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Abstract Let .X ; Y / be a pair of random point sets in R
d of equal cardinal

obtained by sampling independently 2n points from a common probability distri-
bution �. In this paper, we are interested by functions L of .X ; Y / which appear
in combinatorial optimization. Typical examples include the minimal length of a
matching of X and Y , the length of a traveling salesperson tour constrained to
alternate between points of each set, or the minimal length of a connected bipartite
r-regular graph with vertex set .X ; Y /. As the size n of the point sets goes to
infinity, we give sufficient conditions on the function L and the probability measure
� which guarantee the convergence of L.X ; Y / under a suitable scaling. In the
case of the minimal length matching, we extend results of Dobrić and Yukich, and
Boutet de Monvel and Martin.

Keywords Combinatorial optimization • Geometric probability • Minimal
matching

1 Introduction

This work pertains to the probabilistic study of Euclidean combinatorial optimi-
zation problems. The starting point in this field is the celebrated theorem of
Beardwood, Halton, and Hammersley [2] about the traveling salesperson problem.
It ensures that given a sequence .Xi/i�1 of independent random variables on R

d ,
d � 2 with common law � of bounded support, then almost surely
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lim
n!1 n

1
d �1T .X1; : : : ; Xn/ D ˇ.d/

Z
f 1� 1

d : (1)

Here ˇ.d/ is a constant depending only on the dimension, f is the density of the
absolutely continuous part of � and

T .X1; : : : ; Xn/ D inf
�2Sn

n�1X
iD1

jX�.iC1/ � X�.i/j C jX�.1/ � X�.n/j

is the length (for the canonical Euclidean distance) of the shortest tour through
the points X1; : : : ; Xn. In the above formula Sn stands for the set of permutations
of f1; 2; : : : ; ng. Very informally, this result supports the following interpretation:
when the number of points n is large, for � almost every x, if the salesperson is
at Xi D x then the distance to the next point in the optimal tour is comparable
to ˇ.d/.nf .x//�1=d if f .x/ > 0 and of lower order otherwise. This should be
compared to the fact that the distance from Xi D x to fXj ; j � n and j ¤ ig also
stabilizes at the same rate.

Later, Papadimitriou [9] and Steele [14] have initiated a general theory of
Euclidean functionals F.fX1; : : : ; Xng/ that satisfy almost sure limits of this type.
We refer the reader to the monographs of Steele [15] and Yukich [19] for a full
treatment of this now mature theory, and present a short outline. It is convenient
to consider multisets rather than sets, so throughout the paper fx1; : : : ; xng will
stand for a multiset (the elements are unordered but may be repeated). The umbrella
theorem in [19] puts forward the following three features of a functional F on finite
multisets of Rd :

• F is 1-homogeneous if it is translation invariant and dilation covariant:

F.a C �X / D �F.X /

for all finite multisets X , all a 2 R
d and � 2 R

C.
• The key assumption is subadditivity: F is subadditive if there exists a constant

C > 0 such that for all multisets X ; Y in the unit cube Œ0; 1�d ,

F.X [ Y / � F.X / C F.Y / C C:

By an inductive argument, Rhee in [12] has noticed that these two assumptions
imply that there is another constant C 0 such that for all multiset in Œ0; 1�d ,

jF.X /j � C 0 .card.X //1� 1
d : (2)

Hence the worst case for n points is at most in n1� 1
d and the above mentioned

theorems show that the average case is of the same order.
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• The third important property is smoothness (or regularity). A functional F on
finite multisets Rd is smooth if there is a constant C 00 such that for all multisets
X ; Y ; Z in Œ0; 1�d , it holds

jF.X [ Y / � F.X [ Z /j � C 00 �card.Y /1� 1
d C card.Z /1� 1

d

�
:

As in the model of the Beardwood, Halton, Hammersley theorem, these three
properties are enough to prove that almost surely,

lim sup n
1
d �1F.X1; : : : ; Xn/ � ˇ.d/

Z
f 1� 1

d ;

where ˇ.d/ is constant. To have the full limits, the umbrella theorem of [19]
also requires to check a few more properties of a so-called boundary functional
associated with F . They are more complicated to state in a general framework.

Next, let us present a classical optimization problem which does not enter the
above picture. Given two multi-subsets of R

d with the same cardinality, X D
fX1; : : : ; Xng and Y D fY1; : : : ; Yng, the cost of the minimal bipartite matching
of X and Y is defined as

M1.X ; Y / D min
�2Sn

nX
iD1

jXi � Y�.i/j;

where the minimum runs over all permutations of f1; : : : ; ng. It is well-known that
n�1M1

�fXign
iD1; fYign

iD1

�
coincides with the power of the L1-Wasserstein distance

between the empirical distributions

W1

�1

n

X
i

ıXi ;
1

n

X
i

ıYi

�
;

(see e.g. [10, Theorem 13.3]). Hence it is easily seen to tend to 0, for example, when
� has bounded support. Recall that given two finite measures �1, �2 on R

d with the
same total mass,

W1.�1; �2/ D inf
�2˘.�1;�2/

Z
Rd �Rd

jx � yj d�.x; y/;

where ˘.�1; �2/ is the set of measures on .Rd /2 having �1 as first marginal and �2

as second marginal (see e.g. [11, 18] for more background). Note that for all finite
multisets X , Y in Œ0; 1�d with card.X / D card.Y /,

M1.X ; Y / �
p

d card.X /;
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and equality holds for some well-chosen configurations of any cardinal (all elements
in X at .0; � � � ; 0/ and all elements in Y at .1; � � � ; 1/). Hence, an interesting feature
of M1 (as well as others bipartite Euclidean optimization functionals) is that the
growth bound assumption (2) fails, hence it is not subadditive in the above sense.
However Dobrić and Yukich have stated the following theorem:

Theorem 1 ([4]). Let d � 3 be an integer. Assume that � is a probability measure
on R

d having a bounded support. Consider mutually independent random variables
.Xi/i�1 and .Yj /j �1 having distribution �. Then, almost surely,

lim
n

n
1
d �1M1

�fX1; : : : ; Xng; fY1; : : : ; Yng� D ˇ1.d/

Z
Rd

f 1� 1
d ;

where f .x/ dx is the absolutely continuous part of � and ˇ1.d/ is a constant
depending only on the dimension d .

When f is not the uniform measure on the unit cube, there is an issue in the proof
of [4] that apparently cannot be easily fixed (the problem lies in their Lemma 4.2
which is used for proving that the lim inf is at least ˇ1.d/

R
Rd f 1� 1

d ). In any
case, the proof of Dobrić and Yukich is very specific to the bipartite matching
as it uses from the start the Kantorovich–Rubinstein dual representation of the
optimal transportation cost. It is not adapted to a general treatment of bipartite
functionals. The starting point of our work was a recent paper of Boutet de Monvel
and Martin [3] which (independently of [4]) establishes the convergence of the
bipartite matching for uniform variables on the unit cube, without using the dual
formulation of the transportation cost. Building on their approach we are able to
propose a soft approach of bipartite functionals, based on appropriate notions of
subadditivity and regularity. These properties allow to establish upper estimates on
upper limits. In order to deal with lower limits we adapt to the bipartite setting the
ideas of boundary functionals exposed in [19]. We are able to explicitly construct
such functionals for a class of optimization problems involving families of graphs
with good properties, and to establish full convergence for absolutely continuous
laws. Finally we introduce a new notion of inverse subadditivity which allows to
deal with singular parts.

This viewpoint sheds a new light on the result of Dobrić and Yukich, that
we extend in other respects, by considering power distance costs, and unbounded
random variables satisfying certain tail assumptions. Note that in the classical theory
of Euclidean functionals, the analogous question for unbounded random variables
was answered in Rhee [13] and generalized in [19].

Let us illustrate our results in the case of the bipartite matching with power
distance cost: given p > 0 and two multi-subsets of Rd , X D fX1; : : : ; Xng and
Y D fY1; : : : ; Yng, define

Mp.X ; Y / D min
�2Sn

nX
iD1

jXi � Y�.i/jp;
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where the minimum runs over all permutations of f1; : : : ; ng. Note that we have
the same result for the bipartite traveling salesperson problem, and that our generic
approach puts forward key properties that allow to establish similar facts for other
functionals. As mentioned in the title, our results apply to relatively high dimension.
More precisely, if the length of edges are counted to a power p, our study applies to
dimensions d > 2p only.

Theorem 2. Let 0 < 2p < d . Let � be a probability measure onRd with absolutely
continuous part f .x/ dx. We assume that for some ˛ >

4dp

d�2p
,

Z
jxj˛d�.x/ < C1:

Consider mutually independent random variables .Xi/i�1 and .Yj /j �1 having
distribution �. Then there are positive constants ˇp.d/; ˇ0

p.d/ depending only on
.p; d/ such that the following convergence holds almost surely

lim sup
n

n
p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� � ˇp.d/

Z
Rd

f 1� p
d ;

lim inf
n

n
p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� � ˇ0
p.d/

Z
Rd

f 1� p
d :

Moreover, almost surely,

lim
n

n
p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� D ˇp.d/

Z
Rd

f 1� p
d

provided one of the following hypothesis is verified:

• � is the uniform distribution over a bounded set ˝ � R
d with positive Lebesgue

measure.
• d 2 f1; 2g, p 2 .0; d=2/ or d � 3, p 2 .0; 1�, and f is up to a

multiplicative constant the indicator function over a bounded set ˝ � R
d with

positive Lebesgue measure.

Our constant ˇ0.d/ has an explicit expression in terms of the cost of an optimal
boundary matching for the uniform measure on Œ0; 1�d (see Lemma 11). We strongly
suspect that ˇp.d/ D ˇ0

p.d/ but we have not been able to solve this important issue.

Also, assuming only ˛ >
2dp

d�2p
, we can establish convergence in probability. As we

shall check, the bounded differences inequality will imply that if � has bounded
support the convergence holds also in Lq for all q � 1.

Note that this result again supports the following heuristic interpretation: when
the number of points n is large, for � almost every x, given that Xi D x, the
i -th point is matched to a point Y�.i/ at distance of order ˇp.d/1=p.nf .x//�1=d if
f .x/ > 0 and of lower order otherwise. This can be compared to the fact that the
distance from Xi D x to fYj ; 1 � j � ng also stabilizes at the same rate. This
holds as long as 0 < 2p < d (see Section 7 for a more detailed discussion).
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The paper is organized as follows: Section 2 presents the key properties for
bipartite functionals (homogeneity, subadditivity and regularity) and gathers useful
preliminary statements. Section 3 establishes the convergence for uniform samples
on the cube. Section 4 proves upper bounds on the upper limits. These two sections
essentially rely on classical subadditive methods, nevertheless a careful analysis
is needed to control the differences of cardinalities of the two samples in small
domains. In Section 5, we introduce some examples of bipartite functionals. The
lower limits are harder to prove and require a new notion of penalized boundary
functionals. It is however difficult to build an abstract theory there, so in Section 6,
we will first present the proof for bipartite matchings with power distance cost, and
put forward a few lemmas which will be useful for other functionals. We then check
that for a natural family of Euclidean combinatorial optimization functionals defined
in Section 5.3, the lower limit also holds. This family includes the bipartite traveling
salesman tour. Finally, Section 7 mentions possible variants and extensions.

2 A General Setting

Let Md be the set of all finite multisets contained in R
d . We consider a bipartite

functional:

L W Md � Md ! R
C:

Let p > 0. We shall say that L is p-homogeneous if for all multisets X ; Y , all
a 2 R

d and all � � 0,

L.a C �X ; a C �Y / D �pL.X ; Y /: (Hp)

Here a C �fx1; : : : ; xkg is by definition fa C �x1; : : : ; a C �xkg. For the sake of
brevity, we call the above property .Hp/. Note that a direct consequence is that
L.;; ;/ D 0.

The functional L satisfies the regularity property .Rp/ if there exists a number
C such that for all multisets X ; Y ; X1; Y1; X2; Y2, denoting by � the diameter of
their union, the following inequality holds

L.X [ X1; Y [ Y1/ (Rp)

� L.X [ X2; Y [ Y2/ C C�p
�
card.X1/ C card.X2/ C card.Y1/ C card.Y2/

�
:

The above inequality implies in particular an easy size bound: L.X ; Y / �
C�p.card.X / C card.Y // when L.;; ;/ D 0.

Eventually, L verifies the subadditivity property .Sp/ if there exists a number C

such that for every k � 2 and all multisets .Xi ; Yi /
k
iD1, denoting by � the diameter

of their union, the following inequality holds
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L
� k[

iD1

Xi ;

k[
iD1

Yi

�
�

kX
iD1

L.Xi ; Yi / C C�p
kX

iD1

�
1 C ˇ̌

card.Xi / � card.Yi /
ˇ̌�

: (Sp)

Remark 1. A less demanding notion of “geometric subadditivity” could be
introduced by requiring the above inequality only when the multisets Xi [ Yi

lie in disjoint parallelepipeds (see [19] where such a notion is used in order to
encompass more complicated single sample functionals). It is clear from the proofs
that some of our results hold assuming only geometric subadditivity (upper limit
for bounded absolutely continuous laws for example). We will not push this idea
further in this paper.

We will see in Sect. 5 that suitable extensions of the bipartite matching, of the
bipartite traveling salesperson problem, and of the minimal bipartite spanning tree
with bounded maximal degree satisfy all these properties. Our main generic result
on bipartite functionals is the following.

Theorem 3. Let d > 2p > 0 and let L be a bipartite functional on R
d with the

properties .Hp/, .Rp/ and .Sp/. Consider a probability measure � on R
d such

that there exists ˛ >
4dp

d�2p
with

Z
jxj˛d�.x/ < C1:

Consider mutually independent random variables .Xi/i�1 and .Yj /j �1 having
distribution �. Let f be a density function for the absolutely continuous part of
�, then, almost surely,

lim sup
n!1

L.fX1; � � � ; Xng; fY1; � � � ; Yng/
n1� p

d

� ˇL

Z
f 1� p

d ;

for some constant ˇL depending only on L. Moreover, if � is the uniform distribution
over a bounded set ˝ with positive Lebesgue measure, then there is equality: almost
surely,

lim
n!1

L.fX1; � � � ; Xng; fY1; � � � ; Yng/
n1� p

d

D ˇLVol.˝/
p
d :

Beyond uniform distributions, lower limits are harder to obtain. In Sect. 6,
we will state a lower bound for a subclass of bipartite functionals which satisfy
the properties .Hp/, .Rp/ and .Sp/ (see the forthcoming Theorem 10 and,
for the bipartite traveling salesperson tour, Theorem 11).

