
Chapter 19
Diffusion

Diffusion is one of the simplest non-equilibrium processes. It describes the transport
of heat [52, 95] and the time evolution of differences in substance concentrations
[82]. In this chapter, the one-dimensional diffusion equation

∂

∂t
f (t, x) = D

∂2

∂x2
f (t, x) + S(t, x) (19.1)

is semi-discretized with finite differences. The time integration is performed with
three different Euler methods. The explicit Euler method is conditionally stable only
for small Courant number α = D�t

�x2 < 1/2, which makes very small time steps nec-
essary. The fully implicit method is unconditionally stable but its dispersion devi-
ates largely from the exact expression. The Crank-Nicolson method is also uncon-
ditionally stable. However, it is more accurate and its dispersion relation is closer
to the exact one. Extension to more than one dimension is easily possible, but the
numerical effort increases drastically as there is no formulation involving simple
tridiagonal matrices like in one dimension. The split operator approximation uses
the one-dimensional method independently for each dimension. It is very efficient
with almost no loss in accuracy. In a computer experiment the different schemes are
compared for diffusion in two dimensions.

19.1 Particle Flux and Concentration Changes

Let f (x, t) denote the concentration of a particle species and J the corresponding
flux of particles. Consider a small cube with volume h3 (Fig. 19.1). The change
of the number of particles within this volume is given by the integral form of the
conservation law (11.10)

∂

∂t

∫
V

dV f (r, t) +
∮

∂V

J(r, t) dA =
∫

V

dV S(r, t) (19.2)

where the source term S(r) accounts for creation or destruction of particles due to
for instance chemical reactions. In Cartesian coordinates we have
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Fig. 19.1 Flux through a
volume element

∫ x+h/2

x−h/2
dx′

∫ y+h/2

y−h/2
dy′

∫ z+h/2

z−h/2
dz′

(
∂

∂t
f

(
x′, y′, z′, t

) − S
(
x′, y′, z′, t

))

+
∫ x+h/2

x−h/2
dx′

∫ y+h/2

y−h/2
dy′

(
Jz

(
x′, y′, z − h

2

)
− Jz

(
x′, y′, z + h

2

))

+
∫ x+h/2

x−h/2
dx′

∫ z+h/2

z−h/2
dz′

(
Jy

(
x′, y − h

2
, z′

)
− Jy

(
x′, y + h

2
, z′

))

+
∫ z+h/2

z−h/2
dz′

∫ y+h/2

y−h/2
dy′

(
Jz

(
x − h

2
, y′, z′

)
− Jz

(
x + h

2
, y′, z′

))
= 0.

(19.3)

In the limit of small h this turns into the differential form of the conservation law

h3
(

∂

∂t
f (x, y, z, t) − S(x, y, z, t)

)
+ h2

(
h

∂Jx

∂x
+ h

∂Jy

∂y
+ h

∂Jz

∂z

)
= 0

(19.4)

or after division by h3

∂

∂t
f (r, t) = −div J(r, t) + S(r, t). (19.5)

Within the framework of linear response theory the flux is proportional to the gradi-
ent of f (Fig. 19.2),

J = −D gradf. (19.6)

Together we obtain the diffusion equation

∂f

∂t
= div(D gradf ) + S (19.7)

which in the special case of constant D simplifies to

∂f

∂t
= D�f + S. (19.8)
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Fig. 19.2 Diffusion due to a
concentration gradient

19.2 Diffusion in One Dimension

We will use the finite differences method which works well if the diffusion constant
D is constant in time and space. We begin with diffusion in one dimension and
use regular grids tn = n�t , xm = m�x, f n

m = f (tn, xm) and the discretized second
derivative

∂2f

∂x2
= f (x + �x) + f (x − �x) − 2f (x)

�x2
+ O

(
�x2) (19.9)

to obtain the semi-discrete diffusion equation

ḟ (t, xm) = D

�x2

(
f (t, xm+1) + f (t, xm−1) − 2f (t, xm)

) + S(t, xm) (19.10)

or in matrix notation

ḟ(t) = D

�x2
Mf(t) + S(t) (19.11)

with the tridiagonal matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

. (19.12)

Boundary conditions can be taken into account by introducing extra boundary
points x0, xM+1 (Fig. 19.3).

