
Chapter 12
Equations of Motion

Simulation of a physical system means to calculate the time evolution of a model
system in many cases. We consider a large class of models which can be described
by a first order initial value problem

dY

dt
= f

(
Y(t), t

)
Y(t = 0) = Y0 (12.1)

where Y is the state vector (possibly of very high dimension) which contains all
information about the system. Our goal is to calculate the time evolution of the
state vector Y(t) numerically. For obvious reasons this can be done only for a finite
number of values of t and we have to introduce a grid of discrete times tn which for
simplicity are assumed to be equally spaced:1

tn+1 = tn + �t. (12.2)

Advancing time by one step involves the calculation of the integral

Y(tn+1) − Y(tn) =
∫ tn+1

tn

f
(
Y

(
t ′
)
, t ′

)
dt ′ (12.3)

which can be a formidable task since f (Y (t), t) depends on time via the time de-
pendence of all the elements of Y(t). In this chapter we discuss several strategies for
the time integration. The explicit Euler forward difference has low error order but
is useful as a predictor step for implicit methods. A symmetric difference quotient
is much more accurate. It can be used as the corrector step in combination with an
explicit Euler predictor step and is often used for the time integration of partial dif-
ferential equations. Methods with higher error order can be obtained from a Taylor
series expansion, like the Nordsieck and Gear predictor-corrector methods which
have been often applied in molecular dyamics calculations. Runge-Kutta methods
are very important for ordinary differential equations. They are robust and allow an
adaptive control of the step size. Very accurate results can be obtained for ordinary

1Control of the step width will be discussed later.

P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-00401-3_12,
© Springer International Publishing Switzerland 2013

207

http://dx.doi.org/10.1007/978-3-319-00401-3_12

208 12 Equations of Motion

differential equations with extrapolation methods like the famous Gragg-Bulirsch-
Stör method. If the solution is smooth enough, multistep methods are applicable,
which use information from several points. Most known are Adams-Bashforth-
Moulton methods and Gear methods (also known as backward differentiation meth-
ods), which are especially useful for stiff problems. The class of Verlet methods has
been developed for molecular dynamics calculations. They are symplectic and time
reversible and conserve energy over long trajectories.

12.1 The State Vector

The state of a classical N -particle system is given by the position in phase space, or
equivalently by specifying position and velocity for all the N particles

Y = (r1,v1, . . . , rN,vN). (12.4)

The concept of a state vector is not restricted to a finite number of degrees of
freedom. For instance a diffusive system can be described by the particle concen-
trations as a function of the coordinate, i.e. the elements of the state vector are now
indexed by the continuous variable x

Y = (
c1(x) · · · cM(x)

)
. (12.5)

Similarly, a quantum particle moving in an external potential can be described by
the amplitude of the wave function

Y = (
Ψ (x)

)
. (12.6)

Numerical treatment of continuous systems is not feasible since even the ultimate
high end computer can only handle a finite number of data in finite time. Therefore
discretization is necessary (Chap. 11), by introducing a spatial mesh (Sects. 11.2,
11.3, 11.6), which in the simplest case means a grid of equally spaced points

xijk = (ih, jh, kh) i = 1 · · · imax, j = 1 · · · jmax, k = 1 · · ·kmax (12.7)

Y = (
c1(xijk) . . . cM(xijk)

)
(12.8)

Y = (
Ψ (xijk)

)
(12.9)

or by expanding the continuous function with respect to a finite set of basis functions
(Sect. 11.5). The elements of the state vector then are the expansion coefficients

|Ψ 〉 =
N∑

s=1

Cs |Ψs〉 (12.10)

Y = (C1, . . . ,CN). (12.11)

If the density matrix formalism is used to take the average over a thermodynamic
ensemble or to trace out the degrees of freedom of a heat bath, the state vector
instead is composed of the elements of the density matrix

12.2 Time Evolution of the State Vector 209

ρ =
N∑

s=1

N∑

s′=1

ρss′ |Ψs〉〈Ψs′ | =
N∑

s=1

N∑

s′=1

C∗
s′Cs |Ψs〉〈Ψs′ | (12.12)

Y = (ρ11 · · ·ρ1N,ρ21 · · ·ρ2N, . . . , ρN1 · · ·ρNN). (12.13)

12.2 Time Evolution of the State Vector

We assume that all information about the system is included in the state vector. Then
the simplest equation to describe the time evolution of the system gives the change
of the state vector

dY

dt
= f (Y, t) (12.14)

as a function of the state vector (or more generally a functional in the case of a
continuous system). Explicit time dependence has to be considered for instance to
describe the influence of an external time dependent field.

Some examples will show the universality of this equation of motion:

• N -particle system

The motion of N interacting particles is described by

dY

dt
= (ṙ1, v̇1 · · ·) = (v1,a1 · · ·) (12.15)

where the acceleration of a particle is given by the total force acting upon this parti-
cle and thus depends on all the coordinates and eventually time (velocity dependent
forces could be also considered but are outside the scope of this book)

ai = Fi (r1 · · · rN, t)

mi

. (12.16)

• Diffusion

Heat transport and other diffusive processes are described by the diffusion equation

∂f

∂t
= D�f + S(x, t) (12.17)

which in its simplest spatially discretized version for 1-dimensional diffusion reads

∂f (xi)

∂t
= D

�x2

(
f (xi+1) + f (xi−1) − 2f (xi)

) + S(xi , t). (12.18)

• Waves

Consider the simple 1-dimensional wave equation

∂2f

∂t2
= c2 ∂2f

∂x2
(12.19)

210 12 Equations of Motion

Fig. 12.1 Explicit Euler
method

which by introducing the velocity g(x) = ∂
∂t

f (x) as an independent variable can be
rewritten as

∂

∂t

(
f (x), g(x)

) =
(

g(x), c2 ∂2

∂x2
f (x)

)
. (12.20)

Discretization of space gives

∂

∂t

(
f (xi), g(xi)

) =
(

g(xi),
c2

�x2

(
f (xi+1) + f (xi−1) − 2f (xi)

))
. (12.21)

• Two-state quantum system

The Schrödinger equation for a two level system (for instance a spin- 1
2 particle in a

magnetic field) reads

d

dt

(
C1
C2

)
=

(
H11(t) H12(t)

H21(t) H22(t)

