
Chapter 11
Discretization of Differential Equations

Many processes in science and technology can be described by differential equations
involving the rate of changes in time or space of a continuous variable, the unknown
function. While the simplest differential equations can be solved exactly, a numer-
ical treatment is necessary in most cases and the equations have to be discretized
to turn them into a finite system of equations which can be solved by computers
[6, 155, 200]. In this chapter we discuss different methods to discretize differential
equations. The simplest approach is the method of finite differences, which replaces
the differential quotients by difference quotients (Chap. 3). It is often used for the
discretization of time. Finite difference methods for the space variables work best
on a regular grid. Finite volume methods are very popular in computational fluid dy-
namics. They take averages over small control volumes and can be easily used with
irregular grids. Finite differences and finite volumes belong to the general class of
finite element methods which are prominent in the engineering sciences and use an
expansion in piecewise polynomials with small support. Spectral methods, on the
other hand, expand the solution as a linear combination of global basis functions
like polynomials or trigonometric functions. A general concept for the discretiza-
tion of differential equations is the method of weighted residuals which minimizes
the weighted residual of a numerical solution. Most popular is Galerkin’s method
which uses the expansion functions also as weight functions. Simpler are the point
collocation and sub-domain collocation methods which fulfill the differential equa-
tion only at certain points or averaged over certain control volumes. More demand-
ing is the least-squares method which has become popular in computational fluid
dynamics and computational electrodynamics. The least-square integral provides a
measure for the quality of the solution which can be used for adaptive grid size
control.

If the Green’s function is available for a problem, the method of boundary el-
ements is an interesting alternative. It reduces the dimensionality and is, for in-
stance, very popular in chemical physics to solve the Poisson-Boltzmann equa-
tion.
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11.1 Classification of Differential Equations

An ordinary differential equation (ODE) is a differential equation for a function of
one single variable, like Newton’s law for the motion of a body under the influence
of a force field

m
d2

dt2
x(t) = F(x, t), (11.1)

a typical initial value problem where the solution in the domain t0 ≤ t ≤ T is deter-
mined by position and velocity at the initial time

x(t = t0) = x0
d

dt
x(t = t0) = v0. (11.2)

Such equations of motion are discussed in Chap. 12. They also appear if the
spatial derivatives of a partial differential equation have been discretized. Usually
this kind of equation is solved by numerical integration over finite time steps �t =
tn+1 − tn. Boundary value problems, on the other hand, require certain boundary
conditions1 to be fulfilled, for instance the linearized Poisson-Boltzmann equation
in one dimension (Chap. 17)

d2

dx2
Φ − κ2Φ = −1

ε
ρ(x) (11.3)

where the value of the potential is prescribed on the boundary of the domain x0 ≤
x ≤ x1

Φ(x0) = Φ0 Φ(x1) = Φ1. (11.4)

Partial differential equations (PDE) finally involve partial derivatives with respect
to at least two different variables, in many cases time and spatial coordinates.

11.1.1 Linear Second Order PDE

A very important class are second order linear partial differential equations of the
general form[

N∑
i=1

N∑
j=1

aij

∂2

∂xi∂xj

+
N∑

i=1

bi

∂

∂xi

+ c

]
f (x1 . . . xN) + d = 0 (11.5)

where the coefficients aij , bi, c, d are functions of the variables x1 . . . xN but do not
depend on the function f itself. The equation is classified according to the eigen-
values of the coefficient matrix aij as [141]

1Dirichlet b.c. concern the function values, Neumann b.c. the derivative, Robin b.c. a linear com-
bination of both, Cauchy b.c. the function value and the normal derivative and mixed b.c. have
different character on different parts of the boundary.
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• elliptical if all eigenvalues are positive or all eigenvalues are negative, like for the
Poisson equation (Chap. 17)(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
Φ(x,y, z) = −1

ε
ρ(x, y, z) (11.6)

• hyperbolic if one eigenvalue is negative and all the other eigenvalues are positive
or vice versa, for example the wave equation in one spatial dimension (Chap. 18)

∂2

∂t2
f − c2 ∂2

∂x2
f = 0 (11.7)

• parabolic if at least one eigenvalue is zero, like for the diffusion equation
(Chap. 19)

∂

∂t
f (x, y, z, t) − D

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
f (x, y, z, t) = S(x, y, z, t)

(11.8)

• ultra-hyperbolic if there is no zero eigenvalue and more than one positive as well
as more than one negative eigenvalue. Obviously the dimension then must be 4 at
least.

11.1.2 Conservation Laws

One of the simplest first order partial differential equations is the advection equation

∂

∂t
f (x, t) + u

∂

∂x
f (x, t) = 0 (11.9)

which describes transport of a conserved quantity with density f (for instance mass,
number of particles, charge etc.) in a medium streaming with velocity u. This is a
special case of the class of conservation laws (also called continuity equations)

∂

∂t
f (x, t) + div J(x, t) = g(x, t) (11.10)

which are very common in physics. Here J describes the corresponding flux and g

is an additional source (or sink) term. For instance the advection-diffusion equation
(also known as convection equation) has this form which describes quite general
transport processes:

∂

∂t
C = div(D gradC − uC) + S(x, t) = −div J + S(x, t) (11.11)

where one contribution to the flux

J = −D gradC + uC (11.12)

is proportional to the gradient of the concentration C (Fick’s first law) and the sec-
ond part depends on the velocity field u of a streaming medium. The source term
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S represents the effect of chemical reactions. Equation (11.11) is also similar to the
drift-diffusion equation in semiconductor physics and closely related to the Navier
Stokes equations which are based on the Cauchy momentum equation [1]

ρ
du
dt

= ρ

(
∂u
∂t

+ u grad u
)

= divσ + f (11.13)

where σ denotes the stress tensor. Equation (11.10) is the strong or differential form
of the conservation law. The requirements on the smoothness of the solution are re-
duced by using the integral form which is obtained with the help of Gauss’ theorem∫

V

(
∂

∂t
f (x, t) − g(x, t)

)
dV +

∮
∂V

J(x, t) dA = 0. (11.14)

An alternative integral form results from Galerkin’s [98] method of weighted
residuals which introduces a weight function w(x) and considers the equation∫

V

(
∂

∂t
f (x, t) + div J(x, t) − g(x, t)

)
w(x) dV = 0 (11.15)

or after applying Gauss’ theorem∫
V

{(
∂

∂t
f (x, t) − g(x, t)

)
w(x) − J(x, t)gradw(x)

}
dV

+
∮

∂V

w(x)J(x, t) dA = 0. (11.16)

The so called weak form of the conservation law states that this equation holds for
arbitrary weight functions w.

