
Chapter 15
Networks and Cycles: A Persistent Homology
Approach to Complex Networks

Giovanni Petri, Martina Scolamiero, Irene Donato, and Francesco Vaccarino

Abstract Persistent homology is an emerging tool to identify robust topological
features underlying the structure of high-dimensional data and complex dynamical
systems (such as brain dynamics, molecular folding, distributed sensing).

Its central device, the filtration, embodies this by casting the analysis of the sys-
tem in terms of long-lived (persistent) topological properties under the change of a
scale parameter.

In the classical case of data clouds in high-dimensional metric spaces, such fil-
tration is uniquely defined by the metric structure of the point space. On networks
instead, multiple ways exists to associate a filtration. Far from being a limit, this
allows to tailor the construction to the specific analysis, providing multiple perspec-
tives on the same system.

In this work, we introduce and discuss three kinds of network filtrations, based
respectively on the intrinsic network metric structure, the hierarchical structure of its
cliques and—for weighted networks—the topological properties of the link weights.
We show that persistent homology is robust against different choices of network
metrics. Moreover, the clique complex on its own turns out to contain little infor-
mation content about the underlying network. For weighted networks we propose a
filtration method based on a progressive thresholding on the link weights, showing
that it uncovers a richer structure than the metrical and clique complex approaches.

Keywords Complex networks · Persistent homology · Metrics · Computational
topology

15.1 Introduction

Over the last decade complex networks have become one of the prominent tools in
the study of social, technological and biological systems. By virtue of their sheer
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sizes and complex interactions, they cannot be meaningfully described and con-
trolled through classical reductionist approaches.

Within this framework, the study of the topology of complex networks, and its
implications for dynamical processes on them, has most often focused on the statis-
tical properties of nodes and edges and therefore found a natural and effective de-
scription in terms of statistical mechanical models of graph ensembles [1, 2]. These
models rely for their formulations on local interactions and become quickly hard
to manage when higher correlations are included or one-step approximations are
not sufficient, as Schaub et al. [3] pointed out for the case of community detection
algorithms for example.

The last few years saw a new perspective emerge that focuses on the very geom-
etry of complex network. It was promoted by a large availability of new (typically
geosocial) data coming from spatial networks [4], but also by analytical and numer-
ical results on the relations between geometrical properties and global features of
complex networks, e.g. the hyperbolic embedding of the Internet with the result-
ing increased efficiency of greedy routing algorithms [5], stationarity conditions for
chemical networks [6] and brain cortex dynamics [7].

In this work, we take on this perspective and study the geometrical properties
of networks through the goggles of persistent homology, a technique originally
introduced by [8, 9] to uncover robust topological information from noisy high-
dimensional point clouds. Persistent homology works by extracting from a dataset
a growing sequence of simplicial complexes (called filtration), indexed by a param-
eter ε, and studying the associated homology groups, which encode the geometrical
information (for example, the holes of an n-torus). The robustness of each topo-
logical feature is then obtained from the persistence of the corresponding generator
along the filtration,

For example, in the case of the torus, there will be two persistent generators
associated to the two non-equivalent loops on its surface.

Persistent homology has received some attention in the context of networks [10],
but there has been no systematic study on its efficiency and sensibility for networks
yet. This is of particular importance since, in contrast with the unique natural met-
ric available for point cloud datasets, networks allow various rules to generate the
filtration.

Our results will show that the salient features of the homology do not change
significantly under different metrics and that there exist a metric scale εc at which
the filtration displays the richest structure.

We will then study a second method to create the filtration, relying only on the
network clique structure. Unfortunately, this will turn out to yield little additional
information.

In the case of weighted networks it is possible to devise a refined filtration based
on the clique structure of the network thresholded by ε, which yield a much richer
picture than the simple clique complex method.

The rest of this work is organised as follows. In the next section a minimal in-
troduction to homology and its persistent sister is given. The following section will
present selected results of simulations and datasets under different choices of met-
rics for the network filtration.
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We conclude then presenting the procedure for the filtration built with the link-
thresholded clique structure and briefly discuss the results and implications for fu-
ture research. In particular, we have discuss the possibility of expanding the method
by considering multi-filtrations, that is filtrations indexed by more than one param-
eter.

15.2 Homology

Formally, homology is an algebraic invariant converting local geometric informa-
tion of a space into a global descriptor. There are many homology theories, but
simplicial homology is the most amenable for computational purposes thanks to its
combinatorial structure.

This kind of homology is applied to simplicial complexes, that are combinations
of vertices, segments, triangles and higher dimensional analogues, joined accord-
ing to specific compatibility relations. As we will see in the following, simplicial
complexes can be constructed from discrete spaces or networks. Low dimensional
homology groups have an intuitive interpretation. Given a simplicial complex X,
H0(X) is the free group generated by the connected components of X, H1(X) is
the free group generated by the cycles in X, H2(X) is the free group generated
by voids—holes bounded by two-dimensional faces. The Betti numbers count the
number of generators of such homology groups.

The standard tool to encode this information is the so-called barcode, which is
a collection of intervals representing the lifespans of such generators. Long-lived
topological features can be distinguished in this way from short-lived ones, which
can be considered as topological noise. There are various ways of building persis-
tence modules out of a given dataset. The most known are the Rips-Vietoris com-
plex, the Cech complex and the clique complex [8]. The first two require a metric
space for the data and are generated by inflating spheres of the same radius around
points (or nodes in a network) and associating set of points to simplices according
to the overlap of the corresponding spheres. They can also be used to create a filtra-
tion out of general network, once a metrical structure is given on the network itself
(shortest-path, commute time distance, etc). Besides these two methods, there ex-
ist a few methods pertaining to networks only [8], the best known being the clique
complex, which is generated by associating to each maximal clique the simplex gen-
erated by the vertices of the clique.

