
Chapter 4
Application: Image Deblurring for Optical
Imaging

The problem of reconstruction of digital images from their blurred and noisy
measurements is unarguably one of the central problems in imaging sciences. Despite
its ill-posed nature, this problem can often be solved in a unique and stable manner,
provided appropriate assumptions on the nature of the images to be discovered. In
this section, however, a more challenging setting is considered, in which accurate
knowledge of the blurring operator is lacking, thereby transforming the reconstruc-
tion problem at hand into a problem of blind deconvolution [1, 2]. As a specific
application, the current presentation focuses on reconstruction of short-exposure
optical images measured through atmospheric turbulence. The latter is known to
give rise to random aberrations in the optical wavefront, which are in turn trans-
lated into random variations of the point spread function (PSF) of the optical system
in use. A standard way to track such variations involves using adaptive optics. For
example, the Shack-Hartmann interferometer provides measurements of the opti-
cal wavefront through sensing its partial derivatives. In such a case, the accuracy
of wavefront reconstruction is proportional to the number of lenslets used by the
interferometer, and hence to its complexity. Accordingly, in this chapter, we show
how to minimize the above complexity through reducing the number of the lenslets,
while compensating for undersampling artifacts by means of derivative compressed
sensing. Additionally, we provide empirical proof that the above simplification and
its associated solution scheme result in image reconstructions, whose quality is com-
parable to the reconstructions obtained using conventional (dense) measurements of
the optical wavefront.

4.1 Background

The necessity to recover digital images from their distorted and noisy observations is
common for a variety of practical applications, with some specific examples including
image denoising, super-resolution, image restoration, and watermarking, just to name
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a few [3–6]. In such cases, it is conventional to assume that the observed image v is
obtained as a result of convolution of its original counterpart u with a point spread
function1 (PSF) i . To account for measurement inaccuracies, it is also standard to
contaminate the convolution output with an additive noise term ν, which is usually
assumed to be white and Gaussian. Thus, formally,

v = i ∗ u + ν. (4.1)

While u and v can be regarded as general members of the signal space L2(�) of
real-valued functions on � ⊆ R

2, the PSF i is normally a much smoother function,
with effectively band-limited spectrum. As a result, the convolution with i has a
destructive effect on the informational content of u, in which case v typically has a
substantially reduced set of features with respect to u. This makes the problem of
reconstruction of u from v a problem of significant practical importance [8].

Reconstruction of the original image u from v can be carried out within the
framework of image deconvolution, which is a specific instance of a more general
class of inverse problems [9]. Most of such methods are Bayesian in nature, in which
case the information lost in the process of convolution with i is recovered by requiring
the optimal solution to reside within a predefined functional class [10–12]. Thus, for
example, in the case when u is known to be an image of bounded variation, the above
regularization leads to the famous Rudin-Osher-Fatemi reconstruction scheme, in
which u is estimated as a solution to the following optimization problem [13, 14]

û = arg min
u

{
1

2
‖u ∗ i − v‖2

2 + α

∫
|∇u| dxdy

}
, (4.2)

where α > 0 is the regularization parameter. It should be noted that, if the PSF
obeys

∫
i dxdy �= 0, the problem (4.2) is strictly convex and therefore admits a

unique minimizer, which can be computed using a spectrum of available algorithms
[13–17].

In some applications, the knowledge of the PSF may be lacking, which results in
the necessity to recover the original image from its blurred and noisy observations
alone. Such a reconstruction problem is commonly referred to as the problem of blind
deconvolution [9]. In the present study, however, we follow the philosophy of hybrid
deconvolution [18], whose main idea is to leverage any partial information on the PSF
to improve the accuracy of image restoration. In particular, in the algorithm described
in this chapter, such partial information is derived from incomplete observations of
the partial derivatives of the phase of the generalized pupil function (GPF) of the
optical system in use, as detailed below.

Optical imaging is unarguably the field of applied sciences from which the notion
of image deconvolution has originated [19–21]. In particular, in short-exposure turbu-
lent imaging [2], acquired images are blurred with a PSF, which depends on a spatial
distribution of the atmospheric refraction index along the optical path connecting

1 Note that, in optical imaging, this function is also referred to as an impulse transfer function [7].
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an object of interest and the observer. Due to the effect of turbulence, the above
distribution is random and time-dependent, which implies that the PSF i cannot be
known in advance.