11.2 Finite Differences

The simplest method to discretize a differential equation is to introduce a grid of
equidistant points and to discretize the differential operators by finite differences
(FDM) as described in Chap. 3. For instance, in one dimension the first and second
derivatives can be discretized by

x → xm = m�x m = 1 . . .M (11.17)

f (x) → fm = f (xm) m = 1 . . .M (11.18)
∂f

∂x
→

(
∂

∂x
f

)
m

= fm+1 − fm

�x
or

(
∂

∂x
f

)
m

= fm+1 − fm−1

2�x

(11.19)

∂2f

∂x2
→

(
∂2

∂x2
f

)
m

= fm+1 + fm−1 − 2fm

�x2
. (11.20)

These expressions are not well defined at the boundaries of the grid m = 1,M unless
the boundary conditions are taken into account. For instance, in case of a Dirichlet
problem f0 and fM+1 are given boundary values and
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(
∂

∂x
f

)
1
= f2 − f0

2�x

(
∂2

∂x2
f

)
1
= f2 − 2f1 + f0

�x2
(11.21)(

∂

∂x
f

)
M

= fM+1 − fM

�x
or

fM+1 − fM−1

2�x(
∂2

∂x2
f

)
M

= fM−1 − 2fM + fM+1

�x2
. (11.22)

Other kinds of boundary conditions can be treated in a similar way.

11.2.1 Finite Differences in Time

Time derivatives can be treated similarly using an independent time grid

t → tn = n�t n = 1 . . .N (11.23)

f (t, x) → f n
m = f (tn, xm) (11.24)

and finite differences like the first order forward difference quotient

∂f

∂t
→ f n+1

m − f n
m

�t
(11.25)

or the symmetric difference quotient

∂f

∂t
→ f n+1

m − f n−1
m

2�t
(11.26)

to obtain a system of equations for the function values at the grid points f n
m. For

instance for the diffusion equation in one spatial dimension

∂f (x, t)

∂t
= D

∂2

∂x2
f (x, t) + S(x, t) (11.27)

the simplest discretization is the FTCS (forward in time, centered in space) scheme

(
f n+1

m − f n
m

) = D
�t

�x2

(
f n

m+1 + f n
m−1 − 2f n

m

) + Sn
m�t (11.28)

which can be written in matrix notation as

fn+1 − fn = D
�t

�x2
Mfn + Sn�t (11.29)

with

fn =

⎛
⎜⎜⎜⎜⎜⎝

f n
1

f n
2

f n
3
...

f n
M

⎞
⎟⎟⎟⎟⎟⎠ and M =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2

⎞
⎟⎟⎟⎟⎟⎠ . (11.30)
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11.2.2 Stability Analysis

Fully discretized linear differential equations provide an iterative algorithm of the
type2

fn+1 = Afn + Sn�t (11.31)

which propagates numerical errors according to

fn+1 + εn+1 = A(fn + εn) + Sn�t (11.32)

εj+1 = Aεj . (11.33)

Errors are amplified exponentially if the absolute value of at least one eigenvalue of
A is larger than one. The algorithm is stable if all eigenvalues of A are smaller than
one in absolute value (Sect. 1.4). If the eigenvalue problem is difficult to solve, the
von Neumann analysis is helpful which decomposes the errors into a Fourier series
and considers the Fourier components individually by setting

fn = gn(k)

⎛
⎜⎝

eik

...

eikM

⎞
⎟⎠ (11.34)

and calculating the amplification factor∣∣∣∣f n+1
m

f n
m

∣∣∣∣ = ∣∣g(k)
∣∣. (11.35)

The algorithm is stable if |g(k)| ≤ 1 for all k.

Example For the discretized diffusion equation (11.28) we find

gn+1(k) = gn(k) + 2D
�t

�x2
gn(k)(cos k − 1) (11.36)

g(k) = 1 + 2D
�t

�x2
(cosk − 1) = 1 − 4D

�t

�x2
sin2

(
k

2

)
(11.37)

1 − 4D
�t

�x2
≤ g(k) ≤ 1 (11.38)

hence stability requires

D
�t

�x2
≤ 1

2
. (11.39)

2Differential equations which are higher order in time can be always brought to first order by
introducing the time derivatives as additional variables.



11.2 Finite Differences 183

11.2.3 Method of Lines

Alternatively time can be considered as a continuous variable. The discrete values
of the function then are functions of time (so called lines)

fm(t) (11.40)

and a set of ordinary differential equations has to be solved. For instance for diffu-
sion in one dimension (11.27) the equations

dfm

dt
= D

h2
(fm+1 + fm−1 − 2fm) + Sm(t) (11.41)

which can be written in matrix notation as

d

dt

⎛
⎜⎜⎜⎜⎜⎝

f1
f1
f2
...

fM

⎞
⎟⎟⎟⎟⎟⎠ = D

�x2

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f1
f2
f3
...

fM

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

S1 + D

h2 f0

S2
S3
...

