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Abstract. Mobility analysis is one of fundamental problems in kinematics and an
important tool in type synthesis of linkages. In this paper, we will review screw
theory as a mathematical tool for mobility analysis of overconstrained linkages and
compliant mechanisms. Established by Ball in late 1800, screw theory has become
one of the fundamental theories for characterizing instantaneous kinematics of spa-
tial movements. In mid to late 1960, Waldron was one of the first modern kine-
maticians who systematically developed screw theory and its applications to the
constraint analysis and synthesis of overconstrained linkages. Due to the screw
theory, several overconstrained spatial linkages have been invented and designed,
including the well known Waldron six-bar loop overconstrained linkage. In re-
cent years, mobility analysis has been extended to compliant mechanisms which
achieve motion through deflection of flexure joints. By the concept of relative com-
pliance/stiffness, we can also define mobility of compliant mechanisms similar to
their rigid body counterparts. This paper will summarize some recent work on ap-
plying screw theory to mobility analysis and synthesis of compliant mechanisms.

1 Introduction

Waldron (1966) [1] defined “mobility” or number of degrees of freedom of a mecha-
nism as “the number of transformation parameters of joints of the mechanism which
are required to determine the position of every point of every member with respect
to a coordinate frame fixed to one of the members.” Numerous authors have at-
tempted to come up a general formula for calculating the mobility of general mech-
anisms. The most popular moblity formula is probably Kutzbach-Gruebler criterion,
written as
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M = d(n− j− 1)+
j

∑
i=1

fi (1)

where M is the mobility, n is the number of links, j is the number of joints, d = 6
for the general spatial case and d = 3 for planar and spherical cases, and fi is the
connectivity of the ith joint.

A screw is the geometric entity that underlies the foundation of statics and in-
stantaneous (first-order) kinematics. Ball [2] was the first to establish a systematical
formulation for screw theory. In the era of modern kinematics, a number of authors
[3, 4, 5, 6] have contributed the development of screw theory and its application
to analysis and design of spatial linkages. The two fundamental concepts in screw
theory are “twist” representing a general helical motion of a rigid body about an in-
stantaneous axis in space, and “wrench” representing a system of force and moment
acting on a rigid body. These two concepts are often called duality [7] in kinematics
and statics.

Waldron was probably one of the first modern kinematicians who applied screw
theory for mobility analysis and synthesis of spatial linkages in 1960. In particular,
Waldron systematically investigated and invented overconstrained linkages [1, 8].
This includes the well known Waldron six-bar overconstrained linkage [9]. Since
then, screw theory has been applied to various research topics ranging from robotics
[6, 10], mobility analysis [11], assembly analysis [12, 13] and topology synthesis
[14] of parallel mechanisms.

In recent years, compliant mechanisms [15, 16] have received increasingly atten-
tion from the community due to their applications to precision machinery, aerospace
and space structures and so on. Compliant mechanisms gain their mobility at least
partially from deformation of their flexible members. Compared with their rigid
body counterparts, compliant mechanisms or flexures have many advantages, such
as high precision and a simplified manufacturing and assembly process due to in-
tegration of joints with rigid links. However the design and analysis of compli-
ant mechanisms is complex due to the nonlinearity of deformation of the flexible
members.

Similar to rigid body mechanisms, one important task in design of compliant
mechanisms is so called “type synthesis” whose goal is to find one or more compli-
ant mechanisms for achieving a prescribed motion pattern. As an important task of
type synthesis, mobility analysis is to characterize the motion pattern for a particular
compliant mechanism. Recently screw theory has been applied to mobility analy-
sis [17, 18, 19] and type synthesis [20, 21] of compliant mechanisms. The basic
principle is to first characterize freedom and constraints of flexure elements using
twists and wrenches in screw theory under the assumption of ideal geometries of
compliant mechanisms. For instance, a circular notch is considered as an idealized
rotational joint, hence can be characterized as a pure rotational twist. Then we con-
sider a compliant mechanism as a system of rigid bodies interconnected by these
flexure elements. By applying kinematic transformation of screws, we can analyze
and synthesize mobility of compliant mechanisms in a similar manner of rigid body
mechanisms. In this paper, we will summarize some recent advances in this area.
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2 Screw Theory Overview

In this section, we first review basic concepts of screw theory as a background prepa-
ration for the following sections.

