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19   Electro-Elastic Model for 
Dielectric Elastomers 

Rocco Vertechy, Giovanni Berselli, and Vincenzo Parenti Castelli 

Abstract. A continuum model is described for the study of the electro-elastic 
finite deformations of dielectric elastomers. The model: i) derives directly from a 
global energy balance; ii) does not require the postulation of any force or stress-
tensor of electrical origin; iii) only requires the knowledge of permittivity and 
shear moduli of the considered material; and iv) is presented in Lagrangian form 
which is suited for the implementation in multi-physic finite element simulation 
environments. 

1 Introduction 

Dielectric Elastomers (DEs) are incompressible solids which exhibit non-linear 
elastic finite deformations and linear strain-independent dielectric properties. DEs 
can deform in response to an applied electric field, and can alter the electric field 
and/or potential in response to an undergone deformation. Thanks to this Electro-
Mechanical (EM) coupling, DEs are currently being investigated as transduction 
materials for solid-state actuators, sensors and energy harvesters that are 
lightweight, energy-efficient, shock-resistant and low-cost [1]. 

Recently, a number of continuum EM models have been proposed that can be 
used for the accurate analysis and optimization of DE-based devices. An extensive 
review is provided in [2], which also presents a continuum thermo-EM model for 
general isotropic modified-entropic hyperelastic dielectrics. 
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This paper describes a reduced continuum finite-deformation EM model which 
is suited for the analysis and finite element simulation of DEs. The validity of the 
considered model has already been tested in an number practical case studies [3]. 

Section 2 provides the statement of the problem; Section 3 defines the total  
EM energy of a general system comprising elastic dielectrics and conductors; 
Section 4 derives the balance equations, boundary conditions and constitutive 
relations for the considered general EM system, Section 5 specifies the 
constitutive relations holding for typical DE materials. 

2 Problem Definition 

Referring to Fig. 1, consider a closed and electrically isolated EM system , 

which comprises dielectric and conducting bodies (electrodes) that move and 
deform in free space under the action of externally applied loads of electro-
mechanical origin. For every motion and deformation of : 1) no mass can enter 

or leave the boundary of ; 2) energy can cross the boundary of  in the form of 

electrical and mechanical work; 3) no interaction occurs between the electrical 
charges that lie within  and those outside (i.e. the boundary of  is either 

electrically shielded from its exterior or has an infinite extent). 

 

Fig. 1 EM system: reference and actual configuration, and isolated subsystem 

Regarding kinematics, define with ℑ a fixed frame with respect to which the 
motions and deformations of  are measured (with  specifically indicating the 

current deformed configuration), and identify with 0 the reference (stress-free) 

configuration. For any arbitrary time instant 0t ≥ , consider a general material 

point P of  and indicate with X and x(X,t) (where x(X, 0)≡X) the position vectors 

expressing the location occupied by P when the EM system is in 0 and  

respectively. Then, with reference to Fig. 1, the following definitions hold 
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( ) ( ), ,t t= −u X x X X , ( ) ( ), GRADt = ∂ ∂ =F X x X x , ( ), detJ t = FX , (1) 

 
where: u is the displacement field; F is the deformation gradient; J is the Jacobian 
determinant. 

Regarding EM system loadings, the physical space contained within  features: 

a distribution of electric charges (namely free and injected electrons or ions), with 
densities ϕ(x,t) and ϕγ(x,t), respectively defined per unit of deformed volume dv of 
 and per unit of deformed area ds of the physical surface γ(t) (for instance a 

conducting electrode); a distribution of matter with mass density, ρ(x,t), defined 
per unit volume dv. The same physical space is also subjected to: purely 
mechanical loads represented by a body force field (for instance the gravity field), 
b(x,t), defined per unit volume dv; and a traction vector, tγ(x,t), defined per unit 
area ds of γ(t) (for instance a body boundary). 

