Chapter 6
Application: Diffusion Fields Reconstruction
Under Heat Equation Constraint

Reconstructing a diffusion field from spatiotemporal measurements is an important
problem in engineering and physics with applications in temperature flow, pollution
dispersion, and disease epidemic dynamics. In such applications, sensor networks
are used as spatiotemporal sampling devices and a relatively large number of spa-
tiotemporal measurements may be required for accurate source field reconstruction.
Consequently, due to limitations on the number of nodes in the sensor networks as
well as hardware limitations of each sensor, situations may arise where the available
spatiotemporal sampling density does not allow for recovery of field details. In this
chapter, the above limitation is resolved by means of using the proposed algorithm.
We propose to exploit the intrinsic property of diffusive fields as side information to
improve the reconstruction results of classic CS.

6.1 Introduction

Many natural phenomenon in physics are governed by diffusion equation, includ-
ing temperature flow, pollution dispersion, and disease epidemic dynamics. In such
applications, sensor networks are used as spatiotemporal sampling devices to sample
and reconstruct diffusion fields [1]. In contrast to general multidimensional signals,
the effect of temporal and spatial down-sampling are not homogeneous. Generally,
it is more expensive to increase the spatial sampling density as more sensors are
needed in the network, while temporal sampling density is only limited by each sen-
sor hardware [2]. An efficient sampling scheme will have an impact on real world
applications such as pollution detection [3] and plume source detection [4].

Inverse problems of the diffusive fields are generally ill-posed and require a rel-
atively large number of measurements. Typically, such dense data sets are required
to allow for accurate reconstruction of fine field details. In such cases, improving
the acquisition requirements of the hardware in use through reducing the sampling
density would unavoidably produce aliasing artifacts. To overcome this limitation,
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we apply the proposed algorithm for accurate reconstruction of sources from sub-
Nyquist sampling rates.

In the current note, we consider spatiotemporal sampling and reconstruction of a
1-D diffusive field u(x, t) governed by the heat equation:

Qu(x,t) 0%u(x, 1)
o T =0
u(x,0) = f(x) (6.1)

where + is the diffusion coefficient, x denotes spatial domain variable, ¢ denotes time
domain variable, and f (x) represents the initial field value.

If the initial field value is available, we can solve (6.1) for u(x, ). However, in
many situations, initial field value is not available [2], and it is not possible to derive
u(x, t) based on solely the partial differential equation constraint, as u(x, ¢) varies
dramatically with different initial condition. In these situations, we can measure
spatiotemporal samples and use them to reconstruct u(x, ).

Here, we take advantage of CS for efficient field sampling. It seems to be natural
to reconstruct the source field using the fact that it satisfies the partial differential
equation in (6.1) more efficiently. Specifically, we propose new CS formulation that
incorporates the side information derived from (6.1) to improve the reconstruction
quality of the standard CS, while resulting in substantial reduction in the required
sampling density. We show that our efficient CS formulation can reduce the dimension
of the feasible region in field reconstruction, resulting in better reconstruction quality.

6.2 Diffusive Compressive Sensing

Let u(x, t) represents an original diffusive field which satisfies (6.1). For the sake
of convenience, u(x, t) is assumed to be defined over a finite-dimensional, uniform,
rectangular lattice in R?. The discretized version of this field can be represented in a
matrix X € RV*M_We assume that this field is sampled via a sensor network with
Ns nodes which are deployed uniformly in the space and each sensor collects N;
uniform samples in time. Clearly, we have m = N; Ny measurements which can be
represented in a matrix ¥ € RNs*Nt withm = NgN; < NM = n. X and Y can be
concatenated into two column vectors x and y by means of lexicographic ordering,
respectively. It is assumed that the observed version y of the vector x is obtained as
y = ¥x, where W is a subsampling matrix which accounts for the effect of uniform
downsampling. It is also assumed that x admits sparse representations with respect
to a linear transformation W, x = We. Finally, in order to apply CS to the problem,
it is assumed that null(®) satisfies SSP by choosing W and W properly.

Under the above conditions, CS-based reconstruction of the representation coef-
ficients ¢ can be performed according to (1.3). Our proposed diffusive CS algorithm
uses the fact that u(-, -) satisfies (6.1). Let D, and D, denote the matrices of dis-
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crete partial differences in the spatial and time directions, respectively. Then, the
discretized version of the constraint (6.1) suggests that

DX = yDyDyX — (D; — vDyDy)We = 0. 6.2)

Let B := (D, — yD, D)W, d' = [cgi| y = [g] andn’ = [gi| then:

y =dc+n. (6.3)

Algorithm 1: Diffusive Compressive Sampling
1. Data:y,d,vand A\ > 0

2. Initialization: For a given transform matrix W and matrices/operators WV, D, D;, preset the
procedures of multiplication by A = WW, AT, B and B”.

