
Chapter 2
Compressed Sensing

In this chapter compressed sensing is introduced in more details. Gelfand’s width,
which is a pure mathematical concept with close connection to CS, is introduced in
Sect. 2.1. CS in restricted isometry perspective is considered in Sect. 2.2. Section 2.3
covers a review on spherical section property, which will be used in the next Chapter.

2.1 Gelfand’s Width

Some mathematical ideas that are used in CS originally came from the Harmonic
Analysis literature. In this section we introduce Gelfand’s width and show how it is
connected with CS theory. Let S ⊂ R

n and m < n ∈ N. Assume R
n is equipped

with l p-norm.

Definition 2 Gelfand’s width for this set is defined as:

dm(S)p = inf
K

sup{‖x‖p|x ∈ S ∩ K } = inf
K

sup
x∈S∩K

‖x‖p, p ≥ 1, (2.1)

where infimum is taken over all n − m dimensional subspace K of R
n. Assume S be

bounded such that:

∀s ∈ S : −s ∈ S (2.2)

∃a ∈ R
n : S + S ⊂ aS

For instance if S = {x ∈ R
n|‖x‖ < 1}, then assuming a = 2, this set satisfies

(2.2). Now assume we sample elements of S with a sampling matrix � ∈ R
m×n .

Also let D be an operator (possibly nonlinear) which is used for reconstructions:

y = �x
(2.3)x̂ = D(y)
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10 2 Compressed Sensing

The error reconstruction in this sampling/reconstruction system over the set S would
be:

E(S,�, D) = sup
x∈S

‖x − x̂‖p = sup
x∈S

‖x − D(�x)‖p (2.4)

We are interested in finding a (�, D) pair such that E(S,�, D) is minimized. The
best possible performance in this framework is given by:

E(S) = inf
�,D

E(S,�, D). (2.5)

As we know dim(Null(�)) = n − m and thus null(�) is a n − m dimensional
subspace of R

n and can be considered an instance of K in the definition of Gelfand’s
width of S:

dm(S)p = inf
K

sup
x∈S∩K

‖x‖p ≤ sup
x∈S∩null(�)

‖x‖p. (2.6)

On the other hand:

∀x ∈ S ∩ null(�) : D(y) = D(�x) = D(0) = D(−�x) (2.7)

Now note:

‖x − D(�x)‖p + ‖ − x − D(−�x)‖p ≥ ‖x − D(0) − x + D(0)‖p = 2‖x‖p →
(2.8)

‖x − D(0)‖p ≥ ‖x‖p or ‖ − x − D(0)‖p ≥ ‖x‖p.

Thus for any x ∈ S ∩ null(�), there exists an element x′ ∈ S ∩ null(�) such
that:‖x′ − D(�x′)‖p ≥ ‖x‖p. Consider this fact:

E(S,�, D) ≥ sup
x∈S∩K

‖x−D(�x)‖p ≥ sup
x∈S∩null(�)

‖x−D(�x)‖p ≥ sup
x∈S∩null(�)

‖x‖p.

(2.9)
From (2.6) and taking infimum on (2.9) one can conclude:

E(S)p ≥ dm(S)p. (2.10)

Now assume K ⊂ R
n with dim(K) = n − m. Let {v1, ..., vm} be a basis for orthog-

onal complement of K (K ⊥). Form the sampling matrix � = [v1, ..., vm]T . Also we
define the reconstruction operator D as follows:

D(u) =
{

a if u ∈ �S

b if u /∈ �S
(2.11)

where a ∈ S is arbitrary such that u = �a and b is a randomly chosen vector in S.
With these assumptions on (�, D) we calculate E(S)p. Let x ∈ S:
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�(x − D(�x)) = �x − �D(�x) = �x − �x = 0, (2.12)

which yields x − D(�x) ∈ null(�) ≡ K. Also from (2.2):

∃a ∈ R : x − D(�x)

a
∈ S → x − D(�x)

a
∈ S ∩ K . (2.13)

Consequently:

E(S,�, D)p = a sup
x∈S

‖x − D(�x)

a
‖p ≤ a sup

x∈S∩K
‖x‖p →

(2.14)

inf
�,D

E(S,�, D)p ≤ a inf
K

sup
x∈S∩K

‖x‖p → E(S)p ≤ adm(S)p.