Remark 2. Let B.1=2/ D fx 2 R
d W jxj � 1=2g be the Euclidean ball of

radius 1=2 centered at the origin. It is immediate that the functional L satisfies
the regularity property .Rp/ if it satisfies property .Hp/ and if for all multisets
X ; Y ; X1; Y1; X2; Y2 in B.1=2/,
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L.X [ X1; Y [ Y1/ (R)

� L.X [ X2; Y [ Y2/ C C
�
card.X1/ C card.X2/ C card.Y1/ C card.Y2/

�
:

Similarly, L will enjoy the subadditivity property .Sp/ if it satisfies property .Hp/

and if for every k � 2 and all multisets .Xi ; Yi /
k
iD1 in B.1=2/,

L
� k[

iD1

Xi ;

k[
iD1

Yi

�
�

kX
iD1

L.Xi ; Yi / C C

kX
iD1

�
1 C ˇ̌

card.Xi / � card.Yi /
ˇ̌�

:

(S )

The set of assumptions .Hp/, .Rp/, .Sp/ is thus equivalent to the set of assump-
tions .Hp/, .R/, .S /.

2.1 Consequences of Regularity

2.1.1 Poissonization

The proof of Theorem 3 will use partitions of Œ0; 1�d into subcubes. In order to obtain
independence and scaling properties of the point sets in each partition, it is much
more convenient to consider the Poissonized version of the above problem. Let
.Xi/i�1; .Yi /i�1 be mutually independent variables with distribution �. Considering
independent variables N1, N2 with Poisson distribution P.n/, the random sets
fX1; : : : ; XN1 g and fY1; : : : ; YN2 g are independent Poisson point processes with
intensity measures n�. For the sake of brevity, we set

L.n�/ WD L
�fX1; : : : ; XN1 g; fY1; : : : ; YN2g

�
:

When d�.x/ D f .x/ dx we write L.nf / instead of L.n�/. Note that whenever we
are dealing with Poisson processes, n 2 .0; C1/ is not necessarily an integer. More
generally L.�/ may be defined for any finite measure, as the value of the functional
L for two independent Poisson point processes with intensity �.

Assume for a moment that the measure � has a bounded support, of diameter �.
The regularity property ensures that

jL.fX1; : : : ; Xng; fY1; : : : ; Yng/ � L.fX1; : : : ; XN1g; fY1; : : : ; YN2 g/j
� C�p

�jN1 � nj C jN2 � nj�:
Note that EjNi � nj � �

E.Ni � n/2
�1=2 D Var.Ni / D p

n. Hence the difference
between EL.fXign

iD1; fYign
iD1/ and EL.n�/ is at most a constant times

p
n D

o.n1�p=d / when d > 2p. Hence in this case, the original quantity and the
Poissonized version are the same in average at the relevant scale n1�p=d . The
boundedness assumption can actually be relaxed. To show this, we need a lemma.
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Lemma 1. Let ˛ > 0, n > 0 and let � be a probability measure on R
d such that

for all t > 0, �
�fxI jxj � tg� � c t�˛: Let X , Y be two independent Poisson

point processes of intensity n� and Tn D maxfjZj W Z 2 X [ Y g. Then, for all
0 < 	 < ˛ there exists a constant K D K.c; ˛; 	/ such that for all n � 1,

EŒT 	
n �

1
	 � Kn

1
˛ :

Moreover the same conclusion holds if X D fX1; : : : ; Xng, Y D fY1; : : : ; Yng are
two mutually independent sequences of n variables with distribution �.

Proof. For t � 0, let At D fx 2 R
d W jxj � tg and g.t/ D R

At
d�. By assumption,

�.At / � ct�˛ . We start with the Poisson case. Since X , Y are independent, we
have P.Tn < t/ D P.X \ At D ;/2 D e�2n�.At /. Therefore, using 1 � e�u �
min.1; u/,

EŒT 	
n � D 	

Z 1

0

t	�1
P.Tn � t/dt

D 	

Z 1

0

t	�1.1 � e�2n�.At //dt

� 	

Z n1=˛

0

t	�1dt C
Z 1

n1=˛

2nct	�˛�1dt

D n	=˛ C 2c

˛ � 	
n	=˛;

For the second case, since P.Tn � t/ D 1 � .1 � �.At //
2n � min.1; 2n�.At // the

same conclusion holds. ut
The next proposition implies that our original problem is well approximated by

its Poissonized version.

Proposition 1. Let d > 2p > 0. Let � be a probability measure on R
d such thatR jxj˛ d�.x/ < C1 for some ˛ >

2dp

d�2p
. Let .Xi /i�1; .Yi /i�1 be mutually indepen-

dent variables with distribution �. If L satisfies the regularity property .Rp/ then

lim
n!1

E
ˇ̌
L.fXign

iD1; fYign
iD1/ � L.n�/

ˇ̌
n1� p

d

D 0:

Remark 3. We have not proved the finiteness of EL.fXi gn
iD1; fYign

iD1 and EL.n�/

yet. This will be done later. With the convention that 1 � 1 D 0, the above
statement establishes nevertheless that n

p
d �1.EL.fXi gn

iD1; fYign
iD1/ � EL.n�//

converges to 0.
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Proof. Let N1 and N2 be Poisson random variables with mean value n. Let T D
maxfjZj W Z 2 fX1; � � � ; XN1 g [ fY1; � � � ; YN2gg and S D maxfjZj W Z 2
fX1; � � � ; Xng[fY1; � � � ; Yngg, with the convention that the maximum over an empty
set is 0. The regularity property ensures that

ˇ̌
L
�fX1; : : : ; Xng; fY1; : : : ; Yng� � L

�fX1; : : : ; XN1 g; fY1; : : : ; YN2g
�ˇ̌

� C.T C S/p .jN1 � nj C jN2 � nj/ :

Taking expectation gives, using Cauchy–Schwarz inequality and the bound
.a C b/q � max.1; 2q�1/.aq C bq/ valid for a; b; q > 0

E
ˇ̌
L
�fX1; : : : ; Xng; fY1; : : : ; Yng�� L

�fX1; : : : ; XN1g; fY1; : : : ; YN2g
�ˇ̌

� cp

�
EŒT 2p� C EŒS2p�

� 1
2
�
EŒjN1 � nj2� C EŒjN2 � nj2�

� 1
2

D cp

p
2n
�
EŒT 2p� C EŒS2p�

� 1
2

Since ˛ > 2p, by Lemma 1, for some c > 0 and all n � 1, EŒT 2p� � cn2p=˛ and
EŒS2p� � cn2p=˛ . Hence the above difference of expectations is at most a constant
times n

p
˛ C 1

2 , which is negligible with respect to n1� p
d since ˛ is assumed to be large

enough. ut

2.1.2 Approximations

We now study the continuity of EL.�/ as a function of the finite measure �. We first
look at the regularity of EL.�/ under scaling.

Proposition 2. Assume that a bipartite functional L satisfies the regularity property
.Rp/. Let m; n > 0 and � be a probability measure with support included in a set Q.
Then

EL.n�/ � EL.m�/ C C diam.Q/pjm � nj:
Proof. Assume n < m (the other case is treated in the same way). Let .Xi/i�1,
.Yi /i�1, N1, N2, K1, K2 be mutually independent random variables, such that for
all i � 1, Xi and Yi have law �, and for j 2 f1; 2g, the law of Nj is P.n/

and the law of Kj is P.m � n/. Then Mi D Ni C Ki is P.m/-distributed.
Then fX1; : : : ; XN1 g and fY1; : : : ; YN2 g are independent Poisson point processes of
intensity n�, while fX1; : : : ; XM1g and fY1; : : : ; YM2g are independent Poisson point
processes of intensity m�. By the regularity property,

L
�fX1; : : : ; XN1g; fY1; : : : ; YN2 g

�
� L

�fX1; : : : ; XN1CK1g; fY1; : : : ; YN2CK2g
�C C diam.Q/p.K1 C K2/:

Taking expectations gives the claim. ut
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Applying the above inequality for m D 0 gives a weak size bound on EL.�/.

Corollary 1. Assume that L satisfies .Rp/ and L.;; ;/ D 0 (a consequence of e.g.
.Hp/), then if � is a finite measure with support included in a set Q,

EL.�/ � C diam.Q/p �.Q/:

We now look at the regularity of EL.�/ under small perturbations of �. Recall
the total variation distance between two probability measures on R

d is defined as

dTV.�; �0/ D supfj�.A/ � �0.A/j W A Borel set of Rd g:

Proposition 3. Assume that L satisfies .Rp/. Let �; �0 be two probability measures
on R

d with bounded supports. Set � the diameter of the union of their supports.
Then

EL.n�/ � EL.n�0/ C 4C�p n dTV.�; �0/:

Proof. The difference of expectations is estimated thanks to a proper coupling
argument. Let � be a probability measure on R

d �R
d having � as its first marginal

and �0 as its second marginal. We consider mutually independent random variables
N1; N2; .Xi ; X 0

i /i�1; .Yi ; Y 0
i /i�1 such that N1; N2 are P.n/ distributed and for all

i � 1, .Xi ; X 0
i / and .Yi ; Y 0

i / are distributed according to � . Then the random
multisets

X D fX1; : : : ; XN1g and Y D fY1; : : : ; YN2 g
are independent Poisson point processes with intensity measure n�. Similarly
X 0 D fX 0

1; : : : ; X 0
N1

g and Y 0 D fY 0
1 ; : : : ; Y 0

N2
g are independent Poisson point

processes with intensity measure n�0.
The regularity property ensures that

L
�fX1; : : : ; XN1 g; fY1; : : : ; YN2g

�

� L
�fX 0

1; : : : ; X 0
N1

g; fY 0
1 ; : : : ; Y 0

N2
g�C 2C�p

0
@ N1X

iD1

1Xi ¤X 0

i
C

N2X
j D1

1Yj ¤Y 0

j

1
A :

Taking expectations yields

EL.n�/ � EL.n�0/ C 2C�p
E

0
@ N1X

iD1

P.Xi ¤ X 0
i / C

N2X
j D1

P.Yj ¤ Y 0
j /

1
A

D EL.n�0/ C 4C�p n �
�f.x; y/ 2 .Rd /2I x ¤ yg�:
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Optimizing the later term on the coupling � yields the claimed inequality involving
the total variation distance. ut
Corollary 2. Assume that the functional L satisfies the regularity property .Rp/.
Let m > 0, Q � R

d be measurable with positive Lebesgue measure and let f

be a nonnegative locally integrable function on R
d . Let ˛ D R

Q
f =vol.Q/ be the

average value of f on Q. It holds

EL.m f 1Q/ � EL.m˛1Q/ C 2C m diam.Q/p

Z
Q

jf .x/ � ˛j dx:

Proof. We simply apply the total variation bound of the previous lemma with
n D m

R
Q

f D m˛ vol.Q/, d�.x/ D f .x/1Q.x/dx=
R

Q
f and d�0.x/ D

1Q.x/dx=vol.Q/. Note that

2dT V .�; �0/ D
Z ˇ̌
ˇf .x/1Q.x/R

Q
f

� 1Q.x/

vol.Q/

ˇ̌
ˇ dx D

R
Q

jf .x/ � ˛j dxR
Q

f
� ut

2.1.3 Average is Enough

It is known since the works of Rhee and Talagrand that concentration inequalities
often allow to deduce almost sure convergence from convergence in average.
Without much surprise, this is also the case in our general setting.

Proposition 4. Let L be a bipartite functional on multisets of Rd , satisfying the
regularity property .Rp/. Assume d > 2p > 0. Let � be a probability measure
� on R

d with
R jxj˛d�.x/ < C1: Consider independent variables .Xi/i�1 and

.Yi /i�1 with distribution �.
If ˛ > 2dp=.d � 2p/ then the following convergence holds in probability:

lim
n!1

L
�fXign

iD1; fYign
iD1

� � EL
�fXign

iD1; fYign
iD1

�
n1� p

d

D 0:

Moreover if ˛ > 4dp=.d � 2p/, the convergence happens almost surely, and if �

has bounded support, then it also holds in Lq for any q � 1.

Proof. This is a simple consequence of Azuma’s concentration inequality. It is
convenient to define Z.n/ D .X1; : : : ; Xn; Y1; : : : ; Yn/, Z.n/ is a vector of
dimension 2n and its i -th coordinate is denoted by Zi . Assume first that the support
of � is bounded and let � denote its diameter. By the regularity property, modifying
one point changes the value of the functional by at most a constant:

jL.Z1; : : : ; Z2n/ � L.Z1; : : : ; Zi�1; Z0
i ; ZiC1; : : : ; Z2n/j � 2C�p:
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By conditional integration, we deduce that the following martingale difference:

di WD E
�
L.Z.n// j Z1; : : : ; Zi

� � E
�
L.Z.n// j Z1; : : : ; Zi�1

�

is also bounded jdi j � 2C�p almost surely. Recall that Azuma’s inequality states
that

P

 ˇ̌ kX
iD1

di

ˇ̌
> t

!
� 2e

� t2

2
P

i kdi k
2
1 :

Therefore, we obtain that

P

�ˇ̌
L.fXign

iD1; fYi gn
iD1/ � EL.fXign

iD1; fYign
iD1/

ˇ̌
> t

�
� 2e

� t2

16nC 2�2p ; (3)

and there is a number C 0 (depending on � only) such that

P

 ˇ̌
L.fXign

iD1; fYign
iD1/ � EL.fXign

iD1; fYi gn
iD1/

ˇ̌
n1� p

d

> t

!
� 2e�C 0t 2n

1�
2p
d

:

When d > 2p, we may conclude by the Borel–Cantelli lemma.
If � is not assumed to be of bounded support, a conditioning argument

allows to use the above method. Let S WD maxfjZi jI i � 2ng, s > 0 and
B.s/ D fxI jxj � sg. Given fS � sg, the variables fX1; � � � ; Xng and fY1; � � � ; Yng
are mutually independent sequences with distribution �jB.s/=�.B.s//. Hence,
applying (3) for �jB.s/=�.B.s// instead of � and 2s instead of �, for any t > 0,

P

 ˇ̌
ˇ̌
ˇ
L
�fXign

iD1; fYign
iD1

�
n1� p

d

� EL
�fXign

iD1; fYign
iD1

�
n1� p

d

ˇ̌
ˇ̌
ˇ > t

ˇ̌
ˇ S � s

!

� 2 exp

 
�n1� 2p

d t2

cps2p

!
:

Hence for ı > 0 to be chosen later,

un W D P

 ˇ̌
ˇ̌
ˇ
L
�fXign

iD1; fYign
iD1

�
n1� p

d

� EL
�fXign

iD1; fYign
iD1

�
n1� p

d

ˇ̌
ˇ̌
ˇ > t

!