3. Diffusisive field recovery: Starting with an arbitrary ¢ and p© = 0, iterate (4.28) until
convergence to result in an optimal ¢*.

a. Use CS solver algorithm of [5] for solving the optimization problem in (4.28).
b. Update the vector of Bregman variables p).

4. Source recovery: Use the estimated (full) sparse representation ¢* to recover the values of
x = We*.

Note that the problem (6.3) is an instance of the problem (3.3) and can be studied in
the proposed CS framework. Algorithm 1 summarizes all the diffusive CS algorithmic
steps.

6.3 Experimental Results

The proposed algorithm is tested over three different solutions of the heat equa-
tion (6.1) as the source field, denoted by u; (-, -), u2(-, -), and u3(:, -) for different
boundary and initial conditions. The fields are assumed to be defined over the lattice
[0,27] x [0, 1] C R2, uniformly discretized with M = N = 128 — n = 16, 384.
We set the boundary conditions to be non-homogeneous for #1 (-, -) and u; (-, -), and
homogenous Neumann condition for u3(-, -). The initial conditions are chosen to be
f1(x) = x, fo(x) = d(x — ) (local point source), and f3(x) = I1(0, w) for each
case, respectively. The subsampling matrix W is assumed to downsample the source
field uniformly with downsampling d; and d; factor in time and spatial domains,
respectively:
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Table 6.1 PSNR comparisons of diffusion field recovery results for noise level of 10dB
ds 1 2 2 1 4 4 1 8 8 1 16 16

d 2 1 2 4 1 4 8 1 8 16 1 16
PoS 50% 50% 25% 25% 25% 625% 12.5% 12.5% 1.56% 6.25% 6.25% 0.39%

PSNR comparison (in dB) for u (-, -)
CS 14.07 20.04 13.57 6.73 741 572 0.65 062 —0.07 —0.51 —0.58 —0.06
DCS 2495 25.22 21.61 21.46 21.43 1496 17.36 17.88 11.61 14.00 14.50 10.45

PSNR comparison (in dB) for us (-, -)
CS 14.03 19.97 13.70 12.38 15.54 11.57 6.79 720 587 0.61 058 —0.08
DCS 25.10 25.17 21.54 23.07 23.31 17.59 21.31 21.70 14.92 17.28 18.06 11.61

PSNR comparison (in dB) for uz(-, -)
CS 16.71 19.63 14.16 16.04 13.04 1091 0.13 0.03 —-0.37 —0.58 —0.59 —0.07
DCS 21.87 21.52 18.87 18.78 18.33 12.82 15.32 1493 9.80 1233 11.88 8.64

Y(,j)=X(dsi,dij), 1=i=<Ng,1<=j=N (6.4)

For sparse representation basis, W was selected to be a four-level orthogonal wavelet
transform using the nearly symmetric wavelets of Daubechies with five vanishing
moments and § = 0.5, A = 0.001, v = 1.

For the purpose of comparison, we have compared our algorithm with classic
CS approach in terms of reconstruction SNR. The results of this comparison are
summarized in Tables 6.1 and 6.2 for different levels of noise and different percentage
of the samples (PoS) in each table. In each table results for downsamling factors of
2,4, 8, 16 in different directions are provided. As expected, for all cases one can see
that DCS results in substantially high values of output SNR as compared to classic

Table 6.2 PSNR comparisons of diffusion field recovery results for noise level of 40dB
dy 1 2 2 1 4 4 1 8 8 1 16 16

d 2 1 2 4 1 4 8 1 8 16 1 16
PoS 50% 50% 25% 25% 25% 625% 12.5% 12.5% 1.56% 6.25% 6.25% 0.39 %

PSNR comparison (in dB) for u; (-, -)
CS 1495 2345 14.19 6.88 7.56 6.01 0.70 061 —0.06 —0.51 —0.57 —0.06
DCS 2522 2528 21.66 21.27 21.54 1497 17.41 17.96 11.63 14.00 14.53 10.49

PSNR comparison (in dB) for us (-, -)
CS 14.60 23.48 14.13 691 7.57 6.01 —-0.08 —0.51 —0.57 —-0.43 —-0.58 —0.06
DCS 2521 25.28 21.60 21.27 21.55 1498 13.96 11.61 10.53 9.44 10.35 6.14