Overall from (2.10) and (2.14):

dm(S)p ≤ E(S)p ≤ adm(S)p. (2.15)

This is an important result and shows how the reconstruction error over the set S is
related to Gelfand’s width of S. In other words, the best reconstruction performance
in CS is bounded by Gelfand’s width. Unfortunately finding Gelfand’s width of a set
in the general case is an open problem and only for special instances of S, such as unit
ball, Solutions have been found. Advances in this area provide a strong mathematical
imbed for CS theory.

The central question is what�, D pair would satisfy the bounds given by Gelfand’s
width? Independently, in [1, 2] sufficient condition on the sensing matrix was pro-
vided. The authors introduced the concept of restricted isometry property (RIP) and
used this concept to provide theorems for unique and stable source reconstruction and
prove the CS theorems. They showed that the random sensing matrices with i.i.d.
Gaussian or Bernoulli entries satisfy the required conditions and efficient decod-
ing D, can be accomplished by linear programming as in (1.4) (this reconstruction
method has been provided before through empirical approach).

2.2 Restricted Isometry Property and Coherence

The classical theory of CS [1, 2] uses the concept of RIP. As discussed in Chap. 1,
if the source is k-sparse, then if any combination of 2k columns of A is linearly
independent, then the solution of (1.2) would be unique. Having this in mind, the
restricted isometry property (RIP) is defined as follows:

Definition 3 Restricted Isometry Property
We say an arbitrary matrix A, satisfies RIP of order k with constant 0 ≤ δk < 1,

if for all k-sparse vectors x:

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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1 − δk ≤ ‖Ax‖2
2

‖x‖2
2

≤ 1 + δk . (2.16)

This means that k-sparse sources not only will not lay in the null-space of A,
but also will have a distance δk with this space. This condition is stronger compared
to linear independency of any 2k columns of A and in return is also stable towards
noise. In other words it means that all sub-matrices of A with at most k columns
are well-conditioned. The constant 0 ≤ δk < 1 measures closeness of the sensing
operator to an orthonormal system. From discussions in Chap. 1, one concludes if
A satisfies RIP with 0 ≤ δ2k < 1 then the solution of (1.2) is unique and can be
recovered through solving (1.3). But for practical applications equivalence of the
solutions of (1.3) and (1.4) is essential.

Historically CS results are developed using RIP and over the time the conditions
and bounds on theorems are improved. The following two theorems are two main
state-of-the-art results based on the RIP approach [3].

Theorem 2.2.1 (Noiseless Recovery) Consider the system (1.2) with the unique
solution s, assume δ2k <

√
2 − 1. Let ŝ be the solution to (1.4), then:

‖s − ŝ‖1 ≤ C0‖s − sk‖1

and

‖s − ŝ‖2 ≤ C0
1√
k
‖s − sk‖1

where sk is a k-sparse approximation of s and C0 is a global constant.

Note that for the case the source is exactly k-sparse, this theorem states the recovery
is exact. The next theorem states the condition for robustness towards noise.

Theorem 2.2.2 (Noiseless Recovery) Consider the system y = As + n such that
‖n‖2 < ε, assume δ2k <

√
2 − 1. Let ŝ be the solution to (1.4), then:

‖s − ŝ‖2 ≤ C0
1√
k
‖s − sk‖1 + C1ε

with the same constant C0 as in the previous theorem and another global constant
C1.

Proofs of these theorems are complicated and based on advanced real analysis math-
ematics. Interested readers may refer to [1–3] for details.