)(
C1
C2

)
. (12.22)

12.3 Explicit Forward Euler Method

The simplest method which is often discussed in elementary physics textbooks ap-
proximates the integrand by its value at the lower bound (Fig. 12.1):

Y(tn+1) − Y(tn) ≈ f
(
Y(tn), tn

)
�t. (12.23)

The truncation error can be estimated from a Taylor series expansion

Y(tn+1) − Y(tn) = �t
dY

dt
(tn) + �t2

2

d2Y

dt2
(tn) + · · ·

= �tf
(
Y(tn), tn

) + O
(
�t2). (12.24)

The explicit Euler method has several serious drawbacks

• Low error order

12.3 Explicit Forward Euler Method 211

Fig. 12.2 Systematic errors
of the Euler method

Suppose you want to integrate from the initial time t0 to the final time t0 + T . For a
time step of �t you have to perform N = T/�t steps. Assuming comparable error
contributions from all steps the global error scales as N�t2 = O(�t). The error
gets smaller as the time step is reduced but it may be necessary to use very small �t

to obtain meaningful results.

• Loss of orthogonality and normalization

The simple Euler method can produce systematic errors which are very inconvenient
if you want, for instance, to calculate the orbits of a planetary system. This can be
most easily seen from a very simple example. Try to integrate the following equation
of motion (see Example 1.5 on page 12):

dz

dt
= iωz. (12.25)

The exact solution is obviously given by a circular orbit in the complex plane:

z = z0e
iωt (12.26)

|z| = |z0| = const. (12.27)

Application of the Euler method gives

z(tn+1) = z(tn) + iω�tz(tn) = (1 + iω�t)z(tn) (12.28)

and you find immediately
∣∣z(tn)

∣∣ =
√

1 + ω2�t2
∣∣z(tn−1)

∣∣ = (
1 + ω2�t2)n/2∣∣z(t0)

∣∣ (12.29)

which shows that the radius increases continually even for the smallest time step
possible (Fig. 12.2).

The same kind of error appears if you solve the Schrödinger equation for a parti-
cle in an external potential or if you calculate the rotational motion of a rigid body.
For the N -body system it leads to a violation of the conservation of phase space
volume. This can introduce an additional sensitivity of the calculated results to the
initial conditions. Consider a harmonic oscillator with the equation of motion

d

dt

(
x(t)

v(t)

)
=

(
v(t)

−ω2x(t)

)
. (12.30)

212 12 Equations of Motion

Fig. 12.3 Time evolution of
the phase space volume

Fig. 12.4 Implicit backward
Euler method

Application of the explicit Euler method gives
(

x(t + �t)

v(t + �t)

)
=

(
x(t)

v(t)

)
+

(
v(t)

−ω2x(t)

)
�t. (12.31)

The change of the phase space volume (Fig. 12.3) is given by the Jacobi determinant

J =
∣∣
∣∣
∂(x(t + �t), v(t + �t))

∂(x(t), v(t))

∣∣
∣∣ =

∣∣
∣∣

1 �t

−ω2�t 1

∣∣
∣∣ = 1 + (ω�t)2. (12.32)

In this case the phase space volume increases continuously.

12.4 Implicit Backward Euler Method

Alternatively let us make a step backwards in time

Y(tn) − Y(tn+1) ≈ −f
(
Y(tn+1), tn+1

)
�t (12.33)

which can be written as (Fig. 12.4)

Y(tn+1) ≈ Y(tn) + f
(
Y(tn+1), tn+1

)
�t. (12.34)

12.5 Improved Euler Methods 213

Fig. 12.5 Improved Euler
method

Taylor series expansion gives

Y(tn) = Y(tn+1) − d

dt
Y (tn+1)�t + d2

dt2
Y(tn+1)

�t2

2
+ · · · (12.35)

which shows that the error order again is O(�t2). The implicit method is sometimes
used to avoid the inherent instability of the explicit method. For the examples in
Sect. 12.3 it shows the opposite behavior. The radius of the circular orbit as well
as the phase space volume decrease in time. The gradient at future time has to be
estimated before an implicit step can be performed.

12.5 Improved Euler Methods

The quality of the approximation can be improved significantly by employing the
midpoint rule (Fig. 12.5)

Y(tn+1) − Y(tn) ≈ f

(
Y

(
t + �t

2

)
, tn + �t

2

)
�t. (12.36)

The error is smaller by one order of �t :

Y(tn) + f

(
Y

(
t + �t

2

)
, tn + �t

2

)
�t

= Y(tn) +
(

dY

dt
(tn) + �t

2

d2Y

dt2
(tn) + · · ·

)
�t

= Y(tn + �t) + O
(
�t3). (12.37)

The future value Y(t + �t
2) can be obtained by two different approaches:

• Predictor-corrector method

214 12 Equations of Motion

Fig. 12.6 Improved polygon
(or Heun) method

Since f (Y (t + �t
2), tn + �t

2) is multiplied with �t , it is sufficient to use an approx-
imation with lower error order. Even the explicit Euler step is sufficient. Together
the following algorithm results:

predictor step: Y (p) = Y(tn) + �t

2
f

(
Y(tn), tn

)

corrector step: Y(tn + �t) = Y(tn) + �tf

(
Y (p), tn + �t

2

)
.

(12.38)

• Averaging (Heun method)

The average of f (Y (tn), tn) and f (Y (tn + �t), t + �t) is another approximation to
the midpoint value of comparable quality (Fig. 12.6).

Expansion around tn + �t/2 gives

1

2

(
f

(
Y(tn), tn

) + f
(
Y(tn + �t), t + �t

))

= f

(
Y

(
tn + �t

2

)
, tn + �t

2

)
+ O

(
�t2). (12.39)

Inserting the average in (12.36) gives the following algorithm, which is also known
as improved polygon method and corresponds to the trapezoidal rule for the integral
(4.13) or to a combination of explicit and implicit Euler step:

Y(tn + �t) = Y(tn) + �t

2

(
f

(
Y(tn), tn

) + f
(
Y(tn + �t), t + �t

))
. (12.40)

In the special case of a linear function f (Y (t), t) = FY(t) (for instance rotational
motion or diffusion) this can be solved formally by

Y(tn + �t) =
(

1 − �t

2
F

)−1(
1 + �t

2
F

)
Y(tn). (12.41)

Numerically it is not necessary to perform the matrix inversion. Instead a linear
system of equations is solved:

(
1 − �t

2
F

)
Y(tn + �t) =

(
1 + �t

2
F

)
Y(tn). (12.42)

12.6 Taylor Series Methods 215

In certain cases the Heun method conserves the norm of the state vector, for instance
if F has only imaginary eigenvalues (as for the 1-dimensional Schrödinger equation,
see page 393).

