (ii) the sum, for all the trees Sk ∈ F and for all the ordered pairs
of nodes (i, j), such that i < j, i, j ∈ Tk, of the difference between the maximum
distance between all the pairs of nodes in V and the distance between i and j,
which is expected to favor the spreading of triangular modules associated with
a single micro-controller.

Considering the second objective component, it is evident that, for the faced
Constrained Spanning Forest problem, no cost can be a priori associated with
an edge as it depends on which subsets of nodes in V are finally assigned the
|K| trees. As a consequence, since the contribution of an edge to the objective
function becomes known only after the introduction of that edge in a solution, a
greedy heuristic appears not to be suitable for the skin wiring problem. Nonethe-
less, if the contribution of each edge was known a priori, the considered problem
could be reduced to a MinWCF. This allows us to conclude that the problem
is NP-hard.

Graph Clustering and Partitioning. Graph clustering represents a field of ac-
tive research [40]. The problem consists in grouping graph vertexes into clusters
which consider the graph edge structure in order to maximize the number of
edges within each cluster and to minimize the number of edges between clusters.
Although it can be argued that the skin wiring problem belongs to the family of
graph clustering problems, typical graph clustering does not explicitly address
the connectivity constraints we face in our case (due to the adopted technology)
and which makes the problem much harder. The work in [46] is one of the few
examples considering such constraints explicitly. However, the authors do not
address cardinality constraints, which is a specific requirement in our case.

Graph Partitioning, Packing and Covering [20] consist in grouping the nodes
of a graph such that each node is assigned to, respectively, at most or at least one

98 D. Anghinolfi et al.

graph subset. These problems are closely related to the topic of this Chapter.
However, connectivity is not explicitly enforced in the standard formulation of
the problem.

A close class of problems is the Graph Tree Partition (GTP), where the graph
must be partitioned by means of trees. These problems are NP-hard in many rel-
evant cases, as it has been demonstrated in [14]. In GTP problems, connectivity
is ensured by the existence of trees. However, the difference with the problem we
discuss in this Chapter resides in the objective and the cardinality constraints. It
is worth noting that in [14] the problem is solved by means of an ACO approach.

4 Mathematical Formulation

The skin wiring problem can be formulated as the problem of determining a
spanning forest on the graph G = (V,E) associated with a skin patch so that
the forest is composed by at most |K| trees and each tree includes at most C
nodes. In addition, as for each micro-controller an entry point and a feasible
routing must be determined, a root node and an orientation is selected for each
tree so that the solution corresponds to a directed spanning forest consisting of
a set of arborescences.

The problem can be formulated as a Mixed Integer Programming (MIP) prob-
lem considering the directed graph G′ = (V ′, A′), where A′ = A ∪ {(s, i) | ∀i ∈
V }, A = {(i, j), (j, i) : ∀(i, j) ∈ E} and V ′ = V ∪s. The node s is a dummy node
used as a root. In the following, let a = (i, j) denote a generic directed arc, where
nodes i and j are respectively the tail and the head of a. Then, a feasible solu-
tion identifying a directed spanning forest H is a set of arborescences Rk, i.e.,
H � {Rk(Tk, Ak), k ∈ K}, where Tk ⊆ V and Ak ⊆ A. The following constants
are used: Dij , ∀(i, j) ∈ V × V , is the Euclidean distance between nodes i and j;
Dmax = max{Dij}; Dmin = min{Dij}; C is the maximum number of nodes in a
tree (i.e., the micro-controller capacity, which is 16 in our case); λ ∈ (0, C] is the
desired number of nodes in a tree (i.e., the desired micro-controller load level);
w1, w2, w3 ∈ R+ are the weights modelling the priority of the objective function
components.

The following decision variables are used: rkv ∈ {0, 1}, ∀k ∈ K, ∀v ∈ V ;
rkv = 1 if only if controller k ∈ K is connected directly to node v ∈ V , that is,
v is the root of tree k (i.e., the entry point for micro-controller k); xka ∈ {0, 1},
∀k ∈ K, ∀a ∈ A; xka = 1 if only if a ∈ Ak; a node j is assigned to an arborescence
(Tk, Ak) (i.e., it is controlled by micro-controller k) if either j is the root of k or
it is the head of an arc a = (i, j) such that a ∈ Ak; yij ∈ {0, 1}, ∀(i, j) ∈ V × V ,
i < j; yij = 1 only if i, j ∈ Tk for a given k (these variables determine if two
nodes are assigned to the same arborescence and are used to evaluate the relative
distance between nodes); nv ∈ {0, 1}, ∀v ∈ V ; nv = 1 only if v /∈ Tk, ∀k ∈ K;
variables nv are introduced to relax the node spanning condition, i.e., to model
also the case of skin patches that generate graphs structured so that there is no
possibility to assign all the nodes to a micro-controller (this point is discussed
later in this Section); Δk ∈ R+, ∀k ∈ K; these are deviational variables giving

Experimental Evaluation of Pheromone Structures for ACO 99

the absolute difference between |Tk| and the average desired load λ for micro-
controllers; uv ∈ R, ∀v ∈ V ; variables used in sub-tour elimination constraints.

Skin wiring is a multi-objective problem requiring the minimization of the
three following objectives:

O1 �
∑
v∈V

nv, (1)

O2 �
∑
k∈K

Δk, (2)

O3 � 1

(Dmax −Dmin)

∑
i,j∈V
i<j

yij (D
max −Dij) , (3)

where O1 (1) is the sum of unassigned nodes in the current solution, O2 (2) is
the sum over all micro-controllers of the variations from the average desired load
λ and O3 (3) corresponds to the sum of the normalized distances among every
pair of nodes assigned to the same arborescence.

The following three scaling factors, namely ν1, ν2 and ν3, are introduced to
ensure that Oh ∈ [0, 1], h = 1, 2, 3:

ν1 � 1

|V | , ν2 � 1

|K|λ, ν3 � 2

[|V | (|V | − 1)]
. (4)

Please note that, since such factors are derived from worst case considerations,
the scaled objectives can not reach the extremes of their variation range.

The multi-objective problem can be converted into a scalar minimization prob-
lem by combining the three objectives into a single weighted additive objective
function, where the values of the weights are provided according to the different
preference of the decision maker. As a matter of fact, a lexicographic priority
can be imposed between any pair of objectives Oi, Oj , fixing wi � wj . Then,
the proposed formulation is as follows:

min w1ν1O1 + w2ν2O2 + w3ν3O3, (5)

subject to: ∑
k∈K

(rkj +
∑
a∈A

a=(i,j)

xka) + nj = 1, ∀j ∈ V, (6)

xka ≤
∑
f∈A

f=(j,i)

xkf + rki, ∀i ∈ V, k ∈ K, a = (i, l) ∈ A, (7)

∑
v∈V

rkv ≤ 1, ∀k ∈ K, (8)

∑
j∈V

⎛
⎜⎜⎝rkj +

∑
a∈A

a=(i,j)

xka

⎞
⎟⎟⎠ ≤ C, ∀k ∈ K, (9)

100 D. Anghinolfi et al.

ui − uj + C
∑
k∈K

xka ≤ C − 1, ∀a = (i, j) ∈ A, (10)

∑
j∈V

∑
a∈A

(xka + rkj)− λ ≤ Δk, ∀k ∈ K, (11)

∑
j∈V

∑
a∈A

(xka + rkj)− λ ≥ −Δk, ∀k ∈ K, (12)

yij ≥
∑
a1∈A

a1=(h,i)

xka1 + rki +
∑
a2∈A

a2=(l,j)

xka2 + rkj − 1, (13)

∀i, j ∈ V, k ∈ K, i < j.

Constraints (6) require that each node is at most assigned to a single arbores-
cence (i.e., a micro-controller), being either the entry point for the arborescence
or the head of one of its arcs. Constraints (7) ensure that an arc with origin in
node i can be assigned to controller k only if another arc assigned to k enters
in i or if i is an entry point for k. Constraints (8) impose that for each micro-
controller there is at most one entry point. Constraints (9) limit the number
of nodes assigned to each micro-controller to C, taking into account the fact
that a node j is assigned to a micro-controller k or an arc exists insisting on
j and starting from a node assigned to k. Constraints (10) are the sub-tour
elimination constraints introduced in [33]. These constraints ensure that each
micro-controller is associated with an acyclic connected and directed sub-graph,
i.e., an arborescence. Constraints (11) and (12) define the unbalance between
the number of nodes assigned to a micro-controller k and the average desired
load. Constraints (13) impose yij = 1 if nodes i and j are controlled by the same
micro-controller, specifically by the first and the second summation. Variables nv

are necessary to determine feasible solutions for the graphs whose nodes cannot
be partitioned into |K| distinct arborescences, i.e., assigned to the available |K|
micro-controllers. Such situations may arise in case of patches generating a non
connected graph, but also in case of connected graph with particular structures
[3].

5 A Solution to the Skin Wiring Problem

5.1 An ACO Algorithm for Optimal Skin Wiring

Since the MIP model as-is is almost useless to solve large scale instances [3],
a meta-heuristic approach has been developed. In particular, an Ant Colony
Optimization (ACO) algorithm [17], together with an efficient Candidate Strategy
(CS), has been implemented in [3]. The ACO algorithm described in this Section
shares the same structure of the algorithm introduced by [4], which borrows
concepts both from the Ant Colony System (ACS) [18] and the Max-Min Ant
System (MMAS) frameworks [45].

Experimental Evaluation of Pheromone Structures for ACO 101

Pseudocode 1. An ACO algorithm for the skin wiring problem

Input: a graphG = (V,E), the number of micro-controllers |K|, the desired occupancy
level λ and the number of ants P .

1: F ∗ ← ∅
2: zbest ← +∞
3: π ← initPheromone(G)

4: while termination condition not met do
5: for all ant a do
6: Fa ← buildSolution(G,|K|,λ,π)
7: if z (Fa) < zbest then
8: F ∗ ← Fa

9: zbest ← z (F ∗)
10: end if
11: localPheromoneUpdate(Fa,π)
12: end for
13: globalPheromoneUpdate(F ∗,π)
14: end while
15: return F ∗

The algorithm is outlined in Pseudocode 1. The algorithm requires the graph
G, the number |K| of micro-controllers, the desired occupancy level λ and the
number P of artificial ants. The best solution F ∗ and the best value zbest are ini-
tialized, respectively, to an empty set (line 1) and to +∞ (line 2). The pheromone
π is initialized at line 3. The main loop (lines 4–14) consists in making each ant
construct a forest Fa which possibly spans all the nodes in V (line 6), comparing
the solution against the incumbent and eventually save it (lines 8–9). Pheromone
trails are locally updated after each construction (line 11) and globally updated
at the end of the iteration (line 13). The best found solution is finally returned
(line 15).

As discussed in [3], the solution construction proceeds incrementally, since
each ant a constructs a forest Fa one tree T at a time. A tree is constructed by
adding an edge e to T . The edge e is obtained from an element z, which is ex-
tracted out of a setΘ of candidates using information associated with pheromone
trails. The set Θ is generated from scratch before the insertion of each edge (refer
to Section 5.2 and Section 5.3). The set Θ can contain one out of two possible
types of elements, namely edges or nodes. A node v is called free if it has not
been assigned to any tree yet. If z corresponds to an edge e = (i, j), either i ∈ T
and j is free, or j ∈ T and i is free. In the other case, if z corresponds to a
node v, then it is free. For the sake of completeness, any edge e connecting v
to a node in T can be added, since their contribution to the objective function
(5) is equivalent. The construction of the current tree ends when the desired
occupancy level has been reached (i.e., when |T | = λ) or it is no longer possible
to find an element for which the insertion is feasible (i.e., when Θ = ∅).

Note that, for comparison purposes, it is possible to design a randomized
constructive heuristic simply by neglecting the use of pheromone. In this case, the
selection of the next element z ∈ Θ to insert in T is randomly performed with a

102 D. Anghinolfi et al.

uniform probability distribution. AMulti Start Heuristic (MSH) is then obtained
by restarting the construction. Conceptually, this approach corresponds to using
one ant only, i.e., to setting P = 1 but, in practice, it is convenient to implement
a dedicated algorithm. For a fair comparison, the termination condition both of
MSH and ACO is the maximum running time.

Differently from MSH, when more alternatives exist, the ant performs the
selection in two steps. First, as in the standard ACS, the ant randomly chooses
the node selection rule between exploitation and exploration with probability
q ∈ [0, 1] and 1− q, respectively. Let π(z) denote the pheromone trail associated
with element z. Then, the exploitation rule selects z deterministically according
to

z = argmax
w∈Θ

π(w), (14)

and the exploration rule selects z according to a selection probability p(z) ob-
tained as

p(z) =
π(z)∑

w∈Θ π(w)
. (15)

Following the same approach proposed by [4], the pheromone trails do not depend
on the cost function values associated with previously explored solutions. Rather,
they vary in an arbitrary range [πmin, πmax] such that πmin < πmax and πmin ≥ 0.
In this way, πmin and πmax are no longer parameters to be tuned. This feature
makes the algorithm independent from the specific problem or instance. After
an ant a completes the construction of a solution F , in order to reduce the
probability that the successive ants construct an identical solution during the
same iteration, the pheromone trails are locally updated (line 11 in Pseudocode
1) as follows:

π(z) ← (1− ρ)π(z), ∀z ∈ F, (16)

where ρ ∈ [0, 1] is the local evaporation parameter. The global pheromone update
(line 13) is performed in three steps: (i) perturbations due to the local pheromone
updates are removed; (ii) pheromone trails are evaporated as follows:

π(z) ← (1− α) π(z), ∀z /∈ F ∗, (17)

where F ∗ is the incumbent solution and α ∈ [0, 1] is the global evaporation
parameter; (iii) pheromone trails relevant to F ∗ are reinforced as follows:

π(z) ← π(z) + α ·Δπ(z), ∀z ∈ F ∗, (18)

where Δπ(z) is the maximum pheromone reinforcement obtained as

Δπ(z) = πmax − π(z), ∀z ∈ F ∗. (19)

As shown in [4], these rulesmake the pheromone reachbothbounds asymptotically.

Experimental Evaluation of Pheromone Structures for ACO 103

5.2 A Candidate Strategy

The set Θ of candidate elements for insertion is constructed, coherently with the
used pheromone structure, upon a set Ψ of candidate nodes, which is defined
as follows. Let A(v) be the set of nodes adjacent to v and N(v) ⊆ A(v) be the
set of free nodes adjacent to v. With a minor abuse in the notation, let also
A(T) be the sets of nodes adjacent to those in T and N(T) the set of free nodes
adjacent to those in T . Given a incomplete forest F , possibly empty, a first set
Ψ0 is obtained including all nodes in N(T). If the tree is empty, then any free
node is added to Ψ0 to bootstrap its construction. The set Ψ0 can be passed
directly to an ant for construction but this choice leads to poor quality solutions
which, most of the times, are also incomplete. A first improvement is obtained by
constructing a set Ψ1 ⊆ Ψ keeping only those nodes for which |N(v)| is minimal,
i.e.,

Ψ1 =

{
v ∈ Ψ : v = argmin

w∈Ψ
|N(w)|

}
. (20)

This is called the Least Unassigned (LU) rule and allows us to obtain much
better solutions, although it still produces too many incomplete ones. Finally, a
set Ψ2 ⊆ Ψ1 can be defined by keeping only those nodes in Ψ1 for which, in turn,
the total number of free adjacent nodes is minimal, i.e.,

Ψ2 �

⎧⎨
⎩v ∈ Ψ1 : v = arg min

w∈Ψ1

∑
u∈N(w)

|N(u)|.

⎫⎬
⎭ (21)

This is called the Least Cumulative Unassigned (LCU) rule and, thanks to its
look-ahead effect, it reduces the chances that a node v is left unassigned to any
micro-controller since it tends to avoid leaving v isolated. It is convenient to set
Ψ = Ψ2: LCU allows to obtain definitely better solutions in terms of objective O1,
and partly of O3 since, in most cases, this mechanism tends to produce chain-like
shaped trees, i.e., trees with only two leaves. Objective O2 is implicitly taken
into account by limiting the number of nodes per tree to λ.

5.3 Pheromone Structures

The pheromone allows the artificial ants to learn what the attributes of a good
solution are. The candidate set must be coherent with the choice. To better
explain the structures we explore, throughout the remainder of this Section we
consider the scenario depicted in Figure 3, which represents part of a graph
where a tree is under construction. Specifically, Figure 3a shows a case where
only node 1 is assigned to the tree, whereas in Figure 3b also nodes 2 and 3
have been added. Since in this problem it is necessary to learn how nodes link
together, we have tested the following possibilities.

Direct Edges (DE). In this case, Θ is defined as the set of edges linking a
candidate node and a node in current tree, i.e.,

ΘDE � {e ∈ E, e = (v, i) ∨ e = (i, v) : v ∈ Ψ ∧ i ∈ T } . (22)

104 D. Anghinolfi et al.

1

2 3

4
(a)

1

2 3

4
(b)

Fig. 3. Two partial solutions for the same graph G = (V,E), where V = {1; 2; 3; 4}
and E = {(1, 2); (1, 3); (2, 4); (3, 4)}

1

2 3

4

12 13

1

2 3

4
24 34

Fig. 4. A Direct Edges structure where (a) ΘDE = {(1, 2); (1, 3)}, π = {π12;π13} and
(b) ΘDE = {(2, 4); (3, 4)}, π = {π24;π34}

The pheromone trail is associated with each edge e ∈ E and is indicated as πe.
Figure 4 shows the pheromone and the candidates.

1

2 3

4

12 13

Fig. 5. A Cumulative Edges structure where (a) ΘCE = {2; 3}, π = {π2, π3}, π2 = π12,
π3 = π13 and (b) ΘCE = {4}, π = {π4}, π4 = E(π24, π34)

Cumulative Edges (CE). In this case we have:

ΘCE = Ψ, (23)

and the value of the corresponding pheromone trail πv is averaged over all pos-
sible edges e linking v to a node in T , i.e.,

πv �
∑

e∈ET (v) πe

|ET (v)|
, (24)

Experimental Evaluation of Pheromone Structures for ACO 105

where ET (v) ⊆ E is defined as:

ET (v) � {e ∈ E, e = (v, i) ∨ e = (i, v) : v ∈ Ψ, i ∈ T }. (25)

This is the pheromone structure originally adopted by the authors in [3] and is
shown in Figure 5.

1

2 3

4

12 13 1

2 3

4
24

14

34

Fig. 6. A Direct Pairs structure where (a) ΘDP = {(1, 2); (1, 3)}, π = {π(1,2);π(1,3)}
and (b) ΘDP = {(1, 4); (2, 4); (3, 4)}, π = {π(1,4);π(2,4);π(3,4)}

Direct Pairs (DP). In this case Θ is the set of (virtual) edges linking all nodes
in T with all nodes in Ψ , i.e.,

ΘDP � {e ∈ PT (v)}, (26)

where

PT (v) � {e = (i, j), i < j : (i ∈ Ψ ∧ j ∈ T) ∨ (i ∈ T ∧ j ∈ Ψ)} (27)

The pheromone is associated with the same edges. Figure 6 shows how this
structure works.

1

2 3

4

12 13

Fig. 7. A Cumulative Pairs structure where (a) ΘCP = {2; 3}, π = {π2, π3}, π2 = π(1,2),
π3 = π(1,3)} and (b) ΘCP = {4}, π = {π[(1,4);(2,4);(3,4)]}

Cumulative Pairs (CP). This structure behaves as in the CE case, but is
applied to pairs defined as in the previous case, i.e.,

ΘCP = Ψ, (28)

106 D. Anghinolfi et al.

1

2 3

4

k
k3k2

1

2 3

4

k
k4

Fig. 8. A Naive Clustering structure where (a) ΘNC = {2; 3}, π = {π(k,2);π(k,3)} and
(b) ΘNC = {4}, π = {π(k,4)}

and the pheromone trail is averaged over all edges in PT (v) ending or beginning
in v, i.e.,

πv �
∑

e∈PT (v) πe

|PT (v)|
. (29)

The behavior of this structure is further explained in Figure 7.
Naive Clustering (NC). In this case, the element to be inserted is a node, i.e.,

ΘNC � Ψ, (30)

and the pheromone πc is associated with the ordered couple c = (T, v), where
T is the tree under construction and v ∈ ΘNC. This representation is the only
one which works also with empty trees, whereas the others require the adoption
of dummy edges to bootstrap the construction. The Naive Clustering is depicted
in Figure 8.

6 Experimental Analysis

Generation of Problem Instances. We consider two sets of instances, which we
refer to as i and s. Dataset i contains real instances corresponding to patches for
body parts of the iCub robot platform1, which have a number of nodes ranging
from 6 to 232. These instances correspond respectively to: i1 = left upper arm,
lower part; i2 = left hip; i3 = right upper forearm; i4 = upper torso; i5 =
lower torso. Dataset s contains artificially generated instances with a number
of nodes ranging from 35 to 2470. These instances are identified by prefix s

followed by the number of nodes. The topology of these instances has the same
structure of the real ones, but their size is greater. They have been generated
by considering a grid of tactile elements which has been randomly cut using a
square shape. We compute the number q of micro-controllers for s instances as
q =

⌈
n
C

⌉
, where n is the number of nodes, C is the micro-controller capacity

1 Please refer to the official iCub website at www.icub.org.

Experimental Evaluation of Pheromone Structures for ACO 107

and �� denotes the ceiling operator. In order to obtain a complete solution for i
instances, we repeatedly execute the ACO algorithm, iteratively increasing the
number of micro-controllers q.

Experimental Setup and Requirements. In the performed experiments, we com-
pare the pheromone configurations described in Section 5.3 for the ACO algo-
rithm, together with the MSH as comparison term, against datasets i and s. We
use a maximum time of 300 seconds as a termination condition. Since algorithms
are randomized, we execute 10 independent replications for each instance. All
tests are executed on a 2.83 GHz Intel Core 2 Quad CPU Q9550, with 4GB of
RAM, running Linux (Ubuntu with 3.2.0-26-generic-pae, 32 bit).

We purposively do not report the results obtained using mathematical pro-
gramming because in previous experiments [3] verified that the mathematical
programming model does not scale, and here we are interested in addressing
even larger instances.

As a matter of fact, in realistic robot applications, solutions which do not
assign all the skin modules to micro-controllers (1) are considered unacceptable,
whereas micro-controller load balancing (2) is considered more important than
skin module spreading (3). This can be modelled enforcing a lexicographic or-
dering O1 ≺ O2 ≺ O3, where a ≺ b means that a has a higher priority than
b. To model this priority, the weights in the objective function (5) must be set
in order to satisfy w1 � w2 and w2 � w3. In particular, the following values
are considered suitable for the objective weights: w1 = 1000, w2 = 10, w3 = 1.
Although all of the described algorithms explicitly enforce the required lexico-
graphic ordering of solutions, it is noteworthy that this assignment allows for
the comparison with the solutions obtained with a MIP solver by [3], which can
be used as a ground truth.

Results and Discussion. Table 1 summarizes the performance of the algo-
rithms. The first four columns show, respectively, the instance ID, the number
of nodes |V |, the number of micro-controllers |K| and the desired occupancy level
λ. The fifth column reports the value BV of the best solution found during the ex-
periments, whereas the subsequent columns report the average Relative Percent
Deviation (RPD) of MSH and the ACO algorithms with the different pheromone
configurations (DE, CE, DP, CP and NC). Finally, the last two columns report
the range between the worst and the best solution found respectively by all the
algorithms and by ACO algorithms only. Each row is dedicated to a single in-
stance, and the best value is highlighted in boldface. The last two rows show the
average and the standard deviation, respectively. The RPD is computed as

RPD =
z − BV

BV
· 100, (31)

where z is the value of the objective function found by the algorithm under
test.