RIP condition on the sensing matrix is a standard approach in CS theory, but
unfortunately its practical benefits is limited. Calculating RIP for a general matrix
is a NP-hard problem and only has been done for special cases. Using random
matrix theory, existence of such matrices have been proven for m > O(k log( n

k ))

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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for any desired δk ∈ (0, 1) but even in such cases building such matrices is an
independent issue. Note these theorems require RIP condition but we will discuss
that RIP condition is only a sufficient condition and is not a necessary condition for
accurate l1-recovery. On the other hand, it is also not a complete concept to study
CS.

An important quantity in designing the sensing matrix is mutual coherence.

Definition 4 Mutual Coherence
Let A ∈ R

n×m, the mutual coherence μA is defined by:

μA = max
i �= j

|〈ai , a j 〉|
‖ai‖‖a j‖

where ai , a j denote two distinct columns of A.

A small coherence implies of closeness of the sensing matrix to a normal matrix. If
a matrix possesses a small mutual coherence, then it also satisfies the RIP condition.
It means that coherence is a stronger condition. On the other hand the complexity
of calculating the coherence is O(n2) and thus is tractable. According to Welch
inequality [4]:

μA ≥
√

n

m(n − m)
(2.17)

This implies for n � m, μA ≥ 1√
m

. Consequently if we want to design sensing

matrices which satisfy RIP condition using mutual coherence, then m > O(k2)

which is much greater than m = O(k log( n
k )) bound for which existence of proper

sensing matrices has been proven. But due to computational complexity issues, it is
the only proper tool for this purpose.

Next section covers the new paradigm for compressive sensing [5–7]. This
approach uses a completely different approach based on studying the nullspace of
the sensing matrix using spherical section property.

2.3 Spherical Section Property

Analysis of compressive sensing based on RIP requires advanced mathematical tools,
but this approach is not necessary to develop compressive sensing [5, 6]. Moreover,
it is not a required condition for exact recovery.

Consider the problem of (1.2). The pair (A, y) carries the information in CS
framework. Consider an invertible matrix, B. It is trivial that the system B As = By is
equivalent to the system As = y. Thus the pair (B A, By) carries the same information
as (A, y). But the RIP of A and B A can be vastly different. For any CS problem one
can choose B to make RIP of B A significantly bad, regardless of RIP of A [6]. RIP is
a strong condition on sensing matrix and practical and experimental results confirm

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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it is not a necessary condition for main theorems of CS to hold. This motivates the
derivation of CS in a more simple and general approach based on spherical section
property (SSP) [5, 6]. Interestingly this approach is simpler and some of the main
results of CS theorems in RIP context can be derived easier using spherical section
property. Here we briefly describe CS theory in this context and follow the approach
of [6] in proving the main theorems.

Definition 5 Spherical Section Property (SSP) Let m, n ∈ N such that n > m and
V be an n − m dimensional subspace of R

n. This subspaces is said to have spherical
section property with constant �, if ∀s ∈ V:

‖s‖1

‖s‖2
≥

√
m

�

Here, � is called the distortion of V.

Note if we consider the nullspace of a sensing matrix as the subspace in this definition,
for an invertible matrix � = 0. Similar to RIP approach the following theorems are
developed.

Theorem 2.3.1 (Noiseless Recovery) Suppose null(A) has the �-spherical section
property. Let ŝ be a nonzero vector such that: Aŝ = y.

1. Provided that: ‖ŝ‖0 ≤ m
3�

, ŝ is the unique vector satisfying As = y and ‖s‖0 ≤
m

3�
.

2. Provided that: ‖ŝ‖0 ≤ m
2�

≤ n
2 , ŝ is the unique solution to the optimization

problem (1.4).

Proof 1

1. First define the vector sign(s) = [sign(si)]. According to the Cauchy-Schwarz
inequality:

|〈sign(s), s〉| ≤ ‖sign(s)‖2‖s‖2 →
∑

i

|si | ≤ √|supp(s)|‖s‖2 → ‖s‖1

≤ √‖s‖0‖s‖2 (2.18)

Now assume v be a second solution which is more sparse compared to ŝ and
‖v‖0 = m1. Let w = v − ŝ. Note, w �= 0 and w ∈ Null(A), then:

‖w‖0 ≤ ‖v‖0 + ‖ŝ‖0 ≤ m1 + m

3�

(2.18)−−−→ ‖w‖1

‖w‖2
≤

√
m1 + m

3�
(2.19)√

m

�
≤

√
m1 + m

3�
→ 2m

3�
≤ m1,

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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this a contradiction and shows v is not sparse enough and uniqueness of the
solution results.