SM + D

h2 fM+1

⎞
⎟⎟⎟⎟⎟⎠

(11.42)

or briefly

d

dt
f(t) = Af(t) + S(t). (11.43)

Several methods to integrate such a semi-discretized equation will be discussed in
Chap. 12. If eigenvectors and eigenvalues of A are easy available, an eigenvector
expansion can be used.

11.2.4 Eigenvector Expansion

A homogeneous system

d

dt
f(t) = Af(t) (11.44)

where the matrix A is obtained from discretizing the spatial derivatives, can be
solved by an eigenvector expansion. From the eigenvalue problem

Af = λf (11.45)

we obtain the eigenvalues λ and eigenvectors fλ which provide the particular solu-
tions:

f(t) = eλt fλ (11.46)
d

dt

(
eλt fλ

) = λ
(
eλt fλ

) = A
(
eλt fλ

)
. (11.47)
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These can be used to expand the general solution

f(t) =
∑
λ

Cλeλt fλ. (11.48)

The coefficients Cλ follow from the initial values by solving the linear equations

f(t = 0) =
∑
λ

Cλfλ. (11.49)

If the differential equation is second order in time

d2

dt2
f(t) = Af(t) (11.50)

the particular solutions are

f(t) = e±t
√

λfλ (11.51)

d2

dt2

(
e±t

√
λfλ

) = λ
(
e±t

√
λfλ

) = A
(
e±t

√
λfλ

)
(11.52)

and the eigenvector expansion is

f(t) =
∑
λ

(
Cλ+et

√
λ + Cλ−e−t

√
λ
)
fλ. (11.53)

The coefficients Cλ± follow from the initial amplitudes and velocities

f(t = 0) =
∑
λ

(Cλ+ + Cλ−)fλ

d

dt
f(t = 0) =

∑
λ

√
λ(Cλ+ − Cλ−)fλ.

(11.54)

For a first order inhomogeneous system

d

dt
f(t) = Af(t) + S(t) (11.55)

the expansion coefficients have to be time dependent

f(t) =
∑
λ

Cλ(t)e
λt fλ (11.56)

and satisfy

d

dt
f(t) − Af(t) =

∑
λ

dCλ

dt
eλt fλ = S(t). (11.57)

After taking the scalar product with fμ3

dCμ

dt
= e−μt

(
fμS(t)

)
(11.58)

3If A is not Hermitian we have to distinguish left- and right-eigenvectors.
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can be solved by a simple time integration. For a second order system

d2

dt2
f(t) = Af(t) + S(t) (11.59)

we introduce the first time derivative as a new variable

g = d

dt
f (11.60)

to obtain a first order system of double dimension

d

dt

(
f
g

)
=

(
0 1
A 0

)(
f
g

)
+

(
S
0

)
(11.61)

where eigenvectors and eigenvalues can be found from those of A (11.45)(
0 1
A 0

)(
fλ

±√
λfλ

)
=

(±√
λfλ

λfλ

)
= ±√

λ

(
fλ

±√
λfλ

)
(11.62)

(
±√

λ fTλ fTλ
)(

0 1
A 0

)
= (

λ fTλ ±√
λfTλ

) = ±√
λ

(
±√

λ fTλ fTλ
)

. (11.63)

Insertion of

∑
λ

Cλ+e
√

λt

(
fλ√
λfλ

)
+ Cλ−e−√

λt

(
fλ

−√
λfλ

)

gives

∑
λ

dCλ+
dt

e
√

λt

(
fλ√
λfλ

)
+ dCλ−

dt
e
√

λt

(
fλ

−√
λfλ

)
=

(
S(t)

0

)
(11.64)

and taking the scalar product with one of the left-eigenvectors we end up with

dCλ+
dt

= 1

2

(
fλS(t)

)
e−√

λt (11.65)

dCλ−
dt

= −1

2

(
fλS(t)

)
e
√

λt . (11.66)

11.3 Finite Volumes

Whereas the finite differences method uses function values

fi,j,k = f (xi, yj , zk) (11.67)

at the grid points
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Fig. 11.1 (Finite volume method) The domain V is divided into small control volumes Vr , in the
simplest case cubes around the grid points rijk

rijk = (xi, yj , zk), (11.68)

the finite volume method (FVM) [79] averages function values and derivatives over
small control volumes Vr which are disjoint and span the domain V (Fig. 11.1)

V =
⋃
r

Vr Vr ∩ Vr ′ = Ø ∀r �= r ′. (11.69)

The averages are

f r = 1

Vr

∫
Vr

dV f (r) (11.70)

or in the simple case of cubic control volumes of equal size h3

f ijk = 1

h3

∫ xi+h/2

xi−h/2
dx

∫ yj +h/2

yj −h/2
dy

∫ zk+h/2

zk−h/2
dzf (x, y, z). (11.71)

Such average values have to be related to discrete function values by numerical
integration (Chap. 4). The midpoint rule (4.17), for instance replaces the average by
the central value

f ijk = f (xi, yj , zk) + O
(
h2) (11.72)

whereas the trapezoidal rule (4.13) implies the average over the eight corners of the
cube

f ijk = 1

8

∑
m,n,p=±1

f (xi+m/2, yj+n/2, zk+p/2) + O
(
h2). (11.73)

In (11.73) the function values refer to a dual grid [79] centered around the vertices
of the original grid (11.68) (Fig. 11.2),

ri+1/2,j+1/2,k+1/2 =
(

xi + h

2
, yj + h

2
, zk + h

2

)
. (11.74)
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Fig. 11.2 (Dual grid) The
dual grid (black) is centered
around the vertices of the
original grid (red)

The average gradient can be rewritten using the generalized Stokes’ theorem as

gradfijk = 1

V

∫
Vijk

dV gradf (r) =
∮

∂Vijk

f (r) dA. (11.75)

For a cubic grid we have to integrate over the six faces of the control volume

gradfijk = 1

h3

⎛
⎜⎜⎜⎝

∫ zk+h/2
zk−h/2 dz

∫ yj +h/2
yj −h/2 dy(f (xi + h

2 , y, z) − f (xi − h
2 , y, z))∫ zk+h/2

zk−h/2 dz
∫ xi+h/2
xi−h/2 dx(f (xi, y + h

2 , z) − f (xi, y − h
2 , z))∫ xi+h/2

xi−h/2 dx
∫ yj +h/2
yj −h/2 dy(f (xi, y, z + h

2 ) − f (xi, y, z − h
2 ))

⎞
⎟⎟⎟⎠ .