108 D. Anghinolfi et al.

T
a
b
le

1
.
In
st
a
n
ce
s
ch

a
ra
ct
er
is
ti
cs

a
n
d
co
m
p
u
ta
ti
o
n
a
l
re
su
lt
s

A
C
O

ra
n
g
e
(a
ll
)

ra
n
g
e
(A

C
O
)

ID
|V

|
|K

|
λ

B
V

M
S
H

D
E

C
E

D
P

C
P

N
C

(m
a
x
-
m
in
)
(m

a
x
-
m
in
)

i
1

6
2

3
0
.3
8
5
1
0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
0

i
2

9
1

9
0
.6
7
9
2
0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
0

i
3

3
7

4
1
3
3
.1
0
8
7
0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
0

i
4

1
2
5

9
1
6
1
.4
9
0
5

0
.0
2
3
%

0
.0
3
2
%

0
.0
3
3
%

0
.0
2
2
%

0
.0
3
0
%

0
.0
3
5
%

0
.0
1

0
.0
1

i
5

2
3
2

1
5

1
6
0
.3
8
9
9

0
.2
4
0
%

0
.0
1
8
%

0
.0
1
0
%

0
.1
6
5
%

0
.1
7
1
%

0
.2
1
5
%

0
.2
3

0
.2
1

s
3
5

3
5

3
1
2
0
.5
1
9
3
0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
0

s
4
0

4
0

3
1
4
0
.7
1
7
9
0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
0

s
5
4

5
4

4
1
4
0
.5
4
0
6
0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
0

s
6
0

6
0

4
1
5
0
.1
7
9
8

0
.0
0
6
%

0
.2
1
7
%

0
.0
0
0
%

1
.3
8
5
%

0
.0
6
3
%

0
.0
6
3
%

1
.3
8

1
.3
8

s
7
7

7
7

5
1
6
0
.5
2
1
9

0
.0
9
3
%

0
.0
0
0
%

0
.0
7
6
%

0
.6
7
8
%

0
.0
0
0
%

0
.6
3
0
%

0
.6
8

0
.6
8

s
8
4

8
4

6
1
4
0
.1
2
3
0

2
.0
6
9
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

0
.0
0
0
%

2
.1
0
7
%

2
.1
1

2
.1
1

s
1
0
4

1
0
4

7
1
5
0
.2
0
2
7

0
.7
6
8
%

0
.3
2
0
%

0
.3
6
0
%

0
.3
3
2
%

0
.0
0
0
%

1
.9
6
2
%

1
.9
6

1
.9
6

s
1
1
2

1
1
2

7
1
6
0
.1
0
6
3

1
.8
3
4
%

0
.3
2
7
%

1
.9
0
6
%

0
.9
6
6
%

0
.1
0
5
%

0
.1
2
1
%

1
.8

1
.8

s
1
3
5

1
3
5

9
1
5
0
.0
8
4
0

4
.9
0
0
%

0
.0
0
0
%

0
.0
0
0
%

4
.0
3
5
%

1
.5
2
7
%

4
.3
3
6
%

4
.9

4
.3
4

s
1
7
0

1
7
0

1
1

1
6
0
.4
1
3
7

0
.4
8
2
%

0
.1
5
0
%

0
.0
1
2
%

0
.5
2
1
%

0
.2
8
3
%

0
.2
7
1
%

0
.5
1

0
.5
1

s
1
9
8

1
9
8

1
3

1
6
0
.5
4
4
0

0
.2
6
3
%

0
.1
5
0
%

0
.1
2
5
%

0
.0
7
9
%

0
.0
5
2
%

0
.2
1
6
%

0
.2
1

0
.1
6

s
2
5
2

2
5
2

1
6

1
6
0
.2
0
7
0

0
.7
3
0
%

0
.1
9
9
%

0
.1
5
0
%

0
.3
4
9
%

0
.3
5
7
%

0
.3
7
2
%

0
.5
8

0
.2
2

s
3
2
2

3
2
2

2
1

1
6
0
.4
5
7
0

0
.2
0
1
%

0
.0
9
1
%

0
.0
7
9
%

0
.1
2
6
%

0
.1
7
5
%

0
.1
7
8
%

0
.1
2

0
.1

s
4
3
2

4
3
2

2
7

1
6
0
.0
3
1
2

1
.9
7
0
%

0
.1
3
3
%

0
.5
1
1
%

0
.7
0
5
%

0
.6
2
2
%

1
.1
5
2
%

1
.8
4

1
.0
2

s
6
0
8

6
0
8

3
8

1
6
0
.0
2
2
5

2
.2
3
0
%

0
.3
0
9
%

0
.9
1
4
%

1
.2
0
5
%

0
.7
1
8
%

1
.1
2
8
%

1
.9
2

0
.9

s
8
7
4

8
7
4

5
5

1
6
0
.0
8
4
0

0
.3
2
4
%

0
.0
4
1
%

0
.1
1
3
%

0
.1
2
8
%

0
.1
5
4
%

0
.1
3
5
%

0
.2
8

0
.1
1

s
1
3
4
4
1
3
4
4

8
4

1
6
0
.0
1
0
5

1
.1
2
5
%

0
.3
6
6
%

0
.1
0
6
%

0
.3
8
1
%

0
.6
6
5
%

0
.1
1
0
%

1
.0
2

0
.5
6

s
2
4
7
0
2
4
7
0
1
5
5
1
6
0
.0
4
6
1

0
.0
8
2
%

0
.0
1
8
%

0
.0
1
3
%

0
.0
3
0
%

0
.0
4
4
%

0
.0
3
5
%

0
.0
7

0
.0
3

av
er
a
g
e

0
,7
5
4
%

0
,1
0
3
%

0
,1
9
2
%

0
,4
8
3
%

0
,2
1
6
%

0
,5
6
8
%

st
d
ev

1
,1
7
4
%

0
,1
2
7
%

0
,4
3
1
%

0
,8
7
6
%

0
,3
6
4
%

1
,0
2
4
%

Experimental Evaluation of Pheromone Structures for ACO 109

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MSH
DE
CE
DP
CP
NC

Fig. 9. Algorithms scaling capability with size

The same values reported in Table 1 are visualized in Figure 9, which plots
the results as a function of the number of nodes.

First of all, although not specifically highlighted, it is remarkable that every
algorithm is able to produce a complete solution, i.e., with O1 = 0, in every run
on every instance. This is a very satisfying performance from the point of view
of the subject matter experts. From Table 1 it stems out that every algorithm
proves to be very efficient on the less challenging instances, namely i1-i3 and
s35-s54: not only 0% RPD is achieved for all of them, but they actually keep
finding a solution with the same (best) cost in all of the replications. In Figure
9, this corresponds to those points, on the left, where all the lines reach the
horizontal axis. At this stage of the analysis, it is not possible yet to state that
there are algorithms dominated by others, although the ACO with the Direct
Edges pheromone structure achieves the best average results and the tightest
standard deviation. Considered on average, the remaining algorithms rank as
CE, CP, DP, NC and MSH, whereas looking at the standard deviation the order
is DE, CP, CE, DP, NC and DE. The right part of Figure 9 reinforces the
observation that DE, CE and CP perform better on large scale instances. Figure
10 show the average RPD of the various algorithms as a function of running
time.

To gain more insight, it is useful to filter out the simplest instances and
compute the confidence intervals. Table 2 shows, on the rows, the average RPD
(avg) of each algorithm, together with the 95% confidence intervals (lo and
up, respectively) and the standard deviation (stdev). For convenience, the same
intervals are also plotted in Figure 11.

The confidence interval of DE does not overlap with that associated with
MSH, which allows us to conclude that the improvement obtained with the
Direct Edge pheromone representation is statistically significant. Adding this
learning mechanism to the purely random constructive mechanism adopted by
the MSH allows for better results. Interestingly, DE is also better than NC, for
which the interval is largely coincident with that of MSH, and this is remarkable:

110 D. Anghinolfi et al.

Fig. 10. Average RPD% as a function of running time

Table 2. 95% confidence intervals

lo avg up stdev

MSH 0.42% 1.02% 1.62% 1.27%
DE 0.08% 0.14% 0.20% 0.13%
CE 0.03% 0.26% 0.49% 0.49%
DP 0.19% 0.65% 1.11% 0.97%
CP 0.10% 0.29% 0.48% 0.40%
NC 0.23% 0.77% 1.31% 1.13%

apparently, the clustering information associated with the couple c = (T, v),
where T is a tree and v is a node is not powerful enough. The reason cannot
depend on the choice of the edge to be inserted in T because, given node v,
the contribution to the objective function is uniquely defined. To understand
one possible reason why NC does not perform well, let us consider a graph for
which the set of nodes can be partitioned into two disjoint subsets V1 and V2,
and suppose that it is possible to obtain a solution for which V1 and V2 are
assigned to trees T1 and T2 respectively. Then, a completely equivalent solution
can be obtained by swapping the assignments, i.e., by assigning V2 to T1 and
V1 to T2. This kind of representation suffers from the inefficiency due to its
embedded strong symmetry: since equivalent solutions can be obtained simply
by performing cyclic permutations of the assignments represented in couples c,
the algorithm is likely to waste a lot of CPU time to determine which of these
equivalent assignments works best. It can be argued that, at least on the given
instances, it is not efficient to represent the clustering information by specifying
the tree to which a node must be assigned to. Instead, the remaining structures
try to represent the fact that two or more nodes must be grouped together in
a good solution. The performance of DE is superior also to that of DP: even if
there is a minimal intersection between the two, the interval of DP is almost
entirely contained into that of NC. DE, CE and CP are the best configurations.
The interval of DE is embedded into that of CE and overlaps for almost its 80%
with that of CP, and therefore no statistical significance of the superiority of DE
can be inferred.

Experimental Evaluation of Pheromone Structures for ACO 111

Fig. 11. Average results for MSH and ACOs with 95% confidence intervals

As discussed above, DE, CE and CP are the three best configurations. At a first
glance, it is possible to argue that the difference in performance of the three meth-
ods vanishes when the complexity scale of the instances grows. As long as prob-
lem instances become large (i.e., considering a number of nodes approximately
exceeding 1400), the three structures provide mostly equivalent results. On the
one hand, if a single pheromone structure had to be selected, then DE would be a
good choice, as it is the only one guaranteeing superior performance with respect
to that offered by MSH. On the other hand, CE and CP would be the next best al-
ternatives. Summarizing, these comments allow us to speculate about potentially
good features of pheromone structures, namely (i) the use of topology, and (ii) the
information about the fact that two or more elements (i.e., nodes in our case) must
belong to the same cluster. It emerges that DE and CE are characterized by both
the features, whereas CP is characterized by just the second one.

7 Conclusions

In this Chapter, five different pheromone structures for an Ant Colony Opti-
mization algorithm have been designed and tested to solve a minimum cost
Constrained Spanning Forest problem arising in robot skin design.

The proposed heuristics, namely Direct Edges (DE), Cumulative Edges (DE),
Direct Pairs (DP), Cumulative Pairs (DP) and Naive Clustering (NC), have been
tested against both real and synthetic instances. Results show the effectiveness
of all methods but suggest that some structures work better than others. In
particular, the simplest structure (DE) performs definitely better than the simple
randomized restart MSH algorithm obtained by disabling the learning capability
given by the pheromone and then using the Naive Clustering structure. DE is
superior also to the CP method but no statistical evidence that DE is better
than CE and DP has been found. Moreover, the behaviour of the algorithms
seems to be sensitive to problem scaling.

112 D. Anghinolfi et al.

Since there is a need, in robot skin design, for automated methods handling
an ever increasing number of sensors per area unit, obtained thanks to minia-
turization and technology improvements, even larger cases will be considered in
future research activities.

Acknowledgement. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 231500/ROBOSKIN.

References

1. Alirezarei, H., Nagakubo, A., Kuniyoshi, Y.: A highly stretchable tactile distribu-
tion sensor for smooth surfaced humanoids. In: Proceedings of the 2007 IEEE Con-
ference on Humanoid Robotics (HUMANOIDS 2007), Pittsburg, PA, USA (2007)

2. Allen, P., Michelman, P.: Acquisition and interpretation of 3-D sensor data from
touch. IEEE Transactions on Robotics and Automation 6(4), 397–405 (1990)

3. Anghinolfi, D., Cannata, G., Mastrogiovanni, F., Nattero, C., Paolucci, M.: Heuristic
approaches for the optimal wiring in large-scale robotic skin design. Computers &
Operations Research 39(11), 2715–2724 (2012)

4. Anghinolfi, D., Paolucci, M.: A new ant colony optimization approach for the
single machine total weighted tardiness scheduling problem. International Journal
of Operations Research 5, 1–17 (2008)

5. Argall, B., Billard, A.: A survey of tactile human-robot interactions. Robotics and
Autonomous Systems 58(10), 1159–1176 (2010)

6. Baglini, E., Cannata, G., Mastrogiovanni, F.: Design of an embedded networking
infrastructure for whole-body tactile sensing in humanoid robots. In: Proceedings of
the 2010 IEEE Conference on Humanoid Robotics (HUMANOIDS 2010), Nashville,
TN, USA (2010)

7. Bazgan, C., Couëtoux, B., Tuza, Z.: Complexity and approximation of the con-
strained forest problem. Theoretical Computer Science 412(32), 4081–4091 (2011)

8. Cannata, G., Dahiya, R., Maggiali, M., Mastrogiovanni, F., Metta, G., Valle, M.:
Modular skin for humanoid robot systems. In: Proceedings of the 4th International
Conference on Cognitive Systems (CogSys 2010), Zurich, Switzerland (2010)

9. Cannata, G., Denei, S., Mastrogiovanni, F.: A framework for representing interac-
tion tasks based on tactile data. In: Proceedings of the 2010 IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN 2010),
Viareggio, Italy (2010)

10. Cannata, G., Denei, S., Mastrogiovanni, F.: Tactile sensing: Steps to artificial so-
matosensory maps. In: Proceedings of the 2010 IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN 2010), Viareggio, Italy
(2010)

11. Cannata, G., Denei, S., Mastrogiovanni, F.: Towards automated self-calibration of
robot skin. In: Proceedings of the 2010 IEEE International Conference on Robotics
and Automation (ICRA 2010), Anchorage, Alaska, USA (2010)

12. Cannata, G., Maggiali, M., Metta, G., Sandini, G.: An embedded artificial skin for
humanoid robots. In: Proceedings of the 2008 IEEE International Conference on
Multi-sensor Fusion and Integration (MFI 2008), Seoul, South Korea (2008)

Experimental Evaluation of Pheromone Structures for ACO 113

13. Chang, M.C.W., Tsao, L., Yang, S., Yang, Y., Shih, W., Chang, F., Chang, S., Fan,
K.: Design and fabrication of an artificial skin using pi-copper film. In: Proceedings
of the 20th IEEE International Conference on Micro Electro Mechanical Systems
(MEMS 2007), Kobe, Japan (2007)

14. Cordone, R., Maffioli, F.: Coloured Ant System and Local Search to Design Local
Telecommunication Networks. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith,
R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoWorkshop 2001.
LNCS, vol. 2037, pp. 60–69. Springer, Heidelberg (2001)

15. Dahiya, R., Metta, G., Valle, M., Sandini, G.: Tactile sensing: from humans to
humanoids. IEEE Transactions on Robotics 26(1), 1–20 (2010)

16. Denei, S., Mastrogiovanni, F., Cannata, G.: Parallel force-position control mediated
by tactile maps for robot contact tasks. In: Proceedings of the 2012 IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS 2012), Vilamoura,
Portugal (2012)

17. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Com-
puter Science 344, 243–278 (2005)

18. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Trans. on Evolutionary Computation 1(1),
53–66 (1997)

19. Duchaine, V., Lauzier, N., Baril, M., Lacasse, M., Gosselin, C.: A flexible robot
skin for safe physical human robot interaction. In: Proceedings of the 2009 IEEE
International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan
(2009)

20. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition problems.
In: Proceedings of the 1999 Annual ACM Symposium on Theory of Computing
(STOC 1999), Atlanta, GA, USA (1999)

21. Futai, N., Yasuda, T., Inaba, M., Shimoiama, I., Inoue, H.: A soft tactile sensor
with films of lc resonant traps. In: Proceedings of the 1999 IEEE International
Conference on Advanced Robotics (ICAR 1999), Tokio, Japan (1999)

22. Goger, D., Worn, H.: A highly versatile and robust tactile sensing system. In:
Proceedings of the 2007 IEEE Conference on Sensors (SENSORS 2007), Atlanta,
GA, USA (2007)

23. Gupta, A., Lafferty, J., Liu, H., Wasserman, L., Xiu, M.: Forest density estimation,
Tech. rep., Carnegie Mellon University (2010)

24. Hakozaki, M., Oasa, H., Shinoda, H.: Telemetric robot skin. In: Proceedings of the
1999 IEEE International Conference on Robotics and Automation (ICRA 1999),
Detroit, Michigan, USA (1999)

25. Hakozaki, M., Shinoda, H.: Digital tactile sensing elements communicating through
conducting skin layers. In: Proceedings of the 2002 IEEE International Conference
on Robotics and Automation (ICRA 2002), Washington, DC (2002)

26. Hoshi, T., Shinoda, H.: A large area robot skin based on cell-bridge system. In:
Proceedings of the 2006 IEEE Conference on Sensors (SENSORS 2006), Daegu,
Korea (2006a)

27. Hoshi, T., Shinoda, H.: A sensitive skin based on touch-area-evaluating tactile ele-
ments. In: Proceedings of the 2006 IEEE Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems, Alexandria, Virginia, USA (2006b)

28. Hwang, E., Seo, J., Kim, Y.: A polymer-based flexible tactile sensor for both normal
and shear load detection and its application to robotics. Journal of Microelectrome-
chanical Systems 16(3), 556–564 (2007)

29. Imielinska, C., Kalantari, B., Khachiyan, L.: A greedy heuristic for a minimum-
weight forest problem. Operations Research Letters 14(2), 65–71 (1993)

114 D. Anghinolfi et al.

30. Jockursh, J., Walter, J., Ritter, H.: A tactile sensor system for a three fingered
robot manipulator. In: Proceedings of the 1997 IEEE International Conference on
Robotics and Automation (ICRA 1997), Albuquerque, New Mexico, USA (1997)

31. Lacasse, M., Duchaine, V., Gosselin, C.: Characterization of the electrical resis-
tance of carbon-black-filled silicone: Application to a flexible and stretchable robot
skin. In: Proceedings of the 2010 IEEE International Conference on Robotics and
Automation (ICRA 2010), Anchorage, Alaska (2010)

32. Lazzarini, R., Magni, R., Dario, P.: A tactile array sensor layered in an artificial
skin. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 1995), Pittsburg, PA, USA (1995)

33. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7, 326–329 (1960)

34. Mittendorfer, P., Cheng, G.: Humanoid multimodal tactile-sensing modules. IEEE
Transactions on Robotics 27(3), 401–410 (2011)

35. Monnot, J., Toulouse, S.: The path partition problem and related problems in
bipartite graphs. Operations Research Letters 35(5), 677–684 (2007)

36. Nagakubo, A., Alirezarei, H., Kuniyoshi, Y.: A deformable and deformation sen-
sitive tactile distribution sensor. In: Proceedings of the 2007 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2007), Sanya, China (2007)

37. Nattero, C., Anghinolfi, D., Paolucci, M., Cannata, G., Mastrogiovanni, F.: Exper-
imental analysis of different pheromone structures in ant colony optimization for
robotic skin design. In: Proceedings of the 2012 International Federated Conference
on Computer Science and Information Systems (FedCSIS 2012), Wrocland, Poland
(2012)

38. Nilsson, M.: Tactile sensing with minimal wiring complexity. In: Proceedings of the
1999 IEEE International Conference on Robotics and Automation (ICRA 1999),
Detroit, Michigan, USA (1999)

39. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Upper Saddle River (1982)

40. Schaeffer, S.: Graph clustering. Cluster Science Review 1, 27–64 (2007)
41. Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G.: Meth-

ods and technologies for the implementation of large-scale robot tactile sensors.
IEEE Transactions on Robotics 27(3), 389–400 (2011)

42. Shimojo, M.: Spatial filtering characteristic of elastic cover for tactile sensor. In:
Proceedings of the 1994 IEEE International Conference on Robotics and Automa-
tion (ICRA1993), San Diego, CA, USA (1994)

43. Shimojo, M., Araki, T., Ming, A., Ishikawa, M.: A high speed mesh of tactile
sensors fitting arbitrary surfaces. IEEE Sensors Journal 10(4), 822–831 (2010)

44. Shinoda, H., Oasa, H.: Wireless tactile sensing element using stress-sensitive res-
onator. IEEE/ASME Transactions on Mechatronics 5(3), 258–266 (2000)

45. Stützle, T., Hoos, H.: Max-min ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

46. Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity con-
straints. In: Proceedings of the 2005 International Conference on Knowledge Dis-
covery and Data Mining (KDD 2005), Chicago, Illinois, USA (2005)

47. Youssefi, S., Denei, S., Mastrogiovanni, F., Cannata, G.: A middleware for whole
body skin-like tactile systems. In: Proceedings of the 2011 IEEE-RAS International
Conference on Humanoid Robotics (Humanoids 2011), Bled, Slovenia (2011)

Homogeneous Non Idling Problems:

Models and Algorithms

Alain Quilliot1, Philippe Chretienne2, and Benoit Bernay1

1 LIMOS, UMR CNRS 6158, Bat. ISIMA, Universit BLAISE PASCAL,
Campus des Czeaux, BP 125, 63173 AUBIERE, France

alain.quilliot@isima.fr
2 LIP6, Universit PARIS VI, Place JUSSIEU, 75005, PARIS, France

Abstract. This paper is about multi-processor scheduling with non
idling constraints, i.e. constraints which forbid interruption in the use
of the processors. We first reformulate the problem, while using a notion
of pyramidal shape, and next apply matching techniques in order to get
a min-max feasibility characterization criterion, which allows us to de-
rive a polynomial algorithm for the related existence problem and for
the Makespan Minimization related problem. The last part of the paper
is devoted to the Linear Cost Minimization of multiprocessor scheduling
with non idling constraints, which we handle through linear model and
a heuristic Lagrangean decomposition approach, and involves numerical
experiments.

Keywords: Multiprocessor Scheduling, Matching Theory.

1 Introduction

Idling scheduling means that a machine waits between the completion of a job
and the start of the next job. Moreover, it is well-known that such waiting
delays are often necessary to get optimality, whatever be the related performance
criterion. This is the key feature which explains why list algorithms, which do not
allow a machine to wait for a more urgent job, do not generally yield optimal
schedules. However, it may happen that in some applications such that those
described in [5], the cost of making a running machine stop and restart later is
so high that a non idling constraint is put on the machine so that only schedules
without any intermediate delays are accepted. For instance, if the machine is an
oven which must heat different and non compatible pieces of work at a given high
temperature, keeping the required temperature of the oven while it is empty may
clearly become too costly. Problems concerning power management policies may
also yields similar constraints [6], where for example each idling period has a cost
and the total cost has to be minimized [1]. Note that the non idling constraint
will not necessarily ensure full machine utilization but will remove the cost of
machine re-starts, maybe at the price of processing the jobs later.

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 115–134.
DOI: 10.1007/978-3-319-00410-5_7 c© Springer International Publishing Switzerland 2013

116 A. Quilliot, P. Chretienne, and B. Bernay

2 Notations, Problem Definition and Reformulation

2.1 Main Notations: Time-Units and Intervals

We consider the discrete time space N = {0, ..,+}, each element being a time-
unit. A finite subset Ω of N is an interval if it is made of consecutive time-units.
The smallest (largest) time-unit of an interval Ω is denoted min(Ω)(max(Ω)).
If p and q are two distinct natural numbers, the interval whose bounds are p
and q is denoted by I(p, q) (note that we may have p < q or q < p). Interval Ω2

is said to dominate interval Ω1 if max(Ω1) + 1 < min(Ω2): such a situation is
denoted by Ω1Dom Ω2. If Ω1Dom Ω2, then we denote by Mid(Ω1, Ω2) the (non
empty) interval max(Ω1) + 1, ..,min(Ω2)− 1. We say that two intervals and are
connected if their union is an interval.

2.2 Main Notations: Time-Units and Intervals

We now suppose that we are given a set J = {J1, .., Jn} of n unit-time jobs that
are to be processed on a set M = {M1, ..,Mm} of m identical machines. Job
Ji must be executed inside a given time-window F (i) = {ri, .., di} which is an
interval. It will be convenient to denote rmin (respectively dmax) the smallest ri
(respectively the smallest di) and by H the interval {rmin, .., dmax}. The jobs are
also constrained by a weak precedence relation denoted by << where Ji << Jj
means that Jj must not be performed before Ji. Jobs are further constrained by
the so-called homogeneous non-idling constraint (HNI in short) which imposes
that, for any subset M of M, the time units at which the machines of M are
busy define an interval. Then a schedule of the job set M is a pair (T, μ), where
T and μ are two functions, which assign, to any job Ji, respectively a time-unit
T(i) and a machine μ(i). The schedule (T,m) is said to be feasible if:

– For any job Ji, T (i) ∈ F (i);
– For any pair of jobs Ji, Jj , such that Ji << Ji, we have T (i)T (j);
– For any pair of jobs Ji, Jj , we have either T (i)T (j) or μ(i)μ(j);
– The HNI condition is satisfied: for any subset M of M , the set t ∈ N , such

that there exist i = 1..n, with T (i) = t and T (i) ∈ M is an interval.

For any such a schedule (T, μ), we define the active time-unit set of the function
T as the image set of T , that means as the subset ACT(T) of N defined by:
ACT (T) = {t ∈ N such that there exists at least some index value i = 1..n,
with T (i) = t}.

Then we define the related Feasibility Homogeneous Non-Idling Scheduling
Problem NON-IDLE0 = (P,HNI|pi = 1, ri, di, preceq|−) as the problem which
consists in deciding whether the given instance (J, F,<<,m) admits at least one
feasible schedule. If the answer is yes, we say that this instance is feasible.

It must be pointed out that the precedence relation preceq which we handle
here has not the same meaning as the classical one, since when we set Ji << Ji
, we allow Ji and Jj to be processed at the same time-unit. Clearly, due to the
machine constraint, there is no difference when m = 1.

Homogeneous Non Idling Problems: Models and Algorithms 117

It is also of interest to notice that the problem (P,HNI|pi =
1, ri, di, preceq|−), where prec is the usual precedence relation, is NP-Complete,
since the NP-Complete (P |pi = 1, prec|Cmaxd), polynomially reduces to the
problem (P,HNI|pi = 1, ri, di, preceq|−), by adding (mdn) filling jobs and set-
ting ri = 1 and di = d for all the jobs.

2.3 A Reformulation through Pyramidal Shape Functions

Let I = (J, F,<<,m) be an instance of NON-IDLE0 and (T, μ) some schedule
of I. If t ∈ N, we denote by nT (t) = Card(T−1(t)) the number of jobs which
are scheduled at time-unit t according to T , and we call this function the re-
source profile function of the schedule. We say that this function t → nT (t)
has a pyramidal shape if for any time units t, t, t such that t < t < t, we have
Inf(nT (t), nT (t))nT (t) (see fig. 1).

Fig. 1. A pyramidal function nT (t)

Then we say that (T, μ) is a flat schedule of the instance I, if for any time
unit t such that nT (t) > 0, we have μ(T−1) = {M1, ..,MnT (t)}. Clearly any
feasible schedule (T, μ) can be turned, through reassignment of the jobs onto
the machines, into a flat feasible schedule, and, in the case of a flat schedule,
the knowledge of T determines μ. So, the following statement reformulates the
NON-IDLE0 as a problem which only involves the time function T , subject to
some pyramidal shape property related to the profile function t → nT (t).

Theorem 1: Solving the NON-IDLE0 problem in the case of instance I =
(J, F,<<,m) only means computing the function T , which with any job Ji asso-
ciates some time-unit T (i) in such a way that :

1. For any job Ji, T (i) ∈ F (i);

118 A. Quilliot, P. Chretienne, and B. Bernay

2. For any pair of jobs Ji, Jj, such that Ji << Jj , we have T (i)T (j);

3. For any time-unit t, nT (t) = Card(T−1(t))m = the number of machines ;

4. The function t → nT (t) has a pyramidal shape.

A function T which satisfies 1 and 3 above is called a m-matching. In case
it also satisfies 2, it is called a pre-schedule. In case it satisfies all conditions
1..4, we shall also call T a feasible schedule of the NON-IDLE0 of the instance
I = (J, F,<<,m).

2.4 Makespan Minimization Homogenous Non-idling Scheduling
Problem

Let I = (J, F,<<,m) as above, and let T be some feasible schedule for I. The
Makespan of T is the cardinality of its active time-unit set ACT (T). Then the
Makespan Minimization Homogeneous Non-Idling Problem NON-IDLE1 comes
as follows: NON-IDLE1: Compute a feasible schedule T of I = (J, F,<<,m) with
a minimal makespan Card(ACT(T)). Notice that, while setting this problem, we
do not require T to start at instant 0.

