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Preface

The series of advanced courses, initiated in Séminaire de Probabilités XXXIII,
continues with a course of Ivan Nourdin on Gaussian approximations by Malliavin
calculus. The Séminaire also occasionally publishes a series of contributions on
some given theme; in this spirit, some participants from September 2011 Conference
on Stochastic Filtrations, held in Strasbourg and organized by Michel Émery,
have contributed to this volume. The rest of the volume covers a wide range of
themes, such as stochastic calculus and Markov processes, random matrices and
free probability, and combinatorial optimization. These contributions come from
the spontaneous submissions or were solicited by the editors.

We remind that the web site of the Séminaire is

http://portail.mathdoc.fr/SemProba/

and that all the articles of the Séminaire from Volume I in 1967 to Volume XXXVI
in 2002 are freely accessible from the web site

http://www.numdam.org/numdam-bin/feuilleter?j=SPS

We thank the Cellule Math Doc for hosting all these articles within the NUMDAM
project.

Versailles, France C. Donati-Martin
Vandoeuvre-lès-Nancy, France A. Lejay
Versailles, France A. Rouault

v

http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/numdam-bin/feuilleter?j=SPS




Contents

Part I Specialized Course

Lectures on Gaussian Approximations with Malliavin Calculus . . . . . . . . . . . 3
Ivan Nourdin

Part II Other Contributions

Some Sufficient Conditions for the Ergodicity of the Lévy
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Part I
Specialized Course



Lectures on Gaussian Approximations
with Malliavin Calculus

Ivan Nourdin

Overview. In a seminal paper of 2005, Nualart and Peccati [40] discovered a
surprising central limit theorem (called the “Fourth Moment Theorem” in the
sequel) for sequences of multiple stochastic integrals of a fixed order: in this context,
convergence in distribution to the standard normal law is equivalent to convergence
of just the fourth moment. Shortly afterwards, Peccati and Tudor [46] gave a
multidimensional version of this characterization.

Since the publication of these two beautiful papers, many improvements and
developments on this theme have been considered. Among them is the work by
Nualart and Ortiz-Latorre [39], giving a new proof only based on Malliavin calculus
and the use of integration by parts on Wiener space. A second step is my joint paper
[27] (written in collaboration with Peccati) in which, by bringing together Stein’s
method with Malliavin calculus, we were able (among other things) to associate
quantitative bounds to the Fourth Moment Theorem. It turns out that Stein’s method
and Malliavin calculus fit together admirably well. Their interaction has led to
some remarkable new results involving central and non-central limit theorems for
functionals of infinite-dimensional Gaussian fields.

The current survey aims to introduce the main features of this recent theory. It
originates from a series of lectures I delivered1 at the Collège de France between
January and March 2012, within the framework of the annual prize of the Fondation
des Sciences Mathématiques de Paris. It may be seen as a teaser for the book [32],
in which the interested reader will find much more than in this short survey.

1You may watch the videos of the lectures at http://www.sciencesmaths-paris.fr/index.php?page=
175.

I. Nourdin (�)
Université de Lorraine, Institut de Mathématiques Élie Cartan, B.P. 70239, 54506
Vandoeuvre-lès-Nancy Cedex, France
e-mail: inourdin@gmail.com

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLV,
Lecture Notes in Mathematics 2078, DOI 10.1007/978-3-319-00321-4 1,
© Springer International Publishing Switzerland 2013
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4 I. Nourdin

1 Breuer–Major Theorem

The aim of this first section is to illustrate, through a guiding example, the power of
the approach we will develop in this survey.

Let fXkgk>1 be a centered stationary Gaussian family. In this context, stationary
just means that there exists � W Z ! R such that EŒXkXl� D �.k � l/, k; l > 1.
Assume further that �.0/ D 1, that is, each Xk is N .0; 1/ distributed.

Let ' W R ! R be a measurable function satisfying

EŒ'2.X1/� D 1p
2�

Z
R

'2.x/e�x2=2dx < 1: (1)

Let H0;H1; : : : denote the sequence of Hermite polynomials. The first few Hermite
polynomials are H0 D 1, H1 D X , H2 D X2 � 1 and H3 D X3 � 3X . More
generally, the qth Hermite polynomial Hq is defined through the relation XHq D
HqC1 CqHq�1. It is a well-known fact that, when it verifies (1), the function ' may

be expanded in L2.R; e�x2=2dx/ (in a unique way) in terms of Hermite polynomials
as follows:

'.x/ D
1X
qD0

aqHq.x/: (2)

Let d > 0 be the first integer q > 0 such that aq ¤ 0 in (2). It is called the Hermite
rank of '; it will play a key role in our study. Also, let us mention the following
crucial property of Hermite polynomials with respect to Gaussian elements. For any
integer p; q > 0 and any jointly Gaussian random variables U; V � N .0; 1/, we
have

EŒHp.U /Hq.V /� D
�

0 if p ¤ q

qŠEŒUV�q if p D q:
(3)

In particular (choosing p D 0) we have that EŒHq.X1/� D 0 for all q > 1, meaning
that a0 D EŒ'.X1/� in (2). Also, combining the decomposition (2) with (3), it is
straightforward to check that

EŒ'2.X1/� D
1X
qD0

qŠa2q: (4)

We are now in position to state the celebrated Breuer–Major theorem.

Theorem 1 (Breuer and Major (1983); see [7]). Let fXkgk>1 and ' W R ! R be
as above. Assume further that a0 D EŒ'.X1/� D 0 and that

P
k2Z j�.k/jd < 1,
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where � is the covariance function of fXkgk>1 and d is the Hermite rank of '
(observe that d > 1). Then, as n ! 1,

Vn D 1p
n

nX
kD1

'.Xk/
law! N .0; �2/; (5)

with �2 given by

�2 D
1X
qDd

qŠa2q

X
k2Z

�.k/q 2 Œ0;1/: (6)

(The fact that �2 2 Œ0;1/ is part of the conclusion.)

The proof of Theorem 1 is far from being obvious. The original proof consisted
to show that all the moments of Vn converge to those of the Gaussian law N .0; �2/.
As anyone might guess, this required a high ability and a lot of combinatorics. In
the proof we will offer, the complexity is the same as checking that the variance and
the fourth moment of Vn converges to �2 and 3�4 respectively, which is a drastic
simplification with respect to the original proof. Before doing so, let us make some
other comments.

Remark 1. 1. First, it is worthwhile noticing that Theorem 1 (strictly) contains
the classical central limit theorem (CLT), which is not an evident claim at first
glance. Indeed, let fYkgk>1 be a sequence of i.i.d. centered random variables with
common variance �2 > 0, and let FY denote the common cumulative distribution
function. Consider the pseudo-inverse F �1

Y of FY , defined as

F�1
Y .u/ D inffy 2 R W u 6 FY .y/g; u 2 .0; 1/:

When U � UŒ0;1� is uniformly distributed, it is well-known that F �1
Y .U /

lawD Y1.

Observe also that 1p
2�

R X1
�1 e�t 2=2dt is UŒ0;1� distributed. By combining these two

facts, we get that '.X1/
lawD Y1 with

'.x/ D F �1
Y

�
1p
2�

Z x

�1
e�t 2=2dt

�
; x 2 R:

Assume now that �.0/ D 1 and �.k/ D 0 for k ¤ 0, that is, assume that the
sequence fXkgk>1 is composed of i.i.d. N .0; 1/ random variables. Theorem 1
yields that

1p
n

nX
kD1

Yk
lawD 1p

n

nX
kD1

'.Xk/
law! N

0
@0;

1X
qDd

qŠa2q

1
A ;
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thereby concluding the proof of the CLT since �2 D EŒ'2.X1/� D P1
qDd qŠa2q ,

see (4). Of course, such a proof of the CLT is like to crack a walnut with
a sledgehammer. This approach has nevertheless its merits: it shows that the
independence assumption in the CLT is not crucial to allow a Gaussian limit.
Indeed, this is rather the summability of a series which is responsible of this fact,
see also the second point of this remark.

2. Assume that d > 2 and that �.k/ � jkj�D as jkj ! 1 for some D 2 .0; 1
d
/. In

this case, it may be shown that ndD=2�1Pn
kD1 '.Xk/ converges in law to a non-

Gaussian (non degenerated) random variable. This shows in particular that, in the
case where

P
k2Z j�.k/jd D 1, we can get a non-Gaussian limit. In other words,

the summability assumption in Theorem 1 is, roughly speaking, equivalent (when
d > 2) to the asymptotic normality.

3. There exists a functional version of Theorem 1, in which the sum
Pn

kD1 is

replaced by
PŒnt�

kD1 for t > 0. It is actually not that much harder to prove
and, unsurprisingly, the limiting process is then the standard Brownian motion
multiplied by � .

Let us now prove Theorem 1. We first compute the limiting variance, which will
justify the formula (6) we claim for �2. Thanks to (2) and (3), we can write

EŒV 2
n � D 1

n
E

2
64
0
@ 1X
qDd

aq

nX
kD1

Hq.Xk/

1
A
2
3
75 D 1

n

1X
p;qDd

apaq

nX
k;lD1

EŒHp.Xk/Hq.Xl/�

D 1

n

1X
qDd

qŠa2q

nX
k;lD1

�.k � l/q D
1X
qDd

qŠa2q

X
r2Z

�.r/q
�
1 � jr j

n

�
1fjr j<ng:

When q > d and r 2 Z are fixed, we have that

qŠa2q�.r/
q
�
1� jr j

n

�
1fjr j<ng ! qŠa2q�.r/

q as n ! 1:

On the other hand, using that j�.k/j D jEŒX1XkC1�j 6
q
EŒX2

1 �EŒX
2
1Ck� D 1,

we have

qŠa2q j�.r/jq
�
1 � jr j

n

�
1fjr j<ng 6 qŠa2q j�.r/jq 6 qŠa2q j�.r/jd ;

with
P1

qDd
P

r2Z qŠa2q j�.r/jd D EŒ'2.X1/� � P
r2Z j�.r/jd < 1, see (4). By

applying the dominated convergence theorem, we deduce that EŒV 2
n � ! �2 as

n ! 1, with �2 2 Œ0;1/ given by (6).
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Let us next concentrate on the proof of (5). We shall do it in three steps of
increasing generality (but of decreasing complexity!):

(i) When ' D Hq has the form of a Hermite polynomial (for some q > 1).
(ii) When ' D P 2 RŒX� is a real polynomial.

(iii) In the general case when ' 2 L2.R; e�x2=2dx/.

We first show that (ii) implies (iii). That is, let us assume that Theorem 1 is
shown for polynomial functions ', and let us show that it holds true for any function
' 2 L2.R; e�x2=2dx/. We proceed by approximation. LetN > 1 be a (large) integer
(to be chosen later) and write

Vn D 1p
n

NX
qDd

aq

nX
kD1

Hq.Xk/C 1p
n

1X
qDNC1

aq

nX
kD1

Hq.Xk/ DW Vn;N CRn;N :

Similar computations as above lead to

sup
n>1

EŒR2n;N � 6
1X

qDNC1
qŠa2q �

X
r2Z

j�.r/jd ! 0 as N ! 1: (7)

(Recall from (4) that EŒ'2.X1/� D P1
qDd qŠa2q < 1.) On the other hand, using (ii)

we have that, for fixed N and as n ! 1,

Vn;N
law! N

0
@0;

NX
qDd

qŠa2q

X
k2Z

�.k/q

1
A : (8)

It is then a routine exercise (details are left to the reader) to deduce from (7)–(8) that

Vn D Vn;N CRn;N
law! N .0; �2/ as n ! 1, that is, that (iii) holds true.

Next, let us prove (i), that is, (5) when ' D Hq is the qth Hermite polynomial.
We actually need to work with a specific realization of the sequence fXkgk>1. The
space

H WD spanfX1;X2; : : :gL
2.˝/

being a real separable Hilbert space, it is isometrically isomorphic to either RN (with
N > 1) or L2.RC/. Let us assume that H ' L2.RC/, the case where H ' R

N

being easier to handle. Let ˚ W H ! L2.RC/ be an isometry. Set ek D ˚.Xk/ for
each k > 1. We have

�.k � l/ D EŒXkXl � D
Z 1

0

ek.x/el .x/dx; k; l > 1 (9)
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If B D .Bt /t>0 denotes a standard Brownian motion, we deduce that

fXkgk>1
lawD
�Z 1

0

ek.t/dBt

�
k>1

;

these two families being indeed centered, Gaussian and having the same covariance
structure (by construction of the ek’s). On the other hand, it is a well-known result
of stochastic analysis (which follows from an induction argument through the Itô
formula) that, for any function e 2 L2.RC/ such that kekL2.RC/

D 1, we have

Hq

�Z 1

0

e.t/dBt

�
D qŠ

Z 1

0

dBt1e.t1/
Z t1

0

dBt2 e.t2/ : : :
Z tq�1

0

dBtq e.tq/: (10)

(For instance, by Itô’s formula we can write

�Z 1

0

e.t/dBt

�2
D 2

Z 1

0

dBt1e.t1/
Z t1

0

dBt2e.t2/C
Z 1

0

e.t/2dt

D 2

Z 1

0

dBt1e.t1/
Z t1

0

dBt2e.t2/C 1;

which is nothing but (10) for q D 2, since H2 D X2 � 1.) At this stage, let us adopt
the two following notational conventions:

(a) If ' (resp.  ) is a function of r (resp. s) arguments, then the tensor product
' ˝  is the function of r C s arguments given by ' ˝  .x1; : : : ; xrCs/ D
'.x1; : : : ; xr / .xrC1; : : : ; xrCs/. Also, if q > 1 is an integer and e is a function,
the tensor product function e˝q is the function e ˝ : : : ˝ e where e appears q
times.

(b) If f 2 L2.RqC/ is symmetric (meaning that f .x1; : : : ; xq/ D f .x�.1/; : : : ; x�.q//

for all permutation � 2 Sq and almost all x1; : : : ; xq 2 RC) then

IBq .f / D
Z
R
q

C

f .t1; : : : ; tq/dBt1 : : : dBtq

WD qŠ

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtqf .t1; : : : ; tq/:

With these new notations at hand, observe that we can rephrase (10) in a simple
way as

Hq

�Z 1

0

e.t/dBt

�
D IBq .e

˝q/: (11)
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It is now time to introduce a very powerful tool, the so-called Fourth Moment
Theorem of Nualart and Peccati. This wonderful result lies at the heart of the
approach we shall develop in these lecture notes. We will prove it in Sect. 5.

Theorem 2 (Nualart and Peccati (2005); see [40]). Fix an integer q > 2,
and let ffngn>1 be a sequence of symmetric functions of L2.RqC/. Assume that
EŒIBq .fn/

2� D qŠkfnk2L2.Rq
C
/

! �2 as n ! 1 for some � > 0. Then, the following

three assertions are equivalent as n ! 1:

(1) IBq .fn/
law! N .0; �2/;

(2) EŒIBq .fn/
4�

law! 3�4;
(3) kfn ˝r fnkL2.R2q�2r

C
/

! 0 for each r D 1; : : : ; q � 1, where fn ˝r fn is the

function of L2.R2q�2r
C / defined by

fn ˝r fn.x1; : : : ; x2q�2r /

D
Z
R
r
C

fn.x1; : : : ; xq�r ; y1; : : : ; yr /fn.xq�rC1; : : : ; x2q�2r ; y1; : : : ; yr /dy1 : : : dyr :

Remark 2. In other words, Theorem 2 states that the convergence in law of a
normalized sequence of multiple Wiener–Itô integrals IBq .fn/ towards the Gaussian
law N .0; �2/ is equivalent to convergence of just the fourth moment to 3�4. This
surprising result has been the starting point of a new line of research, and has
quickly led to several applications, extensions and improvements. One of these
improvements is the following quantitative bound associated to Theorem 2 that we
shall prove in Sect. 5 by combining Stein’s method with the Malliavin calculus.

Theorem 3 (Nourdin and Peccati (2009); see [27]). If q > 2 is an integer and f
is a symmetric element of L2.RqC/ satisfying EŒIBq .f /

2� D qŠkf k2
L2.R

q

C
/

D 1, then

sup
A2B.R/

ˇ̌
ˇ̌P ŒIBq .f / 2 A� � 1p

2�

Z
A

e�x2=2dx

ˇ̌
ˇ̌ 6 2

s
q � 1
3q

qˇ̌
EŒIBq .f /

4� � 3
ˇ̌
:

Let us go back to the proof of (i), that is, to the proof of (5) for ' D Hq . Recall
that the sequence fekg has be chosen for (9) to hold. Using (10) (see also (11)), we
can write Vn D IBq .fn/, with

fn D 1p
n

nX
kD1

e
˝q
k :

We already showed that EŒV 2
n � ! �2 as n ! 1. So, according to Theorem 2, to

get (i) it remains to check that kfn ˝r fnkL2.R2q�2r

C
/

! 0 for any r D 1; : : : ; q � 1.

We have
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fn ˝r fn D 1

n

nX
k;lD1

e
˝q
k ˝r e

˝q
l D 1

n

nX
k;lD1

hek; elirL2.RC/
e

˝q�r
k ˝ e

˝q�r
l

D 1

n

nX
k;lD1

�.k � l/r e
˝q�r
k ˝ e

˝q�r
l ;

implying in turn

kfn ˝r fnk2
L2.R

2q�2r

C
/

D 1

n2

nX
i;j;k;lD1

�.i � j /r�.k � l/rhe˝q�r
i ˝ e

˝q�r
j ; e

˝q�r
k ˝ e

˝q�r
l i

L2.R
2q�2r

C
/

D 1

n2

nX
i;j;k;lD1

�.i � j /r�.k � l/r�.i � k/q�r �.j � l/q�r :

Observe that j�.k � l/jr j�.i � k/jq�r 6 j�.k � l/jq C j�.i � k/jq . This, together
with other obvious manipulations, leads to the bound

kfn ˝r fnk2
L2.R

2q�2r

C
/

6 2

n

X
k2Z

j�.k/jq
X
ji j<n

j�.i/jr
X
jj j<n

j�.j /jq�r

6 2

n

X
k2Z

j�.k/jd
X
ji j<n

j�.i/jr
X
jj j<n

j�.j /jq�r

D 2
X
k2Z

j�.k/jd � n� q�r
q

X
ji j<n

j�.i/jr � n� r
q

X
jj j<n

j�.j /jq�r :

Thus, to get that kfn ˝r fnkL2.R2q�2r

C
/

! 0 for any r D 1; : : : ; q � 1, it suffices to

show that

sn.r/ WD n
� q�r

q

X
ji j<n

j�.i/jr ! 0 for any r D 1; : : : ; q � 1:

Let r D 1; : : : ; q � 1. Fix ı 2 .0; 1/ (to be chosen later) and let us decompose sn.r/
into

sn.r/ D n
� q�r

q

X
ji j<Œnı�

j�.i/jr C n
� q�r

q

X
Œnı�6ji j<n

j�.i/jr DW s1;n.ı; r/C s2;n.ı; r/:

Using Hölder inequality, we get that

s1;n.ı; r/ 6 n� q�r
r

0
@ X

ji j<Œnı�
j�.i/jq

1
A
r=q

.1C 2Œnı�/
q�r
q 6 cst � ı1�r=q;
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as well as

s2;n.ı; r/ 6 n� q�r
r

0
@ X
Œnı�6ji j<n

j�.i/jq
1
A
r=q

.2n/
q�r
q 6 cst �

0
@ X

ji j>Œnı�
j�.i/jq

1
A
r=q

:

Since 1 � r=q > 0, it is a routine exercise (details are left to the reader) to deduce
that sn.r/ ! 0 as n ! 1. Since this is true for any r D 1; : : : ; q�1, this concludes
the proof of (i).

It remains to show (ii), that is, convergence in law (5) whenever ' is a real
polynomial. We shall use the multivariate counterpart of Theorem 2, which was
obtained shortly afterwards by Peccati and Tudor. Since only a weak version (where
all the involved multiple Wiener–Itô integrals have different orders) is needed here,
we state the result of Peccati and Tudor only in this situation. We refer to Sect. 6 for
a more general version and its proof.

Theorem 4 (Peccati and Tudor (2005); see [46]). Consider l integers q1; : : : ; ql >
1, with l > 2. Assume that all the qi ’s are pairwise different. For each
i D 1; : : : ; l , let ff i

n gn>1 be a sequence of symmetric functions ofL2.RqiC/ satisfying
EŒIBqi .f

i
n /
2� D qi Škf i

n k2
L2.R

qi
C
/

! �2i as n ! 1 for some �i > 0. Then, the

following two assertions are equivalent as n ! 1:

(1) IBqi .f
i
n /

law! N .0; �2i / for all i D 1; : : : ; l;

(2)
�
IBq1 .f

1
n /; : : : ; I

B
ql
.f l
n /
� law! N

�
0; diag.�21 ; : : : ; �

2
l /
�
.

In other words, Theorem 4 proves the surprising fact that, for such a sequence of
vectors of multiple Wiener–Itô integrals, componentwise convergence to Gaussian
always implies joint convergence. We shall combine Theorem 4 with (i) to prove (ii).
Let ' have the form of a real polynomial. In particular, it admits a decomposition
of the type ' D PN

qDd aqHq for some finite integer N > d . Together with (i),
Theorem 4 yields that

 
1p
n

nX
kD1

Hd .Xk/; : : : ;
1p
n

nX
kD1

HN .Xk/

!
law! N

�
0; diag.�2d ; : : : ; �

2
N /
�
;

where �2q D qŠ
P

k2Z �.k/q , q D d; : : : ; N . We deduce that

Vn D 1p
n

NX
qDd

aq

nX
kD1

Hq.Xk/
law! N

0
@0;

NX
qDd

a2qqŠ
X
k2Z

�.k/q

1
A ;

which is the desired conclusion in (ii) and conclude the proof of Theorem 1. ut
To Go Further. In [33], one associates quantitative bounds to Theorem 1 by using
a similar approach.
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2 Universality of Wiener Chaos

Before developing the material which will be necessary for the proof of the Fourth
Moment Theorem 2 (as well as other related results), to motivate the reader let us
study yet another consequence of this beautiful result.

For any sequenceX1;X2; : : : of i.i.d. random variables with mean 0 and variance

1, the central limit theorem asserts that Vn D .X1 C : : :C Xn/=
p
n

law! N .0; 1/ as
n ! 1. It is a particular instance of what is commonly referred to as a “universality
phenomenon” in probability. Indeed, we observe that the limit of the sequence Vn
does not rely on the specific law of the Xi ’s, but only of the fact that its first two
moments are 0 and 1 respectively.

Another example that exhibits a universality phenomenon is given by Wigner’s
theorem in the random matrix theory. More precisely, let fXij gj>i>1 and
fXii=

p
2gi>1 be two independent families composed of i.i.d. random variables

with mean 0, variance 1, and all the moments. Set Xji D Xij and consider the n�n
random matrixMn D .

Xijp
n
/16i;j6n. The matrixMn being symmetric, its eigenvalues

�1;n; : : : ; �n;n (possibly repeated with multiplicity) belong to R. Wigner’s theorem
then asserts that the spectral measure of Mn, that is, the random probability
measure defined as 1

n

Pn
kD1 ı�k;n , converges almost surely to the semicircular law

1
2�

p
4 � x21Œ�2;2�.x/dx, whatever the exact distribution of the entries of Mn are.

In this section, our aim is to prove yet another universality phenomenon, which
is in the spirit of the two afore-mentioned results. To do so, we need to introduce
the following two blocks of basic ingredients:

(i) Three sequences X D .X1;X2; : : :/, G D .G1;G2; : : :/ and E D ."1; "2; : : :/ of
i.i.d. random variables, all with mean 0, variance 1 and finite fourth moment.
We are more specific with G and E, by assuming further that G1 � N .0; 1/

and P."1 D 1/ D P."1 D �1/ D 1=2. (As we will see, E will actually play no
role in the statement of Theorem 5; we will however use it to build a interesting
counterexample, see Remark 3(1).)

(ii) A fixed integer d > 1 as well as a sequence gn W f1; : : : ; ngd ! R, n > 1 of real
functions, each gn satisfying in addition that, for all i1; : : : ; id D 1; : : : ; n,

(a) gn.i1; : : : ; id / D gn.i�.1/; : : : ; i�.d// for all permutation � 2 Sd .
(b) gn.i1; : : : ; id / D 0 whenever ik D il for some k ¤ l .
(c) dŠ

Pn
i1;:::;idD1 gn.i1; : : : ; id /2 D 1.

(Of course, conditions .a/ and .b/ are becoming immaterial when d D 1.) If
x D .x1; x2; : : :/ is a given real sequence, we also set

Qd.gn; x/ D
nX

i1;:::;idD1
gn.i1; : : : ; id /xi1 : : : xid :
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Using (b) and (c), it is straightforward to check that, for any n > 1, we have
EŒQd.gn;X/� D 0 and EŒQd.gn;X/2� D 1.

We are now in position to state our new universality phenomenon.

Theorem 5 (Nourdin, Peccati and Reinert (2010); see [34]). Assume that d > 2.
Then, as n ! 1, the following two assertions are equivalent:

(˛) Qd.gn;G/
law! N .0; 1/;

(ˇ) Qd.gn;X/
law! N .0; 1/ for any sequence X as given in (i).

Before proving Theorem 5, let us address some comments.

Remark 3. 1. In reality, the universality phenomenon in Theorem 5 is a bit more
subtle than in the CLT or in Wigner’s theorem. To illustrate what we have
in mind, let us consider an explicit situation (in the case d D 2). Let gn W
f1; : : : ; ng2 ! R be the function given by

gn.i; j / D 1

2
p
n � 1

1fiD1;j>2 or jD1;i>2g:

It is easy to check that gn satisfies the three assumptions .a/-.b/-.c/ and also that

Q2.gn; x/ D x1 � 1p
n � 1

nX
kD2

xk:

The classical CLT then implies thatQ2.gn;G/
law! G1G2 andQ2.gn;E/

law! "1G2.
Moreover, it is a classical and easy exercise to check that "1G2 is N .0; 1/

distributed. Thus, what we just showed is that, although Q2.gn;E/
law! N .0; 1/

as n ! 1, the assertion (ˇ) in Theorem 5 fails when choosing X D G (indeed,
the product of two independent N .0; 1/ random variables is not gaussian). This
means that, in Theorem 5, we cannot replace the sequence G in (˛) by any other
sequence (at least, not by E !).

2. Theorem 5 is completely false when d D 1. For an explicit counterexample,
consider for instance gn.i/ D 1fiD1g, i D 1; : : : ; n. We then have Q1.gn; x/ D
x1. Consequently, the assertion (˛) is trivially verified (it is even an equality in
law!) but the assertion (ˇ) is never true unless X1 � N .0; 1/.

Proof of Theorem 5. Of course, only the implication (˛)!(ˇ) must be shown. Let
us divide its proof into three steps.

Step 1. Set ei D 1Œi�1;i �, i > 1, and let fn 2 L2.RdC/ be the symmetric function
defined as

fn D
nX

i1;:::;idD1
gn.i1; : : : ; id /ei1 ˝ : : :˝ eid :
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By the very definition of IBd .fn/, we have

IBd .fn/ D dŠ

nX
i1;:::;idD1

gn.i1; : : : ; id /

Z 1

0
dBt1 ei1.t1/

Z t1

0
dBt2 ei2 .t2/ : : :

Z td�1

0
dBtd eid .td /:

Observe that
Z 1

0

dBt1ei1 .t1/
Z t1

0

dBt2ei2 .t2/ : : :
Z td�1

0

dBtd eid .td /

is not almost surely zero (if and) only if id 6 id�1 6 : : : 6 i1. By combining this
fact with assumption (b), we deduce that

IBd .fn/ D dŠ
X

16id <:::<i16n
gn.i1; : : : ; id /

�
Z 1

0

dBt1ei1.t1/
Z t1

0

dBt2ei2.t2/ : : :
Z td�1

0

dBtd eid .td /

D dŠ
X

16id <:::<i16n
gn.i1; : : : ; id /.Bi1 � Bi1�1/ : : : .Bid � Bid�1/

D
nX

i1;:::;idD1
gn.i1; : : : ; id /.Bi1 � Bi1�1/ : : : .Bid � Bid�1/

lawD Qd.gn;G/:

That is, the sequence Qd.gn;G/ in (˛) has actually the form of a multiple
Wiener–Itô integral. On the other hand, going back to the definition of fn ˝d�1 fn
and using that hei ; ej iL2.RC/

D ıij (Kronecker symbol), we get

fn ˝d�1 fn D
nX

i;jD1

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /gn.j; k2; : : : ; kd /

1
A ei ˝ ej ;

so that

kfn ˝d�1 fnk2L2.R2
C
/

D
nX

i;jD1

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /gn.j; k2; : : : ; kd /

1
A
2

>
nX
iD1

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /
2

1
A
2

(by summing only over i D j )

> max
16i6n

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /
2

1
A
2

D �2n ; (12)
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where

�n WD max
16i6n

nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /
2: (13)

Now, assume that (˛) holds. By Theorem 2 and because Qd.gn;G/
lawD IBd .fn/, we

have in particular that kfn ˝d�1 fnkL2.R2
C
/ ! 0 as n ! 1. Using the inequality

(12), we deduce that �n ! 0 as n ! 1.
Step 2. We claim that the following result (whose proof is given in Step 3) allows

to conclude the proof of .˛/ ! .ˇ/.

Theorem 6 (Mossel, O’Donnel and Oleszkiewicz (2010); see [20]). Let X and G
be given as in (i) and let gn W f1; : : : ; ngd ! R be a function satisfying the three
conditions (a)-(b)-(c). Set � D maxf3;EŒX4

1 �g > 1 and let �n be the quantity given
by (13). Then, for all function ' W R ! R of class C 3 with k' 000k1 < 1, we have

ˇ̌
EŒ'.Qd.gn;X//��EŒ'.Qd.gn;G//�

ˇ̌
6 �

3
.3C 2�/

3
2 .d�1/d 3=2

p
dŠ k' 000k1

p
�n:

Indeed, assume that (˛) holds. By Step 1, we have that �n ! 0 as n ! 1.
Next, Theorem 6 together with (˛), lead to (ˇ) and therefore conclude the proof of
Theorem 5.

Step 3: Proof of Theorem 6. During the proof, we will need the following
auxiliary lemma, which is of independent interest.

Lemma 1 (Hypercontractivity). Let n > d > 1, and consider a multilinear
polynomial P 2 RŒx1; : : : ; xn� of degree d , that is, P is of the form

P.x1; : : : ; xn/ D
X

S�f1;:::;ng
jS jDd

aS
Y
i2S

xi :

Let X be as in (i). Then,

E
�
P.X1; : : : ; Xn/

4
	

6
�
3C 2EŒX4

1 �
�2d

E
�
P.X1; : : : ; Xn/

2
	2
: (14)

Proof. The proof follows ideas from [20] and is by induction on n. The case
n D 1 is trivial. Indeed, in this case we have d D 1 so that P.x1/ D ax1;
the conclusion therefore asserts that (recall that EŒX2

1 � D 1, implying in turn that
EŒX4

1 � > EŒX2
1 �
2 D 1)

a4EŒX4
1 � 6 a4

�
3C 2EŒX4

1 �
�2
;

which is evident. Assume now that n > 2. We can write

P.x1; : : : ; xn/ D R.x1; : : : ; xn�1/C xnS.x1; : : : ; xn�1/;
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where R;S 2 RŒx1; : : : ; xn�1� are multilinear polynomials of n � 1 variables.
Observe that R has degree d , while S has degree d � 1. Now write P D
P.X1; : : : ; Xn/, R D R.X1; : : : ; Xn�1/, S D S.X1; : : : ; Xn�1/ and ˛ D EŒX4

1 �.
Clearly, R and S are independent ofXn. We have, usingEŒXn� D 0 andEŒX2

n� D 1:

EŒP2� D EŒ.R C SXn/2� D EŒR2�C EŒS2�

EŒP4� D EŒ.R C SXn/4� D EŒR4�C 6EŒR2S2�C 4EŒX3
n�EŒRS3�C EŒX4

n�EŒS
4�:

Observe that EŒR2S2� 6
p
EŒR4�

p
EŒS4� and

EŒX3
n �EŒRS3� 6 ˛

3
4
�
EŒR4�

� 1
4
�
EŒS4�

� 3
4 6 ˛

p
EŒR4�

p
EŒS4�C ˛EŒS4�;

where the last inequality used both x
1
4 y

3
4 6 p

xy C y (by considering x < y and

x > y) and ˛
3
4 6 ˛ (because ˛ > EŒX4

n� > EŒX2
n�
2 D 1). Hence

EŒP4� 6 EŒR4�C 2.3C 2˛/
p
EŒR4�

p
EŒS4�C 5˛EŒS4�

6 EŒR4�C 2.3C 2˛/
p
EŒR4�

p
EŒS4�C .3C 2˛/2EŒS4�

D

p

EŒR4�C .3C 2˛/
p
EŒS4�

�2
:

By induction, we have
p
EŒR4� 6 .3 C 2˛/dEŒR2� and

p
EŒS4� 6 .3 C

2˛/d�1EŒS2�. Therefore

EŒP4� 6 .3C 2˛/2d
�
EŒR2�CEŒS2�

�2 D .3C 2˛/2dEŒP2�2;

and the proof of the lemma is concluded. ut
We are now in position to prove Theorem 6. Following [20], we use the Lindeberg

replacement trick. Without loss of generality, we assume that X and G are stochas-
tically independent. For i D 0; : : : ; n, let W.i/ D .G1; : : : ; Gi ; XiC1; : : : ; Xn/. Fix
a particular i D 1; : : : ; n and write

Ui D
X

16i1;:::;id6n

i1¤i;:::;id¤i

gn.i1; : : : ; id /W
.i/
i1
: : : W

.i/
id
;

Vi D
X

16i1;:::;id6n

9j W ijDi

gn.i1; : : : ; id /W
.i/
i1
: : :

b

W
.i/
i : : : W

.i/
id

D d

nX
i2;:::;idD1

gn.i; i2; : : : ; id /W
.i/
i2
: : : W

.i/
id
;
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where b

W
.i/
i means that this particular term is dropped (observe that this notation

bears no ambiguity: indeed, since gn vanishes on diagonals, each string i1; : : : ; id
contributing to the definition of Vi contains the symbol i exactly once). For each i ,
note that Ui and Vi are independent of the variablesXi and Gi , and that

Qd.gn;W.i�1// D Ui CXiVi and Qd.gn;W.i// D Ui CGiVi :

By Taylor’s theorem, using the independence of Xi from Ui and Vi , we have

ˇ̌
ˇ̌E�'.Ui CXiVi /

	 � E
�
'.Ui /

	 �E�' 0.Ui/Vi
	
EŒXi � � 1

2
E
�
' 00.Ui/V 2

i

	
EŒX2

i �

ˇ̌
ˇ̌

6 1

6
k' 000k1EŒjXi j3�EŒjVi j3�:

Similarly,

ˇ̌
ˇ̌E�'.Ui CGiVi /

	 �E�'.Ui/	 � E
�
' 0.Ui /Vi

	
EŒGi � � 1

2
E
�
' 00.Ui/V 2

i

	
EŒG2

i �

ˇ̌
ˇ̌

6 1

6
k' 000k1EŒjGi j3�EŒjVi j3�:

Due to the matching moments up to second order on one hand, and using that
EŒjXi j3� 6 � and EŒjGi j3� 6 � on the other hand, we obtain that

ˇ̌
E
�
'.Qd.gn;W.i�1///

	 � E
�
'.Qd.gn;W.i///

	ˇ̌
D ˇ̌

E
�
'.Ui CGiVi /

	 � E
�
'.Ui CXiVi /

	ˇ̌

6 �

3
k' 000k1EŒjVi j3�:

By Lemma 1, we have

EŒjVi j3� 6 EŒV 4
i �

3
4 6 .3C 2�/

3
2 .d�1/EŒV 2

i �
3
2 :

Using the independence between X and G, the properties of gn (which is symmetric
and vanishes on diagonals) as well as EŒXi � D EŒGi � D 0 and EŒX2

i � D
EŒG2

i �D 1, we get

EŒV 2
i �
3=2 D

�
ddŠ

nX
i2;:::;idD1

gn.i; i2; : : : ; id /
2

�3=2

6 .ddŠ/3=2

vuut max
16j6n

nX
j2;:::;jdD1

gn.j; j2; : : : ; jd /2 �
nX

i2;:::;idD1

gn.i; i2; : : : ; id /
2;
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implying in turn that

nX
iD1

EŒV 2
i �
3=2 6 .ddŠ/3=2

vuut max
16j6n

nX
j2;:::;jdD1

gn.j; j2; : : : ; jdk /
2

�
nX

i1;:::;idD1
gn.i1; i2; : : : ; id /

2;

D d3=2
p
dŠ

p
�n:

By collecting the previous bounds, we get

jEŒ'.Qd.gn;X//� � EŒ'.Qd.gn;G//�j

6
nX
iD1

ˇ̌
E
�
'.Qd.gn;W.i�1///

	 �E�'.Qd.gn;W.i///
	ˇ̌

6 �

3
k' 000k1

nX
iD1

EŒjVi j3� 6 �

3
.3C 2�/

3
2 .d�1/k' 000k1

nX
iD1

EŒV 2
i �

3
2

6 �

3
.3C 2�/

3
2 .d�1/d 3=2

p
dŠ k' 000k1

p
�n; ut

which is exactly what was claimed in Theorem 6.

As a final remark, let us observe that Theorem 6 contains the CLT as a special
case. Indeed, fix d D 1 and let gn W f1; : : : ; ng ! R be the function given by
gn.i/ D 1p

n
. We then have �n D 1=n. It is moreover clear that Q1.gn;G/ �

N .0; 1/. Then, for any function ' W R ! R of class C 3 with k' 000k1 < 1 and any
sequence X as in (i), Theorem 6 implies that

ˇ̌
ˇ̌E
�
'

�
X1 C : : :CXnp

n

�
� 1p

2�

Z
R

'.y/e�y2=2dy

ˇ̌
ˇ̌

6 maxfEŒX4
1 �=3; 1gk' 000k1 � 1p

n
;

from which it is straightforward to deduce the CLT.

To Go Further. In [34], Theorem 5 is extended to the case where the target law
is the centered Gamma law. In [48], there is a version of Theorem 5 in which the
sequence G is replaced by P, a sequence of i.i.d. Poisson random variables. Finally,
let us mention that both Theorems 5 and 6 have been extended to the free probability
framework (see Sect. 11) in [13].
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3 Stein’s Method

In this section, we shall introduce some basic features of the so-called Stein method,
which is the first step toward the proof of the Fourth Moment Theorem 2. Actually,
we will not need the full force of this method, only a basic estimate.

A random variableX is N .0; 1/ distributed if and only ifEŒeitX � D e�t 2=2 for all
t 2 R. This simple fact leads to the idea that a random variable X has a law which
is close to N .0; 1/ if and only if EŒeitX � is approximately e�t 2=2 for all t 2 R. This
last claim is nothing but the usual criterion for the convergence in law through the
use of characteristic functions.

Stein’s seminal idea is somehow similar. He noticed in [52] that X is N .0; 1/

distributed if and only if EŒf 0.X/ � Xf .X/� D 0 for all function f belonging to
a sufficiently rich class of functions (for instance, the functions which are C 1 and
whose derivative grows at most polynomially). He then wondered whether a suitable
quantitative version of this identity may have fruitful consequences. This is actually
the case and, even for specialists (at least for me!), the reason why it works so well
remains a bit mysterious. Surprisingly, the simple following statement (due to Stein
[52]) happens to contain all the elements of Stein’s method that are needed for our
discussion. (For more details or extensions of the method, one can consult the recent
books [9, 32] and the references therein.)

Lemma 2 (Stein (1972); see [52]). Let N � N .0; 1/ be a standard Gaussian
random variable. Let h W R ! Œ0; 1� be any continuous function. Define f W
R!R by

f .x/ D e
x2

2

Z x

�1
�
h.a/ � EŒh.N /�

�
e� a2

2 da (15)

D �e x22
Z 1

x

�
h.a/ � EŒh.N /�

�
e� a2

2 da: (16)

Then f is of class C 1, satisfies jf .x/j 6
p
�=2, jf 0.x/j 6 2 and

f 0.x/ D xf .x/C h.x/ �EŒh.N /� (17)

for all x 2 R.

Proof. The equality between (15) and (16) comes from

0 D E
�
h.N / � EŒh.N /�

	 D 1p
2�

Z C1

�1
�
h.a/ � EŒh.N /�

�
e� a2

2 da:
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Using (16) we have, for x > 0:

ˇ̌
xf .x/

ˇ̌ D
ˇ̌
ˇ̌xe

x2

2

Z C1

x

�
h.a/ �EŒh.N /��e� a2

2 da

ˇ̌
ˇ̌

6 xe
x2

2

Z C1

x

e� a2

2 da 6 e
x2

2

Z C1

x

ae� a2

2 da D 1:

Using (15) we have, for x 6 0:

ˇ̌
xf .x/

ˇ̌ D
ˇ̌
ˇ̌xe

x2

2

Z x

�1
�
h.a/ �EŒh.N /��e� a2

2 da

ˇ̌
ˇ̌

6 jxje x22
Z C1

jxj
e� a2

2 da 6 e
x2

2

Z C1

jxj
ae� a2

2 da D 1:

The identity (17) is readily checked. We deduce, in particular, that

jf 0.x/j 6 jxf .x/j C jh.x/ �EŒh.N /�j 6 2

for all x 2 R. On the other hand, by (15)–(16), we have, for every x 2 R,

jf .x/j 6 ex
2=2 min

�Z x

�1
e�y2=2dy;

Z 1

x

e�y2=2dy

�
D ex

2=2

Z 1

jxj
e�y2=2dy 6

r
�

2
;

where the last inequality is obtained by observing that the function s W RC ! R

given by s.x/ D ex
2=2
R1
x
e�y2=2dy attains its maximum at x D 0 (indeed,

we have

s0.x/ D xex
2=2

Z 1

x

e�y2=2dy � 1 6 ex
2=2

Z 1

x

ye�y2=2dy � 1 D 0

so that s is decreasing on RC) and that s.0/ D p
�=2.

The proof of the lemma is complete. ut
To illustrate how Stein’s method is a powerful approach, we shall use it to prove

the celebrated Berry–Esseen theorem. (Our proof is based on an idea introduced by
Ho and Chen in [16], see also Bolthausen [5].)

Theorem 7 (Berry and Esseen (1956); see [15]). Let X D .X1;X2; : : :/ be a
sequence of i.i.d. random variables withEŒX1� D 0,EŒX2

1 � D 1 andEŒjX1j3� < 1,
and define

Vn D 1p
n

nX
kD1

Xk; n > 1;
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to be the associated sequence of normalized partial sums. Then, for any n > 1,
one has

sup
x2R

ˇ̌
ˇ̌P .Vn 6 x/� 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 33EŒjX1j3�p

n
: (18)

Remark 4. One may actually show that (18) holds with the constant 0:4784 instead
of 33. This has been proved by Korolev and Shevtsova [18] in 2010. (They do
not use Stein’s method.) On the other hand, according to Esseen [15] himself, it
is impossible to expect a universal constant smaller than 0:4097.

Proof of (18). For each n > 2, let Cn > 0 be the best possible constant satisfying,
for all i.i.d. random variables X1; : : : ; Xn with EŒjX1j3� < 1, EŒX2

1 � D 1 and
EŒX1� D 0, that

sup
x2R

ˇ̌
ˇ̌P.Vn 6 x/ � 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 Cn EŒjX1j3�p

n
: (19)

As a first (rough) estimation, we first observe that, since X1 is centered with
EŒX2

1 � D 1, one has EŒjX1j3� > EŒX2
1 �

3
2 D 1, so that Cn 6

p
n. This is of course

not enough to conclude, since we need to show that Cn 6 33.
For any x 2 R and " > 0, introduce the function

hx;".u/ D
8<
:
1 if u 6 x � "

linear if x � " < u < x C "

0 if u > x C "

:

It is immediately checked that, for all n > 2, " > 0 and x 2 R, we have

EŒhx�";".Vn/� 6 P.Vn 6 x/ 6 EŒhxC";".Vn/�:

Moreover, for N � N .0; 1/, " > 0 and x 2 R, we have, using that the density of
N is bounded by 1p

2�
,

EŒhxC";".N /� � 4"p
2�

6 EŒhx�";".N /� 6 P.N 6 x/

6 EŒhxC";".N /� 6 EŒhx�";".N /�C 4"p
2�
:

Therefore, for all n > 2 and " > 0, we have

sup
x2R

ˇ̌
ˇ̌P.Vn 6 x/ � 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 sup

x2R
ˇ̌
EŒhx;".Vn/��EŒhx;".N /�

ˇ̌C 4"p
2�
:
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Assume for the time being that, for all " > 0,

sup
x2R

jEŒhx;".Vn/�� EŒhx;".N /�j 6 6EŒjX1j3�p
n

C 3Cn�1 EŒjX1j3�2
" n

: (20)

We deduce that, for all " > 0,

sup
x2R

ˇ̌
ˇ̌P.Vn 6x/� 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 6EŒjX1j3�p

n
C 3Cn�1 EŒjX1j3�2

" n
C 4"p

2�
:

By choosing " D
q

Cn�1

n
EŒjX1j3�, we get that

sup
x2R

ˇ̌
ˇ̌P.Vn 6 x/ � 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 EŒjX1j3�p

n

�
6C

�
3C 4p

2�

�p
Cn�1


;

so that Cn 6 6 C


3C 4p

2�

�p
Cn�1. It follows by induction that Cn 6 33 (recall

that Cn 6
p
n so that C2 6 33 in particular), which is the desired conclusion.

We shall now use Stein’s Lemma 2 to prove that (20) holds. Fix x 2 R and " > 0,
and let f denote the Stein solution associated with h D hx;", that is, f satisfies
(15). Observe that h is continuous, and therefore f is C 1. Recall from Lemma 2
that kf k1 6

p
�
2

and kf 0k1 6 2. Set also Qf .x/ D xf .x/, x 2 R. We then have

ˇ̌ Qf .x/� Qf .y/ˇ̌ D ˇ̌
f .x/.x�y/C.f .x/�f .y//y ˇ̌ 6

�r
�

2
C 2jyj

�
jx�yj: (21)

On the other hand, set

V i
n D Vn � Xip

n
; i D 1; : : : ; n:

Observe that V i
n and Xi are independent by construction. One can thus write

EŒh.Vn/�� EŒh.N /� D EŒf 0.Vn/� Vnf .Vn/�

D
nX

iD1

E

�
f 0.Vn/

1

n
� f .Vn/

Xip
n



D
nX

iD1

E

�
f 0.Vn/

1

n
� �

f .Vn/� f .V i
n /
� Xip

n


because EŒf .V i

n /Xi � D EŒf .V i
n /�EŒXi � D 0

D
nX

iD1

E

�
f 0.Vn/

1

n
� f 0

�
V i
n C 	

Xip
n

�
X2
i

n


with 	 � UŒ0;1� independent of X1; : : : ; Xn:
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We have f 0.x/ D Qf .x/C h.x/ � EŒh.N /�, so that

EŒh.Vn/� �EŒh.N /� D
nX
iD1

�
ai . Qf /� bi. Qf /C ai .h/ � bi .h/

�
; (22)

where

ai .g/DEŒg.Vn/ � g.V i
n /�
1

n
and bi .g/DE

��
g

�
V i
n C 	

Xip
n

�
�g.V i

n /

�
X2
i


1

n
:

(Here again, we have used that V i
n and Xi are independent.) Hence, to prove that

(20) holds true, we must bound four terms.

1st term. One has, using (21) as well as EŒjX1j� 6 EŒX2
1 �

1
2 D 1 and EŒjV i

n j� 6
EŒ.V i

n /
2�

1
2 6 1,

ˇ̌
ai . Qf /ˇ̌ 6 1

n
p
n

�
EŒjX1j�

r
�

2
C 2EŒjX1j�EŒjV i

n j�
�

6
�r

�

2
C 2

�
1

n
p
n
:

2nd term. Similarly and because EŒ	� D 1
2
, one has

ˇ̌
bi. Qf /ˇ̌ 6 1

n
p
n

�
EŒ	�EŒjX1j3�

r
�

2
C 2EŒ	�EŒjX1j3�EŒjV i

n j�
�

6
�
1

2

r
�

2
C 1

�
EŒjX1j3�
n
p
n

:

3rd term. By definition of h, we have

h.v/�h.u/ D .v�u/
Z 1

0

h0.uC s.v�u//ds D �v � u

2"
E
h
1Œx�";xC"�.u C O	.v � u//

i
;

with O	 � UŒ0;1� independent of 	 and X1; : : : ; Xn, so that

ˇ̌
ai .h/

ˇ̌
6 1

2" n
p
n
E

�
jXi j1Œx�";xC"�

�
V i
n C O	 Xip

n

�

D 1

2" n
p
n
E

"
jXi jP

�
x � yp

n
� " 6 V i

n 6 x � yp
n

C "

� ˇ̌
ˇ̌
yD O	Xi

#

6 1

2" n
p
n

sup
y2R

P

�
x � yp

n
� " 6 V i

n 6 x � yp
n

C "

�
:
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We are thus left to bound P.a 6 V i
n 6 b/ for all a; b 2 R with a 6 b. For that, set

QV i
n D 1p

n�1
P

j¤i Xj , so that V i
n D

q
1� 1

n
QV i
n . We then have, using in particular

(19) (with n � 1 instead of n) and the fact that the standard Gaussian density is
bounded by 1p

2�
,

P.a 6 V i
n 6 b/ D P

0
B@ aq

1 � 1
n

6 QV i
n 6 bq

1 � 1
n

1
CA

D P

0
B@ aq

1 � 1
n

6 N 6 bq
1 � 1

n

1
CA

CP

0
B@ aq

1 � 1
n

6 QV i
n 6 bq

1 � 1
n

1
CA

�P

0
B@ aq

1 � 1
n

6 N 6 bq
1 � 1

n

1
CA

6 b � a
p
2�

q
1 � 1

n

C 2Cn�1 EŒjX1j3�p
n � 1 :

We deduce that

ˇ̌
ai .h/

ˇ̌
6 1p

2�n
p
n � 1 C Cn�1 EŒjX1j3�

n
p
n
p
n � 1 "

:

4th term. Similarly, we have

ˇ̌
bi .h/

ˇ̌ D 1

2n
p
n"

ˇ̌
ˇ̌E
�
X3
i 	 1Œx�";xC"�

�
V i
n C O	 	 Xip

n

�ˇ̌
ˇ̌

6 EŒjX1j3�
4n

p
n"

sup
y2R

P

�
x � yp

n
� " 6 V i

n 6 x � yp
n

C "

�

6 EŒjX1j3�
2
p
2�n

p
n � 1

C Cn�1 EŒjX1j3�2
2n

p
n

p
n � 1 " :

Plugging these four estimates into (22) and by using the fact that n > 2 (and
therefore n � 1 > n

2
) and EŒjX1j3� > 1, we deduce the desired conclusion. ut

To Go Further. Stein’s method has developed considerably since its first appear-
ance in 1972. A comprehensive and very nice reference to go further is the book [9]
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by Chen, Goldstein and Shao, in which several applications of Stein’s method are
carefully developed.

4 Malliavin Calculus in a Nutshell

The second ingredient for the proof of the Fourth Moment Theorem 2 is the
Malliavin calculus (the first one being Stein’s method, as developed in the previous
section). So, let us introduce the reader to the basic operators of Malliavin calculus.
For the sake of simplicity and to avoid technicalities that would be useless in this
survey, we will only consider the case where the underlying Gaussian process (fixed
once for all throughout the sequel) is a classical Brownian motion B D .Bt /t>0
defined on some probability space .˝;F ; P /; we further assume that the �-field
F is generated by B .

For a detailed exposition of Malliavin calculus (in a more general context) and
for missing proofs, we refer the reader to the textbooks [32, 38].

Dimension One. In this first section, we would like to introduce the basic operators
of Malliavin calculus in the simplest situation (where only one Gaussian random
variable is involved). While easy, it is a sufficiently rich context to encapsulate all
the essence of this theory. We first need to recall some useful properties of Hermite
polynomials.

Proposition 1. The family .Hq/q2N � RŒX� of Hermite polynomials has the
following properties.

(a) H 0
q D qHq�1 andHqC1 D XHq � qHq�1 for all q 2 N.

(b) The family



1p
qŠ
Hq

�
q2N is an orthonormal basis of L2.R; 1p

2�
e�x2=2dx/.

(c) Let .U; V / be a Gaussian vector with U; V � N .0; 1/. Then, for all p; q 2 N,

EŒHp.U /Hq.V /� D
�
qŠEŒUV�q if p D q

0 otherwise:

Proof. This is well-known. For a proof, see, e.g., [32, Proposition 1.4.2]. ut
Let ' W R ! R be an element of L2.R; 1p

2�
e�x2=2dx/. Proposition 1(b) implies

that ' may be expanded (in a unique way) in terms of Hermite polynomials as
follows:

' D
1X
qD0

aqHq: (23)

When ' is such that
P
qqŠa2q < 1, let us define

D' D
1X
qD0

qaqHq�1: (24)
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Since the Hermite polynomials satisfyH 0
q D qHq�1 (Proposition 1(a)), observe that

D' D ' 0

(in the sense of distributions). Let us now define the Ornstein–Uhlenbeck semigroup
.Pt /t>0 by

Pt' D
1X
qD0

e�qt aqHq: (25)

Plainly, P0 D Id, PtPs D PtCs (s; t > 0) and

DPt D e�tPtD: (26)

Since .Pt /t>0 is a semigroup, it admits a generator L defined as

L D d

dt
jtD0Pt :

Of course, for any t > 0 one has that

d

dt
Pt D lim

h!0

PtCh � Pt
h

D lim
h!0

Pt
Ph � Id

h
D Pt lim

h!0

Ph � Id

h
D Pt

d

dh

ˇ̌
ˇ̌
hD0

Ph D PtL;

and, similarly, ddtPt D LPt . Moreover, going back to the definition of .Pt /t>0, it is

clear that the domain of L is the set of functions ' 2 L2.R; 1p
2�
e�x2=2dx/ such thatP

q2qŠa2q < 1 and that, in this case,

L' D �
1X
qD0

qaqHq:

We have the following integration by parts formula, whose proof is straightforward
(start with the case ' D Hp and  D Hq , and then use bilinearity and
approximation to conclude in the general case) and left to the reader.

Proposition 2. Let ' be in the domain of L and  be in the domain of D. Then

Z
R

L'.x/ .x/
e�x2=2
p
2�

dx D �
Z
R

D'.x/D .x/
e�x2=2
p
2�

dx: (27)

We shall now extend all the previous operators in a situation where, instead of
dealing with a random variable of the form F D '.N / (that involves only one
Gaussian random variable N ), we deal more generally with a random variable F
that is measurable with respect to the Brownian motion .Bt /t>0.
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Wiener Integral. For any adapted2 and square integrable stochastic process u D
.ut /t>0, let us denote by

R1
0

utdBt its Itô integral. Recall from any standard
textbook of stochastic analysis that the Itô integral is a linear functional that takes
its values on L2.˝/ and has the following basic features, coming mainly from the
independence property of the increments of B:

E

�Z 1

0

usdBs


D 0 (28)

E

�Z 1

0

usdBs �
Z 1

0

vsdBs


D E

�Z 1

0

usvsds


: (29)

In the particular case where u D f 2 L2.RC/ is deterministic, we say thatR1
0
f .s/dBs is the Wiener integral of f ; it is then easy to show that

Z 1

0

f .s/dBs � N

�
0;

Z 1

0

f 2.s/ds

�
: (30)

Multiple Wiener–Itô Integrals and Wiener Chaoses. Let f 2 L2.R
q
C/. Let us

see how one could give a “natural” meaning to the q-fold multiple integral

IBq .f / D
Z
R
q

C

f .s1; : : : ; sq/dBs1 : : : dBsq :

To achieve this goal, we shall use an iterated Itô integral; the following heuristic
“calculations” are thus natural within this framework:Z

R
q

C

f .s1; : : : ; sq/dBs1 : : : dBsq

D
X
�2Sq

Z
R
q

C

f .s1; : : : ; sq/1fs�.1/>:::>s�.q/gdBs1 : : : dBsq

D
X
�2Sq

Z 1

0

dBs�.1/

Z s�.1/

0

dBs�.2/ : : :
Z s�.q�1/

0

dBs�.q/f .s1; : : : ; sq/

D
X
�2Sq

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t��1.1/; : : : ; t��1.q//

D
X
�2Sq

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t�.1/; : : : ; t�.q//: (31)

Now, we can use (31) as a natural candidate for being IBq .f /.

2Any adapted process u that is either càdlàg or càglàd admits a progressively measurable version.
We will always assume that we are dealing with it.
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Definition 1. Let q > 1 be an integer.

1. When f 2 L2.RqC/, we set

IBq .f / D
X
�2Sq

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t�.1/; : : : ; t�.q//: (32)

The random variable IBq .f / is called the qth multiple Wiener–Itô integral of f .
2. The set H B

q of random variables of the form IBq .f /, f 2 L2.RqC/, is called the
qth Wiener chaos of B . We also use the convention H B

0 D R.

The following properties are readily checked.

Proposition 3. Let q > 1 be an integer and let f 2 L2.RqC/.
1. If f is symmetric (meaning that f .t1; : : : ; tq/ D f .t�.1/; : : : ; t�.q// for any t 2

R
q
C and any permutation � 2 Sq), then

IBq .f / D qŠ

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t1; : : : ; tq/: (33)

2. We have

IBq .f / D IBq .
Qf /; (34)

where Qf stands for the symmetrization of f given by

Qf .t1; : : : ; tq/ D 1

qŠ

X
�2Sq

f .t�.1/; : : : ; t�.q//: (35)

3. For any p; q > 1, f 2 L2.RpC/ and g 2 L2.RqC/,
EŒIBq .f /� D 0 (36)

EŒIBp .f /I
B
q .g/� D pŠh Qf ; QgiL2.Rp

C
/ if p D q (37)

EŒIBp .f /I
B
q .g/� D 0 if p ¤ q: (38)

The space L2.˝/ can be decomposed into the infinite orthogonal sum of the
spaces H B

q . (It is a statement which is analogous to the content of Proposition 1(b),
and it is precisely here that we need to assume that the �-field F is generated by
B .) It follows that any square-integrable random variable F 2 L2.˝/ admits the
following chaotic expansion:

F D EŒF �C
1X
qD1

IBq .fq/; (39)
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where the functions fq 2 L2.RqC/ are symmetric and uniquely determined by F . In
practice and when F is “smooth” enough, one may rely on Stroock’s formula (see
[53] or [38, Exercise 1.2.6]) to compute the functions fq explicitly.

The following result contains a very useful property of multiple Wiener–Itô
integrals. It is in the same spirit as Lemma 1.

Theorem 8 (Nelson (1973); see [21]). Let f 2 L2.R
q
C/ with q > 1. Then, for all

r > 2,

E
�jIBq .f /jr	 6 Œ.r � 1/qqŠ�r=2kf kr

L2.R
q

C
/
< 1: (40)

Proof. See, e.g., [32, Corollary 2.8.14]. (The proof uses the hypercontractivity
property of .Pt /t>0 defined as (48).) ut

Multiple Wiener–Itô integrals are linear by construction. Let us see how they
behave with respect to multiplication. To this aim, we need to introduce the concept
of contractions.