2. Again assume v be a second solution to (1.4) such that ‖v‖1 ≤ ‖ŝ‖1 and let
w = v − ŝ, S = supp(ŝ), S̄ = {1, ..., n} − S, and wS to be the projection of w on
S:

‖v‖1 = ‖w + ŝ‖1 = ‖wS + ŝS‖1 + ‖wS̄ + ŝS̄‖1 = ‖wS + ŝS‖1 + ‖wS̄‖1 ≥
(2.20)

‖ŝS‖1 − ‖wS‖1 + ‖wS̄‖1 = ‖ŝ‖1 − ‖wS‖1 + ‖wS̄‖1,

now since ‖v‖1 ≤ ‖ŝ‖1, one concludes ‖wS̄‖1 ≤ ‖wS‖1.

Note w ∈ null(A), now we want to calculate maximum value of the ratio ‖w‖1‖w‖2
.

This problem is invariant under scaling of w, thus we set ‖w‖2 = 1 and also we can
assume w lays in the positive orthant (since the element signs would not change the
norm value). We will have the following optimization problem:

max w1 + · · · + wn

s.t.: 0 ≤ wi , (2.21)∑
i∈S̄

wi ≤
∑
i∈S

wi

The second constraint comes from the inequality we derived before. This problem is
a convex optimization instance, so we can exhibit the maximizer in closed form if we
can exhibit the solution to the KKT condition [8]. Let

wi =

⎧⎪⎪⎨
⎪⎪⎩

a =
√‖ŝ‖0(n − ‖ŝ‖0)/n

‖ŝ‖0
, i ∈ S

b =
√‖ŝ‖0(n − ‖ŝ‖0)/n

‖n − ŝ‖0
, i ∈ S̄

(2.22)

It is easy to check that this point lays in the feasible region. The KKT multipliers are
the solutions to the system:

{
λ1 + 2λ2b = 1

−λ1 + 2λ2a = 1
→

⎧⎪⎪⎨
⎪⎪⎩

λ1 = a − b

a + b

λ2 = 1

a + b

(2.23)

So both multipliers are positive if ‖ŝ‖0 ≤ ‖n − ŝ‖0. Thus the objective value of (2.21)

would be
√

‖ŝ‖0(n−‖ŝ‖0)
n and consequently ‖w‖1‖w‖2

≤
√

‖ŝ‖0(n−‖ŝ‖0)
n . On the other hand

w ∈ null(A), which concludes:

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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√
m

�
≤

√‖ŝ‖0(n − ‖ŝ‖0)

n
≤

√
‖ŝ‖0 → m

�
≤ ‖ŝ‖0, (2.24)

which contradicts the assumption and results the proof.

The second theorem considers stability towards noise.

Theorem 2.3.2 Noisy Recovery Suppose null(A) has the �-spherical section prop-
erty. Let ŝ be the minimizer of (1.4). Then for every s̄ ∈ R

n and ∀k < min( m
16�

, n
4 ):

‖ŝ − s̄‖1 ≤ 4‖s̄k − s̄‖1, (2.25)

where sk denotes the k-sparse approximation of s.