� P.S > n
1
ı / C 2 exp

 
�n1� 2p

d � 2p
ı t2

cp

!
:

Since P.S > s/ D 1 � .1 � �.B.s//2n � 2n�.B.s// � 2n.
R jxj˛d�.x//=s˛,

we get that for some constant c and any ı > 0,
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un � cn1� ˛
ı C 2 exp

 
�n1� 2p

d � 2p
ı t2

cp

!
:

Since ˛ > 2dp=.d � 2p/ we may choose ı 2 Œ2dp=.d � 2p/; ˛�, which ensures
that the latter quantities tend to zero as n increases. This shows the convergence in
probability to 0 of

L
�fXign

iD1; fYi gn
iD1

�
n1� p

d

� EL
�fXign

iD1; fYign
iD1

�
n1� p

d

:

If ˛ > 4dp=.d � 2p/ we may choose ı 2 Œ2dp=.d � 2p/; ˛=2�, which ensures thatP
n un < C 1. The Borel–Cantelli lemma yields the almost sure convergence to 0.

ut

2.2 Consequences of Subadditivity

We start with a very general statement, which is however not very precise when the
measures do not have disjoint supports.

Proposition 5. Let L satisfy .Sp/. Let �1; �2 be finite measures on R
d with

supports included in a set Q. Then

EL.�1 C �2/ �EL.�1/ C EL.�2/ C 2C diam.Q/p
�
1 C

p
�1.Q/ C

p
�2.Q/

�
:

Proof. Consider four independent Poisson point processes X1; Y1; X2; Y2 such that
for i 2 f1; 2g, the intensity of Xi and of Yi is �i . It is classical [8] that the random
multiset X1 [ X2 is a Poisson point process with intensity �1 C �2. Also, Y1 [ Y2

is an independent copy of the latter process. Applying the subadditivity property,

L.X1 [ X2; Y1 [ Y2/ � L.X1; Y1/ C L.X2; Y2/

C C diam.Q/p .1 C jcard.X1/ � card.Y1/j C 1 C jcard.X2/ � card.Y2/j/ :

Since card.Xi / and card.Yi / are independent with Poisson law of parameter �i .Q/

(the total mass of �i /,

Ejcard.Xi / � card.Yi /j

�
�
E
�
card.Xi / � card.Yi /

�2� 1
2 D

p
2var.card.Xi // D

p
2�i .Q/:

Hence, taking expectations in the former estimate leads to the claimed inequality.
ut
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Partition techniques are essential in the probabilistic theory of Euclidean func-
tionals. The next statement allows to apply them to bipartite functionals. In what
follows, given a multiset X and a set P , we set X .P / WD card.X \ P /. If �

is a measure and f a nonnegative function, we write f � � for the measure having
density f with respect to �.

Proposition 6. Assume that the functional L satisfies .Sp/. Consider a finite
partition Q D [P 2PP of a subset of Rd and let � be a measure on R

d with
�.Q/ < C1. Then

EL.1Q � �/ �
X

P 2P

EL.1P � �/ C 3C diam.Q/p
X
p2P

p
�.P /:

Proof. Consider X ; Y two independent Poisson point processes with intensity �.
Note that X \ P is a Poisson point process with intensity 1P � �, hence X .P / is
a Poisson variable with parameter �.P /. We could apply the subadditivity property
to .X \ P /P 2P , .Y \ P /P 2P , which yields

L.X \Q; Y \Q/ �
X

P 2P

L.X \P; Y \P / C C diam.Q/p
X

p2P

�
1 CjX .P /�Y .P /j�:

Nevertheless, doing this gives a contribution at least C diam.Q/p to cells which do
not intersect the multisets X ; Y . To avoid this rough estimate, we consider the cells
which meet at least one of the multisets:

QP WD fP 2 PI X .P / C Y .P / ¤ 0g:

We get that

L.X \ Q; Y \ Q/ �
X

P 2 QP

L.X \ P; Y \ P /

CC diam.Q/p
X

p2 QP

�
1 C jX .P / � Y .P /j�

�
X

P 2P

L.X \ P; Y \ P /

C C diam.Q/p
X

p2P

1X .P / C Y .P /¤0

�
1 C jX .P / � Y .P /j�

�
X

P 2P

L.X \ P; Y \ P /

CC diam.Q/p
X

p2P

�
1X .P /CY .P /¤0 C jX .P / � Y .P /j�:
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Since X .P / and Y .P / are independent Poisson variables with parameter �.P /,

P
�
X .P / C Y .P / ¤ 0

� D 1 � e�2�.P / and E
ˇ̌
X .P / � Y .P /

ˇ̌ � p
2�.P /:

Hence, taking expectation and using the bound 1 � e�t � min.1; t/ � p
t ,

EL.1Q ��/ �
X

P 2P

EL.1P ��/C2
p

2 C diam.Q/p
X
p2P

p
�.P /: ut

The next statement deals with nested partitions, which are very useful in the study
of combinatorial optimization problems, see e.g. [15,19]. If P is a partition, we set
diam.P/ D maxP 2P diam.P / (the maximal diameter of its cells).

Corollary 3. Assume that the functional L satisfies .Sp/. Let Q � R
d and

Q1; : : : ; Qk be a sequence of nested finite partitions of Q. Let � be a measure on
R

d with �.Q/ < C1. Then

EL.1Q � �/ �
X

q2Qk

EL.1q � �/ C 3C

kX
iD1

diam.Qi�1/
p
X

q2Qi

p
�.q/;

where by convention Q0 D fQg is the trivial partition.

Proof. We start with applying Proposition 6 to the partition Q1 of Q:

EL.1Q � �/ �
X

q2Q1

EL.1q � �/ C 3C diam.Q0/
p
X

q2Q1

p
�.q/:

Next for each q 2 Q1 we apply the proposition again for the partition of q induced
by Q2 and iterate the process k � 2 times. ut

3 Uniform Cube Samples

We introduce a specific notation for n 2 .0; C1/,

NL.n/ WD EL
�
n1Œ0;1�d

�
:

In this section, we will prove that NL.n/=n1�p=d converges. This will be the basic
ingredient in the proof of Theorem 3. We first point out the following easy
consequence of the homogeneity properties of Poisson point processes.

Lemma 2. If L satisfies the homogeneity property .Hp/ then for all a 2 R
d , 
 > 0

and n > 0
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EL
�
n1aCŒ0;
�d

� D 
p NL�n
d
�
:

The following theorem is obtained by adapting to our abstract setting the line of
reasoning in the paper [3] which was devoted to the bipartite matching:

Theorem 4. Let d > 2p be an integer. Let L be a bipartite functional on R
d

satisfying the properties .Hp/, .Rp/ and .Sp/. Then there exists ˇL � 0 such that

lim
n!1

NL.n/

n1� p
d

D ˇL:

Proof. Let m � 1 be an integer. Let K 2 N such that 2K � m < 2KC1. Set
Q0 D Œ0; a�d where a WD 2KC1=m > 1. Let Q0 D fQ0g. We consider a sequence
of nested partitions Qj , j � 1 where Qj is a partition of Q0 into 2jd cubes of size
a2�j (throughout the paper, this means that the interior of the cells are open cubes
of such size, while their closure is a closed cube of the same size. We do not describe
precisely how the points in the boundaries of the cubes are partitioned, since it is not
relevant for the argument). One often says that Qj , j � 1 is a sequence of dyadic
partitions of Q0.

A direct application of Corollary 3 for the partitions Q1; : : : ; QKC1 and the
measure n1Œ0;1�d .x/ dx gives

NL.n/ D EL.n1Œ0;1�d / �
X

q2QKC1

EL.n1q\Œ0;1�d /

C 3C

KC1X
j D1

diam.Qj �1/
p
X

q2Qj

q
n Vol.q \ Œ0; 1�d /:

Note that QKC1 is a partition into cubes of size 1=m, so that its intersection
with Œ0; 1�d induces an (essential) partition of the unit cube into md cubes of
side-length 1=m. Hence, in the first sum, there are md terms which are equal,
thanks to translation invariance and Lemma 2 to EL.n1Œ0;m�1�d / D m�p NL.nm�d /.
The remaining terms of the first sum vanish. In order to deal with the second sum of
the above estimate, we simply use the fact that Qj contains 2jd cubical cells of size
a2�j D 2KC1�j =m � 21�j . Hence their individual volumes are at most 2d.1�j /.
These observations allow to rewrite the above estimate as

NL.n/ � md�p NL.nm�d / C 3C

KC1X
j D1

diam.Œ0; 22�j �d /p2jd
p

n 2d.1�j /

D md�p NL.nm�d / C 3C
p

n diam.Œ0; 1�d /p

KC1X
j D1

2p.2�j /C d
2 .j C1/:
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Hence, there is a number D depending only on p; d and C such that

NL.n/ � md�p NL.nm�d / C D
p

n 2K. d
2 �p/ � md�p NL.nm�d / C D

p
n m

d
2 �p:

Let t > 0. Setting, n D md td and f .u/ D NL.ud /=ud�p, the latter inequality reads as

f .mt/ � f .t/ C Dtp� d
2 ;

and is valid for all t > 0 and m 2 N
�. Since f is continuous (Proposition 2 shows

that u 7! NL.u/ is Lipschitz) and limt!C1 tp� d
2 D 0, it follows that limt!C1 f .t/

exists (we refer to [3] for details). ut
Remark 4. The above constant ˇL is positive as soon as L satisfies the
following natural condition: for all x1; : : : ; xn; y1; : : : yn in R

d , L.fx1; : : : ; xng;
fy1; : : : ; yng/ � c

P
i dist.xi ; fy1; : : : ; yng/p. To see this, one combines Proposi-

tion 1 and the lower estimate given in [16].

4 Upper Bounds, Upper Limits

4.1 A General Upper Bound

Using nested partitions, it is possible to refine Corollary 1 to a sharp order of
magnitude.

Lemma 3. Let d > 2p and let L be a bipartite functional satisfying .Sp/, .Rp/

and L.;; ;/ D 0. Then there exists a constant D such that, for all finite measures �,

EL.�/ � D diam.Q/p min
�
�.Q/; �.Q/1�p

d
�
;

where Q contains the support of �.

Proof. Thanks to Corollary 1, it is enough to deal with the case �.Q/ � 2d (or any
other positive number). First note that we may assume that Q is a cube (given a set
of diameter �, one can find a cube containing it, with diameter no more than c times
� where c only depends on the norm). We consider a sequence of dyadic partitions
of Q, .P`/`�0, where for ` 2 N, P` divides Q into 2`d cubes of side-length 2�`

times the one of Q. Let k 2 N
� to be chosen later. By Corollary 3, we have the

following estimate

EL.�/ �
X

P 2Pk

EL.1P � �/ C 3C

kX
`D1

�
2�`C1diam.Q/

�p X
P 2P`

p
�.P /: (4)
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Thanks to Corollary 1, the first term of the right-hand side of (4) is at most

X
P 2Pk

C
�
2�kdiam.Q/

�p
�.P / D C 2�kp

�
diam.Q/

�p
�.Q/:

By the Cauchy–Schwarz inequality

X
P 2P`

p
�.P / � �

2`d
� 1

2

0
@ X

P 2P`

�.P /

1
A

1
2

D 2
`d
2

p
�.Q/:

Hence the second term of the right-hand side of (4) is at most

3C
�
2diam.Q/

�p kX
`D1

2`
�

d
2 �p

�p
�.Q/ � C 02k

�
d
2 �p

��
diam.Q/

�pp
�.Q/:

This leads to

EL.�/ � �
diam.Q/

�p�
C 2�kp�.Q/ C C 02k

�
d
2 �p

�p
�.Q/

�
:

Choosing k D �
1
d

log2 �.Q/
˘ � 1 completes the proof. ut

4.2 The Upper Limit for Densities

All ingredients have now been gathered in order to state our upper bound for
measures � which have a density.

Theorem 5. Let d > 2p. Let L be a bipartite functional on R
d satisfying the

properties .Hp/, .Rp/, .Sp/. Let f W R
d ! R

C be an integrable function with
bounded support. Then

lim sup
n!1

EL.n f /

n1� p
d

� ˇL

Z
Rd

f 1� p
d ;

where ˇL is the constant appearing in Theorem 4.

Proof. By a scaling argument, we may assume that the support of f is included
in Œ0; 1�d and

R
f D 1 (the case

R
f D 0 is trivial). We consider a sequence of

dyadic partitions .P`/`2N of Œ0; 1�d : for ` 2 N, P` divides Œ0; 1�d into 2`d cubes of
side-length 2�`. Let k 2 N

� to be chosen later. Corollary 3 gives



502 F. Barthe and C. Bordenave

EL.n f / �
X

P 2Pk

EL.n f 1P / C 3C

kX
`D1

�
2�`C1diam.Œ0; 1�d /

�p X
P 2P`

s
n

Z
P

f :

(5)
By the Cauchy–Schwarz inequality

X
P 2P`

sZ
P

f � �
2`d
� 1

2

0
@ X

P 2P`

Z
P

f

1
A

1
2

D 2
`d
2

�Z
f

� 1
2

D 2
`d
2 :

Hence the second term of the right-hand side of (5) is at most

3C
�
2diam.Œ0; 1�d /

�pp
n

kX
`D1

2
`
�

d
2 �p

�
� cd n

1
2 2

k
�

d
2 �p

�
:

Let ˛P be the average of f on P , then applying Corollary 2 to the first terms of (5)
leads to

EL.n f / �
X

P 2Pk

�
EL.n ˛P 1P / C 2C n diam.P /p

Z
P

jf � ˛P j
�

Ccd n
1
2 2

k
�

d
2 �p

�
:

Each P in the sum is a square of side length 2�k , hence using homogeneity (see
Lemma 2)

EL.n f / �
X

P 2Pk

�
2�kpM

�
n ˛P 2�kd

�C n c0
d 2�kp

Z
P

jf � ˛P j
�

C cd n
1
2 2

k
�

d
2 �p

�
:

(6)

Let us recast this inequality with more convenient notation. We set g.t/ D
NL.t/=t1�p=d and we define the piecewise constant function

fk D
X

P 2Pk

˛P 1P D
X

P 2Pk

R
P

f .x/ dx

Vol.P /
1P :

It is plain that
R

fk D R
f < C1. Moreover, by Lebesgue’s theorem,

limk!1 fk D f holds for almost every point x. Inequality (6) amounts to

EL.n f /

n1�
p
d

� X
P 2Pk

�
g
�
n ˛P 2�kd

�
˛

1�
p
d

P 2�kd C n
p
d c0

d 2�kp

Z
P

jf � fk j
�

Ccd n
p
d �

1
2 2k

�
d
2 � p

�

D X
P 2Pk

�Z
P

g
�
n fk2�kd

�
f

1�
p
d

k C n
p
d c0

d 2�kp

Z
P

jf � fk j
�

C cd n
p
d �

1
2 2k

�
d
2 �p

�

D
Z

g
�
n 2�kd fk

�
f

1�
p
d

k C c0

d n
p
d 2�kp

Z
jf � fk j C cd

�
n

1
d 2�k

�p�
d
2 :
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If there exists k0 such that f D fk0 then we easily get the claim by setting k D k0

and letting n go to infinity (since g is bounded and converges to ˇL at infinity, see
Lemma 3 and Theorem 4). On the other hand, if fk never coincides almost surely
with f , we use a sequence of numbers k.n/ 2 N such that

lim
n

k.n/ D C 1; lim
n

n
1
d 2�k.n/ D C 1 and lim

n
n

1
d 2�k.n/

�Z
jf � fk.n/j

� 1
p D 0:

(7)

Assuming its existence, the claim follows easily: applying the inequality for k D
k.n/ and taking upper limits gives

lim sup
n

EL.n f /

n1� p
d

� lim sup
n

Z
g
�
n 2�k.n/d fk.n/

�
f

1� p
d

k.n/ :

Since lim fk.n/ D f a.e., it is easy to see that the limit of the latter inte-
gral is ˇL

R
f 1� p

d : first the integrand converges almost everywhere to ˇLf 1� p
d

(if f .x/ D 0 this follows from the boundedness of g; if f .x/ ¤ 0 then the argument
of g is going to infinity). Secondly, the sequence of integrands is supported on the
unit cube and is uniformly integrable since

Z �
g
�
n 2�k.n/d fk.n/

�
f

1�
p
d

k

� d
d�p � .sup g/

d
d�p

Z
fk.n/ D .sup g/

d
d�p

Z
f < C1:

It remains to establish the existence of a sequence of integers .k.n//n

satisfying (7). Note that since fk � 0,
R

fk D R
f D 1 and a.e. lim fk D f ,

it follows from Scheffé’s lemma that limk

R jf � fkj D 0. Hence '.k/ D
.supj �k

R jf � fj j/�d=p is nondecreasing with an infinite limit. We derive the
existence of a sequence with the following stronger properties

lim
n

k.n/ D C1; lim
n

n

.2d /k.n/
D C1 and lim

n

n

.2d /k.n/'.k.n//
D 0 (8)

as follows. Set 	 D 2d . Since 	k
p

'.k � 1/ is increasing with infinite limit,

Œ	
p

'.0/; C1/ D [k�1

	
	k
p

'.k � 1/; 	kC1
p

'.k/
�
:

For n � 	
p

'.0/, we define k.n/ as the integer such that

	k.n/
p

'.k.n/ � 1/ � n < 	k.n/C1
p

'.k.n//:

This defines a nondecreasing sequence. It is clear from the above strict inequality
that limn k.n/ D C1. Hence n	�k.n/ � p

'.k.n/ � 1/ tends to infinity at infinity.
Eventually n=.	k.n/'.k.n/// � 	=

p
'.k.n// tends to zero as required. The proof is

therefore complete. ut
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4.3 Purely Singular Measures

With Theorem 5 at hand, we should now understand what happens when � has a
singular part. Our next lemma states if � is purely singular then EL.n�/ is of order
smaller than n1� p

d .

Lemma 4. Let d > 2p. Let L be a bipartite functional on R
d with properties .Rp/

and .Sp/. Let � be a finite singular measure on R
d having a bounded support. Then

lim
n!1

EL.n�/

n1� p
d

D 0:

Proof. Let Q be a cube which contains the support of �. We consider a sequence
of dyadic partitions of Q, .P`/`2N. For ` 2 N, P` divides Q into 2`d cubes of side
length 2�` times the one of Q. As in the proof of Lemma 3, a direct application of
Corollary 3 gives for k 2 N

�:

EL.n�/ �
X

P 2Pk

EL.n1P ��/C3C

kX
`D1

�
2�`C1diam.Q/

�p X
P 2P`

p
n�.P /: (9)

The terms of the first sum are estimated again thanks to the easy bound of
Corollary 1: since each P in Pk is a cube of side length 2�k times the one of Q, it
holds

X
P 2Pk

EL.n1P � �/ �
X

P 2Pk

C
�
2�kdiam.Q/

�p
n�.P / D cp;Q 2�kpnj�j:

Here j�j is the total mass of �. We rewrite the second term in (9) in terms of the
function

g` D
X

P 2P`

�.P /

�.P /
1P ;

where � stands for Lebesgue’s measure. Since �.P / D 2�`d �.Q/, we get that

EL.n�/ � cp;Q 2�kpnj�j

C3C
�
2diam.Q/

�pp
n

kX
`D1

2�`p
X

P 2P`

2
`d
2 �.Q/� 1

2 �.P /

s
�.P /

�.P /

D cp;Q 2�kpnj�j C 3C
�
2diam.Q/

�p
�.Q/� 1

2
p

n

kX
`D1

2`
�

d
2 �p

� Z p
g`:
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By the differentiability theorem, for Lebesgue-almost every x, g`.x/ tends to zero
when ` tends to infinity (since � is singular with respect to Lebesgue’s measure).
Moreover, g` is supported on the unit cube and

R
.
p

g`/
2 D R

g` D j�j < C1.
Hence the sequence of functions

p
g` is uniformly integrable and we can conclude

that lim`!1
R p

g` D 0. By Cesaro’s theorem, the sequence

"k D
Pk

`D1 2`. d
2 �p/

R p
g`Pk

`D1 2`. d
2 �p/

also converges to zero, using here that d > 2p. By an obvious upper bound of the
latter denominator, we obtain that there exists a number c which does not depend
on .k; n/ (but depends on C; p; d; Q; j�j) such that for all k � 1

EL.n�/ � c
�
n2�kp C p

n 2k. d
2 �p/"k

�
;

where "k � 0 and limk "k D 0. We may also assume that ."k/ is nonincreasing
(the inequality remains valid if one replaces "k by supj �k "j ). It remains to choose
k in terms of n in a proper way. Define

'.n/ D
q

"b 1
d log2 nc

�1
d
2 �p :

Obviously limn '.n/ D C1. For n large enough, define k.n/ � 1 as the unique
integer such that

2k.n/ � n
1
d '.n/ < 2k.n/C1:

Setting k D k.n/, our estimate on the cost of the optimal matching yields

EL.n�/

n1� p
d

� c.d/

�
2

'.n/p
C "k.n/'.n/

d
2 �p

�
:

It is easy to check that the right hand side tends to zero as n tends to infinity. Indeed,
limn '.n/ D C1, hence for n large enough

k.n/ �
j

log2

�
n

1
d '.n/=2

�k
�



1

d
log2 n

�
:

Since the sequence ."k/ is nonincreasing, it follows that

"k.n/'.n/
d
2 �p � "b 1

d log2 nc'.n/
d
2 �p D q

"b 1
d log2 nc

tends to zero when n ! 1. The proof is therefore complete. ut
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4.4 General Upper Limits

We are now in position to conclude the proof the first statement of Theorem 3. It is
a consequence of Propositions 1, 4, and the following result.

Theorem 6. Let d > 2p > 0. Let L be a bipartite functional on R
d with the

properties .Hp/, .Rp/, and .Sp/. Consider a finite measure � on R
d such that

there exists ˛ >
2dp

d�2p
with

Z
jxj˛d�.x/ < C1:

Let f be a density function for the absolutely continuous part of �, then

lim sup
n!1

EL.n�/

n1� p
d

� ˇL

Z
f 1� p

d � (10)

Remark 5. Observe that the hypotheses ensure the finiteness of
R

f 1� p
d . Indeed

Hölder’s inequality gives

Z
Rd

f 1� p
d �

�Z
Rd

.1 C jxj˛/f .x/dx

�1� p
d
�Z

Rd

.1 C jxj˛/
1� d

p

� p
d

where the latter integral converges since ˛ >
2dp

d�2p
>

dp

d�p
:

Proof. Assume first that � has a bounded support. Write � D �ac C �s where �s

is the singular part and d�ac.x/ D f .x/ dx. Applying Proposition 5 to �ac and �s ,
dividing by n1�p=d , passing to the limit and using Theorem 5 and Lemma 4 gives

lim sup
n

EL.n�/

n1� p
d

� lim sup
n

EL.n�ac /

n1� p
d

C lim sup
n

EL.n�s/

n1� p
d

� ˇL

Z
f 1� p

d :

Hence the theorem is established for measures with bounded supports.
Now, let us consider the general case. Let B.t/ D fx 2 R

d W jxj � tg. Let A0 D
B.2/ and for integer ` � 1, A` D B.2`C1/nB.2`/. Now, let X D fX1; � � � ; XN1g,
Y D fY1; � � � ; YN2g be two independent Poisson process of intensity n�, and T D
maxfjZj W Z 2 X [ Y g. Applying the subadditivity property like in the proof of
Proposition 6, we obtain

L.X ; Y / �
X
`�0

L.X \ A`; Y \ A`/ (11)

CC T p
X
`�0

1X .A`/CY .A`/¤0

�
1 C jX .A`/ � Y .A`/j

�
:
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Note that the above sums have only finitely many nonzero terms, since � is finite.
We first deal with the first sum in the above inequality. By Fubini’s Theorem,

E

X
`�0

L.X \ A`; Y \ A`/

n1� p
d

D
X
`�0

E
L.X \ A`; Y \ A`/

n1� p
d

:

Applying (10) to the compactly supported measure �jA`
for every integer ` gives

lim sup
n

E
L.X \ A`; Y \ A`/

n1� p
d

� ˇL

Z
Al

f 1� p
d : (12)

By Lemma 3, for some constant cd ,

E
L.X \ A`; Y \ A`/

n1� p
d

� cd 2`p�.A`/
1� p

d :

From Markov inequality, with m˛ D R jxj˛d�.x/,

�.A`/ � �.Rd nB.2`// � 2�`˛m˛:

Thus, since ˛ > 2pd=.d � 2p/ > dp=.d � p/, the series
P

` 2`p�.A`/
1� p

d

is convergent. We may then apply the dominated convergence theorem, we get
from (12) that

lim sup
n

E

X
`�0

L.X \ A`; Y \ A`/

n1� p
d

� ˇL

Z
f 1� p

d :

For the expectation of the second term on the right hand side of (11), we use
Cauchy–Schwartz inequality,

E

2
4T p

X
`�0

1X .A`/CY .A`/¤0

�
1 C jX .A`/ � Y .A`/j

�
3
5

�
X
`�0

p
EŒT 2p�

q
E
�
1X .A`/CY .A`/¤0

�
1 C jX .A`/ � Y .A`/j

�2�

� p
2
p
EŒT 2p�

X
`�0

q
P.X .A`/ C Y .A`/ ¤ 0/ C E

	jX .A`/ � Y .A`/j2
�

D p
2
p
EŒT 2p�

X
`�0

q
1 � e�2n�.A`/ C 2n�.A`/

� 2
p
EŒT 2p�

p
n
X
`�0

p
�.A`/;
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where we have used 1 � e�u � u. As above, Markov inequality leads to

X
`�0

p
�.A`/ � p

m˛

X
`�0

2�` ˛
2 < C1:

Eventually we apply Lemma 1 with 	 WD 2p < 2pd=.d � 2/ < ˛ to upper bound
EŒT 2p�. We get that for some constant c > 0 and all n > 0,

n�1C p
d E

2
4T p

X
`�0

1X .A`/CY .A`/¤0

�
1 C jX .A`/ � Y .A`/j

�
3
5 � cn� 1

2 C p
d C p

˛ :

Since ˛ > 2dp=.d � 2p/, the later and former terms tend to zero as n tends to
infinity. The upper bound (10) is proved. ut

5 Examples of Bipartite Functionals

The minimal bipartite matching is an instance of a bipartite Euclidean functional
M1.X ; Y / over the multisets X D fX1; : : : ; Xng and Y D fY1; : : : ; Yng. We may
mention at least two other interesting examples: the bipartite traveling salesperson
problem over X and Y is the shortest cycle on the multiset X [ Y such that the
image of X is Y . Similarly, the bipartite minimal spanning tree is the minimal
edge-length spanning tree on X [ Y with no edge between two elements of X or
two elements of Y .

5.1 Minimal Bipartite Matching

Fix p > 0. Given two multisubsets of R
d with the same cardinality, X D

fX1; : : : ; Xng and Y D fY1; : : : ; Yng, the p-cost of the minimal bipartite matching
of X and Y is defined as

Mp.X ; Y / D min
�2Sn

nX
iD1

jXi � Y�.i/jp;

where the minimum runs over all permutations of f1; : : : ; ng. It is useful to extend
the definition to sets of different cardinalities, by matching as many points as
possible: if X D fX1; : : : ; Xmg and Y D fY1; : : : ; Yng and m � n then

Mp.X ; Y / D min
�

mX
iD1

jXi � Y�.i/jp;
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where the minimum runs over all injective maps from f1; : : : ; mg to f1; : : : ; ng.
When n � m the symmetric definition is chosen Mp.X ; Y / WD Mp.Y ; X /.

The bipartite functional Mp is obviously homogeneous of degree p, i.e. it
satisfies .Hp/. The next lemma asserts that it also satisfies the subadditivity property
.Sp/. In the case p D 1, this is the starting point of the paper [3].

Lemma 5. For any p > 0, the functional Mp satisfies property (Sp) with constant
C D 1=2. More precisely, if X1; : : : ; Xk and Y1; : : : ; Yk are multisets in a bounded
subset Q � R

d , then

Mp

� k[
iD1

Xi ;

k[
iD1

Yi

�
�

kX
iD1

Mp.Xi ; Yi / C diam.Q/p

2

kX
iD1

jcard.Xi / � card.Yi /j:

Proof. It is enough to upper bound the cost of a particular matching of
Sk

iD1 Xi andSk
iD1 Yi . We build a matching of these multisets as follows. For each i we choose

the optimal matching of Xi and Yi . The overall cost is
P

i Mp.Xi ; Yi /, but we
have left

P
i jcard.Xi /�card.Yi /j points unmatched (the number of excess points).

Among these points, the less numerous species (there are two species: points from
Xi ’s, and points from Yi ’s) has cardinality at most 1

2

P
i jcard.Xi / � card.Yi /j.

To complete the definition of the matching, we have to match all the points of this
species in the minority. We do this in an arbitrary manner and simply upper bound
the distance between matched points by the diameter of Q. ut
The regularity property is established next.

Lemma 6. For any p > 0, the functional Mp satisfies property (Rp) with constant
C D 1.

Proof. Let X ; X1; X2; Y ; Y1; Y2 be finite multisets contained in Q D B.1=2/.
Denote by x; x1; x2; y; y1; y2 the cardinalities of the multisets and a ^ b for
min.a; b/. We start with an optimal matching for Mp.X \ X2; Y \ Y2/.
It comprises .x C x2/ ^ .y C y2/ edges. We remove the ones which have a vertex
in X2 or in Y2. There are at most x2 C y2 of them, so we are left with at least�
.x C x2/ ^ .y C y2/ � x2 � y2

�
C edges connecting points of X to points of Y .