In the general case a predictor step has to be made to estimate the state vector at
tn + �t before the Heun expression (12.40) can be evaluated:

Y (p) = Y(tn) + �tf
(
Y(tn), tn

)
. (12.43)

12.6 Taylor Series Methods

Higher order methods can be obtained from a Taylor series expansion

Y(tn + �t) = Y(tn) + �tf
(
Y(tn), tn

) + �t2

2

df (Y (tn), tn)

dt
+ · · · . (12.44)

The total time derivative can be expressed as

df

dt
= ∂f

∂Y

dY

dt
+ ∂f

∂t
= f ′f + ḟ (12.45)

where the partial derivatives have been abbreviated in the usual way by ∂f
∂t

= ḟ and
∂f
∂Y

= f ′. Higher derivatives are given by

d2f

dt2
= f ′′f 2 + f ′2f + 2ḟ ′f + f̈ (12.46)

d3f

dt3
= ∂3f

∂t3
+ f ′′′f 3 + 3ḟ ′′f 2 + f̈ f ′ + 3f ′′ḟ f

+ 3ḟ ′ + 4f ′′f ′f 2 + 5ḟ ′f ′f + f ′3f + f ′2ḟ . (12.47)

12.6.1 Nordsieck Predictor-Corrector Method

Nordsieck [184] determines an interpolating polynomial of degree m. As variables
he uses the 0th to mth derivatives2 evaluated at the current time t , for instance for
m = 5 he uses the variables

Y(t) (12.48)

g(t) = d

dt
Y (t) (12.49)

a(t) = �t

2

d2

dt2
Y(t) (12.50)

2In fact the derivatives of the interpolating polynomial which exist even if higher derivatives of f

do not exist.

216 12 Equations of Motion

b(t) = �t2

6

d3

dt3
Y(t) (12.51)

c(t) = �t3

24

d4

dt4
Y(t) (12.52)

d(t) = �t4

120

d5

dt5
Y(t). (12.53)

Taylor expansion gives approximate values at t + �t

Y (t + �t) = Y(t) + �t
[
g(t) + a(t) + b(t) + c(t) + d(t) + e(t)

]

= Yp(t + �t) + e(t)�t (12.54)

g(t + �t) = g(t) + 2a(t) + 3b(t) + 4c(t) + 5d(t) + 6e(t)

= gp(t + �T) + 6e(t) (12.55)

a(t + �t) = a(t) + 3b(t) + 6c(t) + 10d(t) + 15e(t)

= ap(t + �t) + 15e(t) (12.56)

b(t + �t) = b(t) + 4c(t) + 10d(t) + 20e(t)

= bp(t + �t) + 20e(t) (12.57)

c(t + �t) = c(t) + 5d(t) + 15e(t) = cp(t + �t) + 15e(t) (12.58)

d(t + �t) = d(t) + 6e(t) = dp(t + �t) + 6e(t) (12.59)

where the next term of the Taylor series e(t) = �t5

6!
d6

dt6 Y(t) has been introduced as
an approximation to the truncation error of the predicted values Yp,gp , etc. It can
be estimated from the second equation

e = 1

6

[
f

(
Yp(t + �t), t + �t

) − gp(t + �t)
] = 1

6
δf. (12.60)

This predictor-corrector method turns out to be rather unstable. However, sta-
bility can be achieved by slightly modifying the coefficients of the corrector step.
Nordsieck suggested to use

Y(t + �t) = Yp(t + �t) + 95

288
δf (12.61)

a(t + �t) = ap(t + �t) + 25

24
δf (12.62)

b(t + �t) = bp(t + �t) + 35

72
δf (12.63)

c(t + �t) = cp(t + �t) + 5

48
δf (12.64)

d(t + �t) = dp(t + �t) + 1

120
δf. (12.65)

12.7 Runge-Kutta Methods 217

12.6.2 Gear Predictor-Corrector Methods

Gear [101] designed special methods for molecular dynamics simulations (Chap. 14)
where Newton’s law (12.15) has to be solved numerically. He uses again a truncated
Taylor expansion for the predictor step

r(t + �t) = r(t) + v(t)�t + a(t)
�t2

2
+ ȧ(t)

�t3

6
+ ä(t)

�t4

24
+ · · · (12.66)

v(t + �t) = v(t) + a(t)�t + ȧ(t)
�t2

2
+ ä(t)

�t3

6
+ · · · (12.67)

a(t + �t) = a(t) + ȧ(t)�t + ä(t)
�t2

2
+ · · · (12.68)

ȧ(t + �t) = ȧ(t) + ä(t)�t + · · · (12.69)
...

to calculate new coordinates etc. rp

n+1,vp

n+1,ap

n+1 . . . (Fig. 12.7). The difference be-
tween the predicted acceleration and that calculated using the predicted coordinates

δan+1 = a
(
rP
n+1, t + �t

) − ap

n+1 (12.70)

is then used as a measure of the error to correct the predicted values according to

rn+1 = rp

n+1 + c1δan+1 (12.71)

vn+1 = vp

n+1 + c2δan+1 (12.72)

...

The coefficients ci were determined to optimize stability and accuracy. For instance
the fourth order Gear corrector reads

rn+1 = rp

n+1 + �t2

12
δan+1 (12.73)

vn+1 = vp

n+1 + 5�t

12
δan+1 (12.74)

ȧn+1 = ȧn + 1

�t
δan+1. (12.75)

Gear methods are generally not time reversible and show systematic energy
drifts. A reversible symplectic predictor-corrector method has been presented re-
cently by Martyna and Tuckerman [169].

12.7 Runge-Kutta Methods

If higher derivatives are not so easily available, they can be approximated by numer-
ical differences. f is evaluated at several trial points and the results are combined to
reproduce the Taylor series as close as possible [48].