A standard way to overcome the above limitation is through the use of adaptive
optics (AO) [22]. As will be shown later, the PSF of a short-exposure optical system
is determined by its corresponding generalized pupil function (GPF) P , which can
be expressed in a polar form as P = A ejφ. While, in practice, the amplitude A can
be either measured through calibration or computed as a function of the aperture
geometry, the phase φ accounts for turbulence-induced aberrations of the optical
wavefront, and hence is generally unknown at any given experimental time. Fortu-
nately, the phase φ turns out to be a measurable quantity, and this is where the tools
of AO come into play. One of such tools is the Shack-Hartmann interferometer (SHI)
(aka Shack-Hartmann wavefront sensor) [23–25], which allows direct measurement
of the gradient of φ over a predefined grid of spatial coordinates. Subsequently, these
measurements are converted into a useful estimate of φ through numerically solving
an associated Poisson equation.

Among some other factors, the accuracy of phase reconstruction by the SHI
depends on the size of its sampling grid, which is in turn defined by the number
of lenslets composing the wavefront sensor of the interferometer (see below). Unfor-
tunately, the grid size and the complexity (and, hence, the cost) of the interferometer
tend to increase pro rata, which creates an obvious practical limitation. Accordingly,
to overcome this problem, we propose to modify the construction of the SHI through
reducing the number of its lenslets. Although the advantages of such a simplification
are immediate to see, its main shortcoming is obvious as well: the smaller the number
of lenslets is, the stronger is the effect of undersampling and aliasing. These artifacts,
however, can be compensated for by subjecting the output of the simplified SHI to
the derivative compressed sensing (DCS) algorithm of [26], which is a special case of
the problem, studied in Chap. 3. As will be shown below, DCS is particularly suitable
for reconstruction of φ from incomplete measurements of its partial derivatives. The
resulting estimates of φ can be subsequently combined with A to yield an estimate
of the PSF i , which can in turn be used by a deconvolution algorithm. Thus, the
proposed method for estimation of the PSF i and subsequent deconvolution of u can
be regarded as a hybrid deconvolution technique, which comes to simplify the design
and complexity of the SHI on one hand, and to make the process of reconstruction
of optical images as automatic as possible, on the other hand.

4.2 Technical Preliminaries

In short exposure imaging, due to phase aberrations in the optical wavefront induced
by atmospheric turbulence, the PSF of an imaging system in use is generally unknown
[2]. To better understand the setup under consideration, we first note that, in optical
imaging, the PSF i is obtained from an amplitude spread function (ASF) h as i :=
|h|2. The ASF, in turn, is defined in terms of a generalized pupil function (GPF)
P(x, y) and is given by [27]

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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h(ξ, η) = 1

λwzi

∫ ∞

−∞

∫ ∞

−∞
P(x, y)e

− j 2π
λzi

(x ξ+y η)
dxdy, (4.3)

where zi is the focal distance and λw is the optical wavelength. Being a complex-
valued quantity, P(x, y) can be represented in terms of its amplitude A(x, y) and
phase φ(x, y) as

P(x, y) = A(x, y) ejφ(x,y). (4.4)

Here, the GPF amplitude A(x, y) (which is sometimes simply referred to as the
aperture function) is normally a function of the aperture geometry. Thus, for instance,
in the case of a circular aperture, A(x, y) can be defined as [28]

A(r) =
{

1, if r ≤ D
2

0, otherwise
(4.5)

where D denotes the pupil diameter. Thus, given φ(x, y), one could determine h and
therefore i . Unfortunately, the phase φ(x, y) is influenced by the random effect of
atmospheric turbulence, and as a result cannot be known ahead of time.

A standard way to overcome the uncertainty in φ(x, y) is to measure it using the
tools of shearing interferometry, a particular example of which is the SHI [23, 29].
The latter is capable of sensing the partial derivatives of φ(x, y) over a predefined grid
of spatial locations. In this case, an accurate reconstruction of φ(x, y) entails taking
a fairly large number of the samples of ∇φ(x, y), which is essential for minimizing
the effect of aliasing on the estimation result [30]. Thus, in some applications, the
number of sampling points (as defined by the number of SHI lenslets) reaches as
many as a few thousands. It goes without saying that reducing the number of lenslets
would have a positive impact on the SHI in terms of its cost and approachability.
Alas, such a reduction is impossible without undersampling, which is likely to have
a formidable effect on the overall quality of phase estimation.

To minimize the effect of phase undersampling, we exploit the DCS algorithm
of [31]. The latter can be viewed as an extension of the conventional compressed
sensing (CCS) scheme, in which the standard sparsity constraints are supplemented
by additional constraints related to some intrinsic properties of partial derivatives.
This “side information”—which are called the cross-derivative constraints—allows
substantially improving the quality of reconstruction of φ(x, y), as compared to the
case of CCS-based estimation.