In screw theory, an instantaneous screw motion is represented by a twist T̂ . And
a constraint or forbidden motion is represented by a wrench Ŵ . Both twist T̂ and
wrench Ŵ are 6 by 1 column vectors, written as

T̂ =

{
ΩΩΩ
V

}
=

{
ΩΩΩ

c×ΩΩΩ + pΩΩΩ

}
, (2)

Ŵ =

{
F
M

}
=

{
F

c×F+ qF

}
, (3)

where p and q are called pitches of twist and wrenches. And T̂ and Ŵ satisfy the so
called reciprocal condition:

T̂ ◦Ŵ = ΩΩΩ ·M+V ·F = 0. (4)

A general rotational or translational freedom respectively corresponds to a twist
with zero or infinite pitch, written as

T̂ R =

{
ΩΩΩ

c×ΩΩΩ

}
, T̂ P =

{
000
V

}
. (5)

Similarly a general rotational or translation constraint removes a rotation or trans-
lation along a particular direction. They respectively correspond to a wrench with
infinite or zero pitch, written as

Ŵ R =

{
000
M

}
, Ŵ P =

{
F

c×F

}
(6)

For convenience, we define six principal twists as the rotation and translations about
all the three coordinate axes, written as

R̂x =
(
1 0 0 0 0 0

)T
R̂y =

(
0 1 0 0 0 0

)T
R̂z =

(
0 0 1 0 0 0

)T

P̂x =
(
0 0 0 1 0 0

)T
P̂y =

(
0 0 0 0 1 0

)T
P̂z =

(
0 0 0 0 0 1

)T (7)

Similarly, we define six principal wrenches as the rotational and translational con-
straint about all the three coordinate axes, written as

F̂x =
(
1 0 0 0 0 0

)T
F̂y =

(
0 1 0 0 0 0

)T
F̂z =

(
0 0 1 0 0 0

)T

M̂x =
(
0 0 0 1 0 0

)T
M̂y =

(
0 0 0 0 1 0

)T
M̂z =

(
0 0 0 0 0 1

)T
(8)

The coordinate transformation of a twist or wrench is calculated as

T̂
′
= [Ad]T̂ , Ŵ

′
= [Ad]Ŵ , (9)
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where T̂ ,Ŵ and T̂
′
,Ŵ

′
correspond to the twist and the wrench before and after the

transformation. And [Ad] is the so-called 6× 6 adjoint matrix, written as

[Ad] =

[
R 0

DR R

]
(10)

where [R] is a 3 by 3 rotation matrix and [D] is the 3 by 3 skew-symmetric matrix
defined by the translational vector d = (dx,dy,dz)

T . They have the form

[R] =
[
x y z

]
, [D] =

⎡
⎣ 0 −dz dy

dz 0 −dx

−dy dx 0

⎤
⎦

3 Mobility Analysis of Overconstrained Linkages

It is well known that the Kutzbach-Gruebler formula applies to mechanisms with
general dimensions and may fail for overconstrained mechanisms which gain some
extra mobility due to their special dimensions. Many modern kinematicians have
already contributed to generalize this formula to include various kinds of overcon-
strained mechanisms. For instance, in 1966, Waldron [1] proposed a formula for
single loop linkages, written as

M = (N + n)− (m+ n− k) (11)

where N is the number of degrees of freedom of the serial chain by breaking the
single loop linkage at any joint, n is the connectivity of the closing joint, and m+
n− k is the order of the equivalent screw system of the loop linkage.

3.1 Waldron Six-Bar Linkages

Waldron six-bar linkage also called hybrid six-bar linkage [9] is a kind of overcon-
strained linkage that has one mobility. It is formed by two Bennett four-bar linkages
[22] sequentially connected. It is well known that a Bennett four-bar linkage is a spa-
tial overconstrained linkage with one degree of freedom. And during the movement
of the Waldron six-bar linkage, the two Bennett linkages will keep their geometrical
constrains without change.

As shown in Fig. 1, the geometry of a Waldron six-bar linkage is described as the
following. Let us denote the eight axes of the two Bennett linkages as z1 − z8 with
the first four axes belong to the first Bennett linkage and the last four belong to the
second Bennett linkage. When constructing the six-bar linkage with two four-bars
linkages, z1 coincides with z5 while links 1, 8 are replaced by a single link 9 and
links 4, 5 are replaced by link 10. As a result, links 2, 3, 10, 6, 7 and 9 are connected
by six joints z2,z3,z4,z6,z7,z8 to form a single loop six-bar linkage.