We want to use this partial matching in order to build a (suboptimal) matching of
X \ X1 and Y \ Y1. This requires to have globally .x C x1/ ^ .y C y1/ edges.
Hence we need to add at most

.x C x1/ ^ .y C y1/ � �
.x C x2/ ^ .y C y2/ � x2 � y2

�
C

new edges. We do this in an arbitrary way, and simply upper bound their length by
the diameter of Q. To prove the claim it is therefore sufficient to prove the following
inequalities for nonnegative numbers:

.xCx1/^.y Cy1/��.xCx2/^.y Cy2/�x2 �y2

�
C � x1 Cx2 Cy1 Cy2: (13)
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This is obviously equivalent to

x C x1 � x1 C x2 C y1 C y2 C �
.x C x2/ ^ .y C y2/ � x2 � y2

�
C

or y C y1 � x1 C x2 C y1 C y2 C �
.x C x2/ ^ .y C y2/ � x2 � y2

�
C:

After simplification, and noting that y1 � 0 appears only on the right-hand side of
the first inequality (and the same for x1 in the second one), it is enough to show that

x ^ y � x2 C y2 C �
.x C x2/ ^ .y C y2/ � x2 � y2

�
C:

This is obvious, as by definition of the positive part, x ^ y � x2 C y2 C �
.x ^ y/ �

x2 � y2

�
C: ut

5.2 Bipartite Traveling Salesperson Tour

Fix p > 0. Given two multi-subsets of R
d with the same cardinality, X D

fX1; : : : ; Xng and Y D fY1; : : : ; Yng, the p-cost of the minimal bipartite traveling
salesperson tour of .X ; Y / is defined as

Tp.X ; Y / D min
.�;� 0/2S2

n

nX
iD1

jX�.i/�Y� 0.i/jpC
n�1X
iD1

jY� 0.i/�X�.iC1/jpCjY� 0.n/�X�.1/jp;

where the minimum runs over all pairs of permutations of f1; : : : ; ng. We extend
the definition to sets of different cardinalities, by completing the longest possible
bipartite tour : if X D fX1; : : : ; Xmg and Y D fY1; : : : ; Yng and m � n then

Tp.X ; Y / D min
.�;� 0/

mX
iD1

jX�.i/ �Y� 0.i/jp C
m�1X
iD1

jY� 0.i/ �X�.iC1/jp CjY� 0.m/ �X�.1/jp

where the minimum runs over all pairs .�; � 0/, with � 2 Sm and � 0 is an injective
maps from f1; : : : ; mg to f1; : : : ; ng. When n � m the symmetric definition is
chosen Tp.X ; Y / WD Tp.Y ; X /. This traveling salesperson functional is an
instance of a larger class of functionals that we now describe.

5.3 Euclidean Combinatorial Optimization Over Bipartite
Graphs

For integers m; n, we define Œn� D f1; � � �ng and Œn�m D fm C 1; � � � ; m C ng. Let
Bn be the set of bipartite graphs with common vertex set .Œn�; Œn�n/: if G 2 Bn, the
edge set of G is contained is the set of pairs fi; n C j g, with i; j 2 Œn�.
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We should introduce some graph definitions. If G1 2 Bn and G2 2 Bm we define
G1 C G2 as the graph in BnCm obtained by the following rule : if fi; n C j g is an
edge of G1 then fi; n C m C j g is an edge of G1 C G2, and if fi; m C j g is an edge
of G2 then fn C i; 2n C m C j g is an edge of G1 C G2. Finally, if G 2 BnCm, the
restriction G0 of G to Bn is the element of Bn defined by the following construction
rule: if fi; n C m C j g is an edge of G and .i; j / 2 Œn�2 then add fi; n C j g as an
edge of G0.

We consider a collection of subsets Gn � Bn with the following properties, there
exist constants �0; � � 1 such that for all integers n; m,

(A1) (not empty) If n � �0, Gn is not empty.
(A2) (isomorphism) If G 2 Gn and G0 2 Bn is isomorphic to G then G0 2 Gn.
(A3) (bounded degree) If G 2 Gn, the degree of any vertex is at most �.
(A4) (merging) If G 2 Gn and G0 2 Gm, there exists G00 2 GnCm such that G CG0

and G00 have all but at most � edges in common. For 1 � m < �0, it also holds if
G0 is the empty graph of Bm.

(A5) (restriction) Let G 2 Gn and �0 C 1 � n and G0 be the restriction of G to
Bn�1. Then there exists G00 2 Gn�1 such that G0 and G00 have all but at most �

edges in common.

If jX j D jY j D n, we define

L.X ; Y / D min
G2Gn

X
.i;j /2Œn�2Wfi;nCj g2G

jXi � Yj jp:

With the convention that the minimum over an empty set is 0. Note that the
isomorphism property implies that L.X ; Y / D L.Y ; X /. If m D jX j � jY j D n,
we define

L.X ; Y / D min
.G;�/

X
.i;j /2Œm�2Wfi;mCj g2G

jXi � Y�.j /jp; (14)

where the minimum runs over all pairs .G; �/, G 2 Gm and � is an injective maps
from f1; : : : ; mg to f1; : : : ; ng. When n � m the symmetric definition is chosen
L.X ; Y / WD L.Y ; X /.

The case of bipartite matchings is recovered by choosing Gn as the set of graphs
in Bn where all vertices have degree 1. We then have �0 D 1 and Gn satisfies the
merging property with � D 0. It also satisfies the restriction property with � D 1.
The case of the traveling salesperson tour is obtained by choosing Gn as the set of
connected graphs in Bn where all vertices have degree 2, this set is nonempty for
n � �0 D 2. Also this set Gn satisfies the merging property with � D 4 (as can
be checked by edge switching). The restriction property follows by merging strings
into a cycle.

For the minimal bipartite spanning tree, we choose Gn as the set of connected
trees of Œ2n� in Bn. It satisfies the restriction property and the merging property with
� D 1. For this choice, however, the maximal degree is not bounded uniformly in n.
We could impose artificially this condition by defining Gn as the set of connected
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graphs in Bn with maximal degree bounded by � � 2. We would then get the
minimal bipartite spanning tree with maximal degree bounded by �. It is not hard to
verify that the corresponding functional satisfies all the above properties.

Another interesting example is the following. Fix an integer r � 2. Recall that
a graph is r-regular if the degree of all its vertices is equal to r . We may define
Gn as the set of r-regular connected graphs in Bn. This set is not empty for n �
�0 D r . It satisfies the first part of the merging property (A4) with � D 4. Indeed,
consider two r-regular graphs G, G0, and take any edge e D fx; yg 2 G and
e0 D fx0; y0g 2 G0. The merging property holds with G00, the graph obtained from
G CG0 by switching .e; e0/ in .fx; y0g; fx0; yg/. Up to increasing the value of �, the
second part of the merging property is also satisfied. Indeed, if n is large enough,
it is possible to find rm < r�0 D r2 edges e1; � � � ; erm in G with nonadjacent
vertices. Now, in G00, we add m points from each species, and replace the edge
eriCq D fx; n C yg, 1 � i � m, 0 � q < r , by two edges: one between x and the
i -th point of the second species, and one between y and the i -th point of the first
species. G00 is then a connected r-regular graph in BnCm with all but at most 2r2

edges in common with G. Hence, by taking � large enough, the second part of the
merging property holds.

Checking the restriction property (A5) for r-regular graphs requires a little more
care. Let r D �0 C 1 � n and consider the restriction G1 of G 2 Bn to Bn�1. Our
goal is to show that by modifying a small number of edges of G1, one can obtain
a connected r-regular bipartite graph on Bn�1. We first explain how to turn G1

into a possibly nonconnected r-regular graph. Let us observe that G1 was obtained
from G by deleting one vertex of each species and the edges to which these points
belong. Hence G1 has vertices of degree r , and vertices of degree r � 1 (r blue
and r red vertices if the removed points did not share an edge, only r � 1 points
of each species if the removed points shared an edge). In any case G1 has at most
2r connected components and r vertices of each color with one edge missing. The
simplest way to turn G1 into a r regular graph is to connect each blue vertex missing
an edge with a red vertex missing an edge. However this is not always possible as
these vertices may already be neighbors in G1 and we do not allow multiple edges.
However given a red vertex vR and a blue vertex vB of degree r � 1 and provided
n � 1 > 2r2 there exists a vertex v in G1 which is at graph distance at least 3 from
vB and vR. Then open up an edge to which v belongs and connect its end-points to
vR and vB while respecting the bipartite structure. In the new graph vB and vR have
degree r . Repeating this operation no more than r times turns G1 into a r regular
graphs with at most as many connected components (and the initial and the final
graph differ by at most 3r edges). Next we apply the merge operation at most 2r �1

times in order to glue together the connected components (this leads to modifying at
most 4.2r�1/ edges). As a conclusion, provided we choose �0 > 2r2, the restriction
property holds for � D 11r .

We now come back to the general case. From the definition, it is clear that L sat-
isfies the property (Hp). We are going to check that it also satisfies properties (Sp)
and (Rp).
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Lemma 7. Assume (A1-A4). For any p > 0, the functional L satisfies property (Sp)
with constant C D .3 C �0/�=2.

Proof. The proof of is an extension of the proof of Lemma 5. We can assume
without loss of generality k � 2. Let X1; : : : ; Xk and Y1; : : : ; Yk be multisets
in Q D B.1=2/. For ease of notation, let xi D jXi j, yi D jYi j and n DPk

iD1 xi ^Pk
iD1 yi . If n < �0, then from the bounded degree property (A3),

L
� k[

iD1

Xi ;

k[
iD1

Yi

�
� n� � ��0:

If n � �0, it is enough to upper bound the cost for an element G in Gn. For each
1 � i � k, if ni D xi ^ yi � �0, we consider the element Gi in Gni which reaches
the minimum cost of L.Xi ; Yi /. From the merging property (A4), there exists G0
in GP

i �ni ��0 ni
whose total cost is at most

L0 WD
X

i

L.Xi ; Yi / C �k:

It remains at most
P

i �0 C jxi � yi j vertices that have been left aside. The less
numerous species has cardinal m0 � m D .

P
i �0 C jxi � yi j/=2. If m0 � �0,

from the nonempty property (A1), there exists a graph G00 2 Gm0 that minimizes the
cost of the vertices that have been left aside. From the merging and bounded degree
properties, we get

L
� k[

iD1

Xi ;

k[
iD1

Yi

�
� L0 C� C�m �

X
i

L.Xi ; Yi /C �

2

X
i

.3 C �0 C jxi � yi j/ :

If m0 < �0, we apply to G0 the merging property with the empty graph: there exists
an element G in Gn whose total cost is at most

L
� k[

iD1

Xi ;

k[
iD1

Yi

�
� L0 C � �

X
i

L.Xi ; Yi / C .k C 1/�:

We have proved that property (Sp) is satisfied for C D .3 C �0/�=2. ut
Lemma 8. Assume (A1-A5). For any p > 0, the functional L satisfies prop-
erty (Rp) with constant C D C.�; �0/.

Proof. Let X ; X1; X2; Y ; Y1; Y2 be finite multisets contained in B.1=2/ D Q.
Denote by x; x1; x2; y; y1; y2 the cardinalities of the multisets. As a first step, let us
prove that

L.X [ X1; Y [ Y1/ � L.X ; Y / C C.x1 C y1/: (15)
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By induction, it is enough to deal with the cases .x1; y1/ D .1; 0/ and .x1; y1/ D
.0; 1/. Because of our symmetry assumption, our task is to prove that

L.X [ fag; Y / � L.X ; Y / C C: (16)

If card.Y / � card.X /, then the latter is obvious: choose an optimal graph for
L.X ; Y / and use it to upper estimate L.X [fag; Y /. Assume on the contrary that
card.Y / � card.X / C 1. Then there exists Y 0 � Y with card.Y 0/ D card.X /

and L.X ; Y 0/. Let b 2 Y nY 0. In order to establish (16), it is enough to show that

L.X [ fag; Y 0 [ fbg/ � L.X ; Y 0/ C C;

but this is just an instance of the subadditivity property. Hence (15) is established.
In order to prove the regularity property, it remains to show that

L.X ; Y / � L.X [ X2; Y [ Y2/ C C.x2 C y2/: (17)

Again, using induction and symmetry, it is sufficient to establish

L.X ; Y / � L.X [ fag; Y / C C: (18)

If card.X / ^ card.cY / < �0, then by the bounded degree property L.X ; Y / �
��0diam.Q/p and we are done. Assume next that card.X /; card.Y / � �0. Let us
consider an optimal graph for L.X [ fag; Y /. If a is not a vertex of this graph
(which forces card.X / � card.Y /) then one can use the same graph to upper
estimate L.X ; Y / and obtain (18). Assume on the contrary that a is a vertex of
this optimal graph. Let us distinguish two cases: if card.X / � card.Y /, then in the
optimal graph for L.X [ fag; Y /, at least a point b 2 X is not used. Consider
the isomorphic graph obtained by replacing a by b while the other points remain
fixed (this leads to the deformation of the edges out of a. There are at most � of
them by the bounded degree assumption). This graph can be used to upper estimate
L.X ; Y /, and gives

L.X ; Y / � L.X [ fag; Y / C � diam.Q/p:

The second case is when a is used but card.X / C 1 � card.Y /. Actually, the
optimal graph for L.X [ fag; Y / uses all the points of X [ fag and of a subset of
same cardinality Y 0 � Y . Choose an element b in Y 0. Then Y 00 D Y 0 n fbg has
the same cardinality as X . Obviously L.X [ fag; Y / D L.X [ fag; Y 00 [ fbg/.
Consider the corresponding optimal bipartite graph. By the restriction property, if
we erase a and b and their edges, we obtain a bipartite graph on .X ; Y 00/ which
differs from an admissible graph of our optimization problem by at most � edges.
Using this new graphs yields

L.X ; Y / � � diam.Q/pCL.X [fag; Y 00[fbg/ D � diam.Q/pCL.X [fag; Y /:

This concludes the proof. ut



Combinatorial Optimization Over Two Random Point Sets 515

6 Lower Bounds, Lower Limits

6.1 Uniform Distribution on a Set

In order to motivate the sequel, we start with the simple case where f is an indicator
function. The lower bound is then a direct consequence of Theorems 4 and 5.