4.2.1 Shack-Hartmann Interferometer

As it was mentioned the SHI can be used to measure the gradient ∇φ(x, y) of the
GPF phase φ(x, y), from which its values can be subsequently inferred. A standard
approach to this reconstruction problem is to assume the unknown phase φ(x, y) to
be expandable in terms of some basis functions {Zk}∞k=0, viz. [24]



4.2 Technical Preliminaries 37

φ(x, y) =
∞∑

k=0

ak Zk(x, y), (4.6)

where the representation coefficients {ak}∞k=0 are supposed to be unique and stably
computable. Note that, in this case, the datum of {ak}∞k=0 uniquely identifies φ(x, y),
while the coefficients {ak}∞k=0 can be estimated due to the linearity of (4.6) which
suggests

∇φ(x, y) =
∞∑

k=0

ak ∇Zk(x, y). (4.7)

In AO, it is conventional to define {Zk}∞k=0 to be Zernike polynomials (aka Zernike
functions) [27]. These polynomials constitute an orthonormal basis in the space of
square-integrable functions defined over the unit disk in R

2. Zernike polynomials
can be subdivided in two subsets of the even Zm

n and odd Z−m
n Zernike polynomials,

which possess closed-form analytical definitions as given by

Zm
n (ρ,ϕ) = Rm

n (ρ) cos(m ϕ) (4.8)

Z−m
n (ρ,ϕ) = Rm

n (ρ) sin(m ϕ), (4.9)

where m and n are nonnegative integers with n ≥ m, 0 ≤ ϕ < 2π is the azimuthal
angle, and 0 ≤ ρ ≤ 1 is the radial distance. The radial polynomials Rm

n in (4.8) and
(4.9) are defined as

Rm
n (ρ) =

(n−m)/2∑
k=0

(−1)k (n − k)!
k! ((n + m)/2 − k)! ((n − m)/2 − k)! ρn−2 k . (4.10)

Note that, since the Zernike polynomials are defined using polar coordinates, it
makes sense to re-express the phase φ and its gradient in the polar coordinate system
as well. (Technically, this would amount to replacing x and y in (4.6), (4.7) by ρ
and ϕ, respectively.) Moreover, due to the property of the Zernike polynomials to be
an orthonormal basis, the representation coefficients {ak}∞k=0 in (4.6), (4.7) can be
computed by orthogonal projection, namely

ak =
∫ 2π

0

∫ 1

0
φ(ρ,ϕ) Zk(ρ,ϕ) ρ dρ dϕ. (4.11)

In practice, however, φ(ρ,ϕ) is unknown and therefore the coefficients {ak}∞k=0 need
to be estimated by other means. Thus, in the case of the SHI, the coefficients can be
estimated from a finite set of discrete measurements of ∇φ(ρ,ϕ).

The main function of the SHI is to acquire discrete measurements of ∇φ by
means of linearization. The linearization takes advantage of subdividing a (circular)
aperture into rectangular blocks with their sides formed by a uniform rectangular



38 4 Application: Image Deblurring for Optical Imaging

Fig. 4.1 An example of
a 10 × 10 SHI array on a
circular aperture. The shading
indicates those blocks (i.e.,
lenslets) which are rendered
active

lattice. An example of such a subdivision is shown in Fig. 4.1 for the case of a 10×10
lattice grid. In general, the grid is assumed to be sufficiently fine to approximate φ by
a linear function over the extent of a single block. This results in a piecewise linear
approximation of φ, whose accuracy improves asymptotically when the lattice size
goes to infinity. Formally, let � := {(x, y) ∈ R

2 | x2 + y2 ≤ D2} be a circular
aperture of radius D and S = {(x, y) ∈ R

2 | max{|x |, |y|} ≤ D} be a square subset
of R

2 such that � ⊂ S. Then, for each polar coordinate (ρ,ϕ) ∈ � and an N × N
grid of square blocks of size 2D/N × 2D/N , the phase φ can be expressed as

φ(x, y) ≈ ax + by + c, (4.12)

for all (x, y) in a neighbourhood of (ρ cos ϕ, ρ sin ϕ). The approximation in (4.12)
suggests that

∇φ(x, y) ≈ (a, b)T (4.13)

where (·)T denotes matrix transposition. While c in (4.12) can be derived from
boundary conditions, coefficients a and b should be determined through direct mea-
surements. To this end, the SHI is endowed with an array of small focusing lenses
(i.e., lenslets), which are supported over each of the square blocks of the discrete grid,
thereby forming a wavefront sensor. In the absence of phase aberrations, the focal
points of the lenslets are spatially identified and registered using a high-resolution
CCD detector, whose imaging plane is aligned with the focal plane of the sensor.
Then, when the wavefront gets distorted by atmospheric turbulence, the focal points
are dislocated towards new spatial positions, which can also be pinpointed by the
same detector. The resulting displacements can be measured and subsequently related
to the values of ∇φ at corresponding points of the sampling grid.
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To explain how the above procedure can be performed, additional notations are
in order. Let �d denote a finite set of spatial coordinates defined according to

�d :=
{
(xd , yd) ∈ �

∣∣
xd = −D + 2D

N

(
i + 1

2

)
, i = 0, 1, . . . , N − 1 (4.14)

yd = −D + 2D

N

(
j + 1

2

)
, j = 0, 1, . . . , N − 1

and x2
d + y2

d ≤ D2
}
.