3 Structural Results for the NON-IDLE0 Feasibility
Problem

Before studying the problem NON-IDLE0, we need some additional concepts.

3.1 T-Block, k-holes, k-Schedules

Let T some pre-schedule of the NON-IDLE0 instance I = (J, F,<<,m). We
denote by s(T) (respectively e(T)) the smallest (respectively largest) time-unit
such that at least one job is performed at time-unit t. We say that an intervalΩ ⊆
ACT (T) = {s(T), .., e(T)} is a T −block if every job Ji which is scheduled inside
Ω is such that F (i) ⊆ Ω. A time-unit t is then a k− hole for T , where k is some
positive number, if there exists time-units t, t, t such that:

– t < t < t;

– Inf(nT (t), nT (t)) > nT (t) = k (in the following figure 2, timeunit 6 is a
2-hole and time-unit 7 is a 1-hole).

Clearly, T is a feasible schedule if only if, for any k in {0..m − 1}, it has no
k − hole. This leads us to introduce the intermediate notion of k − schedule:
the pre-schedule T is a k − schedule if T has no l − hole for l = 0..k − 1, or,
equivalently, if the function t → Inf(k, nT (t)) has a pyramidal shape. The time
diagram of Figure 2 represents a pre-schedule which is a 1-schedule, but not
a 2-schedule since time-unit 7 is a 1-hole. Obviously, a feasible schedule is a
m− schedule and conversely.

Homogeneous Non Idling Problems: Models and Algorithms 119

Fig. 2. k-holes

3.2 Time-Windows Stability

The family of time-windows F (i), i = 1..n, is stable with respect to the prece-
dence relation << if, for any pair of jobs Ji, Jj such that Ji << Jj , we have: rirj
and didj . The following result, which is almost obvious, shows that we may as-
sume, without any loss of generality, that our input family of time windows
is stable with respect to the precedence relation <<:

Proposition 1: Let I = (J, F,<<,m) be an instance of the NON-IDLE0 prob-
lem. There exists an instance I = (J, F ,<<,m), which may be obtained from
I through constraint propagation, admits the same set of feasible solution as f ,
and is such that: F is stable with respect to << and, for any I, F (i) ⊆ F (i).

Since the goal of this paper is mainly to provide a characterization of the feasible
instances of the NON-IDLE0 problem, together with recognition and makespan
minimization algorithms, we proceed in several steps. First, we use the Konig-
Hall Theorem in order to characterize the instances which admits am−matching.
Then, we show that any m−matching may be turned into a pre-schedule. We
keep on by identifying a structural property which is going to make possible
turning this pre-schedule into a feasible schedule. Finally, we translate this math-
ematical characterization into a recognition algorithm.

3.3 Existence of a m-Matching and of Pre-schedule

Let I = (J, F,<<,m) some NON-IDLE0 instance. For any interval Ω, we denote
by J(Ω) the set of all jobs Ji, such that F (i) ⊆ Ω. Then one may derive in a
straightforward way from classical Konig-Hall Theorem related to the existence
of generalized matching in bipartite graphs that:

120 A. Quilliot, P. Chretienne, and B. Bernay

Proposition 2: The instance (J, F,<<,m) admits a m−matching if and only
if, for any interval Ω of N, we have Card(J(Ω))m.Card(Ω).

The next property is mainly due to our assumption about the stability of F . It
will be essential for us when we deal with the precedence relation <<.

Proposition 3: The instance (J, F,<<,m) admits a pre-schedule if an only if
it admits a m−matching .

Principle of the Proof: starting from a m − matchingT , one iteratively ex-
changes T (i), T (j) values in order to make T compatible with the << precedence
relation.

3.4 Existence of a Feasible Schedule

Let I = (J, F,<<,m) our NON-IDLE0 instance. If the condition provided by
Proposition 3 is satisfied, we easily become able to produce some pre-schedule
T . However, such a pre-schedule may have k-holes and thus may not fit the
pyramidal property required for the feasible schedules. This section will provide
an additional necessary and sufficient condition so that an instance I = (J, F,<<
,m) admits some feasible schedule. Before deriving this condition, we first give
two simple lower bound properties which must be met by such a feasible schedule
and then introduce the notion of propagation path which will prove to be a quite
useful tool either to transform a pre-schedule into a feasible schedule or to prove
the no existence of such a feasible schedule.

LetΩ be an interval ofN.We denote by Int(Ω) the set of intervals which are con-
tained into Ω and by λ(Ω) the integer value Supω∈Int(Ω)�Card(J(ω))/Card(ω)�.
Then the meaning of those definitions comes in an immediate way through the al-
most trivial following lemma:

Lemma 1: Let T be a m − matching of I = (J, F,<<,m) and let Ω be an
interval of N. There must exist at least one time-unit in Ω such that at least
λ(Ω) machines are busy.

We understand the main role of λ(Ω) is to provide us with a lower bound of
the number of machines which are going to be necessary if we want to succeed
in scheduling the jobs of J(Ω). Notice that if Ω is a T − block, then we have
λ(Ω)�

∑
t∈Ω nT (t)/Card(Ω)�, since, in this case, J(Ω) is exactly the set of the

jobs which are scheduled inside Ω.
Let us assume now thatΩ1 andΩ2 are two intervals of N such that Ω1DomΩ2.

If we denote by μ(Ω1, Ω2) the value Card(Mid(Ω1, Ω2)).Inf(λ(Ω1), λ(Ω2)), then
we easily see that we get:

Lemma 2: In any feasible schedule of I = (J, F,<<,m), at least μ(Ω1, Ω2) jobs
are scheduled in the interval Mid(Ω1, Ω2) .

Homogeneous Non Idling Problems: Models and Algorithms 121

Also, the following two properties, which are related to T − blocks, will be useful
in order to derive the main characterization result:

Lemma 3: Let T be some m − matching of I = (J, F,<<,m) and let Ω1

and Ω2 be two connected T − blocks. Then Ω1 ∪Ω2 is a T − block and λ(Ω1 ∪
Ω2)Sup(λ(Ω1), λ(Ω2)).

Lemma 4: Let T be a m−matching of I = (J, F,<<,m), let Ω1 be a T−block,
and let Ω1 be an interval such that Ω1 ∩ Ω2 is empty. If, for any pair (u, t) in
Ω1 ∗Ω2, nT (u)nT (t) (respectively nT (u) > nT (t)), then λ(Ω1)λ(Ω2) (respectively
λ(Ω1) > λ(Ω2)).

Given a m − matching T , we now define what is a propagation path of T . We
first define the propagation graph G = (H,E(T)) as the labeled directed graph
whose node set is the interval H =rmin, .., rmax of the possible values for T , and
the arc set E(T) is defined by:

– [t, t] ∈ E(T)) if tt and there is at least one job Ji which is scheduled at t and
which is such that t ∈ F (i).

– If job Ji is scheduled at t and t ∈ F (i), then Ji is said to be a label of the
arc [t, t].

Then, a propagation path of T is an elementary path γ = (t0, .., tk) of G(T). The
subpath of γ from ti to tj will be denoted by γ(ti, tj). The length L(γ) of γ is
the value k+1 (that means the number of vertices of γ), and the extended length
L∗(γ) of γ is the sum

∑
s=1..k |tsts−1|.

This propagation path γ is monotone if the sequence (t0, .., tk) is either de-
creasing or increasing. It is no − cross if for any r ∈ 1..k, we have either
tr > Supi=1..r−1ti or tr < Infi=1..r−1ti. Clearly, the no-cross property may
be viewed as a weak version of monotonicity. It is labeled when all its arcs are
assigned with labels, that means when, with any arc in γ, we decided to associate
some job Ji whose value T (i) is likely to be modified through shift propagation
along γ.

The path γ is said to be fitted if it is labeled and satisfies Card(T−1(tk)) < m.
Of course, we understand that if γ = (t0, .., tk) is a propagation path of G(T),
which is fitted and provided with the labeling σ = (Ji(0), .., Ji(k − 1)), then we
become able to modify the m − matching T and get another m − matching
T = Trans(T, γ, σ) by setting T (Ji(p)) = tp+1 for any p = 0, .., k − 1.

Let T be a pre-schedule and let γ = (t0, .., tk) be a propagation path of the
graphG(T). If γ has at least one labeling σ such that T = Trans(T, γ, σ) is a pre-
schedule, then γ is compatible with the precedence relation<< (<< −compatible
in short).

The two following lemmas are fundamental tools, which show that no-cross
propagation paths allow to transform a pre-schedule into another one:

Lemma 5: Let T be a pre-schedule and let us assume that γ = (t0, .., tk) is a
propagation path of G(T) from t0 = u to tk = v. Then there exists a no-cross
propagation path from u to v in G(T).

122 A. Quilliot, P. Chretienne, and B. Bernay

Proof: Assume that γ is not no-cross and let tr(2rq) be the first node of γ such
that mini=1..r−1ti < tr < maxi=1..r−1ti. From the definition of tr, we know that
there is a smallest index s(0sr − 2) such that tr belongs to I(ts, ts+1). Thus
[ts, tr] is an arc of G(T) and the concatenation γ(t0, ts).[ts, tr] is no-cross. The
above transformation may then be iterated while the current propagation path
is not no-cross.

Lemma 6: Let T be a pre-schedule and let us assume that γ = (t0, .., tk) is
a propagation path of G(T) from t0 = u to tk = v, where Card(T−1(tk)) < m.
Then there exists a no-cross and << −compatible propagation path from u to v
in G(T).

Sketch of the Proof. Define the extended length of such a path γ in G(T) as
the sum

∑
i=1..k |titi−1|, and consider a propagation path γ from u to v with

minimal extended length and whose length is maximal among the paths with
minimal extended length. Assume also that γ is not << −compatible and let
σ = (Ji(0), .., Ji(k−1)) be a labeling of γ. The jobs of the labeling are called the
moving jobs, while the other jobs are called the static jobs. Since T is a pre-
schedule and γ is not << −compatible, << is violated in T = Trans(T, γ, σ)
either because an inversion has been created between a static job J scheduled
at t and a moving job Ji(s) scheduled at ts+1 or between two moving jobs Ji(s)
and Ji(r) respectively scheduled at time ts+1 and tr+1. In both case, one checks
that it is possible to rearrange path γ in order to get a contradiction on the
minimality of γ.

Let T be a pre-schedule and let u be a time-unit such that nT (u) > 0. The
next lemma, whose proof is essentially routine, provides us with an important
property of the set AT (u) of the time-units that may be reached from u by the
propagation paths of G(T).

Lemma 7: The set AT (u) is a T-block.

We are now able to describe and state the structural condition which must be
met by an instance I = (J, F,<<,m) of the NON-IDLE0 problem so that it
admits some feasible schedule.

Theorem 2: The instance I = (J, F,<<,m) of NON-IDLE0 is feasible if and
only if the following two conditions are satisfied:

1. For any interval Ω of N, Card(J(Ω))m.Card(Ω).
2. For any sequence (Ω1, ..Ωp) of intervals of N, such that Ω1DomDomΩp, we

have: Card(J − ∪s=1..pJ(Ωs))
∑

s=1..p−1 μ(Ωs, Ωs+1).

Sketch of the Proof. The only if part of the proof is a straightforward conse-
quence of propositions 2 and 4 and lemmas 1, 2, 3

Homogeneous Non Idling Problems: Models and Algorithms 123

Before starting the proof of the part if, let us recall that, for any k = 1..m, a
pre-schedule T is a k − schedule if T has no l− hole for any l = 0..k− 1. So we
may adapt the definition of the quantity μ(Ω1, Ω2), where Ω1 and Ω2 are two
time intervals such that Ω1 Dom Ω2, to k−schedules by setting: μ∗(Ω1, Ω2, k) =
Card(Mid(Ω1, Ω2)).Inf(λ(Ω1), λ(Ω2), k). Then one easily checks:

Lemma 8: Let Ω1 and Ω2 be two time intervals such that Ω1 Dom Ω2. In any
k-schedule of I = (J, F,<<,m), at least μ∗(Ω1, Ω2, k) jobs are scheduled in the
interval Mid(Ω1, Ω2).

In order to prove the if part, we extend the statement of Theorem 2 to k −
schedules and prove it by induction on k. Using k − schedules allows us to
perform an inductive reasoning in order to prove Theorem 2. As a matter of
fact, what we have to do is to prove the following statement, which may be
viewed as an inductive extension of Theorem 2 to k − schedules :

Inductive Formulation of Theorem 2: The instance I = (J, F,<<,m) of
NON-IDLE0 admits at least one k − schedule if and only if the following two
conditions are satisfied:

1. For any interval Ω of N, Card(J(Ω))m.Card(Ω).
2. For any sequence (Ω1, ..Ωp) of intervals of N, such that Ω1DomDom Ωp,

we have: Card(J − ∪s=1..pJ(Ωs))
∑

s=1..p−1 μ
∗(Ωs, Ωs+1, k).

In order to prove this last statement, we proceed by induction on k. More pre-
cisely, we show that if an instance I = (J, F,<<,m) of the NON-IDLE0 problem
has at least a k−schedule and no (k+1)−schedule, then there exists a sequence
of intervals that does not satisfy condition 2 of the above statement. In order to
get such a sequence, we consider a k− schedule of I, which is doubly minimum
in the following sense:

– T has a minimum number of k − holes;
– the vector (NT (m), .., NT (1)), where NT (j) is the number of time-units t

such that nT (t) = j, is lexicographically minimum.

Thus, T may be viewed as the flattest k− schedule with a minimum number of
k − holes.

The graph of the piecewise constant function t → nT (t) may be decomposed
into:

– a left part, which is a climbing stair (increasing piecewise constant function)
for which we denote by CInf

p , 1pk + 1, the smallest time-unit at which the
stair height is at least equal to p;

– a right part, which is a descending stair (piecewise constant decreasing func-
tion) for which we denote by CSup

p , 1pk + 1, the largest time-unit at which
the stair height is at least equal to p;

– a medium part, which is made of the time-units u such that nT (u)k+1, and
which is such that at least one time-unit is a k − hole.

124 A. Quilliot, P. Chretienne, and B. Bernay

Fig. 3. t → nT (t) segmentation

From the minimality of T , we easily get that the propagation graph G(T) is such
that there is no propagation path:

– from t which satisfies nT (u)k + 2 to u which is a k − hole; (E1)
– from a time-unit CSup

p or CInf
p to a time-unit u which is a k − hole; (E2)

– from a time-unit CSup
p to a time-unit CSup

j + 1, 1j < p; (E3)

– from a time-unit CInf
p to a time-unit CInf

j + 1, 1j < p; (E4)

From what precedes, we deduce 3 families of intervals:

– the right family L1..Ll, which we get from the T −blocks AT (C
Sup
p), 1pk+1,

by merging those intervals which are connected. By using lemmas 7 and
8, we may check that, for any i = 1..l − 1:

∑
t∈Mid(Li,Li+1)

nT (t) =

λ(Li).Card(Mid(Li, Li+1))μ
∗(Li, Li+1, k + 1) ;

– the left family L∗
1..L

∗
h, which we get from the T − blocks AT (C

Inf
p), 1pk+1,

by merging those intervals which are connected. By using lemmas 7 and
8, we may check that, for any i = 1..h − 1:

∑
t∈Mid(L∗

i ,L
∗
i+1)

nT (t) =

λ(L∗
i).Card(Mid(L∗

i , L
∗
i+1))μ

∗(L∗
i , L

∗
i+1, k + 1) ;

– the medium family J1..Jq, which we get from the T − blocks AT (u), u such
that nT (u)k + 2, by merging those intervals which are connected. By using
lemmas 7 and 8, we check that, for any i = 1..l− 1:

∑
t∈Mid(Ji,Ji+1)

nT (t) =

λ(Ji).Card(Mid(Ji, Ji+1))μ
∗(Ji, Ji + 1, k + 1) ;

The key point is that, because of (E1, .., E4), those intervals define several
distinct connected blocks, with non empty space between them (we must find at

Fig. 4. t → nT (t) Decomposition

Homogeneous Non Idling Problems: Models and Algorithms 125

least the k-holes, which are going to separate those intervals. Still, since we may
have L∗

1 ∩ J1Nil or L1 ∩ JqNil, we merge once again the connected intervals of
those three families. Then we get a sequence of non connected intervals M1..Mr,
of disjoint T − blocks such that M1Dom..DomMr and that the number of jobs
which is to in ∪j=1..rJ(Mj) is not large enough to avoid the existence of a k−hole.
Then we conclude.

4 Polynomial Algorithms for NON-IDLE0 and
NON-IDLE1

4.1 A Polynomial Algorithm for the NON-IDLE0 Feasibility
Problem

The proof of Theorem 2 is not an algorithmic proof, since it involves an hypoth-
esis about doubly minimality which has no algorithmic interpretation. In this
section, we first show that a forbidden pattern of intervals may be derived from
any k− schedule which satisfies a weaker set of conditions than that of the dou-
bly minimal k − schedule T considered in the proof of Theorem 2. Its allow us
to turn this minimality condition into conditions which might be used as halting
test inside the while loop of a recog-nition algorithm. Then we derive from this a
polynomial algorithm which solves NON-IDLE0, and whose correctness mainly
relies on this set of sufficient conditions.

So, let T be a k− schedule and let U and V be two disjoint sets of time-units:
we denote by PP (U, V) the set of propagation paths of G(T) which start in U
and end into V . We denote by Hole(k) the set of time-units t which are k−holes,
and by Top(k) the set of time-units t which satisfies nT (u)k + 2. Then we may
state:

Theorem 3: Let I = (J, F,<<,m) be an instance of the NON-IDLE0 problem,
and let k be some number in 1, ..,m− 1. Let us assume that T is a k− schedule
of I such that the following conditions are satisfied:

1. T is not a (k + 1)− schedule;

2. PP (Top(k) ∪ {CInf
1 , .., CInf

k+1} ∪ {CSup
1 , .., CSup

k+1}), Hole(k)) is empty;

3. PP (Top(k), {CInf
1 − 1, .., CInf

k+1 − 1} ∪ {CSup
1 + 1, .., CSup

k+1 + 1}) is empty;

4. For j = 2..k+1, PP (CSup
j , CSup

j−1 + 1) is empty;

5. For j = 2..k+1, PP (CInf
j , CInf

j−1 − 1) is empty;

Then the instance I has no (k+1)-schedule.
This result yields following algorithm SEARCH-SCHEDULE(J, F,<<,m)

which solves theNON-IDLE0 problembyproviding, for any instance I = (J, F,<<
,m) either a feasible schedule of I or a k − schedule T , (with 0km − 1) of I

126 A. Quilliot, P. Chretienne, and B. Bernay

which satisfies the conditions 1..5 of the above statement. Notice that Hole(k),
Top(k),CSup

p , CInf
p denote here variables that contains the values associated with

the current k − schedule T .

Algorithm SEARCH-SCHEDULE (J, F,<<,m):

T ← Matching(J, F,m);
(*Computation of an initial m-matching,
through a standard matching procedure*)
If T does not exist (*Propositions 2 and 3*) then

SEARCH − SCHEDULE ← Fail
Else

T ← Pre − Schedule(J, F,m,<<, T);
(*Turn T into a pre-schedule through a
sequence of exchanges, according to proposition 3*)
k ← Supl=0..ml such that T is a l − schedule; Not Stop;
While k < m and Not Stop do

Try, according to this order, the existence of a propagation path γ in:

− PP (Top(k) ∪ {CInf
1 , .., CInf

k+1} ∪ {CSup
1 , .., CSup

k+1}, Hole(k));

− PP (Top(k), {CSup
1 + 1, .., CSup

k+1 + 1} ∪ {CInf
1 − 1, .., CInf

k+1 − 1});
− ∪j=2..k+1PP ({CSup

j , CInf
j }, {CInf

j−1 − 1, CSup
j−1 + 1});

If Failure(Try) (*Non existence of γ*) then Stop Else
Let σ be a label of γ; T ← Trans(T, γ, σ);

If k = m then SEARCH − SCHEDULE ← T
else SEARCH − SCHEDULE ← Fail;

Theorem 4: The above algorithm SEARCH-SCHEDULE solves the feasibility
NON-IDLE0 problem in polynomial time.

Sketch of the Proof: one follows the proof of Theorem 2, while replacing
the doubly minimality assumption by the conditions 1..5 of Theorem 3. As for
complexity, it is easy to check that the above algorithm is time polynomial if
the encoding size of a time-window F (i) is defined as being proportional to the
size of this time windows. But, in fact, it has to be related to the encoding size
of both numbers min(F (i)) and max(F (i)). Still, one easily checks that, once
an initial m−matching has been computed, time-windows may be restricted in
such a way that the size of their union be polynomially bounded by the number
n of jobs, and that provides us with the key argument for the time-polynomiality
of our algorithm.

4.2 A Polynomial Algorithm for the NON-IDLE1 Problem

Makespan minimization is contained into feasibility testing, and comes in a sim-
ple way through the following process:

Homogeneous Non Idling Problems: Models and Algorithms 127

Makespan-Min-No-Idle-Schedule Algorithm.

Input: the instance I = (J, F,<<,m)
Output: a no idle feasible schedule or a Failure signal;
Initialize T through the SEARCH-SCHEDULE procedure;
If Failure(Initialize) then Failure
Else

Not Stop;
While Not Stop do
Δ ← Makespan(T);
Let t1 and t2 respectively the smallest
and largest active time-units according to T ;
For any job Ji ∈ J , set FΔ(i) = F (i) ∩ {t1 + 1, t2};

T −Aux ← SEARCH − SCHEDULE(J, FΔ, <<,m);
If T −AuxFailure then T ← T −Aux
Else

For any job Ji ∈ J , set FΔ(i) = F (i) ∩ {t1, .., t2 − 1};
T −Aux ← SEARCH − SCHEDULE(J, FΔ, <<,m);
If T −AuxFailure then T ← T −Aux Else Stop.

Makespan-Min-No-Idle-Schedule ← T ;

Theorem 5: The above Makespan-Min-No-Idle-Schedule algorithm solves the
Makepan Minimization NON-IDLE1 Problem in Polynomial Time.

Sketch of the Proof: the basic point here is that if T is some feasible schedule
with active time-unit set ACT (T) = [a, b] , and if there exists a feasible schedule
T with smaller makespan than T , then T may be computed inside the time-
window [a, b].

5 Minimal Cost Homogeneous Non Idling Scheduling
Problem

An other natural optimization formulation of the previously studied NON −
IDLE0 Problem comes from the hypothesis that the performance criterion in-
volves specific running costs, which depend on both jobs and time units. In
order to deal with this problem, we suppose that we are provided with an in-
stance I = (J, F,<<,m) of the NON-IDLE0 problem, that the time space N is
described in a explicit way as a finite discrete set N = 1..TS, and that we are
also provided with costs Ci,t, i = 1..n, t ∈ N, whose meaning is: performing job
Ji at time t induces a cost equal to Ci,t. We also suppose that the time-windows
F (i), i = 1..n, are stable with respect to the << precedence relation (see Section
III.B). Then, the Minimal Cost Homogeneous Non-Idling Scheduling Problem
comes as follows:

NON-IDLEc: Compute a feasible schedule T of I = (J, F,<<,m) with a
minimal cost

∑
i T (i).Ci,t

128 A. Quilliot, P. Chretienne, and B. Bernay

5.1 A Linear Formulation of the NON-IDLEc Problem

The rewriting scheme of Section II may be used in order express the NON-IDLE0

while using LIP (Linear Integer Programming) formulation as follows:

– The main vector is clearly a 0, 1 − vector z, with indexation on {1..n}.N ,
whose meaning is, for every pair (i, t) such that t ∈ F (i) : zi,t = 1 if job Ji
is performed at instant t = 1..TS;

– In order to use the reformulation scheme of Theorem 1, we also consider a
load integral vector y = (yt, t ∈ N)0, whose meaning is that exactly yt jobs
are performed at instant t.

We derive from Theorem 1 that Vectors z and y define a feasible solution of
NON-IDLE0 if:

– For any job Ji,
∑

t zi,t = 1; (E5)
– For any instant t ∈ N,

∑
x zi,t = ytm; (E6)

– For any pair of jobs Ji,Jj such that Ji << Jj ,
∑

t t.zi,t
∑

t t.zj,t; (E7)
– The function t → yt has a pyramidal shape. (Pyramidal Shape Constraint)

In order to express in a linear way the Pyramidal Shape constraint, we introduce
2 auxiliary vectors {0, 1}− vector V = (Vt, t ∈ N) and W = (Wt, t ∈ N), whose
meaning is:

– If Vt = 1 then y is non decreasing in t, that means yt+1yt;
– If Wt = 0 then y is no increasing in t, that means ytyt+1.

Then the Pyramidal Constraint becomes:
– For any t = 0..TS − 1, Vt − (yt+1 − yt)1 and Wt − (yt+1 − yt)0; (E8)
– For any t = 0..TS − 1, Vt +Wt = 1; (E9)
– For any t = 0..TS − 1, VtVt+1. (E10)

The last one of the 3 constraints above (constraint (E10)) ensures that the
function t → Vt is non increasing, which means that it starts with values equal to
1 (y is non decreasing in t) and next turns to 0 values (y becomes non increasing).

Then the global linear program of the Non Idling Problem with Minimal Cost
NON-IDLEc comes as follows:

NON-IDLEc Linear Program :
{ Unknown vectors:

– z = (zi,t, i ∈ 1..n, t ∈N such that t ∈ F (i)) with {0, 1} values ;
– y = (yt, t ∈ N)0, Integral;
– V = (Vt, t ∈ N) and W = (Vt, t ∈ T) with {0, 1} values ;
Constraints :

– For any job Ji,
∑

t zi,t = 1;
– For any instant t in N,

∑
i zi,t = ytm;

– For any pair of jobs Ji, Jj such that Ji << Jj ,
∑

t t.zi,t
∑

t t.zj,t;
– For any t = 0..TS − 1, Vt − (yt+1 − yt)1 and Wt − (yt+1 − yt)0;
– For any t = 0..TS − 1, Vt +Wt = 1;

Homogeneous Non Idling Problems: Models and Algorithms 129

– For any t = 0..TS − 1, VtVt+1.
Minimize:

∑
i,t Ci,t.zi,t }

The algorithms which we are now going to propose in order to deal with NON-
IDLEc will use part of this LIP formulation. More specifically, we shall take
advantage from the following property:

Theorem 6: The vertices of the Polyhedron which is induced by the constraints
(E5) and (E6) are integral.