218 12 Equations of Motion

Fig. 12.7 (Gear
predictor-corrector method)
The difference between
predicted acceleration ap and
acceleration calculated for the
predicted coordinates a(rp) is
used as a measure of the error
to estimate the correction δr

12.7.1 Second Order Runge-Kutta Method

Let us begin with two function values. As common in the literature we will denote
the function values as K1,K2, From the gradient at time tn

K1 = fn = f
(
Y(tn), tn

)
(12.76)

we estimate the state vector at time tn + �t as

Y(tn + �t) ≈ �t K1. (12.77)

The gradient at time tn + �t is approximately

K2 = f
(
Y(tn) + �t K1, tn + �t

)
(12.78)

which has the Taylor series expansion

K2 = fn + (
ḟn + f ′

nfn

)
�t + · · · (12.79)

and application of the trapezoidal rule (4.13) gives the 2nd order Runge-Kutta
method

Yn+1 = Yn + �t

2
(K1 + K2) (12.80)

which in fact coincides with the improved Euler or Heun method. Taylor series
expansion shows how the combination of K1 and K2 leads to an expression of higher
error order:

Yn+1 = Yn + �t

2

(
fn + fn + (

ḟn + f ′
nfn

)
�t + · · ·)

= Yn + fn�t + dfn

dt

�t2

2
+ · · · . (12.81)

12.7.2 Third Order Runge-Kutta Method

The accuracy can be further improved by calculating one additional function value
at mid-time. From (12.76) we estimate the gradient at mid-time by

12.7 Runge-Kutta Methods 219

K2 = f

(
Y(t) + �t

2
K1, t + �t

2

)

= fn + (
ḟn + f ′

nfn

)�t

2
+ (

f̈n + f ′′
n f 2

n + 2ḟ ′
nfn

)�t2

8
+ · · · . (12.82)

The gradient at time tn + �t is then estimated as

K3 = f
(
Y(tn) + �t(2K2 − K1), tn + �t

)

= fn + ḟn�t + f ′
n(2K2 − K1)�t + f̈n

�t2

2

+ f ′′
n

(2K2 − K1)
2�t2

2
+ 2ḟ ′

n

(2K2 − K1)�t2

2
+ · · · . (12.83)

Inserting the expansion (12.82) gives the leading terms

K3 = fn + (
ḟn + f ′

nfn

)
�t + (

2f ′2
n fn + f ′′

n f 2
n + f̈n + 2f ′

nḟn + 2ḟ 2
n

)�t2

2
+ · · · .
(12.84)

Applying Simpson’s rule (4.14) we combine the three gradients to get the 3rd order
Runge-Kutta method

Yn+1 = Y(tn) + �t

6
(K1 + 4K2 + K3) (12.85)

where the Taylor series

Yn+1 = Y(tn) + �t

6

(
6fn + 3

(
ḟn + fnf

′
n

)
�t

+ (
f ′2

n fn + f ′′
n f 2

n + 2ḟ ′
nfn + fn + ḟnf̈

′
n

)
�t2 + · · ·)

= Y(tn + �t) + O
(
�t4) (12.86)

recovers the exact Taylor series (12.44) including terms of order O(�t3).

12.7.3 Fourth Order Runge-Kutta Method

The 4th order Runge-Kutta method (RK4) is often used because of its robustness
and accuracy. It uses two different approximations for the midpoint

K1 = f
(
Y(tn), tn

)

K2 = f

(
Y(tn) + K1

2
�t, tn + �t

2

)

K3 = f

(
Y(tn) + K2

2
�t, tn + �t

2

)

K4 = f
(
Y(tn) + K3�t, tn + �t

)

220 12 Equations of Motion

Fig. 12.8 Step doubling with
the fourth order Runge-Kutta
method

and Simpson’s rule (4.14) to obtain

Yn+1 = Y(tn) + �t

6
(K1 + 2K2 + 2K3 + K4) = Y(tn + �t) + O

(
�t5).

Expansion of the Taylor series is cumbersome but with the help of an algebra pro-
gram one can easily check that the error is of order �t5.

12.8 Quality Control and Adaptive Step Size Control

For practical applications it is necessary to have an estimate for the local error and to
adjust the step size properly. With the Runge-Kutta method this can be achieved by
a step doubling procedure. We calculate yn+2 first by two steps �t and then by one
step 2�t . This needs 11 function evaluations as compared to 8 for the smaller step
size only (Fig. 12.8). For the 4th order method we estimate the following errors:

�
(
Y

(�t)
n+2

) = 2a�t5 (12.87)

�
(
Y

(2�t)
n+2

) = a(2�t)5. (12.88)

The local error can be estimated from
∣
∣Y (�t)

n+2 − Y
(2�t)
n+2

∣
∣ = 30|a|�t5

�
(
Y

(�t)
n+1

) = a�t5 = |Y (�t)
n+2 − Y

(2�t)
n+2 |

30
.

The step size �t can now be adjusted to keep the local error within the desired
limits.

12.9 Extrapolation Methods 221

12.9 Extrapolation Methods

Application of the extrapolation method to calculate the integral
∫ tn+1
tn

f (t)dt pro-
duces very accurate results but can also be time consuming. The famous Gragg-
Bulirsch-Stör method [244] starts from an explicit midpoint rule with a special start-
ing procedure. The interval �t is divided into a sequence of N sub-steps

h = �t

N
. (12.89)

First a simple Euler step is performed

u0 = Y(tn)

u1 = u0 + hf (u0, tn)
(12.90)

and then the midpoint rule is applied repeatedly to obtain

uj+1 = uj−1 + 2hf (uj , tn + jh) j = 1,2, . . . ,N − 1. (12.91)

Gragg [111] introduced a smoothing procedure to remove oscillations of the leading
error term by defining

vj = 1

4
uj−1 + 1

2
uj + 1

4
uj+1. (12.92)

He showed that both approximations (12.91, 12.92) have an asymptotic expansion
in powers of h2 and are therefore well suited for an extrapolation method. The mod-
ified midpoint method can be summarized as follows:

u0 = Y(tn)

u1 = u0 + hf (u0, tn)

uj+1 = uj−1 + 2hf (uj , tn + jh) j = 1,2, . . . ,N − 1

Y(tn + �t) ≈ 1

2

(
uN + uN−1 + hf (uN, tn + �t)

)
.