The set �d can be thought of as a set of the spatial coordinates of the geo-
metric centres of the SHI lenslets, restricted to the domain of its aperture �.
Under the assumption of (4.12), one can then show [1] that the focal displacement
�(x, y) = [�x (x, y),�y(x, y)]T measured at some (x, y)∈ �d is related to the
value of ∇φ(x, y) according to

∇φ(x, y) ≈ 1

F
�φ(x, y), ∀(x, y) ∈ �d , (4.15)

where F is the focal distance of the wavefront lenslets. An example of the above
measurement setup is depicted in Fig. 4.2.

Now, provided a total of M := #�d (#�d denotes the cardinality of �d )
measurements of ∇φ over �d , one can approximate the coefficients {ak}L

k=1 of a trun-
cated series expansion of φ as a solution to the least-square minimization problem
given by

Fig. 4.2 Basic structure of the SHI and a resulting pattern of the focal points



40 4 Application: Image Deblurring for Optical Imaging

min{ak }
∑

(x,y)∈�d

∥∥ L∑
k=0

ak∇Zk(x, y) − F−1�(x, y)
∥∥2

2, (4.16)

subject to appropriate boundary conditions. It is worthwhile noting that (4.16) can
be rewritten in a vector-matrix form as

min
a

‖Z a − d‖2
2, s.t. a ≥ 0, (4.17)

where Z is a 2M × L + 1 matrix of discrete values of the partial derivatives of the
Zernike polynomials, d is a measurement (column) vector of length 2M , and a =
[a0, a1, . . . , aL ]T is a vector of the representation coefficients of φ. The constraint
a ≥ 0 in (4.17) is optional and may be used to further regularize the solution by
forcing a to belong to some convex set K≥. Thus, for example, when the set coincides
with the whole R

L+1, the solution to (4.17) is given by

a = Z#d, (4.18)

where Z# denotes the Moore-Penrose pseudo-inverse of Z, whose definition is unique
and stable as long as the row-rank of Z is greater or equal to L +1 (hence suggesting
that 2M ≥ L + 1). Having estimated a, the phase φ can be approximated as

φ(ρ,ϕ) ≈
L∑

k=0

ak Zk(ρ,ϕ). (4.19)

A higher accuracy of phase estimation requires using higher-order Zernike poly-
nomials, which in turn necessitates a proportional increase in the number of wavefront
lenses. Moreover, as required by the linearization procedure in the SHI, the lenses
have to be of a relatively small sizes (sometimes, on the order of a few microns), which
may lead to the use of a few thousand lenses per one interferometer. Accordingly, to
simplify the construction and to reduce the cost of SHIs, we propose to reduce the
number of wavefront lenslets, while compensating for the induced information loss
through the use of DCS, which is detailed next.

4.3 Point Spread Function Estimation via Compressive
Sampling

We now apply the proposed algorithm on this problem. First we show the side data,
a source signal is a gradient field, can be transformed to (3.2) and then provide
experiments that confirms that we can take advantage of the proposed scheme to
improve the quality of image deblurring.

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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4.3.1 Derivative Compressed Sensing

Let the partial derivatives of φ evaluated at the points of set �d be column-stacked
into vectors fx and fy of length M = #�d . In what follows, the partial derivatives
fx and fy are assumed to be sparsely representable by an orthonormal basis in R

M .
Representing such a basis by an M × M unitary matrix W , the above assumption
suggests the existence of two sparse vectors cx and cy such that fx = W cx and fy =
W cy . In the experimental studies of this section, the matrix W is constructed using
the nearly symmetric orthogonal wavelets of I. Daubechies having five vanishing
moments [32].