The relative position of the links and joints is described by using Denavit and
Hartenberg parameters. These parameters are presented as αi,ai,di,θi. αi is the twist
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Fig. 1 The Waldron six-bar linakge is formed by two Bennett four-bar linkages

angle between the axes of zi and zi+1, ai is the distance between zi and zi+1, di is
the offset between links i and i+1 along zi, θi is the angle from xi to xi+1 measured
about zi. The values of those parameters are showed in Table 1. d12 is the distance
of the two Bennett linkage along z1, and ε is the angle between x1 and x8. And here
in order to establish the position relationship of the two Bennett linkages clearly,
we substituted the D-H parameters of z4 to z1 and z1 to z5 for z4 to z5. According
to the geometric constraint of Bennett linkage, we have sinα1/a1 = sinα2/a2 and
sinα11/a11 = sinα22/a22.

Table 1 D-H parameters of the Waldron six bar linkage

i joint i-joint j αi ai di θi

1 z1 − z2 α1 a1 0 θ1

2 z2 − z3 α2 a2 0 θ2

3 z3 − z4 α1 a1 0 2π −θ1

4 z4 − z1 α2 a2 0 2π −θ2

5 z1 − z5 0 0 d12 ε
6 z5 − z6 α11 a11 0 θ11

7 z6 − z7 α22 a22 0 θ22

8 z7 − z8 α11 a11 0 2π −θ11

9 z8 − z5 α22 a22 0 2π −θ22

3.2 Mobility Analysis of Waldron Six-Bar Linkages

In this section, we show how to use screw theory to calculate the mobility of Wal-
dron hybrid six-bar linkage.

Since the relative position between the first and second Bennett linkages is de-
cided by d12 and ε , we only need to analyze one of two Bennett linkages and the
second one could be calculated by using transformation of coordinates. Based on
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the Denavit and Hartenberg parameters, the transformation between the adjacent
joints can be obtained easily by

Ti = X [αi,ai]Z[θi,di] (12)

where Z[·] and X [·] represents the screw displacement along z and x axis respectively.
The transformation from join zi to the first joint can be calculated by

1
i T = T1T2 · · ·Ti−1, i = 2,3,4 (13)

The transform matrix 1
i T could be written as

1
i T =

[
1
i R 1

i d
0 1

]
(14)

For the screw of z1, we can choose it as $1 = (0 0 1 0 0 0)T .Then the other
axis vector could be calculated as si =

1
i R(0,0,1)T . An arbitrary point on zi could

be chosen as ri =
1
i d. Then the screw of zi will be $i = (si;ri × si).

To obtain the four screws ($
′
1,$

′
2,$

′
3,$

′
4) of the second Bennett link-

age, we only need to replace the α1,α2,a1,a2,θ1,θ2 in ($1,$2,$3,$4) by
α11,α22,a11,a22,θ11,θ22 of the second Bennett linkage in the coordinate of joint
5 which are the D-H parameters of the second Bennett linkage given in Table 1.
And the screws of the second Bennett linkage in the coordinate frame of joint 1 can
be calculated as

$i+4 = [Ad]$
′
i, i = 1,2,3,4. (15)

where [Ad] is the six by six adjoint transformation matrix of screws by substituting
the following matrices

[R] =

⎡
⎣cos(ε) −sin(ε) 0

sin(ε) cos(ε) 0
0 0 1

⎤
⎦ , [D] =

⎡
⎣ 0 −d12 0

d12 0 0
0 0 0

⎤
⎦

into formula (10).
Finally the screw system of the hybrid six-bar linkage is obtained as $ =

($2,$3,$4,$6,$7,$8). The order N of the loop linkage is calculated as the rank of
the 6 by 6 matrix formed by these six screws. By using Mathematica program, it is
easy to figure out that this order is five. Since the six-bar linkage is connected by six
revolute joints, the mobility of its serial chain will be 5 and the connectivity of the
closing joint will be 1. Therefore, the mobility of the six bar linkage is calculated as
M = 6− 5 = 1 using Waldron mobility formula (11).
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4 Mobility Analysis and Type Synthesis of Compliant
Mechanisms

Inspired by the above work on rigid body mechanisms, we recently extended this
work to mobility analysis and type synthesis of compliant mechanisms. Compliant
mechanisms can be considered as a collection of relative rigid members (links) con-
nected with flexible members (flexure joints). Compliant mechanisms gain at least
part of their mobility from deformation of flexible members.