Sketch of the proof: We know that, if y is fixed, the polyhedron P(y) induced
by the constraints (E5) and (E6) and which is related to the vector z has integral
vertices (total unimodularity of bipartite graph edge/vertex incidence matrices).
Moreover, the constraints on y which ensure the feasibility of the constraints
(E5) and (E6) may be written, as a consequence of Duality: (E11)

–
∑

t, yt = n;

– For any t, ytm;

– For any interval Ω of N,
∑

t∈Ω ytCard({i = 1..n, such that F (i) ⊆ Ω}).

Any vertex of the polyhedron which is defined by (E11) is integral (total unimodu-
larity of the Interval or consecutive one matrices). Then it only simple computa-
tion to check that if (z, y) is a feasible rational solution of (E5), (E6), (we relax
the integrality constraints on z and y) then:

– y satisfies (E11), and so is a convex combination of vertices v1..vk of the
polyhedron defined by (E11);

– consequently, z may be decomposed into the same convex combination of
rational solutions z(v1)..z(vk) of P (v1)..P (vk);

– by transitivity, one gets that (z, y) may be decomposed as a convex combi-
nation of integral solutions of (P5), (P6) and this yields the result.

Before starting with the algorithms, we may notice that:

Remark 1: the case when the cost coefficients Ci,t, i = 1..n, t ∈ N. are mono-
tonic.

We say that the cost coefficients Ci,t, i = 1..n, t ∈ N. are monotonic if, for
every pair Ji, Jj of jobs such that Ji << Jj , and every time unit pair t, t such
that t < t, we have: Ci,t + Cj,tCi,t + Cj,t . (E12)

If the cost vector C is monotonic, then we see that we may relax the (E7)
constraint from the above linear program without deteriorating the solution,
since, in case the vector z involves any pair Ji, Jj such that:

– Ji << Jj ;

– Ji is done after Ji according to z;

130 A. Quilliot, P. Chretienne, and B. Bernay

we only have to use the stability of the time-windows F (i), i = 1..n, with respect
to the << precedence relation and to switch Ji and Jj inside the schedule in
order to make the precedence constraint related to Ji and Jj satisfied, while this
operation does not deteriorate the cost of the schedule (because of (E11)). We
deduce from Theorem 6 that, in such a case, relaxing the Pyramidal Shape prop-
erty turns our problem into a linear program which may be solved by application
of the Simplex algorithm.

Remark 2: Eliminating the V, W vectors.
The pyramidal shape property means that there exists t0 such that:

– yt is non decreasing on {1..t01};
– yt is non increasing on {t0..TS − 1}. So we may define the parametrized

restriction NON-IDLEc(t0) of the NON-IDLEc Program by setting:

NON-IDLEc(t0) Linear Program:
{ Unknown vectors:

– z = (zi,t, i ∈ 1..n, t ∈ N) such that t ∈ F (i), with {0, 1} values ;
– y = (yt, t ∈ N)0, Integral;
Constraints :

– For any job Ji,
∑

t zi,t = 1;
– For any instant t in N,

∑
i zi,t = ytm;

– For any pair of jobs Ji, Jj such that Ji << Jj ,
∑

t t.zi,t
∑

t t.zj,t;
– For any t in {1..t01}, ytyt+1; (E13)
– For any t in {t0..TS − 1}, ytyt+1; (E14)

Minimize :
∑

i,t Ci,t.zi,t}

Then solving NON-IDLEc means scanning N, solving NON-IDLEc(t0) for every
value t0 in N, and picking up the best one, according to the following general
scheme:

Algorithmic Scheme NON-IDLEc :
Input: the NON-IDLE0 instance I = (J, F,<<,m) and the cost vector C;
Output: the vectors z and y;
Main Loop:
For t0 = 1..TS − 1,
Solve NON-IDLEc(t0) and
compute the related optimal solutions z(t0), y(t0) ; (E15)
(z, y) ← best pair (z(t0), y(t0)), t0 = 1..TS1;
Denote by Top the related t0 value;

5.2 A Lagrangean Scheme for the NON-IDLEc Problem

We are going to deal with the NON-IDLEc Problem while using a heuristic ap-
proach and using both previous remarks. That means that (because of Remark

Homogeneous Non Idling Problems: Models and Algorithms 131

2) we are going to deal with NON-IDLEc through the generic NON-IDLEc algo-
rithmic scheme described above, and focus on the Solve instruction (E13), that
means on the resolution of NON-IDLEc(t0). And, because of Remark 1, we are
going to deal with the NON-IDLEc(t0) problem through Lagrangean Relaxation
of the (E13, E14 and E7) constraints.

Relaxing (E13), (E14) and (E7) means introducing the Lagrangean multipliers
λ =(λij , i, j such that Ji << Jj)0, μ = (μt, t = 1..t01))0, ν = (νt, t = t0..TS1))0,
and defining the related Lagrangean quantity:

L(t0, z, y, λ, μ, ν) =
∑

i,t ci,t.zx,t−
∑

i,j such that Ji<<Jj
λij .(

∑
t t.zj,t−

∑
t t.zi,t)−∑

t=1..t0−1 μt.(yt+1 − yt)−
∑

t=t0..TS−1 νt.(yt − yt+1).

Then the Lagrangean relaxation RL-NON-IDLEc(t0, λ, μ, ν) of NON-IDLEc(t0)
comes as follows:

RL-NON-IDLEc(t0, λ, μ, ν) Linear Program :
{ Unknown vectors:

– z =(zi,t, i ∈ X, t = 1..TS, such that t ∈ F (i)) with {0, 1} values ;
– y = (yt, t ∈ N)0, Integral;
Constraints :

– For any job Ji,
∑

t zi,t = 1;
– For any instant t,

∑
i zi,t = ytm;

Minimize: L(t0, z, y, λ, μ, ν) }

Because Theorem 6, relaxing the Integrality constraint on z and y and
applying the Simplex algorithm to the resulting linear program RL-NON-
IDLEc(t0, λ, μ, ν)

∗ yields integral solutions and an optimal value VAL(t0, λ, μ, ν)
which is the optimal value of RL-NON-IDLEc(t0, λ, μ, ν). So, we may apply
the standard Lagrangean Relaxation scheme and compute Lag-VAL(t0) =
Supλ,μ,ν0V AL(t0, λ, μ, ν), together with the related Lagrangean multipliers
λ∗, μ∗, ν∗. As a matter of fact, Duality Theory tells us that, in order to do it, we
only need to solve the Linear relaxation (relaxation of the integrality constraints
on z and y) RL-NON-IDLEc(t0, λ, μ, ν)

∗ of the program NON-IDLEc(t0), whose
optimal value is exactly equal to Lag-VAL(t0) and consider λ∗, μ∗, ν∗ as being
equal to the components of the related dual vectors which are respectively as-
sociated with (E13), (E14) and (E7). Then the general resolution scheme for
NON-IDLEc(t0) becomes:

Solve- NON-IDLEc(t0) Procedure:
Solve (Simplex Algorithm) the Linear relaxation
RL-NON-IDLEc(t0, λ, μ, ν)

∗ of NON-IDLEc(t0);
Let λ∗, μ∗, ν∗ be the components of the related dual vector which are
respectively associated with (E13), (E14) and (E7);
Let z and y be the 2 resulting integral vectors;
Turn (Projection scheme) z and y into a feasible solution of
NON-IDLEc(t0); (E16)

132 A. Quilliot, P. Chretienne, and B. Bernay

5.3 Instruction (E16): The Projection Scheme

It proceeds in 2 steps.

Projection Procedure:
Input: z and y obtained through resolution of the Linear relaxation RL-NON-
IDLEc(t0, λ, μ, ν)

∗ of NON-IDLEc(t0), which may violate precedence constraints
and the Pyramidal Shape constraint;
Output: z and y which are feasible in the sense of the NON-IDLE0 problem;

1 th Step: we make the (E7) constraint become satisfied by switching pairs Ji, Jj
such that:

– Ji << Jj ;
– Ji is done after Jj according to z;

We do it as follows:
Not Stop;
While Not Stop do
Pick up Ji, minimal for the <<relation, such that there exists Jj such that:

– Ji << Jj ;
– Ji is done at time t and Ji is done at time t according to z;
– t < t;

If Ji does not exist then Stop Else Schedule Ji, in t and Ji in t;
Clearly, in case the cost vector C is monotonic, this part of the process does not
deteriorate the cost of the solution (z, y).

2 th Step: Then we make (E13) and (E14) satisfied by filling the k − holes
which may be induced in the schedule defined by the vector z: in order to do it,
we simply adapt the feasibility algorithm SEARCH-SCHEDULE of Section IV,
designed for the handling of NON-IDLE0 and based on the use of propagation
paths, while using the schedule defined by z as initial schedule.

5.4 Numerical Experiments

We performed tests while using the CPLEX library on a PC AMD opteron
2.1GHz, while using gcc 4.1 compiler. and used randomly generated instances
whose size allowed direct computation of the optimal solution of the NON-IDLEc

linear program. More specifically, the size product n.Card(N) was included be-
tween 100 and 1000. As a matter of fact, in order to avoid too many instances
which would not admit any feasible solution, we generated instances as follows :

– Generate a pyramidal shape vector y and a job set J with n =
∑

t yt jobs,
together with a schedule vector z;

– Generate time-windows F (i), i = 1..n, and << −pairs(Ji << Jj), in such a
way that z be a feasible schedule for the NON-IDLE0 related instance; (E17)

Homogeneous Non Idling Problems: Models and Algorithms 133

– Make the time-windows F (i), i = 1..n, be stable (see Section III.B) with
respect to the relation <<;

– Generate cost vector C;

We use the medium size α of the time-windows F (i), i = 1..n, and the number
β of << −pairs as parameters of this process. We manage in such a way cost C
may be monotonic. While performing those experiments, we focus on:

– the gap GAP − LAG between the value Lag − V AL(Top) and the optimal
value OPT − V AL of NON-IDLEc(Top), where Top is the optimal t0 value
of the NON-IDLEc algorithmic scheme;

– the numbers NS− << and HOLE of respectively (E7) and (E13, E14)
violated constraints, and on the gap GAP between the optimal value of
NON-IDLEc(Top), and the value of the solution (z, y) obtained at the end
of the above process, that means after application of the Projection process;

– the impact of the monotonicity property.

Here are the results which were obtained on ten instances generated this way
(Id denotes the instance):

Table 1. Performance Analysis of the NON-IDLEc(t0) Lagrangean relaxation scheme

Id Monoton n.TS m,α, β GAP − LAG(%) GAP (%) HOLE,NS− <<

1 Yes 20.10 3, 4, 10 0 0 0, 0

2 No 20.10 3, 4, 10 1.8 4.1 0, 2

3 Yes 20.10 5, 5, 20 0 0 0, 0

4 No 20.10 5, 5, 20 5.2 10.5 1, 7

5 Yes 30.10 3, 4, 10 0 0 0, 0

6 No 30.10 3, 4, 10 2.8 7.1 1, 5

7 Yes 30.30 5, 5, 10 0.6 2.1 2, 0

8 No 30.30 5, 5, 10 1.8 3.7 0, 2

9 Yes 30.30 5, 8, 40 1.0 2.5 3, 0

10 No 30.30 5, 8, 40 3.9 9.6 3, 6

Comment: we notice that, in most cases, the difference between the value
Lag−V AL(t0) and the optimal value of NON-IDLEc(t0) is very small, and that,
in many case, the y vector which derives from the Lagrangean relaxation process
has a Pyramidal Shape. Still, in case there are many << −pairs and the cost
vector C is non monotonic, the projection process should have to be improved.

6 Conclusion

In this paper, we have just been studying a variant of the homogeneous
m-machine non-idling problem, where weakly dependent unit-jobs have to be
scheduled within their time windows so that the non-idling constraints must be
satisfied not only for each machine but for every subset of machines. A structural

134 A. Quilliot, P. Chretienne, and B. Bernay

necessary and sufficient condition for an instance to be feasible has been provided
and an algorithm has been developed for the existence problem. This algorithm
may be extended to the case when a job dependent cost function is associated
with the termination of each job and the makespan has to be minimized. How-
ever, several important questions about the complexity of more general problems
with the same HNI constraints (non unit jobs, linear costs) are still open. Also, it
would be quite interesting to get the complexity status of the non-homogeneous
variant of the problem (more frequent when it comes to applications) which cor-
responds to the case when the non-idling constraint has only to be satisfied on
each machine or on a given subset of machines.

References

[1] Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a poly-
nomial time algorithm for off-line dynamic power management; Research Report,
Laboratoire d Informatique CNRS LIX (2005)

[2] Chretienne, P.: On single-machine scheduling without intermediate delays. Discrete
Applied Maths 13-156, 2543–2550 (2008)

[3] Jouglet, A.: Single-machine scheduling with no-idle time and release dates to mini-
mize a regular criterion. Journal of Scheduling 15(2), 217–238 (2012)

[4] Valente, J.M.S., Alves, R.A.F.S.: An exact approach to early/tardy scheduling with
release dates. Computers and Operations Research 32, 2905–2917 (2005)

[5] Landis, K.: Group technology and cellular manufacturing in the Westvaco Los An-
geles VH Department, Project Report in IOM 581, School of Business, University
of Southern California (1983)

[6] Irani, S., Pruhs, K.: Algorithmic problems in power management, vol. 36, pp. 63–76.
ACM Press, New York (2005)

Flow Models for Project Scheduling

with Transfer Delays and Financial Constraints

Alain Quilliot and Hélène Toussaint

LIMOS, UMR CNRS 6158, Bat. ISIMA, Universit BLAISE PASCAL,
Campus des Czeaux, BP 125, 63173 Aubiere, France
{alain.quilliot,helene.toussaint}@isima.fr

Abstract. This paper deals with two extensions of the Resource Con-
strained Project Scheduling Problem (RCPSP), which involve resource
transfer delays and ”Financial” resources. Flow models are used in order
to formalize those extended RCPSP, which contain the standard RCPSP
and lead us to the Timed Flow Polyhedron and to several structural re-
sults. This framework gives rise to generic Insertion operators, as well as
greedy/local search algorithms. We end with numerical tests.

Keywords: Resource Constrained Scheduling, Network Flow Theory.

1 Introduction

Dealing with Resource Constrained Project Scheduling Problems (RCPSP: see
[1,2,3]) means scheduling tasks, submitted to temporal and resource constraints,
while minimizing the induced Makespan value. This problem has been exten-
sively studied: [4,5,6,7]; its theoretical analysis requires sophisticated mathe-
matical tools: linear programming, posets, hypergraphs..: [8]. While Standard
RCPSP only involves deterministic non pre-emptive tasks and renewable re-
sources, extended models adress pre-emption: [9], time lags: [10], non renewable
resources: [11,12], non constant profiles, robustness: [13], deadlines and penal-
ties, redundant resources: [14,15]. A survey about RCPSP variants is available
in [16].

RCPSP problems are usually NP-Complete, and getting exact results be-
comes hard as soon as there are more than 60 tasks and 4 resources: [17,18].
Exact methods are most often branch and bound, cut generation and constraint
propagation based: [19,12,20]. Powerful lower bounds derive from column gen-
eration techniques applied to specific LP models, energetic reasoning processes
or largest paths computing: [25, 26]. But efficient heuristics may be designed:
greedy algorithms based on priority rules or insertion techniques: [13,23,24], lo-
cal search methods: [25,26]. Dynamic RCPSP is most often handled through
priority rule based algorithms: [24].

This paper studies two extensions of the RCPSP Problem. The first one in-
volves Resource Transfer Delays and is denoted by RCPSTDP: resources are
transmitted from one task to another, and those communication tasks involve

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 135–154.
DOI: 10.1007/978-3-319-00410-5_8 c© Springer International Publishing Switzerland 2013

136 A. Quilliot and H. Toussaint

delays. Such a RCPSPTDP model corresponds to the case when every task takes
place on a given production unit and when part of the resources (workers, equip-
ments) need to be transported from one unit to another. Coping with such a
problem requires the existence of an explicit representation of the way resources
transit from one production unit to another and, thus, leads us to make appear
a Network Flow component into our model. The second one involves a specific
renewable resource, called Financial Resource, and is denoted by RCPSFRP. It
is handled through the same framework, and through Invest/Borrow strategies
(2 th RCPSFRP).

Network Flow Theory: [27], is devoted to problems which involve the circu-
lation of goods, people, energy,.... It was used in order to model transportation,
telecommunication and energy distribution systems: [27]. The existence of a link
between the RCPSP and Network Flow Theory has already been noticed in
[23,24,6,14], and been used in order to get ILP formulations and insertion al-
gorithms. Still, few works have explicitly involved the network flow machinery
into the design of generic algorithms. So, we shall first explain the way RCP-
STDP and RCPSFRP may be cast into the Network Flow framework. Next, we
shall state structural results about connectivity and cut management. Finally,
we shall derive from this theoretical work generic insertion mechanisms, close to
the insertion mechanisms which were proposed in [23,24], and use them in order
to design and test greedy and local search algorithms.

2 Network Flow Model Related to a RCPSTDP Instance

Preliminary Notations and Definitions. We denote by ← the value allo-
cation operator: x ← α means that variable x takes value α. Q is the rational
number set. If τ is some partial order relation, then τ= is the relation (τ or =)
and Tr(τ) is the transitive closure of τ . An oriented graph (network)G with node
set Z and arc set E is denoted by G = (Z,E). An arc e with origin/destination
nodes x and y is denoted by (x, y). A partial graph (sub-graph) of G is the
restriction of G to some subset of E(Z).

2.1 The Non Preemptive RCPSTDP Problem

A Standard RCPSP instance I = (V,K,R, r, d, ϕ) is defined by:

• a set V of non pre-emptive tasks: dv > 0 is the duration of task v;
• a binary no circuit precedence relation ϕ, defined on V : vϕw means that v
must be over before w starts;

• a finite renewable resource set K: Rk is the initial available amount of re-
source k ∈ K; task v requires rk,v resource k, and, once it is over, gives this
resource back.

Solving I means computing, for any v ∈ V , its starting time Tv ≥ 0, in such a
way that:

Flow Models for Project Scheduling 137

• if v and w ∈ V are such that vϕw, then Tv + dv ≤ Tw; (Precedence Con-
straint)

• at any time t ≥ 0, and for any resource k ∈ K,
∑

v∈U(T,t) rk,v ≤ Rk, with

U(T, t) = {v ∈ V such that Tv ≤ t < Tv + dv} ⊆ V is the set of the tasks
which are running at time t; (Resource Constraint)

• the makespan Makespan(T) = Supv∈V (Tv + dv) is the smallest possible.

An instance ITD = (V,K,R, r, d, ϕ, Lag,Depot) of the Resource Constrained
Project Scheduling with Transfer Delays Problem (RCPSTDP) is defined as
above, while taking into account the Delay function Lag: tasks of V are run at
different places inside some production space, and resources circulate. At time 0,
resources are all located at a same place Depot, and they must be back to Depot
for the project to be over. Then the Delay Q-valued function Lag, associates,
with any pair v, w ∈ V ∪ {Depot}, a value Lag(v, w) ≥ 0: if task v (or Depot)
transmits some resource to task w (or to Depot) or if vϕw (v transmits some
output to w which uses it as an input), then transferring this resource requires a
Lag(v, w) delay between the ending time of v (0 if v = Depot) and the starting
time of w (Delay Constraint). So, solving ITD means simultaneously computing
a Time vector T as in the simple case, and an ad hoc description F of the way
resources are provided to the tasks.

Remark 1. RCPSTD and RCPSP with Time Lags are quite different problems,
since delays lag(v, w) only impact tasks v, w which exchange resources.

2.2 Linking Network Flows with RCPSTDP: Timed Flows

We formalize now the description of the way resources are provided to the tasks.

Recall: Network Flows. Given a network G = (Z,E), i.e. an oriented graph
with node (vertex) set Z and arc set E, together with a Q-valued function φ
defined on the node set Z; a Q-valued E-indexed vector f is a Q-flow vector iff:
∀z ∈ Z,

∑
z is the origin of e fe =

∑
z is the destination of e fe.

If I is some commodity set, if φ = (φ(i), i ∈ I) is a commodity function, i.e.,
if every φ(i), i ∈ I, is a Q-valued function defined on the node set Z, then we
call φ-flow vector any collection f = (f(i), i ∈ I), where every f(i), i ∈ I, is a
φ(i)-flow vector.

The Activity Network. Let ITD = (V,K,R, r, d, ϕ, Lag,Depot) be a RCP-
SPTD instance. We derive from ITD the Activity Network N (V) = (V ∗, E∗) by
introducing two auxiliary tasks Start and End, and by setting:

• V ∗ = V ∪ {Start, End} = node set of N (V);
• E∗ = {(v, v′), v, v′ ∈ V } ∪ {(Start, v), v ∈ V ∪ {End}} ∪ {(v, End), v ∈
V ∪ {Start}} = arc set of N (V).

We define the E∗-indexed length vector d∗ by setting:

138 A. Quilliot and H. Toussaint

• for any v ∈ V, d∗(Start,v) = Lag(Depot, v) and d∗(v,End) = dv +Lag(v,Depot);
• d∗(End,Start) = −∞;

• for any v ∈ V , w ∈ V ∪ {End}, d∗(v,w) = dv + Lag(v, w).

We provide the node set V ∗ with a commodity vector r∗, by setting, for every
resource k ∈ K and for any v ∈ V ∗: if v ∈ V then r∗k,v = rk,v else r∗k,v = Rk.
We define the precedence arc subset E∗

ϕ by setting: E∗
ϕ = {(v, v′), v, v′ ∈ V such

that v T r(ϕ) v′} ∪ {(Start, v), (v, End), v ∈ V }, where Tr(ϕ) is the transitive
closure of the ϕ relation.

Feasible Solutions of ITD and r∗-Flow Vectors. Then, a representation
of the circulation of resources between the tasks of V , consists into a r∗-flow
vector F = (F (k), k ∈ K), defined on the Activity NetworkN (V), which may be
viewed as transporting the resources k ∈ K, from Depot (the source-node Start)
to Depot (the end-node End), while providing the tasks v ∈ V with the required
resources. The support arc subset E(F, ϕ) of F is: E(F, ϕ) = E∗

ϕ∪{(v, w), v, w ∈
V such that F(v,w) �= 0}. Clearly, E(F, ϕ) has no circuit, (we say F is no circuit).
We easily see (see for instance [23,24]), that even if we only deal with a simple
RCPSP instance I = (V,K,R, r, d, ϕ, Lag), we may derive, as described in Figure
1, such a flow F from any feasible schedule T .

(a) (b)

Fig. 1. (a) Gantt chart - (b) Flow representation

Casting RCPSPTDP into a Formal Framework: Timed Flows. Let F
be a no circuit r∗-flow vector and T a time V -indexed vector as above. If we
extend the time vector T to V ∪{Start, End} by setting: TStart = 0; TEnd = Δ =
Makespan(T) = Supv∈V (Tv + dv +Lag(v,Depot)), then, for any arc e = (v, w)
in E∗, we get the implication:

e = (v, w) ∈ E(F, ϕ) ⇒ (Tw ≥ Tv + dv ⇔ Tw ≥ Tv + d∗e) (P1)

This leads us to define a Timed (r∗, d∗)-Flow as being any such pair (F, T)
made of a no circuit r∗-flow vector F and a time vector T such that (P1) is true.
One easily checks that any such a Timed (r∗, d∗)-Flow(F, T) defines a feasible
solution of ITD. It allows us to reformulate RCPSTDP as follows:

Flow Models for Project Scheduling 139

RCPSPTD Timed Flow Reformulation. Solving the RCPSTDP instance
ITD = (V,K,R, r, d, ϕ, Lag,Depot) means computing, on the Activity network
N (V), a Timed (r∗, d∗)-Flow (F, T) such that TEnd is the smallest possible.

Also, following ([23,24]) one easily checks that:

Theorem 1: Standard RCPSP Reformulation Theorem. Any feasible so-
lution T of the Standard RCPSP instance I = (V,K,R, r, d, ϕ) may be extended
into a feasible solution (F, T) of the RCPSTDP instance ITD =
(V,K,R, r, d, ϕ, 0, Depot).

2.3 Connectivity Theorem

The efficiency of the flow machinery derives from properties of the flow polyhe-
dron. Thus, one may ask about the polyhedron of the no circuit r∗-flow vectors.

The No Circuit r∗-Flow Polyhedral Vertex Set. r∗-flow vectors F ≥ 0
defined on the network N (V) defines a bounded polyhedron Pr∗ . F is a ver-
tex of Pr∗ which contains no non null alternated cycle, that means no cycle
(v0, v1, . . . , vn = v0) such that:

• n is even and all the nodes v0, . . . , vn−1 are distinct (the cycle is elementary);
• there exists k ∈ K such that:

• the arcs (v0, v1), (v2, v3), . . . , (vn−2, vn−1) are all endowed with non null
F (k) values;

• the arcs (v2, v1), (v4, v3), . . . , (v0, vn−1) are all endowed with non null
F (k) values.

We denote by Sr∗ the vertex set of this polyhedron. This vertex set is endowed
with a canonical adjacency relation R, which may be characterized as follows:

• let Γ be some even cycle (v0, v1, . . . , vn = v0) in N (V): the alternated cycle
flow fΓ is defined by:
• fΓ

e = +1 for any arc e = (v0, v1), (v2, v3), . . . , (vn−2, vn−1);
• fΓ

e = −1 for any arc e = (v2, v1), (v4, v3), . . . , (v0, vn−1).
• F, F ′ in Sr∗ are R-adjacent if there exists some resource k0 ∈ K, some
even cycle Γ and some number λ ≥ 0, such that we have: for any k �=
k0, F (k) − F ′(k) = 0; F ′(k0) − F (k0) = λ.fΓ . In such a case, value λ is
unique, and F ′ derives from F through redirection of F (k) on Γ .