19.2.1 Explicit Euler (Forward Time Centered Space) Scheme

A simple Euler step (Sect. 12.3) makes the approximation

f n+1
m − f n

m = ḟ (tn, xm)�t = D
�t

�x2

(
f n

m+1 + f n
m−1 − 2f n

m

) + Sn
m�t.

(19.13)

For homogeneous boundary conditions f = 0 this becomes in matrix form
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Fig. 19.3 (Boundary conditions for 1-dimensional diffusion) Additional boundary points
x0, xM+1 are used to realize the boundary conditions. (a) Dirichlet boundary conditions: the func-

tion values at the boundary are given f (t, x0) = ξ0(t), ∂2

∂x2 f (x1) = 1
�x2 (f (x2) − 2f (x1) + ξ0(t))

or f (t, xM+1) = ξM+1(t), ∂2

∂x2 f (xM) = 1
�x2 (f (xM−1) − 2f (xM) + ξM+1(t)). (b) Neumann

boundary conditions: the flux through the boundary is given, hence the derivative ∂f
∂x

at the

boundary f (t, x0) = f (t, x2) + 2 �x
D

J1(t), ∂2

∂x2 f (x1) = 1
�x2 (2f (x2) − 2f (x1) + 2 �x

D
J1(t)) or

f (t, xM+1) = f (t, xM−1) − 2�x
D

JM(t), ∂2

∂x2 f (xM) = 1
�x2 (2f (xM−1) − 2f (xM) − 2�x

D
JM(t)).

(c) No-flow boundary conditions: there is no flux through the boundary, hence the deriva-

tive ∂f
∂x

= 0 at the boundary f (t, x0) = f (t, x2), ∂2

∂x2 f (x1) = 1
�x2 (2f (x2) − 2f (x1)) or

f (t, xM) = f (t, xM−2), ∂2

∂x2 f (xM) = 1
�x2 (2f (xM−1) − 2f (xM))

⎛
⎜⎝

f n+1
1
...

f n+1
M

⎞
⎟⎠ = A

⎛
⎜⎝

f n
1
...

f n
M

⎞
⎟⎠ +

⎛
⎜⎝

Sn
1 �t
...

Sn
M�t

⎞
⎟⎠ (19.14)

with the tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 2D �t

�x2 D �t

�x2

D �t

�x2 1 − 2D �t

�x2

. . .
. . .

. . .

D �t

�x2 1 − 2D �t

�x2 D �t

�x2

D �t

�x2 1 − 2D �t

�x2

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1 + αM

(19.15)

where α is the Courant number for diffusion
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α = D
�t

�x2
. (19.16)

The eigenvalues of M are (compare (18.30))

λ = −4 sin2
(

k�x

2

)
with k�x = π

M + 1
,

2π

M + 1
, . . . ,

Mπ

M + 1
(19.17)

and hence the eigenvalues of A are given by

1 + αλ = 1 − 4α sin2 k�x

2
. (19.18)

The algorithm is stable if

|1 + αλ| < 1 for all λ (19.19)

which holds if

−1 < 1 − 4α sin2 k�x

2
< 1. (19.20)

The maximum of the sine function is sin( Mπ
2(M+1)

) ≈ 1. Hence the right hand inequa-
tion is satisfied and from the left one we have

−1 < 1 − 4α. (19.21)

The algorithm is stable for

α = D
�t

�x2
<

1

2
. (19.22)

The dispersion relation follows from inserting a plane wave ansatz

eiω�t = 1 − 4α sin2
(

k�x

2

)
. (19.23)

For α > 1/4 the right hand side changes sign at

kc�x = 2 arcsin

√
1

4α
. (19.24)

The imaginary part of ω has a singularity at kc and the real part has a finite value of
π for k > kc (Fig. 19.4 on page 356). Deviations from the exact dispersion

ω = ik2 (19.25)

are large, except for very small k.

