
Chapter 119
Passification Based Controlled Synchronization
of Complex Networks

Alexander Fradkov, Ibragim Junussov, and Anton Selivanov

Abstract In the paper an output synchronization problem for a networks of lin-
ear dynamical agents is examined based on passification method and recent results
in graph theory. The static output feedback and adaptive control are proposed and
sufficient conditions for synchronization are established ensuring synchronization
of agents under incomplete measurements and incomplete control. The results are
extended to the networks with sector bounded nonlinearities in the agent dynamics
and information delays.
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119.1 Introduction

Controlled synchronization of networks has a broad area of important applications:
control of power networks, cooperative control of mobile robots, control of lattices,
control of biochemical, ecological networks, etc. [1–5]. However most existing pa-
pers deal with control of the networks of dynamical systems (agents) with full state
measurements and full control (vectors of agent input, output and state have equal
dimensions). In the case of synchronization by output feedback additional dynami-
cal systems (observers) are incorporated into network controllers.
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In this paper the synchronization problem for networks of linear agents with arbi-
trary numbers of inputs, outputs and states by static output neighbor-based feedback
is solved based on passification method [6, 7] and recent results in graphs theory.
The results are extended to the networks with sector bounded nonlinearities in the
agent dynamics and information delays.

119.2 Problem Statement

Let the network S consist of d agents Si, i = 1, . . . , d . Each agent Si is modeled as
a controlled system

ẋi = Axi + B0f (xi) + Bui, yi = CTxi, (119.1)

where xi ∈ R
n is a state vector, ui ∈ R

1 is a controlling input (control), yi ∈ R
l is

a vector of measurements (output). Let G = (V,E) be the digraph with the set of
vertices V and the set of arcs E ⊆ V × V such that for i = 1, . . . , d the vertex vi is
associated with the agent Si .

Let the control goal be:

lim
t→∞

(
xi(t) − xj (t)

) = 0, i, j = 1, . . . , d. (119.2)

119.3 Static Control

Let control law for Si be

ui(t) = K
∑

j∈Ni

(
yi(t − τ) − yj (t − τ)

) = KCT
∑

j∈Ni

(
xi(t − τ) − xj (t − τ)

)
,

(119.3)

where K ∈ R
1×l , Ni = {k = 1, . . . , d|(vi, vk) ∈ E} is the set of neighbor vertices

to vi , τ ≥ 0 is communication delay.
The problem is to find K from (119.3) such that the goal (119.2) holds.
The problem is first analyzed for linear agent dynamics (B0 = 0) without delays

(τ = 0) under the following assumptions:
(A1) There exists a vector g ∈ R

l such that the function gTW(s) is hyper-
minimum-phase, where W(s) = CT(sI − A)−1B . (Recall that the rational function
χ(s) = β(s)/α(s) is called hyper minimum phase, if its numerator β(s) is a Hurwitz
polynomial and its highest coefficient βn−1 is positive [7].)

(A2) The interconnection graph is undirected and connected.
(A2D) The interconnection graph is directed and has the directed spanning tree.
Let A(G) denote adjacency matrix of the graph G. For digraph G consider the

graph Ĝ such that A(Ĝ) = A(G) + A(G)T. Laplacian L(Ĝ) = D(Ĝ) − A(Ĝ) of the

graph Ĝ is symmetric and has the eigenvalues: 0 = λ1 < λ2 ≤ · · · ≤ λd , [1, 3]. The
main result is as follows.
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Theorem 119.1 Let assumptions A1 and either A2 or A2D hold and k ≥ 2κ/λ2,
where

κ = sup
ω∈R1

Re
(
g

T
W(iω)

)−1
. (119.4)

Then the control law (119.3) with feedback gain K = −k · gT, k ∈ R
1 ensures the

goal (119.2).

Similar results are obtained for undirected and balanced directed communication
graphs.

119.4 Adaptive Control

Let agent Si be able to adjust its control gain, i. e. each local controller is adaptive.
Let each controller have the following form:

ui(t) = θi(t)yi(t), (119.5)

where θi(t) ∈ R
1×l—tunable parameter which is tuned based on the measurements

from the neighbors of i-th agent.
Denote:

yi =
∑

j∈Ni

(yi − yj ), i = 1, . . . ,N

and consider the following adaptation algorithm:

θi(t) = −gT · ki(t), k̇i (t) = yi(t)
TggTyi. (119.6)

Adaptive synchronization conditions are formulated as follows.

Theorem 119.2 Let assumptions A1, A2 hold. Then adaptive controller (119.5)–
(119.6) ensures achievement of the goal (119.2).

The above results are extended to the networks with sector bounded nonlineari-
ties in the agent dynamics and information delays.

119.5 Conclusions

The control algorithm for synchronization of networks based on static output feed-
back (119.3) to each agent from the neighbor agents is proposed. Since the number
of inputs and outputs of the agents are less than the number of agent state variables,
synchronization of agents is achieved under incomplete measurements and incom-
plete control. Synchronization conditions include passifiability (hyper-minimum-
phase property) for each agent and some connectivity conditions for interconnec-
tion graph: existence of the directed spanning tree in case of directed graph and
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connectivity in case of undirected graph. Similar conditions are obtained for adap-
tive passification-based control of network with undirected interconnection graph,
for sector bounded nonlinearities in the agent dynamics and information delays.

The proposed solution for output feedback synchronization unlike those of [4, 5]
does not use observers. Compared to static output feedback result of [4, Theorem 4]
the proposed synchronization conditions relax passivity condition for agents to their
passifiability that allows for unstable agents. The paper [4], however, deals with
time-varying network topology. The presented results extend our previous results
[8–10].

Simulation results for the networks of double integrators and Chua circuits illus-
trate the theoretical results.
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