Beside the displacement field, the other variables that complete the description 
of the state of  are the electric potential φ(x,t), the electric displacement vector 

D(x,t), and the electric field E(x,t) such that 

gradφ φ= −∂ ∂ = −E x . (2) 

3 Conservation of Energy 

Consider an arbitrary but closed subsystem of , hereafter called *, which (for 

every time instant t > 0) is identified by the volume Ω(t) and bounded by the 
closed surface ∂Ω(t) with unit normal n(x,t). In Fig. 1, one of these possible 
subsystems is indicated with a blue dash-dotted line.  

Irrespective of the specific response of the substances contained therein, the 
evolution of * is governed by a balance of EM energy. Differently from , * is 

not electrically isolated, and thus interactions may exist between the electrical 
charges that lie within Ω(t) and those outside. According to potential theory [2], 
and as represented on the right side of Fig. 1, * is equivalent to an identical 

electrically isolated subsystem + which has the boundary ∂Ω(t) covered by a 

single layer of charges with surface density 

ϕ∂Ω = − ⋅D n . (3)

Thus, the conservation of total EM energy for the arbitrary subsystem * reads as 

( )d d = me elt+ +   , (4) 

where me(t) and el(t) 
are the external mechanical and electrical powers entering 

in + (that is in *) from the outside of its boundary ∂Ω(t), namely 
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( ) ( ) ( ) ( ) ( )
d d dme

t t t t t

v s sγ
γ γ γΩ − ∂Ω −

= ⋅ + ⋅ + ⋅    b u t u t u , (5.1) 

( )
( ) ( )

( )
( )

( )
( ) ( )

d d d d d d d d del

t t t t t

v t s t s tγ
γ γ γ

φ ϕ φ ϕ φ ϕ∂Ω
Ω − ∂Ω −

= + +   , (5.2)

with ( , )tu x  being the velocity field ( d dt=u u ); whereas (t) and (t) are the 

kinetic and potential energies associated to the physical space contained in + 

( )
( ) ( )

20.5 d
t t

t v
γ

ρ
Ω −

=  u , ( )
( ) ( )

d
t t

v
γ

ρ
Ω −

= Ψ + ⋅ E D ,  (5.3)

with Ψ(F,E) being the energy density (per unit volume dv) of deformation and 
polarization of a given material. Note that Ψ does not include the energy required 
to build the electrostatic field in + (this is accounted by the term E⋅D). 

Equation (4), together with equations (5), represents the conservation of total 
EM energy of the arbitrary subsystem *, expressed in global form and referred to 

the deformed configuration  of the overall EM system. For solids, it is generally 

more convenient to express the balance equations with respect to the reference 
configuration 0 (the so called Lagrangian description). This makes it possible to 

evaluate the considered integrals and to perform all time-derivatives with respect 
to fixed spatial domains; namely the arbitrary volume ( )0Ω = Ω  with boundary 

( )0∂Ω = ∂Ω , and the physical surface ( )0γ γ= . 

Introducing from Eq. (1) the volume ratio relationship, dv = JdV, and the 
Nanson’s formula, nds = NdS (with dV and dS indicating the infinitesimal 
undeformed volume and surface of 0, and N being the unit normal to dS), and 

defining the Lagrangian electric field E  from Eqs. (1) and (2) as 

GRAD Tφ φ= −∂ ∂ = − = FE X E , (6)

equations (5) can then be rewritten as 

d d dme V S Sγ
γγ γΩ− ∂Ω−

= ⋅ + ⋅ + ⋅    b u t u t u , (7.1) 

( ) ( ) ( )d d d d d d d d del V t S t S tγ
γγ γ

φ ϕ φ ϕ φ
Ω− ∂Ω−

= + − ⋅   D N , (7.2)

20.5 dV
γ

ρ
Ω−

=  u , ( )dV
γ

ρ
Ω−

= Ψ ⋅ + E D , (7.3) 

where b , t , γt , ϕ , γϕ , ρ  and D  are the Lagrangian variables 
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J=b b , 
d

d

s

S
=t t , 

d
=

d

s

Sγ γt t , Jϕ ϕ= , 
d

d

s

Sγ γϕ ϕ= , Jρ ρ= , 1J −= FD D . (8) 

 
In obtaining Eq. (7.2), Eq. (3) has been used. 