Definition 2. When r 2 f1; : : : ; p ^ qg, f 2 L2.R
p
C/ and g 2 L2.R

q
C/, we write

f ˝r g to indicate the r th contraction of f and g, defined as being the element of
L2.R

pCq�2r
C / given by

.f ˝r g/.t1; : : : ; tpCq�2r / (41)

D
Z
R
r
C

f .t1; : : : ; tp�r ; x1; : : : ; xr /g.tp�rC1; : : : ; tpCq�2r ; x1; : : : ; xr /dx1 : : : dxr :

By convention, we set f ˝0 g D f ˝ g as being the tensor product of f and g,
that is,

.f ˝0 g/.t1; : : : ; tpCq/ D f .t1; : : : ; tp/g.tpC1; : : : ; tpCq/:

Observe that

kf ˝r gk
L2.R

pCq�2r

C
/

6 kf kL2.Rp
C
/kgkL2.Rq

C
/; r D 0; : : : ; p ^ q (42)

by Cauchy–Schwarz, and that f ˝p g D hf; giL2.Rp
C
/ when p D q. The next result

is the fundamental product formula between two multiple Wiener–Itô integrals.

Theorem 9. Let p; q > 1 and let f 2 L2.RpC/ and g 2 L2.RqC/ be two symmetric
functions. Then

IBp .f /I
B
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!
IBpCq�2r .f Q̋ rg/; (43)

where f ˝r g stands for the contraction (41).
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Proof. Theorem 9 can be established by at least two routes, namely by induction
(see, e.g., [38, page 12]) or by using the concept of diagonal measure in the context
of the Engel–Rota–Wallstrom theory (see [45]). Let us proceed with a heuristic
proof following this latter strategy. Going back to the very definition of IBp .f /,
we see that the diagonals are avoided. That is, IBp .f / can be seen as

IBp .f / D
Z
R
p

C

f .s1; : : : ; sp/1fsi¤sj ; i¤j gdBs1 : : : dBsp

The same holds for IBq .g/. Then we have (just as through Fubini)

IBp .f /I
B
q .g/

D
Z
R
pCq

C

f .s1; : : : ; sp/1fsi¤sj ; i¤jgg.t1; : : : ; tq/1fti¤tj ; i¤jgdBs1 : : : dBspdBt1 : : : dBtq :

While there is no diagonals in the first and second blocks, there are all possible
mixed diagonals in the joint writing. Hence we need to take into account all these
diagonals (whence the combinatorial coefficients in the statement, which count all
possible diagonal sets of size r) and then integrate out (using the rule .dBt /2 D dt).
We thus obtain

IBp .f /I
B
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!Z
R
pCq�2r

C

.f ˝r g/.x1; : : : ; xpCq�2r /dBx1 : : : dBxpCq�2r

which is exactly the claim (43). ut
Malliavin Derivatives. We shall extend the operator D introduced in (24). Let
F 2 L2.˝/ and consider its chaotic expansion (39).

Definition 3. 1. When m > 1 is an integer, we say that F belongs to the Sobolev–
Watanabe space D

m;2 if

1X
qD1

qmqŠkfqk2L2.Rq
C
/
< 1: (44)

2. When (44) holds with m D 1, the Malliavin derivative DF D .DtF /t>0 of F is
the element of L2.˝ � RC/ given by

DtF D
1X
qD1

qIBq�1
�
fq.�; t/

�
: (45)

3. More generally, when (44) holds with an m bigger than or equal to 2 we define
themth Malliavin derivativeDmF D .Dt1;:::;tmF /t1;:::;tm>0 of F as the element of
L2.˝ � R

mC/ given by
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Dt1;:::;tmF D
1X
qDm

q.q � 1/ : : : .q �mC 1/IBq�m
�
fq.�; t1; : : : ; tm/

�
: (46)

The exponent 2 in the notation D
m;2 is because it is related to the space L2.˝/.

(There exists a space D
m;p related to Lp.˝/ but we will not use it in this survey.)

On the other hand, it is clear by construction that D is a linear operator. Also,
using (37)–(38) it is easy to compute the L2-norm of DF in terms of the kernels
fq appearing in the chaotic expansion (39) of F :

Proposition 4. Let F 2 D
1;2. We have

E
h
kDFk2

L2.RC/

i
D

1X
qD1

qqŠkfqk2L2.Rq
C
/
:

Proof. By (45), we can write

E
h
kDFk2

L2.RC/

i
D
Z
RC

E

2
64
0
@ 1X
qD1

qIBq�1
�
fq.�; t/

�
1
A
2
3
75 dt

D
1X

p;qD1
pq

Z
RC

E
h
IBp�1

�
fp.�; t/

�
IBq�1

�
fq.�; t/

�i
dt:

Using (38), we deduce that

E
h
kDFk2

L2.RC/

i
D

1X
qD1

q2
Z
RC

E
h
IBq�1

�
fq.�; t/

�2i
dt:

Finally, using (37), we get that

E
h
kDFk2

L2.RC/

i
D

1X
qD1

q2.q � 1/Š

Z
RC

��fq.�; t/��2L2.Rq�1

C
/
dt D

1X
qD1

qqŠ
��fq��2L2.Rq

C
/
:

ut
Let Hq be the qth Hermite polynomial (for some q > 1) and let e 2 L2.RC/

have norm 1. Recall (10) and Proposition 1(a). We deduce that, for any t > 0,

Dt

�
Hq

�Z 1

0

e.s/dWs

��
D Dt.I

B
q .e

˝q// D qIBq�1.e˝q�1/e.t/

D qHq�1
�Z 1

0

e.s/dBs

�
e.t/ D H 0

q

�Z 1

0

e.s/dBs

�
Dt

�Z 1

0

e.s/dBs

�
:
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More generally, the Malliavin derivativeD verifies the chain rule:

Theorem 10. Let ' W R ! R be both of class C 1 and Lipschitz, and let F 2 D
1;2.

Then, '.F / 2 D
1;2 and

Dt'.F / D ' 0.F /DtF; t > 0: (47)

Proof. See, e.g., [38, Proposition 1.2.3]. ut
Ornstein–Uhlenbeck Semigroup. We now introduce the extension of (25) in our
infinite-dimensional setting.

Definition 4. The Ornstein–Uhlenbeck semigroup is the family of linear operators
.Pt /t>0 defined on L2.˝/ by

PtF D
1X
qD0

e�qt I Bq .fq/; (48)

where the symmetric kernels fq are given by (39).

A crucial property of .Pt /t>0 is the Mehler formula, that gives an alternative
and often useful representation formula for Pt . To be able to state it, we need to
introduce a further notation. Let .B;B 0/ be a two-dimensional Brownian motion
defined on the product probability space .˝ ;FFF ;P/ D .˝ �˝ 0;F ˝ F 0; P �P 0/.
Let F 2 L2.˝/. Since F is measurable with respect to the Brownian motion B , we
can write F D 
F .B/ with 
F a measurable mapping determined P ı B�1 a.s..
As a consequence, for any t > 0 the random variable 
F .e�tB C p

1 � e�2tB 0/ is
well-definedP �P 0 a.s. (note indeed that e�tBCp

1 � e�2tB 0 is again a Brownian
motion for any t > 0). We then have the following formula.

Theorem 11 (Mehler’s formula). For every F D F.B/ 2 L2.˝/ and every t > 0,
we have

Pt.F / D E 0�
F .e�tB C
p
1 � e�2tB 0/

	
; (49)

where E 0 denotes the expectation with respect to P 0.

Proof. By using standard arguments, one may show that the linear span of random
variables F having the form F D exp

˚R1
0
h.s/dBs

�
with h 2 L2.RC/ is

dense in L2.˝/. Therefore, it suffices to consider the case where F has this
particular form. On the other hand, we have the following identity, see, e.g., [32,
Proposition 1.4.2.vi/]: for all c; x 2 R,

ecx�c2=2 D
1X
qD0

cq

qŠ
Hq.x/;
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with Hq the qth Hermite polynomial. By setting c D khkL2.RC/
D khk and x DR1

0
h.s/

khk dBs , we deduce that

exp

� Z 1

0

h.s/dBs

�
D e

1
2khk2

1X
qD0

khkq
qŠ

Hq

�Z 1

0

h.s/

khk dBs

�
;

implying in turn, using (10), that

exp

� Z 1

0

h.s/dBs

�
D e

1
2 khk2

1X
qD0

1

qŠ
IBq
�
h˝q� : (50)

Thus, for F D exp
˚R1
0 h.s/dBs

�
,

PtF D e
1
2khk2

1X
qD0

e�qt

qŠ
IBq
�
h˝q� :

On the other hand,

E 0�
F .e�tBC
p
1 � e�2tB 0/

	DE 0
�

exp
Z 1

0

h.s/.e�tdBs C
p
1 � e�2tdB0

s/



D exp

�
e�t

Z 1

0

h.s/dBs

�
exp

�
1 � e�2t

2
khk2

�

D exp

�
1� e�2t

2
khk2

�
e
e�2t

2 khk2
1X
qD0

e�qt

qŠ
IBq
�
h˝q� by (50)

D PtF:

The desired conclusion follows. ut
Generator of the Ornstein–Uhlenbeck Semigroup. Recall the definition (44) of
the Sobolev–Watanabe spaces D

m;2, m > 1, and that the symmetric kernels fq 2
L2.R

q
C/ are uniquely defined through (39).

Definition 5. 1. The generator of the Ornstein–Uhlenbeck semigroup is the linear
operator L defined on D

2;2 by

LF D �
1X
qD0

qIBq .fq/:

2. The pseudo-inverse of L is the linear operator L�1 defined on L2.˝/ by

L�1F D �
1X
qD1

1

q
IBq .fq/:
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It is obvious that, for any F 2 L2.˝/, we have that L�1F 2 D
2;2 and

LL�1F D F � EŒF �: (51)

Our terminology for L�1 is explained by the identity (51). Another crucial property
of L is contained in the following result, which is the exact generalization of
Proposition 2.

Proposition 5. Let F 2 D
2;2 and G 2 D

1;2. Then

EŒLF �G� D �EŒhDF;DGiL2.RC/
�: (52)

Proof. By bilinearity and approximation, it is enough to show (52) for F D IBp .f /

and G D IBq .g/ with p; q > 1 and f 2 L2.R
p
C/, g 2 L2.R

q
C/ symmetric. When

p ¤ q, we have

EŒLF �G� D �pEŒIBp .f /IBq .g/� D 0

and

EŒhDF;DGiL2.RC/
� D pq

Z 1

0

EŒIBp�1.f .�; t//IBq�1.g.�; t//�dt D 0

by (38), so the desired conclusion holds true in this case. When p D q, we have

EŒLF �G� D �pEŒIBp .f /IBp .g/� D �ppŠhf; giL2.Rp
C
/

and

EŒhDF;DGiL2.RC/
�Dp2

Z 1

0

EŒIBp�1.f .�; t//IBp�1.g.�; t//�dt

Dp2.p � 1/Š
Z 1

0

hf .�; t/; g.�; t/i
L2.R

p�1

C
/
dt DppŠhf; giL2.Rp

C
/

by (37), so the desired conclusion holds true as well in this case. ut
We are now in position to state and prove an integration by parts formula which

will play a crucial role in the sequel.

Theorem 12. Let ' W R ! R be both of class C 1 and Lipschitz, and let F 2 D
1;2

and G 2 L2.˝/. Then

Cov
�
G; '.F /

� D E
�
' 0.F /hDF;�DL�1GiL2.RC/

	
: (53)
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Proof. Using the assumptions made on F and ', we can write:

Cov
�
G; '.F /

� D E
�
L.L�1G/ � '.F /	 (by (51))

D E
�hD'.F /;�DL�1GiL2.RC/

	
(by (52))

D E
�
' 0.F /hD'.F /;�DL�1GiL2.RC/

	
(by (47));

which is the announced formula. ut
Theorem 12 admits a useful extension to indicator functions. Before stating and

proving it, we recall the following classical result from measure theory.

Proposition 6. Let C be a Borel set in R, assume that C � Œ�A;A� for some A >
0, and let � be a finite measure on Œ�A;A�. Then, there exists a sequence .hn/ of
continuous functions with support included in Œ�A;A� and such that hn.x/ 2 Œ0; 1�
and 1C .x/ D limn!1 hn.x/ �-a.e.

Proof. This is an immediate corollary of Lusin’s theorem, see, e.g., [50, page 56].
ut

Corollary 1. Let C be a Borel set in R, assume that C � Œ�A;A� for some A > 0,
and let F 2 D

1;2 be such that EŒF � D 0. Then

E

�
F

Z F

�1
1C .x/dx


D E

�
1C .F /hDF;�DL�1F iL2.RC/

	
:

Proof. Let � denote the Lebesgue measure and let PF denote the law of F . By
Proposition 6 with � D .� C PF /jŒ�A;A� (that is, � is the restriction of � C PF
to Œ�A;A�), there is a sequence .hn/ of continuous functions with support included
in Œ�A;A� and such that hn.x/ 2 Œ0; 1� and 1C .x/ D limn!1 hn.x/ �-a.e. In
particular, 1C .x/ D limn!1 hn.x/ �-a.e. and PF -a.e. By Theorem 12, we have
moreover that

E

�
F

Z F

�1
hn.x/dx


D E

�
hn.F /hDF;�DL�1F iL2.RC/

	
:

The dominated convergence applies and yields the desired conclusion. ut
As a corollary of both Theorem 12 and Corollary 1, we shall prove that the law

of any multiple Wiener–Itô integral is always absolutely continuous with respect to
the Lebesgue measure except, of course, when its kernel is identically zero.

Corollary 2 (Shigekawa; see [51]). Let q > 1 be an integer and let f be a non
zero element of L2.RqC/. Then the law of F D IBq .f / is absolutely continuous with
respect to the Lebesgue measure.
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Proof. Without loss of generality, we further assume that f is symmetric. The
proof is by induction on q. When q D 1, the desired property is readily checked
because IB1 .f / � N .0; kf k2

L2.RC/
/, see (30). Now, let q > 2 and assume that

the statement of Corollary 2 holds true for q � 1, that is, assume that the law of
IBq�1.g/ is absolutely continuous for any symmetric element g ofL2.Rq�1

C / such that
kgk

L2.R
q�1

C
/
> 0. Let f be a symmetric element of L2.RqC/ with kf kL2.Rq

C
/ > 0.

Let h 2 L2.R/ be such that
��R1

0 f .�; s/h.s/ds
��
L2.R

q�1

C
/

¤ 0. (Such an h necessarily

exists because, otherwise, we would have that f .�; s/ D 0 for almost all s > 0

which, by symmetry, would imply that f � 0; this would be in contradiction with
our assumption.) Using the induction assumption, we have that the law of

hDF; hiL2.RC/
D
Z 1

0

DsF h.s/ds D qIBq�1
�Z 1

0

f .�; s/h.s/ds

�

is absolutely continuous with respect to the Lebesgue measure. In particular,

P.hDF; hiL2.RC/
D 0/ D 0;

implying in turn, because fkDFkL2.RC/
D 0g � fhDF; hiL2.RC/

D 0g, that

P.kDFkL2.RC/
> 0/ D 1: (54)

Now, let C be a Borel set in R. Using Corollary 1, we can write, for every n > 1,

E

�
1C\Œ�n;n�.F /

1

q
kDFk2

L2.RC/


D E

�
1C\Œ�n;n�.F /hDF;�DL�1F iL2.RC/

	

D E

�
F

Z F

�1
1C\Œ�n;n�.y/dy


:

Assume that the Lebesgue measure of C is zero. The previous equality implies that

E

�
1C\Œ�n;n�.F /

1

q
kDFk2

L2.RC/


D 0; n > 1:

But (54) holds as well, so P.F 2 C \ Œ�n; n�/ D 0 for all n > 1. By monotone
convergence, we actually get P.F 2 C/ D 0. This shows that the law of
F is absolutely continuous with respect to the Lebesgue measure. The proof of
Corollary 2 is concluded. ut
To Go Further. In the literature, the most quoted reference on Malliavin calculus is
the excellent book [38] by Nualart. It contains many applications of this theory (such
as the study of the smoothness of probability laws or the anticipating stochastic
calculus) and constitutes, as such, an unavoidable reference to go further.
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5 Stein Meets Malliavin

We are now in a position to prove the Fourth Moment Theorem 2. As we will
see, to do so we will combine the results of Sect. 3 (Stein’s method) with those
of Sect. 4 (Malliavin calculus), thus explaining the title of the current section! It is a
different strategy with respect to the original proof, which was based on the use of
the Dambis–Dubins–Schwarz theorem.

We start by introducing the distance we shall use to measure the closeness of the
laws of random variables.

Definition 6. The total variation distance between the laws of two real-valued
random variables Y and Z is defined by

dTV.Y;Z/ D sup
C2B.R/

ˇ̌
P.Y 2 C/� P.Z 2 C/ˇ̌; (55)

where B.R/ stands for the set of Borel sets in R.

When C 2 B.R/, we have that P.Y 2 C \ Œ�n; n�/ ! P.Y 2 C/ and
P.Z 2 C \ Œ�n; n�/ ! P.Z 2 C/ as n ! 1 by the monotone convergence
theorem. So, without loss we may restrict the supremum in (55) to be taken over
bounded Borel sets, that is,

dTV .Y;Z/ D sup
C2B.R/
C bounded

ˇ̌
P.Y 2 C/� P.Z 2 C/ˇ̌: (56)

We are now ready to derive a bound for the Gaussian approximation of any
centered element F belonging to D

1;2.

Theorem 13 (Nourdin and Peccati (2009); see [27]). Consider F 2 D
1;2 with

EŒF � D 0. Then, with N � N .0; 1/,

dTV.F;N / 6 2E
�ˇ̌
1 � hDF;�DL�1F iL2.RC/

ˇ̌	
: (57)

Proof. LetC be a bounded Borel set in R. LetA > 0 be such thatC � Œ�A;A�. Let
� denote the Lebesgue measure and let PF denote the law of F . By Proposition 6
with� D .�CPF /jŒ�A�;A� (the restriction of �CPF to Œ�A;A�), there is a sequence
.hn/ of continuous functions such that hn.x/ 2 Œ0; 1� and 1C .x/ D limn!1 hn.x/

�-a.e. By the dominated convergence theorem, EŒhn.F /� ! P.F 2 C/ and
EŒhn.N /� ! P.N 2 C/ as n ! 1. On the other hand, using Lemma 2 (and
denoting by fn the function associated with hn) as well as (53) we can write, for
each n,

ˇ̌
EŒhn.F /� �EŒhn.N /�

ˇ̌ D ˇ̌
EŒf 0

n.F /� �EŒFfn.F /�
ˇ̌

D ˇ̌
EŒf 0

n.F /.1 � hDF;�DL�1F iL2.RC/
�

6 2E
�j1� hDF;�DL�1F iL2.RC/

j	:
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Letting n go to infinity yields

ˇ̌
P.F 2 C/� P.N 2 C/ˇ̌ 6 2E

�j1 � hDF;�DL�1F iL2.RC/
j	;

which, together with (56), implies the desired conclusion. ut
Wiener Chaos and the Fourth Moment Theorem. In this section, we apply
Theorem 13 to a chaotic random variable F , that is, to a random variable having the
specific form of a multiple Wiener–Itô integral. We begin with a technical lemma
which, among other, shows that the fourth moment of F is necessarily greater than
3EŒF 2�2. We recall from Definition 2 the meaning of f Q̋ rf .

Lemma 3. Let q > 1 be an integer and consider a symmetric function f 2
L2.R

q
C/. Set F D IBq .f / and �2 D EŒF 2� D qŠkf k2

L2.R
q

C
/
. The following two

identities hold:

E

"�
�2 � 1

q
kDFk2

L2.RC/

�2#
D

q�1X
rD1

r2

q2
rŠ2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/

(58)

and

EŒF 4� � 3�4 D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/

(59)

D
q�1X
rD1

qŠ2

 
q

r

!2 (
kf ˝r f k2

L2.R
2q�2r

C
/
C
 
2q � 2r

q � r

!
kf Q̋ rf k2

L2.R
2q�2r

C
/

)
:

(60)

In particular,

E

"�
�2 � 1

q
kDFk2

L2.RC/

�2#
6 q � 1

3q

�
EŒF 4� � 3�4�: (61)

Proof. We follow [28] for (58)–(59) and [40] for (60). For any t > 0, we have
DtF D qIBq�1

�
f .�; t/� so that, using (43),

1

q
kDFk2

L2.RC/
D q

Z 1

0

IBq�1
�
f .�; t/�2dt

D q

Z 1

0

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r

�
f .�; t/ Q̋ rf .�; t/

�
dt
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D q

Z 1

0

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r

�
f .�; t/˝r f .�; t/

�
dt

D q

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r

�Z 1

0

f .�; t/˝r f .�; t/dt

�

D q

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r .f ˝rC1 f /

D q

qX
rD1
.r � 1/Š

 
q � 1
r � 1

!2
IB2q�2r .f ˝r f /

D qŠkf k2
L2.R

q

C
/
C q

q�1X
rD1
.r � 1/Š

 
q � 1

r � 1

!2
IB2q�2r .f ˝r f /: (62)

Since EŒF 2� D qŠkf k2
L2.R

q

C
/

D �2, the identity (58) follows now from (62)

and the orthogonality properties of multiple Wiener–Itô integrals. Recall the
hypercontractivity property (40) of multiple Wiener–Itô integrals, and observe the
relations �L�1F D 1

q
F and D.F 3/ D 3F 2DF. By combining formula (53) with

an approximation argument (the derivative of '.x/ D x3 being not bounded), we
infer that

EŒF 4� D E
�
F � F 3

	 D 3

q
E
�
F 2kDFk2

L2.RC/

	
: (63)

Moreover, the multiplication formula (43) yields

F 2 D IBq .f /
2 D

qX
sD0

sŠ

 
q

s

!2
IB2q�2s .f Q̋ sf /: (64)

By combining this last identity with (62) and (63), we obtain (59) and finally
(61). It remains to prove (60). Let � be a permutation of f1; : : : ; 2qg (this fact
is written in symbols as � 2 S2q). If r 2 f0; : : : ; qg denotes the cardinality of
f�.1/; : : : ; �.q/g \ f1; : : : ; qg then it is readily checked that r is also the cardinality
of f�.q C 1/; : : : ; �.2q/g \ fq C 1; : : : ; 2qg and that

Z
R
2q

C

f .t1; : : : ; tq/f .t�.1/; : : : ; t�.q//f .tqC1; : : : ; t2q/

�f .t�.qC1/; : : : ; t�.2q//dt1 : : : dt2q

D
Z
R
2q�2r

C

.f ˝r f /.x1; : : : ; x2q�2r /2dx1 : : : dx2q�2r

D kf ˝r f k2
L2.R

2q�2r

C
/
: (65)



40 I. Nourdin

Moreover, for any fixed r 2 f0; : : : ; qg, there are
�
q
r

�2
.qŠ/2 permutations � 2 S2q

such that #f�.1/; : : : ; �.q/g \ f1; : : : ; qg D r . (Indeed, such a permutation is
completely determined by the choice of: .a/ r distinct elements y1; : : : ; yr of
f1; : : : ; qg; .b/ q�r distinct elements yrC1; : : : ; yq of fqC1; : : : ; 2qg; .c/ a bijection
between f1; : : : ; qg and fy1; : : : ; yqg; .d/ a bijection between fq C 1; : : : ; 2qg and
f1; : : : ; 2qg n fy1; : : : ; yqg.) Now, observe that the symmetrization of f ˝ f is
given by

f Q̋ f .t1; : : : ; t2q/ D 1

.2q/Š

X
�2S2q

f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//:

Therefore,

kf Q̋ f k2
L2.R

2q

C
/

D 1

.2q/Š2

X
�;� 02S2q

Z
R
2q

C

f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//

�f .t� 0.1/; : : : ; t� 0.q//f .t� 0.qC1/; : : : ; t� 0.2q//dt1 : : : dt2q

D 1

.2q/Š

X
�2S2q

Z
R
2q

C

f .t1; : : : ; tq/f .tqC1; : : : ; t2q/

�f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//dt1 : : : dt2q

D 1

.2q/Š

qX
rD0

X
�2S2q

f�.1/;:::;�.q/g\f1;:::;qgDr

Z
R
2q

C

f .t1; : : : ; tq/f .tqC1; : : : ; t2q/

�f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//dt1 : : : dt2q:

Using (65), we deduce that

.2q/Škf Q̋ f k2
L2.R

2q

C
/

D 2.qŠ/2kf k4
L2.R

q

C
/
C .qŠ/2

q�1X
rD1

 
q

r

!2
kf ˝r f k2

L2.R
2q�2r

C
/
:

(66)

Using the orthogonality and isometry properties of multiple Wiener–Itô integrals,
the identity (64) yields
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EŒF 4� D
qX
rD0
.rŠ/2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/

D .2q/Škf Q̋ f k2
L2.R

2q

C
/
C .qŠ/2kf k4

L2.R
q

C
/

C
q�1X
rD1
.rŠ/2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/
:

By inserting (66) in the previous identity (and because .qŠ/2kf k4
L2.R

q

C
/

D
EŒF 2�2 D �4), we get (60). ut

As a consequence of Lemma 3, we deduce the following bound on the total
variation distance for the Gaussian approximation of a normalized multiple Wiener–
Itô integral. This is nothing but Theorem 3 but we restate it for convenience.

Theorem 14 (Nourdin and Peccati (2009); see [27]). Let q > 1 be an integer
and consider a symmetric function f 2 L2.R

q
C/. Set F D IBq .f /, assume that

EŒF 2� D 1, and let N � N .0; 1/. Then

dTV.F;N / 6 2

s
q � 1

3q

ˇ̌
EŒF 4� � 3

ˇ̌
: (67)

Proof. Since L�1F D � 1
q
F , we have hDF;�DL�1F iL2.RC/

D 1
q
kDFk2

L2.RC/
. So,

we only need to apply Theorem 13 and then formula (61) to conclude. ut
The estimate (67) allows to deduce an easy proof of the following characteriza-

tion of CLTs on Wiener chaos. (This is the Fourth Moment Theorem 2 of Nualart
and Peccati!). We note that our proof differs from the original one, which is based
on the use of the Dambis–Dubins–Schwarz theorem.

Corollary 3 (Nualart and Peccati (2005); see [40]). Let q > 1 be an integer and
consider a sequence .fn/ of symmetric functions of L2.RqC/. Set Fn D IBq .fn/ and
assume that EŒF 2

n � ! �2 > 0 as n ! 1. Then, as n ! 1, the following three
assertions are equivalent:

(i) Fn
Law! N � N .0; �2/;

(ii) EŒF 4
n � ! EŒN 4� D 3�4;

(iii) kfn Q̋ rfnkL2.R2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1.

(iv) kfn ˝r fnkL2.R2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1.

Proof. Without loss of generality, we may and do assume that �2 D 1 and
EŒF 2

n � D 1 for all n. The implication (ii) ! (i) is a direct application of
Theorem 14. The implication (i) ! (ii) comes from the Continuous Mapping
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Theorem together with an approximation argument (observe that supn>1 EŒF
4
n � <

1 by the hypercontractivity relation (40)). The equivalence between (ii) and (iii)
is an immediate consequence of (59). The implication (iv) ! (iii) is obvious (as
kfn Q̋ rfnk 6 kfn ˝r fnk) whereas the implication (ii) ! (iv) follows from (60).

ut
Quadratic Variation of the Fractional Brownian Motion. In this section, we
aim to illustrate Theorem 13 in a concrete situation. More precisely, we shall use
Theorem 13 in order to derive an explicit bound for the second-order approximation
of the quadratic variation of a fractional Brownian motion on Œ0; 1�.

Let BH D .BH
t /t>0 be a fractional Brownian motion with Hurst index H 2

.0; 1/. This means that BH is a centered Gaussian process with covariance function
given by

EŒBH
t B

H
s � D 1

2

�
t2H C s2H � jt � sj2H �; s; t > 0:

It is easily checked that BH is selfsimilar of indexH and has stationary increments.
Fractional Brownian motion has been successfully used in order to model a

variety of natural phenomena coming from different fields, including hydrology,
biology, medicine, economics or traffic networks. A natural question is thus the
identification of the Hurst parameter from real data. To do so, it is popular and
classical to use the quadratic variation (on, say, Œ0; 1�), which is observable and
given by

Sn D
n�1X
kD0

.BH
.kC1/=n � BH

k=n/
2; n > 1:

One may prove (see, e.g., [25, (2.12)]) that

n2H�1Sn
proba! 1 as n ! 1: (68)

We deduce that the estimator OHn, defined as

OHn D 1

2
� logSn
2 logn

;

satisfies OHn

proba! 1 as n ! 1. To study the asymptotic normality, consider

Fn D n2H

�n

n�1X
kD0

�
.BH

.kC1/=n � BH
k=n/

2 � n�2H 	 .law/D 1

�n

n�1X
kD0

�
.BH

kC1 � BH
k /

2 � 1	;

where �n > 0 is so that EŒF 2
n � D 1. We then have the following result.



Lectures on Gaussian Approximations with Malliavin Calculus 43

Theorem 15. LetN � N .0; 1/ and assume thatH 6 3=4. Then, limn!1 �2n=n D
2
P

r2Z �2.r/ if H 2 .0; 3
4
/, with � W Z ! R given by

�.r/ D 1

2

�jr C 1j2H C jr � 1j2H � 2jr j2H �; (69)

and limn!1 �2n=.n logn/ D 9
16

ifH D 3
4
. Moreover, there exists a constant cH > 0

(depending only on H ) such that, for every n > 1,

dTV.Fn;N / 6 cH �

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

1p
n

if H 2 .0; 5
8
/

.logn/3=2p
n

if H D 5
8

n4H�3 if H 2 . 5
8
; 3
4
/

1
log n if H D 3

4

: (70)

As an immediate consequence of Theorem 15, providedH < 3=4 we obtain that

p
n
�
n2H�1Sn � 1

� law! N
�
0; 2

X
r2Z

�2.r/
�

as n ! 1; (71)

implying in turn

p
n logn

� OHn �H
� law! N

�
0;
1

2

X
r2Z

�2.r/
�

as n ! 1: (72)

Indeed, we can write

logx D x � 1 �
Z x

1

du
Z u

1

dv

v2
for all x > 0;

so that (by considering x > 1 and 0 < x < 1)

ˇ̌
logx C 1 � xˇ̌ 6 .x � 1/2

2

�
1C 1

x2

�
for all x > 0:

As a result,

p
n logn

� OHn �H
� D �

p
n

2
log.n2H�1Sn/ D �

p
n

2
.n2H�1Sn � 1/CRn

with

jRnj 6
�p
n.n2H�1Sn � 1/

�2
4
p
n

�
1C 1

.n2H�1Sn/2

�
:
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Using (68) and (71), it is clear that Rn
proba! 0 as n ! 1 and then that (72) holds

true.
Now we have motivated it, let us go back to the proof of Theorem 15. To perform

our calculations, we will mainly follow ideas taken from [3]. We first need the
following ancillary result.

Lemma 4. 1. For any r 2 Z, let �.r/ be defined by (69). If H ¤ 1
2
, one has

�.r/ � H.2H � 1/jr j2H�2 as jr j ! 1. If H D 1
2

and jr j > 1, one has
�.r/ D 0. Consequently,

P
r2Z �2.r/ < 1 if and only if H < 3=4.

2. For all ˛ > �1, we have
Pn�1

rD1 r˛ � n˛C1

˛C1 as n ! 1.

Proof. 1. The sequence � is symmetric, that is, one has �.n/ D �.�n/. When
r ! 1,

�.r/ D H.2H � 1/r2H�2 C o.r2H�2/:

Using the usual criterion for convergence of Riemann sums, we deduce thatP
r2Z �2.r/ < 1 if and only if 4H � 4 < �1 if and only if H < 3

4
.

2. For ˛ > �1, we have:

1

n

nX
rD1


 r
n

�˛ !
Z 1

0

x˛dx D 1

˛ C 1
as n ! 1.

We deduce that
Pn

rD1 r˛ � n˛C1

˛C1 as n ! 1. ut
We are now in position to prove Theorem 15.

Proof of Theorem 15. Without loss of generality, we will rather use the second
expression of Fn:

Fn D 1

�n

n�1X
kD0

�
.BH

kC1 � BH
k /

2 � 1
	
:

Consider the linear span H of .BH
k /k2N, that is, H is the closed linear subspace of

L2.˝/ generated by .BH
k /k2N. It is a real separable Hilbert space and, consequently,

there exists an isometry ˚ W H ! L2.RC/. For any k 2 N, set ek D ˚.BH
kC1 �

BH
k /; we then have, for all k; l 2 N,

Z 1

0

ek.s/el .s/ds D EŒ.BH
kC1 � BH

k /.B
H
lC1 � BH

l /� D �.k � l/ (73)

with � given by (69). Therefore,

fBH
kC1 � BH

k W k 2 Ng lawD
�Z 1

0

ek.s/dBs W k 2 N

�
D ˚

IB1 .ek/ W k 2 N
�
;
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where B is a Brownian motion and IBp .�/, p > 1, stands for the pth multiple
Wiener–Itô integral associated to B . As a consequence we can, without loss of
generality, replace Fn by

Fn D 1

�n

n�1X
kD0

h�
IB1 .ek/

�2 � 1
i
:

Now, using the multiplication formula (43), we deduce that

Fn D IB2 .fn/; with fn D 1

�n

n�1X
kD0

ek ˝ ek:

By using the same arguments as in the proof of Theorem 1, we obtain the exact
value of �n:

�2n D 2

n�1X
k;lD0

�2.k � l/ D 2
X
jr j<n

.n � jr j/�2.r/:

Assume that H < 3
4

and write

�2n
n

D 2
X
r2Z

�2.r/

�
1 � jr j

n

�
1fjr j<ng:

Since
P

r2Z �2.r/ < 1 by Lemma 4, we obtain by dominated convergence that,
whenH < 3

4
,

lim
n!1

�2n
n

D 2
X
r2Z

�2.r/: (74)

Assume now thatH D 3
4
. We then have �2.r/ � 9

64jr j as jr j ! 1, implying in turn

n
X
jr j<n

�2.r/ � 9n

64

X
0<jr j<n

1

jr j � 9n logn

32

and

X
jr j<n

jr j�2.r/ � 9

64

X
jr j<n

1 � 9n

32

as n ! 1. Hence, whenH D 3
4
,

lim
n!1

�2n
n logn

D 9

16
: (75)
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On the other hand, recall that the convolution of two sequences fu.n/gn2Z and
fv.n/gn2Z is the sequence u 	 v defined as .u 	 v/.j / D P

n2Z u.n/v.j � n/,
and observe that .u 	 v/.l � i/ D P

k2Z u.k � l/v.k � i/ whenever u.n/ D u.�n/
and v.n/ D v.�n/ for all n 2 Z. Set

�n.k/ D j�.k/j1fjkj6n�1g; k 2 Z; n > 1:

We then have (using (58) for the first equality, and noticing that fn ˝1 fn D
fn Q̋ 1fn),

E

"�
1� 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#

D 8 kfn ˝1 fnk2L2.R2
C
/

D 8

�4n

n�1X
i;j;k;lD0

�.k � l/�.i � j /�.k � i/�.l � j /

6 8

�4n

n�1X
i;lD0

X
j;k2Z

�n.k � l/�n.i � j /�n.k � i/�n.l � j /

D 8

�4n

n�1X
i;lD0

.�n 	 �n/.l � i/2 6 8n

�4n

X
k2Z
.�n 	 �n/.k/2 D 8n

�4n
k�n 	 �nk2`2.Z/:

Recall Young’s inequality: if s; p; q > 1 are such that 1
p

C 1
q

D 1C 1
s
, then

ku 	 vk`s .Z/ 6 kuk`p.Z/kvk`q.Z/: (76)

Let us apply (76) with u D v D �n, s D 2 and p D 4
3
. We get k�n 	 �nk2`2.Z/ 6

k�nk4
`
4
3 .Z/

, so that

E

"�
1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#
6 8n

�4n

0
@X

jkj<n
j�.k/j 43

1
A
3

: (77)

Recall the asymptotic behavior of �.k/ as jkj ! 1 from Lemma 4(1). Hence

X
jkj<n

j�.k/j 43 D
8<
:
O.1/ if H 2 .0; 5

8
/

O.logn/ if H D 5
8

O.n.8H�5/=3/ if H 2 . 5
8
; 1/:

(78)

Assume first that H < 3
4

and recall (74). This, together with (77) and (78), imply
that
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E

�ˇ̌
ˇ̌1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

ˇ̌
ˇ̌


6

vuutE

"�
1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#

6 cH �

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

1p
n

if H 2 .0; 5
8
/

.log n/3=2p
n

if H D 5
8

n4H�3 if H 2 . 5
8
; 3
4
/

:

Therefore, the desired conclusion holds for H 2 .0; 3
4
/ by applying Theorem 13.

Assume now that H D 3
4

and recall (75). This, together with (77) and (78), imply
that

E

�ˇ̌
ˇ̌1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

ˇ̌
ˇ̌


6

vuutE

"�
1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#

D O.1= logn/;

and leads to the desired conclusion for H D 3
4

as well. ut
To Go Further. In [27], one may find a version of Theorem 13 whereN is replaced
by a centered Gamma law (see also [56]). In [1], one associate to Corollary 3 an
almost sure central limit theorem. In [6], the case where H is bigger than 3=4 in
Theorem 15 is analyzed.

6 The Smart Path Method

The aim of this section is to prove Theorem 4 (that is, the multidimensional
counterpart of the Fourth Moment Theorem), and even a more general version of it.
Following the approach developed in the previous section for the one-dimensional
case, a possible way for achieving this goal would have consisted in extending
Stein’s method to the multivariate setting, so to combine them with the tools of
Malliavin calculus. This is indeed the approach developed in [35] and it works well.
In this survey, we will actually proceed differently (we follow [28]), by using the
so-called “smart path method” (which is a popular method in spin glasses theory,
see, e.g., Talagrand [54]).

Let us first illustrate this approach in dimension one. Let F 2 D
1;2 with EŒF � D

0, let N � N .0; 1/ and let h W R ! R be a C 2 function satisfying k' 00k1 < 1.
Imagine we want to estimate EŒh.F /� � EŒh.N /�. Without loss of generality, we
may assume that N and F are stochastically independent. We further have:
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EŒh.F /� � EŒh.N /� D
Z 1

0

d

dt
EŒh.

p
tF C p

1 � tN /�dt

D
Z 1

0

�
1

2
p
t
EŒh0.

p
tF C p

1� tN /F � � 1

2
p
1 � t EŒh

0.
p
tF C p

1 � tN /N �

�
dt:

For any x 2 R and t 2 Œ0; 1�, Theorem 12 implies that

EŒh0.
p
tF C p

1 � tx/F � D p
t EŒh00.

p
tF C p

1 � tx/hDF;�DL�1F iL2.RC/
�;

whereas a classical integration by parts yields

EŒh0.
p
tx C p

1 � tN /N � D p
1 � t EŒh00.

p
tx C p

1 � tN /�:

We deduce, since N and F are independent, that

EŒh.F /��EŒh.N /� D 1

2

Z 1

0

EŒh00.
p
txCp

1 � tN /.hDF;�DL�1F iL2.RC/
�1/�dt;

(79)

implying in turn

ˇ̌
EŒh.F /� � EŒh.N /�

ˇ̌
6 1

2
kh00k1E

�ˇ̌
1 � hDF;�DL�1F iL2.RC/

ˇ̌	
; (80)

compare with (57).
It happens that this approach extends easily to the multivariate setting. To see

why, we will adopt the following short-hand notation: for every h W R
d ! R of

class C 2, we set

kh00k1 D max
i;jD1;:::;d

sup
x2Rd

ˇ̌
ˇ̌ @2h

@xi @xj
.x/

ˇ̌
ˇ̌ :

Theorem 16 below is a first step towards Theorem 4, and is nothing but the
multivariate counterpart of (79)–(80).

Theorem 16. Fix d > 2 and let F D .F1; : : : ; Fd / be such that Fi 2 D
1;2 with

EŒFi � D 0 for any i . Let C 2 Md .R/ be a symmetric and positive matrix, and let
N be a centered Gaussian vector with covariance C . Then, for any h W Rd ! R

belonging to C 2 and such that kh00k1 < 1, we have

ˇ̌
EŒh.F /� � EŒh.N /�

ˇ̌
6 1

2
kh00k1

dX
i;jD1

E
�ˇ̌
C.i; j / � hDFj ;�DL�1Fi iL2.RC/

ˇ̌	
:

(81)

Proof. Without loss of generality, we assume that N is independent of the under-
lying Brownian motion B . Let h be as in the statement of the theorem. For any
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t 2 Œ0; 1�, set 
.t/ D E
�
h
�p
1 � tF C p

tN
�	
; so that

EŒh.N /� � EŒh.F /� D 
.1/ � 
.0/ D
Z 1

0


 0.t/dt:

We easily see that 
 is differentiable on .0; 1/ with


 0.t/ D
dX
iD1

E

�
@h

@xi

�p
1 � tF C p

tN
� � 1

2
p
t
Ni � 1

2
p
1 � t

Fi

�
:

By integrating by parts, we can write

E

�
@h

@xi

�p
1 � tF C p

tN
�
Ni


D E

(
E

�
@h

@xi

�p
1 � tx C p

tN
�
Ni


jxDF

)

D p
t

dX
jD1

C.i; j /E

(
E

�
@2h

@xi @xj

�p
1 � tx C p

tN
�

jxDF

)

D p
t

dX
jD1

C.i; j /E

�
@2h

@xi @xj

�p
1 � tF C p

tN
�
:

By using Theorem 12 in order to perform the integration by parts, we can also write

E

�
@h

@xi

�p
1 � tF C p

tN
�
Fi


D E

(
E

�
@h

@xi

�p
1 � tF C p

tx
�
Fi


jxDN

)

D p
1� t

dX
jD1

E

(
E

�
@2h

@xi@xj

�p
1 � tF C p

tx
�hDFj ;�DL�1Fi iL2.RC/


jxDN

)

D p
1� t

dX
jD1

E

�
@2h

@xi @xj

�p
1 � tF C p

tN
�hDFj ;�DL�1Fi iL2.RC/


:

Hence


 0.t/D 1

2

dX
i;jD1

E

"
@2h

@xi @xj

�p
1 � tF C p

tN
� 

C.i; j / � hDFj ;�DL�1Fj iL2.RC/

�#
;

and the desired conclusion follows. ut
We are now in position to prove Theorem 2 (using a different approach compared

to the original proof; here, we rather follow [39]). We will actually even show the
following more general version.
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Theorem 17 (Peccati and Tudor (2005); see [46]). Let d > 2 and qd ; : : : ; q1 > 1

be some fixed integers. Consider vectors

Fn D .F1;n; : : : ; Fd;n/ D .IBq1 .f1;n/; : : : ; I
B
qd
.fd;n//; n > 1;

with fi;n 2 L2.RqiC/ symmetric. LetC 2 Md .R/ be a symmetric and positive matrix,
and let N be a centered Gaussian vector with covariance C . Assume that

lim
n!1EŒFi;nFj;n� D C.i; j /; 1 6 i; j 6 d: (82)

Then, as n ! 1, the following two conditions are equivalent:

(a) Fn converges in law to N ;
(b) for every 1 6 i 6 d , Fi;n converges in law to N .0; C.i; i//.

Proof. By symmetry, we assume without loss of generality that q1 6 : : : 6 qd . The
implication .a/ ) .b/ being trivial, we only concentrate on .b/ ) .a/. So, assume
.b/ and let us show that .a/ holds true. Thanks to (81), we are left to show that, for
each i; j D 1; : : : ; d ,

hDFj;n;�DL�1Fi;niL2.RC/
D 1

qi
hDFj;n;DFi;niL2.RC/

L2.˝/! C.i; j / as n ! 1:

(83)

Observe first that, using the product formula (43),

1

qi
hDFj;n;DFi;niL2.RC/

D qj

Z 1

0

IBqi�1.fi;n.�; t//IBqj�1.fj;n.�; t//dt

D qj

qi^qj�1X
rD0

rŠ

 
qi � 1

r

! 
qj � 1

r

!
IBqiCqj�2�2r

�Z 1

0

fi;n.�; t/˝r fj;n.�; t/dt

�

D qj

qi^qj�1X
rD0

rŠ

 
qi � 1
r

! 
qj � 1
r

!
IBqiCqj�2�2r

�
fi;n ˝rC1 fj;n

�

D qj

qi^qjX
rD1

.r � 1/Š

 
qi � 1

r � 1

! 
qj � 1

r � 1

!
IBqiCqj�2r .fi;n ˝r fj;n/: (84)

Now, let us consider all the possible cases for qi and qj with j > i .
First case: qi D qj D 1. We have hDFj;n;DFi;niL2.RC/

D hfi;n; fj;niL2.RC/
D

EŒFi;nFj;n�: But it is our assumption that EŒFi;nFj;n� ! C.i; j / so (83) holds true
in this case.

Second case: qi D 1 and qj > 2. We have hDFj;n;DFi;niL2.RC/
D

hfi;n;DFj;niL2.RC/
D IBqj�1.fi;n ˝1 fj;n/: We deduce that
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EŒhDFj;n;DFi;ni2L2.RC/
� D .qj � 1/Škfi;n Q̋ 1fj;nk2

L2.R
qj�1

C
/

6 .qj � 1/Škfi;n ˝1 fj;nk2
L2.R

qj�1

C
/

D .qj � 1/Šhfi;n ˝ fi;n; fj;n ˝qj �1 fj;niL2.R2
C
/

6 .qj � 1/Škfi;nk2L2.RC/
kfj;n ˝qj�1 fj;nkL2.R2

C
/

D .qj � 1/ŠEŒF 2
i;n�kfj;n ˝qj�1 fj;nkL2.R2

C
/:

At this stage, observe the following two facts. First, because qi ¤ qj , we

have C.i; j / D 0 necessarily. Second, since EŒF 2
j;n� ! C.j; j / and Fj;n

Law!
N .0; C.j; j //, we have by Theorem 3 that kfj;n ˝qj �1 fj;nkL2.R2

C
/ ! 0. Hence,

(83) holds true in this case as well.
Third case: qi D qj > 2. By (84), we can write

1

qi
hDFj;n;DFi;niL2.RC/ DEŒFi;nFj;n�C qi

qi�1X
rD1

.r � 1/Š
 
qi � 1

r � 1

!2
I B2qi�2r .fi;n ˝r fj;n/:

We deduce that

E

"�
1

qi
hDFj;n;DFi;niL2.RC/

� C.i; j /

�2#

D �
EŒFi;nFj;n� � C.i; j /

�2

Cq2i
qi�1X
rD1

.r � 1/Š2
 
qi � 1
r � 1

!4
.2qi � 2r/Škfi;n Q̋ rfj;nk2

L2.R
2qi�2r

C
/
:

The first term of the right-hand side tends to zero by assumption. For the second
term, we can write, whenever r 2 f1; : : : ; qi � 1g,

kfi;n Q̋ rfj;nk2
L2.R

2qi�2r

C
/

6 kfi;n ˝r fj;nk2
L2.R

2qi�2r

C
/

D hfi;n ˝qi�r fi;n; fj;n ˝qi�r fj;niL2.R2r
C
/

6 kfi;n ˝qi�r fi;nkL2.R2r
C
/kfj;n ˝qi�r fj;nkL2.R2r

C
/:

Since Fi;n
Law! N .0; C.i; i// and Fj;n

Law! N .0; C.j; j //, by Theorem 3 we have
that kfi;n ˝qi�r fi;nkL2.R2r

C
/kfj;n ˝qi�r fj;nkL2.R2r

C
/ ! 0, thereby showing that (83)

holds true in our third case.
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Fourth case: qj > qi > 2. By (84), we have

1

qi
hDFj;n;DFi;niL2.RC/ D qj

qiX
rD1

.r � 1/Š

 
qi � 1

r � 1

! 
qj � 1
r � 1

!
IBqiCqj�2r .fi;n ˝r fj;n/:

We deduce that

E

�
1

qi
hDFj;n;DFi;ni2L2.RC/



D q2j

qiX
rD1
.r � 1/Š2

 
qi � 1

r � 1

!2 
qj � 1

r � 1

!2
.qi C qj � 2r/Škfi;n Q̋ rfj;nk2

L2.R
qiCqj �2r

C
/
:

For any r 2 f1; : : : ; qi g, we have

kfi;n Q̋ rfj;nk2
L2.R

qiCqj �2r

C
/

6 kfi;n ˝r fj;nk2
L2.R

qiCqj �2r

C
/

D hfi;n ˝qi�r fi;n; fj;n ˝qj�r fj;niL2.R2r
C
/

6 kfi;n ˝qi�r fi;nkL2.R2r
C
/kfj;n ˝qj �r fj;nkL2.R2r

C
/

6 kfi;nk2L2.Rqi
C
/
kfj;n ˝qj�r fj;nkL2.R2r

C
/:

Since Fj;n
Law! N .0; C.j; j // and qj � r 2 f1; : : : ; qj � 1g, by Theorem 3 we have

that kfj;n˝qj�r fj;nkL2.R2r
C
/ ! 0. We deduce that (83) holds true in our fourth case.

Summarizing, we have that (83) is true for any i and j , and the proof of the
theorem is done. ut

When the integers qd ; : : : ; q1 are pairwise disjoint in Theorem 17, notice that
(82) is automatically verified with C.i; j / D 0 for all i ¤ j , see indeed (38). As
such, we recover the version of Theorem 17 (that is, Theorem 4) which was stated
and used in Lecture 1 to prove Breuer–Major theorem.

To Go Further. In [35], Stein’s method is combined with Malliavin calculus in a
multivariate setting to provide bounds for the Wasserstein distance between the laws
ofN � Nd .0; C / and F D .F1; : : : ; Fd / where each Fi 2 D

1;2 verifiesEŒFi � D 0.
Compare with Theorem 16.

7 Cumulants on the Wiener Space

In this section, following [29] our aim is to analyze the cumulants of a given element
F of D1;2 and to show how the formula we shall obtain allows one to give yet another
proof of the Fourth Moment Theorem 2.
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Let F be a random variable with, say, all the moments (to simplify the
exposition). Let �F denote its characteristic function, that is, �F .t/ D EŒeitF�,
t 2 R. Then, it is well-known that we may recover the moments of F from �F
through the identity

EŒF j � D .�i/j d
j

dtj
jtD0 �F .t/:

The cumulants of F , denoted by fj .F /gj>1, are defined in a similar way, just by
replacing �F by log�F in the previous expression:

j .F / D .�i/j d
j

dtj
jtD0 log�F .t/:

The first few cumulants are

1.F / D EŒF �;

2.F / D EŒF 2� �EŒF �2 D Var.F /;

3.F / D EŒF 3� � 3EŒF 2�EŒF �C 2EŒF �3:

It is immediate that

j .F CG/ D j .F /C j .G/ and j .�F / D �j j .F / (85)

for all j > 1, when � 2 R and F and G are independent random variables (with
all the moments). Also, it is easy to express moments in terms of cumulants and
vice-versa. Finally, let us observe that the cumulants of F � N .0; �2/ are all zero,
except for the second one which is �2. This fact, together with the two properties
(85), gives a quick proof of the classical CLT and illustrates that cumulants are often
relevant when wanting to decide whether a given random variable is approximately
normally distributed.

The following simple lemma is a useful link between moments and cumulants.

Lemma 5. Let F be a random variable (in a given probability space .˝;F ; P /)
having all the moments. Then, for all m 2 N,

EŒFmC1� D
mX
sD0

 
m

s

!
sC1.F /EŒF m�s�:

Proof. We can write

EŒFmC1�

D .�i/mC1 dmC1

dtmC1 jtD0 �F .t/ D .�i/mC1 dm

dtm
jtD0

�
�F .t/

d

dt
log�F .t/

�
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D .�i/mC1
mX
sD0

 
m

s

!�
dsC1

dt sC1
jtD0 log�F .t/

��
dm�s

dtm�s jtD0 �F .t/
�

by Leibniz rule

D
mX
sD0

 
m

s

!
sC1.F /EŒF m�s�: ut

From now on, we will deal with a random variable F with all moments that
is further measurable with respect to the Brownian motion .Bt /t>0. We let the
notation of Sect. 4 prevail and we consider the chaotic expansion (39) of F . We
further assume (only to avoid technical issues) that F belongs to D

1, meaning
that F 2 D

m;2 for all m > 1 and that EŒkDmF kp
Lp.Rm

C
/
� < 1 for all m > 1 and

all p > 2. This assumption allows us to introduce recursively the following (well-
defined) sequence of random variables related to F . Namely, set �0.F / D F and

�jC1.F / D hDF;�DL�1�j .F /iL2.RC/
:

The following result contains a neat expression of the cumulants of F in terms of
the family f�s.F /gs2N.

Theorem 18 (Nourdin and Peccati (2010); see [29]). Let F 2 D
1. Then, for any

s 2 N,

sC1.F / D sŠEŒ�s.F /�:

Proof. The proof is by induction. It consists in computing sC1.F / using the
induction hypothesis, together with Lemma 5 and (53). First, the result holds true
for s D 0, as it only says that 1.F / D EŒ�0.F /� D EŒF �. Assume now thatm > 1

is given and that sC1.F / D sŠEŒ�s.F /� for all s 6 m � 1. We can then write

mC1.F / D EŒFmC1� �
m�1X
sD0

 
m

s

!
sC1.F /EŒF

m�s � by Lemma 5

D EŒFmC1��
m�1X
sD0

sŠ

 
m

s

!
EŒ�s.F /�EŒF

m�s � by the induction hypothesis:

On the other hand, by applying (53) repeatedly, we get

EŒFmC1� D EŒFm�EŒ�0.F /�C Cov.F m; �0.F // D EŒFm�EŒ�0.F /�CmEŒFm�1�1.F /�

D EŒFm�EŒ�0.F /�CmEŒFm�1�EŒ�1.F /�CmCov.F m�1; �1.F //

D EŒFm�EŒ�0.F /�CmEŒFm�1�EŒ�1.F /�Cm.m� 1/EŒF m�2�2.F /�

D : : :

D
mX
sD0

sŠ

 
m

s

!
EŒFm�s �EŒ�s.F /�:
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Thus

mC1.F / D EŒF mC1� �
m�1X
sD0

sŠ

 
m

s

!
EŒ�s.F /�EŒF

m�s� D mŠEŒ�m.F /�;

and the desired conclusion follows. ut
Let us now focus on the computation of cumulants associated to random variables

having the form of a multiple Wiener–Itô integral. The following statement provides
a compact representation for the cumulants of such random variables.

Theorem 19. Let q > 2 and assume that F D IBq .f /, where f 2 L2.R
q
C/. We

have 1.F / D 0, 2.F / D qŠkf k2
L2.R

q

C
/

and, for every s > 3,

s.F /D qŠ.s�1/Š
X

cq.r1; : : : ; rs�2/
˝
.: : : ..f Q̋ r1f / Q̋ r2f / : : : Q̋ rs�3f / Q̋ rs�2f; f

˛
L2.R

q

C
/
;

(86)

where the sum
P

runs over all collections of integers r1; : : : ; rs�2 such that:

(i) 1 6 r1; : : : ; rs�2 6 q;
(ii) r1 C : : :C rs�2 D .s�2/q

2
;

(iii) r1 < q, r1 C r2 <
3q

2
, : : :, r1 C : : :C rs�3 < .s�2/q

2
;

(iv) r2 6 2q � 2r1, : : :, rs�2 6 .s � 2/q � 2r1 � : : : � 2rs�3;
and where the combinatorial constants cq.r1; : : : ; rs�2/ are recursively defined by
the relations

cq.r/ D q.r � 1/Š
 
q � 1

r � 1

!2
;

and, for a > 2,

cq.r1; : : : ; ra/D q.ra�1/Š
 
aq � 2r1 � : : : � 2ra�1 � 1

ra � 1

! 
q � 1

ra � 1

!
cq.r1; : : : ; ra�1/:

Remark 5. 1. If sq is odd, then s.F / D 0, see indeed condition .i i/. This fact is
easy to see in any case: use that s.�F / D .�1/ss.F / and observe that, when

q is odd, then F
.law/D �F (since B

.law/D �B).
2. If q D 2 and F D IB2 .f / with f 2 L2.R2C/, then the only possible integers
r1; : : : ; rs�2 verifying .i/–.iv/ in the previous statement are r1 D : : : D rs�2 D 1.
On the other hand, we immediately compute that c2.1/ D 2, c2.1; 1/ D 4,
c2.1; 1; 1/ D 8, and so on. Therefore,

s.I
B
2 .f // D 2s�1.s � 1/Š˝.: : : .f ˝1 f / : : : f /˝1 f; f

˛
L2.R2

C
/
; (87)

and we recover the classical expression of the cumulants of a double integral.
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3. If q > 2 and F D IBq .f /, f 2 L2.RqC/, then (86) for s D 4 reads

4.I
B
q .f // D 6qŠ

q�1X
rD1

cq.r; q � r/˝.f Q̋ rf / Q̋ q�rf; f
˛
L2.R

q

C
/

D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Š

˝
.f Q̋ rf /˝q�r f; f

˛
L2.R

q

C
/

D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Š

˝
f Q̋ rf; f ˝r f

˛
L2.R

2q�2r

C
/

D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/
; (88)

and we recover the expression for 4.F / given in (59) by a different route.

Proof of Theorem 19. Let us first show the following formula: for any s > 2, we
claim that

�s�1.F /

D
qX

r1D1
: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

cq.r1; : : : ; rs�1/1fr1<qg : : : 1fr1C:::Crs�2< .s�1/q
2 g

� IBsq�2r1�:::�2rs�1
�
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�1f

�
: (89)

We shall prove (89) by induction. When s D 2, identity (89) simply reads �1.F / DPq
rD1 cq.r/IB2q�2r .f Q̋ rf / and is nothing but (62). Assume now that (89) holds

for �s�1.F /, and let us prove that it continues to hold for �s.F /. We have, using
the product formula (43) and following the same line of reasoning as in the proof
of (62),

�s.F / D hDF;�DL�1�s�1F iL2.RC/

D
qX

r1D1
: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

qcq.r1; : : : ; rs�1/1fr1<qg : : : 1fr1C:::Crs�2< .s�1/q
2 g

�1fr1C:::Crs�1< sq
2 g

�˝IBq�1.f /; IBsq�2r1�:::�2rs�1�1
�
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�1f

�˛
L2.RC/

D
qX

r1D1
: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

Œsq�2r1�:::�2rs�1�^qX
rsD1

cq.r1; : : : ; rs�1/ � q.rs � 1/Š
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�
 
sq � 2r1 � : : :� 2rs�1 � 1

rs � 1

! 
q � 1

rs � 1

!
1fr1<qg : : : 1fr1C:::Crs�2< .s�1/q

2 g

�1fr1C:::Crs�1< sq
2 gIB.sC1/q�2r1�:::�2rs

�
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs f

�
;

which is the desired formula for �s.F /. The proof of (89) for all s > 1 is thus
finished. Now, let us take the expectation on both sides of (89). We get

s.F / D .s � 1/ŠEŒ�s�1.F /�
D .s � 1/Š

�
qX

r1D1

: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

cq.r1; : : : ; rs�1/1fr1<qg : : : 1fr1C:::Crs�2<
.s�1/q
2 g

�1fr1C:::Crs�1D
sq
2 g � .: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�1f:

Observe that, if 2r1C : : :C2rs�1 D sq and rs�1 6 .s�1/q�2r1� : : :�2rs�2 then
2rs�1 D q C .s � 1/q � 2r1 � : : : � 2rs�2 > q C rs�1, so that rs�1 > q. Therefore,

s.F / D .s � 1/Š

�
qX

r1D1

: : :

Œ.s�2/q�2r1�:::�2rs�3�^qX
rs�2D1

cq.r1; : : : ; rs�2; q/1fr1<qg : : : 1fr1C:::Crs�3<
.s�2/q
2 g

�1
fr1C:::Crs�2D

.s�2/q
2 g

˝
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�2f; f

˛
L2.R

q

C
/
;

which is the announced result, since cq.r1; : : : ; rs�2; q/ D qŠcq.r1; : : : ; rs�2/. ut
We conclude this section by providing yet another proof (based on our new

formula (86)) of the Fourth Moment Theorem 2. More precisely, let us show by
another route that, if q > 2 is fixed and if .Fn/n>1 is a sequence of the form
Fn D IBq .fn/ with fn 2 L2.R

q
C/ such that EŒF 2

n � D qŠkfnk2L2.Rq
C
/

D 1 for all

n > 1 and EŒF 4
n � ! 3 as n ! 1, then Fn ! N .0; 1/ in law as n ! 1.