The proposed simplification of the SHI amounts to reducing the number of wave-
front lenslets. Formally, such a reduction can be described by two n×M sub-sampling
matrices �x and �y , where n < M . Specifically, let bx := �x fx and by := �yfy be
incomplete (partial) observations of fx and fy , respectively. Then, based on the theo-
retical guarantees of classical CS, the vectors fx and fy of the partial derivatives of φ
can be approximated by W c∗

x and W c∗
y , respectively, where c∗

x and c∗
y are obtained as

c∗
x = arg min

c′
x

{
1

2
‖�x W c′

x − bx‖2
2 + λx‖c′

x‖1

}
(4.20)

and

c∗
y = arg min

c′
y

{
1

2
‖�y W c′

y − by‖2
2 + λy‖c′

y‖1

}
(4.21)

for some λx ,λy > 0. Moreover, in the case when λx = λy := λ, computing the
above estimates can be combined into a single optimization problem. Specifically,
let c = [cx , cy]T , b = [bx , by]T , and A = diag{�x W, �y W } ∈ R

2n×2M . Then,

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖2

2 + λ‖c′‖1

}
. (4.22)

In this form, the problem (4.22) is identical to (1.4), in which case it can be solved
by a variety of available tools of convex optimization [33, 34].

The DCS algorithm augments classical CS by subjecting the minimization in
(4.22) to an additional constraint which stems from the fact that [7]

∂2φ

∂x ∂y
= ∂2φ

∂y ∂x
, (4.23)

which is valid for all twice continuously differentiable functions φ. Thus, in the
discrete setting, the above condition can be expressed using two partial differences
matrices Dx and Dy , in which case it reads

Dx fy = Dyfx . (4.24)

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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To further simplify the notations, let Tx and Ty be two coordinate-projection matrices,
which map the composite vector c into cx and cy according to Tx c = cx and Tyc = cy ,
respectively. Then (4.24) can be re-expressed in terms of c as

Dy W Tx c = Dx W Tyc (4.25)

or, equivalently,
Bc = 0, (4.26)

where B := Dy W Tx − Dx W Ty . Consequently, with the addition of the cross-
derivative constraint (4.26), DCS solves the constrained minimization problem
given by

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖2

2 + λ‖c′‖1

}
, (4.27)

s.t. Bc′ = 0.

The problem (4.27) is an instance of (3.8) and can be solved through the sequence
of iterations produced by

⎧⎪⎪⎨
⎪⎪⎩

c(t+1) = arg minc′
{

1
2‖Ac′ − b‖2

2

+λ‖c′‖1 + δ
2‖Bc′ + p(t)‖2

2

}
p(t+1) = p(t) + δBc(t+1),

(4.28)

where p(t) is a vector of Bregman variables (or, equivalently, augmented Lagrange
multipliers) and δ > 0 is a user-defined parameter.2

Once an optimal c∗ is recovered, it can be used to estimate the noise-free versions
of fx and fy as W Tx c∗ and W Tyc∗, respectively. These estimates can be subsequently
passed on to the fitting procedure to recover the values of φ, which, in combination
with a known aperture function A, provide an estimate of the PSF i as an inverse
discrete Fourier transform of the autocorrelation of P = A ejφ. Algorithm 1 below
summarizes our method of estimation of the PSF.

The estimated PSF can be used to recover the original image u from v through
the process of deconvolution as explained in the section that follows.

4.3.2 Deconvolution

The acquisition model 4.1 can be rewritten in an equivalent operator form as given by

2 In this work, we use δ = 0.5.

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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Algorithm 1: PSF estimation via DCS
1. Data: bx , by , and λ > 0

2. Initialization: For a given transform matrix W and matrices/operators �x , �y , Dx , Dy ,
Tx and Ty , preset the procedures of multiplication by A, AT , B and BT .

3. Phase recovery: Starting with an arbitrary c(0) and p(0) = 0, iterate (4.28)
until convergence to result in an optimal c∗. Use the estimated (full) partial derivatives W Tx c∗
and W Tyc∗ to recover the values of φ over �.

4. PSF estimation: Using a known aperture function A, compute the inverse Fourier
transform of P = A ejφ to result in a corresponding ASF h. Estimate the PSF i as
i = |h|2.

v = H{u} + ν, (4.29)

where H denote the operator of convolution with the estimated PSF i . Note that,
in this case, the noise term ν accounts for both measurement noise as well as the
inaccuracies related to estimation error in i .

The deconvolution problem of finding a useful approximation of u given its dis-
torted measurement v can be addressed in many way, using a multitude of different
techniques [35–39]. In this work, we use the ROF model and recover a regularized
approximation of the original image u as

u∗ = arg min
u

{
1

2
‖H{u} − v‖2

2 + γ ‖u‖T V

}
, (4.30)

where ‖u‖T V = ∫ ∫ |∇u| dx dy denotes the total variation (TV) semi-norm of u.
The minimization problem in (4.30) can be solved using a magnitude of possible

approaches. One particularly efficient way to solve (4.30) is to substitute a direct
minimization of the cost function in (4.30) by recursively minimizing a sequence
of its local quadratic majorizers [38]. In this case, the optimal solution u∗ can be
obtained as the stationary point of a sequence of intermediate solutions produced by

{
w(t) = u(t) + μH∗ {

v − H{u(t)}}
u(t+1) = arg minu

{ 1
2‖u − w(t)‖2

2 + γ ‖u‖T V
}
,

(4.31)

where H∗ is the adjoint of H and μ is chosen to satisfy μ > ‖H∗H‖. In this work, the
TV denoising at the second step of (4.31) has been performed using the fixed-point
algorithm of Chambolle [14]. The convergence of (4.31) can be further improved
by using the same FISTA algorithm of [38]. The resulting procedure is summarized
below in Algorithm 2.