Theorem 7. Let d > 2p > 0. Let L be a bipartite functional on R
d satisfying the

properties .Hp/, .Rp/, .Sp/. Let ˝ � R
d be a bounded set with positive Lebesgue

measure. Then

lim
n!1

EL.n1˝/

n1� p
d

D ˇLVol.˝/:

Proof. Theorem 5 gives directly lim supEL.n1˝/=n1� p
d � ˇLVol.˝/. By trans-

lation and dilation invariance, we may assume without loss of generality that
˝ � Œ0; 1�d . Let ˝c WD Œ0; 1�d n ˝ . Applying Proposition 6 for the partition
Œ0; 1�d D ˝ [ ˝c , gives after division by n1�p=d

EL
�
n1Œ0;1�d

�
n1� p

d

� EL
�
n1˝c

�
n1� p

d

� EL
�
n1˝

�
n1� p

d

C 3C diam.Œ0; 1�d /n
p
d � 1

2

�
Vol.˝/

1
2 C Vol.˝c/

1
2

�
:

Since d > 2p, letting n go to infinity gives

lim inf
n

EL
�
n1˝

�
n1� p

d

� lim
n

EL
�
n1Œ0;1�d

�
n1� p

d

� lim sup
n

EL
�
n1˝c

�
n1� p

d

� ˇL � ˇLVol.˝c/ D ˇLVol.˝/;

where we have used Theorem 4 for the limit and Theorem 5 for the upper limit. ut
The argument of the previous proof relies on the fact that the quantity
lim n1�p=d

EL.n1˝/ D ˇLVol.˝/ is in a sense additive in ˝ . This line of reasoning
does not pass to functions since f 7! R

f 1�p=d is additive only for functions with
disjoint supports. The lower limit result requires more work for general densities.

6.2 Lower Limits for Matchings

In order to establish a tight estimate on the lower limit, it is natural to try and reverse
the partition inequality given in Proposition 6. This is usually more difficult and
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there does not exist a general method to perform this lower bound. We shall first
restrict our attention to the case of the matching functional Mp with p > 0, we
define in this subsection

L D Mp:

6.2.1 Boundary Functional

Given a matching on the unit cube, one needs to infer from it matchings on the
subcubes of a dyadic partition and to control the corresponding costs. The main
difficulty comes from the points of a subcube that are matched to points of another
subcube. In other words some links of the optimal matching cross the boundaries of
the cells. As in the book by Yukich [19], a modified notion of the cost of a matching
is used in order to control the effects of the boundary of the cells of a partition. Our
argument is however more involved, since the good bound (2) used by Yukich is not
available for the bipartite matching. We define

q D 2p�1 ^ 1: (19)

Let S � R
d and " � 0. Given multisets X D fX1; : : : ; mg and Y D

fY1; : : : ; Yng included in S we define the penalized boundary-matching cost as
follows

L@S;".X1; : : : ; XmI Y1; : : : ; Yn/ (20)

D min
A;B;�

8<
:
X
i2A

jXi � Y�.i/jp C
X
i2Ac

q
�
d.Xi ; @S/p C "p

�
C
X

j 2Bc

q
�
d.Yj ; @S/p C "p

�9=
; ;

where the minimum runs over all choices of subsets A � f1; : : : ; mg, B �
f1; : : : ; ng with the same cardinality and all bijective maps � W A ! B . When
" D 0 we simply write L@S . Notice that in our definition, and contrary to the
definition of optimal matching, all points are matched even if m ¤ n. If X and Y
are independent Poisson point processes with intensity � supported in S and with
finite total mass, we write L@S;".�/ for the random variable L@S;".X ; Y /.

The main interest of the notion of boundary matching is that it allows to bound
from below the matching cost on a large set in terms of contributions on cells of a
partition. The following Lemma establishes a superadditive property of L@S and it
can be viewed as a counterpart to the upper bound provided by Proposition 6.

Lemma 9. Assume L D Mp . Let � be a finite measure on R
d and consider a

partition Q D [P 2PP of a subset of Rd . Then

diam.Q/p

q
2�.Rd / C EL.�/ � EL@Q.1IQ � �/ �

X
P 2P

EL@P .1P � �/:
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Proof. Let X D fX1; : : : ; Xmg; Y D fY1; : : : ; Yng be multisets included in Q and
X 0 D fXmC1; : : : ; XmCm0g, Y 0 D fYnC1; : : : ; YnCn0g be multisets included in Qc .
By considering an optimal matching of X [ X 0 and Y [ Y 0, we have the lower
bound

diam.Q/pjm C m0 � n � n0j C L.X [ X 0; Y [ Y 0/ � L@Q.X ; Y /:

Indeed, if 1 � i � m and a pair .Xi ; YnCj /, is matched then jXi � YnCj j �
d.Xi ; @Q/ and similarly for a pair .XmCi ; Yj /, with 1 � j � n, jXmCi � Yj j �
d.Yj ; @Q/. The term diam.Q/pjmCm0 �n�n0j takes care of the points of X [Y
that are not matched in the optimal matching of X [ X 0 and Y [ Y 0. We apply
the above inequality to X , Y independent Poisson processes of intensity 1IQ � �,
and X 0, Y 0, two independent Poisson processes of intensity 1IQc ��, independent of
.X ; Y /. Then X [ X 0, Y [ Y 0 are independent Poisson processes of intensity
�. Taking expectation and bounding the average of the difference of cardinalities in
the usual way, we obtain the first inequality.

Now, the second inequality will follow from the superadditive property of the
boundary functional:

L@Q.X ; Y / �
X

P 2P

L@P .X \ P; Y \ P /: (21)

This is proved as follows. Let .A; B; �/ be an optimal triplet for L@Q.X ; Y /:

L@Q.X ; Y / D
X
i2A

jXi � Y�.i/jp C
X
i2Ac

qd.Xi ; @Q/p C
X
j 2Bc

qd.Yj ; @Q/p:

If x 2 Q, we denote by P.x/ the unique P 2 P that contains x. If P.Xi / D
P.Y�.i// we leave the term jXi � Y�.i/j unchanged. On the other hand if P.Xi/ ¤
P.Y�.i//, we find

jXi � Y�.i/jp � �
d.Xi ; @P.Xi // C d.Y�.i/; @P.Y�.i///

�p
� q d.Xi ; @P.Xi //

p C q d.Y�.i/; @P.Y�.i///
p;

where q was defined by (19) and, for 0 � p � 1, we have used Jensen inequality
jx C yjp � 21�p.jxjp C jyjp/. Eventually, we apply the inequality

d.x; @Q/ � d.x; @P.x//

in order to take care of the points in Ac [ Bc . Combining these inequalities
and grouping the terms according to the cell P 2 P containing the points, we
obtain that
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L@Q.X ; Y / �
X

P 2P

0
@ X

i2AI Xi 2P;Y�.i/2P

jXi � Y�.i/jp C
X

i2AI Xi 2P;Y�.i/…P

q d.Xi ; @P /p

C
X

i2Ac I Xi 2P

q d.Xi ; @P /p C
X

j 2BI Yj 2P; j 62�.fi I Xi 2P g/

q d.Yj ; @P /p

C
X

j 2BcI Yj 2P

q d.Yj ; @P /p

1
A

�
X

P 2P

L@P .X \ P; Y \ P /;

and we have obtained the inequality (21). ut
The next lemma on the regularity of EL@Q.�/ is the analog of Corollary 2. It will
be used to reduce to uniform distributions on cubes.

Lemma 10. Assume L D Mp . Let �; �0 be two probability measures on R
d with

supports in Q and n > 0. Then

EL@Q.n�/ � EL@Q.n�0/ C 4n diam.Q/p dTV.�; �0/:

Consequently, if f is a nonnegative locally integrable function on R
d , setting ˛ DR

Q
f =vol.Q/, it holds

EL@Q.nf 1Q/ � EL@Q.n˛1Q/ C 2n diam.Q/p

Z
Q

jf .x/ � ˛j dx:

Proof. The functional L@Q satisfies a slight modification of property .Rp/: for all
multisets X ; Y ; X1; Y1; X2; Y2 in Q, it holds

L@Q.X [ X1; Y [ Y1/ � L@Q.X [ X2; Y [ Y2/

C diam.Q/p
�
card.X1/ C card.X2/ C card.Y1/ C card.Y2/

�
:

Indeed, we start from an optimal boundary matching of L@Q.X [ X2; Y [ Y2/,
we match to the boundary the points of .X ; Y / that are matched to a point in
.X2; Y2/. There are at most card.X2/ C card.Y2/ such points. Finally we match all
points of .X1; Y1/ to the boundary and we obtain a suboptimal boundary matching
of L@Q.X [ X1; Y [ Y1/. This establishes the above inequality. The statements
follow then from the proofs of Proposition 3 and Corollary 2. ut
We will need an analog of Lemma 2, i.e. an asymptotic for the boundary matching
for the uniform distribution on the unit cube. Let Q D Œ0; 1�d and denote

NL@Q.n/ D EL@Q.n1Q/:
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Lemma 11. Assume L D Mp and 0 < p < d=2, then

lim
n!1

NL@Q.n/

n1� p
d

D ˇ0
L;

where ˇ0
L > 0 is a constant depending on p and d .

Proof. Let m � 1 be an integer. We consider a dyadic partition P of Q into md

cubes of size 1=m. Then, Lemma 9 applied to the measure n1Œ0;1�d .x/ dx gives

NL@Q.n/ �
X
q2P

EL@q.n1q\Œ0;1�d /:

However by scale and translation invariance, for any q 2 P we have
EL@q.n1q\Œ0;1�d / D m�p

EL@Q.nm�d 1Q/. It follows that

NL@Q.n/ � md�p NL@Q.nm�d /:

The proof is then done as in Theorem 4 where superadditivity here replaces
subadditivity there. ut

As already pointed, we conjecture that ˇL D ˇ0
L where ˇL is the constant

appearing in Lemma 2 for L D Mp .

6.2.2 General Absolutely Continuous Measures

We are ready to state and prove

Theorem 8. Assume L D Mp and 0 < p < d=2. Let f W R
d ! R

C be an
integrable function. Then

lim inf
n

EL.nf /

n1� p
d

� ˇ0
L

Z
Rd

f 1� p
d :

Proof. Assume first that the support of f is bounded. By a scaling argument, we
may assume that the support of f is included in Q D Œ0; 1�d . The proof is now
similar to the one of Theorem 5. For ` 2 N, we consider the partition P` of Œ0; 1�d

into 2`d cubes of side-length 2�`. Let k 2 N
� to be chosen later. For P 2 Pk , ˛P

denotes the average of f over P . Applying Lemma 9, Lemma 10 and homogeneity,
we obtain



520 F. Barthe and C. Bordenave

2d
p
2

s
n

Z
f C EL.nf / � EL@Q.nf /

�
X

P 2Pk

EL@P .nf 1P /

� X
P 2Pk

�
EL@P .n˛P 1P / � 2nd

p
2 2�kp

Z
P

jf � ˛P j
�

D X
P 2Pk

�
2�kp

EL@Q.n˛P 2�kd 1Q/ � 2nd
p
2 2�kp

Z
P

jf � ˛P j
�

:

Setting as before fk D P
P 2Pk

˛P 1P and h.t/ D NL@Q.t/=t
d�1

d where NL@Q.t/ D
EL@Q.t1Q/, the previous inequality reads as

2n
p
d � 1

2 d
p
2

sZ
f C EL.nf /

n1� p
d

� EL@Q.nf /

�
Z

h.n2�kd fk/f
1� p

d

k � 2d
p
2 n

p
d 2�kp

Z
jf � fkj:

As in the proof of Theorem 5 we may choose k D k.n/ depending on n in
such a way that limn k.n/ D C1, limn n1=d 2�k.n/ D C1 and limn n

1
d 2�k.n/� R jf � fk.n/j

� 1
p D 0. For such a choice, since lim inft!C1 h.t/ � ˇ0

L by
Lemma 11 and a.e. limk fk D f , Fatou’s lemma ensures that

lim inf
n

Z
h.n2�k.n/d fk.n//f

1� p
d

k.n/
� lim inf

n

Z
ff >0g

h.n2�k.n/d fk.n//f
1� p

d

k.n/
� ˇ0

L

Z
f 1� p

d :

Our statement easily follows.
Now, let us address the general case where the support is not bounded. Let ` � 1

and Q D Œ�`; `�d . By Lemma 9,

2diam.Q/p

s
n

Z
f C EL.nf / � EL@Q.nf 1IQ/:

Also, the above argument has shown that

lim inf
n

EL@Q.nf 1IQ/

n1� p
d

� ˇ0
L

Z
Q

f 1� p
d :

We deduce that for any Q D Œ�`; `�d ,
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lim inf
n

EL.nf /

n1� p
d

� ˇ0
L

Z
Q

f 1� p
d :

Taking ` arbitrary large we obtain the claimed lower bound. ut

6.2.3 Dealing with the Singular Component

In this section we explain how to extend Theorem 8 from measures with densities to
general measures. Given a measure �, we consider its decomposition � D �ac C�s

into an absolutely continuous part and a singular part.
Our starting point is the following lemma, which can be viewed as an inverse

subadditivity property.

Lemma 12. Let p 2 .0; 1� and L D Mp . Let X1; X2; Y1; Y2 be four finite
multisets included in a bounded set Q. Then

L.X1; Y1/ � L.X1 [ X2; Y1 [ Y2/ C L.X2; Y2/

Cdiam.Q/p
�
jX1.Q/ � Y1.Q/j C 2jX2.Q/ � Y2.Q/j

�
:

Proof. Let us start with an optimal matching achieving L.X1 [ X2; Y1 [ Y2/ and
an optimal matching achieving L.X2; Y2/. Let us view them as bipartite graphs
G1;2 and G2 on the vertex sets .X1 [ X2; Y1 [ Y2/ and .X2; Y2/ respectively
(note that if a point appears more than once, we consider its instances as different
graph vertices). Our goal is to build a possibly suboptimal matching of X1 and Y1.
Assume without loss of generality that X1.Q/ � Y1.Q/. Hence we need to build
an injection from � W X1 ! Y1 and to upper bound its cost

P
x2X1

jx � �.x/jp .
To do this, let us consider the graph G obtained as the union of G1;2 and G2

(allowing multiple edges when two points are neighbors in both graphs). It is clear
that in G the points from X1 and Y1 have degree at most one, while the points from
X2 and Y2 have degree at most 2. For each x 2 X1, let us consider its connected
component C.x/ in G. Because of the above degree considerations (and since no
point is connected to itself in a bipartite graph) it is obvious that C.x/ is a path.

It could be that C.x/ D fxg, in the case when x is a leftover point in the matching
corresponding to G1;2. This means that x is a point in excess and there are at most
jX1.Q/ C X2.Q/ � .Y1.Q/ C Y2.Q//j of them.

Consider now the remaining case, when C.x/ is a nontrivial path. Its first edge
belongs to G1;2. If there is a second edge, it has to be from G2 (since G1;2 as degree at
most one). Repeating the argument, we see that the edges of the path are alternately
from G1;2 and from G2. Note also that the successive vertices are alternately from
X1 [ X2 and from Y1 [ Y2 (see Fig. 1). There are three possibilities:
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y

x y

y

x

x

Fig. 1 The three possibilities for the path C.x/. In blue, G1;2, in red G2, the points in X1 [ X2

are represented by a cross, points in Y1 [ Y2 by a circle

• The other end of the path is a point y 2 Y1. In this case we are done, we have
associated a point y 2 Y1 to our point x 2 X1. By the triangle inequality and
since .aCb/p � ap Cbp due to the assumption p � 1, jx�yjp is upper bounded
by the sum of the p-th powers of the length of the edges in C.x/.