To this end, observe that 1.Fn/ D 0 and 2.Fn/ D 1. To estimate s.Fn/, s > 3,
we consider the expression (86). Let r1; : : : ; rs�2 be some integers such that .i/–.iv/
in Theorem 19 are satisfied. Using Cauchy–Schwarz and then successively

kg Q̋ rhk
L2.R

pCq�2r

C
/

6 kg ˝r hk
L2.R

pCq�2r

C
/

6 kgkL2.Rp
C
/khkL2.Rq

C
/
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whenever g 2 L2.RpC/, h 2 L2.RqC/ and r D 1; : : : ; p ^ q, we get that
ˇ̌h.: : : .fn Q̋ r1fn/ Q̋ r2fn/ : : : fn/ Q̋ rs�2fn; fniL2.Rq

C
/

ˇ̌

6 k.: : : .fn Q̋ r1fn/ Q̋ r2fn/ : : : fn/ Q̋ rs�2fnkL2.Rq
C
/kfnkL2.Rq

C
/

6 kfn Q̋ r1fnkL2.R2q�2r1
C

/
kfnks�2L2.R

q

C
/

D .qŠ/1� s
2 kfn Q̋ r1fnkL2.R2q�2r1

C
/
: (90)

SinceEŒF 4
n ��3 D 4.Fn/ ! 0, we deduce from (88) that kfn Q̋ rfnkL2.R2q�2r

C
/

! 0

for all r D 1; : : : ; q � 1. Consequently, by combining (86) with (90), we get that
s.Fn/ ! 0 as n ! 1 for all s > 3, implying in turn that Fn ! N .0; 1/ in law.

ut
To Go Further. The multivariate version of Theorem 18 may be found in [23].

8 A New Density Formula

In this section, following [37] we shall explain how the quantity hDF;
�DL�1F iL2.RC/

is related to the density of F 2 D
1;2 (provided it exists). More

specifically, when F 2 D
1;2 is such that EŒF � D 0, let us introduce the function

gF W R ! R, defined by means of the following identity:

gF .F / D EŒhDF;�DL�1F iL2.RC/
jF �: (91)

A key property of the random variable gF .F / is as follows.

Proposition 7. If F 2 D
1;2 satisfies EŒF � D 0, then P.gF .F / > 0/ D 1.

Proof. Let C be a Borel set of R and set �n.x/ D R x
0

1C\Œ�n;n�.t/dt, n > 1 (with

the usual convention
R x
0

D � R 0
x

for x < 0). Since �n is increasing and vanishing at
zero, we have x�n.x/ > 0 for all x 2 R. In particular,

0 6 EŒF�n.F /� D E

�
F

Z F

0

1C\Œ�n;n�.t/dt


D E

�
F

Z F

�1
1C\Œ�n;n�.t/dt


:

Therefore, we deduce from Corollary 1 that E
�
gF .F /1C\Œ�n;n�.F /

	
> 0. By

dominated convergence, this yields E ŒgF .F /1C .F /� > 0, implying in turn that
P.gF .F / > 0/ D 1. ut

The following theorem gives a new density formula forF in terms of the function
gF . We will then study some of its consequences.
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Theorem 20 (Nourdin and Viens (2009); see [37]). Let F 2 D
1;2 with EŒF � D 0.

Then, the law of F admits a density with respect to Lebesgue measure (say, � W
R ! R) if and only if P.gF .F / > 0/ D 1. In this case, the support of �, denoted
by supp �, is a closed interval of R containing zero and we have, for (almost) all
x 2 supp�:

�.x/ D EŒjF j�
2gF .x/

exp

�
�
Z x

0

y dy

gF .y/

�
: (92)

Proof. Assume that P.gF .F / > 0/ D 1 and let C be a Borel set. Let n > 1.
Corollary 1 yields

E

�
F

Z F

�1
1C\Œ�n;n�.t/dt


D E

�
1C\Œ�n;n�.F /gF .F /

	
: (93)

Suppose that the Lebesgue measure of C is zero. Then
R F

�1 1C\Œ�n;n�.t/dt D 0,
so that E

�
1C\Œ�n;n�.F /gF .F /

	 D 0 by (93). But, since P.gF .F / > 0/ D 1, we
get that P.F 2 C \ Œ�n; n�/ D 0 and, by letting n ! 1, that P.F 2 C/ D 0.
Therefore, the Radon–Nikodym criterion is verified, hence implying that the law of
F has a density.

Conversely, assume that the law of F has a density, say �. Let � W R ! R be a
continuous function with compact support, and let ˚ denote any antiderivative of �.
Note that ˚ is necessarily bounded. We can write:

E
�
�.F /gF .F /

	 D E
�
˚.F /F

	
by (53)

D
Z
R

˚.x/ x �.x/dx D
.�/

Z
R

�.x/

�Z 1

x

y�.y/dy

�
dx D E

"
�.F /

R1
F
y�.y/dy

�.F /

#
:

Equation .	/ was obtained by integrating by parts, after observing that

Z 1

x

y�.y/dy ! 0 as jxj ! 1

(for x ! C1, this is because F 2 L1.˝/; for x ! �1, this is because F has
mean zero). Therefore, we have shown that, P -a.s.,

gF .F / D
R1
F
y�.y/dy

�.F /
: (94)

(Notice that P.�.F / > 0/ D R
R

1f�.x/>0g�.x/dx D R
R
�.x/dx D 1, so that

identity (94) always makes sense.) Since F 2 D
1;2, one has (see, e.g., [38,

Proposition 2.1.7]) that supp � D Œ˛; ˇ� with �1 6 ˛ < ˇ 6 C1. Since F
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has zero mean, note that ˛ < 0 and ˇ > 0 necessarily. For every x 2 .˛; ˇ/,
define

' .x/ D
Z 1

x

y� .y/ dy: (95)

The function ' is differentiable almost everywhere on .˛; ˇ/, and its derivative is
�x� .x/. In particular, since '.˛/ D '.ˇ/ D 0 and ' is strictly increasing before
0 and strictly decreasing afterwards, we have '.x/ > 0 for all x 2 .˛; ˇ/. Hence,
(94) implies that P.gF .F / > 0/ D 1.

Finally, let us prove (92). Let ' still be defined by (95). On the one hand, we have
' 0.x/ D �x�.x/ for almost all x 2 supp �. On the other hand, by (94), we have, for
almost all x 2 supp�,

'.x/ D �.x/gF .x/: (96)

By putting these two facts together, we get the following ordinary differential
equation satisfied by ':

' 0.x/
'.x/

D � x

gF .x/
for almost all x 2 supp�.

Integrating this relation over the interval Œ0; x� yields

log'.x/ D log'.0/�
Z x

0

y dy

gF .y/
:

Taking the exponential and using 0 D E.F / D E.FC/ � E.F�/ so that EjF j D
E.FC/C E.F�/ D 2E.FC/ D 2'.0/, we get

'.x/ D 1

2
EŒjF j� exp

�
�
Z x

0

y dy

gF .y/

�
:

Finally, the desired conclusion comes from (96). ut
As a consequence of Theorem 20, we have the following statement, yielding

sufficient conditions in order for the law of F to have a support equal to the real
line.

Corollary 4. Let F 2 D
1;2 with EŒF � D 0. Assume that there exists �min > 0 such

that

gF .F / > �2min; P -a.s. (97)

Then the law of F , which has a density � by Theorem 20, has R for support and
(92) holds almost everywhere in R.

Proof. It is an immediate consequence of Theorem 20, except for the fact that
supp� D R. For the moment, we just know that supp � D Œ˛; ˇ� with �1 6
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˛ < 0 < ˇ 6 C1. Identity (94) yields
Z 1

x

y� .y/ dy > �2min � .x/ for almost all x 2 .˛; ˇ/: (98)

Let ' be defined by (95), and recall that '.x/ > 0 for all x 2 .˛; ˇ/. When
multiplied by x 2 Œ0; ˇ/, the inequality (98) gives '0.x/

'.x/
> � x

�2min
. Integrating this

relation over the interval Œ0; x� yields log' .x/ � log' .0/ > � x2

2 �2min
, i.e., since

'.0/ D 1
2
EjF j,

' .x/ D
Z 1

x

y� .y/ dy > 1

2
EjF je� x2

2 �2min : (99)

Similarly, when multiplied by x 2 .˛; 0�, inequality (98) gives '0.x/

'.x/
6 � x

�2min
:

Integrating this relation over the interval Œx; 0� yields log' .0/ � log' .x/ 6 x2

2 �2min
,

i.e. (99) still holds for x 2 .˛; 0�. Now, let us prove that ˇ D C1. If this were
not the case, by definition, we would have ' .ˇ/ D 0; on the other hand, by
letting x tend to ˇ in the above inequality, because ' is continuous, we would have

' .ˇ/ > 1
2
EjF je� ˇ2

2�2min > 0, which contradicts ˇ < C1. The proof of ˛ D �1 is
similar. In conclusion, we have shown that supp � D R. ut

Using Corollary 4, we deduce a neat criterion for normality.

Corollary 5. Let F 2 D
1;2 with EŒF � D 0 and assume that F is not identically

zero. Then F is Gaussian if and only if Var.gF .F // D 0:

Proof. By (53) (choose '.x/ D x, G D F and recall that EŒF � D 0), we have

EŒhDF;�DL�1F iH� D EŒF 2� D VarF: (100)

Therefore, the condition Var.gF .F // D 0 is equivalent to P.gF .F / D VarF / D 1.
Let F � N .0; �2/ with � > 0. Using (94), we immediately check that
gF .F /D �2, P -a.s. Conversely, if gF .F / D �2 > 0 P -a.s., then Corollary 4

implies that the law of F has a density �, given by �.x/ D EjF j
2�2

e
� x2

2 �2 for almost all
x 2 R, from which we immediately deduce that F � N .0; �2/. ut

Observe that if F � N .0; �2/ with � > 0, then EjF j D p
2=� � , so that the

formula (92) for � agrees, of course, with the usual one in this case.
As a “concrete” application of (92), let us consider the following situation. Let

K W Œ0; 1�2 ! R be a square-integrable kernel such that K.t; s/ D 0 for s > t , and
consider the centered Gaussian process X D .Xt /t2Œ0;1� defined as

Xt D
Z 1

0

K.t; s/dBs D
Z t

0

K.t; s/dBs; t 2 Œ0; 1�: (101)
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Fractional Brownian motion is an instance of such a process, see, e.g., [25,
Sect. 2.3]. Consider the maximum

Z D sup
t2Œ0;1�

Xt : (102)

Assume further that the kernel K satisfies

9c; ˛ > 0; 8s; t 2 Œ0; 1�2; s ¤ t; 0 <

Z 1

0

.K.t; u/�K.s; u//2du 6 cjt � sj˛:
(103)

This latter assumption ensures (see, e.g., [11]) that: .i/ Z 2 D
1;2; .ii/ the law of

Z has a density with respect to Lebesgue measure; .iii/ there exists a (a.s.) unique
random point � 2 Œ0; 1� where the supremum is attained, that is, such that Z D
X� D R 1

0
K.�; s/dBs; and .iv/ DtZ D K.�; t/, t 2 Œ0; 1�. We claim the following

formula.

Proposition 8. LetZ be given by (102),X be defined as (101) andK 2 L2.Œ0; 1�2/
be satisfying (103). Then, the law ofZ has a density � whose support is RC, given by

�.x/ D EjZ � EŒZ�j
2hZ.x/

exp

�
�
Z x

EŒZ�

.y �EŒZ�/dy

hZ.y/

�
; x > 0:

Here,

hZ.x/ D
Z 1

0

e�uE ŒR.�0; �u/jZ D x� du;

where R.s; t/ D EŒXsXt �, s; t 2 Œ0; 1�, and �u is the (almost surely) unique random
point where

X
.u/
t D

Z 1

0

K.t; s/.e�udBs C
p
1 � e�2udB0

s/

attains its maximum on Œ0; 1�, with .B;B 0/ a two-dimensional Brownian motion
defined on the product probability space .˝ ;FFF ;P/ D .˝ �˝ 0;F ˝F 0; P �P 0/.

Proof. Set F D Z�EŒZ�. We have �DtL
�1F D P1

qD1 IBq�1.fq.�; t// andDtF DP1
qD1 qIBq�1.fq.�; t//. Thus

Z 1

0

e�uPu.DtF /du D
1X
qD1

I Bq�1.fq.�; t //
Z 1

0

e�uqe�.q�1/udu D
1X
qD1

I Bq�1.fq.�; t //:
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Consequently,

�DtL
�1F D

Z 1

0

e�uPu.DtF /du; t 2 Œ0; 1�:

By Mehler’s formula (49), and since DF D DZ D K.�; �/ with � D
argmaxt2Œ0;1�

R 1
0 K.t; s/dBs , we deduce that

�DtL
�1F D

Z 1

0

e�uE 0ŒK.�u; t/�du;

implying in turn

gF .F / D EŒhDF; � DL�1F iL2.Œ0;1�/jF � D
Z 1

0
dt
Z 1

0
du e�uK.�0; t/EŒE

0ŒK.�u; t/jF ��

D
Z 1

0
e�uE

"
E 0
"Z 1

0
K.�0; t/K.�u; t/dtjF

##
du

D
Z 1

0
e�uE

�
E 0 ŒR.�0; �u/jF �

	
du

D
Z 1

0
e�uE ŒR.�0; �u/jF � du:

The desired conclusion follows now from Theorem 20 and the fact that F D Z �
EŒZ�. ut
To Go Further. Reference [37] contains concentration inequalities for centered
random variables F 2 D

1;2 satisfying gF .F / 6 ˛F Cˇ. The paper [41] shows how
Theorem 20 can lead to optimal Gaussian density estimates for a class of stochastic
equations with additive noise.

9 Exact Rates of Convergence

In this section, we follow [30]. Let fFngn>1 be a sequence of random variables in

D
1;2 such that EŒFn� D 0, Var.Fn/ D 1 and Fn

law! N � N .0; 1/ as n ! 1.
Our aim is to develop tools for computing the exact asymptotic expression of the
(suitably normalized) sequence

P.Fn 6 x/ � P.N 6 x/; n > 1;

when x 2 R is fixed. This will complement the content of Theorem 13.
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A Technical Computation. For every fixed x, we denote by fx W R ! R the
function

fx.u/ D eu2=2
Z u

�1
�
1.�1;x�.a/ �˚.x/�e�a2=2da

D p
2�eu2=2 �

�
˚.u/.1� ˚.x// if u 6 x

˚.x/.1 � ˚.u// if u > x
; (104)

where ˚.x/ D 1p
2�

R x
�1 e�a2=2da. We have the following result.

Proposition 9. Let N � N .0; 1/. We have, for every x 2 R,

EŒf 0
x .N /N � D 1

3
.x2 � 1/

e�x2=2
p
2�

: (105)

Proof. Integrating by parts (the bracket term is easily shown to vanish), we first
obtain that

EŒf 0
x .N /N � D

Z C1

�1
f 0
x .u/u

e�u2=2

p
2�

du D
Z C1

�1
fx.u/.u

2 � 1/
e�u2=2

p
2�

du

D 1p
2�

Z C1

�1
.u2 � 1/

�Z u

�1
�
1.�1;x�.a/� ˚.x/

	
e�a2=2da

�
du:

Integrating by parts once again, this time using the relation u2 � 1 D 1
3
.u3 � 3u/0,

we deduce that

Z C1

�1
.u2 � 1/

�Z u

�1
�
1.�1;x�.a/ � ˚.x/

	
e�a2=2da

�
du

D �1
3

Z C1

�1
.u3 � 3u/

�
1.�1;x�.u/�˚.x/	e�u2=2du

D �1
3

�Z x

�1
.u3 � 3u/e�u2=2du �˚.x/

Z C1

�1
.u3 � 3u/e�u2=2du

�

D 1

3
.x2 � 1/e�x2=2; since Œ.u2 � 1/e�u2=2�0 D �.u3 � 3u/e�u2=2: ut

A General Result. Assume that fFngn>1 is a sequence of (sufficiently regular)
centered random variables with unitary variance such that the sequence

'.n/ WD
q
EŒ.1 � hDFn;�DL�1FniL2.RC/

/2�; n > 1; (106)
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converges to zero as n ! 1. According to Theorem 13 one has that, for any x 2 R

and as n ! 1,

P.Fn 6 x/ � P.N 6 x/ 6 dTV.Fn;N / 6 2'.n/ ! 0; (107)

where N � N .0; 1/. The forthcoming result provides a useful criterion in order to
compute an exact asymptotic expression (as n ! 1) for the quantity

P.Fn 6 x/ � P.N 6 x/

'.n/
; n > 1:

Theorem 21 (Nourdin and Peccati (2010); see [30]). Let fFngn>1 be a sequence
of random variables belonging to D

1;2, and such that EŒFn� D 0, VarŒFn� D 1.
Suppose moreover that the following three conditions hold:

(i) we have 0 < '.n/ < 1 for every n and '.n/ ! 0 as n ! 1.
(ii) the law of Fn has a density with respect to Lebesgue measure for every n.

(iii) as n ! 1, the two-dimensional vector

�
Fn;

hDFn;�DL�1FniL2.RC/�1
'.n/

�
con-

verges in distribution to a centered two-dimensional Gaussian vector .N1;N2/,
such that EŒN 2

1 � D EŒN 2
2 � D 1 and EŒN1N2� D �.

Then, as n ! 1, one has for every x 2 R,

P.Fn 6 x/ � P.N 6 x/

'.n/
! �

3
.1 � x2/e

�x2=2
p
2�

: (108)

Proof. For any integer n and any C 1-function f with a bounded derivative, we
know by Theorem 12 that

EŒFnf .Fn/� D EŒf 0.Fn/hDFn;�DL�1FniL2.RC/
�:

Fix x 2 R and observe that the function fx defined by (104) is not C 1 due to the
singularity in x. However, by using a regularization argument given assumption .ii/,
one can show that the identity

EŒFnfx.Fn/� D EŒf 0
x .Fn/hDFn;�DL�1FniL2.RC/

�

is true for any n. Therefore, since P.Fn 6 x/ � P.N 6 x/ D EŒf 0
x .Fn/� �

EŒFnfx.Fn/�, we get

P.Fn 6 x/ � P.N 6 x/

'.n/
D E

"
f 0
x .Fn/ � 1 � hDFn;�DL�1FniL2.RC/

'.n/

#
:
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Reasoning as in Lemma 2, one may show that fx is Lipschitz with constant 2. Since
'.n/�1.1�hDFn;�DL�1FniL2.RC/

/ has variance 1 by definition of '.n/, we deduce
that the sequence

f 0
x.Fn/ � 1 � hDFn;�DL�1FniL2.RC/

'.n/
; n > 1;

is uniformly integrable. Definition (104) shows that u ! f 0
x .u/ is continuous at

every u ¤ x. This yields that, as n ! 1 and due to assumption .iii/,

E

"
f 0
x .Fn/ � 1 � hDFn;�DL�1FniL2.RC/

'.n/

#
! �EŒf 0

x .N1/N2� D ��EŒf 0
x .N1/N1�:

Consequently, relation (108) now follows from formula (105). ut

The Double Integrals Case and a Concrete Application. When applying The-
orem 21 in concrete situations, the main issue is often to check that condition
.ii/ therein holds true. In the particular case of sequences belonging to the second
Wiener chaos, we can go further in the analysis, leading to the following result.

Proposition 10. LetN � N .0; 1/ and letFn D IB2 .fn/ be such that fn 2 L2.R2C/
is symmetric for all n > 1. Write p.Fn/, p > 1, to indicate the sequence of the
cumulants of Fn. Assume that 2.Fn/ D EŒF 2

n � D 1 for all n > 1 and that 4.Fn/ D
EŒF 4

n � � 3 ! 0 as n ! 1. If we have in addition that

3.Fn/p
4.Fn/

! ˛ and
8.Fn/�
4.Fn/

�2 ! 0; (109)

then, for all x 2 R,

P.Fn 6 x/ � P.N 6 x/p
4.Fn/

! ˛

6
p
2�

�
1 � x2

�
e� x2

2 as n ! 1: (110)

Remark 6. Due to (109), we see that (110) is equivalent to

P.Fn 6 x/ � P.N 6 x/

3.Fn/
! 1

6
p
2�

�
1 � x2

�
e� x2

2 as n ! 1:

Since each Fn is centered, one also has that 3.Fn/ D EŒF 3
n �.

Proof. We shall apply Theorem 21. Thanks to (60), we get that

4.Fn/

6
D EŒF 4

n �� 3

6
D 8 kfn ˝1 fnk2L2.R2

C
/
:

By combining this identity with (58) (here, it is worth observing that fn ˝1 fn
is symmetric, so that the symmetrization fn Q̋ 1fn is immaterial), we see that the
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quantity '.n/ appearing in (106) is given by
p
4.Fn/=6. In particular, condition

.i/ in Theorem 21 is met (here, let us stress that one may show that 4.Fn/ > 0 for
all n by means of (60)). On the other hand, since Fn is a non-zero double integral,
its law has a density with respect to Lebesgue measure, according to Theorem 2.
This means that condition .ii/ in Theorem 21 is also in order. Hence, it remains to
check condition .iii/. Assume that (109) holds. Using (87) in the cases p D 3 and
p D 8, we deduce that

3.Fn/p
4.Fn/

D
8 hfn; fn ˝1 fniL2.R2

C
/p

6 '.n/

and

8.Fn/

.4.Fn//
2

D
17920k.fn ˝1 fn/˝1 .fn ˝1 fn/k2L2.R2

C
/

'.n/4
:

On the other hand, set

Yn D
1
2
kDFnk2L2.RC/

� 1
'.n/

:

By (62), we have 1
2
kDYnk2L2.RC/

� 1 D 2 IB2 .fn ˝1 fn/. Therefore, by (58), we get
that

E

"�
1

2
kDYnk2L2.RC/

� 1
�2#

D 128

'.n/4
k.fn ˝1 fn/˝1 .fn ˝1 fn/kL2.R2

C
/

D 8.Fn/

140 .4.Fn//
2

! 0 as n ! 1:

Hence, by Theorem 3, we deduce that Yn
Law! N .0; 1/. We also have

EŒYnFn� D 4

'.n/
hfn ˝1 fn; fniL2.R2

C
/ D

p
6 3.Fn/

2
p
4.Fn/

! ˛
p
6

2
DW � as n ! 1:

Therefore, to conclude that condition .iii/ in Theorem 21 holds true, it suffices to
apply Theorem 17. ut

To give a concrete application of Proposition 10, let us go back to the quadratic
variation of fractional Brownian motion. Let BH D .BH

t /t>0 be a fractional
Brownian motion with Hurst indexH 2 .0; 1

2
/ and let

Fn D 1

�n

n�1X
kD0

�
.BH

kC1 � BH
k /

2 � 1	;
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where �n > 0 is so that EŒF 2
n � D 1. Recall from Theorem 15 that limn!1 �2n=n D

2
P

r2Z �2.r/ < 1, with � W Z ! RC given by (69); moreover, there exists a
constant cH > 0 (depending only on H ) such that, with N � N .0; 1/,

dTV .Fn;N / 6 cHp
n
; n > 1: (111)

The next two results aim to show that one can associate a lower bound to (111).
We start by the following auxiliary result.

Proposition 11. Fix an integer s > 2, let Fn be as above and let � be given by
(69). Recall that H < 1

2
, so that � 2 `1.Z/. Then, the sth cumulant of Fn behaves

asymptotically as

s.Fn/ � n1�s=2 2s=2�1.s � 1/Š
h��.s�1/; �i`2.Z/

k�ks
`2.Z/

as n ! 1: (112)

Proof. As in the proof of Theorem 15, we have that Fn
lawD IB2 .fn/ with fn D

1
�n

Pn�1
kD0 e

˝2
k : Now, let us proceed with the proof. It is divided into several steps.

First step. Using the formula (87) giving the cumulants of Fn D IB2 .fn/ as well as
the very definition of the contraction ˝1, we immediately check that

s.Fn/ D 2s�1.s � 1/Š

�sn

n�1X
k1;:::;ksD0

�.ks � ks�1/ : : : �.k2 � k1/�.k1 � ks/:

Second step. Since H < 1
2
, we have that � 2 `1.Z/. Therefore, by applying Young

inequality repeatedly, we have

k j�j�.s�1/k`1.Z/ 6 k�k`1.Z/k j�j�.s�2/k`1.Z/ 6 : : : 6 k�ks�1
`1.Z/

< 1:

In particular, we have that hj�j�.s�1/; j�ji`2.Z/ 6 k�ks
`1.Z/

< 1.

Third step. Thanks to the result shown in the previous step, observe first that
X

k2;:::;ks2Z
j�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/j D hj�j�.s�1/; j�ji`2.Z/

< 1:

Hence, one can apply dominated convergence to get, as n ! 1, that

�sn
2s�1.s � 1/Š n

s.Fn/

D 1

n

n�1X
k1D0

n�1�k1X
k2;:::;ksD�k1

�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/
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D
X

k2;:::;ks2Z
�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/

�
�
1 ^

�
1 � maxfk2; : : : ; ksg

n

�
� 0 _

�
minfk2; : : : ; ksg

n

�
1fjk2j<n;:::;jks j<ng

!
X

k2;:::;ks2Z
�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/ D h��.s�1/; �i`2.Z/:

(113)

Since �n � p
2n k�k`2.Z/ as n ! 1, the desired conclusion follows. ut

Corollary 6. Let Fn be as above (with H < 1
2
), let N � N .0; 1/, and let � be

given by (69). Then, for all x 2 R, we have

p
n
�
P.Fn 6 x/ � P.N 6 x/

� ! h��2; �i`2.Z/
3k�k2

`2.Z/

.1 � x2/ e� x2

2 as n ! 1:

In particular, we deduce that there exists dH > 0 such that

dHp
n

6
ˇ̌
P.Fn 6 0/� P.N 6 0/

ˇ̌
6 dTV .Fn;N /; n > 1: (114)

Proof. The desired conclusion follows immediately by combining Propositions 10
and 11. ut

By paying closer attention to the used estimates, one may actually show that
(114) holds true for any H < 5

8
(not only H < 1

2
). See [32, Theorem 9.5.1] for the

details.

To Go Further. The paper [30] contains several other examples of application of
Theorem 21 and Proposition 10. In [4], one shows that the deterministic sequence

maxfEŒF 3
n �; EŒF

4
n � � 3g; n > 1;

completely characterizes the rate of convergence (with respect to smooth distances)
in CLTs involving chaotic random variables.

10 An Extension to the Poisson Space (Following the Invited
Talk by Giovanni Peccati)

Let B D .Bt /t>0 be a Brownian motion, let F be any centered element of D1;2 and
let N � N .0; 1/. We know from Theorem 13 that

dTV .F;N / 6 2EŒj1� hDF;�DL�1F iL2.RC/
j�: (115)
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The aim of this section, which follows [43, 44], is to explain how to deduce
inequalities of the type (115), when F is a regular functional of a Poisson measure
� and when the target law N is either Gaussian or Poisson.

We first need to introduce the basic concepts in this framework.

Poisson Measure. In what follows, we shall use the symbol Po.�/ to indicate
the Poisson distribution of parameter � > 0 (that is, P� � Po.�/ if and only if
P.P� D k/ D e�� �k

kŠ
for all k 2 N), with the convention that Po.0/ D ı0 (Dirac

mass at 0). Set A D R
d with d > 1, let A be the Borel �-field on A, and let �

be a positive, �-finite and atomless measure over .A;A /. We set A� D fB 2 A W
�.B/ < 1g.

Definition 7. A Poisson measure � with control � is an object of the form
f�.B/gB2A� with the following features:

(1) for all B 2 A�, we have �.B/ � Po.�.B//.
(2) for all B;C 2 A� with B \ C ¤ ;, the random variables �.B/ and �.C / are

independent.

Also, we note O�.B/ D �.B/� �.B/.

Remark 7. 1. As a simple example, note that for d D 1 and � D � � Leb (with
‘Leb’ the Lebesgue measure) the process f�.Œ0; t �/gt>0 is nothing but a Poisson
process with intensity �.

2. Let � be a �-finite atomless measure over .A;A /, and observe that this implies
that there exists a sequence of disjoint sets fAj W j > 1g � A� such that
[j Aj D A. For every j D 1; 2; : : : belonging to the set J0 of those indices

such that �.Aj / > 0 consider the following objects: X.j / D fX.j /

k W k > 1g
is a sequence of i.i.d. random variables with values in Aj and with common

distribution
�jAj

�.Aj /
; Pj is a Poisson random variable with parameter �.Aj /.

Assume moreover that: (i) X.j / is independent of X.k/ for every k ¤ j , (ii) Pj
is independent of Pk for every k ¤ j , and (iii) the classes fX.j /g and fPj g are
independent. Then, it is a straightforward computation to verify that the random
point measure

�.�/ D
X
j2J0

PjX
kD1

ı
X
.j /
k

.�/;

where ıx indicates the Dirac mass at x and
P0

kD1 D 0 by convention, is a Poisson
random measure with control �. See e.g. [49, Sect. 1.7].

Multiple Integrals and Chaotic Expansion. As a preliminary remark, let us
observe that EŒ O�.B/� D 0 and EŒ O�.B/2� D �.B/ for all B 2 A�. For any q > 1,
set L2.�q/ D L2.Aq;A q; �q/. We want to appropriately define
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I O�
q .f / D

Z
Aq
f .x1; : : : ; xq/ O�.dx1/ : : : O�.dxq/

when f 2 L2.�q/. To reach our goal, we proceed in a classical way. We first
consider the subset E .�q/ of simple functions, which is defined as

E .�q/

D span
˚
1B1 ˝ : : :˝ 1Bq ; withB1; : : : ; Bq 2 A� such thatBi \ Bj D ; for all i ¤ j

�
:

When f D 1B1 ˝ : : : ˝ 1Bq with B1; : : : ; Bq 2 A� such that Bi \ Bj D ; for all
i ¤ j , we naturally set

I O�
q .f / WD O�.B1/ : : : O�.Bq/ D

Z
Aq
f .x1; : : : ; xq/ O�.dx1/ : : : O�.dxq/:

(For such a simple function f , note that the right-hand side in the previous formula
makes perfectly sense by considering O� as a signed measure.) We can extend by
linearity the definition of I O�

q .f / to any f 2 E .�q/. It is then a simple computation
to check that

EŒI O�
p .f /I

O�
q .g/� D pŠıp;q h Qf ; QgiL2.�p/

for all f 2 E .�p/ and g 2 E .�q/, with Qf (resp. Qg) the symmetrization of f
(resp. g) and ıp;q the Kronecker symbol. Since E .�q/ is dense in L2.�q/ (it is

precisely here that the fact that � has no atom is crucial!), we can define I O�
q .f / by

isometry to any f 2 L2.�q/. Relevant properties of I O�
q .f / include EŒI O�

q .f /� D 0,

I
O�
q .f / D I

O�
q . Qf / and (importantly!) the fact that I O�

q .f / is a true multiple integral
when f 2 E .�q/.

Definition 8. Fix q > 1. The set of random variables of the form I
O�
q .f / is called

the qth Poisson–Wiener chaos.

In this framework, we have an analogue of the chaotic decomposition (39)—see
e.g. [45, Corollary 10.0.5] for a proof.

Theorem 22. For all F 2 L2.�f�g/ (that is, for all random variable F which is
square integrable and measurable with respect to �), we have

F D EŒF �C
1X
qD1

I O�
q .fq/; (116)

where the kernels fq are (�q-a.e.) symmetric elements of L2.�q/ and are uniquely
determined by F .

Multiplication Formula and Contractions. When f 2 E .�p/ and g 2 E .�q/
are symmetric, we define, for all r D 0; : : : ; p ^ q and l D 0; : : : ; r :
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f ?lr g.x1; : : : ; xpCq�r�l / D
Z
Al
f .y1; : : : ; yl ; x1; : : : ; xr�l ; xr�lC1; : : : ; xp�l /

�g.y1; : : : ; yl ; x1; : : : ; xr�l ; xp�lC1; : : : ; xpCq�r�l /

��.dy1/ : : : �.dyl /:

We then have the following product formula, compare with (43).

Theorem 23 (Product formula). Let p; q > 1 and let f 2 E .�p/ and g 2 E .�q/
be symmetric. Then

I O�
p .f /I

O�
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!
rX
lD0

 
r

l

!
I

O�
pCq�r�l

�
Bf ?lr g

�
:

Proof. Recall that, when dealing with functions in E .�p/, I O�
p.f / is a true multiple

integral (by seeing O� as a signed measure). We deduce

I O�
p .f /I

O�
q .g/ D

Z
ApCq

f .x1; : : : ; xp/g.y1; : : : ; yq/ O�.dx1/ : : : O�.dxp/ O�.dy1/ : : : O�.dyq/:

By definition of f (the same applies for g), we have that f .x1; : : : ; xp/ D 0 when
xi D xj for some i ¤ j . Consider r D 0; : : : ; p ^ q, as well as pairwise disjoint
indices i1; : : : ; ir 2 f1; : : : ; pg and pairwise disjoint indices j1; : : : ; jr 2 f1; : : : ; qg.
Set fk1; : : : ; kp�r g D f1; : : : ; pg n fi1; : : : ; irg and fl1; : : : ; lq�rg D f1; : : : ; qg n
fj1; : : : ; jr g. We have, since � is atomless and using O�.dx/ D �.dx/ � �.dx/,

Z
ApCq

f .x1; : : : ; xp/g.y1; : : : ; yq/1fxi1Dyj1 ;:::;xir Dyjr g

�O�.dx1/ : : : O�.dxp/ O�.dy1/ : : : O�.dyq/

D
Z
ApCq�2r

f .xk1 ; : : : ; xkp�r ; xi1 ; : : : ; xir /g.yl1 ; : : : ; ylq�r ; xi1 ; : : : ; xir /

�O�.dxk1/ : : : O�.dxkp�r / O�.dyl1 / : : : O�.dylq�r
/�.dxi1 / : : : �.dxir /

D
Z
ApCq�2r

f .x1; : : : ; xp�r ; a1; : : : ; ar /g.y1; : : : ; yq�r ; a1; : : : ; ar /

�O�.dx1/ : : : O�.dxp�r / O�.dy1/ : : : O�.dyq�r /�.da1/ : : : �.dar /:

By decomposing over the hyperdiagonals fxi D yj g, we deduce that

I O�
p.f /I

O�
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!Z
ApCq�2r

f .x1; : : : ; xp�r ; a1; : : : ; ar /

�g.y1; : : : ; yq�r ; a1; : : : ; ar /

�O�.dx1/ : : : O�.dxp�r / O�.dy1/ : : : O�.dyq�r /�.da1/ : : : �.dar /;
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and we get the desired conclusion by using the relationship

�.da1/ : : : �.dar / D � O�.da1/C �.da1/
�
: : :
� O�.dar /C �.dar /

�
: ut

Malliavin Operators. Each time we deal with a random element F of L2.f�.�/g/,
in what follows we always consider its chaotic expansion (116).

Definition 9. 1. Set DomD D fF 2 L2.�f�g/ W P
qqŠkfqk2L2.�q/ < 1g. If

F 2 DomD, we set

DtF D
1X
qD1

qI
O�
q�1.fq.�; t//; t 2 A:

The operatorD is called the Malliavin derivative.
2. Set DomL D fF 2 L2.�f�g/ W P q2qŠkfqk2L2.�q/ < 1g. If F 2 DomL, we set

LF D �
1X
qD1

qI O�
q .fq/:

The operator L is called the generator of the Ornstein–Uhlenbeck semigroup.
3. If F 2 L2.�f�g/, we set

L�1F D �
1X
qD1

1

q
I O�
q .fq/:

The operator L�1 is called the pseudo-inverse of L.

It is readily checked that LL�1F D F � EŒF � for F 2 L2.�f�g/. Moreover,
proceeding mutatis mutandis as in the proof of Theorem 12, we get the following
result.

Proposition 12. Let F 2 L2.�f�g/ and let G 2 DomD. Then

Cov.F;G/ D EŒhDG;�DL�1F iL2.�/�: (117)

The operatorD does not satisfy the chain rule. Instead, it admits an “add-one cost”
representation which plays an identical role.

Theorem 24 (Nualart and Vives (1990); see [42]). Let F 2 DomD. Since F is
measurable with respect to �, we can view it as F D F.�/ with a slight abuse of
notation. Then

DtF D F.�C ıt / � F.�/; t 2 A; (118)

where ıt stands for the Dirac mass at t .
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Proof. By linearity and approximation, it suffices to prove the claim for F D
I

O�
q .f /, with q > 1 and f 2 E .�q/ symmetric. In this case, we have

F.�C ıt / D
Z
Aq
f .x1; : : : ; xq/

� O�.dx1/C ıt .dx1/
�
: : :
� O�.dxq/C ıt .dxq/

�
:

Let us expand the integrator. Each member of such an expansion such that there is
strictly more than one Dirac mass in the resulting expression gives a contribution
equal to zero, since f vanishes on diagonals. We therefore deduce that

F.�C ıt / D F.�/

C
qX
lD1

Z
Aq
f .x1; : : : ; xl�1; t; xlC1; : : : ; xq/

� O�.dx1/ : : : O�.dxl�1/ O�.dxlC1/ : : : O�.dxq/

D F.�/C qI
O�
q�1.f .t; �// by symmetry of f

D F.�/CDtF: ut

As an immediate corollary of the previous theorem, we get the formula

Dt.F
2/ D .F CDtF /

2 � F 2 D 2F DtF C .DtF /
2; t 2 A;

which shows howD is far from satisfying the chain rule (47).

Gaussian Approximation. It happens that it is the following distance which is
appropriate in our framework.

Definition 10. The Wasserstein distance between the laws of two real-valued
random variables Y and Z is defined by

dW .Y;Z/ D sup
h2Lip.1/

ˇ̌
EŒh.Y /�� EŒh.Z/�

ˇ̌
; (119)

where Lip.1/ stands for the set of Lipschitz functions h W R ! R with constant 1.

Since we are here dealing with Lipschitz functions h, we need a suitable version
of Stein’s lemma. Compare with Lemma 2.

Lemma 6 (Stein (1972); see [52]). Suppose h W R ! R is a Lipschitz constant
with constant 1. Let N � N .0; 1/. Then, there exists a solution to the equation

f 0.x/ � xf .x/ D h.x/ �EŒh.N /�; x 2 R;

that satisfies kf 0k1 6
q

2
�

and kf 00k1 6 2.

Proof. Let us recall that, according to Rademacher’s theorem, a function which is
Lipschitz continuous on R is almost everywhere differentiable. Let f W R ! R be
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the (well-defined!) function given by

f .x/ D �
Z 1

0

e�t
p
1 � e�2t EŒh.e

�t x C
p
1 � e�2tN /N �dt: (120)

By dominated convergence we have that fh 2 C 1 with

f 0.x/ D �
Z 1

0

e�2t
p
1 � e�2t EŒh

0.e�t x C
p
1 � e�2tN /N �dt:

We deduce, for any x 2 R,

jf 0.x/j 6 EjN j
Z 1

0

e�2t
p
1 � e�2t dt D

r
2

�
: (121)

Now, let F W R ! R be the function given by

F.x/ D
Z 1

0

EŒh.N / � h.e�t x C
p
1 � e�2tN /�dt; x 2 R:

Observe that F is well-defined since h.N / � h.e�t x C p
1 � e�2tN / is integrable

due to

ˇ̌
h.N / � h.e�t x C

p
1 � e�2tN /

ˇ̌
6 e�t jxj C �

1 �
p
1 � e�2t �jN j

6 e�t jxj C e�2t jN j;

where the last inequality follows from 1 � p
1 � u D u=.

p
1 � u C 1/ 6 u if

u 2 Œ0; 1�. By dominated convergence, we immediately see that F is differentiable
with

F 0.x/ D �
Z 1

0

e�t EŒh0.e�t x C
p
1 � e�2tN /�dt:

By integrating by parts, we see that F 0.x/ D f .x/. Moreover, by using the notation
introduced in Sect. 4, we can write

f 0.x/ � xf .x/

D LF.x/; by decomposing in Hermite polynomials, since LHq D �qHq DH 00
q �XH 0

q

D �
Z 1

0

LPth.x/dt; since F.x/ D R1

0

�
EŒh.N /� � Pth.x/

�
dt

D �
Z 1

0

d

dt
Pth.x/dt

D P0h.x/ � P1h.x/ D h.x/ �EŒh.N /�:
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This proves the claim for kf 0k1. The claim for kf 00k1 is a bit more difficult to
achieve; we refer to Stein [52, pp. 25–28] to keep the length of this survey within
bounds. ut

We can now derive a bound for the Gaussian approximation of any centered
element F belonging to DomD, compare with (115).

Theorem 25 (Peccati, Solé, Taqqu and Utzet (2010); see [44]). Consider F 2
DomD with EŒF � D 0. Then, with N � N .0; 1/,

dW .F;N / 6
r
2

�
E
�ˇ̌
1 � hDF;�DL�1F iL2.�/

ˇ̌	CE

�Z
A

.DtF /
2jDtL

�1F j�.dt/


:

Proof. Let h 2 Lip.1/ and let f be the function of Lemma 6. Using (118) and a
Taylor formula, we can write

Dtf .F / D f .F CDtF / � f .F / D f 0.F /DtF CR.t/;

with jR.t/j 6 1
2
kf 00k1.DtF /

2 6 .DtF /
2. We deduce, using (117) as well,

EŒh.F /� � EŒh.N /� D EŒf 0.F /� � EŒFf .F /�

D EŒf 0.F /� � EŒhDf.F /;�DL�1F iL2.�/�
D EŒf 0.F /.1 � hDF;�DL�1F iL2.�//�

C
Z
A

.�DtL
�1F /R.t/�.dt/:

Consequently, since kf 0k1 6
q

2
�

,

dW .F;N / D sup
h2Lip.1/

jEŒh.F /� � EŒh.N /�j

6
r
2

�
E
�ˇ̌
1 � hDF;�DL�1F iL2.�/

ˇ̌	CE

�Z
A

.DtF /
2jDtL

�1F j�.dt/


:

ut
Poisson Approximation. To conclude this section, we will prove a very interesting
result, which may be seen as a Poisson counterpart of Theorem 25.

Theorem 26 (Peccati (2012); see [43]). Let F 2 DomD with EŒF � D � > 0 and
F taking its values in N. Let P� � Po.�/. Then,

sup
C�N

ˇ̌
P.F 2 C/ � P.P� 2 C/ˇ̌ 6 1 � e��

�
Ej�� hDF;�DL�1F iL2.�/j (122)

C1 � e��

�2
E

Z
jDtF.DtF � 1/DtL

�1F j�.dt/:
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Just as a mere illustration, consider the case where F D �.B/ D I
O�
1 .1B/ with

B 2 A�. We then have DF D �DL�1F D 1B , so that hDF;�DL�1F iL2.�/ DR
1Bd� D �.B/ and DF.DF �1/ D 0 a.e. The right-hand side of (122) is therefore

zero, as it was expected since F � Po.�/.
During the proof of Theorem 26, we shall use an analogue of Lemma 2 in the

Poisson context, which reads as follows.

Lemma 7 (Chen (1975); see [8]). Let C � N, let � > 0 and let P� � Po.�/.
The equation with unknown f W N ! R,

�f .k C 1/� kf .k/ D 1C .k/� P.P� 2 C/; k 2 N; (123)

admits a unique solution such that f .0/ D 0, denoted by fC . Moreover, by setting
�f.k/ D f .k C 1/ � f .k/, we have k�fCk1 6 1�e��

�
and k�2fCk1 6

2
�
k�fCk1.

Proof. We only provide a proof for the bound on �fC ; the estimate on �2fC is
proved e.g. by Daly in [10]. Multiplying both sides of (123) by �k=kŠ and summing
up yields that, for every k > 1,

fC .k/ D .k � 1/Š

�k

k�1X
rD0

�r

rŠ
Œ1C .r/ � P.P� 2 C/� (124)

D
X
j2C

ffj g.k/ (125)

D �fCc .k/ (126)

D � .k � 1/Š

�k

1X
rDk

�r

rŠ
Œ1C .r/ � P.P� 2 C/�; (127)

where Cc denotes the complement of C in N. (Identity (125) comes from the
additivity property of C 7! fC , identity (126) is because fN � 0 and identity
(126) is due to

1X
rD0

�r

rŠ
Œ1C .r/ � P.P� 2 C/� D EŒ1C .P�/� EŒ1C .P�/�� D 0:

�

Since fC .k/ � fC .k C 1/ D fCc .k C 1/� fCc .k/ (due to (126)), it is sufficient to
prove that, for every k > 1 and every C � N, fC .k C 1/� fC .k/ 6 .1 � e��/=�.
One has the following fact: for every j > 1 the mapping k 7! ffj g.k/ is negative
and decreasing for k D 1; : : : ; j and positive and decreasing for k > j C1. Indeed,
we use (124) to deduce that, if 1 6 k 6 j ,

ffj g.k/ D �e�� �j

j Š

kX
rD1

��r .k � 1/Š

.k � r/Š (which is negative and decreasing in k);
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whereas (127) implies that, if k > j C 1,

ffj g.k/ D e�� �j

j Š

1X
rD0

�r
.k � 1/Š
.k C r/Š

(which is positive and decreasing in k):

Using (125), one therefore infers that fC .k C 1/� fC .k/ 6 ffkg.kC 1/� ffkg.k/,
for every k > 0. Since

ffkg.k C 1/� ffkg.k/ D e��
"
k�1X
rD0

�r

rŠk
C

1X
rDkC1

�r�1

rŠ

#

D e��

�

"
kX
rD1

�r

rŠ
� r

k
C

1X
rDkC1

�r

rŠ

#

6 1 � e��

�
;

the proof is concluded. ut
We are now in a position to prove Theorem 26.

Proof of Theorem 26. The main ingredient is the following simple inequality, which
is a kind of Taylor formula: for all k; a 2 N,

ˇ̌
f .k/ � f .a/ ��f.a/.k � a/ˇ̌ 6 1

2
k�2f k1j.k � a/.k � a � 1/j: (128)

Assume for the time being that (128) holds true and fix C � N. We have, using
Lemma 7 and then (117)

ˇ̌
P.F 2 C/� P.P� 2 C/ˇ̌ D ˇ̌

EŒ�fC .F C 1/� �EŒFfC .F /�
ˇ̌

D ˇ̌
�EŒ�fC .F /� � EŒ.F � �/fC .F /�

ˇ̌

D ˇ̌
�EŒ�fC .F /� � EŒhDfC .F /;�DL�1F iL2.�/�

ˇ̌
:

Now, combining (118) with (128), we can write

DtfC .F / D �fC .F /DtF C S.t/;

with S.t/ 6 1
2
k�2fC k1jDtF.DtF � 1/j 6 1�e��

�2
jDtF.DtF � 1/j, see indeed

Lemma 7 for the last inequality. Putting all these bounds together and since
k�fCk1 6 1�e��

�
by Lemma 7, we get the desired conclusion.

So, to conclude the proof, it remains to show that (128) holds true. Let us first
assume that k > a C 2. We then have
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f .k/ D f .a/C
k�1X
jDa

�f .j / D f .a/C�f.a/.k � a/C
k�1X
jDa

.�f .j / ��f.a//

D f .a/C�f.a/.k � a/C
k�1X
jDa

j�1X
lDa

�2f .l/

D f .a/C�f.a/.k � a/C
k�2X
lDa

�2f .l/.k � l � 1/;

so that

jf .k/ � f .a/ ��f.a/.k � a/j 6 k�2f k1
k�2X
lDa
.k � l � 1/

D 1

2
k�2f k1.k � a/.k � a � 1/;

that is, (128) holds true in this case. When k D a or k D a C 1, (128) is obviously
true. Finally, consider the case k 6 a � 1. We have

f .k/ D f .a/ �
a�1X
jDk

�f .j / D f .a/C�f.a/.k � a/C
a�1X
jDk

.�f .a/ ��f.j //

D f .a/C�f.a/.k � a/C
a�1X
jDk

a�1X
lDj

�2f .l/

D f .a/C�f.a/.k � a/C
a�1X
lDk

�2f .l/.l � k C 1/;

so that

jf .k/ � f .a/ ��f.a/.k � a/j 6 k�2f k1
a�1X
lDk
.l � k C 1/

D 1

2
k�2f k1.a � k/.a � k C 1/;

that is, (128) holds true in this case as well. The proof of Theorem 26 is done. ut
To Go Further. A multivariate extension of Theorem 25 can be found in [47].
Reference [19] contains several explicit applications of the tools developed in this
section.
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11 Fourth Moment Theorem and Free Probability

To conclude this survey, we shall explain how the Fourth Moment Theorem 2
extends in the theory of free probability, which provides a convenient framework
for investigating limits of random matrices. We start with a short introduction to
free probability. We refer to [22] for a systematic presentation and to [2] for specific
results on Wigner multiple integrals.

Free Tracial Probability Space. A non-commutative probability space is a von
Neumann algebra A (that is, an algebra of operators on a complex separable
Hilbert space, closed under adjoint and convergence in the weak operator topology)
equipped with a trace ', that is, a unital linear functional (meaning preserving the
identity) which is weakly continuous, positive (meaning '.X/ 
 0 whenever X
is a non-negative element of A ; i.e. whenever X D Y Y � for some Y 2 A ),
faithful (meaning that if '.Y Y �/ D 0 then Y D 0), and tracial (meaning that
'.XY / D '.YX/ for all X; Y 2 A , even though in general XY ¤ YX ).

Random Variables. In a non-commutative probability space, we refer to the self-
adjoint elements of the algebra as random variables. Any random variable X has a
law: this is the unique probability measure � on R with the same moments as X ; in
other words, � is such that

Z
R

xkd�.x/ D '.Xk/; k > 1: (129)

(The existence and uniqueness of � follow from the positivity of ', see [22,
Proposition 3.13].)

Convergence in Law. We say that a sequence .X1;n; : : : ; Xk;n/, n > 1, of random
vectors converges in law to a random vector .X1;1; : : : ; Xk;1/, and we write

.X1;n; : : : ; Xk;n/
law! .X1;1; : : : ; Xk;1/;

to indicate the convergence in the sense of (joint) moments, that is,

lim
n!1' .Q.X1;n; : : : ; Xk;n// D ' .Q.X1;1; : : : ; Xk;1// ; (130)

for any polynomialQ in k non-commuting variables.
We say that a sequence .Fn/ of non-commutative stochastic processes (that

is, each Fn is a one-parameter family of self-adjoint operators Fn.t/ in .A ; '/)
converges in the sense of finite-dimensional distributions to a non-commutative
stochastic process F1, and we write

Fn
f:d:d:! F1;
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to indicate that, for any k > 1 and any t1; : : : ; tk > 0,

.Fn.t1/; : : : ; Fn.tk//
law! .F1.t1/; : : : ; F1.tk//:

Free Independence. In the free probability setting, the notion of independence
(introduced by Voiculescu in [55]) goes as follows. Let A1; : : : ;Ap be unital
subalgebras of A . Let X1; : : : ; Xm be elements chosen from among the Ai ’s such
that, for 1 � j < m, two consecutive elements Xj and XjC1 do not come from the
same Ai and are such that '.Xj / D 0 for each j . The subalgebras A1; : : : ;Ap are
said to be free or freely independent if, in this circumstance,

'.X1X2 � � �Xm/ D 0: (131)

Random variables are called freely independent if the unital algebras they generate
are freely independent. Freeness is in general much more complicated than classical
independence. For example, if X; Y are free and m; n > 1, then by (131),

'
�
.Xm � '.Xm/1/.Y n � '.Y n/1/� D 0:

By expanding (and using the linear property of '), we get

'.XmY n/ D '.Xm/'.Y n/; (132)

which is what we would expect under classical independence. But, by setting X1 D
X3 D X � '.X/1 and X2 D X4 D Y � '.Y / in (131), we also have

'
�
.X � '.X/1/.Y � '.Y /1/.X � '.X/1/.Y � '.Y /1/� D 0:

By expanding, using (132) and the tracial property of ' (for instance '.XYX/ D
'.X2Y /) we get

'.XYXY / D '.Y /2'.X2/C '.X/2'.Y 2/ � '.X/2'.Y /2;

which is different from '.X2/'.Y 2/, which is what one would have obtained if X
and Y were classical independent random variables. Nevertheless, ifX; Y are freely
independent, then their joint moments are determined by the moments of X and Y
separately, exactly as in the classical case.

Semicircular Distribution. The semicircular distribution S .m; �2/ with mean
m 2 R and variance �2 > 0 is the probability distribution

S .m; �2/.dx/ D 1

2��2

p
4�2 � .x �m/2 1fjx�mj�2�g dx: (133)
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If m D 0, this distribution is symmetric around 0, and therefore its odd moments
are all 0. A simple calculation shows that the even centered moments are given by
(scaled) Catalan numbers: for non-negative integers k,

Z mC2�

m�2�
.x �m/2kS .m; �2/.dx/ D Ck�

2k;

where Ck D 1
kC1

�
2k
k

�
(see, e.g., [22, Lecture 2]). In particular, the variance is �2

while the centered fourth moment is 2�4. The semicircular distribution plays here
the role of the Gaussian distribution. It has the following similar properties:

1. If S � S .m; �2/ and a; b 2 R, then aS C b � S .amC b; a2�2/.
2. If S1 � S .m1; �

2
1 / and S2 � S .m2; �

2
2 / are freely independent, then S1CS2 �

S .m1 Cm2; �
2
1 C �22 /.

Free Brownian Motion. A free Brownian motion S D fS.t/gt>0 is a non-
commutative stochastic process with the following defining characteristics:

(1) S.0/ D 0.
(2) For t2 > t1 > 0, the law of S.t2/�S.t1/ is the semicircular distribution of mean

0 and variance t2 � t1.
(3) For all n and tn > � � � > t2 > t1 > 0, the increments S.t1/, S.t2/ � S.t1/, . . . ,

S.tn/� S.tn�1/ are freely independent.

We may think of free Brownian motion as “infinite-dimensional matrix-valued
Brownian motion”.

Wigner Integral. Let S D fS.t/gt>0 be a free Brownian motion. Let us quickly
sketch out the construction of the Wigner integral of f with respect to S . For an
indicator function f D 1Œu;v�, the Wigner integral of f is defined by

Z 1

0

1Œu;v�.x/dS.x/ D S.v/ � S.u/:

We then extend this definition by linearity to simple functions of the form f DPk
iD1 ˛i1Œui ;vi �; where Œui ; vi � are disjoint intervals of RC. Simple computations

show that

'

�Z 1

0

f .x/dS.x/

�
D 0 (134)

'

�Z 1

0

f .x/dS.x/ �
Z 1

0

g.x/dS.x/

�
D hf; giL2.RC/

: (135)

By isometry, the definition of
R1
0 f .x/dS.x/ is extended to all f 2 L2.RC/, and

(134)–(135) continue to hold in this more general setting.
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Multiple Wigner Integral. Let S D fS.t/gt>0 be a free Brownian motion, and let
q > 1 be an integer. When f 2 L2.RqC/ is real-valued, we write f � to indicate the
function of L2.RqC/ given by f �.t1; : : : ; tq/ D f .tq; : : : ; t1/.

Following [2], let us quickly sketch out the construction of the multiple Wigner
integral of f with respect to S . Let Dq � R

q
C be the collection of all diagonals, i.e.

Dq D f.t1; : : : ; tq/ 2 R
q
C W ti D tj for some i ¤ j g: (136)

For an indicator function f D 1A, where A � R
q
C has the formA D Œu1; v1�� : : :�

Œuq; vq� with A \Dq D ;, the qth multiple Wigner integral of f is defined by

I Sq .f / D .S.v1/� S.u1// : : : .S.vq/� S.uq//:

We then extend this definition by linearity to simple functions of the form f DPk
iD1 ˛i1Ai ; where Ai D Œui1; v

i
1� � : : : � Œuiq; v

i
q� are disjoint q-dimensional

rectangles as above which do not meet the diagonals. Simple computations show
that

'.I Sq .f // D 0 (137)

'.I Sq .f /I
S
q .g// D hf; g�iL2.Rq

C
/: (138)

By isometry, the definition of ISq .f / is extended to all f 2 L2.R
q
C/, and (137)–

(138) continue to hold in this more general setting. If one wants ISq .f / to be a
random variable, it is necessary for f to be mirror symmetric, that is, f D f � (see
[17]). Observe that I S1 .f / D R1

0
f .x/dS.x/ when q D 1. We have moreover

'.I Sp .f /I
S
q .g// D 0 when p ¤ q, f 2 L2.RpC/ and g 2 L2.RqC/: (139)

When r 2 f1; : : : ; p ^ qg, f 2 L2.R
p
C/ and g 2 L2.R

q
C/, let us write

f
r
_ g to indicate the r th contraction of f and g, defined as being the element

of L2.RpCq�2r
C / given by

f
r
_ g.t1; : : : ; tpCq�2r / (140)

D
Z
R
r
C

f .t1; : : : ; tp�r ; x1; : : : ; xr /g.xr ; : : : ; x1; tp�rC1; : : : ; tpCq�2r /dx1 : : : dxr :

By convention, set f
0
_ g D f ˝ g as being the tensor product of f and g.

Since f and g are not necessarily symmetric functions, the position of the identified
variables x1; : : : ; xr in (140) is important, in contrast to what happens in classical
probability. Observe moreover that

kf r
_ gk

L2.R
pCq�2r

C
/

6 kf kL2.Rp
C
/kgkL2.Rq

C
/ (141)

by Cauchy–Schwarz, and also that f
q
_ g D hf; g�iL2.Rq

C
/ when p D q.
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We have the following product formula (see [2, Proposition 5.3.3]), valid for any
f 2 L2.RpC/ and g 2 L2.RqC/:

I Sp .f /I
S
q .g/ D

p^qX
rD0

I SpCq�2r .f
r
_ g/: (142)

We deduce (by a straightforward induction) that, for any e 2 L2.RC/ and any q > 1,

Uq

�Z 1

0

e.x/dSx

�
D I Sq .e

˝q/; (143)

where U0 D 1, U1 D X , U2 D X2 � 1, U3 D X3 � 2X , : : :, is the sequence
of Tchebycheff polynomials of second kind (determined by the recursion XUk D
UkC1 C Uk�1),

R1
0
e.x/dS.x/ is understood as a Wigner integral, and e˝q is the

qth tensor product of e. This is the exact analogue of (10) in our context.
We are now in a position to offer a free analogue of the Fourth Moment

Theorem 3, which reads as follows.

Theorem 27 (Kemp, Nourdin, Peccati and Speicher (2011); see [17]). Fix an
integer q > 2 and let fStgt>0 be a free Brownian motion. Whenever f 2 L2.R

q
C/,

set I Sq .f / to denote the qth multiple Wigner integrals of f with respect to S . Let
fFngn>1 be a sequence of Wigner multiple integrals of the form

Fn D I Sq .fn/;

where each fn 2 L2.RC/ is mirror-symmetric, that is, is such that fn D f �
n .

Suppose moreover that '.F 2
n / ! 1 as n ! 1. Then, as n ! 1, the following two

assertions are equivalent:

(i) Fn
Law! S1 � S .0; 1/;

(ii) '.F 4
n / ! 2 D '.S41 /.