Proof 2 Let w = ŝk − s̄, so w ∈ null(A):

‖ŝ‖1 = ‖s̄ + w‖1 =
‖s̄S + wS‖1 + ‖s̄S̄ + wS̄‖1 ≥
‖s̄S‖1 − ‖wS‖1 − ‖s̄S̄‖1 + ‖wS̄‖1 ≥ (2.26)

‖s̄‖1 − ‖wS‖1 + ‖wS̄‖1 − 2‖s̄S̄‖1,

Since ŝ is the minimizer of (1.4) we conclude:

‖wS̄‖1 ≤ ‖wS‖1 + 2‖s̄S̄‖1. (2.27)

Now define: R = ‖w‖1‖s̄−sk‖1
. To obtain the result, it is enough to find an upper bound

for R (R ≤ 4). We substitute R in (2.27):

‖wS̄‖1 ≤ ‖wS‖1 + 2‖w‖1/R → ‖wS̄‖1 ≤ ‖wS‖1 + 2(‖wS‖1 + ‖wS̄‖1)/R →
(2.28)

(1 − 2/R)‖wS̄‖1 ≤ (1 + 2/R)‖wS‖1.

Now note if 1 − 2/R ≥ 0, then R ≤ 2 ≤ 4 and the proof results, so let 1 − 2/R > 0.
Then from (2.28): ‖wS̄‖1 ≤ 1+2/R

1−2/R ‖wS‖1. Assuming γ = 1+2/R
1−2/R (γ ≤ 3) and in

exactly the same approach as in the previous theorem one can conclude (for details
refer to [6]):

‖w‖1

‖w‖2
≤ γ + γ

√
k(n − k)

k + 9(n − k)

w∈null(A)−−−−−−→
√

m

�
≤ γ + γ

√
k(n − k)

k + 9(n − k)

(2.29)

n−k≤((9(n−k)+k)/9)−−−−−−−−−−−−→
√

m

�
≤ (γ + 1)

√
k

k≤ m
16�−−−−→ 3 ≥ γ.

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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On the other hand the assumption was γ ≤ 3 and thus γ = 3. Consequently R = 2
which results in the desired bound on R and the result follows.

These two theorems establish CS theory but in SSP context and similarly state
uniqueness and stability of l1-norm solution for a CS problem. The results are derived
in a much simpler approach compared to RIP context [1, 2]. It is interesting to note
that the main results which are derived in RIP approach can be rederived in SSP
context. For instance the error bound in Theorem 2.3.2 has been derived in RIP
context, too. Also, it has been shown the Gaussian random matrices have spherical
section property and are good choice for sensing matrix [5]. Furthermore, as it will
be discussed this approach is a better embed for considering cases when we have
side information on the feasible region.

2.4 Reconstruction Methods

In this section a brief review on CS reconstruction methods is given. Nowadays one
of the limitation of using CS is the low-speed of the reconstruction methods with
high dimensional data. Improving the performance of reconstruction methods is an
active research area.

2.4.1 Minimization of l1-norm

Historically l1-norm minimization is the main approach for CS reconstruction algo-
rithms. Main CS theorems state robustness of the l1-norm minimization towards
additive noise and also system noise. The importance of l1-norm is that, it is a con-
tinuous convex function, so convex optimization tools can be applied to the problem.
The more important fact is that l1-norm minimization problem can be formulated as
a linear programming problem. Let A′ = [A,−A], s′ = [s1; s2], s = s1 − s2:

min[1; 1]T s′ s.t.A′s′ = y0, s′ ≥ 0, (2.30)

where 1 is an all-ones column vector and (·)T denotes matrix transposition. Con-
sequently well-known linear programming algorithms such as Simplex and Interior
Point methods can be used with complexity of O(n3). One group of successful
algorithms in this class is Basis Pursuit [9].

Although linear programming methods can find the solution in finite time but
for many practical applications O(n3) is not a tractable time. Specially in image
processing applications in which n = O(105) for a typical image.
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2.4.1.1 Thresholding Algorithms

Some iterative methods have been introduced to decrease the computational com-
plexity of l1-norm minimization. In these methods an iterative sequence of vectors
is produced, which converges to the solution through iterations. Although conver-
gence to the exact solution is more time consuming compared to linear programming
methods, these methods quickly converge to a very good approximate of the solution.