Resorting to the Gauss’s divergence theorem along with Eqs. (1) and (6), the 
conservation of total EM energy of * in Lagrangian description follows as 

 

( )( )( ) ( )

( )( ) ( )( )
( )( ) ( )

DIV + d

    

d d
                             DIV d d 0

d d

T

T T

V

dS dS

V S
t t

γ

γ
γγ

γ
γγ

ρ ρ ρ

ρ ρ

φ ϕ φ ϕ

Ω−

∂Ω−

Ω−

 − ∂Ψ ∂ − ⋅ + ∂Ψ ∂ ⋅ +  

 + ∂Ψ ∂ ⋅ − ⋅ − ∂Ψ ∂ ⋅ + ⋅ +  

− − − − ⋅ =



 

 

F

F F

 

    

   

u b u D E E

N t u N t u

D D N

. (9) 

4 Balance Equations and Constitutive Relations 

Equation (9) holds for any arbitrary volume Ω  (with boundary ∂Ω ) and for any 
general EM process. Thus, satisfaction of Eq. (9) requires: 

( )=DIVρ +Pu b  on γΩ − , and  γ = − ⋅Pt N  on γ , (10)

( )DIV ϕ=D  on γΩ − , and γϕ⋅ =   D N  on γ , (11)

T ρ= ∂Ψ ∂P F  with = ⋅Pt N , (12)

ρ= − ∂Ψ ∂D E . (13)

For the considered EM system, Eqs. (10) and (12) represent the Lagrangian form 
of the balance of linear momentum (with the second relation of Eq. (12) being the 
stress theorem holding in the reference configuration), whereas Eqs. (11) and (13) 
are the Lagrangian form of the electrostatic equations. 

5 Constitutive Relations for Dielectric Elastomers 

Equations (10)-(13) hold for any conservative elastic dielectric body that admits 
an energy density function of deformation and polarization. Particular problem 
solutions require specific definitions of Ψ(F,E). A possible form for DEs is 

MR es volΨ = Ψ + Ψ + Ψ , (14.1) 
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( ) ( )( ) ( )( )2 2
1 2trace 3 trace trace 3T T T

MR

c c

ρ ρ
  Ψ = − + − −    

FF FF FF , (14.2) 

 

( )2 10.5 0.5 T
es Jε ρ ε ρ− −Ψ = − = − ⋅ F FE E E , ( )1vol p J ρΨ = − − . (14.3) 

 

where ΨMR is the Mooney-Rivlin strain-energy function for hyperelastic materials 
(only dependent on the DE shear moduli c1 and c2), Ψes is a purely electrostatic 
energy function (only dependent on the DE permittivity ε), and Ψvol is a 
constraining term introduced to enforce the incompressibility condition (J = 1, 
with p being a Lagrange multiplier identifiable as a hydrostatic pressure). 

With this energy density function, the constitutive relations (12) and (13), 
which complete the EM model for DEs together with Eqs. (10) and (11), read as 

 

( )( )
( ) ( ) ( )

1 2

1

2 trace

                         0.5

T T T T

T T T T

c c p

ε

−

− − − − −

 = + − − +  
 + ⊗ − ⋅ 

P 1 FF FF F F

F F F F 1 FE E E E ,

           (15) 

 

1 Tε − −= F FD E . (16) 

6 Conclusions 

An electro-mechanical finite-deformation model for dielectric elastomers has been 
presented. The model is fully coupled and features the balance equations of linear 
momentum and of electrostatics, associated boundary conditions, and constitutive 
relations only dependent on three parameters. The model is expressed in a 
Lagrangian formulation which enables its direct use in finite element codes. 
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