Proof (following [24]). Without loss of generality and for sake of simplicity, we
suppose that '.F 2

n / D 1 for all n (instead of '.F 2
n / ! 1 as n ! 1). The proof of

the implication .i/ ) .ii/ being trivial by the very definition of the convergence
in law in a free tracial probability space, we only concentrate on the proof of
.ii/ ) .i/.

Fix k > 3. By iterating the product formula (142), we can write

F k
n D I Sq .fn/

k D
X

.r1;:::;rk�1/2Ak;q

I Skq�2r1�:::�2rk�1

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
;

where

Ak;q D ˚
.r1; : : : ; rk�1/ 2 f0; 1; : : : ; qgk�1 W r2 6 2q � 2r1; r3 6 3q � 2r1 � 2r2; : : : ;

rk�1 6 .k � 1/q � 2r1 � : : : � 2rk�2

�
:
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By taking the '-trace in the previous expression and taking into account that (137)
holds, we deduce that

'.F k
n / D '.I Sq .fn/

k/ D
X

.r1;:::;rk�1/2Bk;q
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn; (144)

with

Bk;q D ˚
.r1; : : : ; rk�1/ 2 Ak;q W 2r1 C : : :C 2rk�1 D kq

�
:

Let us decompose Bk;q into Ck;q [ Ek;q , with Ck;q D Bk;q \ f0; qgk�1 and Ek;q D
Bk;q n Ck;q . We then have

'.F k
n / D

X
.r1;:::;rk�1/2Ck;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�

C
X

.r1;:::;rk�1/2Ek;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
:

Using the two relationships fn
0
_ fn D fn ˝ fn and

fn
q
_ fn D

Z
R
q

C

fn.t1; : : : ; tq/fn.tq; : : : ; t1/dt1 : : : dtq D kfnk2L2.Rq
C
/

D 1;

it is evident that .: : : ..fn
r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn D 1 for all .r1; : : : ; rk�1/ 2

Ck;q . We deduce that

'.F k
n / D #Ck;q C

X
.r1;:::;rk�1/2Ek;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
:

On the other hand, by applying (144) with q D 1, we get that

'.Sk1 / D '.I S1 .1Œ0;1�/
k/D

X
.r1;:::;rk�1/2Bk;1

.: : : ..1Œ0;1�
r1
_ 1Œ0;1�/

r2
_ 1Œ0;1�/ : : :/

rk�1
_ 1Œ0;1�

D
X

.r1;:::;rk�1/2Bk;1
1 D #Bk;1:

But it is clear that Ck;q is in bijection with Bk;1 (by dividing all the ri ’s in Ck;q by
q). Consequently,

'.F k
n / D '.Sk1 /C

X
.r1;:::;rk�1/2Ek;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
: (145)
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Now, assume that '.F 4
n / ! '.S41 / D 2 and let us show that '.F k

n / ! '.Sk1 / for
all k > 3. Using that fn D f �

n , observe that

fn
r
_ fn.t1; : : : ; t2q�2r /

D
Z
R
r
C

fn.t1; : : : ; tq�r ; s1; : : : ; sr /fn.sr ; : : : ; s1; tq�rC1; : : : ; t2q�2r /ds1 : : : dsr

D
Z
R
r
C

fn.sr ; : : : ; s1; tq�r ; : : : ; t1/fn.t2q�2r ; : : : ; tq�rC1; s1; : : : ; sr /ds1 : : : dsr

D fn
r
_ fn.t2q�2r ; : : : ; t1/ D .fn

r
_ fn/

�.t1; : : : ; t2q�2r /;

that is, fn
r
_ fn D .fn

r
_ fn/

�. On the other hand, the product formula (142) leads
to F 2

n D Pq
rD0 I S2q�2r .fn

r
_ fn/. Since two multiple integrals of different orders

are orthogonal (see (139)), we deduce that

'.F 4
n / D kfn ˝ fnk2

L2.R
2q

C
/
C �kfnk2L2.Rq

C
/

�2 C
q�1X
rD1

hfn r
_ fn; .fn

r
_ fn/

�i
L2.R

2q�2r

C
/

D 2kfnk4L2.Œ0;1�q/ C
q�1X
rD1

kfn r
_ fnk2

L2.R
2q�2r

C
/

D 2C
q�1X
rD1

kfn r
_ fnk2

L2.R
2q�2r

C
/
: (146)

Using that '.F 4
n / ! 2, we deduce that

kfn r
_ fnk2

L2.R
2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1: (147)

Fix .r1; : : : ; rk�1/ 2 Ek;q and let j 2 f1; : : : ; k � 1g be the smallest integer such
that rj 2 f1; : : : ; q � 1g. Then:

ˇ̌
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

ˇ̌

D ˇ̌
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :

rj�1
_ fn/

rj
_ fn/

rjC1
_ fn/ : : :/

rk�1
_ fn

ˇ̌

D ˇ̌
.: : : ..fn ˝ : : :˝ fn/

rj
_ fn/

rjC1
_ fn/ : : :/

rk�1
_ fn

ˇ̌
(since fn

q
_ fn D 1)

D ˇ̌
.: : : ..fn ˝ : : :˝ fn/˝ .fn

rj
_ fn//

rjC1
_ fn/ : : :/

rk�1
_ fn

ˇ̌

6 k.fn ˝ : : :˝ fn/˝ .fn
rj
_ fn/kkfnkk�j�1 (Cauchy–Schwarz)

D kfn rj
_ fnk (since kfnk2 D 1)

! 0 as n ! 1 by (147):
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Therefore, we deduce from (145) that '.F k
n / ! '.Sk1 /, which is the desired

conclusion and concludes the proof of the theorem. ut
During the proof of Theorem 27, we actually showed (see indeed (146)) that the

two assertions .i/–.ii/ are both equivalent to a third one, namely

.iii/: kfn r
_ fnk2

L2.R
2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1:

Combining .iii/ with Corollary 3, we immediately deduce an interesting transfer
principle for translating results between the classical and free chaoses.

Corollary 7. Fix an integer q > 2, let fBt gt>0 be a standard Brownian motion and
let fStgt>0 be a free Brownian motion. Whenever f 2 L2.R

q
C/, we write IBq .f /

(resp. I Sq .f /) to indicate the qth multiple Wiener integrals of f with respect to B
(resp. S ). Let ffngn>1 � L2.R

q
C/ be a sequence of symmetric functions and let

� > 0 be a finite constant. Then, as n ! 1, the following two assertions hold
true.

(i) EŒIBq .fn/� ! qŠ�2 if and only if '.I Sq .fn/
2/ ! �2.

(ii) If the asymptotic relations in .i/ are verified, then IBq .fn/
law! N .0; qŠ�2/ if

and only if I Sq .fn/
law! S .0; �2/.

To Go Further. A multivariate version of Theorem 27 (free counterpart of
Theorem 17) can be found in [36]. In [31] (resp. [14]), one exhibits a version of
Theorem 27 in which the semicircular law in the limit is replaced by the free Poisson
law (resp. the so-called tetilla law). An extension of Theorem 27 in the context of
the q-Brownian motion (which is an interpolation between the standard Brownian
motion corresponding to q D 1 and the free Brownian motion corresponding to
q D 0) is given in [12].
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Notes in Math. vol. 1247 (Springer, Berlin, 1987), pp. 1–8

54. M. Talagrand, Spin Glasses, a Challenge for Mathematicians (Springer, New York, 2003)
55. D.V. Voiculescu, Symmetries of some reduced free product C�-algebras. Operator algebras

and their connection with topology and ergodic theory, Springer Lecture Notes in Mathematics,
vol. 1132, 556–588 (1985)

56. R. Zintout, Total variation distance between two double Wiener-Itô integrals. Statist. Probab.
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Some Sufficient Conditions for the Ergodicity
of the Lévy Transformation

Vilmos Prokaj�

Abstract We propose a possible way of attacking the question posed originally by
Daniel Revuz and Marc Yor in their book published in 1991. They asked whether the
Lévy transformation of the Wiener-space is ergodic. Our main results are formulated
in terms of a strongly stationary sequence of random variables obtained by evaluat-
ing the iterated paths at time one. Roughly speaking, this sequence has to approach
zero “sufficiently fast”. For example, one of our results states that if the expected hit-
ting time of small neighborhoods of the origin do not grow faster than the inverse of
the size of these sets then the Lévy transformation is strongly mixing, hence ergodic.

1 Introduction

We work on the canonical space for continuous processes, that is, on the set of
continuous functions CŒ0;1/ equipped with the Borel �-field B.CŒ0;1// and the
Wiener measure P. On this space the canonical process ˇt .!/ D !.t/ is a Brownian
motion and the Lévy transformation T, given by the formula

.Tˇ/t D
Z t

0
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Pázmány P. sétány 1/C, Budapest, H-1117 Hungary
e-mail: prokaj@cs.elte.hu

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLV,
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is almost everywhere defined and preserves the measure P. A long standing open
question is the ergodicity of this transformation. It was probably first mentioned
in written form in Revuz and Yor [11] (pp. 257). Since then there were some
work on the question, see Dubins and Smorodinsky [3]; Dubins et al. [4]; Fujita
[5]; Malric [7, 8]. One of the recent deep result of Marc Malric, see [9], is the
topological recurrence of the transformation, that is, the orbit of a typical Brownian
path meets any non empty open set almost surely. Brossard and Leuridan [2] provide
an alternative presentation of the proof.

In this paper we consider mainly the strong mixing property of the Lévy
transformation. Our main results are formulated in terms of a strongly stationary
sequence of random variables defined by evaluating the iterated paths at time one.
Put Zn D min0�k<n j.Tkˇ/1j. We show in Theorem 8 that if

lim inf
n!1

ZnC1
Zn

< 1; almost surely; (	)

then T is strongly mixing, hence ergodic.
We will say that a family of real valued variables f�i W i 2 I g is tight if

the family of the probability measures
˚
P ı ��1

i W i 2 I� is tight, that is if
supi2I P.j�i j > K/ ! 0 as K ! 1.

In Theorem 11 below, we will see that the tightness of the family fnZn W n 
 1g
implies (	), in particular if E.Zn/ D O.1=n/ then the Lévy transformation is
strongly mixing, hence ergodic. Another way of expressing the same idea, uses the
hitting time �.x/ D inf fn 
 0 W Zn < xg of the x-neighborhood of zero by the
sequence ..Tkˇ/1/k	0 for x > 0. In the same Theorem we will see that the tightness
of fx�.x/ W x 2 .0; 1/g is also sufficient for (	). In particular, if E.�.x// D O.1=x/

as x ! 0, that is, the expected hitting time of small neighborhoods of the origin do
not grow faster than the inverse of the size of these sets, then the Lévy transformation
is strongly mixing, hence ergodic.

It is natural to compare our result with the density theorem of Marc Malric. We
obtain that to settle the question of ergodicity one should focus on specific open sets
only, but for those sets deeper understanding of the hitting time is required.

In the next section we sketch our argument, formulating the intermediate steps.
Most of the proofs are given in Sect. 3. Note, that we do not use the topological
recurrence theorem of Marc Malric, instead all of our argument is based on his den-
sity result of the zeros of the iterated paths, see [8]. This theorem states that the set

ft 
 0 W 9n; .Tnˇ/t D 0g is dense in Œ0;1/ almost surely: (1)

Hence the argument given below may eventually lead to an alternative proof of the
topological recurrence theorem as well.
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2 Results and Tools

2.1 Integral-Type Transformations

Recall, that a measure preserving transformation T of a probability space .˝;B;P/
is ergodic, if

lim
n!1

1

n

n�1X
kD0

P.A\ T �kB/ D P.A/P.B/; for A;B 2 B;

and strongly mixing provided that

lim
n!1 P.A\ T �nB/ D P.A/P.B/; for A;B 2 B:

The next theorem, whose proof is given in Sect. 3.2, uses that ergodicity and
strong mixing can be interpreted as asymptotic independence when the base set ˝
is a Polish space. Here the special form of the Lévy transformation and the one-
dimensional setting are not essential, hence we will use the phrase integral-type for
the transformation of the d -dimensional Wiener space in the form

Tˇ D
Z :

0

h.s; ˇ/dˇs (2)

where h is a progressive d � d -matrix valued function. It is measure-preserving,
that is, Tˇ is a d -dimensional Brownian motion, if and only if h.t; !/ is an
orthogonal matrix dt � dP almost everywhere, that is, hT h D Id , where hT

denotes the transpose of h and Id is the identity matrix of size d � d . Recall that

kakHS D Tr
�
aaT

�1=2
is the Hilbert–Schmidt norm of the matrix a.

Theorem 1. Let T be an integral-type measure-preserving transformation of the
d -dimensional Wiener-space as in (2) and denote by Xn.t/ the process

Xn.t/ D
Z t

0

h.n/s ds with h.n/s D h.s; T n�1ˇ/ � � �h.s; Tˇ/h.s; ˇ/: (3)

Then

(i) T is strongly mixing if and only if Xn.t/
p! 0 for all t 
 0.

(ii) T is ergodic if and only if
1

N

NX
nD1

kXn.t/k2HS
p! 0 for all t 
 0.

The two parts of Theorem 1 can be proved along similar lines, see Sect. 3.2.
Note, that the Hilbert–Schmidt norm of an orthogonal transformation in dimension
d is

p
d hence by (3) we have the trivial bound: kXn.t/kHS � t

p
d . By this

boundedness the convergence in probability is equivalent to the convergence in L1

in both parts of Theorem 1.
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2.2 Lévy Transformation

Throughout this section ˇ.n/ D ˇ ı Tn denotes the nth iterated path under the Lévy
transformation T. Then h.n/t D Qn�1

kD0 sign.ˇ.k/t /.
By boundedness, the convergence of Xn.t/ in probability is the same as the

convergence in L2. Writing out X2
n.t/ we obtain that:

X2
n.t/ D 2

Z
0<u<v<t

h.n/u h.n/v dudv: (4)

Combining (4) and (i) of Theorem 1 we obtain that T is strongly mixing provided
that

E


h.n/s h

.n/
t

�
! 0; for almost all 0 < s < t . (5)

By scaling, E


h
.n/
s h

.n/
t

�
depends only on the ratio s=t , and the sufficient condition

(5) is even simplifies to

E


h.n/s h

.n/
1

�
! 0; for almost every s 2 .0; 1/.

Since h
.n/
s h

.n/
1 takes values in f � 1;C1g we actually have to show that

P


h
.n/
s h

.n/
1 D 1

�
� P



h
.n/
s h

.n/
1 D �1

�
! 0. It is quite natural to prove this limiting

relation by a kind of coupling. In the present setting this means a transformation S
of the state space CŒ0;1/ preserving the Wiener measure and mapping most of the
event fh.n/s h.n/1 D 1g to fh.n/s h.n/1 D �1g for n large.

The transformation S will be the reflection of the path after a suitably chosen
stopping time � , i.e.,

.Sˇ/t D 2ˇt^� � ˇt :

Proposition 2. Let C > 0 and s 2 .0; 1/. If there exists a stopping time � such
that

(a) s < � < 1 almost surely,

(b) � D inf
n
n 
 0 W ˇ.n/� D 0

o
is finite almost surely,

(c) jˇ.k/� j > Cp
1 � � for 0 � k < � almost surely.

then

lim sup
n!1

ˇ̌
ˇE


h.n/s h

.n/
1

�ˇ̌
ˇ � P

 
sup
t2Œ0;1�

jˇj > C
!

One can relax the requirement that � is a stopping time in Proposition 2.
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Proposition 3. Assume that for any s < 1 and C > 0 time there exists a random
time � with properties (a), (b) and (c) in Proposition 2.

Then there are also a stopping times with these properties for any s < 1, C > 0.

For a given s 2 .0; 1/ and C > 0, to prove the existence of the random time �
with the prescribed properties it is natural to consider all time points not only time
one. That is, for a given path ˇ.0/ how large is the random set of “good time points”,
which will be denoted by A.C; s/:

A.C; s/ D ft > 0 W exist n; �; such that st < � < t ,

ˇ.n/� D 0 and inf
0�k<n jˇ.k/� j > Cp

t � �
�
: (6)

Note that it may happen that n D 0 and then the infimum inf0�k<n jˇ.k/� j is infinite.
Some basic properties of A.C; s/ for easier reference:

(a) Invariance under scaling. For x ¤ 0, let �x denote the scaling of the path,
.�x!/.t/ D x�1!.x2t/. Then, since T�x D �xT clearly holds for the Lévy
transformation T, we have

t 2 A.C; s/.!/ , x�2t 2 A.C; s/.�x!/ (7)

(b) Since the scaling �x preserves the Wiener-measure, the previous point implies
that P.t 2 A.C; s// does not depend on t > 0.

Observe that A.C; s/ contains an open interval on the right of every zero of ˇ.n/

for all n 
 0. Indeed, if � is a zero of ˇ.n/ for some n 
 0, then by choosing the
smallest n such that ˇ.n/� D 0, one gets that t 2 A.C; s/ for all t > � such that t � �
is small enough. Since the union of the set of zeros of the iterated paths is dense,
see [8], we have that the set of good time points is a dense open set. Unfortunately
this is not enough for our purposes; a dense open set might be of small Lebesgue
measure. To prove that the set of good time points is of full Lebesgue measure, we
borrow a notion from real analysis.

Definition 4. Let H � � and denote by f .x; "/ the supremum of the lengths
of the intervals contained in .x � "; x C "/ n H . Then H is porous at x if
lim sup"!0C f .x; "/=" > 0.

A set H is called porous when it is porous at each point x 2 H .

Observe that if H is porous at x then its lower density

lim inf
"!0C

�.Œx � "; x C "� \H/
2"

� 1 � lim sup
"!0C

f .x; "/

2"
< 1;

where � denotes the Lebesgue measure. By Lebesgue’s density theorem, see [12,
pp. 13], the density of a measurable set exists and equals to 1 at almost every point
of the set. Since the closure of a porous set is also porous we obtain the well known
fact that a porous set is of zero Lebesgue measure.
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Lemma 5. Let H be a random closed subset of Œ0;1/. If H is scaling invariant,
that is cH has the same law asH for all c > 0, then

f1 62 H g � fH is porous at 1g and P..fH is porous at 1g n f1 62 H g// D 0:

That is, the events f1 62 H g and fH is porous at 1g are equal up to a null sets.
In particular, if H is porous at 1 almost surely, then P.1 … H/ D 1.

Proof. Recall that a random closed set H is a random element in the space of the
closed subset of Œ0;1/—we denote it by F—, endowed with the smallest �-algebra
containing the sets CG D fF 2 F W F \G ¤ ;g, for all open G � Œ0;1/. Then it
is easy to see, that f! W H.!/ is porous at 1g is an event and

H D f.t; !/ 2 Œ0;1/ �˝ W t 2 H.!/g ;
Hp D f.t; !/ 2 Œ0;1/ �˝ W H.!/ is porous at t g

are measurable subsets of Œ0;1/ �˝ . We will also use the notation

Hp.!/ D ˚
t 2 Œ0;1/ W .t; !/ 2 Hp

� D ft 2 Œ0;1/ W H.!/ is porous at t g :

Then for each ! 2 ˝ the set H.!/ \Hp.!/ is a porous set, hence of Lebesgue
measure zero; see the remark before Lemma 5. Whence Fubini theorem yields that

.�˝ P/.H \ Hp/ D E.�.H \Hp// D 0:

Using Fubini theorem again we get

0 D .�˝ P/.H \ Hp/ D
Z 1

0

P.t 2 H \Hp/dt:

Since P.t 2 H \Hp/ does not depend on t by the scaling invariance ofH we have
that P.1 2 H \Hp/ D 0. Now

˚
1 2 H \ Hp

� D ˚
1 2 Hp

� n f1 62 H g, so we
have shown that

P.fH is porous at 1g n f1 62 H g/ D 0:

The first part of the claim f1 62 H g � fH is porous at 1g is obvious, sinceH.!/
is closed and if 1 62 H.!/ then there is an open interval containing 1 and disjoint
fromH . ut

We want to apply this lemma to Œ0;1/ n A.C; s/, the random set of bad time
points. We have seen in (7) that the law of Œ0;1/ nA.C; s/ has the scaling property.
For easier reference we state explicitly the corollary of the above argument, that is
the combination of (i) in Theorem 1, Propositions 2–3 and Lemma 5:
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Corollary 6. If Œ0;1/ n A.C; s/ is almost surely porous at 1 for any C > 0 and
s 2 .0; 1/ then the Lévy transformation is strongly mixing.

The condition formulated in terms A.C; s/ requires that small neighborhoods of
time 1 contain sufficiently large subintervals ofA.C; s/. Looking at only the left and
only the right neighborhoods we can obtain Theorems 7 and 8 below, respectively.

To state these results we introduce the following notations, for t > 0

•
�n.t/ D max

˚
s � t W ˇ.n/s D 0

�
is the last zero before t ,

•
��
n .t/ D max

0�k�n
�k.t/;

the last time s before t such that ˇ.0/; : : : ; ˇ.n/ has no zero in .s; t �,
•

Zn.t/ D min
0�k<n jˇ.k/t j:

When t D 1 we omit it from the notation, that is, �n D �n.1/, ��
n D ��

n .1/ and
Zn D Zn.1/.

Theorem 7. Let

Y D lim sup
n!1

Zn.�
�
n /p

1 � ��
n

: (8)

Then Y is a T invariant, f0;1g valued random variable and

(i) either P.Y D 0/ D 1;
(ii) or 0 < P.Y D 0/ < 1, and then T is not ergodic;

(iii) or P.Y D 0/ D 0, that is Y D 1 almost surely, and T is strongly mixing.

Theorem 8. Let

X D lim inf
n!1

ZnC1
Zn

: (9)

Then X is a T invariant, f0; 1g valued random variable and

(i) either P.X D 1/ D 1;
(ii) or 0 < P.X D 1/ < 1, and then T is not ergodic;

(iii) or P.X D 1/ D 0, that is X D 0 almost surely, and T is strongly mixing.

Remark. In Theorem 8, the first possibility X D 1 looks very unlikely. If one is
able to exclude it, then the Lévy T transformation is either strongly mixing or not
ergodic and the invariant random variable X witnesses it.

The statements in Theorems 7 and 8 have similar structure, and the easy parts,
the invariance of X and Y are proved in Sect. 3.4, while the more difficult parts are
proved in Sects. 3.5 and 3.6, respectively.
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We can complement Theorems 7 and 8 with the next statement, which shows
that X , Y and the goodness of time 1 for all C > 0 and s 2 .0; 1/ are strongly
connected. Its proof is deferred to Sect. 3.7 since it uses the side results of the proofs
of Theorems 7 and 8.

Theorem 9. Set

A D
\

s2.0;1/

\
C>0

A.C; s/:

Then the events f1 2 Ag, fY D 1g and fX D 0g are equal up to null events. In
particular, X D 1=.1C Y / almost surely.

We close this section with a sufficient condition for X < 1 almost surely. For
x > 0, let �.x/ D inffn 
 0 W jˇ.n/1 j < xg. By the next Corollary of the density
theorem of Malric [8], recalled in (1), �.x/ is finite almost surely for all x > 0.

Corollary 10. infn jˇ.n/j is identically zero almost surely, that is

P
�

inf
n	0 jˇ.n/t j D 0; 8t 
 0

�
D 1

Recall that a family of real valued variables f�i W i 2 I g is tight if supi2I
P.j�i j > K/ ! 0 as K ! 1.

Theorem 11. The tightness of the families fx�.x/ W x 2 .0; 1/g and fnZn W
n 
 1g are equivalent and both imply X < 1 almost surely, hence also the strong
mixing property of the Lévy transformation.

For the sake of completeness we state the next corollary, which is just an easy
application of the Markov inequality.

Corollary 12. If there exists an unbounded, increasing function f W Œ0;1/ !
Œ0;1/ such that supx2.0;1/ E.f .x�.x/// < 1 or supn E.f .nZn// < 1 then the
Lévy transformation is strongly mixing.

In particular, if supx2.0;1/ E.x�.x// < 1 or supn E.nZn/ < 1 then the Lévy
transformation is strongly mixing.

3 Proofs

3.1 General Results

First, we characterize strong mixing and ergodicity of measure-preserving transfor-
mation over a Polish space. This will be the key to prove Theorem 1. Although it
seems to be natural, the author was not able to locate it in the literature.
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Proposition 13. Let .˝;B;P; T / be a measure-preserving system, where ˝ is a
Polish space and B is its Borel �-field. Then

(i) T is strongly mixing if and only if P ı .T 0; T n/�1 w! P ˝ P.

(ii) T is ergodic if and only if 1
n

Pn�1
kD0 P ı .T 0; T k/�1 w! P ˝ P.

Both part of the statement follows obviously from the following common
generalization.

Proposition 14. Let ˝ be a Polish space and �n; � be probability measures on the
product .˝ �˝;B � B/, where B is a Borel �-field of ˝ .

Assume that for all n the marginals of �n and � are the same, that is for A 2 B

we have �n.A �˝/ D �.A �˝/ and �n.˝ � A/ D �.˝ � A/.
Then �n

w!� if and only if �n.A � B/ ! �.A � B/ for all A;B 2 B.

Proof. Assume first that �n.A � B/ ! �.A � B/ for A;B 2 B. By portmanteau
theorem, see Billingsley [1, Theorem 2.1], it is enough to show that for closed sets
F � ˝ �˝ the limiting relation

lim sup
n!1

�n.F / � �.F / (10)

holds. To see this, consider first a compact subset F of ˝ � ˝ and an open set
G such that F � G. We can take a finite covering of F with open rectangles
F � [r

iD1Ai � Bi � G, where Ai ; Bi � ˝ are open. Since the difference of
rectangles can be written as finite disjoint union of rectangles we can write

.Ai � Bi/ n
[
k<i

.Ak � Bk/ D
[
j

.A0
i;j � B 0

i;j /;

where
n
A0
i;j �B 0

i;j W i; j
o

is a finite collection of disjoint rectangles. By assumption

lim
n!1�n



A0
i;j � B 0

i;j

�
D �



A0
i;j � B 0

i;j

�
;

which yields

lim sup
n!1

�n.F / � lim
n!1�n

 [
i

.Ai � Bi/
!

D �

 [
i

.Ai � Bi/
!

� �.G/:

Taking infimum over G � F , (10) follows for compact sets.
For a general closed F , let " > 0 and denote by �1.A/ D �.A �˝/, �2.A/ D

�.˝ �A/ the marginals of �. By the tightness of
˚
�1; �2

�
, one can find a compact

set C such that �1.C c/ D �.C c �˝/ � " and �2.C c/ D �.˝ � Cc/ � ". Then

�n.F / � �n.F \ .C � C//C 2":
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Since F 0 D F \ .C � C/ is compact, we have that

lim sup
n!1

�n.F / � lim sup
n!1

�n.F
0/C 2" � �.F 0/C 2" � �.F /C 2":

Letting " ! 0 finishes this part of the proof.
For the converse, note that �1 and �2 are regular since ˝ is a Polish space and

�1, �2 are probability measures on its Borel �-field.
Fix " > 0. For Ai 2 B one can find, using the regularity of�i , closed sets Fi and

open sets Gi such that Fi � Ai � Gi and �i .Gi n Fi / � ". Then

.G1 �G2/ n .F1 � F2/ � ..G1 n F1/ �˝/[ .˝ � .G2 n F2//

yields that

�n.A1 � A2/ � �n.G1 �G2/ � �n.F1 � F2/C 2";

�n.A1 � A2/ 
 �n.F1 � F2/ 
 �n.G1 �G2/ � 2";

hence by portmanteau theorem �n
w!� gives

lim sup
n!1

�n.A1 � A2/ � �.F1 � F2/C 2" � �.A1 � A2/C 2"

lim inf
n!1 �n.A1 � A2/ 
 �.G1 �G2/ � 2" 
 �.A1 � A2/ � 2":

Letting " ! 0 we get limn!1 �n.A1 �A2/ D �.A1 �A2/. ut

3.2 Proof of Theorem 1

Proof of the sufficiency of the conditions in Theorem 1. We start with the strong
mixing case. We want to show that

Xn.t/ D
Z t

0

h.n/s ds
p! 0; for all t 
 0; (11)

where h.n/s is given by (3), implies the strong mixing of the integral-type measure-
preserving transformation T .

Actually, we show by characteristic function method that (11) implies that the
finite dimensional marginals of .ˇ; ˇ.n// converge in distribution to the appropri-
ate marginals of a 2d -dimensional Brownian motion. Then, since the sequence
.ˇ; ˇ.n//n	0 is tight, not only the finite dimensional marginals but the sequence of
processes .ˇ; ˇ.n// converges in distribution to a 2d -dimensional Brownian motion.
By Proposition 13 this is equivalent with the strong mixing property of T .
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Let t D .t1; : : : ; tk/ be a finite subset of Œ0;1/. Then the characteristic function
of .ˇt1 ; : : : ; ˇtk ; ˇ

.n/
t1 ; : : : ; ˇ

.n/
tk
/ can be written as

�n.˛/ D E
�

exp

�
i

Z 1

0

f dˇ C i

Z 1

0

gdˇ.n/
��

D E
�

exp

�
i

Z 1

0

.f C gh.n//dˇ

��
;

(12)

where f; g are deterministic step function obtained from the time vector t and ˛ D
.a1; : : : ; ak; b1; : : : ; bk/; here ai ; bj are d -dimensional row vectors and

f D
kX

jD1
aj�Œ0;tj �; and g D

kX
jD1

bj�Œ0;tj �:

We have to show that

�n.˛/ ! �.˛/ D exp

�
� 1

2

Z 1

0

.jf j2 C jgj2/
�

as n ! 1.

Using that ˇ.n/ D R
h.n/dˇ and

Mt D exp

�
i

Z t

0

.f .s/C g.s/h.n/s /dˇs C 1

2

Z t

0

ˇ̌
f .s/C g.s/h.n/s

ˇ̌2
ds

�

is a uniformly integrable martingale starting from 1, we obtain that E.M1/ D 1

and

�.˛/ D �.˛/E.M1/ D

E
�

exp

�
i

Z 1

0

.f .s/C g.s/h.n/s /dˇs C
Z 1

0

g.s/h.n/s f
T .s/ds

��
(13)

As expfi R
Œ01/

.f C gh.n//dˇg is of modulus one, we get from (12) and (13) that

j�.˛/ � �n.˛/j � E
�ˇ̌
ˇ̌exp

� Z 1

0

g.s/h.n/s f
T .s/ds

�
� 1

ˇ̌
ˇ̌
�
: (14)

Note that f T g is a matrix valued function of the form f T g D Pk
jD1 cj�Œ0;tj �, hence

Z 1

0

g.s/h.n/s f
T .s/ds D

Z 1

0

Tr
�
f T .s/g.s/h.n/s

�
ds D

kX
jD1

Tr
�
cjXn.tj /

�
;
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and j R1
0
g.s/h

.n/
s f

T .s/dsj � M D R1
0 jf .s/j jg.s/j ds < 1. With this notation,

using jex � 1j � jx j ejxj for x 2 � and jTr.ab/j � kakHS kbkHS , we can continue
(14) to get

j�n.˛/ � �.˛/j � E
�ˇ̌
ˇ̌exp

� Z 1

0

g.s/h.n/s f
T .s/ds

�
� 1

ˇ̌
ˇ̌
�

� eME

0
@
ˇ̌
ˇ̌
ˇ̌
kX

jD1
Tr
�
cjXn.tj /

�
ˇ̌
ˇ̌
ˇ̌
1
A

� eM
kX

jD1

��cj ��HS E
���Xn.tj /��HS

�
:

(15)

Since
��Xn.tj /��HS � tj

p
d and Xn.tj /

p! 0 by assumption, we obtained that
�n.˛/ ! �.˛/ and the statement follows.

To prove (ii) we use the same method. We introduce n which is a random
variable independent of the sequence .ˇ.n//n2� and uniformly distributed on
f0; 1; : : : ; n�1g. Ergodicity can be formulated as .ˇ; ˇ.n// converges in distribution
to a 2d -dimensional Brownian motion. The joint characteristic function  n of
.ˇt1 ; : : : ; ˇtk ; ˇ

.n/
t1 ; : : : ; ˇ

.n/
tk
/ can be expressed, similarly as above,

 n D 1

n

n�1X
`D0

�`

where �` is as in the first part of the proof. Using the estimation (15) obtained in the
first part

j�.˛/ �  n.˛/j � 1

n

n�1X
`D0

j�.˛/� �`.˛/j

� eM

n

n�1X
`D0

kX
jD0

��cj ��HS E
���X`.tj /��HS

�

D eM
kX

jD1

��cj ��HS E

 
1

n

n�1X
`D0

��X`.tj /��HS
!
:

Now j�.˛/ �  n.˛/j ! 0 follows from our condition in part (ii) by the Cauchy–
Schwartz inequality, since
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1

n

n�1X
`D0

��X`.tj /��HS
!2

� 1

n

n�1X
`D0

��X`.tj /��2HS
p! 0:

and 1
n

Pn�1
`D0

��X`.tj /��2HS � t2j d . ut
Proof of the necessity of the conditions in Theorem 1. Recall that the quadratic
variation of an m-dimensional martingale M D .M1; : : : ;Mm/ is a matrix valued
process whose .j; k/ entry is hMj ;Mki. The proof of the following fact can be
found in [6], see Corollary 6.6 of Chap. VI.

Let .M .n// be a sequence of m-dimensional, continuous local martingales. If

M.n/ d!M then .M .n/; hM.n/i/ d! .M; hM.n/i/.
By enlarging the probability space, we may assume that there is a random

variable U , which is uniform on .0; 1/ and independent of ˇ. Denote by n D
ŒnU � the integer part of nU . Let G be the smallest filtration satisfying the usual
hypotheses, making U G0 measurable and ˇ adapted to G. Then ˇ is a Brownian
motion in G; .ˇ; ˇ.n// and .ˇ; ˇ.n// are continuous martingales in G. The quadratic
covariations are

hˇ.n/; ˇit D
Z t

0

h.n/s ds D Xn.t/; and hˇ.n/; ˇit D
n�1X
kD0

�.nDk/Xk.t/:

By Proposition 3, the strong mixing property and the ergodicity of T are
respectively equivalent to the convergence in distribution of .ˇ; ˇ.n// and .ˇ; ˇ.n//
to a 2d -dimensional Brownian motion.

By the fact just recalled, the strong mixing property of T implies that

hˇ.n/; ˇit d! 0, while its ergodicity ensures that hˇ.n/; ˇit d! 0 for every t 
 0.
Since the limit is deterministic, the convergence also holds in probability. The “only
if” part of (i) follows immediately.

For the “only if” part of (ii) we add that

khˇ.n/; ˇitk2HS D
�����
n�1X
kD0

�.nDk/Xk.t/

�����
2

HS

D
n�1X
kD0

�.nDk/ kXk.t/k2HS

Since kXk.t/k2HS � t2d the convergence in probability of hˇ.n/; ˇit to zero is also

a convergence of
��hˇ.n/; ˇit

��2
HS

to zero in L1.P/, which implies the convergence
in L1.P/ to zero of the conditional expectation

E
�khˇ.n/; ˇitk2HS j�.ˇ/� D 1

n

n�1X
kD0

kXk.t/k2HS :

The “only if” part of (ii) follows. ut
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3.3 First Results for the Lévy Transformation

We will use the following property of the Lévy transformation many times. Recall
that Tnˇ D ˇ ı Tn is also denoted by ˇ.n/. We will also use the notation h.n/t DQn�1
kD0 sign.ˇ.k/t / for n 
 1 and h.0/ D 1.

Lemma 15. On an almost sure event the following property holds:
For any interval I � Œ0;1/, point a 2 I and integer n > 0, if

sup
t2I

jˇt � ˇaj < min
0�k<n j.Tkˇ/aj (16)

then

(i) Tkˇ has no zero in I , for 0 � k � n � 1,
(ii) .Tkˇ/t � .Tkˇ/a D h

.k/
a .ˇt � ˇa/ for t 2 I and 0 � k � n.

In particular, j.Tkˇ/t � .Tkˇ/aj D jˇt � ˇaj for t 2 I and 0 � k � n.

Proof. In the next argument we only use that if ˇ is a Brownian motion and L is its
local time at level zero then the points of increase for L is exactly the zero set of ˇ
and Tˇ D jˇj � L almost surely. Then there is ˝ 0 of full probability such that on
˝ 0 both properties hold for Tnˇ for all n 
 0 simultaneously.

Let N D N.I/ D inf fn 
 0 W Tnˇ has a zero in I g. Since T acts as Tˇ D
jˇj � L, if ˇ has no zero in I we have

Tˇt D sign.ˇa/ˇt �La; for t 2 I :

But, then Tˇt � Tˇa D sign.ˇa/.ˇt � ˇa/ and jTˇt � Tˇa j D jˇt � ˇa j for t 2 I .
Iterating it we obtain that

.Tkˇ/t � .Tkˇ/a D h.k/a .ˇt � ˇa/ ;ˇ̌
.Tkˇ/t � .Tkˇ/a

ˇ̌ D jˇt � ˇa j ;
on fk � N g and for t 2 I : (17)

Now assume that (16) holds. Then, necessarily n � N as the other possibility would
lead to a contradiction. Indeed, if N < n then N is finite, TNˇ has a zero t0 in I
and

0 D ˇ̌
TNˇt0

ˇ̌ D ˇ̌
TNˇa

ˇ̌� ˇ̌
TNˇt0 � TNˇa

ˇ̌ 
 min
0�k<n

ˇ̌
Tkˇa

ˇ̌� sup
t2I

jˇt � ˇa j > 0:

So (16) implies that n � N , which proves (i) by the definition of N and also
(ii) by (17). ut

Combined with the densities of zeros, Lemma 15 implies Corollary 10 stated
above.
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Proof of Corollary 10. The statement here is that infn	0 j.Tnˇ/t j D 0 for all t 
 0.
Assume that for ! 2 ˝ there is some t > 0, such that infn	0 j.Tnˇ/t j is not zero

at !. Then there is a neighborhood I of t such that

sup
s2I

jˇs � ˇt j < inf
k

ˇ̌
.Tkˇ/t

ˇ̌
:

Using Lemma 15, we would get that for this ! the iterated paths Tkˇ.!/, k 
 0 has
no zero in I . However, since

˚
t 
 0 W 9k; .Tkˇ/t D 0

�

is dense in Œ0;1/ almost surely by the result of Malric [8], ! belongs to the
exceptional negligible set. ut
Proof of Proposition 2. Let C > 0 and s 2 .0; 1/ as in the statement and assume
that � is a stopping time satisfying (a)–(c), that is, s < � < 1, and for the almost
surely finite random index � we have ˇ.�/� D 0 and min0�k<� jˇ.k/� j > C

p
1 � � .

Recall that S denotes the reflection of the trajectories after � .
Set "n D h

.n/
s h

.n/
1 for n > 0 and

AC D
(

sup
t2Œ�;1�

jˇ.0/t � ˇ.0/� j � C
p
1 � �

)
:

We show below that on the event AC \ fn > �g, we have "n D �"n ı S . Since S
preserves the Wiener measure P, this implies that

jE."n/j D 1

2
jE."n C "n ı S/j � 1

2
E.j"n C "n ı S j/

D P."n D "n ı S/
� P.AcC [ fn � �g/ � P.AcC /C P.n � �/

When n ! 1, this yields

lim sup
n!1

ˇ̌
ˇE


h.n/s h

.n/
1

�ˇ̌
ˇ � P.AcC / D P

 
sup
s2Œ0;1�

jˇs j > C
!
;

by the Markov property and the scaling property of the Brownian motion.
It remains to show that on AC \ fn > �g the identity "n D �"n ı S holds.

By definition of S , the trajectory of ˇ and ˇ ı S coincide on Œ0; ��, hence h.k/ and
h.k/ıS coincide on Œ0; �� for k > 0. In particular, h.k/� D h

.k/
� ıS and h.k/s D h

.k/
s ıS

for all k since � > s.
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On the event AC we can apply Lemma 15 with I D Œ�; 1�, a D � and n D � to
both ˇ and S ı ˇ to get that

ˇ
.k/
t � ˇ.k/� D h.k/� .ˇt � ˇ�/;

ˇ
.k/
t ı S � ˇ.k/� ı S D �h.k/� .ˇt � ˇ�/;

k � �; t 2 Œ�; 1�: (18)

We have used that h.k/� D h
.k/
� ı S and ˇt ı St � ˇ� ı S D �.ˇt � ˇ�/ for t 
 � by

the definition of S .
Using that on AC

jˇ.k/� j > Cp
1 � � 
 jˇ1 � ˇ� j ; for k < �

we get immediately from (18) that sign.ˇ.k/1 / D sign.ˇ.k/1 / ı S for k < �.

Since ˇ.�/� D .ˇ
.�/
� / ıS D 0, for k D � (18) gives that ˇ.�/ and ˇ.�/ ıS coincide

on Œ0; �� and are opposite of each other on Œ�; 1�. Hence, ˇ.k/ and ˇ.k/ ı S coincide
on Œ0; 1� for every k > �.

As a result on the event AC ,

sign.ˇ.k/1 / ı S D
(

sign.ˇ.k/1 /; if k ¤ �;

� sign.ˇ.k/1 /; if k D �

hence h.n/1 ı S D �h.n/1 on AC \ fn > �g. Since h.n/s ı S D h
.n/
s for all n we are

done. ut
Proof of Proposition 3. Let C > 0 and s 2 .0; 1/. Call � the infimum of those
time points that satisfy (b) and (c) of Proposition 2 with C replaced by 2C , namely
� D infn �n, where

�n D inf
n
t > s W ˇ.n/t D 0; 8k < n; jˇ.k/t j > 2Cp.1 � t/ _ 0

o
:

By assumption �n < 1 for some n 
 0. Furthermore, there exists some finite
index � such that � D �� . Otherwise, there would exist a subsequence .�n/n2D
bounded by 1 and converging to � . For every k one has k < n for infinitely many
n 2 D, hence jˇ.k/�n j 
 2C

p
1 � �n by the choice of D. Letting n ! 1 yieldsˇ̌

ˇˇ.k/�
ˇ̌
ˇ 
 2C

p
1 � � > 0 for every k. This can happen only with probability zero

by Corollary 10.
As � is almost surely finite and � D �� we get that ˇ.�/� D 0 and

inffjˇ.k/� j W k < �g 
 2C
p
1 � � > Cp

1 � � :

We have that � > s holds almost surely, since s is not a zero of any ˇ.n/ almost
surely, so � satisfies (a)–(c) of Lemma 2. ut
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3.4 Easy Steps of the Proof of Theorems 7 and 8

The main step of the proof of these theorems, that will be given in Sects. 3.6 and 3.7,
is that if Y > 0 almost surely (or X < 1 almost surely), then for any C > 0,
s 2 .0; 1/ the set of the bad time points Œ0;1/ n A.C; s/ is almost surely porous
at 1. Then Corollary 6 applies and the Lévy transformation T is strongly mixing.

If Y > 0 does not hold almost surely, then either Y D 0 or Y is a non-
constant variable invariant for T, hence in latter case the Lévy transformation T
is not ergodic. These are the first two cases in Theorem 7. Similar analysis applies
to X and Theorem 8.

To show the invariance of Y recall that ��
n ! 1 by the density theorem of the

zeros due to Malric [8] and �0 < 1, both property holding almost surely. Hence, for
every large enough n, ��

nC1 > �0, therefore ��
nC1 D ��

n ı T,

Zn.�
�
n / ı T D min

0�k<n jˇ.kC1/
��
n ıT j D min

1�k<nC1 jˇ.k/
��
nC1

j 
 ZnC1.��
nC1/;

and

Zn.�
�
n /p

1 � ��
n

ı T 
 ZnC1.��
nC1/p

1 � ��
nC1

:

Taking limit superior we obtain that Y ı T 
 Y . Using that T is measure-preserving
we conclude Y ı T D Y almost surely, that is, Y is T invariant.

To show the invariance of X directly, without referring to Theorem 9, we use
Corollary 10, which says that almost surely infn	0 jˇ.n/t j D 0 for all t 
 0. Thus
Zn ! 0 and since jˇ.0/1 j > 0 almost surely, for every large enough n, Zn < jˇ.0/1 j,
therefore .ZnC1=Zn/ ı T D .ZnC2=ZnC1/. Hence X ı T D X .

3.5 Proof of Theorem 7

Fix C > 0 and s 2 .0; 1/ and consider the random set

QA.C; s/ D ft > 0 W exist n 
 1 such that st < �n.t/ D ��
n .t/ and

min
0�k<n jˇ.k/�n.t/j > C

p
t � �n.t/

�
� A.C; s/: (19)

The difference between A.C; s/ and QA.C; s/ is that in the latter case we only
consider last zeros satisfying �n.t/ > �k.t/ for k D 0; : : : ; n�1, whereas in the case
of A.C; s/ we consider any zero of the iterated paths. Note also, that here n > 0, so
the zeros of ˇ itself are not used, while n can be zero in the definition of A.C; s/.

We prove below the next proposition.
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Proposition 16. Almost surely on the event fY > 0g, the closed set Œ0;1/n QA.C; s/
is porous at 1 for any C > 0 and s 2 .0; 1/.

This result readily implies that if Y > 0 almost surely, then Œ0;1/ n QA.C; s/ and
the smaller random closed set Œ0;1/ n A.C; s/ are both almost surely porous at 1
for any C > 0 and s 2 .0; 1/. Then the strong mixing property of T follows by
Corollary 6.

It remains to show that Y D 1 almost surely on the event fY > 0g, which
proves that Y 2 f0;1g almost surely. This is the content of the next proposition.

Proposition 17. Set

QA.s/ D
\
C>0

QA.C; s/; for s 2 .0; 1/ and QA D
\

s2.0;1/
QA.s/:

Then the events fY > 0g, fY D 1g, f1 2 QA.s/g, s 2 .0; 1/ and f1 2 QAg are equal
up to null sets.

Proof of Proposition 17. Recall that Y D lim supn!1 Yn with

Yn D
min0�k<n jˇ.k/��

n
jp

1 � ��
n

:

With this notation, on f1 2 QA.C; s/g there is a random n 
 1 such that Yn > C .
Here, the restriction n 
 1 in the definition of QA.C; s/ is useful. This way, we get
that supn	1 Yn 
 C on f1 2 QA.C; s/g and supn	1 Yn D 1 on f1 2 QA.s/g. Since
Yn < 1 almost surely for all n 
 1, we also have that Y D 1 almost surely on
f1 2 QA.s/g.

Next, the law of the random closed set Œ0;1/ n QA.C; s/ is invariant by scaling,
hence by Proposition 16 and Lemma 5,

fY > 0g � ˚
Œ0;1/ n QA.C; s/ is porous at 1

� � ˚
1 2 QA.C; s/� ; almost surely:

The inclusions QA.C; s/ � QA.C 0; s/ for C > C 0 and QA.C; s/ � QA.C; s0/ for 1 >
s0 > s > 0 yield

QA D
1\
kD1

QA.k; 1 � 1=k/:

Thus, fY > 0g � f1 2 QAg almost surely.
Hence, up to null events,

fY > 0g � f1 2 QAg � f1 2 QA.s/g � fY D 1g � fY > 0g

for any s 2 .0; 1/, which completes the proof. ut
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Proof of Proposition 16. By Malric’s density theorem of zeros, recalled in (1),
��
n ! 1� almost surely. Hence it is enough to show that on the event

fY > 0g \ f��
n ! 1�g the set QH D Œ0;1/ n QA.C; s/ is porous at 1.

Let � D Y=2 and

In D .��
n ; �

�
n C rn/; where rn D

�
� ^ C
C

�2
.1 � ��

n /:

We claim that if

� > 0; �n D ��
n > s; and jˇ.k/�n j > �p1 � �n; for 0 � k < n: (20)

then In � QA.C; s/ \ .��
n ; 1/ with rn=.1 � ��

n / > 0 not depending on n. Since on
fY > 0g \ f��

n ! 1�g the condition (20) holds for infinitely many n, we obtain the
porosity at 1.

So assume that (20) holds for n at a given !. As In � .��
n ; 1/, for t 2 In we have

that s < t < 1 and st < s < �n.t/ D ��
n .t/ D �n D ��

n , that is, the first requirement
in (19): st < �n.t/ D ��

n .t/ holds for any t 2 In. For the other requirement, note
that t � �n.t/ < rn � .1 � ��

n /�
2=C 2 yields

min
0�k<n jˇ.k/�n j > �p1� ��

n > C
p
t � �n.t/; for t 2 In: ut

3.6 Proof of Theorem 8

Compared to Theorem 7 in the proof of Theorem 8 we consider an even larger set
Œ0;1/ n MA.C; s/, where

MA.C; s/ D ft > 0 W 9n 
 1; st < �n.t/ D ��
n .t/;

min
0�k<n jˇ.k/�n.t/j > C

p
t � �n.t/;

max
u2Œ�n.t/;t �

jˇu � ˇ�n.t/j <
p
t � �n.t/

�
� QA.C; s/ � A.C; s/:

Here we also require that the fluctuation of ˇ between �n.t/ and t is not too big.
We will prove the next proposition below.

Proposition 18. Let C > 1, and s 2 .0; 1/. Then almost surely on the event
fX < 1g, the closed set Œ0;1/ n MA.C; s/ is porous at 1.
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This result implies that if X < 1 almost surely, then for any C > 0, s 2 .0; 1/

the random closed set Œ0;1/ n MA.C; s/ is porous at 1 almost surely, and so is the
smaller set Œ0;1/ nA.C; s/. Then the strong mixing of T follows from Corollary 6.

To complete the proof of Theorem 8, it remains to show that X D 0 almost
surely on the event fX < 1g. This is the content of next proposition. In order to
prove Theorem 9 we introduce a new parameter L > 0.

MAL.C; s/ D ft > 0 W 9n 
 1; st < �n.t/ D ��
n .t/;

min
0�k<n jˇ.k/�n.t/j > C

p
t � �n.t/; max

u2Œ�n.t/;t �
jˇu � ˇ�n.t/j < L

p
t � �n.t/

�

Then MA.C; s/ D MA1.C; s/.
Proposition 19. Fix L 
 1 and set

MAL.s/ D
\
C>0

MAL.C; s/; for s 2 .0; 1/ and MAL D
\
s2.0;1/

MAL.s/:

Then the events fX D 0g, fX < 1g, f1 2 MALg and f1 2 MAL.s/g, s 2 .0; 1/ are
equal up to null sets.

Proof of Proposition 19. Fix s 2 .0; 1/ L 
 1 and let C > L. Assume that 1 2
MAL.C; s/. Let n > 0 be an index which witnesses the containment. Then, as C >

L we can apply Lemma 15 to see that the absolute increments of ˇ.0/; : : : ; ˇ.n/

between �n and 1 are the same. This implies that

jˇ.k/1 j 
 jˇ.k/�n j � jˇ.k/1 � ˇ.k/�n j D jˇ.k/�n j � jˇ1 � ˇ�n j; for 0 � k � n;

hence

Zn 
 min
0�k<n jˇ.k/�n j � jˇ1 � ˇ�n j > C

p
1 � �n � L

p
1 � �n

whereas

ZnC1 � jˇ.n/1 j D jˇ.n/1 � ˇ.n/�n j D jˇ1 � ˇ�n j < L
p
1 � �n:

Thus

inf
n	0

ZnC1
Zn

� L

C �L; on
n
1 2 MAL.C; s/

o
almost surely;

and
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inf
n	0

ZnC1
Zn

D 0; on
n
1 2 MAL.s/

o
almost surely: (21)

But, ZnC1=Zn > 0 almost surely for all n, hence X D lim infn!1ZnC1=Zn D 0

almost surely on f1 2 MAL.s/g. This proves f1 2 MAL.s/g � fX D 1g.
Next, the law of the random closed set Œ0;1/n MAL.C; s/ is clearly invariant under

scaling, hence by Proposition 18 and Lemma 5

fX < 1g �
n
Œ0;1/ n MAL.C; s/ is porous at 1

o
D
n
1 2 MAL.C; s/

o
; (22)

each relation holding up to a null set.
The inclusion MAL.C 0; s0/ � MAL.C; s/ for C 0 
 C > 0 and 0 < s � s0 < 1

yields

MAL D
1\
kD1

MAL.k; 1 � 1=k/:

Hence, fX < 1g � f1 2 MALg � f1 2 MAL.s/g almost surely, which together with
f1 2 MAL.s/g � fX D 0g completes the proof. ut

To prove Proposition 18 we need a corollary of the Blumenthal 0 � 1 law.

Corollary 20. Let .xn/ be a sequence of non-zero numbers tending to zero, P the
Wiener measure on CŒ0;1/ andD � CŒ0;1/ be a Borel set such that P.D/ > 0.

Then P.��1
xn
.D/ i.o./ D 1.

Proof. Recall that the canonical process on CŒ0;1/ was denoted by ˇ. We also use
the notation Bt D � fˇs W s � t g.

We approximate D with Dn 2 Btn such that
P

P.D4Dn/ < 1, where 4
denotes the symmetric difference operator. Passing to a subsequence if necessary,
we may assume that tnx2n ! 0. Then, since ��1

xn
.Dn/ 2 Btnx2n

, we have
that

˚
��1
xn
.Dn/; i.o.

� 2 \s>0Bs , and the Blumenthal 0 � 1 law ensures that
P.��1

xn
.Dn/; i.o./ 2 f0; 1g.

But
P

P.��1
xn
.D/4��1

xn
.Dn// < 1 since �xn preserves P. Borel–Cantelli

lemma shows that, almost surely, ��1
xn
.D/4��1

xn
.Dn/ occurs for finitely many n.

Hence P.��1
xn
.D/; i.o./ 2 f0; 1g.

Fatou lemma applied to the indicator functions of ��1
xn
.D/c yields

P.��1
xn
.D/; i.o./ 
 lim sup

n!1
P.��1

xn
.D// D P.D/ > 0:

Hence P.��1
xn
.D/; i.o./ D 1. ut
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Proof of Proposition 18. We work on the event fX < 1g. Set � D .1=X � 1/=2.
Then 1 < � C 1 < 1=X and

1 < 1C � < lim sup
n!1

Zn

ZnC1
D lim sup

n!1
Zn

jˇ.n/1 j
:

Hence

min
0�k<n jˇ.k/1 j D Zn > .1C �/jˇ.n/1 j; for infinitely many n:

Let n1 < n2 < : : : the enumeration of those indices, and set xk D h
.nk/
1 ˇ

.nk/
1 for

k 
 1. The inequality jˇ.nk/1 j < .1C �/�1jˇ.nk�1/
1 j shows that xk ! 0.

Call B the Brownian motion defined by Bt D ˇtC1 � ˇ1 and for real numbers
ı; C > 0 set

D.ı; C / D
(

w 2 CŒ0;1/ W sup
t�2

jw.t/j < 1C ı;

w C 1 has a zero in Œ0; 1�, but no zero in .1; 2�;

max
t2Œ�;2� jw.t/C 1j � ı ^ C

2C
, where � is the last zero of w C 1 in Œ0; 2�

�
:

For each ı; C > 0 the Wiener measure puts positive, although possibly very small,
probability onD.ı; C /. Then Corollary 20 yields that the Brownian motionB takes
values in the random sets��1

xk
D.�; C / for infinitely many k on f� > 0g D fX < 1g

almost surely; since the random variables xk , � are B1-measurable, and B is
independent of B1.

For k 
 1 let Q�k D �nk .1 C x2k/, that is, the last zero of ˇ.nk/ before 1 C x2k
and set

Ik D . Q�k C 1
2
rk; Q�k C rk/; where rk D

�
� ^ C
C

�2
x2k:

This interval is similar to the one used in the proof of Proposition 16, but now we
use only the right half of the interval . Q�k; Q�k C rk/.

Next we show that

B 2 ��1
xk
D.�; C /; and s � .1C x2k/

�1 (23)

implies

Ik � MA.C; s/\ .1; 1C 2x2k/: (24)
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By definition rk=.4x2k/, the ratio of the lengths of Ik and .1; 1 C 2x2k/, does not
depend on k. Then the porosity of Œ0;1/ n MA.C; s/ at 1 follows for almost every
point of fX < 1g, as we have seen that (23) holds for infinitely many k almost
surely on fX < 1g.

So assume that (23) holds for k at a given !. The key observations are that then

ˇ
.`/
1Ct � ˇ

.`/
1 D h

.`/
1 Bt ; for 0 � ` � nk , 0 � t � 2x2k; (25)

�`.t/ < 1; for 0 � ` < nk and 1 � t � 1C 2x2k; (26)

�nk .t/ D Q�k > 1; for t 2 Œ Q�k; 1C 2x2k�: (27)

First, we prove (25)–(27) and then with their help we derive Ik � MA.C; s/.
To get (25) and (26) we apply Lemma 15 to I D Œ1; 1C2x2k�, n D nk and a D 1.

This can be done since we have

min
0�`<nk

jˇ.`/1 j > .1C �/jxkj; by the choice of nk; (28)

max
t2Œ1;1C2x2k �

jˇt � ˇ1j < .1C �/jxkj; since �xkB 2 D.�; C / by (23): (29)

(i) of Lemma 15 is exactly (26), while (ii) of the same lemma gives (25) if we note
that Bt D ˇ1Ct � ˇ1 by definition.

Equation (27) claims two things: ˇ.nk/ has a zero in .1; 1C x2k�, but has no zero
in .1C x2k; 1C 2x2k�. Write (25) with ` D nk :

ˇ
.nk/
1Ct D ˇ

.nk/
1 C h

.nk/
1 Bt D h

.nk/
1 .xk C Bt/; for 0 � t � 2x2k:

Next, we use that �xkB 2 D.�; C /, whence 1 C �xkB has a zero in Œ0; 1� but no
zero in .1; 2�. Then the relation

xk
�
1C .�xkB/v

	 D xk C Bx2kv
D h

.nk/
1 ˇ

.nk/

1Cx2kv
(30)

justifies (27).
To finish the proof, it remains to show that Ik � MA.C; s/, since by (27) Q�k the

last zero of ˇ.nk/ before 1C x2k is greater than 1, so Ik � .1; 1C 2x2k/ holds.
Fix t 2 Ik . We need to check the next three properties.

(1) st < �nk .t/ D ��
nk
.t/.

By (27) �nk .t/ D Q�k > 1 and by the definition of Ik we have 1 < Q�k < t <

Q�k C rk � Q�k C x2k . Hence,

�nk .t/ D Q�k > Q�k
Q�k C x2k

t >
1

1C x2k
t 
 st;

where we used s � .1C x2k/
�1, the second part of (23).

By (26), �nk .t/ D ��
nk
.t/, as t 2 Ik � Œ1; 1C 2x2k�.
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(2) min
0�`<nk

jˇ.`/Q�k j > Cpt � Q�k.

Since xk D h
.nk/
1 ˇ

.nk/
1 , ˇ.nk/Q�k D 0 and Q�k 2 Œ1; 1C x2k�, (25) yields

max
0�`<nk

jˇ.`/Q�k � ˇ
.`/
1 j D jˇ.nk/Q�k � ˇ

.nk/
1 j D jˇ.nk/1 j D jxkj:

Then, by the triangle inequality and (28)

min
0�`<nk

jˇ.`/Q�k j 
 min
0�`<nk

jˇ.`/1 j � max
0�`<nk

jˇ.`/Q�k � ˇ.`/1 j

> .1C �/jxkj � jxkj D �jxkj:

On the other hand
p
t � Q�k < p

rk � jxkj�=C , hence

min
0�`<nk

jˇ.`/Q�k j > �jxk j 
 C
p
t � Q�k:

(3) max
u2ŒQ�k ;t �

jˇu � ˇQ�k j <
p
t � Q�k .