It can be shown that for a proper selection of λ, the optimization problem (1.4) is
equivalent to the following unconstrained problem:

ŝ = arg min
s

1

2
‖y − As‖2

2 + λ‖s‖1 (2.31)

Since this problem is unconstrained one can use steepest descend or conjugate gra-
dient approaches to derive an iterative relation. Although l1-norm is not a smooth
function but concept of subderivative enables us to apply a similar procedure to
steepest descend on (2.31) (more discussions is given in Chap. 3). Upon choosing
a proper initial value, the iterative relation will converge to the minimizer of (1.4).
Several algorithms have been developed for this purpose [10, 11]. In the current note
we work with image signals and thus we have used one of the-sate-of-the-art iterative
methods for reconstruction [12, 13].

The iterative formula for iterative hard thresholding (IHT) algorithm is as follows:

si+1 = G(si − AT (Asi − y)), (2.32)

where G(·) is a thresholding function:

G(x) =
{

0 |si | ≤ √
λ

si |si | ≥ √
λ

, (2.33)

The main advantage is that each iteration only involves multiplication of vectors
and A and AT , followed by thresholding. So the sensing matrix can be defined only
as an operator and it is not even required to store the sensing matrix. This is much
simpler than linear programming. Note the threshold in this algorithm is constant
in all iterations. A class of successful methods is the iterative shrinkage threshold-
ing algorithms (ISTA) which improve IHT through using an adaptive thresholding
function. The iterative step is as follows:

si+1 = Hλδ(si − δAT (Asi − y)), (2.34)

where δ is a parameter for step size and H(·) is a soft shrinkage threshold function:

Hλ(si ) = (|si | − λ)+sign(xi). (2.35)

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_3
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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FISTA algorithm [12] further improves ISTA by involving the solutions of the two
previous iterations in each step.

2.4.2 Greedy Algorithms

Greedy algorithms generally solve a problem in a number of steps (in CS problem,
mainly the number of steps is equal to the sparsity level k). In each step the best selec-
tion (in CS problem, normally the best column of the sensing matrix) is done without
considering the future steps. Consequently the result is not always the real solution
but this approach provides acceptable results in compressive sensing reconstruction.

A simple algorithm of this class is Matching Pursuit. An equivalent representation
for compressive sensing is:

y =
n∑

i=1

ai si , (2.36)

where ai is the i th column of A. If we have a k-sparse source, CS in this context can
be interpreted as finding the k related columns of A and corresponding si ’s. Matching
Pursuit approximates the source in k step. In each step one column of A is revealed
and then the corresponding si is revealed by solving a least square problem. In the
first step the inner product of y and all ai ’s are calculated (〈y, ai 〉). Then the column
a j with the maximum absolute value of 〈y, ai 〉 is selected as an active column in
(2.36) and si = 〈y, a j 〉. Thus the first term in (2.36) is known. Let this approximate
of s be s(1). The next steps are done similarly, only in each step we update the value
of y as follows:

y(i+1) = y(i) − si a j . (2.37)

The main disadvantage in this approach is that it is assumed that columns of A are
orthogonal which is not the case for most sensing matrices. Orthogonal Matching
Pursuit (OMP) [14] improves this method via updating the found si ’s in each step.
Since this approach uses similarity of ai ’s and the residual vector of (2.37), mutual
coherency of the sensing matrix plays an important role. Faster algorithms such as
Compressive Sampling Matched Pursuit (CoSaMP) [15] improves the algorithm via
a look on future steps. Overall, this class of reconstruction methods are fast but do
not necessarily find the real solution.

2.4.3 Norm Approximation

This class approximate l0-norm via a differentiable function and then use methods
such as steepest descend for minimization. For instance smoothed l0 (SL0) algorithm
[16] approximates the l0-norm as follows:



20 2 Compressed Sensing

‖s‖0 ≈ g(s) = n −
n∑

i=0

fσ(si ), (2.38)

where fσ(·) is defined as:

fσ(s) = e− s2

2σ2 , (2.39)

and σ ∈ R
+ is a small constant. The parameter σ determines the closeness to the

l1-norm and smoothness of the approximation, as σ → 0 then g(s) → ‖s‖0. The
function g(·) is continuous and differentiable and thus steepest descend methods can
be applied directly to find the minimizer of g(·). For a proper selection of σ, it may
be possible to find the global minimizer of (1.3). Experiments have shown that this
method is faster than l1-norm minimization methods but again for large scale systems
it is not applicable.