44 4 Application: Image Deblurring for Optical Imaging

Algorithm 2: TV deconvolution using FISTA

1. Initialize: Select an initial value u(0); set y(0) = u(0) and τ (0) = 1

2. Repeat until convergence:

• w(t) = y(t) + μ H∗ {
v − H{y(t)}}

• u(t+1) = arg minu
{ 1

2 ‖u − w(t)‖2
2 + γ ‖u‖T V

}
• τ (t+1) = 0.5

(
1 + √

1 + 4 (τ (t))2
)

• y(t+1) = u(t+1) + (τ (t)/τ (t+1))(u(t+1) − u(t))

In summary, Algorithms 1 and 2 represent the essence of the proposed algo-
rithm for hybrid deconvolution of short-exposure optical images. Next, experimental
results are provided which further support the value and applicability of the proposed
methodology.

4.4 Experiments

To demonstrate the viability of the proposed approach, its performance has been
compared against two reference methods. The first reference method used a dense
sampling of the phase (as it would have been the case with a conventional design
of the SHI), thereby eliminating the need for a CS-based phase reconstruction. The
resulting method is referred below to as the dense sampling (DS) approach. Second,
to assess the importance of incorporation of the cross-derivative constraints, we have
used both classical CS and DCS for phase recovery. In what follows, comparative
results for phase estimation and subsequent deconvolution are provided for all the
above methods.

4.4.1 Phase Recovery

To assess the performance of the proposed and reference methods under controllable
conditions, simulation data was used. The random nature of atmospheric turbulence
necessitates the use of statistical methods to model its effect on a wavefront prop-
agation. Specifically, in this work, the effect of atmospheric turbulence was simu-
lated based on the modified Von Karman model [40]. This model is derived based
on Kolmogorov’s theory of turbulence which models atmospheric turbulence using
temperature fluctuations [41]. In particular, under some general assumptions on the
velocity of turbulent medium and the distribution of its refraction index, the Von
Karman power spectrum density is given by
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(a) (b) (c)

Fig. 4.3 An example of a simulated phase φ (a) along with its partial derivatives w.r.t. x (b) and
y (c)

Q(t) = 0.033 C2
n

e(−t2/t2
m )

(t2 + t2
0 )11/6

, (4.32)

where C2
n is the refractive-index and tm , t0 are chosen to match the high frequency and

low frequency behaviour of turbulence. The model of (4.32) can be used to generate
random realizations of the GPF phase, as described, e.g., in [2].

A typical example of the GPF phase φ is shown in subplot (a) of Fig. 4.3. In this
case, the size of the phase screen was set to be equal to 10×10 cm, while the sampling
was performed over a 128 × 128 uniform grid (which would have corresponded to
the use of 16384 lenslets of a SHI). The corresponding values of the (discretized)
partial derivatives ∂φ/∂x and ∂φ/∂y are shown in subplots (b) and (c) of Fig. 4.3,
respectively.

The subsampling matrices �x and �y were obtained from an identity matrix
I through a random subsampling of its rows by a factor resulting in a required
compression ratio r . To sparsely represent the partial derivatives of φ, W was defined
to correspond to a four-level orthogonal wavelet transform using the nearly symmetric
wavelets of I. Daubechies with five vanishing moments [32] and periodic boundary
condition.

To demonstrate the value of using the cross derivative constraint for phase recon-
struction, the classical CS and DCS algorithms have been compared in terms of
the mean squared errors (MSE) of their corresponding phase estimates. The results
of this comparison are summarized in Fig. 4.4 for different compression ratios (or,
equivalently, (sub)sampling densities) and SNR = 40 dB.