(11.76)

The integrals have to be evaluated numerically. Applying as the simplest approxi-
mation the midpoint rule (4.17)∫ xi+h/2

xi−h/2
dx

∫ yj +h/2

yj −h/2
dy f (x, y) = h2(f (xi, yj ) + O

(
h2)) (11.77)

this becomes

gradfijk = 1

h

⎛
⎜⎝

f (xi + h
2 , yj , zk) − f (xi − h

2 , yj , zk)

f (xi, yj + h
2 , zk) − f (xi, yj − h

2 , zk)

f (xi, yj , zk + h
2 ) − f (xi, yj , zk − h

2 )

⎞
⎟⎠ (11.78)

which involves symmetric difference quotients. However, the function values in
(11.78) refer neither to the original nor to the dual grid. Therefore we interpolate
(Fig. 11.3)

f

(
xi ± h

2
, yj , zk

)
≈ 1

2

(
f (xi, yj , zk) + f (xi±1, yj , zk)

)
(11.79)
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Fig. 11.3 (Interpolation
between grid points)
Interpolation is necessary to
relate the averaged gradient
(11.78) to the original or dual
grid

1

h

(
f

(
xi + h

2
, yj , zk

)
− f

(
xi − h

2
, yj , zk

))

≈ 1

2h

(
f (xi+1, yj , zk) − f (xi−1, yj , zk)

)
(11.80)

or

f

(
xi ± h

2
, yj , zk

)
≈ 1

4

∑
m,n=±1

f

(
xi ± h

2
, yj + m

h

2
, zk + n

h

2

)
. (11.81)

The finite volume method is capable of treating discontinuities and is very flexi-
ble concerning the size and shape of the control volumes.

11.3.1 Discretization of fluxes

Integration of (11.10) over a control volume and application of Gauss’ theorem gives
the integral form of the conservation law

1

V

∮
JdA + ∂

∂t

1

V

∫
f dV = 1

V

∫
g dV (11.82)

which involves the flux J of some property like particle concentration, mass, energy
or momentum density or the flux of an electromagnetic field. The total flux through
a control volume is given by the surface integral

Φ =
∮

∂V

JdA (11.83)

which in the special case of a cubic volume element of size h3 becomes the sum
over the six faces of the cube (Fig. 11.4)
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Fig. 11.4 Flux through a
control volume

Φ =
6∑

r=1

∫
Ar

JdA

=
∫ xi+h/2

xi−h/2
dx

∫ yj +h/2

yj −h/2
dy

(
Jz

(
x, y, zk + h

2

)
− Jz

(
x, y, zk − h

2

))

+
∫ xi+h/2

xi−h/2
dx

∫ zk+h/2

zk−h/2
dz

(
Jy

(
x, yj + h

2
, z

)
− Jz

(
x, yj − h

2
, z

))

+
∫ zk+h/2

zk−h/2
dz

∫ yj +h/2

yj −h/2
dy

(
Jx

(
xi + h

2
, y, z

)
− Jz

(
xi − h

2
, y, z

))
.

(11.84)

The surface integral can be evaluated numerically (Chap. 4). Using the midpoint
approximation (11.77) we obtain

1

V
Φ(xi, yj , zk) = 1

h

(
Jz(xi, yj , zk+1/2) − Jz(xi, yj , zk−1/2)

+ Jy(xi, yj+1/2, zk) − Jy(xi, yj−1/2, zk)

+ Jx(xi+1/2, yj , zk) − Jx(xi−1/2, yj , zk)
)
. (11.85)

The trapezoidal rule (4.13) introduces an average over the four corners (Fig. 11.3)∫ xi+h/2

xi−h/2
dx

∫ yj +h/2

yj −h/2
dy f (x, y)

= h2
(

1

4

∑
m,n=±1

f (xi+m/2, yj+n/2) + O
(
h2)) (11.86)

which replaces the flux values in (11.85) by the averages

Jx(xi±1/2, yj , zk) = 1

4

∑
m=±1,n=±1

Jz(xi±1/2, yj+m/2, zk+n/2) (11.87)

Jy(xi, yj±1/2, zk) = 1

4

∑
m=±1,n=±1

Jz(xi+m/2, yj±1/2, zk+n/2) (11.88)
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Jz(xi, yj , zk±1/2) = 1

4

∑
m=±1,n=±1

Jz(xi+m/2, yj+n/2, zk±1/2). (11.89)

One advantage of the finite volume method is that the flux is strictly conserved.

11.4 Weighted Residual Based Methods

A general method to discretize partial differential equations is to approximate the
solution within a finite dimensional space of trial functions.4 The partial differential
equation is turned into a finite system of equations or a finite system of ordinary
differential equations if time is treated as a continuous variable. This is the basis of
spectral methods which make use of polynomials or Fourier series but also of the
very successful finite element methods. Even finite difference methods and finite
volume methods can be formulated as weighted residual based methods.