19.2.2 Implicit Euler (Backward Time Centered Space) Scheme

Next we use the backward difference
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Fig. 19.4 (Dispersion of the
explicit Euler method) The
dispersion of the explicit
method is shown for different
values of the Courant number
α and compared to the exact
dispersion (dashed curve).
The imaginary part of ω

shows a singularity for
α > 1/4. Above the
singularity ω is complex
valued

f n+1
m − f n

m = ḟ (tn+1, xm)�t

= D
∂2f

∂x2
(tn+1, xm)�t + S(tn+1, xm)�t (19.26)

to obtain the implicit method

f n+1
m − α

(
f n+1

m+1 + f n+1
m−1 − 2f n+1

m

) = f n
m + Sn+1

m �t (19.27)

or in matrix notation

Afn+1 = fn + Sn+1�t with A = 1 − αM (19.28)

which can be solved formally by

fn+1 = A−1fn + A−1Sn+1�t. (19.29)

The eigenvalues of A are

λ(A) = 1 + 4α sin2 k�x

2
> 1 (19.30)

and the eigenvalues of A−1

λ
(
A−1) = λ(A)−1 = 1

1 + 4α sin2 k�x
2

. (19.31)

The implicit method is unconditionally stable since
∣∣λ(

A−1)∣∣ < 1. (19.32)

The dispersion relation of the implicit scheme follows from

eiω�t = 1

1 + 4α sin2( k�x
2 )

. (19.33)

There is no singularity and ω is purely imaginary. Still, deviations from the exact
expression are large (Fig. 19.5 on page 357).
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Fig. 19.5 (Dispersion of the
implicit Euler method) The
dispersion of the fully
implicit method is shown for
two different values of the
Courant number α and
compared to the exact
dispersion (dashed curve)

Formally a matrix inversion is necessary. Numerically it is much more efficient
to solve the tridiagonal system of equations (page 69).

(1 − αM)f (tn+1) = f (tn) + S(tn+1)�t. (19.34)

19.2.3 Crank-Nicolson Method

The Crank-Nicolson method [65] which is often used for diffusion problems, com-
bines implicit and explicit methods. It uses the Heun method (Sect. 12.5) for the
time integration

f n+1
m − f n

m = �t

2

(
∂f

∂t
(tn+1, xm) + ∂f

∂t
(tn, xm)

)
(19.35)

= D
�t

2

(
∂2f

∂x2
(tn+1, xm) + ∂2f

∂x2
(tn, xm)

)

+ (
S(tn, xm) + S(tn+1, xm)

)�t

2
(19.36)

= D
�t

2

(
f n

m+1 + f n
m−1 − 2f n

m

�x2
+ f n+1

m + f n+1
m−1 − 2f n+1

m

�x2

)

+ Sn
m + Sn+1

m

2
�t. (19.37)

This approximation is second order both in time and space and becomes in matrix
notation (

1 − α

2
M

)
fn+1 =

(
1 + α

2
M

)
fn + Sn + Sn+1

2
�t (19.38)

which can be solved by
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fn+1 =
(

1 − α

2
M

)−1(
1 + α

2
M

)
fn +

(
1 − α

2
M

)−1 Sn + Sn+1

2
�t.

(19.39)

Again it is numerically much more efficient to solve the tridiagonal system of equa-
tions (19.38) than to calculate the inverse matrix.