PSNR comparison (in dB) for uz (-, -)
CS 1741 2033 14.46 16.05 13.20 1091 -0.07 —0.07 —0.35 —0.60 —0.61 —0.07
DCS 21.92 21.53 18.79 18.78 18.23 12.87 1541 15.01 983 1230 11.87 8.50
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CS, which implies a higher accuracy of field reconstruction. A close look on both
tables reveals interesting results of the proposed algorithm. Note if we downsample
a source field in one direction with the same downsampling factor, regardless of the
direction, the resulting number of measurements are the same. Now consider those
columns of tables with the same downsampling factor but different direction, e.g. first
and second column, while for the case of classic CS the reconstruction quality differs
in both tables, the quality of reconstruction for the case of DCS is similar. This can
be explained through different correlations of the samples in different dimensions.
From (6.2) one concludes that a field sample X (i, j) is correlated with X (i + 1, j)
and X (i + 2, j) in spatial domain while it is only correlated with X (i, j + 1) in
time domain. In other words dependency of the samples are not the same in time and
spatial domain and it is harder to reconstruct the field when we lack time samples
which is reflected in CS reconstruction results. In contrast, when we apply DCS
these dependencies are considered as an additional data and thus the reconstruction
quality is similar and is independent of downsampling direction. Generally, when
we encounter insufficient spatial samples, oversampling in time domain is used to
compensate [2]. Our result indicates that DCS can recover the source with less time
samples which can be translated as energy saving in sensor nodes.

Another important result is on robustness of the proposed scheme towards insuffi-
cient samples. Consider a row in Tables 6.1 or 6.2, it can be seen that as the downsam-
pling factor increases the reconstruction quality for classic CS degrades severely and
for downsampling factors of 8 and 16 almost no information is recovered. While for
the case of DCS, the algorithm is robust and even when we downsample a field with
factor of 16 in both directions, using almost 0.4 % of the samples, it still can recover
some information. For better comparison Fig. 6.1 depicts performances of CS and
DCS algorithm for a range of downsampling factors with d; = 1, SNR = 40dB,
and uy (-, -). It can be seen that for the case of CS, the reconstruction quality degrades
sharply for downsampling factors greater than 4 while diffusive CS is robust towards
downsampling. This can be explained by the constraint exploited by DCS. The con-
straint B¢/ = 0 in (4.27), can be considered as extra measurements of the sparse
source which can compensate for insufficient real measurements. This can explain
while the difference between CS and diffusive CS is negligible for small downsam-
pling factors, why it becomes considerable as the scaling factor increases. When we
have enough information to recover the source then constraint (6.2) does not pro-
vide considerable information but when we lack enough information, this constraint
becomes more important.

A comparison between the result of Tables 6.1 and 6.2 also reveals that although
reconstruction quality degrades as the additive noise power of measurements increases
but DCS seems more robust towards the noise. To investigate the robustness of the
proposed algorithms towards measurement noises, its performances has been com-
pared for a range of SNR values (as a measure for noise power) with classic CS for
the case d; = 2, dy = 2 and u3(-, -). The results of this comparison are summarized
in Fig.6.2. As expected in both cases the reconstruction quality degrades by decreas-
ing SNR, but this dependency is more critical for classic CS, which results in steeper
graph in Fig. 6.2. Again, this can be explained by the constraint exploited by DCS
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Fig. 6.1 SNR of field reconstruction as a function of spatial downsampling factor. Here, the solid
and dashed lines correspond to classic CS and DCS, respectively, and d; = 1

which restricts the feasibility region for an optimal solution. Moreover, as explained
the constraint B¢’ = 0 in(4.27), can be considered as extra measurements of the
sparse source. These measurements are noise free and consequently one concludes
that if we use this constraint, the reconstruction algorithm will become more robust
towards the noise power. Intuitively one can say that since n € R”, n’ € R"*" and
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Fig. 6.2 SNR of field reconstruction as a function of noise SNR. Here, the solid and dashed lines
correspond to classic CS and DCS, respectively, and d; = 2,d; =2
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In’|l2 = |In||2, the noise power has been multiplied by Hlm < 1. This fact represents
another advantage of incorporating the diffusive field constraints in the process of
field recovery.

6.4 Summary

In this chapter, the problem of diffusive field reconstruction using sub-Nyquist sam-
pling rates is studied. An efficient CS-based approach has been proposed to simplify
the measuring devices and improve the device resolution. The proposed method
applies CS for field reconstruction subject to an additional constraint, which stems
from the intrinsic property of a diffusive field. Experiments confirm the source esti-
mates by diffusive CS have better quality as compared to the case of classic CS and
comparable as to the case of dense sampling. One direction for future work is apply-
ing the algorithm in designing the sampling devices for diffusive field reconstruction.
Applying the algorithm in the sampling device structure will improve the capability
of reconstructing diffusive field details in the presence of low density measurements.
Another direction is to understand the performance under partial model knowledge.
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