(12.93)

The number of sub-steps N is increased according to a sequence like

N = 2,4,6,8,12,16,24,32,48,64 · · · Nj = 2Nj−2 Bulirsch-Stör sequence
(12.94)

or

N = 2,4,6,8,10,12 · · · Nj = 2j Deuflhard sequence.

After each successive N is tried, a polynomial extrapolation is attempted. This ex-
trapolation returns both the extrapolated values and an error estimate. If the error is
still too large then N has to be increased further. A more detailed discussion can be
found in [233, 234].

222 12 Equations of Motion

Fig. 12.9 Adams-Bashforth
method

12.10 Linear Multistep Methods

All methods discussed so far evaluated one or more values of the gradient f (Y (t), t)

only within the interval tn · · · tn +�t . If the state vector changes sufficiently smooth
then multistep methods can be applied. Linear multistep methods use a combination
of function values Yn and gradients fn from several steps

Yn+1 =
k∑

j=1

(αjYn−j+1 + βjfn−j+1�t) + β0fn+1�t (12.95)

where the coefficients α, β are determined such, that a polynomial of certain or-
der r is integrated exactly. The method is explicit if β0 = 0 and implicit otherwise.
Multistep methods have a small local error and need fewer function evaluations. On
the other hand, they have to be combined with other methods (like Runge-Kutta) to
start and end properly and it can be rather complicated to change the step size during
the calculation. Three families of linear multistep methods are commonly used: ex-
plicit Adams-Bashforth methods, implicit Adams-Moulton methods and backward
differentiation formulas (also known as Gear formulas [102]).

12.10.1 Adams-Bashforth Methods

The explicit Adams-Bashforth method of order r uses the gradients from the last
r − 1 steps (Fig. 12.9) to obtain the polynomial

p(tn) = f (Yn, tn) · · ·p(tn−r+1) = f (Yn−r+1, tn−r+1) (12.96)

and to calculate the approximation

Yn+1 − Yn ≈
∫ tn+1

tn

p(t)dt

which is generally a linear combination of fn · · ·fn−r+1. For example, the Adams-
Bashforth formulas of order 2, 3, 4 are:

12.10 Linear Multistep Methods 223

Fig. 12.10 Adams-Moulton
method

Yn+1 − Yn = �t

2
(3fn − fn−1) + O

(
�t3)

Yn+1 − Yn = �t

12
(23fn − 16fn−1 + 5fm−2) + O

(
�t4)

Yn+1 − Yn = �t

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) + O

(
�t5).

(12.97)

12.10.2 Adams-Moulton Methods

The implicit Adams-Moulton method also uses the yet not known value Yn+1
(Fig. 12.10) to obtain the polynomial

p(tn+1) = fn+1 · · ·p(tn−r+2) = fn−r+2. (12.98)

The corresponding Adams-Moulton formulas of order 2 to 4 are:

Yn+1 − Yn = �t

2
(fn+1 + fn) + O

(
�t3)

Yn+1 − Yn = �t

12
(5fn+1 + 8fn − fn−1) + O

(
�t4) (12.99)

Yn+1 − Yn = �t

24
(9fn+1 + 19fn − 5fn−1 + fn−2) + O

(
�t5). (12.100)

12.10.3 Backward Differentiation (Gear) Methods

Gear methods [102] are implicit and usually combined with a modified Newton
method. They make use of previous function values Yn,Yn−1 . . . and the gradient
fn+1 at time t +�t . Only methods of order r ≤ 6 are stable and useful. The general
formula (12.95) is

Yn+1 =
r∑

j=1

αjYn−j+1 + β0fn+1�t. (12.101)

224 12 Equations of Motion

For r = 1 this becomes

Yn+1 = α1Yn + β0f1�t (12.102)

and all linear polynomials

p = p0 + p1(t − tn),
dp

dt
= p1 (12.103)

are integrated exactly if

p0 + p1�t = α1p0 + β0p1 (12.104)

which is the case for

α1 = 1, β0 = �t. (12.105)

Hence the first order Gear method is

Yn+1 = Yn + fn+1�t + O
(
�t2) (12.106)

which coincides with the implicit Euler method. The higher order stable Gear meth-
ods are given by

r = 2: Yn+1 = 4

3
Yn − 1

3
Yn−1 + 2

3
fn+1�t + O

(
�t3) (12.107)

r = 3: Yn+1 = 18

11
Yn − 9

11
Yn−1 + 2

11
Yn−2 + 6

11
fn+1�t

+ O
(
�t4) (12.108)

r = 4: Yn+1 = 48

25
Yn − 36

25
Yn−1 + 16

25
Yn−2

− 3

25
Yn−3 + 12

25
fn+1�t + O

(
�t5) (12.109)

r = 5: Yn+1 = 300

137
Yn − 300

137
Yn−1 + 200

137
Yn−2 − 75

137
Yn−3

+ 12

137
Yn−4 + 60

137
fn+1�t + O

(
�t6) (12.110)

r = 6: Yn+1 = 120

49
Yn − 150

49
Yn−1 + 400

147
Yn−2 − 75

49
Yn−3 + 24

49
Yn−4

− 10

147
Yn−5 + 20

49
fn+1�t + O

(
�t7). (12.111)

This class of algorithms is useful also for stiff problems (differential equations with
strongly varying eigenvalues).

12.10.4 Predictor-Corrector Methods

The Adams-Bashforth-Moulton method combines the explicit method as a predictor
step to calculate an estimate y

p

n+1 with a corrector step using the implicit method of

12.11 Verlet Methods 225

same order. The general class of linear multistep predictor-corrector methods [100]
uses a predictor step

Y
(0)
n+1 =

k∑

j=1

(
α

(p)
j Yn−j+1 + β

(p)
j fn−j+1�t

)
(12.112)

which is corrected using the formula

Y
(1)
n+1 =

k∑

j=1

(
α

(c)
j Yn−j+1 + β

(c)
j fn−j+1�t

) + β0f
(
Y

(0)
n+1, tn+1

)
�t (12.113)

and further iterations

Y
(m+1)
n+1 = Y

(m)
n+1 − β0

[
f

(
Y

(m−1)
n+1 , tn+1

) − f
(
Y

(m)
n+1, tn+1

)]
�t

m = 1 . . .M − 1 (12.114)

Yn+1 = Y
(M)
n+1 , Ẏn+1 = f

(
Y

(M−1)
n+1 , tn+1

)
. (12.115)

The coefficients α,β have to be determined to optimize accuracy and stability.