• The other end of the path is a point y 2 Y2. The last edge is from G1;2. So
necessarily, y has no neighbor in G2. This means that it is not matched. There
are at most jX2.Q/ � Y2.Q/j such points in the matching G2.

• The other end of the path is a point x0 2 X2. The last edge is from G2. So
necessarily, x0 has no neighbor in G1;2. This means that it is not matched in G1;2.
As already mentioned there are at most jX1.Q/ C X2.Q/ � .Y1.Q/ C Y2.Q//j
such points.

Eventually we have found a way to match the points from X1, apart maybe
jX2.Q/ � Y2.Q/j C jX1.Q/ C X2.Q/ � .Y1.Q/ C Y2.Q//j of them. We match
the latter points arbitrarily to (unused) points in Y1 and upper bound the distances
between matched points by diam.Q/. ut
As a direct consequence, we obtain:

Lemma 13. Let �1 and �2 be two finite measures supported in a bounded set Q.
Let p 2 .0; 1� and L D Mp be the bipartite matching functional. Then

EL.�1/ � EL.�1 C �2/ C EL.�2/ C 3 diam.Q/p
�p

�1.Q/ C
p

�2.Q/
�
:
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Proof. Let X1; X2; Y1; Y2 be four independent Poisson point processes. Assume
that for i 2 f1; 2g, Xi and Yi have intensity measure �i . Consequently X1[X2 and
Y1 [ Y2 are independent Poisson point processes with intensity �1 C �2. Applying
the preceding Lemma 12 and taking expectations yields

EL.�1/ � EL.�1 C �2/ C EL.�2/

C2diam.Q/p
�
EjX1.Q/ � Y1.Q/j C EjX2.Q/ � Y2.Q/j�:

As usual, we conclude using that

EjXi .Q/ � Yi .Q/j �
q
E
�
.Xi .Q/ � Yi .Q//2

� D p
2var.Xi .Q// D p

2�i .Q/:

ut
Theorem 9. Assume that d 2 f1; 2g and p 2 .0; d=2/, or that d � 3 and p 2
.0; 1�. Let L D Mp be the bipartite matching functional. Let � be a finite measure
on R

d with bounded support. Let f be the density of the absolutely continuous part
of �. Assume that there exists ˛ >

2dp

d�2p
such that

R jxj˛d�.x/ < C1. Then

lim inf
n

EL.n�/

n1� p
d

� ˇ0
L

Z
Rd

f 1� p
d :

Moreover if f is proportional to the indicator function of a bounded set with positive
Lebesgue measure

lim
n

EL.n�/

n1� p
d

D ˇL

Z
Rd

f 1� p
d :

Proof. Note that in any case, p � 1 is assumed. Let us write � D �ac C �s

where d�ac.x/ D f .x/dx is the absolutely continuous part and �s is the singular
part of �.

The argument is very simple if � has a bounded support: apply the previous
lemma with �1 D n�ac and �2 D n�s . When n tends to infinity, observing that

p
n

is negligible with respect to n1� p
d , we obtain that

lim inf
n

EL.n�ac/

n1� p
d

� lim inf
n

EL.n�/

n1� p
d

C lim sup
n

EL.n�s/

n1� p
d

:

Observe that the latter upper limit is equal to zero thanks to Theorem 6
applied to a purely singular measures. Eventually lim infn

EL.n�ac/

n
1�

p
d

� ˇ0
L

R
Rd f 1� p

d

by Theorem 8 about absolutely continuous measures.
If f is proportional to an indicator function, we simply use scale invariance and

Theorem 7 in place of Theorem 8.
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Let us consider the general case of unbounded support. Let Q D Œ�`; `�d where
` > 0 is arbitrary. Let X1; Y1; X2; Y2 be four independent Poisson point processes,
such that X1 and Y1 have intensity measure n1Q ��ac , and X2 and Y2 have intensity
measure n.�s C 1Qc � �ac/. It follows that X1 [ X2 and Y1 [ Y2 are independent
Poisson point processes with intensity n�. Set T WD maxfjzjI z 2 X1 [ X2 [ Y1 [
Y2g. Applying Lemma 12 gives

L.X1; Y1/ � L.X1 [ X2; Y1 [ Y2/ C L.X2; Y2/

C cpT p
�jcard.X1/ � card.Y1/j � jcard.X2/ � card.Y2/j

�
:

Taking expectations, applying the Cauchy–Schwarz inequality twice and Lemma 1
(note that ˛ > 2p) gives

EL.nf 1Q/ � EL.n�/ C EL
�
n.�s C 1Qc �ac/

�

Ccp

q
E
	
T 2p

��p
2n�ac.Q/ C

q
2n.�s.Rd / C �ac.Qc//

�

� EL.n�/ C EL
�
n.�s C 1Qc �ac/

�C c0
pn

p
˛ C 1

2 :

Since ˛ >
2dp

d�2p
we obtain

lim inf
n

EL.n�/

n1� p
d

� lim inf
n

EL.nf 1Q/

n1� p
d

� lim sup
n

EL.n.�s C 1c
Q � �ac//

n1� p
d

� ˇ0
L

Z
Q

f 1� p
d � ˇL

Z
Qc

f 1� p
d ;

where we have used Theorem 8 for the lower limit for bounded absolutely
continuous measures and Theorem 6 for the upper limit. Recall that Q D Œ�`; `�d .
It remains to let ` tend to infinity. ut

Actually, using classical duality techniques (which are specific to the bipartite
matching) we can derive the following improvement of Lemma 13, which can be
seen as an average monotonicity property:

Lemma 14. Let p 2 .0; 1� and L D Mp . Let �1 and �2 be two finite measures
supported on a bounded subset Q � R

d . Then

EL.�1/ � EL.�1 C �2/ C 3diam.Q/p
�p

�1.Q/ Cp
�2.Q/

�
:

Proof. Since p 2 .0; 1�, the unit cost c.x; y/ WD jx � yjp is a distance on R
d .

The Kantorovich–Rubinstein dual representation of the minimal matching cost (or
optimal transportation cost) is particularly simple in this case (see e.g. [11, 16, 18]):
for fx1; : : : ; xng, fy1; : : : ; yng two multisets in Q,
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L
�fx1; : : : ; xng; fy1; : : : ; yng� D sup

f 2Lip1;0

X
i

f .xi / � f .yi /;

where Lip1;0 denotes the set of function f W Q ! R which are 1-Lipschitzian for
the distance c.x; y/ (hence they are p-Hölderian for the Euclidean distance) and
vanish at a prescribed point x0 2 Q. Observe that any function in Lip1;0 is bounded
by diam.Q/p pointwise.

Let X D fX1; : : : ; XN1g and Y D fY1; : : : ; YN2 g be independent Poisson point
processes with intensity � of finite mass and supported on a set Q of diameter
D < C1. By definition, on the event fN1 � N2g,

L.X ; Y / D inf
A�f1;:::;N2gIcard.A/DN1

L
�fXi; 1 � i � N1g; fYj ; j 2 Ag�

D inf
A�f1;:::;N2gIcard.A/DN1

sup
f 2Lip1;0

0
@X

i�N1

f .Xi/ �
X
j 2A

f .Yj /

1
A

� sup
f 2Lip1;0

0
@X

i�N1

f .Xi / �
X

j �N2

f .Yj /

1
A � DpjN1 � N2j

where we have used Kantorovich–Rubinstein duality to express the optimal match-
ing of two samples of the same size and used that every f 2 Lip1;0 satisfies
jf j � Dp pointwise on Q. A similar lower bound is valid when N1 � N2. Hence,
taking expectation and bounding EjN1 �N2j in terms of the variance of the number
of points in one process, one gets

EL.�/ � E sup
f 2Lip1;0

0
@X

i�N1

f .Xi / �
X

j �N2

f .Yj /

1
A � Dp

p
2j�j: (22)

A similar argument also gives the following upper bound

EL.�/ � E sup
f 2Lip1;0

0
@X

i�N1

f .Xi / �
X

j �N2

f .Yj /

1
AC Dp

p
2j�j: (23)

Let X1; X2; Y1; Y2 be four independent Poisson point processes. Assume that
for i 2 f1; 2g, Xi and Yi have intensity �i . As already mentioned, X1 [ X2 and
Y1 [ Y2 are independent with common intensity �1 C �2. Given a compact set
Q containing the supports of both measures, and x0 2 Q we define the set Lip1;0.
Using (22),
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EL.�1 C �2/ D EL.X1 [ X2; Y1 [ Y2/

� E sup
f 2Lip1;0

0
@ X

x12X1

f .x1/ �
X

y12Y1

f .y1/ C
X

x22X2

f .x2/ �
X

y22Y2

f .y2/

1
A

�Dp
p

2j�1 C �2j:

Now we use the easy inequalityE sup � supE whenE is the conditional expectation
given X1; Y1. Since .X2; Y2/ are independent from .X1; Y1/, we obtain

EL.�1 C �2/ C Dp
p

2j�1 C �2j

� E sup
f 2Lip1;0

0
@ X

x12X1

f .x1/ �
X

y12Y1

f .y1/ C E

� X
x22X2

f .x2/ �
X

y22Y2

f .y2/
�1A

D E sup
f 2Lip1;0

0
@ X

x12X1

f .x1/ �
X

y12Y1

f .y1/

1
A

� EL.�1/ � Dp
p

2j�1j;
where we have noted that the inner expectation vanishes and used (23). The claim
easily follows. ut

6.3 Euclidean Combinatorial Optimization

Our proof for the lower bound for matchings extends to some combinatorial
optimization functionals L defined by (14). In this paragraph, we explain how to
adapt the above argument at the cost of ad-hoc assumptions on the collection of
graphs .Gn/n2N. As motivating example, we will treat completely the case of the
bipartite traveling salesperson tour.

6.3.1 Boundary Functional

Let S � R
d and "; p � 0. Set q D 2p�1 ^ 1. In what follows, p is fixed and

will be omitted in most places where it would appear as an index. Given multisets
X D fX1; : : : ; Xng and Y D fY1; : : : ; Yng included in R

d , we first set

L0
@S;".X ; Y / D min

G2Gn

8<
:

X
.i;j /2Œn�2Wfi;nCj g2G

dS;";p.Xi ; Yj /

9=
; ;
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where

dS;";p.x; y/ D

8̂
<̂
ˆ̂:

jx � yjp if x; y 2 S;

0 if x; y 62 S;

q
�
dist.x; Sc/p C "p

�
if x 2 S; y 62 S

q
�
dist.y; Sc/p C "p

�
if y 2 S; x 62 S

(24)

Now, if X and Y are in S , we define the penalized boundary functional as

L@S;".X ; Y / D min
A;B�Sc

L0
@S;".X [ A; Y [ B/; (25)

where the minimum is over all multisets A and B in Sc such that card.X [ A/ D
card.Y [ B/ � �0. When " D 0 we simply write L@S . The main idea of this
definition is to consider all possible configurations outside the set S but not to count
the distances outside of S (from a metric view point, all of Sc is identified to a point
which is at distance " from S ).

The existence of the minimum in (25) is due to the fact that L0
@S .X [A; Y [B/

can only take finitely many values less than any positive value (the quantities
involved are just sums of distances between points of X ; Y and of their distances
to Sc). Notice that definition (25) is consistent with the definition of the boundary
functional for the matching functional Mp, given by (20). If X and Y are
independent Poisson point processes with intensity � supported in S and with finite
total mass, we write L@S;".�/ for the random variable L@S;".X ; Y /. Also note that
dS;0;p.x; y/ � jx � yjp . Consequently if card.X / D card.Y / then

L0
@S .X ; Y / � L.X ; Y /: (26)

The next lemma will be used to reduce to uniform distributions on squares.

Lemma 15. Assume (A1-A5). Let �; �0 be two probability measures on R
d with

supports in Q and n > 0. Then, for some constant c depending only on �; �0,

EL@Q.n�/ � EL@Q.n�0/ C 2cn diam.Q/p dTV.�; �0/:

Consequently, if f is a nonnegative locally integrable function on R
d , setting

˛ D R
Q f =vol.Q/, it holds

EL@Q.nf 1Q/ � EL@Q.n˛1Q/ C cn diam.Q/p

Z
Q

jf .x/ � ˛j dx:

Proof. The functional L@Q satisfies a slight modification of property .Rp/: for all
multisets X ; Y ; X1; Y1; X2; Y2 in Q, it holds

L@Q.X [ X1; Y [ Y1/ � L@Q.X [ X2; Y [ Y2/

C C diam.Q/p
�
card.X1/ C card.X2/ C card.Y1/ C card.Y2/

�
; (27)
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with C D C.�; �0/. The above inequality is established as in the proof of Lemma 8.
Indeed, by linearity and symmetry we should check (16) and (18) for L@Q. To
prove (16), we consider an optimal triplet .G; A; B/ for .X ; Y / and apply the
merging property (A4) to G with the empty graph and m D 1: we obtain a graph
G00 and get a triplet .G00; A; B [ fbg/ for .X [ fag; Y /, where b is any point in
@Q. To prove (18), we now consider an optimal triplet .G; A; B/ for .X [ fag; Y /

and move the point a to the a0 in @Q in order to obtain a triplet .G; A [ fa0g; B/

for .X ; Y /.
With (27) at hand, the statements follow from the proofs of Proposition 3 and

Corollary 2. ut
The next lemma gives a lower bound on L in terms of its boundary functional

and states an important superadditive property of L@S .