It comes from LP Theory that Sr∗ is connected for the relation R. Since we deal
here with no circuit r∗-flows, we may ask whether the set SNr∗ of vertices of
Pr∗ which define no circuit r∗-flow vectors have this connectivity property. We
call SNr∗ the No Circuit r∗-Flow Polyhedral Vertex Set. Then we state:

Theorem 2: Connectivity Theorem. If we suppose that, for any k ∈ K, v, w ∈
V , we have: rk,v + rk,w ≤ Rk (Parallelism Hypothesis), then the No Circuit
r∗-Flow Polyhedral Vertex Set SNr∗ is connected for the canonical adjacency
relation R.

140 A. Quilliot and H. Toussaint

Comment. thus, one may handle RCPSP instance through flow local search.

Proof of theorem 2 (Sketch of the Proof). We define a linear r∗-flow vector
as a no circuit r∗-flow vector F ≥ 0 such that the transitive extension of the
support set E(F, ϕ) is linear. We denote by SNLr∗ the subset of SN r∗ made with
linear r∗-flow vectors. If σ is a linear ordering of V ∪ {Start, End}, compatible
with ϕ , we denote by SN r∗(σ) the subset of SN r∗ which corresponds to the
case when σ is as a linear extension of the transitive extension of E(F, ϕ). Then
we check, by using ad hoc flow redirection processes, that:

Lemma. SN r∗(σ) is connected for the R relation. Also, if, for any v ∈ V, k ∈
K, rk,v �= 0 and if the parallelism holds, then we may state that:

• If F and F ′ are in SNLr∗, then there exists a R-path from F to F ′; (P2)
• for any linear ordering σ of V ∪ {Start, End}, which is compatible with ϕ,
the intersection of SNLr∗ and SN r∗(σ) is non empty. (P3).

This lemma allows us to conclude to the R-connectivity of SN r∗ when, for every
v ∈ V and every k ∈ K, the quantity rk,v is non null. In order to get our result
in the general case, we use a trick which involves topology. Let δ > 0 be a small
positive number. For every activity v and any resource k, such that rk,v = 0, we
replace rk,v by δ , and Rk by Rk + Card(V (k)).δ , where V (k) = {v ∈ V such

that rk,v = 0}. We denote by SN δ
r∗ the respective related polyhedron vertex

sets and by Rδ the related adjacency relation. It comes from above that SN δ
r∗

is connected for the relation Rδ. Also, we see that if F is some vertex in SN r∗ ,
then the r∗-flow vector F δ defined by:

• for any v and any k such that rk,v = 0, F δ(k)(Start,v) = δ = F δ(k)(v,End);

• F δ(k)(Start,s) = Card(V (k)).δ;
• for any other pair (e, k), k ∈ K, e in the arc set of the network N (V),
F δ(k)e = F (k)e;

is no circuit, does not admit any non null alternated cycle, and so is in SN δ
r∗ . We

conclude by checking that any pair F , H of elements of SN r∗ , may be connected
by a path Γ which is the limit, when δ converges to 0, of some path sequence
Γ δ, δ > 0, where every path Γ δ connects F δ and Hδ in SN δ

r∗ . End-Proof.

Remark. one easily check that the Parallelism hypothesis cannot be removed.

3 Insertion Scheme, Insertion Problem and Algorithms

As told in 2, Timed Flow formalism aims at the application of ad hoc network
flow algorithmic tools to RCPSTDP instances. So section 3 describes the way
it can be done. Basically, our RCPSTDP algorithms perform insertion/removal
processes which may be compared with those which have been proposed in [23,24]
for standard RCPSP: the basic difference lays upon the fact that every time
the insertion/removal of some activity is performed, it involves the resolution

Flow Models for Project Scheduling 141

of a specific Insertion-Flow sub-problem related to a given Cut of the currently
inserted task set: the related resolution process updates all the flow values which
express the flow transportation between both sides of this Cut, and implement
the Connectivity Theorem of Section 2. More precisely, at any time during the
process of a RCPSTDP instance ITD = (V,K,R, r, d, ϕ, Lag,Depot), we are
provided with an Inserted Activity subset W of V , with a no circuit r∗- flow
vector F defined on the Activity Network N (W), and with two Q-valued time
vectors T and T ∗ ≥ 0, both with indexation on W ∗, in such a way that, for any
v ∈ W ∗: (P4)

• Tv = Length of a largest path from Start to v in the Support Partial Activity
Network defined by E(F, ϕ), for the length vector d∗;

• T ∗
v = Length of a largest path from v to End in the Support Partial Activity

Network defined by E(F, ϕ), for the length vector d∗.

Clearly, (F, T) is a timed (r∗, d∗)-flow on N (W). Performing an Insertion means
picking up some task v0 in V −W , computing some Cut, i.e. a partition of W
into 2 subsets U and W − U , such that no flow goes from to (W − U) ∪ {End}
to U ∪{Start}, and turning (F, T), through the resolution of the Insertion-Flow
Problem, into a timed (r∗, d∗)-flow defined on N (W ∪ {v0}), in such a way that
v0 receive flow values from U ∪{Start} and give them back to (W −U)∪{End}.
Performing a Removal means reversing this operation. In order to better explain
those mechanisms, we shall introduce the Flow-Insertion Problem. Meanwhile,
we illustrate this mechanism through Fig. 2, which represents, (a), a partial
solution with 4 tasks and a Cut (U = {1, 3},W − U = {2, 4}), and, (b), the
insertion of task v0 = 5 (with d5 = 2 and r5 = 2) into this Cut.

(a) (b)

Fig. 2. (a) The flow and the cut (dotted line) - (b) the resulting flow after insertion

3.1 The Insertion Flow Problem

We say that an oriented graph N = (X,E) is almost-bipartite, if there exists
some node z0 in X such that the restriction of N to X − {z0} is bipartite,
which means that X − {z0} may be written as the disjoint union X − {z0} =
A∪B, of two disjoint independent sets A and B; let us suppose now that we are
endowed with two positive (or null) Q-valued A-indexed vectors Π , Out, with
two positive (or null) Q-valued B-indexed vectors Π∗, In, with some Q-valued
positive vectors Δ with indexation on (A∪{z0}).(B ∪{z0}), and with a positive

142 A. Quilliot and H. Toussaint

(or null) coefficient ρ such that:
∑

x∈AOut(x) =
∑

y∈B In(y) ≥ ρ; then we say
that a vector G = (Gx,y ≥ 0, x ∈ A ∪ {z0}, B ∪ {z0}) ≥ 0, is an Insertion-Flow
vector related to ((X,E), z0, A,B, In,Out,Π,Π∗, Δ, ρ) iff:

• for any x ∈ A, Outx =
∑

y∈B∪{x0} Gx,y;

• for any y ∈ B, Iny =
∑

x∈A∪{x0} Gx,y;

• ρ =
∑

y∈B Gz0,y =
∑

x∈AGx,z0 .

For such an Insertion-Flow vector G, we set:

• Make1(G) = Supx∈A,y∈B such that (x,y)∈E or Gx,y �=0(Πx +Π∗
y +Δx,y);

• Make2(G) = Supx∈A,y∈B such that ((x,z0)∈E or Gx,z0 �=0 and (z0,y)∈E or Gz0,y �=0)

(Πx +Π∗
y +Δx,z0 +Δz0,y);

• I-Makespan(G) =Sup(Make1(G),Make2(G)).

This definition leads us to introduce the following Insertion-Flow Problem: Given
(X,E), z0, A,B, In,Out,Π,Π∗, Δ, ρ as above. Find a related insertion flow vec-
tor G in such a way that I-Makespan(G) be the smallest possible.

Explanation. if we refer to the previously described insertion process, and if
Card(K) = 1, then we clearly see that we should think: (P5)

• A = U ∪ {Start}; B = (W − U) ∪ {End};
• E = (v, w), v ∈ A,w ∈ B, such that v T r(ϕ) w;
• z0 = v0; ρ = rk,v0 ;
• for any v in U ∪ {Start}, Πv = Tv and Outv =

∑
w∈B F (k)(v,w);

• for any w in B = (W − U) ∪ {End}, Π∗
w = T ∗

w and Inw =
∑

v∈A F (k)(v,w);
• for any pair v, w in (A ∪ z0).(B ∪ z0), Δv,w = d∗(v,w).

In order to deal with this problem, we design an Insertion-Flow procedure which:

• first computes the set ΛE,z0 of the possible attachment values : the attachment
value u(G) of an Insertion-Flow vector G is given by: u(G) =Sup(Πx +
Δx,z0), x ∈ A such that (Gx,z0 �= 0 or (x, z0) ∈ E);

• next, For any u ∈ ΛE,z0 , computes some Insertion-Flow G such that u =
u(G), and performs the following loop: While Possible do: Make decrease,
through the search of some Redirection Path, the G value on the arcs (x, y)
such that I-Makespan(G) = Gx,y, while making u(G) remain unmodified;

• ends while keeping with the best Insertion-Flow G which was computed.

Theorem 3: Insertion-Flow Theorem. The Insertion-Flow Procedure solves
in an exact way the Insertion-flow Problem in polynomial time.

Proof of theorem 3 (Sketch of the Proof). The key point is that u(G)
remains unmodified during the While Possible loop: then, a standard flow rea-
soning makes appear that if G is some Insertion-Flow vector, it G(u) derives
from the While Possible loop for a given u, and if we have both u(G) = u and
I-Makespan(G(u)) > I-Makespan(G), then the cycle decomposition of the flow
vector G − G(u) makes appear some Redirection Path Γ which makes possible
improving G(u). End-Proof.

Flow Models for Project Scheduling 143

Fast-Try-Insertion and Lex-Insertion-Flow Procedures. Before insertion
is effectively performed, it must be tried several times. We speed this pro-
cess through a greedy approximation Fast-Try-Insertion heuristics, which set
flow values on the arcs (x, y) which are the most likely to make increase I-
Makespan in case Gx,y = 0. Also, we minimize the number of arcs (v, w) such
that (v (Not T r(ϕ)) w and F(v,w) �= 0) by turning Insertion-Flow into a Lex-
Insertion-Flow procedure which tends to allocate G values to arcs of E, while
E increases every time a new resource k is handled.

3.2 Generic Flow Algorithms for the RCPSTDP

A Greedy Insertion Algorithm RCPSTDP-Greedy-Flow. This algo-
rithm works through successive insertions as explained in section 3. Clearly,
a key point is about the computation of the Cut U . But searching for a best Cut
U in the general sense seems to be a difficult problem:

Theorem 4: Cut Theorem. The Best Cut problem as defined above is NP-
Complete.

Proof of theorem 4. Let us consider the following Best Cut Problem instance:

• there is only one resource we set rk,x = rx and Rk = R;

•
∑

v∈W rv = R; rv0 = R/2; ϕ is the empty relation;

• for any v ∈ W , dv = 1; dv0 = 2.

Determining whether the optimal value of this Best Cut instance is no more
than 2 means solving some 2-Partition problem instance. End-Proof.

Still, if v is some node in W ∪ {End}, we may set Cut(v) = {w ∈ W,w �= v,
such that Tw ≤ Tv}. So we can easily scan the set W , and choose U = Cut(v)
in such a way that an application of the Insertion-Flow Procedure yields the
best possible Makespan value. The whole process RCPSTDP-Greedy-Flow ,
which may be randomized, comes as an application to the empty task set of the
following Packet-Insertion Procedure:

A Local Search RCPSTDP-LS-Flow Algorithm. The above Packet-
Insertion operator gives rise in a generic way to a local search operator
Transform-Insertion. The idea is that, once we are endowed with a timed (r∗, d∗)-
flow (F, T), we may pick up some (small) subset S of V , (take it away from V
applying some Reverse-Insertion procedure) and, next, come back to inserting
the activities of S into the pair (F, T). Transform-Insertion operates on any
timed (r∗, d∗)-flow (F, T), through a parameter S ⊆ V :

Transform-Insertion(S): Reverse-Insertion(S); Packet-Insertion(V − S).
Provided with this operator, we design local search algorithms, while picking

up S as the task subset defined by a critical path (Crit-Path strategy) or by tasks
which are simultaneously running at some critical time t (Antichain strategy).

144 A. Quilliot and H. Toussaint

Algorithm 1: Packet-Insertion Procedure

Input: the RCPSTDP instance ITD = (V,K,R, r, d, ϕ, Lag,Depot), a subset W
of V , a related no circuit r∗-flow vector F , and two related vectors T and T ∗ as
in (P4);
Output: a timed (r∗, d∗)-flow (F, T), and the related Makespan value Δ;
Initialization: S ← V −W ; SAux ← S;
while SAux �= Nil do

Randomly Pick up v0 in SAux and Remove it from SAux ;
Compute v1 in W ∪ {End}, such that the application of the
Fast-Try-Insertion-Flow procedure to:

• X = W ∪ {Start,End, v0}; A = Cut(v1) ∪ {Start}; B = X − A− {v0};
• z0, In,Out,Π,Π∗,Δ, ρ,E={(x, y), x∈A ∪ {v0}, y ∈ B ∪ {v0}}, as in (P5);

yields the best possible Makespan value;
Let u1 be the related attachment value: Apply Lex-Insertion-Flow to
Cut(v1) and u1, and perform the insertion of v0 into the timed (r∗, d∗)-flow
(F, T) in an effective way (update F , T and T ∗ values);
W ← W ∪ {v0};

4 Numerical Tests on RCPSTDP

We performed experiments, on PC AMD opteron 2.1GHz, gcc 4.1 compiler.
We tried instances from the PSPLIB testbed. Since we were not provided with
optimal values for general RCPSTDP, we first tested the case Lag = 0, when
RCPSP and RCPSPTD are the same, as well as ad hoc instances, with Lag such
that the optimal values of both problems were the same. For every instance,
N-Ac, N-Res, N-Re respectively denote the numbers of tasks, resources and
replications, and we computed:

• Time = CPU time in seconds for the N-rep replications;

• Gap-LB (%) = gap between our values and: in case of 30 job instances, the
optimal value; in case of 60 and 120 job instances, the best lower bound.

• Gap-TB (%) = gap between our values and: in case of 30 job instances, the
optimal value; in case of 60/120 job instances, the largest path lower bound.

4.1 Experiments on PSPLIB Instances with Lag = 0

Our models and algorithms may be used in order to deal with standard RCPSP
instances, and it is interesting to test their efficiency in such a specific con-
text. The following tables 1 and 2 provide us with average results for the al-
gorithms RCPSTDP-Greedy-Flow and RCPSP-LS-Flow, related to the
PSPLIB packages: 30 jobs, 60 jobs, 120 jobs, when Lag = 0. The induced results
are very satisfactory, taken into account the genericity of our algorithms.

Flow Models for Project Scheduling 145

Table 1. RCPSP-Greedy-Flow procedure, Mean Results

N-Ac N-res N-re Time (s) Gap-TB Gap-LB

30 4 100 0.63 1.87 1.87
30 4 1000 6.3 0.92 0.92
60 4 100 4.54 16.91 7.10
60 4 1000 53.04 15.37 5.79

120 4 100 29.6 52.33 21.32
120 4 1000 515 48.84 18.5

4.2 Instances such That RCPSP and RCPSTDP Optimal Values
Are the Same

These tests involve difficult instances, which comes as follows: we start from
a standard RCPSP instance I of PSPLIB and from almost optimal solution T .
Then we randomly generate Lag values such that T remains a feasible RCPSTDP
schedule. For every pair (v, w) of actions of I, which are parallel according to T ,
we compute a maximal Lag value Max-Lag(T, v, w) which is compatible with
T , and generate Lag values with a mean ratio Lag/Max-Lag which vary from
10% to 50% (difficult instances). Table 3, provides us with results related to such
30 job PSPLIB instances, distributed into 5 groups according to the value of the
mean ratio Lag/Max-Lag. The replications number is 100.

Table 2. RCPSP-Greedy-Flow, 100 Replications, Mean Results, Ad Hoc PSPLIB In-
stances

Group-Instance Gap (%) Time (s)
1 - 10% 2,5 2,71
2 20% 3,21 2,79
4 40% 8,5 2,94
5 50% 14,5 3,12

Comment. Clearly, the largest is the Lag/Max-Lag mean ratio, the most dif-
ficult are the instances. Still, results remain satisfactory.

5 RCPSP with Financial Resources

In this section we study the way flow models may be used in order to deal with
non renewable resources. As a matter of fact, we consider a specific non renewable
resource, called Financial resource, which may vary in a very significant way,
since it is produced by some tasks and consumed by others.

An instance I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ) of theResource Constrained Project
Scheduling with Financial Resource Problem (RCPSFRP) is going to be defined
by the same components (V,K,R, r, d, ϕ) as in the standard case, augmented with
an initial Cash amount Φ, with two Financial Resource function φ and ψ and with
a delay function δ, whose meaning comes as follows:

146 A. Quilliot and H. Toussaint

• launching some task v of V requires some amount φ(v) of cash (Financial
Resource), and achieving this task allows the project manager getting back
some Cash amount ψ(v), which becomes available δ(v) times unit after v
has been delivered. In case ψ(v) is null, the delay δ(v) is also null;

• at time 0, the initial Cash amount which is available is Φ;
• the project is considered as over when all the tasks have been performed and
when all the cash due has been collected.

Then solving the RCPSFRP instance I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ) means com-
puting, for any task v ∈ V , its starting time Tv ≥ 0 in such a way that:

• if v and w ∈ V are such that vϕw, then Tv + dv ≤ Tw; (Precedence Con-
straint)

• at any instant t ≥ 0, and for any resource k ∈ K, we have
∑

v∈U(T,t) rk,v ≤
Rk, where the subset U(T, t) ⊆ V is defined as the set of the tasks which are
under execution at time t: U(T, t) = {v ∈ V such that Tv ≤ t < Tv + dv};
(Resource Constraint)

• at any instant t ≥ 0, the available cash amount M(T, t) is non negative:
M(T, t) may be computed through the following formula: M(T, t) = Φ −∑

v∈UF (T,t) φ(v) +
∑

v∈UF∗(T,t)(ψ(v)− φ(v)), where the sets UF ∗(T, t) and
UF (T, t) are defined by: (Financial Constraint)

• UF (T, t) = {v ∈ V such that Tv ≤ t < Tv + dv + δ(v)};
• UF ∗(T, t) = {v ∈ V such that Tv + dv + δ(v) ≤ t};

The second component in the above formula represents the cash flow which
has been generated by the tasks which have been achieved at time t, while
the first one represents the cash flow which is immobilized at time t;

• the Makespan value F-Makespan(T) = Supv∈V (Tv + dv + δ(v)) is minimal.

Remark. Checking whether the feasibility of a RCPSFRP instance I = (V,K,R,
r, d, ϕ, Φ, φ, ψ, δ) is NP-Complete. One may check that, in case Φ = 1 and V may
be written as a bipartition V = A ∪B, in such a way that Card(A) = Card(B)
and:

• for any v in A, φ(v) = 1 and ψ(v) = 0;
• for any v in B, φ(v) = 0 and ψ(v) = 1;

then checking the feasibility of the related instance I contains the Bandwidth
Problem on Co-Bipartite Balanced Graphs, which is NP-Complete (see [6]).

5.1 Adapting the Flow Model to a RCPSFRP Instance

We keep on with the same Task Network N (V) = (V ∗, E∗) as in Section 2, and
provide the arc set E∗ with an additional length vector δ∗ by setting:

• for any v ∈ V , δ∗(Start,v) = 0; δ∗(End,Start) = 0;

• for any v ∈ V , w ∈ V ∪ {End}, δ∗(v,w) = dv + δ(v).

Flow Models for Project Scheduling 147

We also define, on the node set V ∗, two financial commodity vectors φ∗ and ψ∗,
by setting, for every v ∈ V ∗ = V ∪ {Start, End}:
• if v ∈ V then φ∗

v = φ(v) and ψ∗
v = ψ(v);

• ψ∗
Start = Φ; φ∗

Start = 0; ψ∗
End = 0; φ∗

End = Φ−
∑

v∈V φ(v) +
∑

v∈V ψ(v).

As in Section 2, we easily check that, with any feasible solution T of the RCPS-
FRP instance I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ), we may associate a pair (F, F -
cash), where:

• F = (F (k)(v,w), k ∈ K, (v, w) ∈ E∗) is a r∗-flow vector;
• F -cash = (F -cash(v,w), (v, w) ∈ E∗) is such that:

• for any task v ∈ V ,
∑

v is the origin of e F -cashe = ψ(v);∑
v is the extremity of e F -cashe = φ(v);

•
∑

Start is the origin of e F -cashe = Φ = ψ∗
Start;

•
∑

End is the extremity of e F -cashe = φ∗
End = Φ−

∑
v∈V φ(v)+

∑
v∈V ψ(v);

We say that F -cash is a (φ∗, ψ∗)-flow vector.

Interpretation. the vector (F, F -cash) transports the resources k ∈ K and
the Cash resource from Start to End, and provides the tasks v ∈ V with those
resources in such a way it allows them to be run.

Example. We consider 4 tasks A, B, C, D, with durations 2, 5, 3, 4, together
with 1 resource. Resource requirements are given by the following table:

A B C D
R 3 1 2 4
Cash (5,2) (5,3) (2,8) (1, 12)

(a) (b)

Fig. 3. A RCPSFRP Flow Solution: (a) Gantt chart - (b) Flow representation: the first
number denotes the resource flow and the second one the Cash flow. Initial Cash is 10,
initial resource amount is 5, payment delays are null

Then we set: E2(F -cash) = {(v, w), v, w ∈ V such that the flow value F −
cash(v,v′) is non null}. This allows us to define the support arc Subset E∗(F, F -
cash, ϕ) of (F, F -cash) by setting E∗(F, F -cash, ϕ) = E(F, ϕ) ∪ E2(F -cash),
where E(F, ϕ) is defined as in Section 2. Clearly, E∗(F, F -cash, ϕ) is no circuit,
and, if we extend T to V ∪ {Start, End} in a natural way by setting TStart = 0
and TEnd = F -Makespan(T), we get, for any arc e = (v, w) in the arc set E∗,
the following implications:

148 A. Quilliot and H. Toussaint

• (v, w) ∈ E(F, ϕ) ⇒ Tw ≥ Tv + dv ⇔ Tw ≥ Tv + d∗e; (P6)
• (v, w) ∈ E2(F -cash) ⇒ Tw ≥ Tv + dv + δ(v) ⇔ Tw ≥ Tv + δ∗e . (P7)

We say that such a triple (F, F -cash, T) which satisfies (P6) and (P7) defines a
Timed (r∗, φ∗, ψ∗)-Flow, and we easily check that:

Theorem 5: Reformulation Theorem for the Financial Case. Solving the
RCPSFRP instance I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ) means computing a Timed
(r∗, φ∗, ψ∗)-Flow (F, F -cash, T) such that F -Makespan(T) =Supv∈V (Tv + dv +
δ(v)) is the smallest possible.

Clearly, in case Φ, φ, ψ, δ are null, we find again the standard RCPSP Problem.
As in Section 2, it is possible to obtain a polyhedral formulation of the RCPSFRP
and adapt the Connectivity Theorem of Section 2.

5.2 The Insertion Financial Flow Problem

As in the case of the RCPSTDP, our main tool consists in an Insertion mecha-
nism, which, at any time, considers some Timed (r∗, φ∗, ψ∗)-Flow (F, F -cash, T)
defined on some subsetW ⊂ V of the task set V and inserts some task v0 ∈ V−W
into (F, F -cash, T). So we deal with standard renewable resources k ∈ K while
considering the Insertion Flow model of Section 3, together with null conditional
delay Lag values, and we introduce the Insertion Financial Flow Problem which
is specifically related to the Financial resource.

The Insertion Financial Flow Problem. An Insertion Financial Flow in-
stance ((X,E), z0, A,B, In,Out,Π,Π∗, τ, ρ, γ, π, d) is then defined by an almost-
bipartite graph N = (X,E), by z0, A,B, In,Out,Π,Π∗ as in Section 3, by a
Q-valued payment delay function τ ≥ 0 with domain A, and by 4 non negative
coefficients d, which means the duration of task z0, π and ρ, γ, such that: (P8)

•
∑

x∈AOutx ≥ ρ; ρ = cash amount required in order to start task z0;
•
∑

x∈AOutx+γ−ρ =
∑

y∈B Iny; γ = cash amount which is produced at the
end of task z0, and available after a delay equal to π ;

Then G = (Gx,y ≥ 0, x ∈ A ∪ {z0}, y ∈ B ∪ {z0}) ≥ 0, is an Insertion Financial
Flow vector iff:

• for any x in A, Outx =
∑

y∈B∪{x0} Gx,y ;

• for any y in B, Iny =
∑

x∈A∪{x0} Gx,y;

• γ =
∑

y∈B Gz0,y; ρ =
∑

x∈A Gx,z0 ;

For such an Insertion Financial Flow vector G, we extend Π and τ by setting:

• Πz0 = Sup(Supx∈A, such that (x,z0)∈E(Πx+d), Supx∈A, such that Gx,z0 �=0(Πx+
τ(x) + d)); (in case no flow Gx,z0 exists, we set Πz0 = d);

• τ(z0) = π;

Flow Models for Project Scheduling 149

and we define the Makespan value F-Makespan(G) by setting:

• F -Makespan(G) = Sup(Supx∈A∪{z0},y∈B such that (x,y)∈E(Πx +Π∗
y),

Supx∈A∪{z0},y∈B such that Gx,y �=0(Πx+Π∗
y+τ(x))). (if no x, y exist such that

(x, y) ∈ E or Gx,y �= 0, we set F -Makespan = Supy∈BΠ
∗
y);

Then solving the related Insertion Financial Flow Problem means computing
an Insertion Financial Flow vector G such that F -Makespan(G) be minimal.

The general algorithmic Insertion-Financial-Flow Procedure works as the
Insertion-Flow algorithm. Still, it behaves in some aspects in a simpler way.
As a matter of fact, we notice that the case of standard resources k ∈ K may be
identified with the case of the Insertion Financial Flow problem when ρ = γ = π
and τ = 0. But, for the Insertion Financial Flow problem, once an attachment
value u in the set ΛE,z0 = {u ∈ Q, such that:

• there does not exist x ∈ A, such that Πx > u and (x, z0) ∈ E;
• there exists x(u) ∈ A, such that Πx(u) + τ(x(u)) = u;
•
∑

x∈A, such that Πx+τ(x)≤uOutx ≥ ρ}

is chosen, the related Insertion Flow G comes through a greedy process:

• we first perform what we call the attachment process, which means that we
compute the values Gx,z0 , x ∈ A in such a way that: (P9)
• if x and x′ are such that: Gx′,z0 �= 0, Π ′

x + τ(x′) < Πx + τ(x) ≤ u, then
we have: Gx,z0 = Outx;

• for any x such that: Πx+τ(x) > u then we have: Gx,z0 = 0; This attach-
ment process is completely determined by (P9) and can be performed in
a greedy way. It consequently modifies the values Outx, x ∈ A.