Consider a differential equation5 on the domain V which is written symbolically
with the differential operator T

T
[
u(r)

] = f (r) r ∈ V (11.90)

and corresponding boundary conditions which are expressed with a boundary oper-
ator B6

B
[
u(r)

] = g(r) r ∈ ∂V . (11.91)

The basic principle to obtain an approximate solution ũ(r) is to choose a linear
combination of expansion functions Ni(r) i = 1 . . . r as a trial function which fulfills
the boundary conditions7

ũ =
r∑

i=1

uiNi(r) (11.92)

B
[
ũ(r)

] = g(r). (11.93)

In general (11.92) is not an exact solution and the residual

R(r) = T [ũ](r) − f (r) (11.94)

will not be zero throughout the whole domain V . The function ũ has to be deter-
mined such that the residual becomes “small” in a certain sense. To that end weight
functions8 wj j = 1 . . . r are chosen to define the weighted residuals

4Also called expansion functions.
5Generalization to systems of equations is straightforward.
6One or more linear differential operators, usually a combination of the function and its first deriva-
tives.
7This requirement can be replaced by additional equations for the ui , for instance with the tau
method [195].
8Also called test functions.
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Rj(u1 . . . ur ) =
∫

dV wj (r)
(
T [ũ](r) − f (r)

)
. (11.95)

The optimal parameters ui are then obtained from the solution of the equations

Rj (u1 . . . ur ) = 0 j = 1 . . . r. (11.96)

In the special case of a linear differential operator these equations are linear

r∑
i=1

ui

∫
dV wj (r)T

[
Ni(r)

] −
∫

dV wj (r)f (r) = 0. (11.97)

Several strategies are available to choose suitable weight functions.

11.4.1 Point Collocation Method

The collocation method uses the weight functions wj(r) = δ(r − rj ), with certain
collocation points rj ∈ V . The approximation ũ obeys the differential equation at
the collocation points

0 = Rj = T [ũ](rj ) − f (rj ) (11.98)

and for a linear differential operator

0 =
r∑

i=1

uiT [Ni](rj ) − f (rj ). (11.99)

The point collocation method is simple to use, especially for nonlinear problems.
Instead of using trial functions satisfying the boundary conditions, extra collocation
points on the boundary can be added (mixed collocation method).

11.4.2 Sub-domain Method

This approach uses weight functions which are the characteristic functions of a set
of control volumes Vi which are disjoint and span the whole domain similar as for
the finite volume method

V =
⋃
j

Vj Vj ∩ Vj ′ = Ø ∀j �= j ′ (11.100)

wj(r) =
{

1 r ∈ Vj

0 else.
(11.101)

The residuals then are integrals over the control volumes and

0 = Rj =
∫

Vj

dV
(
T [ũ](r) − f (r)

)
(11.102)
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respectively

0 =
∑

i

ui

∫
Vj

dV T [Ni](r) −
∫

Vj

dV f (r). (11.103)

11.4.3 Least Squares Method

Least squares methods have become popular for first order systems of differential
equations in computational fluid dynamics and computational electrodynamics [30,
140].

The L2-norm of the residual (11.94) is given by the integral

S =
∫

V

dV R(r)2. (11.104)

It is minimized by solving the equations

0 = ∂S

∂uj

= 2
∫

V

dV
∂R

∂uj

R(r) (11.105)

which is equivalent to choosing the weight functions

wj(r) = ∂R

∂uj

R(r) = ∂

∂uj

T
[∑

i

uiNi(r)
]

(11.106)

or for a linear differential operator simply

wj(r) = T
[
Nj(r)

]
. (11.107)

Advantages of the least squares method are that boundary conditions can be in-
corporated into the residual and that S provides a measure for the quality of the so-
lution which can be used for adaptive grid size control. On the other hand S involves
a differential operator of higher order and therefore much smoother trial functions
are necessary.

11.4.4 Galerkin Method

Galerkin’s widely used method [87, 98] chooses the basis functions as weight func-
tions

wj(r) = Nj(r) (11.108)

and solves the following system of equations∫
dV Nj (r)T

[∑
i

uiNi(r)
]

−
∫

dV Nj (r)f (r) = 0 (11.109)
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or in the simpler linear case∑
ui

∫
V

dV Nj (r)T
(
Ni(r)

) =
∫

V

dV Nj (r)f (r, t). (11.110)

11.5 Spectral and Pseudo-spectral Methods

Spectral methods use basis functions which are nonzero over the whole domain, the
trial functions being mostly polynomials or Fourier sums [35]. They can be used to
solve ordinary as well as partial differential equations. The combination of a spectral
method with the point collocation method is also known as pseudo-spectral method.

11.5.1 Fourier Pseudo-spectral Methods

Linear differential operators become diagonal in Fourier space. Combination of
Fourier series expansion and point collocation leads to equations involving a dis-
crete Fourier transformation, which can be performed very efficiently with the Fast
Fourier Transform methods.

For simplicity we consider only the one-dimensional case. We choose equidistant
collocation points

xm = m�x m = 0,1 . . .M − 1 (11.111)

and expansion functions

Nj(x) = eikj x kj = 2π

M�x
j j = 0,1 . . .M − 1. (11.112)

For a linear differential operator

L
[
eikj x

] = l(kj )e
ikj x (11.113)

and the condition on the residual becomes

0 = Rm =
M−1∑
j=0

uj l(kj )e
ikj xm − f (xm) (11.114)

or

f (xm) =
M−1∑
j=0

uj l(kj )e
i2πmj/M (11.115)

which is nothing but a discrete Fourier back transformation (Sect. 7.2, (7.19)) which
can be inverted to give

uj l(kj ) = 1

N

M−1∑
m=0

f (xm)e−i2πmj/M. (11.116)
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Instead of exponential expansion functions, sine and cosine functions can be used
to satisfy certain boundary conditions, for instance to solve the Poisson equation
within a cube (Sect. 17.1.2).