The eigenvalues of this method are

λ = 1 + α
2 μ

1 − α
2 μ

with μ = −4 sin2 k�x

2
∈ [−4,0]. (19.40)

Since αμ < 0 it follows

1 + α

2
μ < 1 − α

2
μ (19.41)

and hence

λ < 1. (19.42)

On the other hand we have

1 > −1 (19.43)

1 + α

2
μ > −1 + α

2
μ (19.44)

λ > −1. (19.45)

This shows that the Crank-Nicolson method is stable [251]. The dispersion follows
from

eiω�t = 1 − 2α sin2( k�x
2 )

1 + 2α sin2( k�x
2 )

. (19.46)

For α > 1/2 there is a sign change of the right hand side at

kc�x = 2arcsin

√
1

2α
. (19.47)

The imaginary part of ω has a singularity at kc and ω is complex valued for k > kc

(Fig. 19.6 on page 359).

19.2.4 Error Order Analysis

Taylor series gives for the exact solution

�fexact = �tḟ (t, x) + �t2

2
f̈ (t, x) + �t3

6

∂3

∂t3
f (t, x) + · · ·

= �t
[
Df ′′(t, x) + S(t, x)

]

+ �t2

2

[
Dḟ ′′(t, x) + Ṡ(t, x)

] + · · · (19.48)
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Fig. 19.6 (Dispersion of the
Crank-Nicolson method) The
dispersion of the
Crank-Nicolson method is
shown for different values of
the Courant number α and
compared to the exact
dispersion (dashed curve).
The imaginary part of ω

shows a singularity for
α > 1/2. Above the
singularity ω is complex
valued. The exact dispersion
is approached quite closely
for α ≈ 1/2

whereas for the explicit method

�fexpl = αMf (t, x) + S(t, x)�t

= D
�t

�x2

(
f (t, x + �x) + f (t, x − �x) − 2f (t, x)

) + S(t, x)�t

= D
�t

�x2

(
�x2f ′′(t, x) + �x4

12
f ′′′′(t, x) + · · ·

)
+ S(t, x)�t

= �fexact + D�t�x2

12
f ′′′′(t, x) − �t2

2
f̈ (t, x) + · · · (19.49)

and for the implicit method

�fimpl = αMf (t + �t,x) + S(t + �t,x)�t

= D
�t

�x2

(
f (t + �t,x + �x) + f (t + �t,x − �x) − 2f (t + �t,x)

)
+ S(t + �t,x)�t

= D
�t

�x2

(
�x2f ′′(t, x) + �x4

12
f ′′′′(t, x) + · · ·

)

+ S(t, x)�t + D
�t2

�x2

(
�x2ḟ ′′(t, x) + �x4

12
ḟ ′′′′(t, x) + · · ·

)

+ Ṡ(t, x)�t2

= �fexact + D
�t�x2

12
f ′′′′(t, x) + 1

2
�t2f̈ (t, x) + · · · . (19.50)

The Crank-Nicolson method has higher accuracy in �t :

�fCN = �fexpl + �fimpl

2
= D�t�x2

12
f ′′′′(t, x) − �t3

6

∂3f

∂t3
+ · · · . (19.51)
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19.2.5 Finite Element Discretization

In one dimension discretization with finite differences is very similar to dis-
cretization with finite elements, if Galerkin’s method is applied on a regular grid
(Chap. 11). The only difference is the non-diagonal form of the mass-matrix which
has to be applied to the time derivative [88]. Implementation of the discretization
scheme (11.170) is straightforward. The semi-discrete diffusion equation becomes

∂

∂t

(
1

6
f (t, xm−1) + 2

3
f (t, xm) + 1

6
f (t, xm+1)

)

= D

�x2

(
f (t, xm+1) + f (t, xm−1) − 2f (t, xm)

) + S(t, xm) (19.52)

or in matrix form (
1 + 1

6
M

)
ḟ(t) = D

�x2
Mf(t) + S(t). (19.53)

This can be combined with the Crank-Nicolson scheme to obtain(
1 + 1

6
M

)
(fn+1 − fn) =

(
α

2
Mfn + α

2
Mfn+1

)
+ �t

2
(Sn + Sn+1)

(19.54)

or [
1 +

(
1

6
− α

2

)
M

]
fn+1 =

[
1 +

(
1

6
+ α

2

)
M

]
fn + �t

2
(Sn + Sn+1).