1 C �xkB has a zero in Œ0; 1� but no zero in .1; 2�, since �xkB 2 D.�; C /.
Denote as above by � its last zero in Œ0; 1�. Then by relation (30) we have that
Q�k D 1C x2k� and

max
u2ŒQ�k ;1C2x2k �

jˇ.nk/u j D jxk j max
v2Œ�;2� j1C .�xkB/vj � jxk j � ^ C

2C
D

p
rk

2
:

Writing (25) with ` D nk and using that ˇ.nk/Q�k D 0 and t < 1C 2x2k we obtain

max
u2ŒQ�k ;t �

jˇu � ˇQ�k j D max
u2ŒQ�k ;t �

jˇ.nk/u j � max
u2ŒQ�k ;1C2x2k �

jˇ.nk/u j �
p
rk

2
:

By the definition of Ik we have t � Q�k > 1
2
rk. Hence

max
u2ŒQ�k ;t �

jˇu � ˇQ�k j �
p
rk

2
<

p
rk

2

s
t � Q�k
1
2
rk

<
p
t � Q�k: ut

3.7 Proof of Theorem 9

In this subsection we prove the equality of the events fX D 0g, fY D 1g and
f1 2 Ag up to null sets, where
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A D
\

s2.0;1/
A.s/; with A.s/ D

\
C>0

A.C; s/:

We keep the notation introduced in Propositions 17 and 19 for MAL.s/, MAL and QA.
Recall that MAL � QA � A by definition for any L 
 1. Then by Propositions 17

and 19 we have

fX D 0g D f1 2 MALg � f1 2 QAg D fY D 1g � f1 2 Ag : (31)

For C > 0 let

�C D inf

�
t 
 1

2
W 9n 
 0; ˇ

.n/
t D 0 min

0�k<n jˇ.k/t j 
 C
p
.1 � t/ _ 0

�
:

We show below that

f1 2 Ag �
\
C>0

f�C < 1g ; up to null a set; (32)

and

P

 \
C>0

f�C < 1g
!

� P.X D 0/: (33)

Then the claim follows by concatenating (31) and (32), and observing that the largest
and the smallest events in the obtained chain of almost inclusions has the same
probability by (33).

We start with (32). If 1 2 A then 1 2 A.C; s/ for every s 2 .0; 1/, especially for
s0 D �0 _ 1=2, where �0 is the last zero of ˇ before 1, we have 1 2 A.C; s0/. Then,
by the definition of A.C; s0/ there is an integer n 
 0 and a real number � 2 .s0; 1/
such that ˇ.n/� D 0 and min0�k<n jˇ.k/1 j > C

p
1 � � . The integer n cannot be zero

since ˇ.0/ D ˇ has no zero in .s0; 1/. Thus �C � � < 1, which shows the inclusion.
Next, we turn to (32). Fix C > L 
 1 and let

� D sup fs 2 Œ�C ; 1� W ˇs D ˇ�C g :
Let us show that

�
�C < 1 and max

�C�t�1 jˇt � ˇ�C j < Lp1 � �
�

�
n
1 2 MAL.C; 12 /

o
: (34)

Indeed, on the event on the left hand side of (34) there exists a random index n such
that ˇ.n/�C D 0 and

min
0�k�n�1 jˇ.k/�C j 
 C

p
1 � �C > L

p
1 � � > max

�C�t�1 jˇt � ˇ�C j:
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Then we can apply Lemma 15 with I D Œ�C ; 1�, a D �C and n D n. We obtain
that ˇ.k/ has no zero in Œ�C ; 1� for k D 0; : : : ; n � 1, and the absolute increments
jˇ.k/t �ˇ.k/�C j, are the same for k D 0; : : : ; n and t 2 Œ�C ; 1�. In particular,ˇ.k/� D ˇ

.k/
�C

for every 0 � k � n, � is the last zero of ˇ.n/ in Œ�C ; 1� and � D �n D ��
n . Moreover,

min
0�k<n jˇ.k/��

n
j D min

0�k<n jˇ.k/�C j 
 C
p
1 � �C > C

p
1 � ��

n :

So n and ��
n witnesses that 1 2 MAL.C; 12 /, since we also have that

max
t2Œ��

n ;1�
jˇt � ˇ��

n
j � max

t2Œ�C ;1�
jˇt � ˇ�C j < Lp1 � ��

n :

From (34), by the strong Markov property and the scaling invariance of ˇ,
we obtain

P.�C < 1/ � P
�

max
t2Œ0;1�

jˇt j � L
p
1 � �0

�
� P



1 2 MAL.C; 12 /

�
:

Letting C go to infinity and using Proposition 19, this yields

P

 \
C>0

f�C < 1g
!

� P
�

max
t2Œ0;1�

jˇt j � L
p
1 � �0

�
� P



1 2 MAL.12 /

�

D P.X D 0/:

This is true for all L 
 1. Thus (33) is obtained by letting L go to infinity.

3.8 Proof of Theorem 11

In this subsection we prove that the tightness of fx�.x/ W x 2 .0; 1/g and fnZn W
n 
 1g are equivalent and both implies X < 1 almost surely.

Fix K > 0. By definition f.K=n/�.K=n/ > K g D fnZn 
 K g for any n 
 1.
For small x > 0 values there is n such that K=n < x < 2K=n and x�.x/ �
.2K=n/�.K=n/ by the monotonicity of �. But, then fx�.x/ > 2K g � fnZn > K g.
Hence

lim sup
x!0C

P.x�.x/ > 2K/ � lim sup
n!1

P.nZn 
 K/ � lim sup
x!0C

P.x�.x/ > K/:

So the tightness of the two families are equivalent and it is enough to prove that
when fx�.x/ W x 2 .0; 1/g is tight then X < 1 almost surely.

We have the next easy lemma, whose proof is sketched at the end of this
subsection.
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Lemma 21.

X D lim inf
n!1

ZnC1
Zn

D lim inf
x!0C

jˇ.�.x//1 j
x

:

Then we have that

�.X>1�ı/ � lim inf
x!0C �

.jˇ.�.x//1 j=x>1�ı/:

Hence, by Fatou lemma

P.X > 1 � ı/ � lim inf
x!0C P



jˇ.�.x//1 j > x.1 � ı/

�
:

Let x 2 .0; 1/ and K > 0. Since on the event
�
�.x/ � K

x

�
\
n
jˇ.�.x//1 j > x.1 � ı/

o

at least one of the standard normal variables ˇ.k/1 , 0 � k � K=x takes values in a
set of size 2xı, namely in .�x;�x.1 � ı// [ .x.1 � ı/; x/,

P

 
jˇ.�.x//1 j
x

> 1 � ı

!

� P
�
�.x/ >

K

x

�
C
�
K

x
C 1

�
P
�
1 � ı <

jˇ1 j
x

< 1

�

� P.x�.x/ > K/C .K C 1/ı:

In the last step we used that the standard normal density is bounded by 1=
p
2� ,

whence P


1 � ı <

ǰ 1j
x
< 1

�
� ıx.

By the tightness assumption for any " > 0 there exists K" such that
supx2.0;1/ P.x�.x/ > K"/ � ". Hence,

P.X D 1/ D lim
ı!0C P.X > 1 � ı/ � lim

ı!0C "C .K" C 1/ı D ":

Since, this is true for all " > 0, we get that P.X D 1/ D 0 and the proof of
Theorem 11 is complete. ut
Proof of Lemma 21. Since Z�.x/ D jˇ.�.x//1 j Lemma 21 is a particular case of the
following claim: if .an/ is a decreasing sequence of positive numbers tending to
zero then

lim inf
k!1

akC1
ak

D lim inf
x!0C

an.x/

x
;
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where n.x/ D inf fk 
 1 W ak < xg. First, for x < a1 the relation an.x/�1 
 x >

an.x/ gives

an.x/

an.x/�1
� an.x/

x

and

lim inf
k!1

akC1
ak

� lim inf
x!0C

an.x/

x
:

For the opposite direction, for every k 
 0, an.ak/ < ak , therefore an.ak/ � akC1
as .an/ is non-increasing. Since ak ! 0 as k ! 1, one gets

lim inf
x!0C

an.x/

x
� lim inf

k!1
an.ak/

ak
� lim inf

k!1
akC1
ak

: ut
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Vershik’s Intermediate Level Standardness
Criterion and the Scale of an Automorphism

Stéphane Laurent

Abstract In the case of rn-adic filtrations, Vershik’s standardness criterion takes
a particular form, hereafter called Vershik’s intermediate level criterion. This
criterion, whose nature is combinatorial, has been intensively used in the ergodic-
theoretic literature, but it is not easily applicable by probabilists because it is stated
in a language specific to the theory of measurable partitions and has not been
translated into probabilistic terms. We aim to provide an easily applicable proba-
bilistic statement of this criterion. Finally, Vershik’s intermediate level criterion is
illustrated by revisiting Vershik’s definition of the scale of an invertible measure-
preserving transformation.

1 Introduction

Although many efforts have been devoted to translating Vershik’s theory of
decreasing sequence of measurable partitions into a theory of filtrations written in
the language of stochastic processes [4, 8–10], in the ergodic-theoretic literature
many papers dealing with standard filtrations still remain difficult to read by
probabilists outside the class of experts in this topic. Difficulties do not lie in
the basic concepts of ergodic theory such as the ones presented in introductory
books on measure-preserving systems, but rather in the language of the theory of
measurable partitions initiated by Rokhlin (see [15]). Rokhlin’s correspondence
(see [3]) between measurable partitions and complete �- fields is not a complicated
thing, but the approach to filtrations is somewhat geometrical in the language of
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QuantOM, HEC-Management School, Paris, France
e-mail: laurent step@yahoo.fr

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLV,
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partitions, whereas probabilists are more comfortable with a filtration considered as
the history of some stochastic process whose dynamics is clearly described.

Particularly, standardness is studied by many ergodic-theoretic papers (such
as [5–7]) in the context of rn-adic filtrations: those filtrations F D .Fn/n60
for which Fn D Fn�1 _ �."n/ for each n 6 0, where the innovation "n is a
random variable independent of Fn�1 and uniformly distributed on rn possible
values, for some sequence .rn/n60 of positive integers. For such filtrations, Vershik’s
general standardness criterion, which has received some attention in the proba-
bilistic literature [4, 10], and which we call Vershik’s second level (standardness)
criterion for more clarity, takes a particular form, which is in fact the original
form of Vershik’s standardness criterion (he focused on rn-adic filtrations), and
which we call Vershik’s intermediate level (standardness) criterion. Its statement
involves tree automorphisms and characterizes standardness in terms of a problem
of combinatorial nature. Ergodicians directly apply Vershik’s intermediate level
criterion in their works, but this criterion has not been translated in the probabilistic
literature (an attempt was done in the author’s PhD. thesis [8]), thereby causing
difficulties for a probabilist reader. The present paper provides a probabilistic
statement of Vershik’s intermediate level criterion. This statement is not as brief
as Vershik’s analogous statement in the language of measurable partitions, but it
is directly applicable to investigate standardness of an rn-adic filtration without
resorting to notions unfamiliar to probabilists, except possibly the notion of a tree
automorphism. Roughly speaking, tree automorphisms lie in the heart of Vershik’s
intermediate level criterion because any two local innovations ."n; : : : ; "0/ of an
rn-adic filtration F differ from each other by the action of some Fn�1-measurable
random tree automorphism.

We will show that in the context of rn-adic filtrations, Vershik’s intermediate
level criterion is equivalent to Vershik’s second level criterion. All results in the
present paper are self-contained, except the proofs of rather elementary statements
for which we will refer to [10]. Section 2 aims to provide the non-specialist reader
with some motivations for the development of Vershik’s two criteria by recalling
their relations with the notions of productness and standardness. In Sect. 3 we
state Vershik’s second level criterion, similarly to [4] and [10], and its elementary
properties. Vershik’s intermediate level criterion is then the purpose of Sect. 4. In
Sect. 5, we will illustrate Vershik’s intermediate level criterion by formulating his
definition of the scale of an automorphism [13] in terms of this criterion, thereby
shedding a new light on the scale. Vershik used another definition which involves
the orbits of the automorphism. Equivalence of both definitions was announced
by the author in [10], without proof, and [10] further shows how to derive the
scale of Bernoulli automorphisms from the theorem on productness of the split-
word process presented in [9]. With our definition, many properties of the scale
of an automorphism stated by Vershik in [13] appear to be direct consequences
of elementary properties of Vershik’s intermediate level criterion or more general
results of the theory of filtrations. For instance we will see that the scale of
a completely ergodic automorphism is nonempty as a consequence of Vershik’s
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theorem on lacunary isomorphism, whereas Vershik proved this proposition by a
direct construction.

2 Standardness and Productness

We briefly present the meaningful notions of productness and standardness and
their relations with Vershik’s intermediate level criterion and Vershik’s second level
criterion. These notions manifestly motivate the development of these criteria.

Vershik’s pioneering work mainly deals with rn-adic filtrations. For a given
sequence .rn/n60 of integers rn > 2, a filtration F is said to be rn-adic if Fn D
Fn�1 _ �."n/ for every n 6 0 where "n is a random variable independent of Fn�1
and uniformly distributed on a finite set consisting of rn elements. Such random
variables "n are called innovations of F. The process ."n/n60 is then a sequence of
independent random variables and it is itself called an innovation of F, and we also
say that ."n; : : : ; "0/ is a local innovation of F. In other words, the innovation "n
is a random variable generating an independent complement of Fn�1 in Fn. (We
say that a �- field C is an independent complement of a �- field B in a �- field
A � B if C is independent of B and A D B_C.) Independent complements are not
unique in general, as testified by the following lemma whose proof is left as an easy
exercise.

Lemma 2.1. Let .B;A/ be an increasing pair of �- fields and V be a random
variable generating an independent complement of B in A. If V is uniformly
distributed on some finite set F , and if ˚ is any B-measurable random permutation
of F , then ˚.V / also generates an independent complement of B in A.

Actually one can conversely prove that every independent complement of B in
A is generated by ˚.V / for some B-measurable random permutation ˚ of F ; but
we will not need this result.

Both following theorems are presented to motivate our work. They will be
admitted and not used in the present paper. We say that a filtration F D .Fn/n60
is essentially separable when its final �- field F0 is essentially separable (i.e., sepa-
rable modulo negligible events).

One of Vershik’s main achievements in his pioneering work [11, 12] was a
criterion characterizing productness of rn-adic filtrations. The first theorem below
is our rephrasement of this result.

Theorem 2.2. An essentially separable rn-adic filtration satisfies Vershik’s inter-
mediate level criterion if and only if it is of product type.

A filtration is said to be of product type if it is generated by some sequence of
independent random variables. In particular, an rn-adic filtration is of product type
if it is the filtration generated by uniform, independent rn-ary random drawings, that
is, a sequence ."n/ of independent random variables with "n uniformly distributed
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on rn distinct values for each n. This criterion stated by Vershik in the language
of measurable partitions is in general simply called the standardness criterion, or
Vershik’s standardness criterion, in ergodic-theoretic research articles dealing with
rn-adic filtrations. We call our proposed probabilistic translation of this criterion
Vershik’s intermediate level (standardness) criterion.

For rn-adic filtrations the equivalence between Vershik’s intermediate level cri-
terion and productness (Theorem 2.2) as well as its equivalence with the I-cosiness
criterion (not introduced in the present paper) can be deduced from the results in
the literature and from the equivalence between Vershik’s intermediate and second
level criteria (Theorem 4.9), but both these equivalences are not very difficult to
prove directly. In fact, Laurent provides the self-joining criterion corresponding to
Vershik’s intermediate level criterion in [9], called Vershik’s self-joining criterion,
and both equivalences mentioned above can be directly proved by means of the
same ideas used in [9] to prove the analogous statements for Vershik’s self-joining
criterion. This is even easier with Vershik’s intermediate level criterion.

For arbitrary filtrations the statement of Vershik’s intermediate level criterion
does not make sense. But Vershik also provided in his pioneering work an equivalent
statement of this criterion which makes sense for arbitrary filtrations, and the
probabilistic analogue of this criterion was provided by Émery and Schachermayer
in [4]. In the present paper, agreeing with the terminology of [10], we call it Vershik’s
second level (standardness) criterion, or, shortly, the second Vershik property,
and we also say that a filtration is Vershikian when it satisfies this property. The
equivalence between Vershik’s intermediate and second level criteria will be proved
in the present paper (Theorem 4.9). The following theorem, proved in [4], was stated
by Vershik in [14] in the language of measurable partitions.

Theorem 2.3. An essentially separable filtration satisfies Vershik’s second level
standardness criterion if and only if it is standard.

Standardness for an arbitrary filtration is defined with the help of the notion
of immersion. A filtration F is said to be immersed in a filtration G if every F-
martingale is a G-martingale (this implies F � G). We refer to [4] and [9] for more
details on the immersion property. Then a filtration F is said to be standard if,
up to isomorphism, it is immersed in the filtration generated by some sequence
of independent random variables each having a diffuse law, or, equivalently
(see [9]), in the filtration generated by some sequence of independent random
variables.

3 Vershik’s Second Level Standardness Criterion

We will state Vershik’s second level criterion in Sect. 3.2 after having introduced
some preliminary notions in Sect. 3.1.
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3.1 The Kantorovich Metric and Vershik’s Progressive
Predictions

The Kantorovich distance plays a major role in the statement of the second level
Vershik property. Given a separable metric space .E; �/, the Kantorovich distance
�0 on the set E 0 of probabilities on E is defined by

�0.�; �/ D inf
�2J.�;�/

“
�.x; y/ d�.x; y/;

where J.�; �/ is the set of all joinings of � and �, that is, the set of all probabilities
on E �E whose first and second marginal measures are respectively � and �.

In general, the topology induced by �0 on the set E 0 of probability on E is finer
than the topology of weak convergence. These two topologies coincide when .E; �/
is compact, hence in particular .E 0; �0/ is itself compact in this case. The metric
space .E 0; �0/ is complete and separable whenever .E; �/ is (see e.g. [1]).

The following lemma will be used to prove the equivalence between Vershik’s
intermediate and second level properties.

Lemma 3.1. Let r > 2 be an integer and let f and g be functions from f1; : : : ; rg
to a Polish metric space .E; �/. Denote by � the uniform probability on f1; : : : ; rg.
Then the infimum in the Kantorovich distance �0�f .�/; g.�/� is attained for the
joint law of a random pair

�
f ."/; g."0/

�
where " is a random variable distributed

according to � and "0 D �."/ for some permutation � of f1; : : : ; rg.

Proof. Any joining of f .�/ and g.�/ is the law of a random pair
�
f ."/; g."0/

�
where

" � � and "0 � �; and the expectation E
�
�
�
f ."/; g."0/

�	
is a linear form of the joint

law of " and "0. Therefore, in the set of all joinings, there exists at least an extremal
point where the minimal possible value of this expectation is attained; but Birkhoff’s
theorem says that the law of ."; "0/ is an extremal joining whenever "0 D �."/ for
some permutation � . ut

Now, let F be a filtration, E a Polish metric space and X 2 L1.F0IE/. The
Vershik second level property of X involves Vershik’s progressive predictions �nX
of X , which correspond to the so-called universal projectors in [11] and [14]. They
are recursively defined as follows: we put �0X D X , and �n�1X D L.�nX jFn�1/
(the conditional law of �nX given Fn�1) ; thus, the n-th progressive prediction �nX
of X with respect to F is a random variable taking its values in the Polish space
E.n/, which is recursively defined by E.0/ D E and E.n�1/ D .E.n//

0
, denoting as

before byE 0 the space of all probability measures on any separable metric spaceE .
The state space E.n/ of �nX is Polish when endowed with the distance �n obtained
by iterating jnj times the construction of the Kantorovich distance starting with �:
we recursively define �n by putting �0 D � and by defining �n�1 D .�n/

0 as the
Kantorovich distance issued from �n.

Finally, in order to state Vershik’s second level criterion, we introduce the
dispersion dispX of (the law of) an integrable random variable X in a Polish
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metric space. It is defined as the expectation of �.X 0; X 00/ where X 0 and X 00 are
two independent copies of X , that is, two independent random variables having the
same law as X .

3.2 Vershik’s Second Level Criterion

Let F be a filtration, E a Polish metric space and X 2 L1 .F0IE/. We say that
the random variable X satisfies Vershik’s second level (standardness) criterion,
or the second Vershik property, or, for short, that X is Vershikian (with respect
to F) if disp�nX �! 0 as n goes to �1. Then we extend this definition to
�- fields E0 � F0 and to the whole filtration as follows: we say that a �- field
E0 � F0 is Vershikian if each random variableX 2 L1 .E0I Œ0; 1�/ is Vershikian with
respect to F, and we say that the filtration F is Vershikian if the final �- field F0 is
Vershikian.

The following proposition is proved in [10] when .E; �/ is a compact metric
space, but it is easy to check that the proof remains valid for a Polish metric space.

Proposition 3.2. For any Polish metric space .E; �/, a random variable X 2
L1.F0; E/ is Vershikian if and only if the �- field �.X/ is Vershikian.

Below we state Vershik’s theorem on lacunary isomorphism which will be used in
Sect. 5 to prove nonemptiness of the scale of a completely ergodic automorphism. A
filtration is said to be Kolmogorovian if F�1 WD \n60Fn is the degenerate �- field.

Theorem 3.3. Let F D .Fn/n60 be an essentially separable filtration. If F is
Kolmogorovian, there exists a strictly increasing map � W �N ! �N such that
the extracted filtration .F�.n//n60 is Vershikian.

The first version of this theorem was stated and proved by Vershik in the context
of rn-adic filtrations, but was proved without using any standardness criterion:
Vershik directly showed that it is possible to extract a filtration of product type from
every Kolmogorovian rn-adic filtration. The analogous proof for conditionally non-
atomic filtrations (that is, filtrations admitting innovations with diffuse law) was
provided by Émery and Schachermayer [4]. This proof is somewhat constructive
but quite technical, whereas a short proof of the general version of the theorem on
lacunary isomorphism stated above, based on Vershik’s second level criterion, is
given in [10].

It is not straightforward to see from the definition of the Vershik property that
every filtration extracted from a Vershikian filtration is itself Vershikian, whereas
this is very easy to see from the definition of the I-cosiness criterion which is known
to be equivalent to the Vershik property (see [4, 10]). It is also easy to see that this
property holds for Vershik’s intermediate level criterion, but this one only concerns
rn-adic filtrations. Note that it is not restrictive to take �.0/ D 0 in Theorem 3.3
since the Vershik property is an asymptotic one (see [10]).

We will also use the following lemma in Sect. 5. It is proven in [10].
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Lemma 3.4. For any Polish metric space E , a random variable X 2 L1.F0IE/ is
Vershikian if and only if the filtration generated by the stochastic process .�nX/n60
is Vershikian.

The next lemma says that the second level Vershik property is hereditary for
immersions; we refer to [10] for its proof.

Lemma 3.5. Let F be a filtration, E a filtration immersed in F, and E a Polish
metric space. A random variable X 2 L1.E0IE/ is Vershikian with respect to F

if and only it is Vershikian with respect to E. Consequently, if the filtration F is
Vershikian, then so is also E.

4 Vershik’s Intermediate Level Criterion

Vershik’s intermediate level criterion is the object of Sect. 4.3. In Sect. 4.1 we
mainly fix some notations about tree automorphisms which will be needed to prove
the equivalence between Vershik’s two criteria, and in Sect. 4.2 we introduce the
split-word processes which will be needed to state Vershik’s intermediate level
criterion.

Throughout this section we will speak of words on a set A called the alphabet.
A word w on A is an element of A`, or equivalently an application from f1; : : : ; `g
to A, for some integer ` > 1 called the length of w. A word of length ` is shortly
termed as an `-word. The letters of an `-word w are w.1/, : : :, w.`/. When A is
treated as a Polish space it is understood that the set A` of `-words on A is treated
as the corresponding product Polish space.

4.1 Tree Automorphisms

All notions defined below are relative to a given sequence .rn/n60 consisting of
integers rn > 2, from which we define the sequence .`n/n60 by `n D Q0

kDnC1 rk
for all n 6 0.

Define the sets Bn D Q0
kDnC1f1; : : : ; rkg for n 6 �1. The group Gn of

tree automorphisms of Bn is a subgroup of the group of permutations of Bn
recursively defined as follows. The group G�1 is the whole group of permutations
of f1; : : : ; r0g, and a permutation � 2 Gn maps an element bn D .cn; bnC1/ 2 Bn D
f1; : : : ; rnC1g�BnC1 to �.bn/ D �

�.cn/;  .�.cn//.bnC1/
�

where � is a permutation
of f1; : : : ; rnC1g and  is a map from f1; : : : ; rnC1g to GnC1.

Lemma 4.1. Let F be an rn-adic filtration and ."n/n60 an innovation of F. If
� is a random Fn-measurable tree automorphism then �."nC1; : : : ; "0/ is a local
innovation of F.

Proof. This is easily proved by recursion with the help of Lemma 2.1. ut



130 S. Laurent

abcdefgh

abcd

1

ab

1

a

1

b

2

cd

2

c

1

d

2

efgh

2

ef

1

e

1

f

2

gh

2

g

1

h

2

Fig. 1 A labeled tree

For any set A, there is a natural action of Gn on the set of `n-words on A. First
introduce the lexicographic order on Bn, which is made visual by drawing a tree
as in Fig. 1 and then by numbering from left to right the branches of this tree; for
this order, the position p.b/ of b D .bnC1; : : : ; b0/ 2 Bn is given by p.b/ D
1CP0

kDnC1.bk � 1/`k . Now introduce the following notation.

Notation 4.2. Given a word w of length `n, n 6 �1, and a branch b 2 Bn, we
denote by tn.w; b/ D w.p.b// the letter of w whose index is the position of b for the
lexicographic order on Bn.

In other words, the i -th letter of w is tn.w; b/ for the branch b D p�1.i/. The
application tn is made visual on Fig. 1: the letter tn.w; b/ of w is the label at the
leaf of the branch b. Then the action of Gn on A`n is defined as follows. For a tree
automorphism � 2 Gn and a word w 2 A`n we define �:w as the word satisfying
tn.�:w; b/ D tn

�
w; �.b/

�
for every branch b 2 Bn, that is, the p.b/-th letter of �:w

is the p.�.b//-letter of w.
Now we introduce additional notations for later use.

Notation 4.3. Given an underlying sequence .rn/n60, define as above the sequence
.`n/n60. For any n 6 0 and any word w of length `n�1 D rn`n on an alphabet A,
we denote by Qw the word of length rn on the alphabet A`n obtained from w, that is,
the j -th letter of Qw is Qw.j / D w.j�1/`nC1 : : :wj `n .

Then note that the action of a tree automorphism in Gn�1 on a word w 2 A`n�1

consists of rn tree automorphisms in Gn respectively acting on the subwords Qw.1/,
: : :, Qw.rn/ together with a permutation of these subwords. This yields relation (1)
below.

Notation 4.4. For a fixed sequence .rn/n60 and given two words w;w0 of length `n
on a Polish metric space .A; 	/, we define the distance ı	n between w and w’ by
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ı	n.w;w
0/ D 1

`n

`nX
iD1

	
�
w.i/;w0.i/

�

and the associated distance between the orbits of w and w0 under the action of
Gn by

d	n .w;w
0/ D min

�2Gn
ı	n.w; �:w

0/:

When this causes no ambiguity we write dn and ın instead of d	n and ı	n .

It can be easily checked that, with the notations above, the recurrence relation

d	n�1.w;w0/ D min
�2Srn

1

rn

rnX
iD1

d 	n
� Qw.i/; Qw0.�.i//

�
(1)

holds for all words w;w0 of length `n�1 on the alphabet A; here Srn denotes the
group of permutations of f1; : : : ; rng.

4.2 Split-Word Processes

Throughout this section, we consider a Polish metric space .A; 	/. The set A is
termed as alphabet.

Given a sequence .rn/n60 of integers rn > 2, called the splitting sequence, we
will soon define an rn-adic split-word process on A. We firstly define the length
sequence .`n/n60 by `n D Q0

kDnC1 rk for all n 6 0. Next, according to Notation 4.3,
every word w of length `n�1 D rn`n on the alphabet A is naturally identified as a
word Qw of length rn on the alphabetA`n , and we define the splitting map snWA`n�1 �
f1; 2; : : : ; rng �! A`n for each n 6 0 by sn.w; j / D Qw.j /. That is, to each word
w of length `n�1 on A and each integer j 2 Œ1; rn�, the splitting map sn assigns the
j -th letter of w treated as a rn-word on A`n .

With the help of the notations sn and Qw introduced above, we say that, with
respect to some filtration F, a process .Wn; "n/n60 is a split-word process on the
alphabet A with splitting sequence .rn/n60, or an rn-adic split-word process on A,
if for each n 6 0:

• Wn is a random `n-word on A.
• "n is a random variable uniformly distributed on f1; 2; : : : ; rng and is independent

of Fn�1, and Wn D sn.Wn�1; "n/ D QWn�1."n/, that is, the word Wn is the "n-th
letter of Wn�1 treated as an rn-word on A`n .

• Wn and "n are Fn-measurable.
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An rn-adic split-word process .Wn; "n/n60 generates an rn-adic filtration for which
."n/n60 is an innovation. Note that one has W0 D tn.Wn; "nC1; : : : ; "0/ with
Notation 4.2; and note also that the process .Wn; "n/n60 is Markovian with respect
to the filtration F, hence the filtration it generates is immersed in F.

Given a sequence .�n/n60 of probability measures �n on A`n , the existence of
such a process .Wn; "n/n60 with Wn � �n occurs whenever each �n is the image
under the splitting map sn of the independent product of �n�1 with the uniform
probability on f1; 2; : : : ; rng. For example, �n can be taken as the projection on `n
consecutive coordinates of a stationary probability measure on AZ.

Example 4.5 (The “ordinary” split-word processes). The ordinary split-word pro-
cess with splitting sequence .rn/n60 is the process .Wn; "n/n60 defined above when
the probability �n on A`n is the product probability of some probability measure �
on A. Standardness of the filtration F generated by an ordinary split-word process
is known to be characterized by the following asymptotic condition on the splitting
sequence:

0X
nD�1

log rn
`n

D C1: (2)

This result is presented by Laurent [9]. Maybe the most difficult part of it is Ceillier’s
proof [2] that F is standard under condition (2) when � is the uniform probability
on a finite alphabet A. In Sect. 5 we will deduce from this result that condition (2)
defines the scale of Bernoulli automorphisms.

In the next two lemmas, we consider a Polish metric alphabet .A; 	/. The
equivalence between Vershik’s intermediate level and second level criteria will be
proved with the help of Lemma 4.7 .

Lemma 4.6. Let F be an rn-adic filtration and ."n/n60 an innovation of F. For
every F0-measurable random variableW0 in A, there exists an rn-adic F-split-word
process .Wn; "n/n60 with final letter W0.

Proof. We firstly constructW�1. SinceW0 is measurable with respect to F�1_�."0/
there exist a F�1-measurable random variable F�1 and a Borel function f such
that W0 D f .F�1; "0/. Define W�1 as the r0-word whose j -th letter is f .F�1; j /.
Now, assuming that Wn, : : :, W0 are constructed, we construct Wn�1 in the same
way: we write Wn D g.Fn�1; "n/ for some Borel function g and some Fn�1-
measurable random variable Fn�1, and we define Wn�1 as the `n�1-word such
that, with Notation 4.3, g.Fn�1; j / is the j -th letter of QWn�1.j / for every integer
j 2 Œ1; rn�. ut

It is easy to check that the split-word process .Wn; "n/n60 in the lemma above is
unique, but we will not need this fact.
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Lemma 4.7. Let .rn/n60 be a splitting sequence and .`n/n60 the corresponding
length sequence. There exist some maps �nWA`n ! A.n/, n 6 0, satisfying the
following properties :

• the map �n induces an isometry from the quotient space A`n

Gn
to A.n/, when A`n

Gn

is equipped with the distance d	n (Notation 4.4) and A.n/ is equipped with the
iterated Kantorovich distance 	n (Sect. 3.1);

• for any rn-adic split-word process .Wn; "n/n60 on A, one has �nW0 D �n.Wn/.

Proof. Firstly, it is not difficult to check that �nW0 D �n.Wn/ where the maps
�nWA`n ! A.n/ are recursively defined as follows. Given an integer k > 2 and a
Polish space .E; �/, denote byDk WEk ! E 0 the map defined byDk.x1; : : : ; xk/ D
1
k

�
ıx1 C � � � C ıxk

�
. Then define �0.w/ D w and, using Notation 4.3, define

�n�1.w/ D Drn

�
�n. Qw.1//; : : : ; �n. Qw.rn//

�
. From this construction it is easy to see

that the map �n is invariant under the action of Gn, and then defines a map from
A`n

Gn
to A.n/. By Lemma 3.1, the Kantorovich distance between Dk.x/ and Dk.x

0/
for any x; x0 2 Ek is given by �0�Dk.x/;Dk.x

0/
� D min�2Sk 1

k

Pk
iD1 �.xi ; x0

�.i//.

Using this fact and the recurrence relation (1) on d	n , it is easy to check by recursion
that d	n .w;w

0/ is the Kantorovich distance between �n.w/ and �n.w0/ for all words
w;w0 2 A`n . ut

4.3 Vershik’s Intermediate Level Criterion

The statement of Vershik’s intermediate level criterion, as well as its equivalence
with Vershik’s second level criterion, are based on the following lemma. Recall that
the pseudo-distance d	n is defined in Notation 4.4.

Lemma 4.8. With respect to an underlying .rn/-adic filtration F, let .Wn; "n/n60
be a split-word process on a Polish metric alphabet .A; 	/. Then disp�nW0 D
QE�d	n .W �

n ;W
��
n /

	
where .W �

n / and .W ��
n / are independent copies of the process

.Wn/ on some probability space . Q�; QA; QP/. In other words, disp�nW0 D disp.Gn �
Wn/ denoting by Gn �Wn the orbit of Wn under the action of Gn (Sect. 4.1).

Proof. This straightforwardly results from Lemma 4.7. ut
Then, given any Polish metric space .A; 	/, we say that, with respect to an rn-adic

filtration F, a random variableW0 2 L1.F0IA/ satisfies Vershik’s intermediate level
criterion if QE�d	n .W �

n ;W
��
n /

	
goes to 0 as n goes to �1 with the notations of the

lemma above. We shortly say that W0 satisfies the intermediate Vershik property.
This definition makes sense in view of the lemma above, which shows that any
property on the sequence of expectations QE�d	n .W �

n ;W
��
n /

	
only depends on W0

(and of the underlying filtration), and in view of Lemma 4.6, which guarantees the
existence of a split-word process with final letter W0.
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We also extend the definition of the intermediate Vershik property to �- fields
E0 � F0 and to the whole filtration F as for the second Vershik property. We then
immediately get the following theorem from Lemma 4.8.

Theorem 4.9. With respect to some rn-adic filtration, the intermediate Vershik
property and the second Vershik property are equivalent (for a random variable,
a �- field or the whole filtration).

Corollary 4.10. The analogue of Proposition 3.2 for the intermediate Vershik
property holds true.

The following lemma will be used in Sect. 5.

Lemma 4.11. Let F be an ambient rn-adic filtration and .A; 	/ be a Polish metric
space. A random variable W0 2 L1.F0IA/ satisfies the intermediate Vershik
property if and only if there exists a sequence .w.n//n60 consisting of words w.n/ of
length `n such thatE

�
d	n .Wn;w.n//

	
goes to 0 for any split-word process .Wn; "n/n60

with final letter W0.

Proof. With the notations of Lemma 4.8, this obviously results from the inequalities

inf
w
E
�
d	n .Wn;w/

	
6 QE�d	n .W �

n ;W
��
n /

	
6 2 inf

w
E
�
d	n .Wn;w/

	
;

which are easy to prove. ut

5 The Scale of an Automorphism

Vershik defined the scale of an automorphism in [13]. We will see that his definition
can be rephrased in terms of Vershik’s intermediate level criterion.

Let T be an invertible measure-preserving transformation (in other words, an
automorphism) of a Lebesgue space .E; �/. Vershik’s definition of the scale of
T is the following one. With the same terminology used to describe the split-
word processes, consider a splitting sequence .rn/n60 and the corresponding length
sequence .`n/n60. Given x 2 E , one defines a word wn.x/ of length `n on E for
each n 6 0 by wn.x/ D .x; T x; : : : ; T `n�1x/. Thus wn is a random word onE . The
scale of T is the set of splitting sequences .rn/n60 (consisting of integers rn > 2)
satisfying the following property: for every f 2 L1.�/ there exists a sequence
.c.n//n60 consisting of vectors c.n/ 2 R

`n such that the sequence of random variables
dn.f .wn/; c.n// goes to 0 in probability, where dn is the pseudo-metric d	n defined
in Notation 4.4 with .A; 	/ D .R; j � j/. The scale of T is denoted by S.T /.

Denote by �n the law of the random word wn on E , and consider the (unique
up to isomorphism) filtration F of the (unique in law) rn-adic split-word process
.Wn; "n/n60 whose law is given by Wn � �n (the �n obviously satisfy the consis-
tency condition required for this process to exist). Then, in view of Lemma 4.11 and
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Corollary 4.10, the sequence .rn/n60 belongs to the scale of T if and only if
Vershik’s intermediate level criterion with respect to F holds for the final letter W0.

It is clear, owing to Corollary 4.10, that this property defines an invariant of T : if
S D � ı T ı ��1 is an invertible measure-preserving transformation conjugate to T
then the property is equivalent to Vershik’s intermediate level criterion holding for
the final letter �.W0/ of the split-word process

�
�.Wn/; "n

�
n60. Some other basic

properties of the scale given by Vershik in [13] can be derived by straightforward
applications of basic properties of Vershik’s intermediate level criterion, such as
Corollary 4.10.

Remark 5.1. Actually, as pointed out by Vershik in [13], his definition above is
useful only for completely ergodic transformations T (i.e. all powers of T are
ergodic), but it may be extended to arbitrary transformations T by replacing each
vector c.n/ by a vector-valued function c.n/.x/ constant on the ergodic components
of T `n . We will not investigate this extension, except for our concluding remarks at
the end of this section; the reader has to be aware that some results in [13] are not
valid with the definition given above when T is not completely ergodic.

In the sequel we denote by .Wn; "n/n60 the (unique in law) split-word process
associated to T for a given sequence .rn/n60, and by F the rn-adic filtration it
generates (unique up to isomorphism). In particular, W0 is an E-valued random
variable with law �.

The following proposition shows in particular that the filtration of the ordinary
split-word process (Example 4.5) is the filtration F when T is the Bernoulli shift on
.A;�/Z. A generator of an automorphismT is a measurable function f from .E; �/

to a Lebesgue space .A;�/ such that �.X/ D _1
iD�1�

�
f .T iX/

�
for some ( ”

for every) random variable X distributed on E according to �. For a (possibly non
Bernoulli) shift on AZ, a natural generator is the function f WAZ ! A which sends
a sequence in AZ to its coordinate at index 0.

Proposition 5.2. If f is a generator of T , then F is the filtration generated by the
split-word process

�
f .Wn/; "n

�
n60.

Proof. It suffices to show that the first letter Wn.1/ of Wn is measurable with
respect to _n

mD�1�
�
f .Wn/; "n

�
for every n 6 0. For notational convenience, we

only treat the case n D 0, and it will be clear how to similarly treat the case of
any n6 0. One has f .Wn/ D �

f .T PnW0/; : : : ; f .T
QnW0/

�
where Pn 6 0 and

Qn > 0 are random integers measurable with respect to �."nC1; : : : ; "0/, and satisfy
Pn ! �1 and Qn ! C1 since they obviously satisfy Pn 6 �P0

iDnC1 `i�"i¤1
andQn >

P0
iDnC1 `i�"i¤ri , thereby showing thatW0 is measurable with respect to

_0
mD�1�

�
f .Wn/; "n

�
. ut

A famous theorem by Rokhlin says that any aperiodic transformation T has a
countable generator f , that is, f takes its values in a countable space. Recall that T
is said to be aperiodic when P.W0 D T iW0 for some i > 1/ D 0. In particular, if T
is ergodic, it is aperiodic.



136 S. Laurent

In the sequel we denote by Dn D Wn.1/ the first letter of Wn for every
n 6 0. Obviously, F is also generated by the process .Dn; "n/n60 and Dn D
.T `n/

"n�1
.Dn�1/. We state the proposition below only by way of remark.

Proposition 5.3. If T is aperiodic then F is generated by the process .Wn/n60.

Proof. It suffices to show that �."n/ � �.Dn�1;Dn/when assuming aperiodicity of
T . Let Kn 6 Jn WD ."n � 1/`n be the smallest integer such that Dn D T Kn.Dn�1/,
hence the equality T Kn.Dn�1/ D T Jn.Dn�1/ almost surely holds. Therefore
P.Kn ¤ Jn/ 6

P
k¤j P

�
T k.Dn�1/ D T j .Dn�1/

� D 0. ut
Now, for an aperiodic T , we will prove that .rn/n60 2 S.T / means that the

whole filtration F is Vershikian (Theorem 5.5).

Lemma 5.4. If T is aperiodic then �.�nD0/ D �.Dn/.

Proof. It suffices to show that L.Dn jFn�1/ generates the same �- field as Dn�1
for every n 6 0 since the �- field generated by the conditional law of a random
variable X given any �- field depends on X only through the �- field �.X/.
To do so, put S D T `n . Conditionally on Fn�1, the random variable Dn is
uniformly chosen amongDn�1, S.Dn�1/, : : :, Srn�1.Dn�1/. Hence, the conditional
law L.Dn jFn�1/ determines the set fDn�1; S.Dn�1/; : : : ; Srn�1.Dn�1/g. Let �
be a random permutation of I WD f0; 1; : : : ; rn � 1g such that S�.j /.Dn�1/ D
Sj
�
S�.0/.Dn�1/

�
for every j 2 I . We will show that � almost surely equals the

identity map of I ; the lemma will obviously follow. Let K D 0 if � is the identity
permutation and K be a strictly positive integer such that fSK.Dn�1/ D Dn�1g
otherwise. Then P.K ¤ 0/ 6

P
k>0 P

�
Sk.Dn�1/ D Dn�1

� D 0. ut
Theorem 5.5. For an aperiodic T , the sequence .rn/n60 belongs to the scale of T
if and only if the rn-adic filtration F is Vershikian.

Proof. This stems from Lemmas 5.4 and 3.4. ut
This theorem along with Proposition 5.2 yield our last claim in Example 4.5:

the scale of a Bernoulli shift coincides with the set of all sequences .rn/n60 for
which the corresponding ordinary split-word process generates a standard filtration,
and therefore it consists in all sequences .rn/n60 satisfying condition (2) given in
Example 4.5.

Now we will give a proof of the following result based on the theorem
on lacunary isomorphism (Theorem 3.3). Vershik proved it in [13] by a direct
construction.

Proposition 5.6. The scale of a completely ergodic invertible measure-preserving
transformation is not empty.

Our proof is an application of the theorem on lacunary isomorphism based on
Corollary 5.8 which is derived from Proposition 5.7 below. The following notations
are used in this proposition. We consider a splitting sequence .rn/n60 and for each
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n 6 0, we put Jn D D�1
n .In/ where In is the �- field of T `n -invariant events.

A random variable is Jn-measurable if and only if it is of the form f .Dn/ where
f is a T `n -invariant Borel function. Therefore .Jn/n60 is a decreasing sequence of
�- fields. Note also that for any Jn-measurable random variable Jn and any integer
i which is multiple of `n, the random pair .Jn;Dn/ has the same distribution as
.Jn; T

iDn/. Recall that the ergodic theorem says that

1

k

k�1X
iD0

f .T iDn/
L1!E

�
f .Dn/ j Jn

	
as k ! C1

for all f 2 L1.�/.
Proposition 5.7. Let T be an invertible measure-preserving transformation and F

the rn-adic filtration associated to T as above. Then F�1 D lim % Jn.

Proof. Recall that we denote by Dn D Wn.1/ the first letter of Wn. It is clear that
fDn 2 Ag 2 F�1 for every Borel set A which is invariant by T `n , thereby yielding
the inclusion lim % Jn � F�1.

Conversely, putting J�1 D lim % Jn, it suffices to show that EŒZ jFn� tends in
L1 to a J�1-measurable random variable for each Z 2 L1.F0/. It is not difficult
to check that this property holds whenever it holds for all random variables Z D
f .Dn0/ where f 2 L1.�/ and n0 > 0. Then, given f 2 L1.�/, we will show that

E Œf .Dn0/ jFn� L1! E Œf .Dn0/ j Jn0� for every n0 6 0. Conditionally on Fn (with

n 6 n0), Dn0 is uniformly chosen among Dn, T `n0 .Dn/, : : :, T .`n=`n0�1/`n0 .Dn/,
therefore

E Œf .Dn0/ jFn� D 1

`n=`n0

`n=`n0�1X
jD0

f
�
.T `n0 /

j
.Dn/

�

D 1

`n=`n0

`n=`n0�1X
jD0

f
�
.T `n0 /

j
.T XDn0/

�

where X is a random integer which is multiple of `n0 and is independent of Dn0 ,
and then the result follows from the ergodic theorem. ut
Corollary 5.8. The filtration F is Kolmogorovian if and only if T `n is ergodic for
all n 6 0.

Proposition 5.6 is then straightforwardly shown by applying the theorem on
lacunary isomorphism (Theorem 3.3), by noting that any filtration .F�.n//n60
extracted from F with �.0/ D 0 is the filtration of the split-word process associated
to T with another splitting sequence.

Now we prove the proposition below as another illustration of our definition of
the scale. We do not know whether the converse inclusion holds.
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Proposition 5.9. Let S and T be invertible measure-preserving transformations.
Then S.S � T / � S.S/\ S.T /.

Proof. Let .Wn; "n/n60 be the rn-adic split-word process associated to S � T and F

the filtration it generates. For each n 6 0, one hasWn D .Yn;Zn/ where .Yn; "n/n60
and .Zn; "n/n60 are the rn-adic split-word processes associated to S and T respec-
tively, each of them generating a filtration immersed in F. Therefore the result fol-
lows from the fact that �.W0/ is Vershikian if .rn/n60 2 S.S �T / (Proposition 3.2)
and from the hereditariness of the Vershik property for immersion (Lemma 3.5). ut

We close this section by translating Vershik’s general definition of the scale
(Remark 5.1) into a probabilistic statement generalizing the preceding definition.
Using the notations of the first definition given at the beginning of this section,
Vershik’s general definition says that .rn/ belongs to S.T / if dn.Wn/ ! 0

in probability where dn.Wn/ D infw EŒdn.Wn;w/ j Jn� (where dn is the pseudo-
metric introduced in Notation 4.4 and the Jn are the �- fields introduced before
Proposition 5.7). Thus this definition obviously coincides with the first one when
the T `n are ergodic. In addition one also has dn.Wn/ D infw EŒdn.Wn;w/ jF�1�,
owing to the following lemma.

Lemma 5.10. For every n 6 0, the random variable Dn is conditionally indepen-
dent of F�1 given Jn.

Proof. Recall that F�1 D lim % Jn (Proposition 5.7). The statement of the lemma
amounts to saying that EŒg.Dn/ j Jn� D EŒg.Dn/ jF�1� for g 2 L1.�/, which
is equivalent to EŒg.Dn/ j Jn� D EŒg.Dn/ j Jm� for every m 6 n. To prove this
equality, we take a random variable Jm 2 L1.Jm/, hence Jm D f .Dm/ where the
function f 2 L1.�/ is T `m -invariant. SinceDm D .T `n /

X
Dn whereX is a random

integer independent of D0 and uniformly distributed on f0;�1; : : : ;�`m=`n C 1g,

E ŒJmg.Dn/� D 1

`m=`n

0X
iD�`m=`nC1

E

h
f ..T `n/

i
Dn/g.Dn/

i
D E ŒJng.Dn/�

where Jn D 1
`m=`n

P0
iD�`m=`nC1 f

�
.T `n/

i
Dn

�
. But Jn is measurable with respect to

Jn since

0X
iD�`m=`nC1

f
�
.T `n/

i
T `nDn

� D f .T `nDn/C
0X

iD�`m=`nC2
f
�
.T `n/

i
Dn

�

and f .T `nDn/ D f .T �`mC`nDn/. Therefore we get

E ŒJmg.Dn/� D E
�
JnEŒg.Dn/ j Jn�

	

but we similarly prove that E
�
JmEŒg.Dn/ j Jn�

	 D E
�
JnEŒg.Dn/ j Jn�

	
. ut
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Thus, the general definition of the statement “rn 2 S.T /” becomes
infw EŒdn.Wn;w/ jF�1� ! 0, and it sounds like the intermediate Vershik property
ofW0 conditionally on F�1. We expect that criteria for filtrations (such as Vershik’s
criteria and the I-cosiness criterion) can be more generally stated conditionally on
F�1 in such a way that most results (such as the theorem on lacunary isomorphism)
remain to be true. But, currently, we do not feel the motivation to develop this
generalization.

Acknowledgements I thank Michel Émery and Anatoly Vershik for the interest they have
expressed in this work, and I also thank Michel Émery for helpful comments on a previous version
of the paper.
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8. S. Laurent, Filtrations à temps discret négatif. PhD Thesis, Université de Strasbourg,
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Filtrations Indexed by Ordinals; Application
to a Conjecture of S. Laurent

Claude Dellacherie and Michel Émery�

[. . . ] attention, car, à partir de ce moment, nous voilà aux prises
avec le cardinal.

A. DUMAS, Les trois mousquetaires.

Abstract The following fact has been conjectured by Stéphane Laurent (Conjec-
ture 3.18, page 160 of Séminaire de Probabilités XLIII): Let F D .Ft / and
G D .Gt / be two filtrations on some probability space, and suppose that every
F -martingale is also a G -martingale. For s < t , if Gt is generated by Gs and by
countably 2 many events, then Ft is generated by Fs and by countably many events.
In this statement, “and by countably many events” can equivalently be replaced with
“and by some separable �-algebra”, or with “and by some random variable valued
in some Polish space”.

We propose a rather intuitive proof of this conjecture, based on the following
necessary and sufficient condition: Given a probability space, let D be a �-algebra
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of measurable sets and C a sub-�-algebra of D . Then D is generated by C and
by countably many events if and only if there exists no strictly increasing filtration
F D .F˛/˛<@1 , indexed by the set bd0;@1bd of all countable ordinals, and satisfying
C  F˛  D for each ˛.

Another question then arises: can the martingale hypothesis on F and G be
replaced by a more general condition involving the null events but not the values of
the probability? We propose such a weaker hypothesis, but we are no longer able to
derive the conclusion from it; so the question is left open.

1 Introduction

To solve Stéphane Laurent’s conjecture (see the abstract), we measure the relative
size of a �-algebra D with respect to a sub-�-algebra C , by successively adding
to C new D-events in such a way that the �-algebra generated by C and these
events increases at each step; when the relative size is infinite, it is characterized
by the transfinite number of steps. This idea is made rigorous in Corollary 2,
which says in particular that D is generated by C and by some r.v. iff no strictly
increasing filtration indexed by the set of all countable ordinals can be inserted
between C and D .

When C is trivial, this characterizes the absolute size of D , and we find that D is
essentially separable iff it contains no strictly increasing filtration indexed by all
countable ordinals (Corollary 3).

Laurent’s conjecture can be stated as a question involving four �-algebras; using
Corollary 2, this question is solved by Proposition 1, whose translation into the
language of filtrations (Laurent’s formulation) is Corollary 5.

In Proposition 1, some conditional independence is assumed, but the conclusion
is “qualitative”: it does not explicitly feature the probability, only the null events.
Hence, one is naturally led to ask whether Proposition 1 remains true when its
conditional independence hypothesis is replaced by some kind of “qualitative
conditional independence”, which should imply usual conditional independence
and be stable under replacement of P by an equivalent probability. We propose a
possible definition of qualitative conditional independence, but we are not able to
assert whether or not the conclusion of Proposition 1 is still implied by this weaker
hypothesis; so we leave the question unanswered.

2 Notation and Elementary Facts from Set Theory

Recall that two sets have the same cardinal (or cardinality) if they are related by
some bijection; we shall denote by jS j the cardinality of a set S . And two well-
ordered sets define the same ordinal if they are related by some order-preserving
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bijection. Any ordinal ˛ can (and will) be identified with the well-ordered set bd0; ˛bd
of all ordinals ˇ such that ˇ < ˛; any cardinal c can (and will) be identified with
the smallest ordinal having cardinality c. There exists a (unique) order-preserving,
one-to-one correspondence ˛ 7! @˛ between ordinals and infinite cardinals. The
smallest infinite cardinal is ! D @0, which corresponds to the well-ordered set N of
natural integers; the next one is @1, the first uncountable ordinal, so bd0;@1bd is the
well-ordered set of all countable ordinals.

Every ordinal ˛ has a successor, namely ˛ C 1; every cardinal c has two
successors: c C 1, the smallest ordinal > c, is its successor as an ordinal; while
c 0, the smallest cardinal > c, is its successor as a cardinal. If c is finite, c 0 D c C 1

(ordinary addition of natural numbers). But if c is infinite, c D @˛ for some ordinal
˛, and c 0 D @˛C1; in that case, c C 1 has the same cardinality as c, so c 0 > c C 1.

We shall use only one non-elementary fact from the theory of cardinals:

Theorem 1. If S is any infinite set, jS � S j D jS j.
A proof can be found in any book expounding cardinal arithmetic; see for

instance Theorem 3.5 in [4].

Corollary 1. a) If c is an infinite cardinal, and if .Si /i2I is a family of sets such
that jI j 6 c and jSi j 6 c for each i , then

ˇ̌S
i2I Si

ˇ̌
6 c.

b) If S is an infinite set, the set of all finite subsets of S has the same cardinality
as S .

Proof. a) Choose a set S with cardinality c (for instance, S D c). If jSi j D c

for each i and if the Si are pairwise disjoint, the union
S
i2I Si is equipotent

to the product I � S , for this product is the union of its fibers fig � S . Henceˇ̌S
i2I Si

ˇ̌ D jI � S j 6 c2 D c (by Theorem 1). This majoration subsists a
fortiori when jSi j 6 c or when the Si are not disjoint.

b) Put c D jS j; by Theorem 1, c2 D c, and, by iteration, cn D c for each integer
n > 1. Now, for n > 1, the set of all subsets of S with n elements has cardinality
cn satisfying c 6 cn 6 cn D c; so cn D c. Last, the set of all finite subsets of S
is a countable union of sets with cardinal c, plus one singleton; by a), its cardinal
is c. ut
Theorem 1 and Corollary 1 will be used to prove a generalized form of Laurent’s

conjecture. The reader only interested in the conjecture as stated by Laurent, just
needs the familiar, countable case: a product of two countable sets, a union of
countably many countable sets, or the set of all finite parts of a countable set,
are always countable. (S)he simply has to replace the arbitrary infinite cardinal c
featuring throughout the paper by the countable cardinal !, and its successor c 0
by @1.
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3 Extensions of � -Algebras

From now on, an ambient probability space .˝;A ;P/ is fixed. We assume that it
is complete (every subset of any negligible event is in A ), and by a �-algebra,
we always mean an .A ;P/-complete sub-�-algebra of A (i.e., a sub-�-algebra
containing all events with probability 0 or 1).

On the contrary, by a Boolean algebra, we mean any Boolean sub-algebra of A ,
not necessarily completed.

If C is a �-algebra, the operator of conditional expectation w.r.t. C will be
denoted by E

C ; and if A is an event, PC .A/ will stand for EC 1A.
If C and D are two �-algebras such that D � C , we say that D is an extension

of C . The extension is said to be finite if D is generated by C and by finitely many
events; else it is infinite.

When the extension is finite, one can define its multiplicity; we borrow this notion
from M. T. Barlow, J. Pitman and M. Yor, pp. 284–285 of [2].

Definition 1. If D is a finite extension of C , the multiplicity of the extension is
the smallest integer m such that D is generated by C and by some m-partition
fD1; : : : ;Dmg of ˝ . We shall denote it by mult.D W C /.

Clearly, mult.D W C / > 1, with equality if and only if D D C .
Remark that in Definition 1, as the Di form a partition, D is also generated by

C andD1, . . . ,Dm�1; som is not 3 the smallest number of events needed to generate
D from C . But multiplicity is nonetheless a natural measure of the size of the
extension; M. T. Barlow, J. Pitman and M. Yor give in [2] four equivalent definitions
of m, and more can be found in Proposition 12 of [1] (where a slightly different
notion of multiplicity is used: it is no longer a constant, but a C -measurable, integer-
valued r.v.). Here are two of these characterizations:

Lemma 1. Given an extension D of C and an integer m > 1, the following three
statements are equivalent:

(i) mult.D W C / 6 m ;

(ii) for each D-measurable r.v. X , one can find m C-measurable r.v. Y1; : : : ; Ym
such that

mY
iD1
.X � Yi / D 0 I

(iii) for any mC 1 pairwise disjoint eventsD1; : : : ;DmC1 in D , one has

mC1Y
iD1

P
C .Di / D 0 :

3Far from it! It is an easy exercise to verify that the smallest number is dlog2 me; but we just need
to know that it is strictly smaller than m.
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As mentioned on p. 285 of [2], “elementary but tedious arguments” show this
equivalence. Such arguments are explicitly written in the proof of Proposition 12 in
[1]; we refer to them for a proof of Lemma 1. The intuitive meaning of property (ii)
is obvious: “when C is known”, any D-measurable r.v. may assume at most m
different values.

How does this notion of multiplicity extend to infinite extensions? In general, par-
titions can no longer be used (for instance, the �-algebra of Lebesgue-measurable
subsets of ˝ D R is not generated by the negligible sets and any partition4); but
observe that, in the finite case, three different numbers can be defined:

• m1, the smallest number such that D is generated by C and by m1 events,
• m, the smallest number such that D is generated by C and by an m-partition,
• m2, the smallest number such that D is generated by C and by a Boolean algebra

with m2 elements.

There is a one-to-one correspondence between all finite Boolean algebras of subsets
of˝ and all finite partitions of˝: the Boolean algebra is generated by the partition,
and in turn, the partition consists of all atoms of the Boolean algebra. If the partition
hasm elements, the Boolean algebra has 2m elements; and one has

.dlog2 me D/ m1 < m < m2 .D 2m/ :

In the infinite case, when numbers are replaced by cardinals, we have seen that
m does not make sense; but both m1 and m2 do, and they turn out to be equal, as
is easily seen (this will be shown in Lemma 2). This makes it reasonable to define
mult.D W C / as the common value of m1 and m2:

Definition 2. If D is an infinite extension of C , the multiplicity of the extension
is the smallest cardinal c such that D D �.C [ E / for some set E  D with
cardinality jE j D c. As in the finite case, it will be denoted by mult.D W C /.

In that case the multiplicity is necessarily an infinite cardinal, by definition of an
infinite extension.

Lemma 2. a) If E is an infinite set of events, the Boolean algebra it generates has
the same cardinal as E .

b) Let D be an extension of C . If mult.D W C / is infinite, it is also the smallest
cardinal c such that D D �.C [ B/ for some Boolean algebra B  D with
cardinality jBj D c.

Proof. The Boolean algebra B generated by a class E of events can be obtained
from E in three steps: first, stabilize E under complementation; second, stabilize

4Let L denote the Lebesgue � -algebra of R, N the sub-� -algebra consisting of all negligible
or co-negligible sets, and P 
 L a partition of R. If each element of P is negligible, then
�.N [ P/ D N   L ; on the contrary, if some P 2 P is not negligible, then P is an a.s. atom
of �.N [ P/, whence �.N [ P/   L again.
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the so-obtained class under finite intersections; last, stabilize under finite unions
(see for instance Sect. I-2 in Neveu [6]). If E is infinite, at each of these three
steps, the cardinality remains the same owing to Corollary 1 b); so jBj D jE j. This
establishes a), and b) immediately follows. ut

Stéphane Laurent’s Conjecture 3.18 in [5] concerns separable extensions, that is,
extensions with countable multiplicity: mult.D W C / 6 !. Countable multiplicity is
equivalent to demanding that D is generated by C and some random variable, or by
C and some countable Boolean algebra.