11.5.2 Example: Polynomial Approximation

Let us consider the initial value problem (Fig. 11.5)

d

dx
u(x) − u(x) = 0 u(0) = 1 for 0 ≤ x ≤ 1 (11.117)

with the well known solution

u(x) = ex. (11.118)

We choose a polynomial trial function with the proper initial value

ũ(x) = 1 + u1x + u2x
2. (11.119)

The residual is

R(x) = u1 + 2u2x − (
1 + u1x + u2x

2)
= (u1 − 1) + (2u2 − u1)x − u2x

2. (11.120)

11.5.2.1 Point Collocation Method

For our example we need two collocation points to obtain two equations for the two
unknowns u1,2. We choose x1 = 0, x2 = 1

2 . Then we have to solve the equations

R(x1) = u1 − 1 = 0 (11.121)

R(x2) = 1

2
u1 + 3

4
u2 − 1 = 0 (11.122)

which gives

u1 = 1 u2 = 2

3
(11.123)

uc = 1 + x + 2

3
x2. (11.124)

11.5.2.2 Sub-domain Method

We need two sub-domains to obtain two equations for the two unknowns u1,2. We
choose V1 = {x,0 < x < 1

2 }, V2 = {x, 1
2 < x < 1}. Integration gives
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Fig. 11.5 (Approximate
solution of a simple
differential equation) The
initial value problem
d

dx
u(x) − u(x) = 0 u(0) = 1

for 0 ≤ x ≤ 1 is
approximately solved with a
polynomial trial function
ũ(x) = 1 + u1x + u2x

2. The
parameters u1,2 are optimized
with the method of weighted
residuals using point
collocation (full curve),
sub-domain collocation
(dotted curve), Galerkin’s
method (dashed curve) and
least squares (dash-dotted
curve). The absolute error
ũ(x) − ex (top) and the
residual R(x) = d

dx
ũ(x) −

ũ(x) = (u1 −1)+(2u2 −u1)x

− u2x
2 both are smallest for

the least squares and
sub-domain collocation
methods

R1 = 3

8
u1 + 5

24
u2 − 1

2
= 0 (11.125)

R2 = 1

8
u1 + 11

24
u2 − 1

2
= 0 (11.126)

u1 = u2 = 6

7
(11.127)

usdc = 1 + 6

7
x + 6

7
x2. (11.128)

11.5.2.3 Galerkin Method

Galerkin’s method uses the weight functions w1(x) = x,w2(x) = x2. The equations∫ 1

0
dx w1(x)R(x) = 1

6
u1 + 5

12
u2 − 1

2
= 0 (11.129)

∫ 1

0
dx w2(x)R(x) = 1

12
u1 + 3

10
u2 − 1

3
= 0 (11.130)
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have the solution

u1 = 8

11
u2 = 10

11
(11.131)

uG = 1 + 8

11
x + 10

11
x2. (11.132)

11.5.2.4 Least Squares Method

The integral of the squared residual

S =
∫ 1

0
dx R(x)2 = 1 − u1 − 4

3
u2 + 1

3
u2

1 + 1

2
u1u2 + 8

15
u2

2 (11.133)

is minimized by solving

∂S

∂u1
= 2

3
u1 + 1

2
u2 − 1 = 0 (11.134)

∂S

∂u2
= 1

2
u1 + 16

15
u2 − 4

3
= 0 (11.135)

which gives

u1 = 72

83
u2 = 70

83
(11.136)

uLS = 1 + 72

83
x + 70

83
x2. (11.137)

11.6 Finite Elements

The method of finite elements (FEM) is a very flexible method to discretize partial
differential equations [84, 210]. It is rather dominant in a variety of engineering
sciences. Usually the expansion functions Ni are chosen to have compact support.
The integration volume is divided into disjoint sub-volumes

V =
r⋃

i=1

Vi Vi ∩ Vi′ = Ø∀i �= i′. (11.138)

The Ni(x) are piecewise continuous polynomials which are nonzero only inside Vi

and a few neighbor cells.

11.6.1 One-Dimensional Elements

In one dimension the domain is an interval V = {x;a ≤ x ≤ b} and the sub-volumes
are small sub-intervals Vi = {x;xi ≤ x ≤ xi+1}. The one-dimensional mesh is the
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Fig. 11.6 (Finite elements in
one dimension) The basis
functions Ni are piecewise
continuous polynomials and
have compact support. In the
simplest case they are
composed of two linear
functions over the
sub-intervals xi−1 ≤ x ≤ xi

and xi ≤ x ≤ xi+1

set of nodes {a = x0, x1 . . . xr = b}. Piecewise linear basis functions (Fig. 11.6) are
in the 1-dimensional case given by

Ni(x) =

⎧⎪⎪⎨
⎪⎪⎩

xi+1−x

xi+1−xi
for xi < x < xi+1

x−xi−1
xi−xi−1

for xi−1 < x < xi

0 else

(11.139)

and the derivatives are (except at the nodes xi )

N ′
i (x) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
xi+1−xi

for xi < x < xi+1

1
xi−xi−1

for xi−1 < x < xi

0 else.

(11.140)

11.6.2 Two- and Three-Dimensional Elements

In two dimensions the mesh is defined by a finite number of points (xi, yi) ∈ V (the
nodes of the mesh). There is considerable freedom in the choice of these points and
they need not be equally spaced.

11.6.2.1 Triangulation

The nodes can be regarded as forming the vertices of a triangulation9 of the do-
main V (Fig. 11.7).

The piecewise linear basis function in one dimension (11.139) can be generalized
to the two-dimensional case by constructing functions Ni(x, y) which are zero at all
nodes except (xi, yi)

Ni(xj , yj ) = δi,j . (11.141)

9The triangulation is not determined uniquely by the nodes.