12.11 Verlet Methods

For classical molecular dynamics simulations it is necessary to calculate very long
trajectories. Here a family of symplectic methods often is used which conserve the
phase space volume [3, 116, 193, 255, 257, 265]. The equations of motion of a
classical interacting N -body system are

mi ẍi = Fi (12.116)

where the force acting on atom i can be calculated once a specific force field is
chosen. Let us write these equations as a system of first order differential equations

(
ẋi

v̇i

)
=

(
vi

ai

)
(12.117)

where x(t) and v(t) are functions of time and the forces ma(x(t)) are functions of
the time dependent coordinates.

12.11.1 Liouville Equation

We rewrite (12.117) as
(

ẋ
v̇

)
= L

(
x
v

)
(12.118)

226 12 Equations of Motion

where the Liouville operator L acts on the vector containing all coordinates and
velocities:

L
(

x
v

)
=

(
v

∂

∂x
+ a

∂

∂v

)(
x
v

)
. (12.119)

The Liouville equation (12.118) can be formally solved by
(

x(t)

v(t)

)
= eLt

(
x(0)

v(0)

)
. (12.120)

For a better understanding let us evaluate the first members of the Taylor series of
the exponential:

L
(

x
v

)
=

(
v

∂

∂x
+ a

∂

∂v

)(
x
v

)
=

(
v
a

)
(12.121)

L2
(

x
v

)
=

(
v

∂

∂x
+ a

∂

∂v

)(
v

a(x)

)
=

(
a

v ∂
∂x a

)
(12.122)

L3
(

x
v

)
=

(
v

∂

∂x
+ a

∂

∂v

)(
a

v ∂
∂x a

)
=

(
v ∂

∂x a
a ∂

∂x a + vv ∂
∂x

∂
∂x a

)
. (12.123)

But since

d

dt
a
(
x(t)

) = v
∂

∂x
a (12.124)

d2

dt2
a
(
x(t)

) = d

dt

(
v

∂

∂x
a
)

= a
∂

∂x
a + vv

∂

∂x
∂

∂x
a (12.125)

we recover
(

1 + tL+ 1

2
t2L2 + 1

6
t3L3 + · · ·

)(
x
v

)
=

(
x + vt + 1

2 t2a + 1
6 t3ȧ + · · ·

v + at + 1
2 t2ȧ + 1

6 t3ä + · · ·

)

.

(12.126)

12.11.2 Split-Operator Approximation

We introduce a small time step �t = t/N and write

eLt = (
eL�t

)N
. (12.127)

For the small time step �t the split-operator approximation can be used which ap-
proximately factorizes the exponential operator. For example, write the Liouville
operator as the sum of two terms

LA = v
∂

∂x
LB = a

∂

∂v
and make the approximation

eL�t = eLA�teLB�t + · · · . (12.128)

12.11 Verlet Methods 227

Fig. 12.11 (Position Verlet
method) The exact
integration path is
approximated by two
half-steps with constant
velocities and one step with
constant coordinates

Each of the two factors simply shifts positions or velocities

eLA�t

(
x
v

)
=

(
x + v�t

v

)
eLB�t

(
x
v

)
=

(
x

v + a�t

)
(12.129)

since these two steps correspond to either motion with constant velocities or con-
stant coordinates and forces.

12.11.3 Position Verlet Method

Often the following approximation is used which is symmetrical in time

eL�t = eLA�t/2eLB�teLA�t/2 + · · · . (12.130)

The corresponding algorithm is the so called position Verlet method (Fig. 12.11):

x
n+ 1

2
= xn + vn

�t

2
(12.131)

vn+1 = vn + a
n+ 1

2
�t = v(tn + �t) + O

(
�t3) (12.132)

xn+1 = x
n+ 1

2
+ vn+1

�t

2

= xn + vn + vn+1

2
�t = x(tn + �t) + O

(
�t3). (12.133)

12.11.4 Velocity Verlet Method

If we exchange operators A and B we have

eL�t = eLB�t/2eLA�teLB�t/2 + · · · (12.134)

which produces the velocity Verlet algorithm (Fig. 12.12):

228 12 Equations of Motion

Fig. 12.12 (Velocity Verlet
method) The exact
integration path is
approximated by two
half-steps with constant
coordinates and one step with
constant velocities

v
n+ 1

2
= vn + an

�t

2
(12.135)

xn+1 = xn + v
n+ 1

2
�t = xn + vn�t + an

�t2

2
= x(tn + �t) + O

(
�t3) (12.136)

vn+1 = v
n+ 1

2
+ an+1

�t

2
= vn + an + an+1

2
�t

= v(tn + �t) + O
(
�t3). (12.137)

12.11.5 Störmer-Verlet Method

The velocity Verlet method is equivalent to Störmer’s version [208] of the Verlet
method which is a two step method given by

xn+1 = 2xn − xn−1 + an�t2 (12.138)

vn = xn+1 − xn−1

2�t
. (12.139)

To show the equivalence we add two consecutive position vectors

xn+2 + xn+1 = 2xn+1 + 2xn − xn − xn−1 + (an+1 + an)�t2 (12.140)

which simplifies to

xn+2 − xn − (xn+1 − xn) = (an+1 + an)�t2. (12.141)

This can be expressed as the difference of two consecutive velocities:

2(vn+1 − vn) = (an+1 + an)�t. (12.142)

Now we substitute

xn−1 = xn+1 − 2vn�t (12.143)

12.11 Verlet Methods 229

to get

xn+1 = 2xn − xn+1 + 2vn�t + an�t2 (12.144)

which simplifies to

xn+1 = xn + vn�t + an

2
�t2. (12.145)

Thus the equations of the velocity Verlet algorithm have been recovered. However,
since the Verlet method is a 2-step method, the choice of initial values is important.
The Störmer-Verlet method starts from two coordinate sets x0, x1. The first step is

x2 = 2x1 − x0 + a1�t2 (12.146)

v1 = x2 − x0

2�t
= x1 − x0

�t
+ a1

2
�t2. (12.147)

The velocity Verlet method, on the other hand, starts from one set of coordinates
and velocities x1, v1. Here the first step is

x2 = x1 + v1�t + a1
�t2

2
(12.148)

v2 = v1 + a1 + a2

2
�t. (12.149)