Lemma 3. If C , C 0, D 0 and D are four �-algebras such that C  C 0  D 0  D ,
then

mult.D 0 W C 0/ 6 mult.D W C / :

Proof. It suffices to separately establish that mult.D W C / decreases when C is
replaced by a bigger �-algebra, and decreases when D is replaced by a smaller one.

The dependence in C is trivial, since if C  C 0  D , every E (which may be a
partition or not) such that D D �.C [ E / also satisfies D D �.C 0 [ E /.

It remains to show that mult.D 0 W C / 6 mult.D W C / whenever C  D 0  D .
We shall consider two cases.

First case: mult.D W C / is finite. The result is immediate using for instance
property (ii) from Lemma 1.

Second case: mult.D W C / is infinite; call it c. By Lemma 2 b), there exists a
Boolean algebra B with cardinality c, such that D D �.C [ B/; our aim is to find
some set E , with cardinality at most c, such that D 0 D �.C [ E /.

For each event B 2 B, choose and fix a version of P
D 0

.B/ (with values in
bd0; 1ce) and, for each rational number r , call EB

r the event fPD 0

.B/ > rg. Notice
that P

D 0

.B/ can be uniformly approximated to any given accuracy by linear
combinations of finitely many 1EBr .

By Corollary 1 a), the set E D fEB
r ; B 2 B ; r 2 Qg  D 0 has cardinality

6 c; so it suffices to verify that D 0 D �.C [ E /.
The Boolean algebra generated by C [ B consists of all sets of the formPn
iD1.Ci \ Bi/, with n finite, Ci 2 C , Bi 2 B, and

P
meaning a disjoint union.

As a Boolean algebra, it is dense (for the “distance” d.A0; A00/ D P. A0 4 A00/ D
k1A0 � 1A00kL1) in the �-algebra D it generates (see Sect. I-5 from Neveu [6]). In
particular, given any D0 2 D 0 and " > 0, one can find n, Ci and Bi so thatPn

iD1 1Ci1Bi is "-close to 1D0 in L1. Taking conditional expectations w.r.t. D 0 gives

�� nP
iD1

1Ci P
D 0

.Bi / � 1D0

��
L1 < " : .	/

We have seen earlier that with arbitrarily small error, PD 0

.Bi / in .	/ can be replaced
by a combination of finitely many 1

E
Bi
r

. So, finally, .	/ shows that 1D0 is an L1-limit
of nice functions of Ci and EBi

r , and the claim D0 2 �.C [ E / is established. ut



Filtrations Indexed by Ordinals; Application to a Conjecture of S. Laurent 147

Remark that, in the infinite case, the above proof uses the probability and the
completeness of C . The analogue of Lemma 3 for an ambient measurable space
with no measure is not always true. For a simple counter-example, take ˝ D R,
C D C 0 D f¿;˝g, D D the Borel �-field, and D 0 D the �-field of all countable
or co-countable subsets of ˝ . The �-field D is separable, but D 0 is not.

4 Filtrations with Well-Ordered Time-Axis

Filtrations indexed by well-ordered sets will play a central rôle in the proof of
Laurent’s conjecture.

Definition 3. Given a totally ordered set T , a filtration indexed by T is a family
.Ft /t2T of �-algebras such that Fs  Ft for s 6 t .

If furthermore Fs   Ft whenever s < t , we say that the filtration is strict.
If there exists an s 2 T such that Ft D Fs for all t > s, we say that the filtration

is eventually stationary. (If T has a maximal element, every filtration indexed by T
is eventually stationary; so this notion is interesting only when T has no maximal
element!)

A filtration .Ft /t2T is said to be inserted between two �-algebras C and D if
C  Ft  D for each t .

Lemma 4. Let c be a cardinal, and call c 0 the smallest cardinal > c (so bd0; c 0bd is
the well-ordered set of all ordinals ˛ such that j˛j 6 c).

If .F˛/˛2bd0;c 0bd is any filtration, the set
S
˛2bd0;c 0bd F˛ is a �-algebra (we shall

denote this �-algebra by Fc 0�).

Proof. If c is finite, c 0 D c C 1 and
S
˛<c 0 F˛ D S

˛6c F˛ D Fc is a �-algebra.
If c is infinite, the union U D S

˛<c 0 F˛ is a Boolean algebra, simply because
the index set bd0; c 0bd is totally ordered. To show that U is a �-algebra, take any
sequence .En/ in U ; for each n, En belongs to F˛n for some ˛n in bd0; c 0bd. As
j˛nj 6 c, the union ˇ D S

n2N ˛n (which is an ordinal because it is well-ordered)
also has cardinality jˇj 6 c by Corollary 1 a). Consequently, ˇ 2 bd0; c 0bd and
En 2 Fˇ; so both sets

S
n En and

T
n En belong to Fˇ and a fortiori to U . ut

If c is a cardinal which is not the successor of any other cardinal, there may exist
filtrations .F˛/˛2bd0;cbd such that the set

S
˛2bd0;cbd F˛ is not a �-algebra. An example

is the familiar case when c D @0: if .Fn/n2N is a filtration, in general the Boolean
algebra

S
n Fn is not a �-algebra. Another example is the case when c D @! .

Using the fact that @! D S
n2N @n, the reader will easily exhibit situations whereS

˛<@! F˛ is not a �-algebra.

Lemma 5. Let c be an infinite cardinal, c 0 its successor, and F D .F˛/˛2bd0;c 0bd a
filtration indexed by all ordinals with cardinality 6 c.

If mult.Fc 0� W F0/ 6 c, the filtration F is eventually stationary.
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Proof. If mult.Fc 0� W F0/ 6 c, by Definitions 1 and 2 there exists some E  Fc 0�
with cardinality jE j 6 c and such that Fc 0� D �.F0 [ E /. By Lemma 4, for
every E 2 E , there exists an ˛E in bd0; c 0bd such that E 2 F˛E . Since j˛E j 6 c

and jE j 6 c, according to Corollary 1 a) the ordinal ˇ D S
E2E ˛E also satisfies

jˇj 6 c, so it belongs to bd0; c 0bd. From E 2 F˛E  Fˇ , one gets F0 [ E  Fˇ ,
and

Fc 0� D �.F0 [ E /  Fˇ  Fc 0� I

this implies Fˇ D Fc 0�, showing that the filtration is stationary from ˇ on. ut
Lemma 6. Let C be a �-algebra, D an extension of C , and c an infinite cardinal
with successor c 0. If mult.D W C / > c, there exists a strict filtration .F˛/˛2bd0;c 0bd
inserted between C and D .

Proof. Fixing C and D such that mult.D W C / > c, we shall show that there exists
a transfinite sequence .E˛/˛2bd0;c 0bd of elements of D such that, for each ˛ 2 bd0; c 0bd,
E˛ does not belong to the �-algebra F˛ D �

�
C [ fEˇ ; ˇ < ˛g�. As E˛ obviously

belongs to F˛C1 D �
�
C [ fEˇ ; ˇ 6 ˛g�, the filtration .F˛/˛2bd0;c 0bd will then be

strict; and this will prove the lemma, because C  F˛  D .
The argument goes by transfinite induction: for an ˛ 2 bd0; c 0bd, suppose that all

Eˇ with ˇ < ˛ have already been constructed, and call E the set fEˇ; ˇ <˛g  D .
Its cardinality satisfies jE j 6

ˇ̌bd0; ˛bdˇ̌ D j˛j 6 c. From mult.D W C / > c one can
then deduce F˛ D �.C [ E /   D ; and it suffices to pick any E˛ in DnF˛ . ut
Corollary 2. Let c be an infinite cardinal, c 0 its successor, C a �-algebra and D
an extension of C . The following three statements are equivalent:

(i) mult.D W C / 6 c ;

(ii) every filtration indexed by bd0; c 0bd and inserted between C and D is eventually
stationary;

(iii) no strict filtration indexed by bd0; c 0bd can be inserted between C and D .

Proof. (i) ) (ii). If mult.D W C / 6 c and if .F˛/˛2bd0;c 0bd is inserted between C
and D , one has C  F0  Fc 0�  D ; so Lemma 3 gives mult.Fc 0� W F0/ 6 c

and Lemma 5 says that F is eventually stationary.
(ii) ) (iii). An eventually stationary filtration indexed by bd0; c 0bd cannot be strict.
(iii) ) (i). Lemma 6 says that : (i) ) : (iii). ut
Taking in particular c D ! D @0, an extension is separable if and only if no strict

filtration indexed by bd0;@1bd can be inserted in it.

In statement (iii) of Corollary 2, the index set bd0; c 0bd can equivalently be replaced
by the closed interval bd0; c 0ce, simply because if a filtration F indexed by bd0; c 0bd is
strict, it remains strict when extended to bd0; c 0ce (by defining for instance Fc 0 as the
�-algebra Fc 0� ).
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5 Essential Multiplicity

This short section (not needed in the sequel) is devoted to the special case of
Corollary 2 when C is degenerate and D D A .

Recall that a complete probability space .˝;A ;P/ has been fixed, and that all
�-algebras we consider are .A ;P/-complete sub-�-algebras of A . The smallest
possible �-algebra is the degenerate �-algebra N , consisting of all events A 2 A
such that P.A/ 2 f0; 1g; so we can define the essential multiplicity of A as

ess mult A D mult.A W N / :

It is a child’s play to verify that ess mult A is finite if and only if the probability
space .˝;A ;P/ is essentially finite (that is, the Hilbert space L2.˝;A ;P/ is
finite-dimensional5); more precisely, in that case one has dim L2.˝;A ;P/ D
ess mult A :

It is just as easy to see that ess mult A is countable if and only if A is essentially
separable, that is, generated by N and by some r.v. (equivalently, by N and by
countably many r.v. with values in Polish spaces; this is tantamount to L2.˝;A ;P/

being a separable Hilbert space).
(When ess mult A is an uncountable cardinal, readers familiar with the

Kolmogorov–Maharam decomposition of an arbitrary .˝;A ;P/ can check as
an exercise that ess mult A is precisely the biggest cardinal featuring in that
decomposition.)

Taking C D N and D D A in Corollary 2 immediately gives the following
characterization:

Corollary 3. Let c be an infinite cardinal, c 0 its successor, and .˝;A ;P/ a
complete probability space. The following three statements are equivalent:

(i) ess mult A 6 c ;
(ii) on .˝;A ;P/, every filtration indexed by bd0; c 0bd is eventually stationary;

(iii) on .˝;A ;P/ there exists no strict filtration indexed by bd0; c 0bd.

In particular, when c D !, the corollary says that a complete probability space
.˝;A ;P/ is essentially separable if and only if it admits no strict filtration indexed
by the interval bd0;@1bd of all countable ordinals.

(But, on essentially separable probability spaces, strict filtrations indexed by
other uncountable totally ordered sets are commonplace; think for instance of
Brownian or Poisson filtrations.)

5The exponent 2 plays no particular rôle; here and in the next paragraph, the Banach space L1, the
metrizable vector space L0 or any Lp could be used just as well.
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6 Conditional Independence

This section shows that conditional independence implies inequalities between
multiplicities of extensions. For infinite extensions, a crucial rôle will be played
by Corollary 2.

If B is a �-algebra, recall that E
B stands for the operator of conditional

expectation w.r.t. B. Given three �-algebras B, C 0 and C 00, recall that C 0 and C 00
are conditionally independent w.r.t. B (and one writes C 0??

B
C 00) if EBC 0

E
BC 00 D

E
BŒC 0C 00� for all C 0 2 L1.C 0/ and C 00 2 L1.C 00/. The next two lemmas

state properties of conditional independence. They are classical (and elementary)
exercises from the first chapter of any course on Markov processes; we recall them
without proof.

Lemma 7. Let B, C 0 and C 00 be three �-algebras. If C 0??
B

C 00, then C 0\C 00  B.

Lemma 8. Let B, C 0 and C 00 be three �-algebras. The following are equivalent:

(i) C 0??
B

C 00 I
(ii) �.B[C 0/??

B
�.B[C 00/ :

If furthermore B  C 0, the next property is also equivalent to (i) and (ii):
(iii) for every C 00 2 L1.C 00/, E

C 0

C 00 is B-measurable (and therefore a.s. equal
to E

BC 00).

The following property is classical too. (It says for instance that any Markov process
is also second-order Markovian.)

Corollary 4. Let B, B0, C 0 and C 00 be four �-algebras such that B  B0  C 0.
If C 0??

B
C 00, then C 0??

B0
C 00.

Proof. Immediate by Lemma 8 (iii): if E
C 0

C 00 is B-measurable, it is a fortiori
B0-measurable. ut
Lemma 9. Let B, C 0, C 00 and D be four �-algebras such that B  C 0  D
and B  C 00  D ; suppose that C 0??

B
C 00. If mult.D W C 00/ is finite, then

mult.C 0 W B/ 6 mult.D W C 00/ :

Proof. Callm the integer mult.D W C 00/, and take anymC1 pairwise disjoint events
C 0
1; : : : ; C

0
mC1 in C 0. Since C 0  D , by Lemma 1 applied to the extension D of C 00

one has
QmC1
iD1 P

C 00

.C 0
i / D 0. Now, PC 00

.C 0
i / D P

B.C 0
i / owing to Lemma 8 (iii)

(with C 0 and C 00 exchanged). Consequently,
QmC1
iD1 P

B.C 0
i / D 0, and, resorting to

Lemma 1 again, one has mult.C 0 W B/ 6 m. ut
Lemma 9 is quite simple and its proof is elementary. The next proposition is

deeper; it extends the scope of this lemma to infinite multiplicity. Our proof uses
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filtrations indexed by ordinals and relies on the results from previous sections; we
do not know any simpler argument.

Proposition 1. Let B, C 0, C 00 and D be four �-algebras such that B  C 0  D
and B  C 00  D . If C 0??

B
C 00, then

mult.C 0 W B/ 6 mult.D W C 00/ and mult.C 00 W B/ 6 mult.D W C 0/ :

Proof. It suffices to prove the first inequality; the other one will then follow by
exchanging C 0 and C 00. We have to show that, given any cardinal c,

mult.D W C 00/ 6 c H) mult.C 0 W B/ 6 c :

If c is finite, this holds by Lemma 9; hence we will suppose c to be infinite, and the
proposition will be proved by establishing that, for c an infinite cardinal,

mult.C 0 W B/ > c H) mult.D W C 00/ > c :

So we suppose mult.C 0 W B/ > c; call c 0 the successor of c. By Corollary 2,
some strict filtration F indexed by bd0; c 0bd is inserted between B and C 0.

Define a new filtration G D .G˛/˛2bd0;c 0bd by the formula G˛ D �.C 00 [ F˛/. This
filtration G is inserted between C 00 and D because F˛  C 0  D . We shall show
that G is strict; using Corollary 2 again, this will imply mult.D W C 00/ > c, thus
proving the proposition.

To see that G is strict, take ˛ and ˇ in bd0; c 0bd such that ˛ < ˇ. By hypothesis,

C 0??
B

C 00 :

In this formula, we may replace C 0 by Fˇ (which is smaller since F is inserted
between B and C 0), and B by F˛ (owing to B  F˛  Fˇ and to Corollary 4); so

Fˇ??
F˛

C 00 :

Next, by (i) ) (ii) in Lemma 8, C 00 may be replaced with �.C 00 [ F˛/, that is, G˛;
and one has

Fˇ??
F˛

G˛ : .		/

Lemma 7 now yields Fˇ \ G˛  F˛ , whence Fˇ n F˛  G c
˛ . Using Fˇ  Gˇ,

one finally obtains Fˇ n F˛  Gˇ n G˛; so strictness propagates from F to G . ut
Remark that the standing assumption that all �-algebras are .A ;P/-complete is

needed in Lemma 9 and Proposition 1. Without this assumption, counter-examples
are easily produced: take C 0 D C 00 D D D N , the �-algebra of all events with
probability 0 or 1, and B any non .A ;P/-complete sub-�-field of N . One always
has C 0??

B
C 00 and mult.D W C 00/ D 1, but C 0 ¡ B, thus violating both statements.
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7 Immersion

Definition 4. Given a totally ordered set T and two filtrations F D .Ft /t2T and
G D .Gt /t2T , one says that F is immersed in G if every F -martingale is a
G -martingale.

Immersion is much stronger than requiring only Ft  Gt for every t . More
precisely, a well-known characterization involves conditional independence:

Lemma 10. Let F D .Ft /t2T and G D .Gt /t2T be two filtrations such that
Ft  Gt for all t . Then F is immersed in G if and only if for all s and t such that
s < t ,

Ft??
Fs

Gs :

Proof. Immersion holds if and only if, for each t 2 T and each Ft 2 L1.Ft /, the
F -martingale Ms D E

FsFt is also a G -martingale. This means that Ms D E
GsFt

for all s < t ; so F is immersed in G if and only if for all Ft 2 L1.Ft / and all s < t ,
E

GsFt D E
Fs Ft . By (i) , (iii) in Lemma 8, this is equivalent to Ft??

Fs

Gs . ut

As for an example, in the proof of Proposition 1, formula .		/ says that F is
immersed in G .

Corollary 5. Let T be a totally ordered set, F D .Ft /t2T and G D .Gt /t2T two
filtrations with F immersed in G .

(i) If s and t are two instants in T such that s < t , then

mult.Ft W Fs/ 6 mult.Gt W Gs/ :

(ii) The (cardinal-valued) map t 7! mult.Gt W Ft / is increasing.

Proof. For s < t , one has Fs  Ft  Gt and Fs  Gs  Gt ; Lemma 10 translates
the immersion hypothesis into Ft??

Fs

Gs. So Proposition 1 applies, and yields

mult.Ft W Fs/ 6 mult.Gt W Gs/ and mult.Gs W Fs/ 6 mult.Gt W Ft / :

The first inequality is (i); the second one gives (ii). ut
Laurent’s Conjecture 3.18 of [5] is a particular case of Corollary 5 (i): if F is

immersed in G and if mult.Gt W Gs/ 6 ! (i.e., Gt is a separable extension of Gs),
then mult.Ft W Fs/ 6 ! too (so Ft is a separable extension of Fs).
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8 Qualitative Conditional Independence

The inequalities between multiplicities of extensions, established in Proposition 1
and Corollary 5, are not fully satisfactory. On the one hand, the definition of
multiplicity does not really involve the ambient probability P, but only its equiv-
alence class: mult.D W C / remains invariant when P is replaced by an equivalent
probability. But on the other hand, the hypotheses (conditional independence in
Proposition 1 and immersion in Corollary 5) used to establish these inequalities
are not invariant under equivalent changes of measure.

The present section deals with hypotheses (“qualitative conditional indepen-
dence” and “qualitative immersion”), which are weaker than conditional indepen-
dence and immersion, and depend upon P through its negligible events only. One
may hope that the multiplicity inequalities from Proposition 1 and Corollary 5
subsist under these weakened hypotheses; this is an open question, which we have
not been able to settle.

A non-probabilistic substitute to independence, called qualitative independence,
has been known and studied for a long time (see for instance Sect. 3.3 in Rényi [7]).
No probability is needed; two �-fields C 0 and C 00 are classically said to be
qualitatively independent if, for all events C 0 2 C 0 and C 00 2 C 00, one has

C 0 ¤ ¿ and C 00 ¤ ¿ H) C 0 \ C 00 ¤ ¿

(the reverse implication is trivial).
This notion poorly suits our needs, because, to work with a B-conditional version

of qualitative independence, we must have a definition which neglects null events.
The analogous property which lends itself to B-conditioning is the following:

Definition 5. Let C 0 and C 00 be two complement-stable sets of events. We say that
C 0 and C 00 are qualitatively independent, and we write C 0 ??? C 00, if one has

P.C 0/ > 0 and P.C 00/ > 0 H) P.C 0 \ C 00/ > 0 .qi/

for all C 0 2 C 0 and C 00 2 C 00 (the reverse implication is trivial).

The B-conditional version is now easily defined:

Definition 6. Let C 0 and C 00 be two complement-stable sets of events. Given a
�-algebra B, we say that C 0 and C 00 are qualitatively conditionally independent
w.r.t. B, and we write C 0 ???

B
C 00, if the almost sure inclusion

˚
P

B.C 0/ > 0 and P
B.C 00/ > 0

�  ˚
P

B.C 0 \ C 00/ > 0
�

.qci/

holds for all events C 0 2 C 0 and C 00 2 C 00.

Notice that the reverse a.s. inclusion always holds; so  can be replaced with D
in this definition.
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Remark also that these definitions are sensible because C 0 and C 00 are stable
under complementation. If one wishes to define qualitative (conditional) indepen-
dence of two eventsC 0 and C 00, it is reasonable to take complements and to demand
that each of the four pairs .C 0; C 00/, .C 0; C 00 c

/, .C 0c
; C 00/ and .C 0c

; C 00 c
/ satisfies

the implication .qi/ (the a.s. relation .qci/).
Definition 6 can be translated into another language, that of B-halos. Fix the

�-algebra B. For any event C 2 A , define the B-halo C
B

of C (simply
written C if no ambiguity is possible) as the event fPB.C / > 0g. This event
is B-measurable, and defined up to negligibility only; it is (up to negligibility)
the smallest B-measurable event a.s. containing C ; so it does not really depend
upon P, but only upon the class of negligible sets. (One could similarly introduce
VC D fPB.C / D 1g, the biggest B-measurable event included in C ; it satisfies

. VC/c D C c, etc.)
Here are some immediate properties of B-halos, valid for all events C ,

C 0 and C 00 in A and B in B:

B � C , B � C I .h1/

C D C , C 2 B I .h2/

C 0  C 00 ) C 0  C 00 I .h3/

C is negligible , C is negligible I .h4/

C 0 [ C 00 D C 0 [ C 00 I .h5/

B \ C D B \ C I .h6/

C 0 \ C 00  C 0 \ C 00 : .h7/

The reverse of (h7), namely, C 0 \ C 00 � C 0 \ C 00, is nothing but (qci) from
Definition 6; so, taking (h7) into account, (qci) is also equivalent to C 0 \ C 00 D
C 0 \ C 00.

It is clear from the definitions that conditional independence implies qualitative
conditional independence. But these properties are not equivalent, for the latter is
invariant under equivalent changes of probability.

Lemma 7 has a qualitative analogue:

Lemma 7a. Let B be a �-algebra and C 0 and C 00 two sets of events stable under
complementation. If C 0???

B
C 00, then C 0 \ C 00  B.

Proof. For simplicity, we write C for C
B

.
Taking any A 2 C 0 \ C 00, apply (qci) to A (which is in C 0) and Ac (which is

in C 00); this gives A \ Ac  A\ Ac D ¿ D ¿. A fortiori, A \ Ac D ¿, that is,
A  A. So A D A, and A 2 B by (h2). ut
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Equivalence (i) , (iii) from Lemma 8 also has a qualitative analogue:

Lemma 8a. Let B and C be two �-algebras such that B  C ; let D be a set of
events stable under complementation. The following are equivalent:

(i) C ???
B

D I
(ii) for every D 2 D , one has D

B  D
C

;

(iii) for every D 2 D , one has D
B D D

C
;

(iv) for every D 2 D , D
C

belongs to B.

Proof. If A is an event, its C -halo is A
C

, but its B-halo will simply be written A to
lighten the notation.

(i) ) (ii). Assuming qualitative conditional independence, take D 2 D and call

C the complement of D
C

. As D
C � D, C \ D is negligible; by (h4), so is also

C \D, which equals C \ D by (i) and because C 2 C and D 2 D . A fortiori,

C \D is negligible too, that is, D  C c D D
C

.

(ii) ) (iii). One always hasD � D
C

, becauseD containsD and is C -mesurable
(remember that B  C ).

(iii) ) (i). Given C 2 C and D 2 D , the complement B of C \D does not

meetC\D, soB\C \D is negligible. By (h4), .B \ C/\DC
is negligible; as B

and C are in C , (h6) says that .B \C/\DC
is negligible. Now,D

C D D by (iii);

hence B \ C \D is negligible, and also B \ C \D by (h4). Since B \D 2 B,
(h6) says that .B \D/\C is negligible; so C \D  B c D C \D, and C andD
satisfy (qci).

(iii) ) (iv) is trivial.

(iv) ) (ii). If D
C 2 B, thenD

C � D by (h1). ut
Lemma 8a allows us to extend Corollary 4 and Lemma 9 to qualitative condi-

tional independence, with exactly the same proofs:

Corollary 4a. Let B, B0, C 0 and C 00 be four �-algebras such that B  B0  C 0.
If C 0???

B
C 00, then C 0???

B0
C 00.

Proof. By (i) , (iv) in Lemma 8a, the corollary boils down to the following trivial
implication:

8 C 00 2 C 00 C 00C 0 2 B H) 8 C 00 2 C 00 C 00C 0 2 B0 : ut

Lemma 9a. Let B, C 0, C 00 and D be four �-algebras such that B  C 0  D
and B  C 00  D ; suppose that C 0???

B
C 00. If mult.D W C 00/ is finite, then

mult.C 0 W B/ 6 mult.D W C 00/ :
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Proof. Callm the integer mult.D W C 00/, and take anymC1 pairwise disjoint events
C 0
1; : : : ; C

0
mC1 in C 0. Since C 0  D , by Lemma 1 applied to the extension D of

C 00 one has
QmC1
iD1 P

C 00

.C 0
i / D 0; equivalently,

TmC1
iD1 C 0

i

C 00

is negligible. Now,

C 0
i

C 00

D C 0
i

B
by Lemma 8a (iii). Consequently,

TmC1
iD1 C 0

i

B
is negligible, andQmC1

iD1 P
B.C 0

i / D 0. Resorting to Lemma 1 again, one has mult.C 0 W B/ 6 m. ut
Putting aside for a minute the question whether the finiteness hypothesis can be

lifted, we remain in the realm of finite extensions and rephrase Lemma 9a in terms
of immersions. The next definition is a qualitative analogue of Lemma 10.

Definition 4a. Given a totally ordered set T and two filtrations F D .Ft /t2T and
G D .Gt /t2T , we say that F is qualitatively immersed in G if F is included in G
(that is, Ft  Gt for each t) and if Ft???

Fs

Gs for all s and t such that s < t .

Qualitative immersion is weaker than immersion, and invariant under equivalent
changes of probability.

The next statement is a trivial reformulation of Lemma 9a in terms of qualitative
immersion:

Corollary 5a. Let T be a totally ordered set, F D .Ft /t2T and G D .Gt /t2T two
filtrations with F qualitatively immersed in G .

(i) If s and t are two instants in T such that s < t and mult.Gt W Gs/ is finite, then

mult.Ft W Fs/ 6 mult.Gt W Gs/ :

(ii) If the map t 7! mult.Gt W Ft / takes only finite values, it is increasing.

An open problem is to get rid of the finiteness hypothesis in Lemma 9a and
Corollary 5a: does Proposition 1 remain true when its conditional independence
hypothesis is replaced with qualitative conditional independence? We have not
been able to conclude; the difficulty comes from the qualitative analogue of the
implication (i) ) (ii) in Lemma 8. It is easy to see that

C 0???
B

C 00 H) Boole.B[C 0/???
B

Boole.B[C 00/ ;

where Boole E stands for the Boolean algebra generated by the set E  A ; but
Boole.B[C 0/ and Boole.B[C 00/ in this formula can not always be replaced by
�.B[C 0/ and �.B[C 00/.

A counter-example is easily shown to exist, using the construction described
in [3]. The main result there is the existence of a triple .U ;V ; A/, where U
and V are two independent �-algebras, and A is an event in �.U [ V / such
that, for all events U 2 U and V 2 V , one has

P.U \ V / > 0 H) 0 < P.A jU \ V / < 1 :
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Given such a triple .U ;V ; A/, one has 0 < P.A/ < 1 (take U D V D ˝), and
A … U (else, take U D A and V D ˝). One also has V ??? �.U [ fAg/ because,
for all U 2 U and V 2 V ,

P.V / > 0 and P.U \ A/ > 0

H) PŒV \ .U \A/� D P.U / P.V / P.A jU \ V / > 0 ;

and similarly with A replaced by its complementAc.
By Corollary 4a (with B the degenerate �-algebra), from V ??? �.U [ fAg/

we may deduce V ???
U
�.U [ fAg/. Putting now B D U , C 0 D V and C 00 D

�.U [ fAg/, one has

C 0???
B

C 00 but not �.B [ C 0/???
B

C 00 ;

since this would violate Lemma 7a Indeed, �.B [ C 0/\ C 00 D C 00 is not included
in B, becauseA belongs to �.U [V / D �.B[C 0/ and also to �.U [ fAg/ D C 00,
but it does not belong to U D B.

So, the existence of .U ;V ; A/ shows that in the formula C 0???
B

C 00, one may not

always replace C 0 by �.B [ C 0/; the qualitative analogue of (i) ) (ii) in Lemma 8
is false.
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sur des filtrations browniennes et non browniennes. Séminaire de Probabilités XXXII, Springer
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7. A. Rényi, Foundations of Probability (Holden-Day, San Francisco, 1970)



A Planar Borel Set Which Divides Every
Non-negligible Borel Product

Michel Émery�

[. . . ] tout événement est comme un moule d’une forme
particulière [. . . ].

M. PROUST, Albertine disparue.

Abstract In the unit square Œ0; 1� � Œ0; 1� endowed with the Lebesgue measure �,
we construct a Borel subset A with the following property: if U and V are any two
non-negligible Borel subsets of Œ0; 1�, then 0 < �

�
A \ .U � V /� < �.U � V /.

Given a probability space .˝;A ;P/, let B � A be a Boolean algebra which
generates the �-field A (possibly up to negligible events). It is well known that
B is dense in A , in the sense that every event A 2 A is the a.s. limit of some
sequence from B; and A is also a.s. equal to some event from B�ı and to some
event from Bı� . (See for instance Chapter I in Neveu [2].)

It is not difficult to exhibit examples where some A 2 A divides each non-
negligible event from B, that is,

8 B 2 B P.B/ > 0 H) 0 < P.A\ B/ < P.B/ :

Consider for instance an i.i.d. sequence of signs " D ."n/n>1 such that PŒ"n D 1� D
PŒ"n D �1� D 1

2
; call .Fn/n>1 its natural filtration. The �-field F1 generated
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by " is also generated by the Boolean algebra B D S
n Fn, which consists of the

events depending upon finitely many "n. The r.v. S D P
n "n=n is a.s. finite, but

unbounded from both sides; as a consequence, PŒS > 0 j Fn� and PŒS < 0 j Fn� are
a.s. > 0, and the event A D fS > 0g divides each non-negligible event from B.

The usual realization of the random variables "n on the sample space ˝ D Œ0; 1�

via dyadic expansions transforms the preceding example into a Borel set A � Œ0; 1�

which divides every non-negligible dyadic interval. Note that, since every non-
negligible interval contains a non-negligible dyadic interval, A also divides each
non-negligible event from the Boolean algebra of finite unions of arbitrary intervals
(that algebra is much bigger than B, the Boolean algebra of finite unions of dyadic
intervals).

Of course, there also exist situations where no event from A can divide each
non-negligible element from B; the most trivial case is when B D A .

The present note is devoted to the case when ˝ is the unit square Œ0; 1� � Œ0; 1�

(endowed with its Borel �-field and the Lebesgue measure) and when B is the
Boolean algebra of all finite unions of Borel products; by a Borel product, we mean
a productB D U �V of two Borel subsets of Œ0; 1�. In this framework, we are going
to exhibit a Borel set A � Œ0; 1�� Œ0; 1� dividing each non-negligible Borel product.
We have been led to study this question when working on “qualitative conditional
independence” in [1]; the existence of such an A stood as an obstruction to what we
wanted to do (see [1] for more details).

Proposition 1. Fix a sequence .pn/n>1 such that 0 6 pn 6 1,
P

n pn D 1, andP
n p

2
n < 1.

Let X D .Xn/n>1 and Y D .Yn/n>1 be two independent sequences of
independent r.v. with values in f0; 1g, such that

PŒXn D 1� D PŒYn D 1� D pn and PŒXn D 0� D PŒYn D 0� D 1 � pn :

Call N the integer-valued r.v.
P

n>1 XnYn (this series is a.s. convergent because
EŒN � D P

n p
2
n < 1). For all events U 2 �.X/ and V 2 �.Y /, one has

P.U \ V / > 0 H) 0 < PŒN is even jU \ V � < 1 :

As the (sequence-valued) r.v.X has a diffuse law, the sample space .˝; �.X/;P/
is isomorphic to .Œ0; 1�;Borel;Lebesgue/; similarly with Y (an explicit isomorphism
could easily be exhibited). Consequently, by taking a product, .˝; �.X; Y /;P/ is
isomorphic to .Œ0; 1��Œ0; 1�;Borel;Lebesgue/. On this square, X and Y are Borel
functions of the coordinates, and, according to Proposition 1, fN is eveng is a Borel
subset of the square which divides each non-negligible Borel product.

The proof of Proposition 1 relies on an estimate in a finite probability space:

Lemma 1. Let I be a finite set, and let .pi /i2I be any family of numbers such that
0 6 pi 6 1; let also Z be a r.v. taking values in f0; 1gI , whose components Zi are
independent, with PŒZi D 1� D pi and PŒZi D 0� D 1 � pi . If H and K are two
subsets of f0; 1gI such that
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for all x 2 H and y 2 K ,
X
i2I

xi yi is even,

then

PŒZ 2 H� PŒZ 2 K� 6
Y
i2I

max.pi ; 1�pi/ :

The proof of Lemma 1 will be given later; we first show how this lemma entails
Proposition 1.

Proof of Proposition 1 (Lemma 1 is admitted). GivenU 2 �.X/ andV 2 �.Y / such
that P.U \ V / > 0, we must establish two facts. Firstly, PŒN is evenjU \ V � < 1;
this means that U \ V is not a.s. included in the event fN is eveng. And secondly,
PŒN is even jU \ V � > 0, which means that U \ V is not a.s. included in
fN is oddg.

The second fact is a consequence of the first one: it suffices to introduce the
three new sequences .p0

n/n>0 D .1; p1; p2; : : :/, X 0 D .1;X1;X2; : : :/, Y 0 D
.1; Y1; Y2; : : :/, and to observe that �.X 0/ D �.X/, �.Y 0/ D �.Y / and that N 0 DP

n>0 X
0
nY

0
n D 1CN is even if and only if N is odd.

Therefore, only the first fact needs to be proved. So, fixing now U 2 �.X/ and
V 2 �.Y / such that the event U \ V is a.s. included in fN is eveng, we have to
show that P.U \ V / D 0.

Given n > 1, put N>n D P
i>n XiYi and "n D PŒN>n is odd�. Later, n will tend

to infinity, so N>n will go to 0 and "n will tend to 0 too; but for the time being,
n and "n are fixed.

For x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ in f0; 1gn, set

Ex D ˚
.X1; : : : ; Xn/ D x

�
and Fy D ˚

.Y1; : : : ; Yn/ D y
�
:

Define

H D ˚
x 2 f0; 1gn W P.Ex/ > 0 and PŒ U jEx� >

p
"n
� I E D

[
x2H

Ex I

K D ˚
y 2 f0; 1gn W P.Fy/ > 0 and PŒ V jFy� >

p
"n
� I F D

[
y2K

Fy :

The event E is nothing but f.X1; : : : ; Xn/ 2 H g. For x 2 f0; 1gn n H , either
P.Ex/ D 0, or P.Ex/ > 0 and PŒ U jEx� 6 p

"n; in both cases, one has
P.U \Ex/ 6

p
"n P.Ex/. Consequently,

P. U n E/ D
X
x…H

P. U \ Ex/ 6
X
x…H

p
"n P.Ex/ 6

p
"n

X
x2f0;1gn

P.Ex/ D p
"n ;

.	/
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so U is approximately included in E . Similarly, one has P. V n F / 6 p
"n, and V

is approximately included in F .
For x and y such that P.Ex/ > 0, P.Fy/ > 0 and

Pn
iD1 xi yi is odd, one has the

estimate

PŒ U \ V jEx \ Fy� 6 PŒN is even jEx \ Fy�
D PŒN>n is odd jEx \ Fy� D PŒN>n is odd� D "n

.		/

(we have first used the fact thatN is a.s. even on the event U \ V , then the formula
N D Pn

iD1 xiyi CN>n valid on Ex \Fy , and last the independence of Ex , Fy and
N>n). Taking now x in H and y in K , one has PŒ U jEx� > p

"n and PŒ V jFy� >p
"n, whence, by independence of �.X/ and �.Y /,

PŒ U \ V jEx \ Fy� D PŒ U jEx� PŒ V jFy� >
p
"n

p
"nD "n :

This violates the estimate .		/; consequently,
Pn

iD1 xiyi must be even, and
H and K satisfy the hypothesis of Lemma 1. Using that lemma, and calling Z a
random vector with the same law as .X1; : : : ; Xn/ and .Y1; : : : ; Yn/, one has

P.E \ F / D P.E/ P.F / D PŒ.X1; : : : ; Xn/ 2 H� PŒ.Y1; : : : ; Yn/ 2 K�

D PŒZ 2 H� PŒZ 2 K� 6
nY
iD1

max.pi ; 1�pi / : .			/

Last, writing U \ V � .E \ F / [ .U nE/[ .V n F / and taking into account the
estimates .	/ and .			/, one has

P. U \ V / 6 P.E \ F /C P. U n E/C P.V n F /

6
nY
iD1

max.pi ; 1�pi / C p
"n C p

"n:

Time has come to unfix n and let it tend to infinity. As previously observed, "n goes
to zero; and so does also

Qn
iD1 max.pi ; 1�pi /, because max.pi ; 1�pi/ D 1 � pi

for all but finitely many i (this is due to
P
p2i < 1), and because the series

P
pi

is divergent. So P. U \ V / D 0; the proposition is proved. ut
We still owe you the proof of Lemma 1. This combinatorial estimate will

be established via simple linear-algebraic arguments, at the mild cost of some
definitions.

From now on, a finite set I is fixed. The set f0; 1gI will be identified with the
power set P.I /; for instance, the sum

P
i2I xiyi in Lemma 1 is but jx \ yj, the

number of elements of x \ y. We endow f0; 1g with its field structure (addition
modulo 2 and usual multiplication), and call it F. Then f0; 1gI D P.I / is further
identified with F

I , which is a vector space over the field F. In this vector space, we
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define a symmetric bilinear form .x; y/ 7! x � y 2 F by x � y D P
i xiyi (addition

modulo 2).
For x and y in F

I , we say that x is orthogonal to y, and we write x ? y,
whenever x � y D 0; via the identification of FI with P.I /, this means that jx \ yj
is even. Note that x ? x does not imply x D 0 (if x has an even number of
elements, it is not necessarily empty). We also say that two subsets H and K of
F
I are orthogonal if every element of H is orthogonal to every element of K; this

property was precisely the hypothesis on H and K in Lemma 1. This hypothesis is
preserved whenH is replaced with its linear span in the vector space FI ; so without
loss of generality, in the proof of Lemma 1 we may (and will) suppose that H is a
linear subspace of FI . Similarly, the orthogonality hypothesis is preserved if K is
replaced with the bigger set

H? D ˚
x 2 F

I W 8 h 2 H h � x D 0
� � F

I ;

which is a linear subspace containing K and orthogonal to H . So in the proof of
Lemma 1, we will suppose thatH andK are linear subspaces of FI , andK D H?.

Linear subspaces of FI can easily be characterized: a subset of FI is a linear
subspace iff it is an additive subgroup, i.e., iff it contains the null vector 0 (that
is, the empty set ¿ 2 P.I /) and is stable under additions (i.e., symmetric set-
differences in P.I /). This characterization will not be used; we shall only need the
necessary (but not sufficient) condition called Fact 1 below.

Our proof of Lemma 1 relies on just one more notion:

Definition 1. Let L be a subset of FI (i.e., a set of subsets of I ) and r an element
of FI (i.e., a subset of I ). We say that L is coded (resp. exactly coded) by r if the
map

` 2 L 7�! ` \ r 2 P.r/

is an injection (resp. a bijection) from L to P.r/.

Using this definition, three (independent) facts will be established:

Fact 1. Every linear subspaceH of FI is exactly coded by some subset of I .

Fact 2. If a set H � F
I is exactly coded by r � I , the set H? is coded by I n r .

Fact 3. If L � F
I is coded by r , then (with the notation of Lemma 1)

PŒZ 2 L� 6
Y
i2Inr

max.pi ; 1�pi/ :

Lemma 1, with H and K assumed to be two linear subspaces of FI such that
K D H?, immediately results from Facts 1, 2 and 3 and from the trivial identity
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 Y
j2Inr

mj

� 
Y
k2r

mk

�
D
Y
i2I
mi :

Proof of Fact 1. (Every linear subspaceH � F
I is exactly coded by some r � I .)

Let H be a linear subspace of FI , B a basis of H , and d D jBj the dimension2

of H . Each vector b 2 B has the form b D .bi /i2I , with bi 2 F. The matrix
M D .bi /i2I; b2B has size jI j � d and rank d , since its d columns (the elements
of B) are linearly independent. Hence one can extract fromM a square, d � d sub-
matrix with rank d ; in other words, there exists a subset r of I with jr j D d , such
that the d vectors b\r are linearly independent in F

r . As dim.Fr / D jr j D d , these
d vectors form a basis B 0 of Fr ; thus the linear map h 7! h \ r , which bijects the
basis B of H with the basis B 0 of Fr , must be a bijection from H to F

r , and H is
exactly coded by r . ut
Proof of Fact 2. (If H � F

I is exactly coded3 by r , thenH? is coded by I n r .)
Let H be exactly coded by r . Putting rc D I n r , we must verify that the map

x 7! x\rc injects the linear subspaceH? into F
rc

. This map is linear, so it suffices
to check that its kernel is f0g, or, in terms of sets,

x 2 H? and x \ rc D ¿ H) x D ¿ :

Fixing an x inH? such that x \ rc D ¿, it suffices to show that x \ r D ¿; so, for
any given i 2 r , we shall establish that i … x.

As H is exactly coded by r , and as fig is a subset of r , there exists an h 2 H

such that h \ r D fig. A fortiori, h \ x is included in fig, because x is included
in r . Now, h is in H and x in H?; so h ? x, and the set h\ x has an even number
of elements. Being included in the singleton fig, this even set h\ x must be empty,
and i , which belongs to h, cannot belong to x. ut
Proof of Fact 3. (IfL � F

I is coded by r , then PŒZ 2 L� 6
Q
i…r max.pi ; 1�pi /.)

We keep using the set-theoretic language: for s any subset of I , Z \ s stands
for the random sub-vector .Zi /i2s of Z D .Zi /i2I ; and Z \ s and Z \ t are
independent when s and t are two disjoint subsets of I . For s � I , put ˘.s/ DQ
i2s

max.pi ; 1 � pi/.

For each i 2 I and each � 2 f0; 1g, one has

PŒZi D �� D
(

pi if � D 1

1 � pi if � D 0

)
6 max.pi ; 1 � pi / I

hence, for z � s � I , one has the estimate (which does not depend upon z)

2All linear notions (dimension, rank, independence) are understood with F as the field of scalars.
3A weaker hypothesis suffices, namely, for each i 2 r there is at least one h 2 H with h\r D fig.



A Planar Borel Set Which Divides Every Non-negligible Borel Product 165

PŒZ \ s D z� D
Y
i2s

PŒZi D zi � 6
Y
i2s

max.pi ; 1 � pi/ D ˘.s/ :

Let now L be coded by r , put rc D I n r , and use the previous estimate to write

PŒZ 2 L� D
X
`2L

PŒZ D `� D
X
`2L

PŒZ \ r D ` \ r� PŒZ \ rc D ` \ rc�

6
X
`2L

PŒZ \ r D ` \ r� ˘.rc/ D ˘.rc/
X
`2L

PŒZ \ r D ` \ r� :

When ` ranges over L, the sets ` \ r are different from each other (because L is
coded by r), so the events fZ \ r D ` \ rg are pairwise disjoint. As a consequence,P
`2L

PŒZ \ r D ` \ r� 6 1, and finally PŒZ 2 L� 6 ˘.rc/. ut

Lemma 1 and Proposition 1 are now fully proved.
A reader who would like to play with the tools from this note can show as an

exercise that in Fact 2, the coding ofH? by I n r is exact iffH is a linear subspace.
Another possible exercise is to establish the combinatorial formula (featuring

possibly negative numbers)

PŒZ 2 H?� D 1

jH j
X
h2H

Y
i2h
.1 � 2pi/ ;

which is valid for H any linear subspace of FI and for Z as in Lemma 1. (Hint:
for x 2 F

I , show that
P
h2H

.�1/h�x D jH j 1x2H?; replace x by Z, and take

expectations.)

Acknowledgements I thank Claude Dellacherie for many useful comments, Gaël Ceillier, Jacques
Franchi, Nicolas Juillet and Vincent Vigon for a sizeable simplification of the proof, and Wilfrid S.
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Characterising Ocone Local Martingales
with Reflections

Jean Brossard and Christophe Leuridan

Abstract LetM D .Mt /t	0 be any continuous real-valued stochastic process such
that M0 D 0. Chaumont and Vostrikova proved that if there exists a sequence
.an/n	1 of positive real numbers converging to 0 such thatM satisfies the reflection
principle at levels 0, an and 2an, for each n 
 1, then M is an Ocone local
martingale. They also asked whether the reflection principle at levels 0 and an only
(for each n 
 1) is sufficient to ensure that M is an Ocone local martingale.

We give a positive answer to this question, using a slightly different approach,
which provides the following intermediate result. Let a and b be two positive real
numbers such that a=.a C b/ is not dyadic. If M satisfies the reflection principle
at the level 0 and at the first passage-time in f�a; bg, then M is close to a local
martingale in the following sense: jeŒMSıM �j � aC b for every stopping time S in
the canonical filtration of w D fw 2 C .rC; r/ W w.0/ D 0g such that the stopped
process M�^.SıM/ is uniformly bounded.

Keywords Ocone martingales • Reflection principle
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1 Introduction

Let .Mt/t	0 denote a continuous local martingale, defined on some probability
space .˝;A ; P /, such thatM0 D 0. Let FM denote its natural filtration and H the
set of all predictable processes with respect to FM with values in f�1; 1g. Then for
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everyH 2 H , the local martingale

H �M D
Z �

0

HsdMs

has the same quadratic variation as M . In particular, if M is a Brownian motion,
then H �M is still a Brownian motion.

A natural problem is to determine when H �M has the same law asM for every
H 2 H . Ocone proved in [4] that a necessary and sufficient condition is thatM is a
Gaussian martingale conditionally on its quadratic variation hM i. Such processes
are called Ocone local martingales. Various characterisations of these processes
have been given, by Ocone himself, by Dubins, Émery and Yor in [3], by Vostrikova
and Yor in [6]. We refer to [2] for a more complete presentation.

The following characterisation, given by Dubins, Émery and Yor, is particularly
illuminating:M is an Ocone local martingale if and only if there exists a Brownian
motion ˇ (possibly defined on a larger probability space) which is independent
of hM i and such that Mt D ˇhM it for every t . Loosely speaking, Ocone local
martingales are the processes obtained by the composition of a Brownian motion
and an independent time-change.

Another characterisation of Ocone local martingales is based on their invariance
with respect to reflections. For every positive real r , call hr the map from rC to
f�1; 1g defined by

hr.t/ D 1Œt�r� � 1Œt>r�:

Then hr � M D �r ı M , where �r is the reflection at time r . Let w denote the set
of all continuous functions w W rC ! r such that w.0/ D 0. The transformation �r
maps w into itself and is defined by

�r.w/.t/ D
�

w.t/ if t � r;

2w.r/ � w.t/ if t 
 r:

The functions hr are sufficient to characterise Ocone local martingales: Theorem A
of [4] states that if hr �M has the same law asM for every positive r , thenH �M has
the same law as M for every H 2 H . In other words, if the law of M is invariant
by the reflections at fixed times, then M is an Ocone local martingale. Note that it
is not necessary to assume that M is a local martingale since the invariance by the
reflections at fixed times implies that for every t 
 s 
 0, the law of the increment
Mt �Ms is symmetric conditionally on FM

s .
The celebrated reflection principle due to André [1] shows that it may be

worthwhile to consider reflections at first-passage times, which we now define.
For every real a and w 2 w, note Ta.w/ the first-passage time of w at level a.
The reflection at time Ta transforms w into �Ta .w/ where

�Ta .w/.t/ D
�

w.t/ if t � Ta.w/;
2a � w.t/ if t 
 Ta.w/:

Note that �Ta .w/ D w if Ta.w/ is infinite.
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Chaumont and Vostrikova recently established in [2] that any continuous process
whose law is invariant by the reflections at first-passage times is an Ocone local
martingale. Actually, their result is even stronger.

Theorem 1 (Theorem 1 of [2]). Let M be any continuous stochastic process such
thatM0 D 0. If there exists a sequence .an/n	1 of positive real numbers converging
to 0 such that the law of M is invariant by the reflections at times T0 D 0, Tan and
T2an , then M is an Ocone local martingale. Moreover, if Ta1 ı M is almost surely
finite, thenM is almost surely divergent.

We note that the assumption that the law ofM is invariant by the reflection �0 is
missing in [2] and that it cannot be omitted: consider for example the deterministic
process defined by Mt D �t . However, if infft 
 0 W Mt > 0g is 0 almost surely,
the invariance by �0 is a consequence of the invariance by the reflections �Tan .

To prove Theorem 1 above, Chaumont and Vostrikova establish a discrete version
of the theorem and they apply it to some discrete approximations ofM . The discrete
version (Theorem 3 in [2]) states that if .Mn/n	0 is a discrete time skip-free process
(this means thatM0 D 0 andMn�Mn�1 2 f�1; 0; 1g for every n 
 1) whose law is
invariant by the reflections at times T0, T1 and T2, then .Mn/n	0 is a discrete Ocone
martingale (this means that .Mn/n	0 is obtained by the composition of a symmetric
Bernoulli random walk with an independent skip-free time change).

The fact that the three invariances by the reflections at times T0, T1, and T2
are actually useful (two of them would not be sufficient) explains the surprising
requirement that the law of .Mt /t	0 is invariant by reflections at times Tan and T2an
in Theorem 1 of [2]. Chaumont and Vostrikova ask whether the assumption on T2an
can be removed. Their study of the discrete case could lead to believe that it cannot.
Yet, we give in this paper a positive answer to this question. Here is our main result.

Theorem 2. Let M be any continuous stochastic process such that M0 D 0. If
there exists a sequence .an/n	1 of positive real numbers converging to 0 such that
the law of M is invariant by the reflections at times T0 D 0 and Tan , then M is
an Ocone local martingale. Moreover, if Ta1 ı M is almost surely finite, then M is
almost surely divergent.

We provide a simpler proof of this stronger statement (the final steps in the
approximation method of [2] were rather technical). Let us now indicate the steps
of the proof and the plan of the paper.

Our proof first uses some stability properties of the set of all stopping times T
such that �T preserves the law of M . These properties are established in Sect. 2.

In Sect. 3, we show that for any positive real numbers a and b such that a=.aCb/
is not dyadic, if the reflections �0 and �T�a^Tb preserve the law of M , then M is
close to a local martingale in the following sense: for every stopping time S in
the canonical filtration of w such that the stopped process M�^.SıM/ is uniformly
bounded, jeŒMSıM�j � a C b. To prove this, we build a nondecreasing sequence
.�n/n	0 of stopping times, increasing while finite (�n < �nC1 if �n < C1), starting
with �0 D 0, such that the reflections ��n preserve the law of M and such that the
increments of M on each interval Œ�n; �nC1� are bounded by a C b.
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The proof that the reflections ��n actually preserve the law of M is given in
Sect. 4. The final step of the proof of Theorem 2 is in Sect. 5.

To prove these results, it is more convenient to work in the canonical space.
From now on, W denotes the �-field on w generated by the canonical projections,
X D .Xt/t	0 the coordinate process on .w;W /, and F 0 its natural filtration of the
space w (without any completion). Moreover,Q denotes the law ofM and eQ is the
expectation with respect to Q.

2 Stability Properties

Call TQ the set of all stopping times T of the filtration F 0 such that the reflection
�T preservesQ. In this section, we establish some stability properties of TQ. Let us
begin with a preliminary lemma.

Lemma 1. Let S and T be F 0-stopping times. Let w1 and w2 in w. If w1 and w2
coincide on Œ0; T .w1/ ^ T .w2/�, then

• T .w1/ D T .w2/;
• either S.w1/ D S.w2/ or S.w1/ ^ S.w2/ > T .w1/ D T .w2/.

Thus, the random times S and T are in the same order on w1 as on w2.

Proof. The first point is an application of Galmarino’s test (see [5], Chap. I,
Exercise 4.21). The second follows by the same argument, since the inequality
S.w1/ ^ S.w2/ � T .w1/ D T .w2/ would imply that w1 and w2 coincide on
Œ0; S.w1/ ^ S.w2/�. ut
Corollary 1. Let T be an F 0-stopping time. Then

1. T ı �T D T

2. �T is an involution.
3. for every A 2 F 0

T , ��1
T .A/ D A. In particular, if S is another stopping time, the

events fS < T g, fS D T g and fS > T g are invariant by �T .

Proof. The first point is a consequence of the application of the application of
Lemma 1 to the paths w and �T .w/. The secund point follows. The third point is
another application of Galmarino’s test (see [5], Chap. I, Exercise 4.21) since w and
�T .w/ coincide on Œ0; T .w/�. ut

The next lemma states that TQ is stable by the optional mixtures.

Lemma 2. Let .Sn/ be a (finite or infinite) sequence of F 0-stopping times and .An/
a measurable partition of .w;W / such that An 2 FSn for every n. Then

T WD
X
n

Sn1An

is an F 0-stopping time. If Sn 2 TQ for every n, then T 2 TQ.
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Proof. Note that T is an F 0-stopping time since for every t 2 rC,

fT � tg D
[
n

.An \ fSn � tg/ 2 Ft :

Fix any bounded measurable function � from w to r. Since for each n, the event An
and the probabilityQ are invariant by �Sn , one has

eQŒ� ı �T � D
X
n

eQŒ.� ı �Sn/1An�

D
X
n

eQŒ.�1An/ ı �Sn �

D
X
n

eQŒ�1An�

D eQŒ��:

Hence �T preservesQ. ut
Corollary 2. For every S and T in TQ, S ^ T and S _ T are in TQ.

Proof. As the events fS < T g, fS D T g and fS > T g belong to FS \ FT , the
result is a direct application of Lemma 2. ut

The following lemmas will be used to prove a subtler result: if S and T are in
TQ, then S ı �T is in TQ.

Lemma 3. Let S and T be F 0-stopping times. Then the following holds.

• For every t 
 0, ��1
T .Ft / D Ft .

• S ı �T is an F 0-stopping time.

Proof. Fix t 
 0. Then ��1
T .Ft / is the �-field generated by the random variables

Xs ı �T for s 2 Œ0; t �, and the equality

Xs ı �T D .2XT � Xs/1ŒT�s� CXs1ŒT >s�

shows that these random variables are measurable for Ft . Thus ��1
T .Ft / � Ft .

Since �T is an involution, the reverse inclusion follows, which proves the first
statement.

For each t 
 0, fS ı �T � tg D ��1
T .fS � tg/ 2 Ft , which proves the second

statement. ut
Lemma 4. Let S and T be F 0-stopping times and w 2 w. Then the following
holds.

• If S.w/ � T .w/, then S.�T .w// D S.w/ and �Sı�T .w/ D �S.w/.
• If S.w/ 
 T .w/, then T .�S.�T .w/// D T .w/ and �Sı�T .w/ D �T .�S .�T .w///.
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Proof. If S.w/ � T .w/, then w and �T .w/ coincide on Œ0; S.w/�, thus S.�T .w// D
S.w/ and �Sı�T .w/ D �S.w/.

If S.w/ 
 T .w/, then S.�T .w// 
 T .�T .w// D T .w/ by Corollary 1. The
trajectories �S.�T .w//, �T .w/ and w coincide on Œ0; T .w/�, thus T .�S.�T .w/// D
T .w/. But, to get �T ı �S ı �T .w/ from w, one must successively:

• multiply by �1 the increments after T .w/;
• multiply by �1 the increments after S.�T .w//;
• multiply by �1 the increments after T .�S.�T .w///.

Since T .�S.�T .w/// D T .w/, one gets �Sı�T .w/ D �T ı �S ı �T .w/. ut
Lemma 5. For every S and T in TQ, S ı �T belongs to TQ.

Proof. By Lemma 4 and Corollary 1, one has, for every B 2 W ,

QŒ��1
Sı�T .B/� D QŒ��1

Sı�T .B/ I S � T �CQŒ��1
Sı�T .B/ I S > T �

D QŒ��1
S .B \ fS � T g/�CQŒ.�T ı �S ı �T /�1.B \ fS > T g/�

D QŒB \ fS � T g�CQŒB \ fS > T g� D QŒB�:

Thus S ı �T belongs to TQ. ut
Here is a simple application of our last lemmas.

Corollary 3. For every a 2 r, T�a D Ta ı �0 and �T�a D �0 ı �Ta ı �0. Thus, if
0 2 TQ and Ta 2 TQ, then T�a 2 TQ.

Proof. The first equality is obvious. The second equality follows from Lemma 4.
One can deduce the last point either from the first equality by Lemma 5 or directly
from the second equality. ut

3 Reflections at 0 and at the Hitting Time of f�a; bg

We keep the notations of the previous section and we fix two positive real numbers
a; b such that a=.a C b/ is not dyadic. Note that T D T�a ^ Tb is the hitting time
of f�a; bg. This section is devoted to the proof of the following result.

Proposition 1. LetQ be a probability measure on .w;W /. If 0 2 TQ and T 2 TQ,
then, for every finite stopping time S in the canonical filtration of w such that the
stopped process X�^S is uniformly bounded, one has

jeQŒXS �j � a C b:
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Note that the process X may not be a local martingale. The law of any process
which stops when its absolute value hits min.a; b/ fulfills the assumptions provided
it is invariant by T0.

The requirement that a=.aCb/ is not dyadic may seem surprising, and one could
think that it is just a technicality provided by the method used to prove the result.
In fact, Proposition 1 becomes false if this assumption is removed. A simple
counterexample is given by the continuous stochastic process .Mt/t	0 defined by

Mt D
�

t� if t � 1;

� C .t � 1/� if t > 1;

where � and � are independent symmetric Bernoulli random variables. Indeed, the
law Q of M is invariant by reflections at times 0 and T�1 ^ T1 since T�1 ^ T1 D 1

Q-almost surely. Yet, for every c > 1, the random variable XT�2^Tc is uniform on
f�2; cg and its expectation .c � 2/=2 can be made as large as one wants.

The proof of Proposition 1 uses an increasing sequence of stopping times defined
as follows. Call D the set of c 2� � a; bŒ such that .c C a/=.b C a/ is not dyadic.
For every x 2 D, set

f .x/ D
�
2x C a if x < .b � a/=2;
2x � b if x > .b � a/=2:

This defines a map f from D to D. Conjugating f by the affine map which sends
�a on 0 and b on 1 gives the classical map x 7! 2x mod 1 restricted to the
non-dyadic elements of �0; 1Œ.

By hypothesis, 0 2 D, so one can define an infinite sequence .cn/n	0 of elements
ofD by c0 D 0, and cn D f .cn�1/ for n 
 1. By definition, cn�1 is the middle point
of the subinterval Œcn; dn� of Œ�a; b�, where

dn D
� �a if cn�1 < .b � a/=2;
b if cn�1 > .b � a/=2:

Note that jcn � cn�1j D d.cn�1; f�a; bg/.
We define a sequence .�n/n	0 of stopping times on w by setting �0 D 0, and for

every n 
 1,

�n.w/ D infft 
 �n�1.w/ W jw.t/ � w.�n�1.w//j D jcn � cn�1jg:

Note that cn ¤ cn�1 for every n 
 1, hence the sequence .�n.w//n	0 is increasing.
Moreover, since .jcn � cn�1j/n	1 does not converge to 0, the continuity of w forces
the sequence .�n.w//n	0 to be unbounded. By convention, we set �1 D C1.