As expected, one can see that DCS results in lower values of MSE as compared
to classical CS, which implies a higher accuracy of phase reconstruction. Moreover,
the difference in the performances of classical CS and DCS appears to be more
significant for lower sampling rates, while both algorithms tend to perform similarly
when the sampling density approaches the DS case. Specifically, for the sampling
density of r = 0.3, DCS results in a ten times smaller value of MSE as compared
to the case of classical CS, whereas both algorithms have comparable performance
for r = 0.83. This result suggests that, at higher compression rates, DCS is likely to
result in more accurate reconstructions of the GPF phase as compared to the case of
classical CS.
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Fig. 4.4 MSE of phase reconstruction obtained with different methods as a function of r . Here,
the dashed and solid lines correspond to classical CS and DCS, respectively, and SNR is equal to
40 dB

A number of typical reconstruction results are shown in Fig. 4.5, whose left and
right subplots depict the phase estimates obtained using the classical CS and DCS
algorithms, respectively, for the case of r = 0.5. The error maps of the two estimates
are shown in subplot (c) and (d) of the same figure, which allows us to see the differ-
ence in the performance of these methods more clearly. Also, a close comparison with
the original phase (as shown in subplot (a) of Fig. 4.3) reveals that DCS provides a
more accurate recovery of the original φ, which further supports the value of using the
cross-derivative constraints. In fact, exploiting these constraints effectively amounts
to using additional “measurements”, which are ignored in the case of classical CS.

As an additional comparison, Fig. 4.6 illustrates the convergence of the MSE as
a function of the number of iterations, for both classical CS and DCS algorithms.
One can see that DCS results in a substantially faster convergence as compared to
classical CS. This behaviour could be explained by considering the cross-derivative
constraints exploited by DCS to be effectively equivalent to noise-free measurements.
To further investigate this argument, Fig. 4.7 compares the convergence of the cross-
derivative fidelity term ‖Dy fx − Dx fy‖2 for both methods under comparison. One
can see that, in the case of DCS, this term converges considerably faster than in the
case of classical CS, which improves to the overall speed of convergence of DCS,
making it superior to that of classical CS.

To investigate the robustness of the compared algorithms towards measurement
noises, their performances have been compared for a range of SNR values. The results
of this comparison are summarized in Fig. 4.8. Since the cross-derivative constraints
exploited by DCS effectively restrict the feasibility region for an optimal solution, the
algorithm exhibits an improved robustness to the effect of additive noise as compared
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(a) (b)

(c) (d)

Fig. 4.5 a Phase reconstructed obtained by means of classical CS for SNR = 40 dB and r = 0.5;
b Phase reconstructed obtained by means of DCS for the same values of SNR and r ; c and d
Corresponding error maps for classical CS and DCS

to the case of classical CS. This fact represents another advantage of incorporating
the cross-derivative constraints in the process of phase recovery.

From the viewpoint of statistical estimation theory, the data fidelity terms in (4.27)
suggests a Gaussian noise model, which may not be natural for all optical systems. In
fact, this is the Poisson noise model, which is considered to be a more standard one in
optical imagery. It turns out, however, that the use of the cross-derivative constraints
by DCS makes it robust towards the inconsistency in noise modeling. This argument
is supported by the results of Fig. 4.9, which summarizes the values of MSE obtained
by classical CS and DCS reconstructions for different levels of Poisson noise. One
can see that, in this case, the MSE values are comparable to the Gaussian case, while
being substantially smaller in comparison to the CCS-based reconstruction.

It should be taken into account that, although the shape of φ does not change the
energy of the PSF i , it plays a crucial role in determining its spatial behaviour. In the
section that follows, it will be shown that even small inaccuracies in reconstruction of
φ could be translated into dramatic difference in the quality of image deconvolution.
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Fig. 4.6 Convergence analysis of phase reconstruction obtained with different methods as a function
of iterations. Here, the dashed and solid lines correspond to classical CS and DCS, respectively,
SNR = 40, and r = 0.5

Fig. 4.7 Convergence analysis of derivative constraint obtained with different methods as a function
of iterations. Here, the dashed and solid lines correspond to classical CS and DCS, respectively,
SNR = 40, and r = 0.5

4.4.2 Deblurring

As a next step, the phase estimates obtained using the CCS- and DCS-based methods
for r = 0.5 were combined with the aperture function A to result in their respective
estimates of the PSF i . These estimates were subsequently used to deconvolve a
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Fig. 4.8 MSE of phase reconstruction obtained with different methods as a function of SNR. Here,
the dashed and solid lines correspond to classical CS and DCS, respectively, and r = 0.5

Fig. 4.9 MSE of phase reconstruction obtained with different methods as a function of SNR where
the noise model is Poisson. Here, the dashed and solid lines correspond to classical CS and DCS,
respectively, and r = 0.5

number of test images such as “Satellite”, “Saturn”, “Moon” and “Galaxy”. All the
test images were blurred with an original PSF, followed by their contamination with
additive Gaussian noise of different levels which is controlled by the variance of
noise distribution. As an example, Fig. 4.10 shows the “Satellite” image [subplot (a)]
along with its blurred and noisy version [subplot (b)].
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Fig. 4.10 Satellite image (a) and its blurred and noisy version (b)