The two methods give the same resulting trajectory if we choose

x0 = x1 − v1�t + a1

2
�t2. (12.150)

If, on the other hand, x0 is known with higher precision, the local error order of
Störmer’s algorithm changes as can be seen from addition of the two Taylor series

x(tn + �t) = xn + vn�t + an

2
�t2 + ȧn

6
�t3 + · · · (12.151)

x(tn − �t) = xn − vn�t + an

2
�t2 − ȧn

6
�t3 + · · · (12.152)

which gives

x(tn + �t) = 2x(tn) − x(tn − �t) + an�t2 + O
(
�t4) (12.153)

x(tn + �t) − x(tn − �t)

2�t
= vn + O

(
�t2). (12.154)

12.11.6 Error Accumulation for the Störmer-Verlet Method

Equation (12.153) gives only the local error of one single step. Assume the start
values x0 and x1 are exact. The next value x2 has an error with the leading term
�x2 = α�t4. If the trajectory is sufficiently smooth and the time step not too large

230 12 Equations of Motion

the coefficient α will vary only slowly and the error of the next few iterations is
given by

�x3 = 2�x2 − �x1 = 2α�t4

�x4 = 2�x3 − �x2 = 3α�t4

...

�xn+1 = nα�t4.

(12.155)

This shows that the effective error order of the Störmer-Verlet method is only
O(�t3) similar to the velocity Verlet method.

12.11.7 Beeman’s Method

Beeman and Schofield [17, 229] introduced a method which is very similar to the
Störmer-Verlet method but calculates the velocities with higher precision. This is
important if, for instance, the kinetic energy has to be calculated. Starting from the
Taylor series

xn+1 = xn + vn�t + an

�t2

2
+ ȧn

�t3

6
+ än

�t4

24
+ · · · (12.156)

the derivative of the acceleration is approximated by a backward difference

xn+1 = xn + vn�t + an

�t2

2
+ an − an−1

�t

�t3

6
+ O

(
�t4)

= xn + vn�t + 4an − an−1

6
�t2 + O

(
�t4). (12.157)

This equation can be used as an explicit step to update the coordinates or as a pre-
dictor step in combination with the implicit corrector step

xn+1 = xn + vn�t + an

�t2

2
+ an+1 − an

�t

�t3

6
+ O

(
�t4)

= xn + vn�t + an+1 + 2an

6
�t2 + O

(
�t4) (12.158)

which can be applied repeatedly (usually two iterations are sufficient). Similarly, the
Taylor series of the velocity is approximated by

vn+1 = vn + an�t + ȧn

�t2

2
+ än

�t3

6
+ · · ·

= vn + an�t +
(

an+1 − an

�t
+ O(�t)

)
�t2

2
+ · · ·

= vn + an+1 + an

2
�t + O

(
�t3). (12.159)

Inserting the velocity from (12.158) we obtain the corrector step for the velocity

12.11 Verlet Methods 231

vn+1 = xn+1 − xn

�t
− an+1 + 2an

6
�t + an+1 + an

2
�t + O

(
�t3)

= xn+1 − xn

�t
+ 2an+1 + an

6
�t + O

(
�t3). (12.160)

In combination with (12.157) this can be replaced by

vn+1 = vn + 4an − an−1

6
�t + 2an+1 + an

6
�t + O

(
�t3)

= vn + 2an+1 + 5an − an−1

6
�t + O

(
�t3). (12.161)

Together, (12.157) and (12.161) provide an explicit method which is usually un-
derstood as Beeman’s method. Inserting the velocity (12.160) from the previous
step

vn = xn − xn−1

�t
+ 2an + an−1

6
�t + O

(
�t3) (12.162)

into (12.157) gives

xn+1 = 2xn − xn−1 + an�t2 + O
(
�t4) (12.163)

which coincides with the Störmer-Verlet method (12.138). We conclude that Bee-
man’s method should produce the same trajectory as the Störmer-Verlet method if
numerical errors can be neglected and comparable initial values are used. In fact, the
Störmer-Verlet method may suffer from numerical extinction and Beeman’s method
provides a numerically more favorable alternative.

12.11.8 The Leapfrog Method

Closely related to the Verlet methods is the so called leapfrog method [116]. It uses
the simple decomposition

eL�t ≈ eLA�teLB�t (12.164)

but introduces two different time grids for coordinates and velocities which are
shifted by �t/2 (Fig. 12.13).

The leapfrog algorithm is given by

v
n+ 1

2
= v

n− 1
2
+ an�t (12.165)

xn+1 = xn + v
n+ 1

2
�t. (12.166)

Due to the shifted arguments the order of the method is increased as can be seen
from the Taylor series:

x(tn) +
(

v(tn) + �t

2
a(tn) + · · ·

)
�t = x(tn + �t) + O

(
�t3) (12.167)

v
(

tn + �t

2

)
− v

(
tn − �t

2

)
= a(tn)�t + O

(
�t3). (12.168)

232 12 Equations of Motion

Fig. 12.13 (Leapfrog
method) The exact
integration path is
approximated by one step
with constant coordinates and
one step with constant
velocities. Two different grids
are used for coordinates and
velocities which are shifted
by �t/2

One disadvantage of the leapfrog method is that some additional effort is necessary
if the velocities are needed. The simple expression

v(tn) = 1

2

(
v
(

tn − �t

2

)
+ v

(
tn + �t

2

))
+ O

(
�t2) (12.169)

is of lower error order than (12.168).

12.12 Problems

Problem 12.1 (Circular orbits) In this computer experiment we consider a mass
point moving in a central field. The equation of motion can be written as the follow-
ing system of first order equations:

⎛

⎜
⎜
⎝

ẋ

ẏ

v̇x

v̇y

⎞

⎟
⎟
⎠ =

⎛

⎜⎜
⎜⎜
⎝

0 0 1 0
0 0 0 1

− 1

(x2+y2)
3
2

0 0 0

0 − 1

(x2+y2)
3
2

0 0

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜
⎜
⎝

x

y

vx

vy

⎞

⎟
⎟
⎠ . (12.170)

For initial values
⎛

⎜⎜
⎝

x

y

vx

vy

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠ (12.171)

the exact solution is given by

x = cos t y = sin t. (12.172)

The following methods are used to calculate the position x(t), y(t) and the energy

Etot = Ekin + Epot = 1

2

(
v2
x + v2

y

) − 1
√

x2 + y2
. (12.173)

12.12 Problems 233

• The explicit Euler method (12.3)

x(tn+1) = x(tn) + vx(tn)�t

y(tn+1) = y(tn) + vy(tn)�t

vx(tn+1) = vx(tn) − x(tn)

R(tn)3
�t

vy(tn+1) = vy(tn) − y(tn)

R(tn)3
�t.