198 11 Discretization of Differential Equations

Fig. 11.7 (Triangulation of a
two-dimensional domain)
A two-dimensional mesh is
defined by a set of node
points which can be regarded
to form the vertices of a
triangulation

These functions are linear over each triangle which contains the vertex i and can
be combined as the sum of small pyramids (Fig. 11.8). Let one of the triangles be
denoted by its three vertices as Tijk .10 The corresponding linear function then is

nijk(x, y) = α + βx(x − xi) + βy(y − yi) (11.142)

where the coefficients follow from the conditions

nijk(xi, yi) = 1 nijk(xj , yj ) = nijk(xk, yk) = 0 (11.143)

as

α = 1 βx = yj − yk

2Aijk

βy = xk − xj

2Aijk

(11.144)

with

Aijk = 1

2
det

∣∣∣∣xj − xi xk − xi

yj − yi yk − yi

∣∣∣∣ (11.145)

which, apart from sign, is the area of the triangle Tijk . The basis function Ni now is
given by

Ni(x, y) =
{

nijk(x, y) (x, y) ∈ Tijk

0 else.

In three dimensions we consider tetrahedrons (Fig. 11.9) instead of triangles. The
corresponding linear function of three arguments has the form

ni,j,k,l(x, y, z) = α + βx(x − xi) + βy(y − yi) + βz(z − zi) (11.146)

and from the conditions ni,j,k,l(xi, yi, zi) = 1 and ni,j,k,l = 0 on all other nodes we
find (an algebra program is helpful at that point)

10The order of the indices does matter.
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Fig. 11.8 (Finite elements in two dimensions) The simplest finite elements in two dimensions are
piecewise linear functions Ni(x, y) which are non-vanishing only at one node (xi , yi) (right side).
They can be constructed from small pyramids built upon one of the triangles that contains this node
(left side)

Fig. 11.9 (Tetrahedron) The
tetrahedron is the
three-dimensional case of a
Euclidean simplex, i.e. the
simplest polytope

α = 1

βx = 1

6Vijkl

det

∣∣∣∣yk − yj yl − yj

zk − zj zl − zj

∣∣∣∣
βy = 1

6Vijkl

det

∣∣∣∣ zk − zj zl − zj

xk − xj xl − xj

∣∣∣∣
βz = 1

6Vijkl

det

∣∣∣∣xk − xj xl − xj

yk − yj yl − yj

∣∣∣∣ (11.147)

where Vijkl is, apart from sign, the volume of the tetrahedron

Vijkl = 1

6
det

∣∣∣∣∣∣
xj − xi xk − xi xl − xi

yj − yi yk − yi yl − yi

zj − zi zk − zi zl − zi

∣∣∣∣∣∣ . (11.148)

11.6.2.2 Rectangular Elements

For a rectangular grid rectangular elements offer a practical alternative to triangles.
Since equations for four nodes have to be fulfilled, the basic element needs four
parameters, which is the case for a bilinear expression. Let us denote one of the
rectangles which contains the vertex i as Ri,j,k,l . The other three edges are
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Fig. 11.10 (Rectangular
elements around one vertex)
The basis function Ni is a
bilinear function on each of
the four rectangles containing
the vertex (xi , yi )

(xj , yj ) = (xi + bx, yi) (xk, yk) = (xi, yi + by) (xl, yl) = (xi + bx, yi + by)

(11.149)

where bx = ±hx, by = ±hy corresponding to the four rectangles with the common
vertex i (Fig. 11.10).

The bilinear function (Fig. 11.11) corresponding to Rijkl is

ni,j,k,l(x, y) = α + β(x − xi) + γ (y − yi) + η(x − xi)(y − yi). (11.150)

It has to fulfill

ni,j,k,l(xi, yi) = 1 ni,j,k,l(xj , yj ) = ni,j,k,l(xk, yk) = ni,j,k,l(xl, yl) = 0

(11.151)

from which we find

α = 1 β = − 1

bx

γ = − 1

by

η = 1

bxby

(11.152)

ni,j,k,l(x, y) = 1 − x − xi

bx

− y − yi

by

+ (x − xi)

bx

(y − yi)

by

. (11.153)

The basis function centered at node i then is

Ni(x, y) =
{

ni,j,k,l(x, y) (x, y) ∈ Ri,j,k,l

0 else.
(11.154)

Generalization to a three-dimensional grid is straightforward (Fig. 11.12). We
denote one of the eight cuboids containing the node (xi, yi, zi) as Ci,j1...j7 with
(xj1, yj1, zj1) = (xi + bx, yi, zi) . . . (xj7 , yj7, zj7) = (xi + bx, yi + by, zi + bz). The
corresponding trilinear function is

ni,j1...j7 = 1 − x − xi

bx

− y − yi

by

− z − zi

bz

+ (x − xi)

bx

(y − yi)

by

+ (x − xi)

bx

(z − zi)

bz

+ (z − zi)

bz

(y − yi)

by

− (x − xi)

bx

(y − yi)

by

(z − zi)

bz

. (11.155)
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Fig. 11.11 (Bilinear elements on a rectangular grid) The basis functions Ni(x, y) on a rectangular
grid (right side) are piecewise bilinear functions (left side), which vanish at all nodes except (xi , yi )

(right side)

Fig. 11.12
(Three-dimensional
rectangular grid) The basis
function Ni is trilinear on
each of the eight cuboids
containing the vertex i. It
vanishes on all nodes except
(xi , yi , zi )

11.6.3 One-Dimensional Galerkin FEM

As an example we consider the one-dimensional linear differential equation (11.5)(
a

∂2

∂x2
+ b

∂

∂x
+ c

)
u(x) = f (x) (11.156)

in the domain 0 ≤ x ≤ 1 with boundary conditions

u(0) = u(1) = 0. (11.157)

We use the basis functions from (11.139) on a one-dimensional grid with

xi+1 − xi = hi (11.158)

and apply the Galerkin method [88]. The boundary conditions require

u0 = uN−1 = 0. (11.159)

The weighted residual is
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0 = Rj =
∑

i

ui

∫ 1

0
dx Nj (x)

(
a

∂2

∂x2
+ b

∂

∂x
+ c

)
Ni(x) −

∫ 1

0
dx Nj (x)f (x).