2.4.4 Message Passing Reconstruction Algorithms

Graphical Models is an active research area with a wide range of applications.
Recently fast iterative methods based on graphical models have been used in convex
optimization problems [17, 18]. The connection between belief propagation (BP)
message passing algorithm and convex optimization inspired researchers to apply
graphical models concepts to CS theory to find faster solvers.

In order to connect CS theory with graphical models, first we model CS prob-
lem as a probabilistic inference problem. Figure 2.1 [subplot (a)] provides a block
diagram representation for (1.3). It is assumed that the sparse source is resulted

(a) (b)

Fig. 2.1 (a) Probabilistic block diagram for CS and (b) corresponding factor graph
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from sampling of a probability distribution Ps(s). Sparse sources have been modeled
with heavy-tailed distributions including Laplacian, Gaussian mixtures, generalized
Gaussian, and Bernoulli Gaussian distributions in the literature [18]. The obser-
vation is resulted from the source via linear transformation, A = ��, followed
by noise contamination. The goal is to estimate the source signal, either MAP or
MMSE estimations, using the observed measurement, y. In this framework the orig-
inal CS problem can be considered as a probabilistic inference problem. Exact MAP
estimate can be computed for the problem [18] but unfortunately the solution involves
heavier computational load compared to l1-norm minimization methods. One idea
is to use approximate inference algorithms such as BP to lessen the computational
load. To do this end a graphical model must be assigned to the problem. The main
idea for this purpose comes form error control coding area, where it is common to
represent a parity check matrix by a biparitite graph. Analogously the block diagram
in Fig. 2.1 [subplot (a)] can be represented by a biparitite factor graph as shown in
Fig. 2.1 [subplot (b)]. There are two class of nodes in the factor graph: variable nodes
(black) and constraint nodes (white). The edges connect variable nodes to constraint
nodes. A constraint node models the dependencies that its neighboring variable nodes
are subjected to. We have two types of constraint nodes; the first type imposes the
probability distribution on source coefficients while the second type connects each
coefficient node to a set of measurement variables that are used in computing that
measurement. Having this factor graph, belief propagation can be employed to infer
the probability distribution of the coefficients and consequently the MAP estimation
for source signal.

In [18], the authors used belief propagation to infer the source signal. While their
approach is interesting and the algorithm is much faster compared to general CS
reconstruction algorithms, it poses a main limitation: to run BP, the authors assumed
the sensing matrix to be sparse, which is not a realistic assumption in most CS
applications. The reason for this assumption is that the implementation of BP in the
general case is computationally intractable for dense graphs. Fortunately BP often
admits acceptable solution for large, dense matrix when Gaussian approximation is
used [19]. This property has led to generalization of approximate message passing
algorithms for dense graphs. The key idea of generalized message passing algorithm
(GMA) is to decompose the vector valued estimation problem into a sequence of
scaler problems. This idea combined with the idea given in [18], has been used to
generalize the compressive sensing algorithm via belief propagation for CS problems
with dense sensing matrices. This class of algorithms are new compared to other
classes and research is still going on to improve and generalize these algorithms
to non-parametric cases, where we do not have prior information about the source
distribution.

In this section a brief review on CS reconstruction algorithm was given. As stated
in Chap. 1, one of the main limitations of applying CS to applications is at its recon-
struction side. After about a decade of extensive research in this area, nowadays CS
is well established and matured in terms of theory and analysis, but research is still
going on to improve the current reconstruction algorithm in terms of computational

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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and implementational complexity. Simple algorithms which can be implemented
cheaply via electronic devices is crucial for this research area.
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