• then the ”While Possible” loop of the Insertion-Flow algorithm of Section
3, which involves redirection path search, may be simplified and replaced by
a greedy Match-Flow procedure, which implements the following lemma:

Match Flow Lemma. If the No Cross Property is satisfied, that means if
there does not exist x, x′ ∈ A ∪ {z0}, y, y′ ∈ B, such that:

• Gx,y �= 0; Gx′,y′ �= 0
• Πx′ + τ(x′) > Πx + τ(x);Π∗

y′ > Π∗
y .

then G is optimal (provided that the attachment value u has been imposed)
We may state (with the same kind of proof as for Theorem 3):

Theorem 6. The Insertion Financial Flow Problem is Time Polynomial.

As in Section 3, we know that every time we perform the insertion process,
we must apply the Insertion Flow and Insertion Financial Flow procedures
respectively to every renewable resource k in the resource set K and next to the
Financial resource. In order to speed the process, we make the non null F (k),
F -cash flow values be supported by the same arcs, through a Lex-Insertion-
Financial-Flow Procedure.

150 A. Quilliot and H. Toussaint

5.3 Generic Flow Algorithms for the RCPSFRP Problem

The generic machinery of Section 3 gives rise to a Greedy Insertion Algorithm
RCPSFRP-Greedy-Flow, which may be randomized, and to a Local Search
RCPSFRP-LS-Flow Algorithm. Of course, both may be combined into a
GRASP algorithmic scheme. Still, there is a specific point which has to be dis-
cussed here. As told in previous sub-section A, testing the feasibility of some
RCPSFRP instance is NP-Complete. That means that, when we try the inser-
tion of some task v0 into some into some Timed (r∗, φ∗, ψ∗)-Flow (F, F -cash, T)
defined on some subset W ⊂ V of the task set V , there is a risk of failure, since,
for any cut U , there may be not enough cash coming from U in order to fill the
demands from both v0 and W − U . As a consequence, we see that the way we
pick up tasks v of V inside the greedy RCPSFRP-Greedy-Flow algorithmic
scheme becomes a key issue. We call it the ”Linear Ordering” component of
the RCPSFRP Problem. In order to deal with it, we associate with any RCP-
SPFRP instance I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ), the following auxiliary problem
PLIN(I):

PLIN(I): {Compute a linear ordering σ of V such that for any task v ∈ V ,
Φ+

∑
w such that wσv(ψ(w) − φ(w)) ≥ φ(v)}.

Then we easily notice that:

Theorem 7. Let T be some feasible solution of the RCPSPFRP Problem in-
stance I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ). Then, any linear ordering σ which is com-
patible with T, d and δ (that means such that if T (v) + d(v) + δ(v) ≤ T (w) then
v σ w) is a solution of PLIN(I)). Conversely, if we apply the RCPSFRP-
Greedy-Flow algorithm to I while picking up the tasks of V according to a
feasible solution σ of PLIN(I), then we get a feasible solution of I.

So, we handle the Linear Ordering component of the RCPSFRP Problem
while designing the RCPSFRP-Greedy-Flow algorithmic scheme:

• Compute a set Λ of N distinct solutions of PLIN(I), (N = replication pa-
rameter); we try to get solutions which are not too close to each other;

• Then, For any σ ∈ Λ, we apply the RCPSFRP-Greedy-Flow algorithm
while picking up the tasks v of V according to the linear ordering σ;

• Keep the best solution T = T (σ), σ ∈ Λ, produced by the For loop.

We adapt the RCPSFRP-LS-Flow algorithmic scheme by the same way:

• Starting from a current feasible solution T of the RCPSFRP instance I, we
first compute a linear ordering σ which is compatible with T, d and δ ;

• Next, every time we perform the removal of some subsetW of V , we compute
a set Λ ofM distinct linear orderings σ∗ of V , which coincide with σ on V −W
and which are solution of PLIN(I), M being some parameter value;

• We denote by ΛW the set of the restrictions of σ, σ ∈ Λ to W ;

• For every linear ordering τ in ΛW , we try the reinsertion of W while picking
up the tasks of W according to τ (Failure may occur).

Flow Models for Project Scheduling 151

5.4 Numerical Experiments

We performed the same kind of experiments as for the RCPSTLP Problem. We
provide here results related the behaviour of the RCPSFRP-Greedy-Flow
Procedure.We used 30 and 60 task instances I from the PSPLIB library, together
with some solution T(I) obtained from the tests of Section IV. For every such
an instance I, we introduced an additional Financial resource and generated
values φ(v), ϕ(v), δ(v), v ∈ V , and Φ, in such a way that, for every instance I,
T(I) remained a feasible solution with unchanged makespan MK(I). We denoted
by Gap-FR the gap (in %) between the value obtained by the RCPSFRP-
Greedy-Flow Procedure and the almost-optimal value MK(I), and we got
results according to the table.

Table 3. RCPSP-Greedy-Flow behaviour, Mean Results

N-Ac N-res N-re Time(s) Gap-FR

30 4 10 0.05 9.7
30 4 1000 5.3 3.7
60 4 10 0.61 13.8
60 4 1000 73.7 4.8

Comment: one handling Financial resource is more difficult. The Linear Or-
dering issue is critical.

6 Scheduling through Borrow/Invest Strategies

We suppose now that, at any time during the execution of the project, we are
able to borrow money at a constant rate ρB and to invest money at a constant
rate ρI . An Investment plan is a triple (t,Δ,M): M money is invested at time
t, which gives back M.(1 + ρI).Δ money at time t + Δ. Invest is the set of all
Investment plans. By the same way a Loan plan is a triple (t,Δ,M): M money
is borrowed at time t, and M.(1 + ρB).Δ money is given back at time t + Δ .
We denote by Loan the set of all Loan plans.

Let I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ) be some RCPSFRP instance, and I(Ψ)
be the instance which derives from I by replacing Φ by Φ+Ψ . For a given
value Ψ , let S = (F, F -Cash, T) be some solution of I(Ψ). At any time t in
[0, TEnd], this solution provides us with an available money amount CashS(t)
(the quantity M(T, t) of section 5). The function t → CashS(t) − Ψ may take
negative values, which forbids (F, F -Cash, T) from being a feasible solution of
I = I(0). Still, we may use convenient sets Inv ⊂ Invest and Lo ⊂ Loan in
order to balance the t → CashS(t) − Ψ function, that means to make that, at
any time t, CashS(t)− Ψ + Inv0(t) + Lo1(t)− Inv1(t)− Lo0(t) ≥ 0, where:

• Inv0(t) = Money produced by the plans in Inv which end at time ≤ t;
• Inv1(t) = Money required by the plans in Inv which start at time ≤ t;
• Lo0(t) = Money given back by plans in Lo which end no later than t;
• Lo1(t) = Money obtained from the plans in Lo which start no later than t.

152 A. Quilliot and H. Toussaint

6.1 The 2nd RCPSFRP Problem

Thus, solving the Second Resource Constraint Project Scheduling Problem with
Financial Resource defined by I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ) and by the interest
rates ρB and ρI , means computing: Ψ, (F, F -Cash, T), Inv and Lo in such a way
the t → CashS(t)−Ψ Available Cash function be balanced, and TEnd be minimal.

Example. As in the previous section, with ρB: 50%, ρI : 20%, δ = 0, Φ = 5.
Figure 4 shows the Available Cash function: Balancing strategy: First Loan plan:
(0, 2, 2); Second Loan plan: (2, 1, 7.5); Last Investment plan: (3, 4, 2.25).

Fig. 4. The Available Cash function with Initial Cash Amount = 5

6.2 Handling the 2nd RCPSFRP Problem

We call Balancing problem, the problem about the search of sets Inv ⊂ Invest
and Lo ⊂ Loan which balance the t → CashS(t)−Ψ function. It can be handled
through a Balancing Procedure which implements the following result:

Theorem 8. An optimal Inv and Loan strategy may be computed as the one
which makes the Available Cash null during the whole interval execution [0, TEnd].
It succeeds in Balancing the t → CashS(t)−Ψ function if the Available Cash at
TEnd is ≥ 0.

Thus, we handle the 2nd RCRCFRP Problem through the dichotomic scheme:

Algorithm 2: Second-Financial-Flow Algorithm

Input: I = (V,K,R, r, d, ϕ, Φ, φ, ψ, δ), ρI , ρB;
Output: Ψ , a solution (F, F -Cash, T) of I(Ψ), plans Lo(Ψ), Inv(Ψ);
Ψmin ← 0; (Fmin, F -Cashmin, Tmin) ← I(Ψmin);
Ψmax ←

∑
v∈V φ(v)−Φ; (Fmax, F -Cashmax, Tmax) ← solution of I(Ψmax);

if the Balancing Problem related to Ψmax has a solution then Ψ ← Ψmax

else
Not Stop;
while Not stop do

Ψmed ← (Ψmax + Ψmin)/2;
if the Balancing Problem related to Ψmed admits a solution Inv,
Lo then Ψmin ← Ψmed else Ψmax ← Ψmed;
if Ψmax − Ψmin is small enough then Stop; Ψ ← Ψmin

Flow Models for Project Scheduling 153

We focused here on the impact of Borrow/Invest strategies. We used 30 task
PSPLIB like feasible instances. For every instance, we computed the gap GAP-F
= (V-1 V-Standard)/V-Standard between the standard RCPSP optimal value
V-Standard and the value V-1 obtained through RCPSFRP-Greedy-Flow, and
the gap GAP-Rate = (V-1 V-Rate)/V-Rate between V-1 and the value V-Rate
derived from Second-Financial-Flow. We got:

Table 1. Impact of Borrow/Invest strategies: Procedure Second-Financial-Flow

ID rI rB GAP-F (%) Gap-Rate (%)

1 0.1 0.2 73 67
2 0.3 0.5 24 15
3 0.5 0.7 5.2 35
4 0.3 0.3 98 28
5 0.5 0.5 19 19

Comment: in case Financial constraint significantly slows down the project,
Borrow/Invest strategies ease the effect of this Financial constraint.

7 Conclusion

Our RCPSP flow models rely on very generic features, which allow fast software
implementation. Several questions should be studied, from both theoretical and
practical point of view, related to the way Cuts are generated and about what
we called the Linear Ordering component of our algorithms.

References

1. Kolisch, R., Padman, R.: Deterministic project scheduling. Omega 48, 249–272
(1999)

2. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: RCPSP: notation,
classification, models and methods. EJOR 112, 3–41 (1999)

3. Baptiste, P., Laborie, P., Lepape, C., Nuijten, W.: Constraint-based schedul-
ing/planning. In: Rossi, F., Van Beek, P. (eds.) Handbook Constraint Prog., ch.
22, pp. 759–98. Elsevier (2006)

4. Sauer, N., Stone, M.G.: Rational preemptive scheduling. Order 4, 195–206 (1987)
5. Blazewiecz, J., Ecker, K.H., Schmlidt, G., Weglarcz, J.: Scheduling in computer

and manufacturing systems, 2nd edn. Springer, Berlin (1993)
6. Herroelen, W.: Project Scheduling-Th./Pract. Prod./Op. Manag. 14(4), 413–432

(2006)

7. Liu, S.S., Wang, C.J.: RCPSP profit max with cash flow. Aut. Const. 17, 966–974
(2008)

8. Damay, J., Quilliot, A., Sanlaville, E.: Linear programming based algorithms for
preemptive and non preemptive RCPSP. EJOR 182(3), 1012–1022 (2007)

154 A. Quilliot and H. Toussaint

9. Moukrim, A., Quilliot, A.: Preemptive scheduling on parallel machines. O.R
Let. 33, 143–151 (2005)

10. De Reyck, B., Herroelen, W.: Branch/bound for the RCPSP with generalized prece-
dence relations. EJOR 111, 152–174 (1998)

11. Mohring, R.H., Rademacher, F.J.: Scheduling problems with resource duration
interactions. Methods of Operat. Research 48, 423–452 (1984)

12. Kimms, A.: Mathematical programming and financial objectives for scheduling
projects, OR and Management Sciences. Kluwer Academic Publisher (2001)

13. Chtourou, H., Haouari, M.: A two-stage-priority rule based algorithm for robust
resource-constrained project scheduling. Computers and Ind. Eng., 12 pages (2008)

14. Haouari, M., Gharbi, A.: A improved max-flow based lower bound for minimizing
maximum lateness on identical parallel machines. OR Letters 31, 49–52 (2003)

15. Carlier, J., Neron, E.: Computing redundant resources for the resource constrained
project scheduling problem. EJOR 176, 1452–1463 (2007)

16. Hartmann, S., Briskorn, D.: A survey of variants of RCPSP. EJOR 207, 1–14 (2010)
17. Kolisch, R., Hartmann, S.: Heuristic for RCPSP: computational analysis. In:

Weglarcz, J. (ed.) Project Scheduling: Models and Applications. Kluwer Press
(1999)

18. Demeulemeester, E., Herroelen, W.: New benchmark for mult. RCPSP. Manage-
ment Sciences 43, 1485–1492 (1997)

19. Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for
the resource constrained project scheduling problem. EJOR 107, 272–288 (1998)

20. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for
RCPSP based on a new math. formulation. Manag. Sc. 44, 714–729 (1998)

21. Baptiste, P., Demassey, S.: Tight LP-bounds for RCPSP. OR Spect. 2, 251–262
(2004)

22. Brucker, P., Knust, S.: A linear programming and constraint propagation based
lower bound for the RCPSP. EJOR 127, 355–362 (2000)

23. Artigues, C., Roubellat, F.: A polynomial activity insertion algorithm in a mul-
tiresource schedule with cumulative constraints. EJOR 127(2), 297–316 (2000)

24. Artigues, C., Michelon, P., Reusser, S.: Insertion for static/dyn. RCPSP. EJOR 149,
249–267 (2003)

25. Palpant, M., Artigues, C., Michelon, P.: LSSPER: solving RCPSP with large neigh-
bourhood search. Annals of O.R 131(1-4), 237–257 (2004)

26. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for the resource
con-strained scheduling problem: an update. EJOR 174, 23–37 (2006)

27. Ahuja, R.V., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory/Appl., Prentice,
N.J (1993)

A New Hybrid GA-FA Tuning of PID Controller

for Glucose Concentration Control

Olympia Roeva and Tsonyo Slavov

Institute of Biophysics and Biomedical Engineering, BAS
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

Technical University of Sofia
8 Kliment Ohridski Bulv., 1000 Sofia, Bulgaria

olympia@biomed.bas.bg,

ts_slavov@tu-sofia.bg

Abstract. In this paper a hybrid scheme using Firefly Algorithm (FA) -
Genetic Algorithm (GA) is introduced. The novel hybrid meta-heuristics
algorithm is realized and applied to PID controller parameter tuning in
Smith Predictor for a nonlinear control system. The controller is used
to control feed rate and to maintain glucose concentration at the de-
sired set point for an E. coli MC4110 fed-batch cultivation process. The
hybrid FA-GA adjustments are done based on several pre-tests. Simula-
tion results indicate that the applied hybrid algorithm is effective. Good
closed-loop system performance is achieved on the basis of the consid-
ered PID controllers tuning procedures. Moreover, the observed results
are compared to the ones obtained by applying the pure FA and pure
GA. The comparison shows that the proposed hybrid algorithm is highly
competitive with standard FA and GA for considered here optimization
problem.

Keywords: meta-heuristics, firefly algorithm, genetic algorithm, E. coli
cultivation process, PID controller, parameter tuning.

1 Introduction

Among the different modes of operation concerning cultivation processes, (batch,
fed-batch and continuous), fed-batch operation is the most often used one in
industry. Since both nutrient overfeeding and underfeeding is detrimental to
cell growth and product formation, development of a suitable feeding strategy
control is critical in fed-batch cultivation processes. The control strategy for
substrate feed rate can be summarized in three groups: open (feedforward),
closed-loop (feedback) control and mixed (feedforward-feedback). In feedback
control of industrial cultivation processes, the proportional-integral-derivative
(PID) controller is widely used [4], [10].

Usually the PID controller is poorly tuned due to highly changing dynamics
of most bioprocesses caused by the nonlinear growth of the cells and the changes

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 155–168.
DOI: 10.1007/978-3-319-00410-5_9 c© Springer International Publishing Switzerland 2013

156 O. Roeva and T. Slavov

in the overall metabolism. The tuning procedure is a significant challenge for the
conventional optimization methods. As an alternative, meta-heuristics could be
applied [12], [14], [15].

During the last decade, a broad class of meta-heuristics has been developed
and applied to a variety of areas. Algorithms like Genetic Algorithms (GA) and
evolution strategies, ant colony optimization, artificial bee colony optimization,
bacterial foraging algorithms, particle swarm optimization, tabu search, simu-
lated annealing, multi-start and iterated local search are - among others - often
listed as examples of classical meta-heuristics, and they have individual historical
backgrounds and follow different paradigms and philosophies [6], [7], [24], [25].
Recently, a new meta-heuristics called Firefly Algorithm (FA) has emerged. This
algorithm was proposed by Xin-She Yang [28]. The FA is very efficient and can
outperform other meta-heuristics, such as genetic algorithms, in solving many
optimization problems [20], [29], [30].

In the literature, there are results showing different strategies based on meta-
heuristic algorithms for the optimal tuning of PID controllers considering only
linear systems [20]. Actually, there is a lack of results about using meta-heuristic
algorithms for bioprocess control design, considering nonlinear systems.

Hybrid algorithms have received significant interest in recent years and are
being increasingly used to solve real-world problems [1]. Usually different local
search methods have got attention in such combinations [8], [16], [26].

In this paper a hybrid meta-heuristic algorithm FA-GA is introduced for the
first time specified to solve PID controller parameter tuning. The idea is to
combine the two meta-heuristics, namely FA in order to explore the search place
either to isolate the most promising region of the search space and GA - to exploit
the information gathered by the FA. An optimization algorithm based on FA-GA
hybrid is realized and applied for parameter tuning of the PID Controller for
glucose concentration control of a nonlinear E. coli fed-batch cultivation process.

2 Problem Formulation

A modified Smith Predictor (SP) structure, proposed in [17], based on a nonlin-
ear plant model is used here. When the object is characterized with a significant
time delay, the conventional PID controller can not ensure the control system
performance. A tool approved in the practice for time delay compensation is the
SP [23]. In this predictor scheme, the mathematical model of the ”nondelayed”
process is implemented in an internal feedback loop around a conventional con-
troller. The major advantage of the SP is that the delay issues can be ignored
in controller design [9].

The structure of the control system is shown in Fig. 1.
In the conventional case of SP, only the predicted by model output is used

to form the inner feedback. In this case, the controller uses plant ’s output
and the process variables both predicted by nonlinear process model [17]. They
are used to form the feedback and the feedforward terms of the control signal,
respectively. The feedforward term is utilized to hold the nonlinear plant at the
actual equilibrium point.

A New Hybrid GA-FA Tuning of PID Controller 157

Cultivation
process

PID
Controller

Extended
Kalman Filter

S

Feed forward
control

mX

mV
maxm

ffu

Ffbu

Nonlinear
process model

CORmS
mS

Ŝ

eref *e

me

Fig. 1. Structure of the control system

The mathematical model of the considered process (block labeled “Cultivation
process”) can be represented by [22]:

ẋ(t) = f(x, F) + η(t)
S(t) = Hx(t) + ξ(t)

(1)

x(t) =
[
X(t) S(t) V (t) μmax(t)

]T
(2)

f(x, F) =

⎡
⎢⎢⎢⎢⎢⎢⎣

μmax(t)
S(t)

kS + S(t)
X(t)− F (t)

V (t)
X(t)

− 1

YS/X
μmax(t)

S(t)

kS + S(t)
X(t) +

F (t)

V (t)
(Sin − S(t))

F (t)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

H =
[
0 1 0 0

]
(4)

η(t) =
[
ηX(t) ηS(t) 0 ημmax(t)

]T
(5)

where: x is the state vector; f is nonlinear model function; η(t) is process noise;
H is output matrix; ξ(t) is measurement noise, [g·l−1]; X is concentration of
biomass, [g·l−1]; S is concentration of substrate (glucose), [g·l−1]; F is feed rate,
[l·h−1]; Sin is substrate concentration of the feeding solution, [g·l−1]; V is biore-
actor volume, [l]; μmax is maximum growth rate, [h−1]; kS is saturation constant,
[g·−1]; YS/X is yield coefficient, [-]; ηX is biomass concentration process noise,
[g2·l−2·h−2]; ηS is substrate concentration process noise, [g2·l−2·h−2]; ημmax is
the maximum growth rate process noise, [h−1].

158 O. Roeva and T. Slavov

The model inaccuracy is modeled via zero mean white Gausian noise. The
corresponding variances are [3]:
ηX = 0.001 g2·l−2·h−2, ηS = 0.001 g2·l−2·h−2 and ημmax = 0.05 l·h−3.

The block labeled “Nonlinear process model” predicts the non-delayed model
output by equations:

ẋm(t) = fm(xm, F)
Sm(t) = Hmxm(t)

SCORm(t) = Sm(t) +
μm(t)Xm(t)

YS/X
Δt,

μm(t) = μmaxm

Sm(t)

kS + Sm(t)

(6)

xm(t) =
[
Xm(t) Sm(t) Vm(t)

]T
(7)

fm(xm, F) =

⎡
⎢⎢⎢⎢⎣

μm(t)Xm(t)− F (t)

Vm(t)
Xm(t)

− 1

YS/X
μm(t)Xm(t) +

F (t)

Vm(t)
(Sin − Sm(t))

F (t)

⎤
⎥⎥⎥⎥⎦ (8)

Hm =
[
0 1 0

]
(9)

where: xm is the state vector; fm is nonlinear model function; Hm is output
matrix; Xm is the evaluated by model concentration of biomass, [g·l−1]; Sm is
delayed concentration of substrate (glucose) evaluated by model, [g·l−1]; SCORm

is non-delayed concentration of substrate predicted by model, [g·l−1]; Vm is eval-
uated by model bioreactor volume, [l]; μm is specific growth rate, [h−1]. Here
μmaxm = 0.5 h−1.

To obtain the glucose concentration estimate an Extended Kalman filter
(EKF) is designed [22]. Based on discretization of process model (Eq. (1)) the
following EKF is obtained [22]:

x̂(k + 1) = fd(x̂(k)) +KEKF(k + 1) (S(k + 1)−Hfd(x̂(k)))

Ŝ(k + 1) = Hx̂(k + 1)
(10)

x̂(0) =
[
1.25 0.8 1.35 0.5

]T
(11)

fd(x̂(k)) = x̂(k) + T0f(x̂(k)) (12)

where: x̂(·) and Ŝ(·) are the estimates of x(·) and S(·); KEKF(·) – the EKF gain.
The PID controller algorithm is described as follows:

ufb(s) = Kp

(
b e(s)− SCORm(s)

)
+

Kp

Tis
e∗(s)+

+
Tds

1 +
Tds

N

(
c e(s)− SCORm(s)

) (13)

A New Hybrid GA-FA Tuning of PID Controller 159

where: ufb (s) is the feedback term of control variable, [l·h−1]; Kp is proportional
gain, [-]; Ti is integral time, [h]; Td is derivative time, [h]; b and c are set-
point weight coefficients, [-]; Td/N is low-pass first order filter of D-term time-
constant, [h].

The error e∗(s) is:
e∗(s) = e(s)− SCORm(s),

where:
e(s) = ref(s)− em(s), ref(s) is a reference signal and em(s) = Ŝ(s)−Sm(s).
For the E. coli MC4110 cultivation considered here, the process desired set-

point (reference signal) is set at ref(s) = 0.1 g·l−1 glucose concentration [3].
Considering real applications, usually a digital PID controller is implemented.

Here, for discretization of the PID controller (Eq. (13)), the backward Euler
method [20] is used. The mathematical description of the designed digital PID
controller is:

ufb(k) = up(k) + ui(k) + ud(k) (14)

up(k) = Kp

(
b e(k)− SCORm(k)

)
(15)

ui(k) = ui(k − 1)+

+bi1
(
e(k)− SCORm(k)

)
+ bi2

(
e(k − 1)− SCORm(k − 1)

) (16)

ud(k) = adud(k − 1)+

+bd
(
ce(k)− ce(k − 1)− SCORm(k) + SCORm(k − 1)

) (17)

where

bi1 = Kp
T0

Ti
; bi2 = 0; ad =

Td

Td +NT0
; bd = Kp

TdN

Td +NT0
.

The control variable used to control the feed rate is:

F (k) = ufb(k) + uff(k) (18)

where

uff(k) =
1

YS/X

Vm(k)μm(k)Xm(k)

Sin − SCORm
(19)

is a feedforward term obtained from the steady state conditions.
To provide control action designed for specific process requirements, tuning

of the PID controller parameters is required. The controller parameters are Kp,
Ti, Td, b, c and N .

3 Hybrid Firefly Algorithm - Genetic Algorithm

The proposed FA-GA algorithm is basically a combination of the FA and GA
methods. In this hybrid, in the first step, FA explores the search place in order

160 O. Roeva and T. Slavov

to either isolate the most promising region of the search space. In the second
step, to improve global search and get rid of trapping into several local optima,
it is introduced GA to explore search space and find new better solutions. Below
is presented a brief description of the FA and GA techniques.

3.1 Firefly Algorithm

The FA is a meta-heuristic algorithm which is inspired from flashing light be-
haviour of fireflies in nature. The pattern of flashes is often unique for a particular
species of fireflies. The two basic functions of such flashes are to attract mating
partners or communicate with them, and to attract potential victim. Addition-
ally, flashing may also serve as a protective warning mechanism.