(11.160)

First we integrate

∫ 1

0
Nj(x)Ni(x) dx =

∫ xi+1

xi−1

Nj(x)Ni(x) dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hi+hi−1
3 j = i

hi

6 j = i + 1
hi−1

6 j = i − 1

0 |i − j | > 1.

(11.161)

Integration of the first derivative gives

∫ 1

0
dx Nj (x)N ′

i (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 j = i

1
2 j = i − 1

− 1
2 j = i+1

0 else.

(11.162)

For the second derivative partial integration gives∫ 1

0
dx Nj (x)

∂2

∂x2
Ni(x)

= Nj(1)N ′
i (1 − ε) − Nj(0)N ′

i (0 + ε) −
∫ 1

0
dx N ′

j (x)N ′
i (x) (11.163)

where the first two summands are zero due to the boundary conditions. Since
Ni and N ′

i are nonzero only for xi−1 < x < xi+1 we find∫ 1

0
dx Nj (x)

∂2

∂x2
Ni(x) = −

∫ xi+1

xi−1

dx N ′
j (x)N ′

i (x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
hi−1

j = i − 1

− 1
hi

− 1
hi−1

i = j

1
hi

j = i + 1

0 else.

(11.164)

Integration of the last term in (11.160) gives∫ 1

0
dx Nj (x)f (x) =

∫ xi+1

xi−1

dx Nj (x)f (x)

=
∫ xj

xj−1

dx
x − xj−1

xj − xj−1
f (x)

+
∫ xj+1

xj

dx
xj+1 − x

xj+1 − xj

f (x). (11.165)
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Applying the trapezoidal rule11 for both integrals we find∫ xj+1

xj−1

dx Nj (x)f (x) ≈ f (xj )
hj + hj−1

2
. (11.166)

The discretized equation finally reads

a

{
1

hj−1
uj−1 −

(
1

hj

+ 1

hj−1

)
uj + 1

hj

uj+1

}

+ b

{
−1

2
uj−1 + 1

2
uj+1

}

+ c

{
hj−1

6
uj−1 + hj + hj−1

3
uj + hj

6
uj+1

}

= f (xj )
hj + hj−1

2
(11.167)

which can be written in matrix notation as

Au = Bf (11.168)

where the matrix A is tridiagonal as a consequence of the compact support of the
basis functions

A = a

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1
h1

− 1
h0

, 1
h1
. . .
1

hj−1
, − 1

hj
− 1

hj−1
, 1

hj

. . .
1

hN−3
, − 1

hN−2
− 1

hN−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ b

⎛
⎜⎜⎜⎜⎜⎜⎝

0, 1
2

. . .

− 1
2 , 0, 1

2
. . .

− 1
2 , 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.169)

+ c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(h1+h0)
3 , h1

6
. . .

hj−1
6 ,

(hj +hj−1)

3 ,
hj

6
. . .

hN−3
6 ,

(hN−2+hN−3)

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

11Higher accuracy can be achieved, for instance, by Gaussian integration.
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B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h0+h1
2

. . .
hj−1+hj

2
. . .

hN−2+hN−3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For equally spaced nodes hi = hi−1 = h and after division by h (11.167) reduces to
a system of equations where the derivatives are replaced by finite differences (11.20)

a

{
1

h2
uj−1 − 2

h2
uj + 1

h2
uj+1

}

+ b

{
− 1

2h
uj−1 + 1

2h
uj+1

}

+ c

{
1

6
uj−1 + 2

3
uj + 1

6
uj+1

}
= f (xj ) (11.170)

and the function u is replaced by a certain average

1

6
uj−1 + 2

3
uj + 1

6
uj+1 = uj + 1

6
(uj−1 − 2uj + uj+1). (11.171)

The corresponding matrix in (11.169) is the so called mass matrix. Within the frame-
work of the finite differences method the last expression equals

uj + 1

6
(uj−1 − 2uj + uj+1) = uj + h2

6

(
d2u

dx2

)
j

+ O
(
h4) (11.172)

hence replacing it by uj (this is called mass lumping) introduces an error of the
order O(h2).

11.7 Boundary Element Method

The boundary element method (BEM) [18, 276] is a method for linear partial differ-
ential equations which can be brought into boundary integral form12 like Laplace’s
equation (Chap. 17)13

−�Φ(r) = 0 (11.173)

for which the fundamental solution

�G
(
r, r′) = −δ

(
r − r′)

12This is only possible if the fundamental solution or Green’s function is available.
13The minus sign is traditionally used.
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is given by

G
(
r − r′) = 1

4π |r − r′| in three dimensions (11.174)

G
(
r − r′) = 1

2π
ln

1

|r − r′| in two dimensions. (11.175)

We apply Gauss’s theorem to the expression [277]

div
[
G

(
r − r′)grad

(
Φ(r)

) − Φ(r)grad
(
G

(
r − r′))]

= −Φ(r)�
(
G

(
r − r′)). (11.176)

Integration over a volume V gives∮
∂V

dA

(
G

(
r − r′) ∂

∂n

(
Φ(r)

) − Φ(r)
∂

∂n

(
G

(
r − r′)))

= −
∫

V

dV
(
Φ(r)�

(
G

(
r − r′))) = Φ

(
r′). (11.177)

This integral equation determines the potential self-consistently by its value and
normal derivative on the surface of the cavity. It can be solved numerically by di-
viding the surface into a finite number of boundary elements. The resulting system
of linear equations often has smaller dimension than corresponding finite element
approaches. However, the coefficient matrix is in general full and not necessarily
symmetric.
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