15.3 Robustness Against Metric Change

Network metrics have been well studied, especially in the context of clustering al-
gorithms [11] and Markov Chain models [12]. In addition to the shortest path and
commute time metrics, it is possible to define kernel matrices as functions of the
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Fig. 15.1 Barcodes for the shortest path metric (left, panels (a), (c) and (e)) and the Von Neumann
metrics (right, panels (b), (d) and (f)) on the C. Elegans brain network. From top to bottom, we
report the intervals of existence of the homological spaces H0 (panels (a) and (b)), H1 (panels (c)
and (d)), H2 (panels (e) and (f)). The parameter ε ∈ [0,1] increases from left to right. Each hori-
zontal line corresponds to the intervals of existence of a generator of the corresponding homology
space. In both cases, the higher homology space are non-trivial only in the vicinity of the merging
of a large number of connected components, as highlighted by the drastic reduction in the number
of generators of H0

network’s adjacency and Laplacian matrices. From such kernels one obtains a well-
defined distance, which effectively turns the network into a metric space.

We analysed the metrics associated to: the shortest paths, the commute time
between nodes, exponential diffusion [13] and exponential Laplacian diffusion
[11, 14], which emerge as solutions of diffusion processes on the corresponding net-
work, the von Neumann kernel [15],which generalises the hub-authority measures,
Markov diffusion [16] and random walks with restart.

For each metric, the filtration was generated and the persistent homology calcu-
lated. The analysis was repeated on a range of different networks, spanning different
network topologies, sizes and origins (biological, social, technological).

For brevity, in this paper, we show only the comparison of the barcodes obtained
using the shortest path and the exponential diffusion (with α = 0.01) distances for
the C. elegans neuronal network (Fig. 15.1). In order to compare the results both
metrics have been mapped to the interval [0,1]. Surprisingly, we found that the
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higher homology spaces (H1, H2 . . . , bottom plots in Fig. 15.1) are trivial for most
values of the filtration parameter. They do however show the appearance of genera-
tors of higher homology groups in the vicinity of the value of ε at which a significant
number of connected components merges into few, as shown by the decrease in the
number of generators of H0.

In this respect, our results suggest the existence of a particular value εc, a metric
scale, at which one observes the most structure in the metrical representation of the
network under study. The same behaviour was found in a number of other networks,
ranging from the US air passenger network to the human gene regulatory one. Note
moreover that, in general, εc is different from the average distance between the
nodes (in terms of the chosen metric) and therefore cannot be explained as a mere
effect of the distances distribution. Moreover, if the appearance of non trivial higher
homology groups was only due to the merging of small connected components into
a giant component, one would expect to observe the same phenomenon also for the
merging of smaller components. However, we did not see any of these signatures,
supporting the existence of a characteristic scale εc.

15.4 Clique Complex and Link Weights Thresholding

Another natural filtration of a network is generated by considering its clique struc-
ture. The clique complex is obtained by associated to each maximal k-clique, a com-
pletely connected subgraph formed by k nodes, the (k − 1)-simplex whose vertices
are the nodes of the clique. The natural parameter for this filtration is the clique
dimension k. Recent work [10] tried to uncover specific signatures of modular and
cluster structures in complex networks by making use of this filtration. In our anal-
ysis the filtration obtained in this way did not show interesting features in addition
to the clique structure itself, which however can be investigated without recurring
to homological concepts. However, if we consider weighted networks, it is possible
to devise a filtration which combines link weights and clique structure. Given the
weighted adjacency matrix ωij , we let ε vary in (minωij ,maxωij ) and consider a
sequence of networks, such that the network at step ε contains all links (i, j) with
ωij > ε. As we decrease ε from its maximum allowed value, we go from the empty
network to the original one. For each step, we build the corresponding clique com-
plex and study the persistent homology of the resulting filtration. Figure 15.2 shows
the results of this filtration on a large Facebook-like network of online contacts. It
is immediately evident that a very rich topological information is present. Long per-
sistent intervals appear both for some generators of H1 and H2. The first implies the
existence of chains composed by edges with large weights, whose nodes though are
not strongly connected across the chain itself, but only with their two neighbours
along the chain. The same reasoning applies to the case of H2 where the building
blocks are not segments but triangles. The presence of long persistent H2 genera-
tors is a signpost for higher ordering in the structure of the online contacts. This
means that strong pair interactions organise in long loops without significant triadic
closure.
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Fig. 15.2 Barcodes obtained from the weighted-clique complex filtration of a network of online
contacts for the homology groups H0 (a), H1 (b) and H2 (c). Persistent H1 and H2 generators
imply that the existence of loops and chains of tethraidra formed by nodes which are weakly
interacting with their neighbours in the chain, with the exception of the one directly adjacent along
the chain. In the case of human contacts, this means that strong pair interactions organise in long
loops without significant triadic closure

Finally, we can conclude that this method is able to identify mesoscopic and long-
range structures which are present in networks, but would otherwise pass undetected
with standard methods, and assigns to them also a measure of robustness in the form
of the persistence intervals.
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