4.1 Mobility and Compliance

The mobility of a compliant mechanism is a subtle concept as virtually any mate-
rial deforms more or less, hence results in movement. As we know, compliance C
is defined as the ratio of movement over loading exerted for any specific direction
determined by a screw T̂ . There are two kinds of compliance: rotational and trans-
lational, which have the unit of rad/Nm and 1/N respectively. For any member of
a compliant mechanism, there are three rotational compliances and three transla-
tional compliances along the axes of coordinate system attached to that member,
denoted by CRx, CRy, CRz, CT x, CTy, CT z. To compare rotational compliance with a
translational one, we multiple the rotational compliances by a chosen constant l, i.e.

Ctx =CRxl, Cty =CRyl, Ctz =CRzl. (16)

The constant l can be chosen as the overall dimension of the member of interest,
typically the motion stage of a compliant mechanism. Compliances Ctx, Cty, Ctz

represents the translation of the tip of a bar with length l that is attached to the
motion stage of the mechanism when a tangent force is applied at the tip.

Now we redefine compliances of a member of a compliant mechanism as

C1 =Ctx, C2 =Cty, C3 =Ctz, C4 =CT x, C5 =CTy, C6 =CT z. (17)

To define the mobility of a compliant mechanism, we introduce the concept of “com-
pliance ratio” which is essentially the ratio of the compliance of the mechanism in
a particular direction over the maximum compliance in all directions, i.e.

CRi =
Ci

max(Ci)
, i = 1, . . .6 (18)

The range of CRi is between 0 and 1. If CRi is below a specified small threshold, e.g.
0.01, we consider the mechanism has no mobility in that direction. Note this repre-
sents that the movement of the mechanism in the direction T̂ i is two order smaller
than that in the direction with the maximum compliance when the same force is
exerted. And the mobility of a compliant mechanism is counted as the number of
mobility in three rotational and three translational directions.
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4.2 Commonly Used Flexure Primitives

Here we first study the mobility of a list of flexure primitives commonly used in
compliant mechanisms. A flexure primitive is defined as an “atomic” flexure mech-
anism that consists of only one flexure element and zero intermediate body. They
cannot be further divided into substructures. In this section we first categorize com-
monly used flexure primitives and derive their freedom and constraint spaces. Then
we will discuss a general synthesis methodology for constructing serial and parallel
kinematic chains of these flexure primitives.

According to the mobility or the rank of their twist system, we can categorize
the most commonly used flexure primitives. For instance, notch hinges, short beams
and split tubes have one rotational degree of freedom. A spherical notch or short
wire/rod has three rotational degrees of freedom. A thin beam or blade flexure, rota-
tional symmetric cylinder or a disc coupling has two rotational and one translational
mobility. And a long wire or corner blade has three rotational and two translational
mobility. These flexure primitives and their freedom space and twist and wrench
matrices are summarized in Table 2.

These primitives are basic building blocks for constructing more complex flexure
systems. In what follows, we show how to build more complex mechanisms with
these flexure primitives using a serial, parallel or hybrid structure.

4.3 Serial Flexure Chains

A serial flexure mechanism is formed by connecting a functional body to a fixed
reference body through a serial chain of flexure elements that are joined with in-
termediate bodies. Let us denote the motion space of the jth flexure element in a
serial flexure mechanism by a twist matrix [Tj]. The motion space of the rigid body
constrained by this flexure system is the superimposition of the motion of individual
elements. Mathematically the motion space of a serial chain of m flexures is given
by the range space of the following matrix

[T ] = [Ad1T1 Ad2T2 · · · AdmTm]. (19)

which is the column-wise combination of each [Tj] after an appropriate coordinate
transformation [Ad j]. The column rank of [T ] gives the mobility of the functional
body, denoted by f = rank(T ). Since it is not uncommon that the column vectors of
[Tj] are dependent, the mobility f is typically less than or equal to the total number
of columns of [T ]. By column reducing the matrix [T ], we can obtain a basis of
the motion space of the flexure system. And the complementary constraint space is
obtained by the standard screw algebra, denoted by a 6 by 6− f wrench matrix [W ].