Lemma 16. Assume (A1-A5). Let � be a finite measure on R
d and consider a

partition Q D [P 2PP of a bounded subset of Rd . Then, if c D 4�.1 C �0/,
we have

c

q
�.Rd / diam.Q/p C EL.�/ � EL@Q.1Q � �/ �

X
P 2P

EL@P .1P � �/:

Proof. We start with the first inequality. Let X D fX1; : : : ; Xmg; Y D
fY1; : : : ; Yng be multisets included in Q and X 0 D fXmC1; : : : ; XmCm0g,
Y 0 D fYnC1; : : : ; YnCn0g be multisets included in Qc. First, let us show that

c1jm C m0 � n � n0jdiam.Q/p C L.X [ X 0; Y [ Y 0/ � L@Q.X ; Y /; (28)

with c1 D �.1 C �0/. To do so, let us consider an optimal graph G for L.X [
X 0; Y [Y 0/. It uses all the points but jmCm0�n�n0j points in excess. We consider
the subsets X0 � X and Y0 � Y of points that are used in G and belong to Q. By
definition there exist subsets A; B � Qc such that card.X0 [ A/ D card.Y0 [ B/

and L.X [ X 0; Y [ Y 0/ D L.X0 [ A; Y0 [ B/. By definition of the boundary
functional and using (26),

L@Q.X0; Y0/ � L0
@Q.X0 [ A; Y0 [ B/ � L.X0 [ A; Y0 [ B/ D L.X [ X 0; Y [ Y 0/:

Finally, since there are at most jn C n0 � m � m0j points in X [ Y which are not in
X0 [ Y0 (i.e. points of Q not used for the optimal G), the modified (Rp) property
given by (27) yields (28). We apply the latter inequality to X , Y independent
Poisson processes of intensity 1IQ � �, and X 0, Y 0, two independent Poisson
processes of intensity 1IQc � �, independent of .X ; Y /. Then X [ X 0, Y [ Y 0
are independent Poisson processes of intensity �. Taking expectation, we obtain the
first inequality, with c D 4c1.
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We now prove the second inequality. As above, let X D fX1; : : : ; Xmg; Y D
fY1; : : : ; Yng be multisets included in Q. Let G 2 Gk be an optimal graph for
L@Q.X ; Y / and A D fXmC1; � � � ; Xkg, B D fYnC1; � � � ; Ykg be optimal sets in
Qc. Given this graph G and a set S , we denote by E0

S the set of edges fi; k C j g of
G such that Xi 2 S and Yj 2 S , by E1

S the set of edges fi; k C j g of G such that
Xi 2 S and Yj 2 Sc , and by E2

S the set of edges fi; k C j g of G such that Xi 2 Sc

and Yj 2 S . Then by definition of the boundary functional

L@Q.X ; Y / D L0
@Q.X [ A; Y [ B/

D X
fi;kCj g 2 E0

Q

jXi � Yj jp C X
fi;kCj g2E1

Q

q d.Xi ; Qc/p C X
fi;kCj g 2 E2

Q

q d.Yj ; Qc/p:

Next, we bound these sums from below by considering the cells of the partition P .
If x 2 Q, we denote by P.x/ the unique P 2 P that contains x.

If an edge e D fi; k C j g 2 G is such that Xi ; Yj belong to the same cell P , we
observe that e 2 E0

P and we leave the quantity jXi � Yj jp unchanged.
If on the contrary, Xi and Yj belong to different cells, from Hölder inequality,

jXi � Yj jp � q d.Xi ; P.Xi /
c/p C q d.Yj ; P.Yj /c/p:

Eventually, for any boundary edge in E1
Q, we lower bound the contribution

d.Xi ; Qc/p by d.Xi ; P.Xi /
c/p and we do the same for E2

Q. Combining these
inequalities and grouping the terms according to the cell P 2 P to which the
points belong,

L@Q.X ; Y /

� X
P 2P

0
@ X

fi;kCjg2E0
P

jXi � Yj jp C X
fi;k C jg2E1

P

q d.Xi ; @P /p C X
fi;k C jg2E2

P

q d.Yj ; @P /p

1
A :

For a given cell P , set A0 D .X [ A/ \ P c and B 0 D .Y [ B/ \ P c . We get

X
fi;kCj g2E0

P

jXi � Yj jp C
X

fi;kCj g2E1
P

q d.Xi ; @P /p C
X

fi;kCj g2E2
P

q d.Yj ; @P /p

D L0
P c ..X \ P / [ A0; .Y \ P / [ B 0/ � L@P .X \ P; Y \ P /:

So applying these inequalities to X and Y two independent Poisson point
processes with intensity �1IQ and taking expectation, we obtain the claim. ut
Let Q D Œ0; 1�d and denote

NL@Q.n/ D EL@Q.n1Q/:
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Lemma 17. Assume (A1-A5). Let Q � R
d be a cube of side-length 1.

If 0 <2p < d , then

lim
n!1

NL@Q.n/

n1� p
d

D ˇ0
L;

where ˇ0
L > 0 is a constant depending on L, p, and d .

Proof. The proof is the same than the proof of Lemma 11, with Lemma 16 replacing
Lemma 9. ut

6.3.2 General Absolutely Continuous Measures with Unbounded Support

Theorem 10. Assume (A1-A5) and that 0 < 2p < d . Let f W Rd ! R
C be an

integrable function. Then

lim inf
n

EL.nf /

n1� p
d

� ˇ0
L

Z
Rd

f 1� p
d :

Proof. The proof is now formally the same than the proof of Theorem 8, invoking
Lemmas 15, 16, and 17 in place of Lemmas 10, 9, and 11 respectively. ut
Remark 6. Finding good lower bounds for a general bipartite functional L on R

d

satisfying the properties .Hp/, .Rp/, .Sp/ could be significantly more difficult.
It is far from obvious to define a proper boundary functional L@Q at this level of
generality. However if there exists a bipartite functional L@Q on R

d indexed on sets
Q � R

d such that for any t > 0, EL@.tQ/.n1ItQ/ D tp
EL@Q.ntd 1IQ/ and such that

the statements of Lemmas 16, 15, and 17 hold, then the statement of Theorem 8
also holds for the functional L. Thus, the caveat of this kind of techniques lies in
the good definition of a boundary functional L@Q.

6.3.3 Dealing with the Singular Component: Example of the Traveling
Salesperson Tour

Let p 2 .0; 1�. We shall say that a bipartite functional L on R
d satisfies the inverse

subadditivity property .Ip/ if there is a constant C such that for all finite multisets
X1; Y1; X2; Y2 included in a bounded set Q � R

d ,

L.X1; Y1/ � L.X1 [ X2; Y1 [ Y2/ C L.X2; Y2/

CC diam.Q/p
�
1 C jX1.Q/ � Y1.Q/j C jX2.Q/ � Y2.Q/j�:
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Although it makes sense for all p, we have been able to check this property on
examples only for p 2 .0; 1�. Also we could have added a constant in front of
L.X2; Y2/.

It is plain that the argument of Sect. 6.2.3 readily adapts to a functional satisfying
.Ip/, for which one already knows a general upper limit result and a limit result
for absolutely continuous laws. It therefore provides a limit result for general laws.
In the remainder of this section, we show that the traveling salesperson bipartite tour
functional L D Tp , p 2 .0; 1� enjoys the inverse subadditivity property. This allows
to prove the following result:

Theorem 11. Assume that either d 2 f1; 2g and 0 < 2p < d , or d � 3 and
p 2 .0; 1�. Let L D Tp be the traveling salesperson bipartite tour functional. Let �

be a finite measure such that for some ˛ >
2dp

d�2p
,
R jxj˛d� < C1: Then, if f is a

density function for the absolutely continuous part of �,

lim inf
n

EL.n�/

n1� p
d

� ˇ0
L

Z
Rd

f 1� p
d :

Moreover if f is proportional to the indicator function of a bounded set with positive
Lebesgue measure

lim
n

EL.n�/

n1� p
d

D ˇL

Z
Rd

f 1� p
d :

All we have to do is to check property .Ip/. More precisely:

Lemma 18. Assume p 2 .0; 1� and L D Tp. For any set X1; X2; Y1; Y2 in a
bounded set Q

L.X1; Y1/ � L.X1 [ X2; Y1 [ Y2/ C L.X2; Y2/

C 2 diam.Q/p .1 C jcard.X1/ � card.Y1/j C jcard.X2/ � card.Y2/j/ :

Proof. We may assume without loss of generality that card.X1/ ^ card.Y1/ � 2,
otherwise, L.X1; Y1/ D 0 and there is nothing to prove. Consider an optimal cycle
G1;2 for L.X1 [ X2; Y1 [ Y2/. In G1;2, m D jcard.X1/ C card.Y1/ � card.X2/ �
card.Y2/j � jcard.X1/ � card.Y1/j C jcard.X2/ � card.Y2/j points have been left
aside. We shall build a bipartite tour G1 on .X 0

1 ; Y 0
1 /, the points of .X1; Y1/ that

have not been left aside by G1;2.
We consider an optimal cycle G2 for L.X 0

2 ; Y 0
2 /, where .X 0

2 ; Y 0
2 / are the points

of .X2; Y2/ that have not been left aside by G1;2. We define .X 00
2 ; Y 00

2 / � .X 0
2 ; Y 0

2 /

as the sets of points that are in G2. Since card.X 0
1 / C card.X 0

2 / D card.Y 0
1 / C

card.Y 0
2 /, we get card.X 0

1 /�card.Y 0
1 / D �card.X 0

2 /Ccard.Y 0
2 /. It implies that the

same number of points from the opposite type need to be removed in .X 0
1 ; Y 0

1 / and
.X 0

2 ; Y 0
2 / in order to build a bipartite tour. We fix an orientation on G1;2. Assume

for example that card.X 0
2 / � card.Y 0

2 /, if a point x 2 X 0
2 nX 00

2 , we then remove
the next point y on the oriented cycle G1;2 of Y 0

1 . Doing so, this defines a couple of
sets .X 00

1 ; Y 00
1 / � .X 0

1 ; Y 0
1 / of cardinality card.X 0

1 / ^ card.Y 0
1 / and
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Fig. 2 In blue, the oriented
cycle G1;2, in red G2, in black
G0

1;2. The points in X1 [ X2

are represented by a cross,
points in Y1 [ Y2 by a circle

L.X 0
1 ; Y 0

1 / � L.X 00
1 ; Y 00

1 /:

We define G0
1;2 as the cycle on .X 00

1 [X 00
2 ; Y 00

1 [Y 00
2 / obtained from G1;2 by saying

that the point after x 2 .X 00
1 [X 00

2 ; Y 00
1 [Y 00

2 / in the oriented cycle G0
1;2 is the next

point y 2 .X 00
1 [ X 00

2 ; Y 00
1 [ Y 00

2 / in G1;2. By construction, G0
1;2 is a bipartite cycle.

Also, since p 2 .0; 1�, we may use the triangle inequality: the distance between
two successive points in the circuit G0

1;2 is bounded by the sum of the length of the
intermediary edges in G1;2. We get

L.X 00
1 [ X 00

2 ; Y 00
1 [ Y 00

2 / � L.X1 [ X2; Y1 [ Y2/:

Now consider the (multi) graph G D G0
1;2 [ G2 obtained by adding all edges

of G0
1;2 and G2. This graph is bipartite, connected, and points in .X 00

1 ; Y 00
1 / have

degree 2 while those in .X 00
2 ; Y 00

2 / have degree 4. Let k be the number of edges in
G, we recall that an eulerian circuit in G is a sequence E D .e1; � � � ; ek/ of adjacent
edges in G such that ek is also adjacent to e1 and all edges of G appears exactly once
in the sequence E . By the Euler’s circuit theorem, there exists an eulerian circuit
in G. Moreover, this eulerian circuit can be chosen so that if ei D fui�1; uig 2 G2

then eiC1 D fuiC1; ui g 2 G0
1;2 with the convention that ekC1 D e1.

This sequence E defines an oriented circuit of points. Now we define an oriented
circuit on .X 00

1 ; Y 00
1 /, by connecting a point x of .X 00

1 ; Y 00
1 / to the next point y

in .X 00
1 ; Y 00

1 / visited by the oriented circuit E . Due to the property that ei 2 G2

implies eiC1 2 G, if x 2 X 00
1 then y 2 Y 00

1 and conversely, if x 2 Y 00
1 then

y 2 X 00
1 . Hence, this oriented circuit defines a bipartite cycle G1 in .X 00

1 ; Y 00
1 /.

By the triangle inequality, the distance between two successive points in the
circuit G1 is bounded by the sum of the length of the intermediary edges in E .
Since each edge of G appears exactly once in E , it follows that

L.X 0
1 ; Y 0

1 / � L.X1 [ X2; Y1 [ Y2/ C L.X 0
2 ; Y 0

2 /:

To conclude, we merge arbitrarily to the cycle G1 the remaining points of .X1; Y1/,
there are at most m of them (regularity .Rp/ property). ut
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7 Variants and Final Comments

As a conclusion, we briefly discuss variants and possible extensions of Theorem 2.
For d > 2p and when � is the uniform distribution on the cube Œ0; 1�d , there exists
a constant ˇp.d/ > 0 such that almost surely

lim
n!1 n

p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� D ˇp.d/:

A natural question is to understand what happens below the critical line d D 2p,
i.e. when d � 2p. For example for d D 2 and p D 1, a similar convergence is also
expected in dimension 2 with scaling

p
n ln n, but this is a difficult open problem.

The main result in this direction goes back to Ajtai, Komlós, and Tusnády [1].
See also the improved upper bound of Talagrand and Yukich in [17]. In dimension 1,
there is no such stabilization to a constant.

Recall that

�
1

n
Mp

�fXign
iD1; fYign

iD1

�� 1
p

D Wp

 
1

n

nX
iD1

ıXi ;
1

n

nX
iD1

ıYi

!
:

where Wp is the Lp-Wasserstein distance. A variant of Theorem 3 can be obtained
along the same lines, concerning the convergence of

n
1
d Wp

 
1

n

nX
iD1

ıXi ; �

!
;

where � is the common distribution of the Xi ’s. Such results are of fundamental
importance in statistics. Also note that combining the triangle inequality and Jensen
inequality, it is not hard to see that

EW1

�1

n

nX
iD1

ıXi ; �
�

� EW1

�1

n

nX
iD1

ıXi ;
1

n

nX
iD1

ıYi

�
� 2EW1

� 1

n

nX
iD1

ıXi ; �
�
;

(similar inequalities hold for p � 1). Hence it is clear that the behavior of this
functional is quite close to the one of the two-sample optimal matching. However,
the extension of Theorem 2 would require some care in the definition of the
boundary functional.

Finally, it is worthy to note that the case of uniform distribution for L D Mp

has a connection with stationary matchings of two independent Poisson point
processes of intensity 1, see Holroyd, Pemantle, Peres, and Schramm [6]. Indeed,
consider mutually independent random variables .Xi /i�1 and .Yj /j �1 having
uniform distribution on Q D Œ�1=2; 1=2�d . It is well known that for any x in the
interior of Q, the pair of point processes
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1

n

nX
iD1

ı
n

1
d .Xi �x/

;
1

n

nX
iD1

ı
n

1
d .Yi �x/

!

converges weakly for the topology of vague convergence to .�1; �2/, where �1 and
�2 are two independent Poisson point processes of intensity 1. Also, we may write

n
p
d �1

EMp.fXign
iD1; fYign

iD1/ D 1

n
E

nX
iD1

ˇ̌
ˇn 1

d .Xi � x/ � n
1
d .Y�n.i/ � x/

ˇ̌
ˇp :

where �n is an optimal matching. Now, the fact that for 0 < p < 2d , limn n
p
d �1

EMp.fXign
iD1; fYign

iD1/ D ˇp.d/ implies the tightness of the sequence of match-
ings �n and it can be used to define a stationary matching � on .�1; �2/, see the
proof of Theorem 1 (iii) in [6] for the details of such an argument. In particular, this
matching � will enjoy a local notion of minimality for the Lp-norm, as defined by
Holroyd in [5] (for the L1-norm). See also related work of Huesmann and Sturm [7].
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