Note that if a D �1 and b D 2, then cn D 0 for every even n and cn D 1 for
every odd n and the sequence .�n/n	0 is similar to the sequences used in [2].

The proof of Proposition 1 relies on the following key statement.
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Proposition 2. If 0 2 TQ and T 2 TQ, then �n 2 TQ for every n 
 0.

This statement, that will be proved in the next section, has a remarkable
consequence.

Corollary 4. If 0 2 TQ and T 2 TQ, then the sequence .Yn/n	0 of random
variables defined on the probability space .w;W ;Q/ by

Yn.w/ D X�Dn .w/; where Dn.w/ D maxfk � n W �k.w/ < C1g:

is a martingale in the filtration .F 0
�n
/n	0.

Proof. Fix n 
 0. The equality

Yn.w/ D
n�1X
kD0

1Œ�k .w/<C1 I �kC1.w/DC1�X�k .w/C 1Œ�n.w/<C1�X�n.w/

shows that Yn is measurable for F 0
�n

. Moreover, from the equality

YnC1.w/ � Yn.w/ D .X�nC1
.w/ � X�n.w//1Œ�nC1.w/<C1�;

we deduce that .YnC1 � Yn/ ı ��n D �.YnC1 � Yn/. Take A 2 F 0
�n

. By Corollary 1,
��1
�n
.A/ D A. Since the reflection ��n preservesQ, we get

eQŒ.YnC1 � Yn/1A� D eQ
��
.YnC1 � Yn/1A

� ı ��n
	 D �eQŒ.YnC1 � Yn/1A�;

which shows that eQŒYnC1 � YnjF 0
�n
� D 0. ut

We are now ready to prove Proposition 1.

Proof. Fix C 2 rC such that jXt^S.w/j � C for every t 2 rC and w 2 w. For each
w 2 w, set N.w/ D inffn 
 1 W �n.w/ 
 S.w/g. Since S.w/ is finite and �n.w/ is
unbounded as n ! C1, N.w/ is finite.

For every n 
 0, fN � ng D f�n 
 Sg 2 F 0
�n

. Thus N is a stopping time and
.Yn^N /n	0 is a martingale in the filtration .F 0

�n
/n	0. Note that:

• for all n < N.w/, one has �Dn.w/ < S.w/ hence jYn.w/j D jXDn.w/j � C ,
• and jYN .w/j � jYN�1.w/j C jYN .w/� YN�1.w/j � C C .a C b/=2.

This shows that the martingale .Yn^N /n	0 is uniformly bounded, hence it converges
in L1.Q/ to YN and eQŒYN � D eQŒY0� D 0.

Note that �N�1 < S < C1, hence, by definition, YN D X�N or YN D X�N�1 .
The inequalities �N�1 < S � �N and the fact that the increments of X are bounded
by a C b on each interval Œ�n�1; �nŒ yield jXS � YN j � a C b. Since eQŒYN � D 0,
the proof is complete. ut
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4 Proof of Proposition 2

We keep the notations of the previous section, and we introduce for every n 
 1,

"n D Yn � Yn�1
cn � cn�1

D X�n �X�n�1

cn � cn�1
1Œ�n<C1�:

For every e D .en/n	1 2 f�1; 0; 1g1, set

m0.e/ D inffn 
 1 W en D 0g; m.e/ D inffn 
 1 W en D �1g:

Call ˙ the set of all sequences e D .en/n	1 2 f�1; 0; 1g1 such that en D 0 for all
n 
 m0.e/. Then " D ."n/n	1 can be seen as a random variable with values in ˙ .

The first key point is that T is always one of the times .�n/n	1.

Lemma 6. One has T D �mı" (remind the convention �1 D C1). Thus, for every
n 
 1, fm ı " D ng D fT D �n < C1g.

Proof. Fix w 2 w and set m D m.".w// andm0 D m0.".w//.
For every n 
 1, by definition of �n and "n, one has

"n.w/ D ˙1 if �n.w/ < C1;

"n.w/ D 0 if �n.w/ D C1:

In particular, �n.w/ D C1 for every n 
 m0 since the sequence .�n/n	0 is non
decreasing. Thus, whetherm � m0 or m 
 m0, one has �m^m0.w/ D �m.w/.

For every k < m ^m0, "k.w/ D 1 hence w.�k.w// � w.�k�1.w// D ck � ck�1.
A recursion then gives w.�k.w// D ck 2� � a; bŒ. Moreover, for �k.w/ � t <

�kC1.w/,

jw.t/ � ckj D jw.t/ � w.�k.w//j < jckC1 � ckj D d.ck; f�a; bg/:

Hence for every t 2 Œ0; �m.w/Œ, w.t/ … f�a; bg. This proves that T .w/ 
 �m.w/.
If m is infinite, then T .w/ is infinite.
If m is finite, the equality

w.�m.w// � w.�m�1.w// D �.cm � cm�1/ D dm � cm�1

implies w.�m.w// D dm 2 f�a; bg, hence T .w/ D �m.w/.
The proof of the first statement is complete. Since the sequence .�n.w//n	0 is

increasing and unbounded, the second statement follows. ut
We can now describe the effect of the reflection �T on the sequence " D ."n/n	1.

For every e D .en/n	1 2 ˙ , define r.e/ D .fn/n	1 2 ˙ by
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fn D
�

en if n � m.e/;

�en if n > m.e/:

Set g.e/ D r.�e/ and � D �T ı �0. Note that g and � are bijective maps.

Corollary 5. With the notation above, the following properties hold.

1. The reflections �0, �T and their composition � D �T ı �0 preserve the stopping
times �n.

2. One has " ı �0 D �", " ı �T D r ı " and " ı � D g ı ".
Proof. Let w 2 w. The trajectories w and �T .w/ have the same increments on
Œ0; T .w/� and have opposite increments on ŒT .w/;C1Œ. Since T .w/ D �mı".w/,
the results on �T follow immediately. The other statements are obvious. ut

For n 2 n, note 1n D .1; : : : ; 1/ 2 f�1; 1gn. For .e1; : : : ; en/ 2 f�1; 1gn and
� 2 ˙ , note .e1; : : : ; en; �/ 2 ˙ the sequence obtained by concatenation. The next
formula will play the same role as Lemma 1 of [2].

Lemma 7. LetN D a0C2a1C� � �C2n�1an�1 be a natural integer written in base
2 with n digits (the digit an�1 may be 0). Then for every � 2 ˙ ,

gN .1n; �/ D ..�1/a0 ; : : : ; .�1/an�1 ; �/:

Moreover, if n 
 1,

gN�2n�1

.1n�1;�1; �/ D ..�1/a0 ; : : : ; .�1/an�1 ; �/:

Proof. The first formula will be proved by induction on the number of digits. If
n D 0, then N D 0 and the formula is obvious.

Assume the formula holds for all integers written with n digits. Let N D a0 C
2a1 C � � � C 2nan be an integer written with nC 1 digits.

If an D 0, then it suffices to write N with n digits and to apply the induction
hypothesis to the sequence .1; �/.

If an D 1, let us apply the induction hypothesis to the integer 2n �
1D 1C 2C � � � C 2n�1 and to the sequence .1; �/. We get

g2
n�1.1nC1; �/ D .�1n; 1; �/:

Applying g once more yields

g2
n

.1nC1; �/ D .1n;�1; �/:

Applying the induction hypothesis to the integer

N � 2n D a0 C 2a1 C � � � C 2n�1an�1
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and to the sequence .�1; �/ yields

gN .1nC1; �/ D ..�1/a0 ; : : : ; .�1/an�1 ;�1; �/;

which achieves the proof of the first formula.
In particular, if n 
 1, g2

n�1
.1n; �/ D .1n�1;�1; �/, hence

g�2n�1

.1n�1;�1; �/ D .1n; �/:

The second formula follows. ut
Introduce˙n � f�1; 0; 1gn the subset of n-uples such that each component after

a 0 is 0. Define the map g from˙n to itself as before.

Corollary 6. For every n 
 1 and e D .e1; : : : ; en/ 2 ˙n, there exists an integer
M.e/ in Œ1 � 2n�1; 2n�1� such that the event Ae D f."1; : : : ; "n/ D .e1; : : : ; en/g
belongs to F 0

T ı�M.e/ and �n D T ı �M.e/ on Ae .

Proof. Write .e1; : : : ; en/ D ..�1/a0 ; : : : ; .�1/ad�1 ; 0; : : : ; 0/ with 0 � d � n and
a0; : : : ; ad�1 in f0; 1g.

If d D n, set M.e/ D 2n�1 � a0 � � � � � 2n�1an�1. Then by Lemmas 7 and 6,

Ae D fgM.e/ ı ."1; : : : ; "n/ D .1n�1;�1/g
D f."1; : : : ; "n/ ı �M.e/ D .1n�1;�1/g
D fm ı " ı �M.e/ D ng
D fT ı �M.e/ D �n ı �M.e/ < C1g

Thus Ae 2 F 0
T ı�M.e/ , and �n D �n ı �M.e/ D T ı �M.e/ on Ae .

If d � n � 1, set M.e/ D �a0 � � � � � 2d�1ad�1. Then by Lemmas 7 and 6,

Ae D fgM.e/ ı ."1; : : : ; "n/ D .1d ; 0; : : : ; 0/g
D f."1; : : : ; "n/ ı �M.e/ D .1d ; 0; : : : ; 0/g
D fm0 ı " ı �M.e/ D d C 1 I m ı " ı �M.e/ D C1g
D f�d ı �M.e/ < C1 I T ı �M.e/ D �dC1 ı �M.e/ D C1g

Thus Ae 2 F 0
T ı�M.e/ , and �n D �n ı �M.e/ D C1 D T ı �M.e/ on Ae . ut

The last corollary and the stability properties given in Lemmas 5 and 2 show that
if 0 2 TQ and T 2 TQ, then �n 2 TQ for all n 
 0 (recall that �0 D 0). This ends
the proof of Proposition 2.
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5 Proof of the Main Theorem

Let us now prove Theorem 2.

Proof. Call Q the law of M as before. The first step of the proof is the observation
that for every positive integer n, T�an 2 TQ by Corollary 3. Hence for all positive
integersm and n, T�an ^ Tam 2 TQ by Corollary 2. Lemma 8, which will be stated
and proved below, ensures that the ratios an=.anCam/ are not dyadic for arbitrarily
largem and n. For suchm and n, Proposition 1 applies and yields eQŒXS � � anCam
for every finite stopping time S (in the canonical filtration W ) such that the stopped
process X�^S is uniformly bounded. Since .an/n	1 converges to 0, this proves that
eQŒXS � D 0, hence X is a local martingale underQ.

The next arguments are the same as in [2] and we now summarize them.
Q-almost surely, the process X admits a quadratic variation hXi (defined as

a limit in probability of sums of squared increments), which is preserved by the
reflections �0 and �Tan . Consider a regular version of the conditional law of X with
respect to hXi. For any continuous non-decreasing function f W rC ! rC such that
f .0/ D 0, call Qf the law of X conditionally on hXi D f . Then for almost every
f (for the law of hXi under Q), the probability Qf is invariant by the reflections
�0 and �Tan .

By the part of the theorem which is already proven, X is a local martingale
under Qf . But hXi D f almost surely under Qf . Calling � the right-continuous
inverse of f , one gets that the processB D .X�.s//0�s<f .C1/ is a Brownian motion
with lifetime f .C1/.

Consider, in some suitable enlargement of the probability space .w;W ;Q/, a
Brownian motion W , independent of X . For almost every f , the Brownian motion
W is still independent of X under Qf . Since the local martingale X converges
Q-almost surely to a random variable X1 on the event fhXi1 < C1g, one gets a
Brownian motion B defined on the whole interval Œ0;C1Œ and independent of hXi
by setting

Bs D X1 CWs�hXi1
on the event fhXi1 � sg:

Since Xt D BhXit almost surely for all t 
 0, this shows that X is an Ocone local
martingale underQ.

Assume now that hXi1 is finite with positive probability. Then for some s 2 rC,
hXi1 � s with positive probability. But with positive probability, B does not visit
a1 before time s. By independence of B and hXi,

QŒTa1 D C1� 
 QŒTa1 ı B > s� QŒhXi1 � s� > 0:

This shows that if Ta1 is finite Q-almost surely, then hXi1 is infinite Q-almost
surely, hence X is almost surely divergent. ut
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Note that the proof of the last statement (if Ta1 is finite Q-almost surely, then X
is almost surely divergent) given in the discrete case by Chaumont and Vostrikova
(Lemma 2 of [2]) is not correct because they prove the implication

Ta.M/_ T�a.M/ < C1 a:s: H) TaC2.M/^ T�a�2.M/ < C1 a:s:;

which is not sufficient to perform an induction. Yet, the same arguments that
Chaumont and Vostrikova used to prove their Lemma 1 are sufficient to prove their
Lemma 2. Our Lemma 7 generalises these arguments, and the case in which some
stopping time Ta is infinite is covered by the possibility for the sequence of signs
� 2 ˙ to be eventually 0.

Lemma 8. If c > b > a > 0, then at least one of the three following ratios
a=.aC b/, b=.b C c/ and a=.a C c/ is not dyadic.

Proof. The three ratios above belong to �0; 1=2Œ. Assume that they are dyadic. Then

a

aC b
D i

2p
;

b

b C c
D j

2q
;

a

a C c
D k

2r
;

where i , j and k are odd positive integers and p, q and r are integers greater or
equal to 2. Thus

2r � k
k

D c

a
D b

a
� c

b
D 2p � i

i
� 2q � j

j
;

ij.2r � k/ D k.2p � i/.2q � j /;
2r ij C 2qik C 2pjk � 2pCqk D 2ijk:

This is a contradiction since the left-hand side is a multiple of 4 whereas the
right-hand side is not. ut
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Approximation and Stability of Solutions
of SDEs Driven by a Symmetric ˛ Stable Process
with Non-Lipschitz Coefficients

Hiroya Hashimoto

Abstract Firstly, we investigate Euler–Maruyama approximation for solutions of
stochastic differential equations (SDEs) driven by a symmetric ˛ stable process
under Komatsu condition for coefficients. The approximation implies naturally the
existence of strong solutions. Secondly, we study the stability of solutions under
Komatsu condition, and also discuss it under Belfadli–Ouknine condition.

Keywords Euler–Maruyama approximation • Stability of solution • Symmetric ˛
stable process

1 Introduction

Euler–Maruyama approximation is a key tool in the theory of stochastic differential
equations (SDEs) as well as Picard approximation is. In this domain the theory on
stability properties of solutions is considered as one of the cornerstones. This article
is devoted firstly to study Euler–Maruyama approximation in the pathwise sense,
and secondly to investigate stability problems also in the pathwise sense.

We consider these problems in the case where SDEs with non-Lipschitz
coefficients are driven by a symmetric ˛ stable process (1<˛ <2). SDEs driven
by a symmetric ˛ stable process more generally those of pure jumps type arise
naturally in connection with applications, for example, mathematical finance.

We briefly sketch some known results in this area. In the case where the driving
process is a Brownian motion (˛ D 2), it has been shown that Euler–Maruyama
approximation is convergent in the pathwise sense under non-Lipschitz condition
for coefficients (Yamada [18], see also Kaneko–Nakao [9]).
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Stability problems for solutions have been developed very well by Émery [5] and
Protter [15], in the framework of SDEs driven by semimartingales with Lipschitz
coefficients.

Stability problems in law sense for martingale problem solutions of SDEs
driven by jump processes have been discussed by many authors, for example,
Kasahara–Yamada [10] and Janicki–Michna–Weron [8]. A number of papers
devoted to these problems are seen in the references in [8]. Stability problems in
the pathwise sense for solutions of Brownian SDEs with non-Lipschitz coefficients
have been discussed in Kawabata–Yamada [11].

In the theory of SDEs driven by a symmetric ˛ stable process, some
non-Lipschitz conditions for coefficients which guarantee the pathwise uniqueness
for solutions are known [2, 3, 7, 12, 17, 19]. Komatsu condition ([12], see also
[2]) is an analogue of Yamada–Watanabe condition for one-dimensional Brownian
SDEs. A Nagumo type modification of Komatsu condition is shown in [7]. In
multi-dimensional case, Tsuchiya [17] considered rather recently the pathwise
uniqueness of solutions of SDEs driven by a symmetric˛ process. Belfadli–Ouknine
condition which was found very recently can be seen as the counterpart of Nakao–Le
Gall condition in the Brownian motion case [3, 13, 14].

In this situation, it seems to be very natural to investigate Euler–Maruyama
approximation as well as stability problems under some non-Lipschitz conditions
in the case where SDEs are driven by a symmetric ˛ stable process.

Our paper is organized as follows.
In Sect. 2, we show that Euler–Maruyama approximation is convergent in the

pathwise sense under Komatsu condition for coefficients. Theorem 1 in the section
corresponds to the main result stated in [18] for Brownian SDEs. Euler–Maruyama
approximation in this section implies naturally the existence of strong solutions for
SDEs driven by a symmetric ˛ stable process.

In Sect. 3, the stability of solutions for SDEs in the pathwise sense under
Komatsu condition is proved. The related result in Brownian motion case has been
given in [11].

In Sect. 4, the stability of solutions also in the pathwise sense is discussed under
Belfadli–Ouknine condition for coefficients.

2 Euler–Maruyama Approximation

Let .˝;F ; fFt g;P/ be a filtered probability space with usual conditions and
ZD fZ.t/I t 
 0g be a Ft -symmetric ˛ stable process such that Z.0/D 0, cJadlJag
(right continuous left limit) Ft -adapted and

EŒexpfi�.Z.t/ �Z.s//gjFs� D expf�.t � s/j�j˛g a:s: for any s < t; � 2 R:
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In the present section we consider the following SDE:

X.t/ D X.0/C
Z t

0

�.s; X.s�//dZ.s/; (1)

where Z.t/ is a symmetric ˛ stable process (1 < ˛ < 2), and �.t; x/ is a Borel
measurable real function with respect to .t; x/.

We assume that the coefficient function �.t; x/ satisfies the following condition:

Condition (A)

(i) there exists a positive constant M1 such that j�.t; x/j � M1,
(ii) �.t; x/ is uniformly continuous on Œ0;1/ � R,

(iii) there exists a non-negative increasing function � defined on Œ0;1/ such that:
�.0/ D 0,

R
0C �

�1.x/dx D 1

j�.t; x/ � �.t; y/j˛ � �.jx � yj/; 8x;8y 2 R:

Remark 1. The condition (A) is called Komatsu condition. Komatsu [12] has
proved that under the condition (A) for given bounded initial value X.0/ the
pathwise uniqueness holds for (1) (see also [2]).

Let 0 < T < 1 be a fixed constant. Let � be a partition of the interval Œ0; T �,
such that � W 0 D t0 < t1 < � � � < tk < tkC1 < � � � < tn D T . The norm of
�, k�k is defined as k�k WD max1�k�n.tk � tk�1/, and we put ��.t/ WD tk for
tk � t < tkC1:

Euler–Maruyama approximation for (1) is the following:

X�.0/ WD X.0/;

and

X�.tk/ WD X�.tk�1/C �.tk�1; X�.tk�1�//.Z.tk/ �Z.tk�1//; k D 1; 2; : : : ; n:

For tk � t < tkC1, X�.t/ is defined as

X�.t/ WD X�.tk/C �.tk; X�.tk�//.Z.t/ �Z.tk//:

Using the notation ��, X�.t/ satisfies the equation:

X�.t/ WD X.0/C
Z t

0

�.��.s/; X�.��.s/�//dZ.s/:
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Theorem 1. We assume condition (A) for (1). Let X.t/ be a unique solution of
(1) with bounded initial value X.0/. Then Euler–Maruyama approximation X�.t/
satisfies

lim
k�k!0

E
h

sup
0�t�T

jX�.t/ � X.t/jˇ
i

D 0 for any ˇ 2 .1; ˛/:

For the proof of Theorem 1, we prepare several lemmas.

Lemma 1. Under the same assumption as in Theorem 1, we have

lim
ju�vj!0

EŒjX�.u/ �X�.v/jˇ� D 0 for ˇ 2 .1; ˛/; uniformly with respect to �:

Proof. Choose ˇ0 and p > 0 such that 1 < ˇ < ˇ0 < ˛, and 1=p C 1=ˇ0 D 1=ˇ.
For v � u, we see

X�.u/� X�.v/ D
Z u

v

�.��.s/; X�.��.s/�//dZ.s/:

Let ŒY; Y � be the quadratic variation of a semimartingale Y (see for examples
[4, 15]). By Émery’s inequality ([5], page 191 in [15]),

EŒ.ŒX�;X��.u/� ŒX�;X��.v//ˇ=2�1=ˇ

�E
h

sup
v�s�u

j�.��.s/; X�.��.s/�//jp
i1=p

EŒ.ŒZ;Z�.u/� ŒZ;Z�.v//ˇ0=2�1=ˇ
0

:

(2)

Also, by Burkholder–Davis–Gundy’s inequality (see for examples [4, 15]), we have

cˇE
h

sup
v�s�u

jX�.s/� X�.v/jˇ
i1=ˇ

� EŒ.ŒX�;X��.u/� ŒX�;X��.v//
ˇ=2�1=ˇ (3)

and

EŒ.ŒZ;Z�.u/ � ŒZ;Z�.v//ˇ0=2�1=ˇ
0

� Cˇ0E
h

sup
v�s�u

jZ.s/ �Z.v/jˇ0
i1=ˇ0

(4)

where cˇ andCˇ0 are positive constants which depend on ˇ and ˇ0 with respectively.
By (i) in (A), the right-hand side of (2) can be bounded by M1EŒ.ŒZ;Z�.u/ �
ŒZ;Z�.v//ˇ

0=2�1=ˇ
0

. Then by (2), (3) and (4), we have



Approximation and Stability of Solutions of SDEs Driven by a Symmetric ˛ . . . 185

E
h

sup
v�s�u

jX�.s/� X�.v/jˇ
i1=ˇ � Cˇ0

cˇ
M1E

h
sup
v�s�u

jZ.s/ �Z.v/jˇ0
i1=ˇ0

:

Using Doob’s inequality (see for example Theorem 1.7 of [16])

E
h

sup
0�s�u�v

jZ.s/jˇ0
i1=ˇ0

� ˇ0

ˇ0 � 1
EŒjZ.u � v/jˇ0

�1=ˇ
0

;

we have

E
h

sup
v�s�u

jX�.s/ �X�.v/jˇ
i1=ˇ � Cˇ0

cˇ

ˇ0

ˇ0 � 1M1EŒjZ.u � v/jˇ0

�1=ˇ
0

:

The right-hand side in the above inequality does not depend on �. Thus, we can
conclude

lim
ju�vj!0

kX�.u/� X�.v/kLˇ D 0; uniformly with respect to �: ut

Lemma 2. Under the same assumption as in Theorem 1, we have

lim
k�k!0

EŒjX�.t/ � X.t/j˛�1� D 0; for t 2 Œ0; T �:

Proof. As is well known (for example see [12]) that the generator L of Z.t/ is
defined by

L f .x/ WD
Z
Œf .x C y/ � f .x/ � Ifjyj�1gyf 0.x/�jyj�1�˛dy:

We choose a sequence famg such that 1 D a0 > a1 > � � � andR am�1

am
��1.x/dx D m. For this choice we can choose a sequence of sufficiently

smooth even functions f'mg such that,

'm.x/ D

8̂
<̂
ˆ̂:
0 jxj � am

between 0 and 1=.m�.jxj// am < jxj < am�1
0 jxj 
 am�1

(5)

and
R1

�1 'm.x/dx D 1. Following the argument employed by Komatsu [12], if we
put u.x/ WD jxj˛�1 and also um WD u 	 'm where 	 stands for the convolution
operator, then we have L um D K˛'m, where K˛ D �2�˛�1 cot.˛�=2/. We note
that K˛ does not depend on m.
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By the definition of um, we have

jxj˛�1 � a˛�1
m�1 � um.x/ � jxj˛�1 C a˛�1

m�1: (6)

On the other hand, Itô formula implies

um.X�.t/ �X.t//

D K˛

Z t

0

'm.X�.s/ �X.s//j�.��.s/; X�.��.s/�//� �.s;X.s�//j˛ds

CMm.t/

whereMm.t/ is a martingale. So, we have

EŒum.X�.t/ �X.t//�

D K˛E
h Z t

0

'm.X�.s/� X.s//

j�.��.s/; X�.��.s/�//� �.s;X.s�//j˛ds
i
:

Using the left-hand side inequality of (6), we have

0 � EŒjX�.t/ �X.t/j˛�1�

� a˛�1
m�1 CK˛E

h Z t

0

'm.X�.s/� X.s//

j�.��.s/; X�.��.s/�//� �.s;X.s�//j˛ds
i

� a˛�1
m�1 C 2K˛E

h Z t

0

k'mkj�.��.s/; X�.��.s/�// � �.s;X�.s//j˛ds
i

C 2K˛E
h Z t

0

'm.X�.s/� X.s//j�.s;X�.s//� �.s;X.s�//j˛ds
i

D a˛�1
m�1 C J

.1/
� C J

.2/
� say:

By (iii) in (A), (5) implies J .2/� � .2K˛T /=m. Let " > 0 be fixed, we choose a fixed

integer m such that a˛�1
m�1 < "=3 and J .2/� < "=3. By (ii) in (A), we choose ı1 > 0

such that, for jt � t 0j < ı1; jx � x0j < ı1

j�.t; x/ � �.t 0; x0/j < "

12K˛T k'mk (7)
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holds. Lemma 1 implies immediately

lim
ju�vj!0

jX�.u/�X�.v/j D 0 (in probability), uniformly with respect to �:

So we can choose ı2 > 0 such that for ju � vj < ı2

P.jX�.u/� X�.v/j > ı1/ � "

12K˛T k'mk.2M1/˛
(8)

holds.
Let k�k � min.ı1; ı2/. Then we have jt ���.t/j � min.ı1; ı2/. The inequalities

(7) and (8) imply

J
.1/
� D 2K˛k'mkE

hZ t

0
IfjX�.s/�X�.��.s//j�ı1gj�.s; X.s// � �.��.s/;X�.��.s/�//j˛ds

i

C 2K˛k'mkE
hZ t

0
IfjX�.s/�X�.��.s//j>ı1gj�.s; X.s//� �.��.s/;X�.��.s/�//j˛ds

i

< 2K˛k'mkT "

12K˛T k'mk C 2K˛k'mkT ".2M1/
˛

12K˛T k'mk.2M1/˛

D "

3
:

Thus, we can conclude that

lim
k�k!0

EŒjX�.t/ � X.t/j˛�1� D 0: ut

Lemma 3. Under the same assumption as in Theorem 1,

[a] sup0�t�T jX�.t/ �X.t/j ! 0 in probability .k�k ! 0/,
[b] the class of random variables

n
sup
0�t�T

jX�.t/ � X.t/jˇ;�
o

is uniformly integrable.

Proof. We consider the probability P.sup0�t�T jX�.t/ � X.t/j > �/. By Giné–
Marcus’s inequality (page 213 in [1, 6]) there exists a constant C > 0 independent
of � > 0, such that
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P



sup
0�t�T

jX�.t/ �X.t/j > �
�

D P



sup
0�t�T

ˇ̌
ˇ
Z t

0

f�.��.s/; X�.��.s/�// � �.s;X.s�//gdZ.s/
ˇ̌
ˇ > �

�

� ��˛C
Z T

0

EŒj�.��.s/; X�.��.s/�// � �.s;X.s�//j˛�ds:

(9)

Note that

jX�.��.s/�/� X.s�/j
� jX�.��.s/�/ �X�.s�/j C jX�.s�/ �X.s�/j;

and also note that for fixed u 2 Œ0; T �, X�.u/ D X�.u�/ a.s. holds. By Lemmas 1
and 2, we can conclude that jX�.��.s/�/ � X.s�/j converges to 0 in probability
when k�k ! 0. Since the function �.t; x/ is bounded and uniformly continuous
with respect to .t; x/, the inequality (9) implies [a].

Choose ˇ0; Q̌; p such that ˇ < ˇ0 < Q̌ < ˛, 1= Q̌C1=p D 1=ˇ0. By an analogous
argument as in the proof of Lemma 1, we have

E
h

sup
0�t�T

jX�.t/ �X.t/jˇ0
i1=ˇ0

� 1

cˇ0

EŒ.ŒX� �X;X� �X�.T //ˇ0=2�1=ˇ
0

� 1

cˇ0

E
h

sup
0�t�T

j�.��.s/; X�.��.s/�//� �.s;X.s�//jp
i1=p

�EŒ.ŒZ;Z�.T // Q̌=2�1= Q̌

� 2M1

cˇ0

EŒ.ŒZ;Z�.T // Q̌=2�1= Q̌

� 2M1

C Q̌
cˇ0

E
h

sup
0�t�T

jZ.t/j Q̌i1= Q̌

� 2M1

C Q̌
cˇ0

Q̌
Q̌ � 1

EŒjZ.T /j Q̌
�1=

Q̌

< 1:

Thus, we can conclude that the class fsup0�t�T jX�.t/ � X.t/jˇ;�g is uniformly
integrable. ut
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Proof of Theorem 1. Lemma 3 implies immediately Theorem 1. ut
Remark 2 (A construction of the strong solution of (1)). Let X�.t/ and X�0.t/ be
two Euler–Maruyama approximations with the same bounded initial value X.0/.
By an analogous method employed in the proof of Theorem 1, we can show

lim
k�k!0;k�0k!0;

E
h

sup
0�t�T

jX�.t/ �X�0.t/jˇ
i

D 0; 8ˇ < ˛ (10)

without using the existence of a solution of (1). From this fact we can construct a
strong solution of (1) with initial value X.0/, in the following way.

Choose a sequence of positive numbers "i > 0; i D 1; 2; � � � such that

1X
iD1

4i"i < 1: (11)

By (10) we can choose a series of partitions�i ; i D 1; 2; � � � such that

(i) k�ik ! 0 (i ! 1),
(ii) EŒsup0�t�T jX�i .t/ �X�iC1

.t/jˇ� < "i , i D 1; 2; � � � :
Since

P



sup
0�t�T

jX�i .t/ � X�iC1
.t/j > 1

2i

�

D P



sup
0�t�T

jX�i .t/ � X�iC1
.t/jˇ > � 1

2i

�ˇ�

� P



sup
0�t�T

jX�i .t/ � X�iC1
.t/jˇ > 1

4i

�

� 4iE
h

sup
0�t�T

jX�i .t/ � X�iC1
.t/jˇ

i

< 4i"i ;

we have by (11),

1X
iD1

P



sup
0�t�T

jX�i .t/ � X�iC1
.t/j > 1

2i

�
<

1X
iD1

4i"i < 1:

Then, by Borel–Cantelli lemmaX�i .t/ converges uniformly on Œ0; T � a.s. .i ! 1/.
Put X.t/ WD limi!1X�i .t/, t 2 Œ0; T �. Then, we see that X.t/ is a cJadlJag, and
we have

lim
i!1 E

h
sup
0�t�T

jX�i .t/ �X.t/jˇ
i

D 0:
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We will show that .X.t/; Z.t// satisfies (1). For the purpose of the proof, we have

E
h

sup
0�t�T

ˇ̌
ˇX.t/ � X.0/�

Z t

0

�.s; X.s�//dZ.s/
ˇ̌
ˇˇ
i

� 2E
h

sup
0�t�T

jX.t/ � X�i .t/jˇ
i

C 2E
h

sup
0�t�T

ˇ̌
ˇ
Z t

0

f�.s;X.s�//� �.��i .s/; X�i .��i .s/�//gdZ.s/
ˇ̌
ˇˇ
i

D EŒN .1/
i �C EŒN .2/

i � say:

Obviously, we have limi!1 EŒN .1/
i � D 0. By the same discussion employed in the

proof of Lemma 3, we can see that limi!1 EŒN .2/
i � D 0. Thus, we have

E
h

sup
0�t�T

ˇ̌
ˇX.t/ �X.0/�

Z t

0

�.s; X.s�//dZ.s/
ˇ̌
ˇˇ
i

D 0:

So, we can conclude

X.t/ D X.0/C
Z t

0

�.s; X.s�//dZ.s/:

By the definition of Euler–Maruyama approximation,X�i .t/ is �.Z.s/I 0 � s � t/

measurable. This implies immediately X.t/ is �.Z.s/I 0 � s � t/ measurable.
It means that X.t/ is a strong solution of (1).

3 Stability of Solutions Under Komatsu Condition

Consider the following sequence of SDEs driven by a same symmetric ˛ stable
process Z.t/:

X.t/ D X.0/C
Z t

0

�.s; X.s�//dZ.s/: (12)

Xn.t/ D Xn.0/C
Z t

0

�n.s; Xn.s�//dZ.s/; n D 1; 2; � � � (13)

We assume that the coefficient functions �.t; x/, �n.t; x/, n D 1; 2; � � � satisfy the
following condition.
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Condition (B)

(i) there exists a positive constant M2 such that j�.t; x/j � M2, j�n.t; x/j � M2,
n D 1; 2; � � � ,

(ii) limn!1 supt;x j�n.t; x/ � �.t; x/j D 0,
(iii) there exists an increasing function � defined on Œ0;1/ such that �.0/ D 0,R

0C �
�1.x/dx D 1

j�n.t; x/ � �n.t; y/j˛ � �.jx � yj/; 8x;8y 2 R; t 2 Œ0;1/; n D 1; 2; � � �
j�.t; x/ � �.t; y/j˛ � �.jx � yj/; 8x;8y 2 R; t 2 Œ0;1/

Remark 3. The pathwise uniqueness holds for solutions of (12) and (13) under the
condition (B) [2, 12].

Remark 4. By (i) of (B), we can assume the function � is bounded.

The main result of this section is following:

Theorem 2. Let T > 0 be fixed. Assume that there exists a positive number M0

such that jX.0/j � M0, a.s. and jXn.0/j � M0, a.s., n D 1; 2; � � � . Assume also
that

lim
n!1 EŒjXn.0/� X.0/j˛� D 0:

Then under the condition (B)

lim
n!1 E

h
sup
0�t�T

jXn.t/ � X.t/jˇ
i

D 0

holds, for ˇ < ˛.

For the proof of Theorem 2, we prepare some lemmas. In the following of the
section we assume that � is bounded (see Remark 4).

Lemma 4. Under the same assumption as in Theorem 2,

lim
n!1 EŒjXn.t/ �X.t/j˛�1� D 0 holds; t 2 Œ0; T �:

Proof. Put u.x/ WD jxj˛�1. Choose a sequence famg such that 1 D a0 > a1 >

� � � , lim
m!1 am D 0 and

R am�1

am
��1.x/dx D m. For this choice, choose a sequence

f'mg; m D 1; 2; � � � of sufficiently smooth even functions such that
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'm.x/ D

8̂
<̂
ˆ̂:
0 jxj � am

between 0 and 1=.m�.jxj// am < jxj < am�1
0 jxj 
 am�1

(14)

and
R1

�1 'm.x/dx D 1. After Komatsu, put um WD u 	 'm, then we have L um D
K˛'m, where K˛ D �2�˛�1 cot.˛�=2/. By (ii) of (B) we can choose a sequence
f"ng of decreasing positive numbers "n # 0 such that

sup
t;x

j�n.t; x/ � �.t; x/j˛ � "n: (15)

Corresponding this choice, we can find a sequence of integer numbers fmng; n D
1; 2; � � � , mn ! 1 .n ! 1/ such that

"n max
amn�x�amn�1

1

�.x/
� 1: (16)

By Itô formula,

umn.Xn.t/ � X.t// � umn.Xn.0/�X.0//

D
Z t

0

j�n.s; Xn.s�//� �.s;X.s�//j˛K˛'mn.Xn.s/� X.s//ds

CMmn.t/;

whereMmn.t/ is a martingale. By (6)

EŒumn.Xn.t/ � X.t//�

� EŒjXn.0/� X.0/j˛�1�C a˛�1
mn�1

C 2E
hZ t

0

j�n.s; Xn.s�// � �.s;Xn.s�//j˛K˛'mn.Xn.s/� X.s//ds
i

C 2E
hZ t

0

j�.s;Xn.s�//� �.s;X.s�//j˛K˛'mn.Xn.s/ � X.s//ds
i

D EŒjXn.0/� X.0/j˛�1�C a˛�1
mn�1 CN.1/

mn
CN.2/

mn
say:

By the assumption, limn!1 EŒjXn.0/ � X.0/j˛�1� D 0 holds. Obviously
limn!1 a˛�1

mn�1 D 0.

For N.1/
mn , by (14), (15) and (16) we have

N.1/
mn

� 2E
hZ t

0

"nK˛

Ifamn<jXn.s/�X.s/j<amn�1g
mn�.jXn.s/ � X.s/j/ ds

i
� 2K˛T

mn

:

From this limn!1N
.1/
mn D 0 follows immediately.
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For N.2/
mn , by (iii) of (B) and by the definition of 'm, (14) we have

N.2/
mn

� 2E
hZ t

0

�.jXn.s/ � X.s/j/K˛

Ifamn<jXn.s/�X.s/j<amn�1g
mn�.jXn.s/� X.s/j/ ds

i
� 2K˛T

mn

:

From this limn!1N
.2/
mn D 0 holds.

Note that limn!1 umn.x/ D u.x/ D jxj˛�1, then we have limn!1 EŒjXn.t/ �
X.t/j˛�1� D 0. ut
Lemma 5. Under the same assumption as in Theorem 2,

[a] sup0�t�T jXn.t/ � X.t/j ! 0 in probability (n ! 1),
[b] the family of random variables

n
sup
0�t�T

jXn.t/ �X.t/jˇ; n D 1; 2; � � �
o

is uniformly integrable.

Proof. Let � be a positive constant. Then, by Giné–Marcus’s inequality, there exists
a constant C > 0 which does not depend on � such that

P



sup
0�t�T

jXn.t/ �X.t/j > �
�

� P


jXn.0/�X.0/j > �

2

�

C P



sup
0�t�T

ˇ̌
ˇ
Z t

0

f�n.s; Xn.s�// � �.s;X.s�//gdZ.s/
ˇ̌
ˇ > �

2

�

� P


jXn.0/�X.0/j > �

2

�

C

�
2

��˛
C

Z T

0

EŒj�n.s; Xn.s�// � �n.s; X.s�//j˛�ds

C

�
2

��˛
C

Z T

0

EŒj�n.s; X.s�//� �.s;X.s�//j˛�ds

D J .1/n C J .2/n C J .3/n say:

By the assumption on initial data, limn!1 J
.1/
n D 0 is obvious. By (ii) of (B),

limn!1 J
.3/
n D 0 holds. By (iii) of (B) we have

J .2/n �

�
2

��˛
C

Z T

0

EŒ�.jXn.s�/� X.s�/j/�ds:
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By the result of Lemma 4, for fixed s 2 Œ0; T �, Xn.s�/ ! X.s�/ in prob-
ability (n ! 1). Since � is bounded continuous and �.0/ D 0, we have
limn!1 EŒ�.jXn.s�/ � X.s�/j/� D 0. Note that EŒ�.jXn.s�/ � X.s�/j/� is
uniformly bounded with respect to s 2 Œ0; T �. Then by Lebesgue convergence
theorem limn!1 J

.2/
n D 0 holds.Thus, we can conclude that [a] follows.

Just the same argument employed in the proof of Lemma 3 implies [b]. ut
Proof of Theorem 2. Lemma 5 implies immediately Theorem 2. ut

4 Stability of Solutions Under Belfadli–Ouknine Condition

In this section we consider the following sequence of SDEs:

X.t/ D X.0/C
Z t

0

�.X.s�//dZ.s/ (17)

Xn.t/ D Xn.0/C
Z t

0

�n.Xn.s�//dZ.s/; n D 1; 2; � � � (18)

where Z.t/ is a symmetric ˛ stable process .1 < ˛ < 2/, and coefficient functions
� , �n are Borel measurable.

We assume that coefficient functions � , �n; n D 1; 2; � � � satisfy the following
condition.

Condition (C)

(i) there exists two positive constants d;K such that 0 < d < K < 1,

d � �.x/ � K 8x 2 R

d � �n.x/ � K 8x 2 R; n D 1; 2; � � �

(ii) there exist an increasing function f such that for every real numbers x; y

j�.x/ � �.y/j˛ � jf .x/ � f .y/j
j�n.x/� �n.y/j˛ � jf .x/ � f .y/j; n D 1; 2; � � �

(iii)

lim
n!1 sup

x

j�n.x/ � �.x/j D 0:

Remark 5. Belfadli and Ouknine [3] show that under the (ii) of (C) the pathwise
uniqueness holds for each solutions of (17) and (18).
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Let T > 0 be fixed.

Theorem 3. Assume that there exists a positive number QM0 such that jX.0/j � QM0

a.s., jXn.0/j � QM0 a.s. n D 1; 2; � � � and assume also

lim
n!1 EŒjXn.0/� X.0/j˛� D 0:

Then, under the condition (C)

lim
n!1 E

h
sup
0�t�T

jXn.t/ � X.t/jˇ
i

D 0

holds for ˇ < ˛.

For the proof of Theorem 3, we prepare two lemmas.

Lemma 6. Under the same assumption as in Theorem 3,

lim
n!1 EŒjXn.t/ �X.t/j˛�1� D 0; holds for t 2 Œ0; T �:

Proof. Put u.x/ WD jxj˛�1. Choose a sequence famg such that 1 D a0 > a1 > � � � ,
limm!1 am D 0 and

R am�1

am
x�1dx D m. For this choice, we can find a sequence

f'mgm D 1; 2; � � � of sufficiently smooth even functions such that
R1

�1 'm.x/dx D
1 and

'm.x/ D

8̂
<̂
ˆ̂:
0 jxj � am

between 0 and 1=jmxj am < jxj < am�1
0 jxj 
 am�1

:

Put um WD u 	 'm, then L um D K˛'m, where K˛ D �2�˛�1 cot.˛�=2/. Choose
also a sequence f"ng of positive numbers such that "n # 0 and

sup
x

j�n.x/ � �.x/j � "n:

For this choice, we can find a sequence fmng of positive integers such that

"n
1

amn
� 1:

By Itô formula,
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EŒumn.Xn.t/ � X.t//�

D EŒumn.Xn.0/� X.0//�

C E
h
K˛

Z t

0

j�n.Xn.s�//� �.X.s�//j˛'mn.Xn.s�/� X.s�//ds
i

� EŒjXn.0/� X.0/j˛�1�C a˛�1
mn�1

C 2K˛E
hZ t

0

j�n.Xn.s�// � �n.X.s�//j˛'mn.Xn.s�/� X.s�//ds
i

C 2K˛E
hZ t

0

j�n.X.s�//� �.X.s�//j˛'mn.Xn.s�/ � X.s�//ds
i

D EŒjXn.0/� X.0/j˛�1�C a˛�1
mn�1 CN.1/

n CN.2/
n say:

Obviously we have limn!1 EŒjXn.0/ � X.0/j˛�1� D 0 and limn!1 a˛�1
mn�1 D 0.

For N.2/
n , we have

N.2/
n � 2K˛E

hZ T

0

"˛n
1

mnamn
ds
i

� 2K˛T

mn

:

So limn!1N
.2/
n D 0.

Finally we will discuss N.1/
n . By stopping X and Xn, when one of them first

leaves a compact set, we can assume jX j _ jXnj � M for every t 
 0. Letting
� # 0 in the last inequality in the proof of Lemma 2.2 in [3]. We get the following
inequality:

N.1/
n � 2K˛

.M C 1/kf k1
d˛mn

sup
jaj�MC1


Z K˛T

0

ps.a/ds
�

where kf k1 D supx jf .x/j and ps.a/ D ps.a; 0/ is the transition density function
ofZ.s/. So, we can conclude limn!1N

.1/
n D 0. The proof of Lemma 6 is achieved.

ut
Lemma 7. Under the same assumption as in Theorem 3,

[a] sup0�t�T jXn.t/ � X.t/j ! 0 in probability (n ! 1),
[b] the family of random variables

n
sup
0�t�T

jXn.t/ �X.t/jˇ; n D 1; 2; � � �
o

is uniformly integrable.
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Proof. Let � be a positive constant. Since Giné–Marcus’s inequality, there exists a
constant C > 0 which does not depend on � such that

P



sup
0�t�T

jXn.t/ � X.t/j > �
�

� P


jXn.0/� X.0/j > �

2

�

C P



sup
0�t�T

ˇ̌
ˇ
Z t

0

f�n.Xn.s�// � �.X.s�//gdZ.s/
ˇ̌
ˇ > �

2

�

� P


jXn.0/� X.0/j > �

2

�

C

�
2

��˛
C

Z T

0

EŒj�n.Xn.s�// � �n.X.s�//j˛�ds

C

�
2

��˛
C

Z T

0

EŒj�n.X.s�//� �.X.s�//j˛�ds

D J .1/n C J .2/n C J .3/n say:

By the assumption on initial data, limn!1 J
.1/
n D 0 is obvious. By (iii) of (C),

limn!1 J
.3/
n D 0 holds. By (ii) of (C), we have

J .2/n �

�
2

��˛
C

Z T

0

EŒjf .Xn.s�// � f .X.s�//j�ds:

LetD be the countable set of discontinuous points of the function f . The following
statement holds (see Lemma 2.3 of [3]):

Z T

0

P
h 1[
nD1

fXn.s�/ 2 Dg [ fX.s�/ 2 Dg
i
ds D 0:

Therefore, for almost all s 2 Œ0; T � (with respect to Lebesgue measure),

EŒjf .Xn.s�// � f .X.s�//j�
D EŒjf .Xn.s�// � f .X.s�//jIfX.s�/2Dg�

C EŒjf .Xn.s�//� f .X.s�//jIfX.s�/…Dg�

D EŒjf .Xn.s�// � f .X.s�//jIfX.s�/…Dg�:
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Assume that there exists a subsequence fXnkg of fXng such that

lim
n!1 EŒjf .Xnk .s�//� f .X.s�//jIfX.s�/…Dg� D r > 0: (19)

By the result of Lemma 6, we can choose some fn0
kg � fnkg such that

limn0
k!1Xn0

k
.s�/ D X.s�/ a.s. Note that f is bounded. Then

lim
n0
k!1

EŒjf .Xn0
k
.s�// � f .X.s�//jIfX.s�/…Dg� D 0:

It is contradictory to (19). Thus, we obtain the following expression: For almost all
s 2 Œ0; T �,

lim
n!1 EŒjf .Xn.s�//� f .X.s�//j� D 0:

By Lebesgue convergence theorem, we have limn!1 J
.2/
n D 0. Thus, we can

conclude that [a] follows.
Just the same argument employed in the proof of Lemma 3 implies [b]. ut

Proof of Theorem 3. This is direct consequence of Lemma 7. ut
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equations driven by symmetric stable Lévy processes. Stochastics 80, 519–524 (2008)

4. C. Dellacherie, P.A. Meyer, Probabilités et Potentiel (Théorie des Martingales, Hermann, 1980)
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Path Properties and Regularity of Affine
Processes on General State Spaces

Christa Cuchiero and Josef Teichmann

Abstract We provide a new proof for regularity of affine processes on general
state spaces by methods from the theory of Markovian semimartingales. On the
way to this result we also show that the definition of an affine process, namely
as stochastically continuous time-homogeneous Markov process with exponential
affine Fourier–Laplace transform, already implies the existence of a càdlàg version.
This was one of the last open issues in the fundaments of affine processes.

Keywords Affine processes • Markov semimartingales • Path properties •
Regularity
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1 Introduction

In the last decades affine processes have been of great interest in mathematical
finance to model phenomena like stochastic volatility, stochastic interest rates,
heavy tails, credit default, etc. Pars pro toto we mention here the one-dimensional
short-rate model of Cox, Ingersoll and Ross [8], the stochastic volatility model of
Heston [18] and the credit risk model of Lando [24]. In order to accommodate
the more and more complex structures in finance, these simple models have
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progressively been extended to higher dimensional affine jump diffusions with
values in the so-called canonical state space R

mC � R
n�m, or in the cone of positive

semidefinite matrices, see, e.g., [11, 13, 14] for affine models on the canonical state
space and [4,10,17,26] for multivariate stochastic volatility and interest rate models
based on matrix-valued affine processes.

Axiomatically speaking affine processes are stochastically continuous Markov
processes on some state space D  V , where V is a finite-dimensional Euclidean
vector space with scalar product h�; �i, such that the Fourier–Laplace transform is of
exponential affine form in the initial values. More precisely, this means that there
exist functions ˚ and  such that

Ex

h
ehu;Xt i

i
D ˚.t; u/eh .t;u/;xi;

for all .t; x/ 2 RC �D and u 2 V C iV , for which x 7! ehu;xi is a bounded function
on D. From this definition neither the Feller property, nor the existence of a càdlàg
version, nor differentiability of the Fourier–Laplace transform with respect to time,
a concept called regularity (see [12, Definition 2.5]), are immediate. This paper
provides a positive answer to the latter two questions, while the Feller property
is still an open issue on general state spaces, but can probably be established by
building on the results of the present article.

The reasons for the strong interest in affine processes are twofold: first, affine
processes are a rich and flexible class of Markov processes containing Lévy
processes, Ornstein–Uhlenbeck processes, squared Bessel processes and aggregates
of them. Second, affine processes are analytically tractable in the sense that the
Fourier–Laplace transform, which is a solution of the backward Kolmogorov
equation, a PIDE with affine coefficients, can be calculated by solving a system of
ODEs for˚ and , the so-called generalized Riccati equations. Having the Fourier–
Laplace transform at hand then means that real-time-calibration is at reach from a
numerical point of view. However in order to show that the functions ˚ and  are
solutions of these generalized Riccati differential equations, one first has to prove
regularity, in other words the differentiability of ˚ and  with respect to time.

The theory of affine processes has been developed in several steps: in an
article by Kawazu and Watanabe [21] the full classification on the state space RC
was proved, introducing already the generalized Riccati equations and the related
affine technology. A key step in this article is to establish the aforementioned
differentiability of the functions˚ and with respect to time. After several seminal
papers in finance the classification of affine processes for the so-called canonical
state spaceD D R

mC�R
n�m was done by Duffie, Filipović and Schachermayer [12],

although under the standing assumption of regularity. It remained open whether
there are affine processes on the canonical state space which are not regular, or
if regularity follows in fact from stochastic continuity and the property that the
Fourier–Laplace transform is of exponential affine form. Indeed, in [22] it is shown
that affine processes on the canonical state space D D R

mC � R
n�m are regular,

a reasoning motivated by insights from the solution of Hilbert’s fifth problem,
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see [22] for details. However, this solution depends on the full solution of [12] and
thus on the particular polyhedral nature of the canonical state space. It remained
open if regularity holds on other “non-polyhedral” state spaces, for instance on sets
whose boundary is described by a parabola or on (subsets of) the cone of positive
semidefinite d � d matrices, denoted by SC

d .
The following example of a possible state space illustrates that affine processes

can take values in various types of sets and that particular geometric properties of
the state space cannot be taken for granted. Consider the subsets of the cone of
positive semidefinite d � d matrices of the form

Dk D fx 2 SC
d j rank.x/ � kg; k 2 f1; : : : ; d g:

In particular, if k 2 f1; : : : ; d � 1g, these sets constitute non-convex state spaces of
affine processes. The non-convexity of Dk , k ¤ d , is easily seen by the following
argument: If Dk was convex, it would contain all convex combinations of positive
semidefinite matrices of rank smaller than or equal to k, thus also matrices of
rank strictly greater than k, which contradicts the definition of Dk . Moreover, if
k 2 f1; : : : ; d � 2g, the sets Dk are maximal state spaces for affine processes in
a sense made clear in the sequel. To illustrate this phenomenon by an example,
let hx; yi WD tr.xy/ denote the scalar product on Sd , the vector space of d � d

symmetric matrices, and let d > 2 and k 2 f1; : : : ; d � 2g. Consider a k � d matrix
of independent Brownian motions .Wt/t	0 with initial value W0 D y 2 R

k�d and
define the following process

Xt D W >
t Wt ; X0 D x WD y>y: (1)

Then the distribution of Xt corresponds to the non-central Wishart distribution
with shape parameter k

2
, scale parameter 2tI and non-centrality parameter x (see,

e.g., [27]). Its Fourier–Laplace transform is given by

Ex

h
ehu;Xt i

i
D det.I � 2tu/� k

2 e

�
.I�2tu/�1uCu.I�2tu/�1

2 ;x

�
; u 2 �SC

d C iSd ; (2)

and therefore of exponential affine form in all initial values x with rank.x/ � k.
This implies in particular that (1) is an affine process with state space Dk D fx 2
SC
d j rank.x/ � kg and functions ˚ and  given by

˚.t; u/ D det.I � 2tu/�
k
2 ;

 .t; u/ D .I � 2tu/�1u C u.I � 2tu/�1

2
:

Note here that the set U WD fu 2 Sd C iSd j x 7! ehu;xi is bounded onDkg cor-
responds to �SC

d C iSd . By differentiating ˚ and  it is easily seen that these
functions are solutions of the following system of Riccati ODEs
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@t˚.t; u/ D k˚.t; u/hI;  .t; u/i; ˚.0; u/ D 1;

@t .t; u/ D 2 .t; u/2;  .0; u/ D u:

From the characterization of affine processes on SC
d via the Riccati equations

and the corresponding admissible parameters (see [9, Theorem 2.4 and Condition
(2.4)]), we know that (2) is the Fourier–Laplace transform of an affine process with
state space SC

d (meaning in particular that every starting value in SC
d is possible), if

and only if k 
 d � 1. Hence, for k 2 f1; : : : ; d � 2g, the state space Dk cannot
be enlarged to its convex hull SC

d such that the constructed affine process on Dk

can also be extended to an affine process on SC
d . Further affine processes with state

space Dk can be obtained from squares of Ornstein–Uhlenbeck processes (see [3]).
The aim is thus to find a unified treatment which allows to prove regularity for

all possible state spaces without relying on particular properties of them. In [23]
this general question has been solved: it is shown that affine processes are regular
on general state spaces D, however, under the assumption that the affine process
admits a càdlàg version. The method of proof is probabilistic in the sense that the
“absence of regularity” leads—in a probabilistic way—to a contradiction.

This article now provides a new proof inspired by the theory of Markovian
semimartingales as laid down in [5]. In order to apply these reasonings, we first
prove one of the last open issues in the basics of affine processes, namely that
stochastic continuity and the affine property are already sufficient for the existence
of a version with càdlàg trajectories, which can then be defined on the canonical
probability space of càdlàg paths with a filtration satisfying the usual conditions for
any initial value. Let us remark, that in the existing literature on affine processes, the
càdlàg property—if addressed—could directly be deduced from the Feller property,
whose proof however strongly depends on the particular choice of the state space.
Indeed, the Feller property has been shown—under the regularity condition—by
Veerman [31] for state spaces of the form X � R

n�m, where X � R
m is a closed

convex set such that the boundary of

QU WD fu 2 R
m j sup

x2X
hu; xi < 1g

is described by the zeros of a real-analytic function. In the proof, the regularity
assumption is crucial to achieve this result. Otherwise the state spaces considered so
far are of typeK�R

n�m, whereK � R
m denotes some proper convex cone. In these

cases, the Feller property and also regularity follow from the fact that the function

 .t; �/ maps � VK� � iRn�m to itself1 for all t 
 0 and that the projection of  .t; �/
on the components corresponding to the R

n�m part of the state space, denoted by
u 7! ˘Rn�m .t; u/, is a linear function in u. The first assertion hinges on certain
order properties of the function Re .t; �/ on �K�, while the second one builds on

1Here, K� denotes the dual cone.
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the fact that ˘Rn�m .t; �/ maps iRn to iRn�m. Since we lack the mentioned order
properties of  , a similar result to the first one seems hard to establish on general
state spaces. The second one can be extended to a certain degree by considering
particular sequences and projections, as done in Lemma 1 below. In this respect the
main difficulty arises from the fact that we do not have the specific product structure
of the state space at hand. For these reasons, we have to take another route, namely
martingale regularization for a lot of “test martingales”, to show that affine processes
admit a version with càdlàg trajectories.

Having achieved this, we proceed with the proof of regularity and provide a full
and complete class in the sense of [5] by using the process’ own harmonic analysis.
More precisely, we use the fact that, for all u 2 V C iV , for which x 7! ehu;xi is a
bounded function on D, the map

x 7!
Z �

0

Ex

h
ehu;Xsi

i
ds; � > 0

always lies in the domain of the extended infinitesimal generator of any time-
homogeneous Markov process X . The particular form of Ex

�
ehu;Xsi	 in the case

of affine processes then allows to show that the domain of the extended generator
actually contains a full and complete class. This in turn implies on the one hand the
semimartingale property (up to the lifetime of the affine process) and on the other
hand the absolute continuity of the involved characteristics with respect to the
Lebesgue measure. The final proof of regularity then builds to a large extent on
these results.

The remainder of the article is organized as follows. In Sect. 2 we define affine
processes on general state spaces and derive some fundamental properties of the
functions ˚ and  . Sections 3 and 4 are devoted to show the existence of a
càdlàg version and the right-continuity of the appropriately augmented filtration.
The results on the semimartingale nature of affine process are established in Sect. 5
and are used in Sect. 6 for the proof of regularity.

2 Affine Processes on General State Spaces

We define affine processes as a particular class of time-homogeneous Markov
processes with state space D  V , some closed, non-empty subset of an
n-dimensional real vector space V with scalar product h�; �i. Symmetric matrices
and the positive semidefinite matrices on V are denoted by S.V / and SC.V /,
respectively. We write RC for Œ0;1/, RCC for .0;1/ and QC for nonnegative
rational numbers. For the stochastic background and notation we refer to standard
text books such as [20] and [29].

To further clarify notation, we find it useful to recall in this section the basic
ingredients of the theory of time-homogeneous Markov processes and the particular
conventions being made in this article (compare [2, Chap. 1.3], [7, Chap. 1.2],
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[15, Chap. 4], [30, Chap. 3, Definition 1.1]). Throughout,D denotes a closed subset
of V and D its Borel �-algebra. Since we shall not assume the process to be
conservative, we adjoin to the state space D a point � … D, called cemetery state,
and set D� D D [ f�g as well as D� D �.D ; f�g/. We make the convention that
k�k WD 1, where k � k denotes the norm induced by the scalar product h�; �i, and
we set f .�/ D 0 for any other function f on D. Moreover, in order to allow for
exploding processes we shall also deal with a “point at infinity”, denoted by 1, and
D� [ f1g then corresponds to the one-point compactification of D�. If the state
spaceD is compact, we do not adjoin f1g, since explosion is anyway not possible.

Consider the following objects on a space ˝:

(i) A stochastic process X D .Xt /t	0 taking values in D� such that

if Xs.!/ D �; then Xt.!/ D � for all t 
 s and all ! 2 ˝: (3)

(ii) The filtration generated by X , that is, F 0
t D �.Xs; s � t/, where we set

F 0 D W
t2RC

F 0
t .

(iii) A family of probability measures .Px/x2D� on .˝;F 0/.

In the course of the article, we shall show that the “point at infinity” 1 can be
identified with�, since it will turn out that property (3) also holds true for 1 in our
case.