Figure 2(a) shows a serial chain of two identical blade flexures. Blade flexure 2
is perpendicular to blade 1. We place the stage and its local coordinate system at
the end of the second blade. The twist matrix for both blade flexures is [Tb], already
given in Table 2. The coordinate transformation from blade 1 to functional body is
a pure translation along y axis for l units,
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Table 2 The motion and constraint spaces of commonly used flexure primitives

Flexure Freedom Symbol [T ] [W ]

z
Notch/Living Hinge Split Tube

z

y
x

y
x

Short Beam

R
[
R̂z
] [

F̂x F̂y F̂z M̂x M̂y
]

y

x

z

y
x

z

Spherical Notch Short Wire/Rod

S=3R
[
R̂x R̂y R̂z

] [
F̂x F̂y F̂z

]

z

y

x

Blade/Sheet/
Leaf Spring

z
y

x

Rotational 
Symmetric Cylinder

Disc Coupling
z

y

x

B=2R-P
[
R̂x R̂z P̂y

] [
F̂x F̂z M̂y

]

x 

y 

z 

long wire/rod corner blade
x

W=3R-2P
[
R̂x R̂y R̂z P̂y P̂z

] [
F̂x

]

z

y x

Bellow Spring

Bs=2R-3P
[
R̂x R̂y P̂x P̂y P̂z

] [
M̂z

]

R1 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , D1 =

⎡
⎣ 0 0 l

0 0 0
−l 0 0

⎤
⎦ .

And the transformation from the blade 2 to the functional body is pure rotation about
z axis for −π/2,

R2 = [Z(−π
2
)] =

⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦ , D2 =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ ,

where [Z(α)] represents the rotation about z axis for an angle of α .
The twist matrix of a serial chain of two blades is obtained by substituting them

into (19),
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[Tbb] = [Ad1Tb Ad2Tb] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 1 0 0
l 0 0 0 −1 0
0 1 0 0 0 0
0 0 −l 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
−l 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (20)

where the last step is a column-wise reduction process. Obviously f = rank(Tbb) =
5 as the elements of the last column are all zeros. Therefore, the flexure system
provides a mobility of five degrees-of-freedom.

The corresponding reciprocal wrench matrix is

[Wbb] = [0, 0, 1; l, 0, 0]T , (21)

which represents a constraint along a line parallel to z axis at the point r shown as
the blue line in Fig. 2(a).

4.4 Parallel Flexure Chains

A parallel flexure mechanism is formed by connecting a functional body to a ref-
erence body through two or more flexure elements in parallel. Let us denote the

sheet flexure 1
intermediate body

reference body

sheet flexure 2

xx MF ,

yy MF ,

zz MF ,

l

functional body x

y

z

l

)0,,0( l−=r

constraint line

x

y

sheet 1sheet 2

1x1y
2x

2y

ψ

2/d 2/d

r

ll

(a) (b)

Fig. 2 (a) A serial chain compliant mechanism formed by two perpendicular blade flexures,
(b) A parallel chain flexure mechanism formed by two parallel ideal blade flexures
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constraint space of the jth flexure element by a wrench matrix [Wj]. The constraint
space of the functional body is the superimposition of the constraint space of each
element. Mathematically the constraint space of a parallel flexure mechanism with
m flexures is given by the following wrench matrix

[W ] = [Ad1W1 Ad2W2 · · · AdmWm]. (22)

Again matrices [Ad j] are coordinate transformation of jth flexures.
The column rank of [W ] gives the degree-of-constraint of the functional body,

denoted by c = rank(W ). Similar to the case of serial chains, c is typically less than
or equal to the total number of columns of [W ] as some column vectors are depen-
dent. By column reducing the matrix [W ], we can obtain a basis of the constraint
space of the flexure system. And the complementary motion space is obtained by
the standard screw algebra, denoted by a 6 by 6− c twist matrix [T ].

Figure 2(b) shows a trapezoidal leaf-type flexure pivot that is formed by two
identical blade flexures assembled symmetrically at an angle of ψ and a distance of
d. The coordinate transformations for blade 1 and 2 are respectively

R1 = [Z(
π −ψ

2
)], d1 = (

d
2
,0,0),

R2 = [Z(
π +ψ

2
)], d2 = (−d

2
,0,0).