Table 4.1 SSIM and PSNR comparisons of phase recovery results

Image PSNR comparison (dB) SSIM comparison
Noise std Blurred DS CS DCS Blurred DS CS DCS

10−5 14.06 27.97 17.06 27.42 0.200 0.730 0.349 0.674
Satellite 0.001 14.06 27.75 16.93 27.22 0.200 0.720 0.344 0.667

0.003 14.06 25.97 16.54 25.56 0.199 0.554 0.306 0.519
0.005 14.05 22.43 15.63 22.22 0.197 0.269 0.206 0.263
10−5 17.78 31.49 23.42 31.02 0.226 0.688 0.424 0.656

Saturn 0.001 17.78 31.08 23.38 30.65 0.226 0.66 0.416 0.641
0.003 17.78 28.50 22.80 28.30 0.226 0.506 0.348 0.483
0.005 17.78 23.89 20.55 23.72 0.175 0.228 0.212 0.223
10−5 19.98 25.06 22.36 25.00 0.512 0.645 0.539 0.643

Moon 0.001 19.97 25.04 22.38 24.99 0.512 0.642 0.538 0.64
0.003 19.97 24.83 22.30 24.78 0.509 0.607 0.493 0.604
0.005 19.97 21.76 19.73 21.73 0.504 0.552 0.488 0.549
10−5 18.79 23.58 21.16 23.52 0.257 0.493 0.348 0.490

Galaxy 0.001 18.79 23.60 21.12 23.54 0.257 0.495 0.347 0.491
0.003 18.78 23.38 20.64 23.32 0.257 0.501 0.326 0.501
0.005 18.78 20.93 18.46 20.86 0.254 0.397 0.224 0.393

Using the PSF estimates, the deconvolution was carried out using the method
detailed in [14]. For the sake of comparison, the deconvolution was also performed
using the PSF recovered from dense sampling (DS) of φ. Note that this reconstruction
is expected to have the best accuracy, since it neither involves undersampling nor
requires a CS-based phase estimation. All the deconvolved images have been com-
pared with their original counterparts in terms of PSNR as well as of the structural
similarity index (SSIM) of [42], which is believed to be a better indicator of perceptual
image quality [43]. The resulting values of the comparison metrics are summarized
in Table 4.1, while Fig. 4.11 shows the deconvolution results produced by the CCS-
and DCS-based methods.
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Fig. 4.11 a Image estimate obtained with the CCS-based method for phase recovery (SSIM =
0.781). b Image estimate obtained with the DCS-based method for phase recovery (SSIM = 0.917)

Fig. 4.12 a Image estimate obtained with the CCS-based method for phase recovery (SSIM =
0.732). b Image estimate obtained with the DCS-based method for phase recovery (SSIM = 0.888)
where the noise model is assumed to be Poisson

The above results demonstrate the importance of accurate phase recovery, where
even a relatively small phase error can have a dramatic effect on the quality of image
deconvolution. Under such conditions, the proposed method produces image recon-
structions of a superior quality as compared to the case of classical CS. Moreover,
comparing the results of Table 4.1, one can see that DS only slightly outperforms
DCS in terms of PSNR and SSIM, while in many practical cases, the difference
between the performances of these methods are hard to detect visually.

Finally, Fig. 4.12 shows the results of CCS-based and DCS-based image recon-
struction for the case of Poisson noise contamination. A close comparison of
these results reveals a noticeable degradation in the performance of the CCS-based
algorithm, while the DCS-based results are virtually indistinguishable from those
obtained in the Gaussian case.
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4.5 Summary

In this chapter, the applicability of the proposed scheme to the practical problem of
image deblurring in optical imaging was studied. It was shown that, in the presence
of atmospheric turbulence, the phase φ of the GPF P = A ejφ is a random function,
which needs to be measured using adaptive optics. To simplify the complexity of the
latter, a CS-based approach was proposed. As opposed to classical CS, however, the
proposed method performs phase reconstruction subject to an additional constraint,
which stems from the property of ∇φ to be a potential field. The DCS algorithm
has been shown to yield phase estimates of substantially better quality as compared
to the case of classical CS. our main focus has been on simplifying the structure of
the SHI through reducing the number of its wavefront lenslets, while compensating
for the effect of undersampling by means of DCS. The resulting phase estimates
were used to recover their associated PSF, which was subsequently used for image
deconvolution. It was shown that the DCS-based estimation of φ with r = 0.3 results
in image reconstructions of the quality comparable to that of DS, while substantially
outperforming the results obtained with classical CS.
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