(19.55)

19.3 Split-Operator Method for Multidimensions

The simplest discretization of the Laplace operator in 3 dimensions is given by

�f =
(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
f (t, x, y, z)

= 1

�x2
(Mx + My + Mz)f (t, x, y, z) (19.56)

where

1

�x2
Mxf (t, x, y, z) = f (t, x + �x,y, z) + f (t, x − �x,y, z) − 2f (t, x, y, z)

�x2

(19.57)

etc. denote the discretized second derivatives. Generalization of the Crank-Nicolson
method for the 3-dimensional problem gives
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f (tn+1) =
(

1 − α

2
Mx − α

2
My − α

2
Mz

)−1(
1 + α

2
Mx + α

2
My + α

2
Mz

)
f (t).

(19.58)

But now the matrices representing the operators Mx , My , Mz are not tridiagonal. To
keep the advantages of tridiagonal matrices we use the approximations

(
1 + α

2
Mx + α

2
My + α

2
Mz

)
≈

(
1 + α

2
Mx

)(
1 + α

2
My

)(
1 + α

2
Mz

)

(19.59)(
1 − α

2
Mx − α

2
My − α

2
Mz

)
≈

(
1 − α

2
Mx

)(
1 − α

2
My

)(
1 − α

2
Mz

)

(19.60)

and rearrange the factors to obtain

f (tn+1) =
(

1 − α

2
Mx

)−1(
1 + α

2
Mx

)(
1 − α

2
My

)−1(
1 + α

2
My

)

×
(

1 − α

2
Mz

)−1(
1 + α

2
Mz

)
f (tn) (19.61)

which represents successive application of the 1-dimensional scheme for the three
directions separately. The last step was possible since the operators Mi and Mj for
different directions i �= j commute. For instance

MxMyf = Mx

(
f (x, y + �x) + f (x, y − �x) − 2f (x, y)

)
= (

f (x + �x,y + �y) + f (x − �x,y + �x)

− 2f (x, y + �x) + f (x + �x,y − �x)

+ f (x − �x,y − �x) − 2f (x, y − �x)

− 2f (x + �x,y) − 2f (x − �x,y) + 4f (x, y)
)

= MyMxf. (19.62)

The Taylor series of (19.58) and (19.61) coincide up to second order with respect to
αMi :
(

1 − α

2
Mx − α

2
My − α

2
Mz

)−1(
1 + α

2
Mx + α

2
My + α

2
Mz

)

= 1 + α(Mx + My + Mz) + α2

2
(Mx + My + Mz)

2 + O
(
α3) (19.63)

(
1 − α

2
Mx

)−1(
1 + α

2
Mx

)(
1 − α

2
My

)−1(
1 + α

2
My

)

×
(

1 − α

2
Mz

)−1(
1 + α

2
Mz

)
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=
(

1 + αMx + α2M2
x

2

)(
1 + αMy + α2M2

y

2

)(
1 + αMz + α2M2

z

2

)
+ O

(
α3)

= 1 + α(Mx + My + Mz) + α2

2
(Mx + My + Mz)

2 + O
(
α3). (19.64)

Hence we have

fn+1 =
(

1 + D�t

(
� + �x2

12
�2 + · · ·

)
+ D2�t2

2

(
�2 + · · ·)

)
fn

+
(

1 + D�t

2
� + · · ·

)
Sn+1 + Sn

2
�t

= fn + �t(D�fn + Sn) + �t2

2

(
D2�2 + D�Sn + Ṡn

)

+ O
(
�t�x2,�t3) (19.65)

and the error order is conserved by the split operator method.

19.4 Problems

Problem 19.1 (Diffusion in 2 dimensions) In this computer experiment we solve
the diffusion equation on a two dimensional grid for

• an initial distribution f (t = 0, x, y) = δx,0δy,0
• a constant source f (t = 0) = 0, S(t, x, y) = δx,0δy,0

Compare implicit, explicit and Crank-Nicolson method.
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