(12.174)

• The 2nd order Runge-Kutta method (12.7.1)

which consists of the predictor step

x(tn + �t/2) = x(tn) + �t

2
vx(tn) (12.175)

y(tn + �t/2) = y(tn) + �t

2
vy(tn) (12.176)

vx(tn + �t/2) = vx(tn) − �t

2

x(tn)

R(tn)3
(12.177)

vy(tn + �t/2) = vy(tn) − �t

2

y(tn)

R(tn)3
(12.178)

and the corrector step

x(tn+1) = x(tn) + �t vx(tn + �t/2) (12.179)

y(tn+1) = y(tn) + �t vy(tn + �t/2) (12.180)

vx(tn+1) = vx(tn) − �t
x(tn + �t/2)

R3(tn + �t/2)
(12.181)

vy(tn+1) = vy(tn) − �t
y(tn + �t/2)

R3(tn + �t/2)
. (12.182)

• The fourth order Runge-Kutta method (12.7.3)
• The Verlet method (12.11.5)

x(tn+1) = x(tn) + (
x(tn) − x(tn−1)

) − �t
x(tn)

R3(tn)
(12.183)

y(tn+1) = y(tn) + (
y(tn) − y(tn−1)

) − �t
y(tn)

R3(tn)
(12.184)

vx(tn) = x(tn+1) − x(tn−1)

2�t
= x(tn) − x(tn−1)

�t
− �t

2

x(tn)

R3(tn)
(12.185)

vy(tn) = y(tn+1) − y(tn−1)

2�t
= y(tn) − y(tn−1)

�t
− �t

2

y(tn)

R3(tn)
. (12.186)

To start the Verlet method we need additional coordinates at time −�t which can
be chosen from the exact solution or from the approximation

234 12 Equations of Motion

x(t−1) = x(t0) − �t vx(t0) − �t2

2

x(t0)

R3(t0)
(12.187)

y(t−1) = y(t0) − �t vy(t0) − �t2

2

y(t0)

R3(t0)
. (12.188)

• The leapfrog method (12.11.8)

x(tn+1) = x(tn) + vx(tn+ 1
2
)�t (12.189)

y(tn+1) = y(tn) + vy(tn+ 1
2
)�t (12.190)

vx(tn+ 1
2
) = vx(tn− 1

2
) − x(tn)

R(tn)3
�t (12.191)

vy(tn+ 1
2
) = vy(tn− 1

2
) − y(tn)

R(tn)3
�t (12.192)

where the velocity at time tn is calculated from

vx(tn) = vx(tn+ 1
2
) − �t

2

x(tn+1)

R3(tn+1)
(12.193)

vy(tn) = vy(tn+ 1
2
) − �t

2

y(tn+1)

R3(tn+1)
. (12.194)

To start the leapfrog method we need the velocity at time t− 1
2

which can be taken
from the exact solution or from

vx(t− 1
2
) = vx(t0) − �t

2

x(t0)

R3(t0)
(12.195)

vy(t− 1
2
) = vy(t0) − �t

2

y(t0)

R3(t0)
. (12.196)

Compare the conservation of energy for the different methods as a function of the
time step �t . Study the influence of the initial values for leapfrog and Verlet meth-
ods.

Problem 12.2 (N -body system) In this computer experiment we simulate the mo-
tion of three mass points under the influence of gravity. Initial coordinates and ve-
locities as well as the masses can be varied. The equations of motion are solved with
the 4th order Runge-Kutta method with quality control for different step sizes. The
local integration error is estimated using the step doubling method. Try to simulate
a planet with a moon moving round a sun!

Problem 12.3 (Adams-Bashforth method) In this computer experiment we simu-
late a circular orbit with the Adams-Bashforth method of order 2 · · ·7. The absolute
error at time T

�(T) = ∣∣x(T) − cos(T)
∣∣ + ∣∣y(t) − sin(T)

∣∣ + ∣∣vx(T) + sin(T)
∣∣

+ ∣∣vy(T) − cos(T)
∣∣ (12.197)

12.12 Problems 235

is shown as a function of the time step �t in a log-log plot. From the slope

s = d(log10(�))

d(log10(�t))
(12.198)

the leading error order s can be determined. For very small step sizes rounding
errors become dominating which leads to an increase � ∼ (�t)−1.

Determine maximum precision and optimal step size for different orders of the
method. Compare with the explicit Euler method.

	Chapter 12: Equations of Motion
	12.1 The State Vector
	12.2 Time Evolution of the State Vector
	12.3 Explicit Forward Euler Method
	12.4 Implicit Backward Euler Method
	12.5 Improved Euler Methods
	12.6 Taylor Series Methods
	12.6.1 Nordsieck Predictor-Corrector Method
	12.6.2 Gear Predictor-Corrector Methods

	12.7 Runge-Kutta Methods
	12.7.1 Second Order Runge-Kutta Method
	12.7.2 Third Order Runge-Kutta Method
	12.7.3 Fourth Order Runge-Kutta Method

	12.8 Quality Control and Adaptive Step Size Control
	12.9 Extrapolation Methods
	12.10 Linear Multistep Methods
	12.10.1 Adams-Bashforth Methods
	12.10.2 Adams-Moulton Methods
	12.10.3 Backward Differentiation (Gear) Methods
	12.10.4 Predictor-Corrector Methods

	12.11 Verlet Methods
	12.11.1 Liouville Equation
	12.11.2 Split-Operator Approximation
	12.11.3 Position Verlet Method
	12.11.4 Velocity Verlet Method
	12.11.5 Störmer-Verlet Method
	12.11.6 Error Accumulation for the Störmer-Verlet Method
	12.11.7 Beeman's Method
	12.11.8 The Leapfrog Method

	12.12 Problems