In FA, each firefly has a location y = (y1, ..., yd)
T in a d-dimensional space

and light intensity I(y) or attractiveness β(y), which are proportional to an
objective function f(y). Attractiveness β(y) and light intensity I(yx) are relative
and these should be judged by the rest fireflies. Thus, attractiveness will vary
with the distance ri,j between firefly i and firefly j. So, attractiveness β of a
firefly can be defined by Eq. (20) ([28], [29], [30]):

β(r) = β0e
−γrm ,m � 1 (20)

where r (or ri,j) is the distance between the i-th and j-th of two fireflies. β0 is
the initial attractiveness at r = 0 and γ is a fixed light absorption coefficient
that controls the decrease of the light intensity. In the herewith applied FA, the
coefficient m = 2.

The initial solution is generated based on:

yj = rand(Ub − Lb) + Lb (21)

where rand is a random number generator uniformly distributed in the space [0,
1]; Ub and Lb are the upper range and lower range of the j-th firefly, respectively.
When firefly i is attracted to another more attractive firefly j, its movement is
determined by:

yi+1 = yi + β0e
−γr2i,j(yi − yj) + α(rand − 1

2
) (22)

where the first term is the current position of a firefly, the second term is used for
considering a firefly’s attractiveness to light intensity seen by adjacent fireflies
β(r) (Eq. (20)), and the third term is used to describe the random movement of
a firefly in case there are no brighter ones. The coefficient α is a randomization
parameter determined by the problem of interest. The distance ri,j between any
two fireflies i and j at yi and yj, respectively, is defined according to [28], [29],
[30]:

ri, j = ‖yi − yj‖ =

√√√√ d∑
k=1

(yi, k − yj, k)
2

(23)

where yi,k is the k-th component of the spatial coordinate yi of the i-th firefly.

A New Hybrid GA-FA Tuning of PID Controller 161

3.2 Genetic Algorithm

GA originated from the studies of cellular automata, conducted by John Holland
and his colleagues at the University of Michigan. Holland’s book [13], published
in 1975, is generally acknowledged as the beginning of the research of genetic
algorithms. Since their introduction and subsequent popularization [13], the GA
have been frequently used as an alternative optimization tool to the conventional
methods [11] and have been successfully applied in a variety of areas, and still
find increasing acceptance [1], [2], [5], [8], [16], [19], [21].

The GA is a model of machine learning which derives its behavior from a
metaphor of the processes of evolution in nature [11]. This is done by the creation
within a machine of a population of individuals represented by chromosomes.
A chromosome could be an array of real numbers, a binary string, a list of
components in a database, all depending on the specific problem.

The GA maintains a population of individuals, P (t) = yt1, ..., y
t
n for gener-

ation t. Each individual represents a potential solution to the problem and is
implemented as some data structure U . Each solution is evaluated to give some
measure of its “fitness”. Fitness of an individual is assigned proportionally to
the value of the objective function of the individuals. Then, a new population
(generation t+1) is formed by selecting more fit individuals (selected step). Some
members of the new population undergo transformations by means of “genetic”
operators to form new solution.

There are unary transformations mi (mutation type), which create new indi-
viduals by a small change in a single individual (mi : U → U), and higher order
transformations cj (crossover type), which create new individuals by combining
parts from several individuals (cj : U × . . .× U → U).

After some number of generations the algorithm converges - it is expected
that the best individual represents a near-optimum (reasonable) solution.

The combined effect of selection, crossover and mutation gives so-called re-
productive scheme growth equation [11]:

ξ (U, t+ 1) ≥ ξ (U, t) eval (U, t) /F̄ (t)

[
1− pc

δ (U)

m− 1
− o (U) pm

]
(24)

The structure of the hybrid FA-GA is shown by the pseudo-code in Fig. 2.

4 Results and Discussion

A series of tuning procedures for the considered control system using hybrid
FA-GA, pure GA and pure FA are performed. Computer specifications to run
all optimization procedures are Intel Core i5-2320 CPU 3.00GHz, 8 GB Memory
(RAM), Windows 7 (64bit) operating system.

The main FA parameters are set to the optimal settings [20]:

– β0 = 1, γ = 1, α = 0.2,
– number of fireflies = 25, number of iterations = 50.

162 O. Roeva and T. Slavov

begin FA
Define

algorithm parameters and operators
objective function f(y), where y = (y1, ..., yd)

T

Generate initial population of fireflies yi, (i = 1, 2, ..., n)
Determine light intensity Ii at yi via f(yi)

while (t < FAMaxIteration) do
for i = 1 : n all n fireflies do

for j = 1 : i all n fireflies do
if (Ij > Ii) then
Move firefly i towards j
end if
Attractiveness varies with distance r via exp[−γr2]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current best

end while
Final best population of fireflies

end begin FA
begin GA

i = 0
Initial population P (0) = Final best population of fireflies
Evaluate P (0) fitness

while (t < GAMaxGeneration) do
i = i+ 1
Select P (i) from P (i− 1)
Recombine P (i) with crossover probability pc
Mutate P (i) with mutation probability pm
Evaluate P (i) fitness

end while
Rank the chromosomes, find the current best and save
Postprocess results and visualization

end begin GA

Fig. 2. Pseudo-code for hybrid FA-GA

The main GA parameters are as follows [20]:

– number of individuals = 25; number of generations = 50;
– double point crossover with crossover probability pc = 0.7;
– mutation with low probability pm = 0.01;
– a roulette wheel mechanism is employed;
– a generation gap of 0.97 is chosen,
– fitness-based reinsertion is used.

For realistic comparison, the pure GA and FA are run for the same number of
function evaluations, namely 1250.

A New Hybrid GA-FA Tuning of PID Controller 163

Some of the hybrid FA-GA parameters are tuned based on several pre-tests
according to the problem considered here. As a result the following parameters
are used:

– number of fireflies = 15,
– number of FA iterations = 10,
– number of GA individuals = 15,
– number of GA generations = 20.

The rest of the hybrid algorithm parameters are the same as the above listed
algorithm parameters for GA and FA. Because of the stochastic characteristics
of the applied algorithms, a series of 30 runs for each algorithm are performed
and the best, the worst and average numerical results are obtained and presented
here.

The range of the tuning parameters is considered, as follows:
Kp ∈ [0, inf]; Ti ∈ [0, inf]; Td ∈ [0, inf]; b, c ∈ [0, inf]; N ∈ [0, inf].

To evaluate the significance of the tuning procedure the integrated square
error (IISE) criterion is used:

IISE =

T∫
0

e∗(t)2dt (25)

where t is time, h; T is end time of the cultivation, h.
As a result of the tuning procedures, the optimal PID controllers settings are

obtained. Thus, for a short time, the controllers set the control variable and
maintain it at the desired set point (ref(s) = 0.1 g·l−1) to the end of fed-batch
cultivation process.

The numerical values of the controllers parameters (Kp, Ti, Td, b, c and N),
objective functions values (IISE), total computational times (Tcomp) and number
of functions evaluations (NFE) are presented in Table 1.

The presented experimental results show that the proposed hybrid FA-GA
has superior performance compared to the both pure FA and GA tuned PID
controllers. These results are obtained for the “best” and “average” values.

For about two times less number of function evaluations (from NFE = 1250
to NFE = 670) and for about 27% less computational time (see Table 1), the
hybrid FA-GA achieves the values:

– best values: IFA-GA
ISE = 16.8400;

– average values: IFA-GA
ISE

= 16.8720.

The results considering the “worst” values are achieved from the FA tuned PID
controller. In the other two cases (“best” and “average”) for the same number
of function evaluations (NFE = 1250) the FA tuned PID controller keeps the
glucose concentration at the desired set point more accurately than the GA
tuned PID controller:

– best values: IFA
ISE = 16.8410 vs. IGA

ISE = 16.8706;
– average values: IFA

ISE = 16.8720 vs. IGA
ISE = 16.8823.

164 O. Roeva and T. Slavov

Table 1. Experimental results of PID controller tuning for glucose concentration con-
trol during an E. coli MC4110 fed-batch cultivation process

Value Algorithm NFE Tcomp IISE
PID Controller Parameters

Kp Ti Td b c N

best

GA 1250 185.8908 16.8706 0.522 0.198 0.006 1.037 0.976 1.236

FA 1250 178.7211 16.8410 0.303 0.491 0.003 0.099 1.621 19.952

FA-GA 670 131.2417 16.8400 0.684 0.526 0.002 0.834 1.235 17.221

worst

GA 1250 184.6116 16.9548 0.413 0.005 0.008 0.566 0.830 1.470

FA 1250 181.0312 17.0793 0.256 0.609 0.010 1.545 0.835 10.180

FA-GA 670 138.3622 17.0312 0.029 0.560 0.045 2.340 0.666 14.876

average

GA 1250 178.3081 16.8823 0.135 0.948 0.024 2.371 0.834 1.433

FA 1250 174.7211 16.8842 0.388 0.521 0.005 0.631 1.207 13.496

FA-GA 670 137.8752 16.8720 0.847 0.210 0.003 0.997 0.972 16.415

Although the observed best objective function values of the hybrid FA-GA and
FA are very close, the FA-GA tuned PID controller shows better performance
than the FA tuned one. In the next figures, some graphical results of the control
system performance for E. coli fed-batch cultivation process are presented.

In Fig. 3 obtained profiles of the control variable (glucose concentration) for
the three PID controllers are shown. The cultivation process is simulated for 16
hours that is with 3 hours more than the process discussed in [3]. Thus, it is shown
that the resulting PID controllers ensured good control system performance for
a much longer cultivation time. As it can be seen from Fig. 3, for up to 15 h
the three controllers (FA, GA and hybrid FA-GA) show identical performance
with respect to the resulting dynamics of control variable. In the same time
the errors between control variable and reference signal (IISE) are identical
(see Table 1). After 15 h, the errors of control systems based on both GA and
FA tuned controllers are greather than the corresponding value for the control
system based on the controller tuned by proposed here hybrid FA-GA (Fig. 3,
solid bold line).

On Fig. 4 the control signal (feed rate profiles) for the three PID controllers
are presented. The figure shows analogical results. The control signal of the FA-
GA PID controller is smoother than the corresponding profiles calculated by
standard GA and FA conrollers. This result is more expressive in the last two
hours of E. coli fed-batch cultivation process.

The numerical and graphical results imply that the proposed hybrid FA-GA is
potentially more powerful when applied for the optimization problem considered
here.

A New Hybrid GA-FA Tuning of PID Controller 165

7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
PID Controller Tuning

Time, [h]

S
ub

st
ra

te
 c

on
ce

nt
ra

tio
n,

 [g
/l]

FA Tuning
GA Tuning
FA−GA Tuning

14.5 15 15.5 16
0.04

0.06

0.08

0.1

0.12

0.14

0.16

GA

FA

FA−GA

Fig. 3. Control variable - glucose concentration

7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
PID Controller Tuning

Time, [h]

C
on

tr
ol

 s
ig

na
l −

 fe
ed

 r
at

e
pr

of
ile

, [
l/h

]

FA Tuning
GA Tuning
FA−GA Tuning

14.5 15 15.5 16
0

0.1

0.2

0.3

0.4

GA

FA

FA−GA

Fig. 4. Control signal - feed rate profiles

166 O. Roeva and T. Slavov

5 Conclusion

The paper presents optimal tuning of PID controller with Smith Predictor struc-
ture, using the hybrid algorithm between two meta-heuristics: GA and recently
developed FA. The controller is used to control feed rate and to maintain glu-
cose concentration at the desired set point for an E. coli MC4110 fed-batch
cultivation process.

The mathematical model of the cultivation process is represented by the dy-
namic mass balance equations for main process variables - biomass and substrate
concentration. A series of tuning procedures for PID controllers tuning, using
FA, GA and FA-GA, are performed. The meta-heuristic algorithms’ parameters
are problem-oriented and specifically chosen to achieve an adequate and accurate
decision. It is demonstrated that the meta-heuristics - pure and hybrid provide
simple, efficient and accurate approach of tuning the Smith Predictor structure
based on PID controller. As a result, a set of optimal PID controller parame-
ters is obtained. For a short time, the controllers set the control variable and
maintain it at the desired set-point during the cultivation process. Thus, a good
closed-loop system performance is achieved.

Based on the comparison between FA, GA and proposed here hybrid FA-
GA, it could be concluded that FA-GA, shows superior performance for PID
controller parameter tuning of the considered nonlinear control system. The
results show that the FA-GA takes the advantages of both FA’s and GA’s search
ability, hence enhances the overall search ability and computational efficiency.
The hybrid algorithm achieves the less value for the integrated square error
criterion used here. Moreover the results are obtained for about two times less
number of function evaluations and for about 27% less computational time.

Finally, it is shown that the PID controller tuning using FA-GA can be con-
sidered as an effective approach for the achievement of high quality and better
performance of the designed control system for cultivation processes.

Acknowledgments. This work has been partially supported by the Bulgar-
ian National Science Fund under the Grants DID 02/29 “Modelling Processes
with Fixed Development Rules (ModProFix)” and DMU 02/4 “High quality
control of biotechnological processes with application of modified conventional
and metaheuristics methods”.

References

1. Akpinar, S., Bayhan, G.M.: A Hybrid Genetic Aalgorithm for Mixed Model Assem-
bly Line Balancing Problem with Parallel Workstations and Zoning Constraints.
Engineering Applications of Artificial Intelligence 24(3), 449–457 (2011)

2. Al-Duwaish, H.N.: A Genetic Approach to the Identification of Linear Dynamical
Systems with Static Nonlinearities. International Journal of Systems Science 31(3),
307–313 (2000)

A New Hybrid GA-FA Tuning of PID Controller 167

3. Arndt, M., Hitzmann, B.: Feed Forward/feedback Control of Glucose Concentra-
tion during Cultivation of Escherichia coli. In: 8th IFAC Int. Conf. on Comp. Appl.
in Biotechn, pp. 425–429 (2001)

4. Aström, K., Hagglund, T.: Advanced PID Control. Instrument Society of America
(2006)

5. Benjamin, K.K., Ammanuel, A.N., David, A., Benjamin, Y.K.: Genetic Algorithm
using for a Batch Fermentation Process Identification. Journal of Applied Sci-
ences 8(12), 2272–2278 (2008)

6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

7. Brownlee, J.: Clever Algorithms. Nature-Inspired Programming Recipes, LuLu
(2011)

8. da Silva, M.F.J., Perez, J.M.S., Pulido, J.A.G., Rodriguez, M.A.V.: AlineaGA - A
Genetic Algorithm with Local Search Optimization for Multiple Sequence Align-
ment. Appl. Intell. 32, 164–172 (2010)

9. Galvez-Carrillo, M., De Keyser, R., Ionescu, C.: Application of a Smith Predictor
based Nonlinear Predictive Controller to a Solar Power Plant. In: 7th IFAC Sym-
posium on Nonlinear Control Systems, Pretoria, South Africa, August 21-24, pp.
188–193 (2007)

10. Garipov, E.: PID Controllers. Automatics and Informatics, vol. 3 (2006) (in Bul-
garian)

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley Longman, London (2006)

12. Gundogdu, O.: Optimal-tuning of PID Controller Gains using Genetic Algorithms.
Journal of Engineering Sciences 11(1), 131–135 (2005)

13. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press,
Cambridge (1992)

14. Kim, J.S., Kim, J.-H., Park, J.-M., Park, S.-M., Choe, W.-Y., Heo, H.: Auto Tuning
PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant.
World Academy of Science, Engineering and Technology 47, 384–389 (2008)

15. Kumar, S.M.G., Rakesh, B., Anantharaman, N.: Design of Controller using Sim-
ulated Annealing for a Real Time Process. International Journal of Computer
Applications 2, 1053–1368 (2010)

16. Paplinski, J.P.: The Genetic Algorithm with Simplex Crossover for Identification
of Time Delays. Intelligent Information Systems, pp. 337–346 (2010)

17. Puangdownreong, D., Kulworawanichpong, T., Sujitjorn, S.: Input weighting opti-
mization for PID controllers based on the adaptive tabu search. IEEE TENCON 4,
451–454 (2004)

18. Ranganath, M., Renganathan, S., Gokulnath, C.: Identification of Bioprocesses
using Genetic Algorithm. Bioprocess Engineering 21, 123–127 (1999)

19. Roeva, O.: Improvement of Genetic Algorithm Performance for Identification of
Cultivation Process Models. In: Advances Topics on Evolutionary Computing,
Book Series: Artificial Intelligence Series-WSEAS, pp. 34–39 (2008)

20. Roeva, O., Slavov, T.: Firefly Algorithm Tuning of PID Controller for Glucose
Concentration Control during E. coli Fed-batch Cultivation Process. In: Federated
Conference on Computer Science and Information Systems, WCO 2012, Poland,
pp. 455–462 (2012)

21. Roeva, O., Slavov, T.: Fed-Batch Cultivation Control Based on Genetic Algorithm
PID Controller Tuning. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010.
LNCS, vol. 6046, pp. 289–296. Springer, Heidelberg (2011)

168 O. Roeva and T. Slavov

22. Slavov, T., Roeva, O.: Genetic Algorithm Tuning of PID Controller in Smith Pre-
dictor for Glucose Concentration Control. Int. J. Bioautomation 15(2), 101–114
(2011)

23. Smith, O.J.M.: A Controller to Overcome Dead Time. ISA Journal 6, 28–33 (1959)
24. Syam, W.P., Al-Harkan, I.M.: Comparison of Three Meta Heuristics to Optimize

Hybrid Flow Shop Scheduling Problem with Parallel Machines. World Academy of
Science, Engineering and Technology 62, 271–278 (2010)

25. Tahouni, N., Smith, R., Panjeshahi, M.H.: Comparison of Stochastic Methods with
Respect to Performance and Reliability of Low-temperature Gas Separation Pro-
cesses. The Canadian Journal of Chemical Engineering 88(2), 256–267 (2010)

26. Tseng, L.-Y., Lin, Y.-T.: A Hybrid Genetic Local Search Algorithm for the Per-
mutation Flowshop Scheduling Problem. Europen J. of Operational Res. 198(1),
84–92 (2009)

27. Wang, Q., Spronck, P., Tracht, R.: An Overview of Genetic Algorithms Applied to
Control Engineering Problems. Machine Learning and Cybernetics 3, 1651–1656
(2003)

28. Yang, X.S.: Nature-inspired Meta-heuristic Algorithms. Luniver Press, Beckington
(2008)

29. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe,
O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer,
Heidelberg (2009)

30. Yang, X.S.: Firefly Algorithm, Stochastic Test Functions and Design Optimisation.
International Journal of Bio-inspired Computation 2(2), 78–84 (2010)

Some Properties of the Broyden Restricted

Class of Updates with Oblique Projections

Andrzej Stachurski

Institute of Control and Computation Engineering
Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
A.Stachurski@ia.pw.edu.pl

Abstract. In the paper the new formulation of the Broyden restricted
convex class of updates involving oblique projections and some of its
properties are presented. The new formulation involves two oblique pro-
jections. The new formula is a sum of two terms. The first one have
the product form similar to that known for years for the famous BFGS
(Broyden, Fletcher, Goldfarb, Shanno) update. The difference is that
the oblique projection in the product contains vector defined as the con-
vex, linear combination of the difference between consecutive iterative
points and the image of the previous inverse hessian approximation on
the corresponding difference of derivatives, i.e. gradients. The second
standard term ensuring verification of the quasi-Newton condition is also
an oblique projection multiplied by appropriate scalar. The formula re-
lating the scalar parameter in the presented new version of updates with
the formula appearing in the standard formulation is introduced and
analyzed analytically and graphically. Formal proof of the theoretical
equivalence of both updating formulas, when this relation is verified, is
presented.

Some preliminary numerical experiments results on two twice contin-
uously differentiable, strictly convex functions with increasing dimension
are included.

1 Introduction

Problem considered in the current paper is the unconstrained minimization of
a sufficiently smooth function

min
x∈IRn

f(x) (1)

Solution method assumes that given starting point x0 every consecutive approx-
imate solution point is generated according to the following iterative formula

xk+1 = xk + αkdk, ∀k ≥ 0 (2)

where αk > 0 is the stepsize coefficient found in the directional minimization
and the search direction dk is equal to

dk = −Hkgk (3)

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 169–182.
DOI: 10.1007/978-3-319-00410-5_10 c© Springer International Publishing Switzerland 2013

170 A. Stachurski

Matrix Hk+1 is calculated at each step with the aid of vectors: sk = xk+1 − xk,
rk = ∇f(xk+1)−∇f(xk) and the previous matrix Hk.

Problems of unconstrained functions minimization arise first of all as the re-
sult of the least squares approach to solve sets of nonlinear equations (see for
instance the problem of determining stresses in RC ring sections with openings
in Lechman and Stachurski [11] and Stachurski and Lechman [20]) and identifi-
cation of parameters appearing in the model in a nonlinear way (as for instance
in the augmented Gurson model describing the creation and growth of voids
in the porous material considered in Nowak and Stachurski in the sequence of
publications [12]- [16]).

Broyden convex class of updates is usually expressed in the following way (see
for instance Sun and Yuan [25])

Hk+1 = Hk +

(
1 + Φ

(
rk
)T

Hkrk

(rk)
T
sk

)
sk
(
sk
)T

(rk)
T
sk

− (1− Φ)
Hkrk

(
rk
)T

Hk

(rk)
T
Hkrk

−Φ
sk
(
rk
)T

Hk +Hkrk
(
sk
)T

(rk)
T
sk

(4)

where Φ is a scalar belonging to the interval [0, 1].
In the consecutive section 2 we shall show an alternate updating formula of

the form

Hk+1 = PTHkP+ βQ

where P and Q are oblique projections, i.e. P sets to null any vector collinear
with rk and Q nullifies any vector orthogonal to sk and PP = P and QQ = Q.
Parameter β is a positive scalar changing from one iteration to another. Reader
interested in the theory of oblique projections and their properties may find
more information for instance in Afriat [1] or Szyld [24]. In section 3 we show
formula relating scalar parameters in both formulas. We present formal theorem
with the proof of the equivalence of the new form of updates and the standard
formulation when the aforementioned relation holds. In consecutive section 4 we
analyze the relating formula analytically and graphically. The behavior depends

heavily on the ratio
rTk H

ksk
rTk sk

.

Section 5 contains some preliminary computational results obtained with the
aid of quasi-newton methods with updates defined by the discussed formula with
parameter Θ = 1, 0 and 1

2 . Testing examples are two strictly convex functions
constructed in the way permitting easily increase their dimensions. In the last
section 6 conclusions and comments following from the numerical experiments
and of general theoretical character are presented.

Some Properties of the Broyden Restricted Class 171

2 Oblique Projections in the Formula of the Broyden
Class Updates

Broyden convex class may be equivalently represented by the following updating
formula

Hk+1 =
(
Pk
)T

HkPk +
sk
(
sk
)T

(rk)
T
sk

(5)

where Pk is the projection matrix defined as follows

Pk = I−
rk
[
Θsk + (1− Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

(6)

and parameter Θ ∈ [0, 1].

2.1 Involved Oblique Projections

First, let’s show that Pk is the projection matrix transforming vector rk to the
null vector 0

Pkrk =

(
I−

rk
[
Θsk + (1−Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

)
rk

= rk − rk
[
Θsk + (1 −Θ)Hkrk

]T
rk

(rk)
T
(Θsk + (1−Θ)Hkrk)

= 0

(7)

Matrix Pk is an oblique projection (definition and properties of such projections
may be found for instance in Afriat [1] or Szyld [24]), because

PkPk =

(
I−

rk
[
Θsk + (1 −Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

)(
I−

rk
[
Θsk + (1−Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

)

= I−
rk
[
Θsk + (1−Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

+
rk
[
Θsk + (1−Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

(
rk
)T (

Θsk + (1 −Θ)Hkrk
)

(rk)
T
(Θsk + (1−Θ)Hkrk)

−
rk
[
Θsk + (1−Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

= I−
rk
[
Θsk + (1−Θ)Hkrk

]T
(rk)

T
(Θsk + (1−Θ)Hkrk)

= Pk

Second term in formula (5) is also an oblique projection

sk
(
sk
)T

‖sk‖2 (8)

172 A. Stachurski

multiplied by a scalar

β =
‖sk‖2

(rk)
T
sk

(9)

It is not difficult to show that formula (8) defines an oblique projection.
Representation (5) has appeared for the first time in Stachurski [22]. It was

proposed there as a new quasi-newton update. Later the author has realized that
it’s a new representation of the famous convex class of Broyden proposed for the
first time in [3].

2.2 BFGS Update and Oblique Projections

Similar product representation is known for many years for the BFGS update
(name derived from the family names of its authors Broyden [3], Fletcher [8],
Goldfarb [10] and Shanno [17])

Hk+1
BFGS = Hk +

(
1 +

(
rk
)T

Hkrk

(rk)
T
sk

)
sk
(
sk
)T

(rk)
T
sk

−
sk
(
rk
)T

Hk +Hkrk
(
sk
)T

(rk)
T
sk

(10)

In the limited memory BFGS method (see for instance Xiao [26]) the following
representation of the BFGS update is frequently used

Hk+1 =

(
I−

rk
(
sk
)T

(sk)
T
rk

)T

Hk

(
I−

rk
(
sk
)T

(sk)
T
rk

)
+

sk
(
sk
)T

(rk)
T
sk

(11)

It is easy to notice that formula (11) is represented by formulae (5) and (6) with
Θ = 1.

2.3 DFP Update and Oblique Projections

The second famous update – DFP (proposed originally by Davidon [5] and [6]
and further developed by Fletcher and Powell [7])

Hk+1
DFP = Hk −

Hkrk
(
rk
)T

Hk

(rk)
T
Hkrk

+
sk
(
sk
)T

(rk)
T
sk

(12)

may be also expressed with the aid of oblique projections as follows

Hk+1 =

(
I−

rk
(
Hkrk

)T
(Hkrk)

T
rk

)T

Hk

(
I−

rk
(
Hkrk

)T
(Hkrk)

T
rk

)
+

sk
(
sk
)T

(rk)
T
sk

(13)

It is easy to observe that formula (11) is represented by formulas (5) and (6)
with Θ = 0. Equivalence of formulas (12) and (13) was shown for the first time
in Stachurski [21].

Some Properties of the Broyden Restricted Class 173

3 Relation between the Scalar Parameters of Updates

Parameters Φ and Θ are mutually connected by the following formula

Φ = Θ2

(
rTk sk

)2(
rTk uk

)2 (14)

where vector uk = Θsk + (1 −Θ)Hkrk.
Formal prove showing that when equality (14) holds then formulas (4) and (5)

are equivalent is presented below.