Substituting the above formula into (22) and applying a column-wise reduction, we
obtain the following wrench matrix,

[Wt ] = [Ad1Wb Ad2Wb]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 sin(ψ
2 ) 0 0 −sin(ψ

2 ) 0
0 cos(ψ

2 ) 0 0 cos(ψ
2 ) 0

1 0 0 1 0 0
0 0 −cos(ψ

2 ) 0 0 −cos(ψ
2 )

− d
2 0 sin(ψ

2 )
d
2 0 −sin(ψ

2 )

0 1
2 d cos(ψ

2 ) 0 0 − 1
2 d cos(ψ

2 ) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

sin
(ψ

2

)
0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
2 d cos

(ψ
2

)
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (23)

where Wb is the reciprocal wrench of Tb. Again the last step is obtained by a column-
wise reduction. The corresponding reciprocal twist matrix of [Wt ] is
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[Tt ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

sin
(ψ

2

)
− 1

2 d cos
(ψ

2

)
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (24)

which represents the rotation about the intersection line of the blades shown as r =
(0,−d cot(ψ/2)/2,0) in Fig. 2(b).

4.5 Design of Freedom Elements

By using serial or parallel chains of flexure primitives as shown in Table 2, we have
synthesized a catalogue of freedom and constraint elements which provide transla-
tional or rotational freedom or constraints. For convenience, we list all the possible
freedom elements with one rotational (R) and translational (P) DOF motion, i.e.
R-joints and P-joints, in Figs. 3 and 4.

These freedom elements are basic building blocks to construct hybrid structures
of flexure mechanisms. For instance, if we would like to design a parallel structure
with three rotations, we just need to use three translational constraint elements to
remove all translations. As shown in Fig 5(a), We first design a serial chain of two
blade flexures (denote as B-B) that functions as a single translational constraint.
By combining three serial chains of B-B, we obtain a design. The functional body
A can rotate about its center relative to the base body B, while its translations are
constrained.

(a) BB (b) BB (c) BB (d) B-2W (e) 5W (f) 2S

(g) S-2W (h) Bs-B-S (i) Bs-B-W (j) Bs-S-W (m) 2Bs-3W(k) Bs-4W (l) 2Bs-S

Fig. 3 Various designs of R-joints with flexure primitives: B, W, S and Bs. The double arrow
arcs represent the rotation allowed by flexure R-joints. The box represents the functional
body.
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(a) 2B (d) Bs-B-W

(f) 2Bs-B (h) 3Bs-2W(g) 2Bs-3W

(b) B-2W (c) 5W

(e) Bs-4W

Fig. 4 Various designs of P-joints with parallel structures of flexure primitives: B, W, Bs. The
arrowed lines indicate the direction of translation. The box represents the functional body.

4.6 Synthesis of Hybrid Structures

We can further build more complex flexure mechanisms with hybrid structures of
flexure primitives together with the freedom and constraint elements synthesized
in the previous sections. Here a hybrid structure is a structure with both serial and
parallel connections.

Figure 5(a) shows a compliant parallel platform mechanism that has three rota-
tional degrees of freedom. Each limb is a serial chain of two blade flexures. The
functional body A can rotate about its center relative to the base body B while its
translations are constrained.

As another example, we would like to design a parallel structure with three trans-
lational degrees of freedom. We just need to use three rotational constraint ele-
ments to remove all rotations. If we choose the BB design in for all three rotational

B

B

B
A

B

B B

A

(a) (b)

Fig. 5 (a) A parallel platform with three rotational degrees of freedom and (b) a parallel
compliant platform with three translational degrees of freedom. The body B are fixed. The
body A is the functional body.



80 H.-J. Su, L. Zhou, and Y. Zhang

constraints, we obtain the design shown in Fig 5(b). The functional body A can
translate in all directions while its rotations are constrained.

5 Conclusions

In this paper, we first reviewed screw theory and its applications to mobility analy-
sis and synthesis of rigid body linkages. In particular, we highlighted contributions
of Waldron to mobility formula for general loop linkages with screw theory and
synthesis of overconstrained linkages in 1960. As an example, we studied the mo-
bility of the Waldron hybrid six-bar linkages using screw theory. Inspired by these
work, we then reviewed some recent advances in applying screw theory to mobility
analysis of compliant mechanisms. This screw theory based mobility formula is the
foundation of mobility analysis and type synthesis of compliant mechanisms. We
presented a screw theory representation of freedom and constraint spaces of com-
monly used flexure primitives, synthesis of R and P joints with flexure primitives
and synthesis of hybrid structures such as compliant parallel platform mechanisms.
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