Theorem 1. Let parameters Θ ∈ [0, 1] and Φ ∈ [0, 1] verify equality (14) and
rTk sk > 0.

Then in the exact arithmetic the family of updates with oblique projections
defined by formulae (5–6) and the Broyden’s restricted class (4) produce identical
matrices Hk+1.

Proof. Let’s rewrite the updating formula with oblique projections (5-6) in the
following equivalent way

Hk+1 = Hk +

[
−Θ +Θ(1 −Θ)

rTk H
krk

rTk uk

]
Hkrks

T
k + skr

T
kH

k

rTk uk

+

[
(1−Θ)2

rTk H
krk

rTk uk
− 2(1−Θ)

]
Hkrkr

T
k H

k

rTk uk

+

[
Θ2

rTk uk

rTk H
krk

rTk uk
+

1

rTk sk

]
sks

T
k

(15)

where
uk = Θsk + (1 −Θ)Hkrk

Similarly, the Broyden’s restricted class updating formula can be expressed
equivalently as follows

Hk+1 = Hk − Φ
skr

T
kH

k +Hkrks
T
k

rTk sk

− (1− Φ)
Hkrkr

T
kH

k

rTk H
krk

+

(
Φ
rTk H

krk(
rTk sk

)2 +
1

rTk sk

)
sks

T
k

(16)

Now, we shall show that the coefficients in (15) and (16) associated with the
terms Hkrks

T
k +Hkrks

T
k , H

krkr
T
k H

k and sks
T
k are equal when formula (14) is

verified, i.e. we shall prove validity of the following three equalities

− Θ

rTk uk
+Θ(1 −Θ)

rTkH
krk(

rTk uk

)2 = − Φ

rTk sk

(1−Θ)2
rTkH

krk(
rTk uk

)2 − 2(1−Θ)

rTk uk
= − (1− Φ)

rTkH
krk

Θ2

rTk uk

rTk H
krk

rTk uk
+

1

rTk sk
=

1

rTk sk
+ Φ

rTk H
krk(

rTk sk
)2

(17)

174 A. Stachurski

Let’s denote the left-hand sides coefficients in equation (17), in the first line by
N1, second by N2 and the third by N3.

It is readily seen that coefficients in the third lines are equal

Θ2

rTk uk

rTkH
krk

rTk uk
+

1

rTk sk
= Φ

rTk H
krk(

rTk sk
)2 +

1

rTk sk

It suffices to subtract 1
rTk sk

from both sides, multiply by
(
rTk sk

)2
and divide by

rTkH
krk.

Let us now consider the N1 coefficient, appearing in the first line of for-
mula (15)

N1 = − Θ

rTk uk
+Θ(1 −Θ)

rTkH
krk(

rTk uk

)2
Transformation of the fractions to the form with the common denominator and
their addition leads to the following formulation

N1 =
−ΘrTk uk +Θ(1 −Θ)rTk H

krk(
rTk uk

)2
Applying the definition of vector uk = Θsk + (1−Θ)Hkrk we obtain

N1 =
−Θ2rTk sk −Θ(1 −Θ)rTk H

krk +Θ(1 −Θ)rTk H
krk(

rTk uk

)2
Now, reduction of similar terms in the numerator yields

N1 =
−Θ2rTk sk(
rTk uk

)2 = − Φ

rTk sk

Let’s analyze the N2 coefficient

N2 = (1 −Θ)2
rTkH

krk(
rTk uk

)2 − 2(1−Θ)

rTk uk

First, let’s convert the two fractions to the form with the common denominator,
subtract them and multiply the resulting numerator and denominator by the
same factor rTkH

krk. After doing that we obtain the following representation

N2 =
(1−Θ)2

(
rTk H

krk
)2 − 2(1−Θ)rTk H

krkr
T
k uk

rTk H
krk

(
rTk uk

)2
Now, application of the identity(

ΘrTk sk
)2

=
(
rTk uk − (1−Θ)rTk H

krk
)2

=
(
rTk uk

)2 − 2(1−Θ)rTk H
krkr

T
k uk + (1−Θ)2

(
rTk H

krk
)2

Some Properties of the Broyden Restricted Class 175

in the numerator yields

N2 =
Θ2

(
rTk sk

)2 − (
rTk uk

)2
rTk H

krk
(
rTk uk

)2
Division of the numerator and denominator by quantity

(
rTk uk

)2
produces the

result

N2 =

Θ2

(
rTk sk
rTk uk

)2

− 1

rTk H
krk

Taking into account the assumption we obtain that

N2 = − 1− Φ

rTkH
krk

what concludes the proof.

4 Properties of the Relation between Parameters

Formula (14) relating parameters Φ and Θ may be rewritten as follows

Φ = Θ2

[
rTk sk

ΘrTk H
krk + (1−Θ)rTk sk

]2
(18)

Division of numerator and denominator of the second fraction by rTk s
k yields

Φ = Θ2

⎡
⎢⎢⎣ 1

Θ + (1−Θ)
rTk H

krk
rTk sk

⎤
⎥⎥⎦
2

(19)

Now let’s denote by a the ratio present in the denominator

a =
rTk H

krk

rTk sk

what leads to the following dependence

Φ(Θ) = Θ2

[
1

Θ + (1−Θ)a

]2
(20)

Let’s fix some Θ ∈ (0, 1) and calculated the limits for parameter a −→ 0

lim
a−→0

Φ(Θ) = lim
a−→0

[
Θ

Θ + (1−Θ)a

]2
= 1 (21)

176 A. Stachurski

and for a −→ ∞

lim
a−→∞Φ(Θ) = lim

a−→∞

[
Θ

Θ + (1 −Θ)a

]2
= lim

a−→∞

[
Θ/a

Θ/a+ 1−Θ

]2
= 0 (22)

Hence we may conclude that for small values of the ratio
rTkH

krk
rTk sk

the new

updating formula automatically approaches the BFGS formula. For large values
of the the formula approaches the DFP update.

To realize what values of the ratio are significant we will analyze the depen-
dence (20) graphically. Below we draw Φ as a function of Θ for different values
of parameter a. The corresponding plots are presented on Fig. 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a=0.001

a=0.01

a=0.2

a=0.4

a=0.6

a=1.0

a=5.0

a=50
a=1000

Fig. 1. Dependence of Φ(Θ) for different values of the ratio a

Deeper look into the plots shows that with small values of ratio a, parameter Φ
is almost equal to 1 for Θ > 0.1 when ratio a drops to the value equal to 0.001.
Large values of a results in Φ almost equal to 0 for Θ < 0.9, when a reaches
the level 100. For Θ = 1/2 those levels are much closer: parameter Φ is close
to 1 already for a = 0.01 and to 0 for Θ = 5. This observation points that the
updating formula has a built–in mechanism of selection of formulas close to DFP
update, when rTk H

krk is significantly larger than rTk s
k and BFGS update when

it is significantly smaller. It is consistent with the Fletcher [8] switching rule
between DFP and BFGS updates: select DFP update, when rTk H

krk > rTk s
k

and BFGS update in the opposite case.

5 Numerical Experiments

In the current section the results of numerical calculations are presented. They
are realized by means of three variants of updates specified by formulas (5-6)

Some Properties of the Broyden Restricted Class 177

with parameter Θ equal to 1 (corresponding to the BFGS method), 0 (DFP
method) and 1

2 . Three variants of directional minimization were tested: Armijo
directional minimization ensuring verification of the Armijo condition (identical
with the first Godstein test) (it is denoted below in the results table by A.),
directional minimization ensuring verification of the Wolfe conditions (denoted
below by W.), directional minimization ensuring verification of both Goldstein
conditions (denoted by G. respectively).

The first directional minimization was realized by setting the starting value of
the directional step–size and its consecutive reduction by some constant coeffi-
cient belonging to the interval (0, 1) until the first Goldstein condition is met. In
the second directional minimization Wolfe conditions were used as the stopping
criterion and in the third variant two Goldstein tests served as the stopping
criterion for the directional minimization. In the second and third variant of
the directional minimization consecutive approximations of the step–size length
were generated as the minimum point of the parabola approximating function
f̃(α) = f(xk + α ∗ dk).

5.1 Test Functions

Two strictly convex, n-dimensional functions with increasing dimension were
used for testing. Dimensions were equal to n = 2, 10, 50, 100, 500, 1000, 2000.
The first was obtained by raising up to the second power values of a strictly
convex quadratic function with positive values (its minimal value was positive)

f1(x) =
1

2
[fqua(x)]

2
, (23)

where

fqua(x) =
1

2
(x− e)

T
Q (x− e) + 1.0 (24)

Vector eT = [1, 1, . . . , 1] in formula (24) consists of ones, second derivative ma-
trix Q was generated randomly (some extra operations ensuring its positive
definiteness were involved). First, quadratic matrix Q̄ of size n×n is created by
invoking MATLAB function rand. Its elements are numbers belonging to the in-
terval [0, 1]. Next, lower triangular matrix L is created on the basis of matrix Q̄.
It has entries with 0 values on the main diagonal and its entries below the main
diagonal were identical with that of Q̄ matrix, i.e.

Lij = Q̄ij , ∀i < j,
Lij = 0, ∀i ≥ j

Finally, matrix Q is defined in the consecutive step by the formula

Q̃ =
1

2

[
L+ LT

]
to which the diagonal matrix D defined as

Dii =
n∑

j=1

Q̃ij + 1, i = 1, . . . n

178 A. Stachurski

is added. The resulting matrix Q = Q̃ +D was a diagonally dominated matrix
with nonnegative entries. All entries outside the main diagonal belong to the in-
terval [0, 1]. Furthermore, it was positive definite. The last property was checked
numerically to verify correctness.

Vector e is the unique, local and global minimum of the function (23) con-
structed in this way. Its optimal value is 1/2. Described construction makes use
of the random numbers generator, however data defining the generated problem
of a given size together with the starting point were stored in the MATLAB
data file with extension .dat by means of the save command. The file has been
loaded to the operational memory during the start of any method by means
of the load command. It ensures compatibility of the computational results for
various methods which were tested. For any assumed dimension – 2, 10, 50, 100,
500, 1000, 2000 an independent problem has been generated. In any case, the
way of generating the problem was identical with that described above. Simi-
larly, the starting points were the same for any method for the problem of the
given dimension. All calculations were run on the 32-bit personal computer with
processor Intel(R) Pentium(R) 4 CPU 3.20GHz, with RAM memory of 1GB
capacity, working under the Windows XP Professional operating system.

In the second example function f2 is generated similarly. The only difference
is that instead of taking the second power of the quadratic function fqua we
assume its natural logarithm, i.e.

f2(x) = ln(fqua(x)) (25)

5.2 Results Obtained by Means of Selected Members of the
Broyden Convex Class

Three variants of Broyden methods belonging to the convex class in version
with oblique projections defined by (5) were implemented. The selected three
variants are: BFGS method with Θ = 1, DFP method with Θ = 0 and the
third version with Θ = 1

2 . Every method was implemented with three above
mentioned directional minimizations: Armijo (A.), Wolfe (W.) and Goldstein
(G.). Hence we considered altogether nine variants of methods. Every method
variant has been run with the same MATLAB m-function implementing the
directional minimization and on the same set of test problems with increasing
dimension, generated as described above. Stopping criteria were also the same -
on the derivative norm and on the minimized function value. Let’s notice that
we know the optimum goal function value. The results for goal function f1 are
collected in table 1 and for the second goal function f2 in table 2.

Symbol (M) placed instead of the number of iterations means stop due to
exceeding the maximal number of iterations, set by the user. Symbol (P) denotes
the user break by pressing simultaneously combinations of keys CTRL-C and
(O) stopping the calculations due to the zero value in the denominator in the
updating formula (something theoretically impossible in the exact arithmetic,
but on the computer we never carry out calculations in the exact arithmetic).
Later appropriate safeguards were introduced.

Some Properties of the Broyden Restricted Class 179

Table 1. Number of iterations of Broyden convex class with different directional min-
imization for function f1

Dir. Problem size n =

min. 2 10 50 100 500 1000 2000

BFGS method (Θ = 1)

A. 5 (M) (M) (M) (M) (M) –

W. 4 27 70 185 533 1080 821

G. 4 47 139 314 809 1728 1762

DFP method (Θ = 0)

A. 5 (M) (M) (M) (M) (M) –

W. 4 29 76 313 5652 (M) 2986(O)

G. 4 68 249 (M) (M) (M) (P)

variant with Θ = 1
2

A. 5 (M) (M) (M) (M) (P) –

W. 4 29 69 190 597 1443 1106

G. 4 58 185 582 1331 3254 3819

The obtained results prove the BFGS method superiority over the DFP and
the third variant with Θ = 1

2 . Furthermore, they have shown that for prob-
lems of larger dimension the Armijo directional minimization (i.e. decreasing
the step–size from a given starting value by a constant coefficient until the first
Goldstein test is met) is totally useless. The directional minimization with the
Wolfe stopping conditions proved to be the best one. Number of iterations of the
BFGS method implemented with the directional minimization ensuring verifica-
tion of the Wolfe conditions was substantially smaller than in all other considered
variants. The only exception were the problems of smallest size equal to 2.

Our calculations have shown a very important role of the round–off errors.
Furthermore calculations were realized without any scaling. Hence the round–
off errors may be the source of sometimes strange behaviour in some cases. For
instance, for larger dimensions we observed sometimes the number of iterations
smaller than the size of the problem. Let’s stress that numbers smaller than
10−72 are treated as equal to 0 on the PC computer. Numbers are represented
with a finite number of digits and number 10 in appropriate power. This may lead
and led to some unexpected overflows. For instance, in theory, scalar product
rTk sk > 0 should be positive in our situation since the goal function is strictly
convex and twice continuously differentiable. However, from time to time it was
equal to 0 and it was necessary to introduce conditional updating and omit in
such situation the update.

180 A. Stachurski

Table 2. Number of iterations of Broyden convex class with different directional min-
imization for function f2

Dir. Problem size n =

min. 2 10 50 100 500 1000 2000

BFGS method (Θ = 1)

A. 23 51 314 627 2787 (M) (M)

W. 4 17 37 48 116 406 768

G. 4 25 38 52 524 428 1655

DFP method (Θ = 0)

A. 23 51 311 (M) (M) (M) –

W. 4 17 38 48 116 (M) (M)

G. 4 20 53 67 289 419 1086

variant with Θ = 1
2

A. 23 51 501 (M) (M) (M) –

W. 4 17 40 48 116 (M) (M)

G. 4 20 60 75 285 534 906

6 Conclusions and Comments

Updates representation with oblique projections gives a deeper look into the
structure of the existing variable metric updates. It offers new possibilities in
convergence analysis of quasi-newton methods for minimization. It would be
then possible to exploit the existing rich algebraic theory of oblique projections.
Furthermore it opens the possibility to exploit in context of the limited memory
methods any member of the Broyden convex class. We are not restricted to the
BFGS as it was up till now.

Analysis of formula (14) relating parameters Φ and Θ carried out in section 4
has shown that Φ is close to 1 for the majority of the Θ values lying in (0, 1)

interval when the ratio a =
rTk H

krk
rTk sk

is small. Then the updating formula is close

to the BFGS update. In the opposite situation when the ratio is large, then Φ
approaches 0, which corresponds to the DFP update. Let’s stress that it happens
for relatively large (a = 0.001) in the first case and relatively small (a = 50) in
the second.

We see as an interesting and open as yet problem of direct control of the
smallest and largest eigenvalues of the updated matrix approximating the sec-
ond order derivative or its inverse. This would simplify the existing convergence
proofs for the quasi-Newton methods and help in obtaining some progress on
their convergence for problems with hessian matrix of the goal function having
singularities.

Some Properties of the Broyden Restricted Class 181

References

1. Afriat, S.N.: Orthogonal and oblique projectors and the characteristics of pairs of
vector spaces. Proc. Camb. Philos. Soc. 53, 800–816 (1957)

2. Bazaraa, M.S., Sherali, J., Shetty, C.M.: Nonlinear Programming. Theory and
Algorithms. John Wiley and Sons, New York (1993)

3. Broyden, C.G.: The convergence of a class double-rank minimization algorithms.
Journal of the Institute of Mathematics and its Applications 6, 76–90 (1970)

4. Byrd, R.H., Nocedal, J., Yuan, Y.: Global Convergence of a Class of Variable Metric
Algorithms. SIAM Journal on Numerical Analysis 24, 1171–1190 (1987)

5. Davidon, W.C.: Variable metric method for minimization. AEC Res. and Dev.
Report, ANL-5990 (1959) (revised)

6. Davidon, W.C.: Variable metric method for minimization. SIAM J. on Optimiza-
tion 1, 1–17 (1991)

7. Fletcher, R.: A rapid convergent descent method for minimization. Computer J. 6,
163–168 (1963)

8. Fletcher, R., Powell, M.J.D.: A new approach to variable metric algorithms. Com-
puter J. 13, 317–322 (1970)

9. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons,
Chichester (1987)

10. Goldfarb, D.: A family of variable metric methods derived by variational means.
Mathematics of Computation 23, 23–26 (1970)

11. Lechman, M., Stachurski, A.: Nonlinear Section Model for Analysis of RC Circular
Tower Structures Weakened by Openings. Structural Engineering and Mechan-
ics 20, 161–172 (2005)

12. Nowak, Z., Stachurski, A.: Nonlinear Regression Problem of Material Functions
Identification for Porous Media Plastic Flow. Engineering Transactions 49, 637–661
(2001)

13. Nowak, Z., Stachurski, A.: Global Optimization in Material Functions Identifica-
tion for Voided Media Plastic Flow. Computer Assited Mechanics and Engineering
Sciences 9, 205–221 (2002)

14. Nowak, Z., Stachurski, A.: Identification of an Augmented Gurson Model Param-
eters for Plastic Porous Media. Foundations of Civil and Environmental Engineer-
ing 2, 171–179 (2002)

15. Nowak, Z., Stachurski, A.: Modelling and identification of voids nucleation and
growth effects in porous media plastic flow. Control and Cybernetics 32, 820–849
(2003)

16. Nowak, Z., Stachurski, A.: Robust Identification of an Augmented Gurson Model
for Elasto-plastic Porous Media. Archives of Mechanics (Archiwum Mechaniki
Stosowanej) 2, 125–154 (2006)

17. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computation 24, 27–30 (1970)

18. Stachurski, A.: “Superlinear Convergence of Broyden’s Bounded Θ-Class of Meth-
ods. Mathematical Programming 20, 196–212 (1981)

19. Stachurski, A., Wierzbicki, A.P.: Introduction to Optimization (Podstawy Opty-
malizacji, in polish). Publishing House of the Warsaw University of Technology,
Warszawa (1999)

20. Stachurski, A., Lechman, M.: On Solving a Set of Nonlinear Equations for the
Determination of Stresses in RC Ring Sections with Openings. Communications in
Applied Analysis 10, 517–536 (2006)

182 A. Stachurski

21. Stachurski, A.: Orthogonal Projections in the Quasi-Newton Variable Metric Up-
dates. In: Paper presented at the International Conference on Modelling and Op-
timization of Structures, Processes and Systems, held in Durban, January 22-24
(2007); to appear in IMACS Journal of Mathematics and Computers in Simulation

22. Stachurski, A.: On the Structure of Variable Metric Updates. International Journal
of Pure and Applied Mathematics 4, 469–476 (2009)

23. Stoer, J.: On the Convergence Rate of Imperfect Minimization Algorithms in Broy-
den’s β-class. Mathematical Programming 9, 313–335 (1975)

24. Szyld, D.B.: The many proofs of an identity on the norm of oblique projections.
Numerical Algorithms 42, 309–323 (2006)

25. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods. Nonlinear Program-
ming. Springer, Berlin (2006)

26. Xiao, Y., Wei, Z., Wang, Z.: A limited memory BFGS-type method for large-scale
unconstrained optimization. Computers and Mathematics with Applications 56,
1001–1009 (2008)

Author Index

Akeb, Hakim 73
Angelova, Maria 1
Anghinolfi, Davide 93
Atanassov, Krassimir 1

Bernay, Benoit 115

Cannata, Giorgio 93
Chretienne, Philippe 115
Cremonesi, Paolo 15

Deleplanque, Samuel 31

Fidanova, Stefka 51

Ganzha, Maria 51

Hifi, Mhand 73

Lazure, Dominique 73

Malucelli, Federico 15
Mastrogiovanni, Fulvio 93

Nattero, Cristiano 93

Paolucci, Massimo 93
Pencheva, Tania 1

Quilliot, Alain 31, 115, 135

Roeva, Olympia 51, 155
Rostami, Borzou 15

Slavov, Tsonyo 155
Stachurski, Andrzej 169

Toussaint, Hélène 135

	Cover
	Title
	Preface
	Organization
	Contents
	Intuitionistic Fuzzy Logic as a Tool for Quality Assessment of Genetic Algorithms Performances
	Introduction
	Background
	Intuitionistic Fuzzy Estimations
	Procedure for Purposeful Model Parameter Genesis
	Procedure for Genetic Algorithms Quality Assessment Applying IFL
	Mathematical Model of S. cerevisiae Fed-Batch Cultivation

	MpGA Quality Assessment at Different Values of GGAP
	Assess the Performance of Standard SGA towards MpGA at GGAP= 0.1
	Conclusions
	References

	A Graph Optimization Approach to Item-Based Collaborative Filtering
	Introduction
	Collaborative Filtering
	Neighborhood Models
	Dimensionality Reduction Models

	Optimization Model
	Proposed Algorithm

	Experimental Results
	Testing Methodology
	Results

	Conclusion
	References

	Constraint Propagation for the Dial-a-Ride Problem with Split Loads
	Introduction and Literature Review
	The Standard Dial a Ride Problem
	General Dial a Ride Problem
	The Framework
	Modeling and Evaluation Techniques

	Constraint Propagation into an Insertion Algorithm
	Handling Constraints
	Evaluating a Tour
	The Insertion Mechanism
	The Insertion Process

	Dial-a-Ride Problem with Split Loads
	Model and Framework updated
	Trade-Off between Load and Speed: The Load-Distribute Problem

	Computational Experiments
	Experiment on the classic Dial a Ride Problem
	Experiment on the Dial a Ride Problem with Split Loads

	 Conclusion
	References

	ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model
	Introduction
	Problem Formulation
	Problem Model
	Optimization Criterion

	Ant Colony Optimization (ACO)
	Genetic Algorithm
	Numerical Results and Discussion
	ACO for Parameter Optimization
	GA for Parameter Optimization
	Numerical Results

	Concluding Remarks
	References

	 A Heuristic Based Algorithm for the 2D Circular Strip Packing Problem
	Introduction
	Literature Review
	Beam Search for Resolving SPP
	Notations
	The MDLP Greedy Procedure

	Beam Search-Based Algorithms for SPP
	An Improved Algorithm for SPP
	A Look-Ahead Based Algorithm
	The Improved Algorithm (IA)

	Computational Results
	Varying the Beam Width When the Look-Ahead Is Used
	Values of Parameters and
	Solution Quality of Algorithm IA

	Conclusion
	References

	Experimental Evaluation of Pheromone Structures for Ant Colony Optimization: Application to the Robot Skin Wiring Problem
	Introduction
	Problem Statement
	Related Work
	Mathematical Formulation
	A Solution to the Skin Wiring Problem
	An ACO Algorithm for Optimal Skin Wiring
	A Candidate Strategy
	Pheromone Structures

	Experimental Analysis
	Conclusions
	References

	Homogeneous Non Idling Problems: Models and Algorithms
	Introduction
	Notations, Problem Definition and Reformulation
	Main Notations: Time-Units and Intervals
	Main Notations: Time-Units and Intervals
	A Reformulation through Pyramidal Shape Functions
	Makespan Minimization Homogenous Non-idling Scheduling Problem

	Structural Results for the NON-IDLE0 Feasibility Problem
	T-Block, k-holes, k-Schedules
	Time-Windows Stability
	Existence of a m-Matching and of Pre-schedule
	Existence of a Feasible Schedule

	Polynomial Algorithms for NON-IDLE0 and NON-IDLE1
	A Polynomial Algorithm for the NON-IDLE0 Feasibility Problem
	A Polynomial Algorithm for the NON-IDLE1 Problem

	Minimal Cost Homogeneous Non Idling Scheduling Problem
	A Linear Formulation of the NON-IDLEc Problem
	A Lagrangean Scheme for the NON-IDLEc Problem
	Instruction (E16): The Projection Scheme
	Numerical Experiments

	Conclusion
	References

	Flow Models for Project Scheduling with Transfer Delays and Financial Constraints
	Introduction
	Network Flow Model Related to a RCPSTDP Instance
	The Non Preemptive RCPSTDP Problem
	Linking Network Flows with RCPSTDP: Timed Flows
	Connectivity Theorem

	Insertion Scheme, Insertion Problem and Algorithms
	The Insertion Flow Problem
	Generic Flow Algorithms for the RCPSTDP

	Numerical Tests on RCPSTDP
	Experiments on PSPLIB Instances with Lag = 0
	Instances such That RCPSP and RCPSTDP Optimal Values Are the Same

	RCPSP with Financial Resources
	Adapting the Flow Model to a RCPSFRP Instance
	The Insertion Financial Flow Problem
	Generic Flow Algorithms for the RCPSFRP Problem
	Numerical Experiments

	Scheduling through Borrow/Invest Strategies
	The 2nd RCPSFRP Problem
	Handling the 2nd RCPSFRP Problem

	Conclusion
	References

	A New Hybrid GA-FA Tuning of PID Controllerfor Glucose Concentration Control�
	Introduction
	Problem Formulation
	Hybrid Firefly Algorithm - Genetic Algorithm
	Firefly Algorithm
	Genetic Algorithm

	Results and Discussion
	Conclusion
	References

	Some Properties of the Broyden Restricted Class of Updates with Oblique Projections
	Introduction
	Oblique Projections in the Formula of the Broyden Class Updates
	Involved Oblique Projections
	BFGS Update and Oblique Projections
	DFP Update and Oblique Projections

	Relation between the Scalar Parameters of Updates
	Properties of the Relation between Parameters
	Numerical Experiments
	Test Functions
	Results Obtained by Means of Selected Members of the Broyden Convex Class

	Conclusions and Comments
	References

	Author Index