Definition 1 (Markov process). A time-homogeneous Markov process

X D �
˝; .F 0

t /t	0; .Xt/t	0; .pt /t	0; .Px/x2D�
�

with state space .D;D/ (augmented by �) is a D�-valued stochastic process
such that, for all s; t 
 0, x 2 D� and all bounded D�-measurable functions
f W D� ! R,

Ex

�
f .XtCs/jF 0

s

	 D EXs Œf .Xt /� D
Z
D

f .�/pt .Xs; d�/; Px-a.s. (4)

Here, Ex denotes the expectation with respect to Px and .pt /t	0 is a transition
function on .D�;D�/. A transition function is a family of kernels pt W D� �D� !
Œ0; 1� such that

(i) for all t 
 0 and x 2 D�, pt .x; �/ is a measure on D� with pt .x;D/ � 1,
pt .x; f�g/ D 1 � pt .x;D/ and pt .�; f�g/ D 1;

(ii) for all x 2 D�, p0.x; �/ D ıx.�/, where ıx.�/ denotes the Dirac measure at x;
(iii) for all t 
 0 and � 2 D�, x 7! pt .x; � / is D�-measurable;
(iv) for all s; t 
 0, x 2 D� and � 2 D�, the Chapman–Kolmogorov equation

holds, that is,

ptCs.x; � / D
Z
D�

ps.x; d�/pt .�; � /:
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If .Ft /t	0 is a filtration with F 0
t � Ft , t 
 0, then X is a time-homogeneous

Markov process relative to .Ft / if (4) holds with F 0
s replaced by Fs .

We can alternatively think of the transition function as inducing a measurable
contraction semigroup .Pt /t	0 defined by

Ptf .x/ WD ExŒf .Xt /� D
Z
D

f .�/pt .x; d�/; x 2 D�;

for all bounded D�-measurable functions f W D� ! R.

Remark 1. (i) Note that, in contrast to [12], we do not assume ˝ to be the
canonical space of all functions ! W RC ! D�, but work on some general
probability space.

(ii) Since we have pt.x; � / D PxŒXt 2 � � for all t 
 0, x 2 D� and � 2 D�,
property (ii) and (iii) of the transition function, imply PxŒX0 D x� D 1 for all
x 2 D� and measurability of the map x 7! PxŒXt 2 � � for all t 
 0 and
� 2 D�.

For the following definition of affine processes, let us introduce the set U
defined by

U D
n
u 2 V C iV

ˇ̌
ehu;xi is a bounded function on D

o
: (5)

Clearly iV  U . Here, the set iV stands for purely imaginary elements and h�; �i is
the extension of the real scalar product to V Ci V , but without complex conjugation.
Moreover, we denote by p the dimension of Re U and write hRe U i for its (real)
linear hull and hRe U i? for its orthogonal complement in V . The set i hRe U i? �
U corresponds to the purely imaginary directions of U . Finally, for some linear
subspaceW � V , ˘W W V ! V denotes the orthogonal projection on W , which is
extended to V C iV by linearity, i.e., ˘W .v1 C i v2/ WD ˘W v1 C i˘W v2.

Furthermore we need the sets

U m D
�

u 2 V C iV j sup
x2D

ehReu;xi � m

�
; m 
 1;

and note that U D S
m	1U m and iV  U m for all m 
 1.

Assumption 1. Recall that dimV D n. We suppose that the state spaceD contains
at least n C 1 affinely independent elements x1; : : : ; xnC1, that is, the n vectors
.x1 � xj ; : : : ; xj�1 � xj ; xjC1 � xj ; : : : ; xnC1 � xj / are linearly independent for
every j 2 f1; : : : ; nC 1g.

We are now prepared to give our main definition:

Definition 2 (Affine process). A time-homogeneous Markov process X relative
to some filtration .Ft / and with state space .D;D/ (augmented by �) is called
affine if
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(i) it is stochastically continuous, that is, lims!t ps.x; �/ D pt .x; �/ weakly on D
for every t 
 0 and x 2 D, and

(ii) its Fourier–Laplace transform has exponential affine dependence on the initial
state. This means that there exist functions ˚ W RC � U ! C and  W RC �
U ! V C iV such that, for every x 2 D and m 
 1, the map .t; u/ 7!
h .t; u/; xi is locally continuous on the subset of RC � U m where ˚ does not
vanish, and

Ex

h
ehu;Xt i

i
D Ptehu;xi D

Z
D

ehu;�ipt.x; d�/ D ˚.t; u/eh .t;u/;xi; (6)

for all x 2 D and .t; u/ 2 RC � U .

Remark 2. (i) The above definition differs in four crucial details from the defini-
tions given in [12, Definition 2.1, Definition 12.1].2

a. First, therein the right hand side of (6) is defined in terms of a function
�.t; u/, namely as e�.t;u/Ch .t;u/;xi, such that the function ˚.t; u/ in our
definition corresponds to e�.t;u/. Our definition is in line with the one given
in [21] and [22, 23] and differs from the one in [12], as we do not require
˚.t; u/ ¤ 0 a priori. However, since all affine processes onD D R

mC�R
n�m

are infinitely divisible (see [12, Theorem 2.15]), it turns out with hindsight
that setting ˚.t; u/ D e�.t;u/ is actually no restriction.

b. Second, we assume that the affine property (6) holds for all u 2 U , whereas
on the canonical state space D D R

mC � R
n�m it is restricted to iRn

(see [12]). This however turns out to imply the affine property (6) also on U .
c. Third, in contrast to [12], we take stochastic continuity as part of the

definition of an affine process. We remark that there are simple examples of
Markov processes which satisfy Definition 2 (ii), but are not stochastically
continuous (see [12, Remark 2.11]).

d. Fourth, due to the general structure of the state space D, we decided to
assume local continuity of .t; u/ 7! h .t; u/; xi on the subset of RC � U m

where ˚ does not vanish, which we denote by Qm D f.t; u/ 2 RC �
U m j˚.s; u/ ¤ 0; for all s 2 Œ0; t �g in the sequel. This condition could be
replaced by the following weaker requirement: For every m 
 1 and all
.t0; u0; x/ 2 Qm � D, there exists some neighborhood U such that for all
.t; u/ 2 U

jhIm .t; u/; xi � hIm .t0; u0/; xij < �: (7)

Indeed, in order to conclude the existence of a unique continuous choice
for ˚ and  on Qm, this is the only condition needed in the proof of

2In Definition 2.1 affine processes on the canonical state space D D R
m
C

� R
n�m are considered,

whereas in Definition 12.1 the state space D can be an arbitrary subset of Rn.
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Proposition 1 below. Notice that in many cases the mere existence of ˚
and  satisfying (6) is sufficient for the existence of a continuous selection,
e.g., for star shaped spacesD.

(ii) Let us remark that the assumption of a closed state space is no restriction.
Indeed, if an affine process is defined on some state space D, which is only
supposed to be an arbitrary Borel subset of V as done in [23], then the
affine property (6) extends automatically to D: Let .xk/k2N be a sequence
in D converging to some x 2 D. Due to the exponential affine form of
the characteristic function, we have for all t 2 RC and u 2 iV

Exn

h
ehu;Xt i

i
D ˚.t; u/eh .t;u/;xni ! ˚.t; u/eh .t;u/;xi:

Since the left hand side is continuous in u, the same holds true for the right
hand side. Whence Lévy’s continuity theorem implies that the right hand
side is a characteristic function of some substochastic measure pt .x; �/ on
D, which is the weak limit of pt .xn; �/. As stochastic continuity and the
Chapman–Kolmogorov equations extend to D, and since weak convergence
implies the convergence of the Fourier–Laplace transforms on U , we thus have
constructed an affine process with state space D.

(iii) Note furthermore that Assumption 1 is no restriction, since we can always
pass to a lower dimensional ambient vector space if D does not contain nC 1

affinely independent elements. Moreover, note also that we do not exclude
compact state spaces. For examples of affine processes on compact state spaces
we refer to Remark 13.

(iv) We finally remark that in Sect. 3 we consider affine processes on the filtered
space .˝;F 0;F 0

t /, where F 0
t denotes the natural filtration and F 0 DW

t2RC
F 0
t , as introduced above. However, we shall progressively enlarge the

filtration by augmenting with the respective null-sets.

Proposition 1. Let X be an affine process relative to some filtration .Ft /. Then we
have the following properties:

(i) If we set ˚.0; u/ D 1 and  .0; u/ D u for all u 2 U , then there is a unique
choice˚ and in (6) such that˚ , are jointly continuous on Qm D f.t; u/ 2
RC � U m j˚.s; u/ ¤ 0; for all s 2 Œ0; t �g for m 
 1.

(ii)  maps the set O D f.t; u/ 2 RC � U j˚.t; u/ ¤ 0g to U .
(iii) The functions ˚ and  satisfy the semiflow property: Let u 2 U and t; s 
 0.

Suppose that ˚.t C s; u/ ¤ 0, then also ˚.t; u/ ¤ 0 and ˚.s;  .t; u// ¤ 0

and we have

˚.t C s; u/ D ˚.t; u/˚.s;  .t; u//;

 .t C s; u/ D  .s;  .t; u//:
(8)
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Proof. Fix m 
 1. It follows e.g. from [1, Lemma 23.7] that stochastic continuity
ofX implies joint continuity of .t; u/ 7! Ptehu;xi on RC �U m for all x 2 D. Hence
.t; u/ 7! ˚.t; u/eh .t;u/;xi is jointly continuous on RC � U m for every x 2 D. By
Assumption 1 on the state space D, this in turn yields a unique continuous choice
of the functions .t; u/ 7! ˚.t; u/ and .t; u/ 7!  .t; u/ on Qm. Indeed, by [23,
Proposition 2.4], we know that for every x 2 D there exists a unique continuous
logarithm g.xI �; �/ W Qm ! C, .t; u/ 7! g.xI t; u/ such that for all .t; u; x/ 2
Qm �D

eg.xIt;u/ D ˚.t; u/eh .t;u/;xi;

with g.xI 0; 0/ D 0 holds true. Without loss of generality we suppose 0 2 D, then
it follows that ˚.t; u/ D eg.0It;u/ DW e�.t;u/, is continuous in .t; u/.

Setting h.xI t; u/ WD g.xI t; u/� �.t; u/, with �.t; u; / WD g.0I t; u/, we have for
all .t; u; x/ 2 Qm �D

eh.xIt;u/ D eh .t;u/;xi; (9)

whence

h.xI t; u/ D h .t; u/; xi C 2� i k.t; u; x/; k.t; u; x/ 2 Z: (10)

Moreover, the local continuity assumption on .t; u/ 7! h .t; u/; xi implies that for
all .t0; u0; x/ there exists some neighborhood around .t0; u0/ such that

.t; u/ 7! h .t; u/; xi

is continuous.3 Since k.t; u; x/ 2 Z, it follows that k.t; u; x/ D k.x/ on Qm. Setting
t D 0 and u D 0 in (10) thus yields for all x 2 D

h.xI 0; 0/� 2� ik.x/ D �2� i k.x/ D 0;

and in particular a unique continuous specification of .t; u/ 7!  .t; u/, since

h.xI t; u/ D h .t; u/; xi

can be uniquely solved for due to Assumption 1. The choice of ˚ and certainly
does not depend on m but only on the initial conditions for t D 0.

3Due to relation (9) and the continuity of .t; u/ 7! h.xI t; u/, this is also implied by the weaker
condition (7).
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Concerning (ii), let .t; u/ 2 O D f.t; u/ 2 RC � U j˚.t; u/ ¤ 0g. Since

ˇ̌
ˇ˚.t; u/eh .t;u/;xi

ˇ̌
ˇ D

ˇ̌
ˇEx

h
ehu;Xt i

iˇ̌
ˇ � Ex

hˇ̌
ˇehu;Xt i

ˇ̌
ˇ
i

is bounded onD and as ˚.t; u/ ¤ 0, we conclude that  .t; u/ 2 U .
Assumption ˚.t C s; u/ ¤ 0 in (iii) implies

Ex

h
ehu;XtCsi

i
D ˚.t C s; u/eh .tCs;u/;xi ¤ 0: (11)

By the law of iterated expectations and the Markov property, we thus have

Ex

h
ehu;XtCsi

i
D Ex

h
Ex

h
ehu;XtCsi

ˇ̌
ˇFs

ii
D Ex

h
EXs

h
ehu;Xt i

ii
: (12)

If˚.t; u/ D 0 or˚.s;  .t; u// D 0, then the inner or the outer expectation evaluates
to 0. This implies that the whole expression is 0, which contradicts (11). Hence
˚.t; u/ ¤ 0 and ˚.s;  .t; u// ¤ 0 and we can write (12) as

Ex

h
ehu;XtCsi

i
D Ex

h
˚.t; u/eh .t;u/;Xsi

i
D ˚.t; u/˚.s;  .t; u//eh .s; .t;u//;xi:

Comparing with (11) yields the claim by uniqueness of ˚ and  . ut
Remark 3. Henceforth, the symbols ˚ and  always correspond to the unique
choice as established in Proposition 1.

3 Affine Processes Have a Càdlàg Version

The aim of this section is to show that the definition of an affine process already
implies the existence of a càdlàg version. This is the core section of this article
and of a remarkable subtlety, which is maybe less surprising if one considers the
generality of the question. So far we do not know whether general affine processes
are Feller processes. If the Feller property held true, this would allow us to conclude
the existence of a càdlàg version. Moreover, we also cannot apply the most general
standard criteria for the existence of càdlàg versions, as for instance described in
[16, Theorem I.6.2].

Our approach to the problem is inspired by martingale regularization for a lot of
“test martingales”, from which we want to conclude path properties of the original
stochastic process. The main difficulty here is that explosions and/or killing might
appear.

Indeed, for every fixed x 2 D, we first establish that for Px-almost every !

t 7! MT;u
t .!/ WD ˚.T � t; u/eh .T�t;u/;Xt .!/i; t 2 Œ0; T �;
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is the restriction to QC \ Œ0; T � of a càdlàg function for almost all .T; u/ 2 .0;1/�
U , in the sense that MT;u

t D 0 if ˚.T � t; u/ D 0. This is an application of Doob’s
regularity theorem for supermartingales, where we can conclude—using Fubini’s
theorem—that there exists a Px-null-set outside of which we observe appropriately
regular trajectories for almost all .T; u/.

Proposition 2. Let x 2 D be fixed and let X be an affine process relative to .F 0
t /.

Then

lim
q2QC

q#t
M T;u
q D lim

q2QC

q#t
˚.T � q; u/eh .T�q;u/;Xqi; t 2 Œ0; T �;

exists Px-a.s. for almost all .T; u/ 2 .0;1/� U and defines a càdlàg function in t .

Proof. In order to prove this result, we adapt parts of the proof of [28, Theorem
I.4.30] to our setting. Due to the law of iterated expectations

MT;u
t D ˚.T � t; u/eh .T�t;u/;Xt i D Ex

h
ehu;XT i ˇ̌F 0

t

i
; t 2 Œ0; T �;

is a (complex-valued) .F 0
t ;Px/-martingale for every u 2 U and every T > 0. From

Doob’s regularity theorem (see, e.g., [30, Theorem II.65.1]) it then follows that, for
any fixed .T; u/, the function t 7! MT;u

t .!/, with t 2 QC \ Œ0; T �, is the restriction
to QC \ Œ0; T � of a càdlàg function for Px-almost every !. Define now the set

� D f.!; T; u/ 2 ˝ � .0;1/ � U j t 7! M
T;u
t .!/; t 2 QC \ Œ0; T �;

is not the restriction of a càdlàg functiong: (13)

Then � is a F 0 ˝ B..0;1/ � U /-measurable set. Due to the above argument
concerning regular versions of (super-)martingales,

R
˝
1� .!; T; u/Px.d!/ D 0 for

any .T; u/ 2 .0;1/� U . By Fubini’s theorem, we therefore have

Z
˝

Z
.0;1/�U

1� .!; T; u/d�Px.d!/ D
Z
.0;1/�U

Z
˝

1� .!; T; u/Px.d!/ d� D 0;

where � denotes the Lebesgue measure. Hence, for Px-almost every !, t 7!
M

T;u
t .!/ with t 2 QC \ Œ0; T �, is the restriction of a càdlàg function for �-almost

all .T; u/ 2 .0;1/ � U , which proves the result. ut
Having established path regularity of the martingales MT;u, we want to deduce

the same for the affine processX . This is the purpose of the subsequent lemmas and
propositions, for which we need to introduce the following sets:

e̋ is the projection of f˝ � .0;1/ � iV g n � onto ˝; (14)

T is the projection of f˝ � .0;1/ � iV g n � onto .0;1/; (15)
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V is the projection of f˝ � .0;1/ � U g n � onto U ; (16)

V m is the projection of f˝ � .0;1/ � U mg n � onto U m; (17)

where � is given in (13). Denoting by F x the completion of F 0 with respect to Px ,
let us remark that the measurable projection theorem implies that e̋ 2 F x and by
the above proposition we have PxŒe̋ � D 1.

The following lemma is needed to prove Proposition 3 below which is essential
for establishing the existence of a càdlàg version of X .

Lemma 1. Let  be given by (6) and assume that there exists some D-valued
sequence .xk/k2N such that

lim
k!1˘hRe U ixk DW lim

k!1yk (18)

exists finitely valued and

lim sup
k!1

k˘hRe U i?xkk D 1: (19)

(i) Then we can choose a subsequence of .xk/ denoted again by .xk/: along this
sequence there exist a finite number of mutually orthogonal directions gi 2
hRe U i? of length 1 such that

xk �
X
i

hxk; gi igi

converges as k ! 1 and hxk; gi i diverges as k ! 1, where the rates of
divergence are non-increasing in i in the sense that

lim sup
k!1

hxk; giC1i
hxk; gi i < 1:

(ii) Moreover, let T > 0 be fixed and let r > 0 such that ˚.t; u/ ¤ 0 for all
.t; u/ 2 Œ0; T � � Br , where Br denotes the ball with radius r in iV , i.e.

Br D fu 2 iV j kuk < rg:

Then, there exist continuous functions R W Œ0; T � ! RCC and �i W Œ0; T � ! V

such that

h .t; u/; gi i D h�i.t/; ui

for all u 2 BR.t/.
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Proof. Concerning the first assertion, we define—by choosing appropriate subse-
quences, still denoted by .xk/—the directions of divergence in hRe U i? induc-
tively by

gr D lim
k!1

xk �Pr�1
iD1hxk; gi igi

kxk �Pr�1
iD1hxk; gi igik

(20)

as long as lim supk!1 kxk � Pr�1
iD1hxk; gi igik D 1. Notice that we can choose

the directions gi mutually orthogonal and the rates of divergence hgi ; xki non-
increasing in i .

For the second part of the statement, we adapt the proof of [22, Lemma 3.1]
to our situation, using in particular the existence of a sequence in D with the
properties (18) and (19). As characteristic function, the map iV 3 u 7! ExŒehu;Xt i�
is positive definite for any x 2 D and t 
 0. Define now for every u 2 Br , x 2 D
and t 2 Œ0; T � the function

�.u; t; x/ D Ex

�
ehu;Xt i	

˚.t; 0/eh˘hRe U i .t;0/;˘hRe U ixi D ˚.t; u/eh .t;u/;xi

˚.t; 0/eh˘hRe U i .t;0/;˘hRe U ixi :

(21)

As Ex
�
eh0;Xt i	 D ˚.t; 0/eh .t;0/;xi is real-valued and positive for all t 2 Œ0; T �, we

conclude—due to Assumption 1 and the continuity of the functions t 7! ˚.t; 0/

and t 7!  .t; 0/—that Im˚.t; 0/ D 0 and Im .t; 0/ D 0 for all t 2 Œ0; T �.
In particular, the denominator in (21) is positive, which implies that Br 3 u 7!
�.u; t; x/ is a positive definite function for all t 2 Œ0; T � and x 2 D. Moreover,
since˘hRe U i? .t; 0/ is purely imaginary and thus in particular 0 for all t 2 Œ0; T �,
it follows that

�.0; t; x/ D exp


h˘hReU i? .t; 0/;˘hRe U i?xi

�
D 1

for all t 2 Œ0; T � and x 2 D. This together with the positive definiteness of u 7!
�.u; t; x/ yields

j�.u C v; t; x/ ��.u; t; x/�.v; t; x/j2 � 1; u; v 2 Br
2
; t 
 0; x 2 D: (22)

Indeed, this inequality is obtained by computing the determinant of the positive
semidefinite matrix

0
@�.0; t; x/ �.u; t; x/ �.v; t; x/

�.u; t; x/ �.0; t; x/ �.u C v; t; x/

�.v; t; x/ �.u C v; t; x/ �.0; t; x/

1
A
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(compare, e.g., [22, Lemma 3.2]). Let us now define y WD ˘hRe U ix and

Z1.u; v; y; t/ D ˚.t; u C v/eh˘hRe U i .t;uCv/;yi

˚.t; 0/eh˘hRe U i .t;0/;yi ;

Z2.u; v; y; t/ D ˚.t; u/˚.t; v/eh˘hRe U i. .t;u/C .t;v//;yi

˚.t; 0/2e2h˘hRe U i .t;0/;yi ;

ˇ1.u; v; t/ D Im.˘hRe U i? .t; u C v//;

ˇ2.u; v; t/ D Im.˘hRe U i? .t; u//C Im.˘hRe U i? .t; v//;

r1.u; v; y; t/ D jZ1j D
ˇ̌
ˇ̌˚.t; u C v/

˚.t; 0/

ˇ̌
ˇ̌ ehRe.˘hRe U i. .t;uCv/� .t;0///;yi;

r2.u; v; y; t/ D jZ2j D
ˇ̌
ˇ̌˚.t; u/˚.t; v/

˚.t; 0/2

ˇ̌
ˇ̌ ehRe.˘hRe U i. .t;u/C .t;v/�2 .t;0///;yi;

˛1.u; v; y; t/ D arg.Z1/ D arg

�
˚.t; u C v/

˚.t; 0/

�

C hIm.˘hRe U i .t; u C v//; yi;

˛2.u; v; y; t/ D arg.Z2/ D arg

�
˚.t; u/˚.t; v/

˚.t; 0/2

�

C hIm.˘hRe U i. .t; u/C  .t; v//; yi:
Using (22) and the fact that 2r1r2 � r21 C r22 , we then obtain

1 

ˇ̌
ˇr1ei.˛1Chˇ1;˘hRe U i?xi/ � r2e

i.˛2Chˇ2;˘hRe U i?xi/ ˇ̌ˇ2

D r21 C r22 � 2r1r2 cos.˛1 � ˛2 C hˇ1 � ˇ2;˘hRe U i?xi/

 2r1r2.1 � cos.˛1 � ˛2 C hˇ1 � ˇ2;˘hRe U i?xi//;

whence

r1.u; v; y; t/r2.u; v; y; t/

�.1�cos.˛1.u; v; y; t/�˛2.u; v; y; t/Chˇ1.u; v; t/�ˇ2.u; v; t/;˘hRe U i?xi// � 1

2
:

(23)

Define now

R.t; y/ D sup
n
� 2

h
0;
r

2

i
j r1.u; v; y; t/r2.u; v; y; t/ > 3

4
for u; v 2 Br

2

with kuk � � and kvk � �
o
:
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Note that R.t; y/ > 0 for all .t; y/ 2 Œ0; T � � ˘hRe U iD, which follows from the
fact that r1.0; 0; y; t/ D r2.0; 0; y; t/ D 1 and the continuity of

.u; v/ 7! r1.u; v; y; t/r2.u; v; y; t/:

Continuity of .t; y/ 7! r1.u; v; y; t/r2.u; v; y; t/ also implies that .t; y/ 7! R.t; y/

is continuous. Set now R.t/ WD infk R.t; yk/ where yk D ˘hRe U ixk . Then (18)
implies that R.t/ > 0 for all t 2 Œ0; T �.

Let now t be fixed and g1 given by (20). Suppose that

hˇ1.u�; v�; t/ � ˇ2.u�; v�; t/; g1i ¤ 0

for some u�; v� 2 BR.t/. Then due to the continuity of ˇ1 and ˇ2, there exists some
ı > 0 such that for all u; v in a neighborhoodOı of .u�; v�/ defined by

Oı D
n

u; v 2 BR.t/ j ku � u�k < ı; kv � v�k < ı and
o
;

we also have

hˇ1.u; v; t/� ˇ2.u; v; t/; g1i ¤ 0: (24)

Moreover, there exist some .u; v/ 2 Oı and some k 2 N such that

cos.˛1.u; v; yk; t/ � ˛2.u; v; yk; t/C hˇ1.u; v; t/ � ˇ2.u; v; t/;˘hRe U i?xki/

D cos

 
arg

�
˚.t; u C v/

˚.t; 0/

�
� arg

�
˚.t; u/˚.t; v/

˚.t; 0/2

�

C hIm.˘hRe U i. .t; u C v/ � Im .t; u/� Im .t; v///; yki (25)

C hˇ1.u; v; t/ � ˇ2.u; v; t/;˘hRe U i?xki
!

� 1

3
;

since yk stays in a bounded set and ˘hRe U i?xk explodes with highest divergence
rate in direction g1. However, inequality (25) now implies that

r1.u; v; yk ; t/r2.u; v; yk; t/

� .1 � cos.˛1.u; v; yk ; t/ � ˛2.u; v; yk ; t/C hˇ1.u; v; t/ � ˇ2.u; v; t/;˘hRe U i
?xki//

>
1

2
;
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which contradicts (23). Since g1 corresponds to the direction of the highest
divergence rate, we thus conclude that

hˇ1.u; v; t/ � ˇ2.u; v; t/; g1i D Im.h .t; u C v/ �  .t; u/ �  .t; v/; g1i/ D 0

for all u; v 2 BR.t/. Continuity of u 7!  .t; u/ therefore implies that u 7! h .t; u/;
g1i is a linear function. Hence there exists a continuous curve of (real) vectors
�1.t/ 2 V such that

h .t; u/; g1i D h�1.t/; ui

for all u 2 BR.t/.
We can now proceed inductively for the remaining directions of divergence gi .

Indeed, assume that hˇ1.u; v; t/ � ˇ2.u; v; t/; gi i D 0 for all i � r � 1 and all
u; v 2 BR.t/. Then repeating the above steps allows us to conclude that hˇ1.u; v; t/�
ˇ2.u; v; t/; gr i D 0 for all u; v 2 BR.t/, yielding the assertion. ut

As introduced before, we denote by p the dimension of Re U . Let now m�
be fixed such that dim.Re U m�

/ D p. For some r > 0, we define K to be the
intersection of V m�

with the closed ball with center 0 and radius r in U , that is,

K WD B.0; r/\ V m� WD fu 2 U j kRe uk2 C kIm uk2 � r2g \ V m�

; (26)

where V m�

is defined in (17). Let now .u1; : : : ; up/ be linearly independent vectors
in K \ Re U and let .upC1; : : : ; un/ be linearly independent vectors in ˘hRe U i?K .
Then, as a consequence of the fact that  .0; u/ D u for all u 2 U � K and the
continuity of t 7!  .t; u/, there exists some ı > 0 such that for every t 2 Œ0; ı/

. .t; u1/; : : : ;  .t; up//

and

.˘hRe U i? .t; upC1/; : : : ;˘hRe U i? .t; un//

are linearly independent.
Moreover, since .t; u/ 7! ˚.t; u/eh .t;u/;xi is jointly continuous on RC � U m�

,
with ˚.0; u/ D 1 and  .0; u/ D u (see Proposition 1), it follows that there exists
some � > 0 such that for all t 2 Œ0; ��

inf
u2K j˚.t; u/j > c and sup

u2K
.kRe .t; u/k2 C kIm .t; u/k2/ < C; (27)

with some positive constants c and C . By fixing these constants and some linearly
independent vectors in K as described above, we define

" WD min.�; ı/: (28)
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Furthermore, let t 
 0 be fixed. Then we denote by IT
t;" the set

IT
t;" WD .t; t C "/\ T ; (29)

where T is defined in (15).

Proposition 3. Let K and IT
t;" be the sets defined in (26) and (29). Consider the

function  given in (6) with the properties of Proposition 1. Let t 
 0 be fixed and
consider a sequence .qk/k2N with values in QC such that qk " t . Moreover, let
.xqk /k2N be a sequence with values in D� [ f1g.4 Then the following assertions
hold:

(i) If for all .T; u/ 2 IT
t;" �K

lim
k!1NT;u

qk
WD lim

k!1 eh .T�qk ;u/;xqk i (30)

exists finitely valued and does not vanish, then also limk!1 xqk exists finitely
valued.

(ii) If there exists some .T; u/ 2 IT
t;" �K such that

lim
k!1NT;u

qk
WD lim

k!1 eh .T�qk ;u/;xqk i D 0;

then we have limk!1 kxqkk D 1.

Moreover, let .qTk /k2N;T2IT
t;"

be a family of sequences with values in QC\Œt; T � such

that qTk # t for every T 2 IT
t;" and the additional property that for every S; T 2 IT

t;" ,
with S < T , there exists some index N 2 N such that, for all k 
 N , qSk�N D qTk .
Then the above assertions hold true for these right limits with qk replaced by qTk .

Remark 4. Concerning assertion (ii) of Proposition 3, note that, e.g. in the case
qk " t , limk!1 kxqkk D 1 corresponds either to explosion or to the possibility
that there exists some index N 2 N such that xqk D � for all k 
 N . In the latter
case we also have, due to the convention k�k D 1, limk!1 kxqkk D 1.

Proof. We start by proving the first assertion (i). Let T 2 IT
t;" be fixed and define

for all u 2 K

A.u/ WD lim sup
k!1

˝
Re .T � qk; u/; xqk

˛
; a.u/ WD lim inf

k!1
˝
Re .T � qk; u/; xqk

˛
:

4As mentioned at the beginning of Sect. 2, 1 corresponds to a “point at infinity” and D� [ f1g
is the one-point compactification of D�. If the state space D is compact, we do not adjoin f1g
and only consider a sequence with values inD�.
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Then there exist subsequences .xqkm / and .xqkl / such that5

A.u/ D lim
m!1

˝
Re .T � qkm; u/; xqkm

˛
;

a.u/ D lim
l!1

D
Re .T � qkl ; u/; xqkl

E
:

First note that A.u/ and a.u/ exist finitely valued for all u 2 K . Indeed, if there is
some u 2 K such that A.u/ D ˙1 or a.u/ D ˙1, then the limit of NT;u

qk
does not

exist, or limk!1NT;u
qk

is either 0 or C1, which contradicts assumption (30). We
now define

r1.u/ D lim
m!1 exp

�˝
Re .T � qkm; u/; xqkm

˛�
;

r2.u/ D lim
l!1 exp


D
Re .T � qkl ; u/; xqkl

E�
;

'm.u/ D ˝
Im .T � qkm; u/; xqkm

˛
;

'l .u/ D
D
Im .T � qkl ; u/; xqkl

E
:

Then the limits of cos.'m.u//, cos.'l .u//, sin.'m.u// and sin.'l .u// necessarily
exist and

r1.u/ lim
m!1 cos.'m.u// D r2.u/ lim

l!1 cos.'l .u//;

r1.u/ lim
m!1 sin.'m.u// D r2.u/ lim

l!1 sin.'l .u//:

This yields r1.u/ D r2.u/ for all u 2 K , since

lim
m!1

�
cos2.'m.u//C sin2.'m.u/

� D lim
l!1

�
cos2.'l .u//C sin2.'l .u/

� D 1:

In particular, we have proved that

lim
k!1

˝
Re .T � qk; u/; xqk

˛
(31)

exists finitely valued and does not vanish for all .T; u/ 2 IT
t;" �K . Choosing linear

independent vectors .u1; : : : ; up/ 2 K \ Re U thus implies that

lim
k!1˘hRe U ixqk

exists finitely valued.

5Note that these subsequences depend on u. For notational convenience we however suppress the
dependence on u.
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Therefore it only remains to focus on ˘hRe U i?xqk . From the above, we know in

particular that for all .T; u/ 2 IT
t;" �K

lim
k!1 e

D
˘

hRe U i? .T�qk ;u/;˘hRe U i?xqk

E
(32)

exists finitely valued and does not vanish. This implies that for all .T; u/ 2 IT
t;" �K

Im
D
˘hRe U i? .T � qk; u/;˘hReU i?xqk

E
D ˛k.T; u/C 2�zk.T; u/; (33)

where ˛k.T; u/ 2 Œ��; �/, ˛.T; u/ WD limk!1 ˛k.T; u/ exists finitely valued and
.zk.T; u//k2N is a sequence with values in Z, which a priori does not necessarily
have a limit and/or limk!1 zk.T; u/ D ˙1.

Let us first assume that

lim sup
k!1

k˘hRe U i?xqkk D 1: (34)

Then we are exactly in the situation of Lemma 1 and the above limit (32) can be
written as

lim
k!1 e


P
i h�i .T�qk/;ui hgi ;xqk iCh˘

hRe U i? .T�qk ;u/;xqk�Pi gi hgi ;xqk ii
�

for all u 2 ˘hRe U i?K with kImuk < P.T /, where P.T / is defined by P.T / WD
infk R.T � qk/ and R and the directions gi are given in Lemma 1 after possibly
selecting a subsequence such that xqk � P

i gi hgi ; xqk i converges as k ! 1.
Note that due to the strict positivity and continuity of R, P.T / is strictly positive
as well. Furthermore, there exists some T � 2 IT

t;" and some set MT�  fu 2
˘hRe U i?K j kImuk < P.T �/; 9 i s.t. h�i.T � � t/; ui ¤ 0g of positive finite
measure such that

lim
k!1

Z
M�
T

e
D
˘

hRe U i? .T ��qk ;u/;xqk�Pi gi hgi ;xqk i
E
e.
P
i h�i .T ��qk/;ui hgi ;xqk i/du ¤ 0:

(35)

However, it follows from the Riemann–Lebesgue Lemma that the previous limit is
zero, whence contradicting (35). We therefore conclude that

lim sup
k!1

k˘hRe U i?xqkk < 1:

This in turn implies that there exists some .T �; u�/ 2 IT
t;" �K andN 2 N such that

for all k 
 N
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Im
D
˘hRe U i? .T � � qk; u�/;˘hRe U i?xqk

E
2 .��; �/:

Indeed, this follows from the fact that for every u 2 K and � > 0 there exists some
T � 2 IT

t;" and N 2 N such that for all k 
 N

kIm.˘hRe U i? .T � � qk; u/�˘hRe U i? u/k � �: (36)

For u� with kIm.˘hRe U i? u�/k sufficiently small and k sufficiently large, we thus
have
ˇ̌
ˇ
D
˘hRe U i?
.T � � qk; u

�/;˘hRe U i?xqk

Eˇ̌
ˇ

� .kIm.˘hRe U i? u�/k C kIm.˘hRe U i?
.T � � qk; u
�/ �˘hRe U i? u�/k/

� .lim sup
k!1

k˘hRe U i?xqkk C 1/

< �:

Hence,

lim
k!1 Im

D
˘hRe U i? .T � � qk; u�/;˘hRe U i?xqk

E
D ˛.T �; u�/: (37)

As we can find n � p linear independent vectors upC1; : : : ; un such that (37) is
satisfied, we conclude that

lim
k!1˘hRe U i?xqk

exists finitely valued. This proves assertion (i).
Concerning the second statement, observe that we have

lim
k!1 eh .T�qk ;u/;xqk i D 0; (38)

if either explosion occurs or if xqN jumps to� for some N 2 N and xqk D � for all
k 
 N . (This happens when the corresponding process is killed.) Indeed, since (38)
is equivalent to limk!1 ehRe .T�qk ;u/;xqk i D 0 and as  .T � t; u/ is bounded on K
due to the definition of IT

t;" , we necessarily have

lim
k!1 kxqkk D 1:

In the case of a jump to �, this is implied by the conventions k�k D 1 and
f .�/ D 0 for any other function.

Similar arguments yield the assertion concerning right limits. ut
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Using Propositions 2 and 3 above, we are now prepared to prove Theorem 2
below, which asserts the existence of a càdlàg version of X . Before stating this
result, let us recall the notion of the (usual) augmentation of .F 0

t / with respect to
Px, which guarantees the càdlàg version to be adapted.

Definition 3 (Usual augmentation). We denote by F x the completion of F 0 with
respect to Px. A sub-�-algebra G � F x is called augmented with respect to Px if
G contains all Px-null-sets in F x . The augmentation of F 0

t with respect to Px is
denoted by F x

t , that is, F x
t D �.F 0

t ;N .F x//, where N .F x/ denotes all Px-
null-sets in F x .

Theorem 2. LetX be an affine process relative to .F 0
t /. Then there exists a process

QX such that, for each x 2 D�, QX is a Px-version ofX , which is càdlàg inD�[f1g
(in D� respectively if D is compact) and an affine process relative to .F x

t /. As
before, 1 corresponds to a “point at infinity” and D� [ f1g is the one-point
compactification of D�, if D is non-compact.

Remark 5. We here establish the existence of a càdlàg version QX whose sample
paths may take 1 as left limiting value if D is non-compact. A priori, we cannot
identify QXs�.!/ with �, whenever k QXs�.!/k D 1. Indeed, QXt.!/ might become
finitely valued for some t 
 s. This issue is clarified in Theorem 3 below, where
we prove that Px-a.s. k QXtk D 1 for all t 
 s and all s > 0 if k QXs�k D 1. In
particular, this allows us to identify 1 with �.

In the case QXs D �, which happens when the process is killed, Assumption (3)
guarantees that QXt D � for all t 
 s and all s > 0.

Proof. It follows from Proposition 2 that for every ! 2 e̋ ,6 where PxŒe̋ � D 1,

t 7! MT;u
t .!/ WD ˚.T � t; u/eh .T�t;u/;Xt .!/i; t 2 Œ0; T �;

is the restriction to QC \ Œ0; T � of a càdlàg function for all .T; u/ 2 T � V . Here,e̋ , T and V are defined in (14), (15) and (16). Hence, for every ! 2 e̋ and all
.T; u/ 2 T � V , the limits

lim
q2QC

q"t
M T;u
q .!/; lim

q2QC

q#t
M T;u
q .!/ (39)

exist finitely valued for all t 2 Œ0; T �.
Let us now show that the same holds true for X . For notational convenience we

first focus on left limits. Consider the setsK and IT
t;" defined in (26) and (29) and let

t 
 0 be fixed. Take some sequence .qk/k2N, as specified in Proposition 3, such that
qk " t . Then there exists someN 2 N such that, for all k 
 N and .T; u/ 2 IT

t;" �K ,
˚.T � qk; u/ ¤ 0. This is a consequence of the definition of " (see (28)). Thus we

6Note that due to the measurable projection theorem, e̋ 2 F x .
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can divide MT;u
qk
.!/ by ˚.T � qk; u/ for all k 
 N and .T; u/ 2 IT

t;" � K . By the

continuity of t 7! ˚.t; u/ and (39), it follows that, for every ! 2 e̋ , the limit

lim
k!1NT;u

qk
.!/ WD lim

k!1 eh .T�qk ;u/;Xqk .!/i

exists finitely valued for all .T; u/ 2 IT
t;" �K . From Proposition 3 we thus deduce

that, for every ! 2 e̋ , the limit

lim
k!1Xqk .!/

exists either finitely valued or limk!1 kXqk .!/k D 1. Using similar arguments
yields the same assertion for right limits. Hence we can conclude that Px-a.s.

QXt D lim
q2QC

q#t
Xq (40)

exists for all t 
 0 and defines a càdlàg function in t .
Let now ˝0 be the set of ! 2 ˝ for which the limit QXt.!/ exists for every t

and defines a càdlàg function in t . Then, as a consequence of [30, Theorem II.62.7,
Corollary II.62.12],˝0 2 F 0 and PxŒ˝0� D 1 for all x 2 D�. For ! 2 ˝ n˝0, we
set QXt.!/ D � for all t . Then QX is a càdlàg process and QXt is F 0-measurable for
every t 
 0. Since X is assumed to be stochastically continuous, we have Xs ! Xt
in probability as s ! t . Using the fact that convergence in probability implies
almost sure convergence along a subsequence, we have

Px

2
64 lim
q2QC

q#t
Xq D Xt

3
75 D 1: (41)

By our definition of QXt , the limit in (41) is equal to QXt on˝0. Hence, for all x 2 D�,
we have PxŒ QXt D Xt � for each t , implying that QX is a version of X . This then also
yields

Ex

h
ehu; QXt i

i
D Ex

h
ehu;Xt i

i

and augmentation of .F 0
t / with respect to Px ensures that QXt 2 F x

t for each t . We
therefore conclude that QX is an affine process with respect to .F x

t /. ut
If D is non-compact, the càdlàg version (40) on D� [ f1g, still denoted by X ,

can be realized on the space ˝ 0 WD D
0.D� [ f1g/ of càdlàg paths ! W RC !

D� [ f1g with !.t/ D � for t 
 s, whenever !.s/ D �. However, we still have
to prove that we can identify 1 with �, as mentioned in Remark 5. In other words,
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we have to show that k!.t/k D 1 for all t 
 s if explosion occurs for some s > 0,
that is, k!.s�/k D 1. This is stated in the Theorem 3 below. For its proof let us
introduce the following notations:

Due to the convention k�k D 1, we define the explosion time by (see [6] for a
similar definition)

Texpl WD
�
T�; if T 0

k < T� for all k;
1; if T 0

k D T� for some k;

where the stopping times T� and T 0
k are given by

T� WD infft > 0 j kXt�k D 1 or kXtk D 1g;
T 0
k WD infft j kXt�k 
 k or kXtk 
 kg; k 
 1:

Moreover, we denote by relint.C / the relative interior of a set C defined by

relint.C / D fx 2 C jB.x; r/ \ aff.C /  C for some r > 0g;

where aff.C / denotes the affine hull of C .

Lemma 2. Let X be an affine process with càdlàg paths in D� [ f1g and let
x 2 D be fixed. If

PxŒTexpl < 1� > 0; (42)

then relint.Re U / ¤ ; and we have Px-a.s.

lim
t"Texpl

ehu;Xt i D 0

for all u 2 relint.Re U /.

Proof. Let us first establish that under Assumption (42), relint Re U ¤ ;. To this
end, we denote by �expl the set

�expl D f! 2 ˝ 0 j Texpl.!/ < 1 g:

Then it follows from Propositions 2 and 3 that, for Px-almost every ! 2 �expl, there
exists some .T .!/; v.!// 2 .Texpl.!/;1/ � iV such that

lim
t"Texpl.!/

˚.T .!/ � t; v.!// ¤ 0

and

lim
t"Texpl.!/

N
T.!/;v.!/
t .!/ D lim

t"Texpl.!/
eh .T .!/�t;v.!//;Xt .!/i D 0: (43)
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This implies that

lim
t"Texpl.!/

hRe .T .!/ � t; v.!//; Xt .!/i D �1; (44)

and in particular that U 3 Re .T .!/ � Texpl.!/; v.!// ¤ 0, which proves the
claim, since Re U  relint.Re U /.

Furthermore, by (44) we have limt"Texpl.!/ k˘hRe U i.Xt .!//k D 1 and an
application of Lemma 3 below yields the second assertion. ut
Lemma 3. Assume that relint.Re U / ¤ ; and that there exists some D-valued
sequence .xk/k2N such that

lim
k!1 k˘hRe U ixkk D 1: (45)

Then limk!1hu; xki D �1 for all u 2 relint.Re U /.

Proof. Suppose by contradiction that there exists some u 2 relint.Re U / such that

lim sup
k!1

hu; xki > �1:

Then there exists a subsequence, still denoted by .xk/, such that

lim
k!1hu; xki > �1: (46)

and due to (45) some direction g 2 hRe U i such that

lim
k!1hg; xki D 1: (47)

Moreover, since u 2 relint.Re U /, there exists some " > 0 such that u C "g 2
relint.Re U /. By the definition of U , we have

sup
x2D

hu C "g; xi < 1:

Due to (47), this however implies that

lim
k!1hu; xki D �1

and contradicts (46). ut
Theorem 3. Let X be an affine process with càdlàg paths in D� [ f1g. Then, for
every x 2 D, the following assertion holds Px-a.s.: If

kXs�k D 1; (48)
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then kXtk D 1 for all t 
 s and s 
 0. Identifying 1 with �, then yields Xt D �

for all t 
 s.

Proof. Let x 2 D be fixed and let u 2 relint.Re U /. Note that by Lemma 2,

relint.Re U / ¤ ;

and that˚.t; u/ and .t; u/ are real-valued functions with values in RCC and Re U ,
respectively. Take now some T > 0 and ı > 0 such that

Px

�
T � ı < Texpl � T

	
> 0;

and  .t; u/ 2 relint.Re U / for all t < ı. Consider the martingale

MT;u
t D ˚.T � t; u/eh .T�t;u/;Xt i; t � T;

which is clearly nonnegative and has càdlàg paths. Moreover, by the choice of ı, it
follows from Lemma 2 and the conventions k�k D 1 and f .�/ D 0 for any other
function that Px-a.s.

MT;u
s� D 0; s 2 .T � ı; T �; (49)

if and only if kXs�k D 1 for s 2 .T � ı; T �. We thus conclude using [30,
Theorem II.78.1] that Px-a.s. MT;u

t D 0 for all t 
 s, which in turn implies that
kXtk D 1 for all t 
 s. This allows us to identify 1 with � and we obtain
Xt D � for all t 
 s. Since T was chosen arbitrarily, the assertion follows. ut

Combining Theorems 2 and 3 and using Assumption (3), we thus obtain the
following statement:

Corollary 1. Let X be an affine process relative to .F 0
t /. Then there exists a

process QX such that, for each x 2 D�, QX is a Px-version of X , which is an affine
process relative to .F x

t /, whose paths are càdlàg and satisfy Px-a.s. QXt D � for
t 
 s, whenever k QXs�k D 1 or k QXsk D 1.

Remark 6. We will henceforth always assume that we are using the càdlàg version
of an affine process, given in Corollary 1, which we still denote by X . Under this
assumption X can now be realized on the space ˝ D D.D�/ of càdlàg paths ! W
RC ! D� with !.t/ D � for t 
 s, whenever k!.s�/k D 1 or k!.s/k D 1.
The canonical realization of an affine process X is then defined by Xt.!/ D !.t/.
Moreover, we make the convention that X1 D �, which allows us to write certain
formulas without restriction.
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4 Right-Continuity of the Filtration and Strong
Markov Property

Using the existence of a right-continuous version of an affine process, we can now
show that .F x

t /, that is, the augmentation of .F 0
t / with respect to Px , is right-

continuous.

Theorem 4. Let x 2 D be fixed and let X be an affine process relative to .F x
t /

with càdlàg paths. Then .F x
t / is right-continuous.

Proof. We adapt the proof of [28, Theorem I.4.31] to our setting. We have to show
that for every t 
 0, F x

tC D F x
t , where F x

tC D T
s>t F

x
t . Since the filtration is

increasing, it suffices to show that F x
t D T

n	1F x

tC 1
n

. In particular, we only need

to prove that

Ex

h
ehu1;Xt1 iC���Chuk;Xtk i

ˇ̌
ˇF x

t

i
D Ex

h
ehu1;Xt1 iC���Chuk;Xtn i

ˇ̌
ˇF x

tC
i

(50)

for all .t1; : : : ; tk/ and all .u1; : : : ; uk/ with ti 2 RC and ui 2 U , since this implies
ExŒZjF x

t � D ExŒZjF x
tC� for every bounded Z 2 F x . As both F x

tC and F x
t

contain the nullsets N .F x/, this then already yields F x
tC D F x

t for all t 
 0.
In order to prove (50), let t 
 0 be fixed and take first t1 � t2 � � � � tk � t . Then

we have for all .u1; : : : ; uk/

Ex

h
ehu1;Xt1 iC���Chuk;Xtk i

ˇ̌
ˇF x

t

i
D Ex

h
ehu1;Xt1 iC���Chuk;Xtk i

ˇ̌
ˇF x

tC
i

D ehu1;Xt1 iC���Chuk;Xtk i:

In the case tk > tk�1 � � � > t1 > t , we give the proof for k D 2 for notational
convenience. Let t2 > t1 > t and fix u1; u2 2 U . Then we have by the affine
property

Ex

h
ehu1;Xt1 iChu2;Xt2 i

ˇ̌
ˇF x

tC
i

D lim
s#t

Ex

h
ehu1;Xt1 iChu2;Xt2 i

ˇ̌
ˇF x

s

i

D lim
s#t

Ex

h
Ex

h
ehu1;Xt1 iChu2;Xt2 i

ˇ̌
ˇF x

t1

i ˇ̌
ˇF x

s

i

D ˚.t2 � t1; u2/ lim
s#t

Ex

h
ehu1C .t2�t1;u2/;Xt1 i

ˇ̌
ˇF x

s

i
:

If ˚.t2 � t1; u2/ D 0, it follows by the same step that

Ex

h
ehu1;Xt1 iChu2;Xt2 i

ˇ̌
ˇF x

t

i
D 0;
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too. Otherwise, we have by Proposition 1 (ii),  .t2 � t1; u2/ 2 U , and by the
definition of U also u1 C  .t2 � t1; u2/ 2 U . Hence, again by the affine property
and right-continuity of t 7! Xt.!/, the above becomes

Ex

h
ehu1;Xt1 iChu2;Xt2 i

ˇ̌
ˇF x

tC
i

D ˚.t2 � t1; u2/ lim
s#t
˚.t1 � s; u1 C  .t2 � t1; u2//eh .t1�s;u1C .t2�t1;u2//;Xsi

D ˚.t2 � t1; u2/˚.t1 � t; u1 C  .t2 � t1; u2//eh .t1�t;u1C .t2�t1;u2//;Xt i

D Ex

h
ehu1;Xt1 iChu2;Xt2 i

ˇ̌
ˇF x

t

i
:

This yields (50) and by the above arguments we conclude that F x
tC D F x

t for all
t 
 0. ut
Remark 7. A consequence of Theorem 4 is that .˝;Ft ; .F x

t /;Px/ satisfies the
usual conditions, since

(i) F x is Px-complete,
(ii) F x

0 contains all Px-null-sets in F x ,
(iii) .F x

t / is right-continuous.

Let us now set

F WD
\
x2D�

F x; Ft WD
\
x2D�

F x
t : (51)

Then .˝;F ; .Ft /;Px/ does not necessarily satisfy the usual conditions, but Ft D
FtC still holds true. Moreover, it follows e.g. from [29, Proposition III.2.12,
III.2.14] that, for each t , Xt is Ft -measurable and a Markov process with respect
to .Ft /.

Unless otherwise mentioned, we henceforth always consider affine processes on
the filtered space .˝;F ; .Ft //, where˝ D D.D�/, as described in Remark 6, and
F , Ft are given by (51). Notice that these assumptions on the probability space
correspond to the standard setting considered for Feller processes (compare [30,
Definition III.7.16, III.9.2]).

Similar as in the case of Feller processes, we can now formulate and prove the
strong Markov property for affine processes using the above setting and in particular
the right-continuity of the sample paths.

Theorem 5. Let X be an affine process and let T be a .Ft /-stopping time. Then
for each bounded Borel measurable function f and s 
 0

Ex Œf .XTCs/jFT � D EXT Œf .Xs/� ; Px-a.s.
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Proof. This result can be shown by the same arguments used to prove the strong
Markov property of Feller processes (see, e.g., [30, Theorem 8.3, Theorem 9.4]),
namely by using a dyadic approximation of the stopping time T and applying the
Markov property. Instead of using C0-functions and the Feller property, we here
consider the family of functions fx 7! ehu;xi j u 2 iV g and the affine property,
which asserts in particular that

x 7! Ex

h
ehu;Xt i

i
D Pt e

hu;xi D ˚.t; u/eh .t;u/;xi

is continuous. This together with the right-continuity of paths then implies for every
� 2 FT and u 2 iV

Ex

h
ehu;XTCsi1�

i
D Ex

h
Psehu;XT i1�

i
:

The assertion then follows by the same arguments as in [30, Theorem 8.3] or [7,
Theorem 2.3.1]. ut

5 Semimartingale Property

We shall now relate affine processes to semimartingales, where, for every x 2 D,
semimartingales are understood with respect to the filtered probability space
.˝;F ; .Ft /;Px/ defined above. By convention, we call X a semimartingale
if X1Œ0;T�/ is a semimartingale, where—as a consequence of Theorem 3 and
Corollary 1—we can now define the lifetime T� by

T�.!/ D infft > 0 jXt.!/ D �g: (52)

Let us start with the following definition for general Markov processes (com-
pare [5, Definition 7.1]):

Definition 4 (Extended Generator). An operator G with domain DG is called
extended generator for a Markov process X (relative to some filtration .Ft /) if
DG consists of those Borel measurable functions f W D ! C for which there exists
a function G f such that the process

f .Xt /� f .x/ �
Z t

0

G f .Xs�/ds

is a well-defined and .Ft ;Px/-local martingale for every x 2 D�.

In the following lemma we consider a particular class of functions for which it is
possible to state the form of the extended generator for a Markov process in terms
of its semigroup.
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Lemma 4. Let X be a D�-valued Markov process relative to some filtration .Ft /.
Suppose that u 2 U and � > 0. Consider the function

gu;� W D ! C; x 7! gu;�.x/ WD 1

�

Z �

0

Psehu;xids:

Then, for every x 2 D,

M u
t WD gu;�.Xt/ � gu;�.X0/�

Z t

0

1

�



P�ehu;Xs�i � ehu;Xs�i� ds

is a (complex-valued) .Ft ;Px/-martingale and thus gu;�.X/ is a (complex-valued)
special semimartingale.

Proof. Since gu;� and P�ehu;�i � ehu;�i are bounded, M u
t is integrable for each t and

we have

Ex

�
M u
t jFr

	

D M u
r C Ex

�
gu;�.Xt /� gu;�.Xr/ �

Z t

r

1

�



P�ehu;Xs�i � ehu;Xs�i

�
ds
ˇ̌
ˇFr



D M u
r C EXr

�
gu;�.Xt�r / � gu;�.X0/ �

Z t�r

0

1

�



P�ehu;Xs�i � ehu;Xs�i

�
ds



D M u
r C 1

�

Z t�rC�

t�r
Pse

hu;Xr ids � 1

�

Z �

0

Pse
hu;Xr ids

� 1

�

Z t�rC�

�

Psehu;Xr ids C 1

�

Z t�r

0

Psehu;Xr ids

D M u
r :

Hence M u is .Ft ;Px/-martingale and thus gu;�.X/ is a special semimartingale,
since it is the sum of a martingale and a predictable finite variation process. ut
Remark 8. Lemma 4 asserts that the extended generator applied to gu;� is given by
G gu;�.x/ D 1

�

�
P�ehu;xi � ehu;xi�. Note that for general Markov processes and even

for affine processes we do not know whether the “pointwise” infinitesimal generator
applied to

ehu;xi D lim
�!0

gu;� D lim
�!0

1

�

Z �

0

Pse
hu;xids;

that is,

lim
�!0

1

�



P�ehu;xi � ehu;xi

�
;
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is well-defined or not.7 For this reason we consider the family of functions fx 7!
gu;�.x/ j u 2 U ; � > 0g, which exhibits in the case of affine processes similar
properties as fx 7! ehu;xi j u 2 U g (see Remark 9 (ii) and Lemma 5 below). These
properties are introduced in the following definitions (compare [5, Definition 7.7,
7.8]).

Definition 5 (Full Class). A class C of Borel measurable functions fromD to C is
said to be a full class if, for all r 2 N, there exists a finite family ff1; : : : ; fN g 2 C
and a function h 2 C2.CN ;D/ such that

x D h.f1.x/; : : : ; fN .x// (53)

for all x 2 D with kxk � r .

Definition 6 (Complete Class). Let ˇ 2 V , � 2 SC.V /, where SC.V / denotes
the positive semidefinite matrices over V , and let F be a nonnegative measure on
V , which integrates .k�k2 ^ 1/, satisfies F.f0g/ D 0 and x C supp.F /  D� for
all x 2 D. Moreover, let � W V ! V denote some truncation function, that is, �
is bounded and satisfies �.�/ D � in a neighborhood of 0. A countable subset of
functions QC � C2

b .D/ is called complete if, for any fixed x 2 D, the countable
collection of numbers

.f .x// D hˇ;rf .x/i C 1

2

X
i;j

�ijDij f .x/

C
Z
V

.f .x C �/ � f .x/ � hrf .x/; �.�/i/ F.d�/; f 2 QC (54)

completely determines ˇ, � and F . A class C of Borel measurable functions from
D to C is said to be complete class if it contains such a countable set.

Remark 9. (i) Note that the integral in (54) is well-defined for all f 2 C2
b .D/.

This is a consequence of the integrability assumption and the fact that x C
supp.F / is supposed to lie in D� for all x.

(ii) The class of functions

C � WD
n
D ! C; x 7! ehu;xi ˇ̌ u 2 iV

o
(55)

is a full and complete class. Indeed, for every x 2 D with kxk � r , we can find
n linearly independent vectors .u1; : : : ; un/ such that

Imhui ; xi 2
h
��
2
;
�

2

i
:

7In the case of affine processes, this would be implied by the differentiability of ˚ and  with
respect to t , which we only prove in Sect. 6 using the results of this paragraph.
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This implies that x is given by

x D



arcsin



Im ehu1;xi� ; : : : ; arcsin



Im ehun;xi�� .Im u1; : : : ; Im un/
�1

and proves that C � is a full class. Completeness follows by the same arguments
as in [20, Lemma II.2.44].

Lemma 5. Let X be an affine process with ˚ and  given in (6). Consider the
class of functions

C WD
�
D ! C; x 7! gu;�.x/ WD 1

�

Z �

0

˚.s; u/eh .s;u/;xids
ˇ̌
u 2 iV; � > 0

�
:

(56)

Then C is a full and complete class.

Proof. Let .u1; : : : un/ 2 iV be n linearly independent vectors and define a function
f� W D ! C

n by f�;i .x/ D gui ;�.x/. Then the Jacobi matrix Jf�.x/ is given by

0
BB@

1
�

R �
0
˚.s; u1/eh .s;u1/;xi 1.s; u1/ds : : : 1

�

R �
0
˚.s; u1/eh .s;u1/;xi n.s; u1/ds

:::
: : :

:::
1
�

R �
0
˚.s; un/eh .s;un/;xi 1.s; un/ds : : : 1

�

R �
0
˚.s; un/eh .s;un/;xi n.s; un/ds

1
CCA :

In particular, the imaginary part of each row tends to .cos.Imhui ; xi/Imui /> for
� ! 0. Hence there exists some � > 0 such that the rows of ImJf� are linearly
independent. As Imf� W D ! R

n is a C1.D/-function and as JImf� D ImJf� ,
it follows from the inverse function theorem that, for each x0 2 D, there exists
some r0 > 0 such that Imf� W B.x0; r0/ ! W has a C1.W / inverse, where
W D Imf�.B.x0; r0//.

Let now r 2 N and consider x 2 D with kxk � r . Assume without loss of
generality that 0 2 D and let x0 D 0. Since

lim
�!0

JImf�.x/ D .cos.Imhu1; xi/Im u1; : : : ; cos.Imhun; xi/Im un/
>;

we can assure—by choosing the linearly independent vectors .u1; : : : ; un/ such that
jhui ; xij is small enough—that for all x 2 B.0; r/\D

k lim
�!0

J�1
Imf�.0/ lim

�!0
JImf�.x/ � Ik

Dk.Im u1; : : : ; Im un/
�>.cos.Imhu1; xi/Im u1; : : : ; cos.Imhun; xi/Im un/

>�Ik<1:

By the continuity of the matrix inverse the same holds true for � small enough.
The proof of the inverse function theorem (see, e.g., [19, Theorem 4.2] or [25,
Lemma XIV.1.3]) then implies that r0 can be chosen to be r and C is a full class.
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Concerning completeness, note that

.gu;�.x// D 1

�

Z �

0

˚.s; u/eh .s;u/;xi
 

hˇ; .s; u/i C 1

2
h .s; u/� .s; u/i

C
Z
V



eh .s;u/;�i � 1 � h .s; u/; �.�/i

�
F.d�/

!
ds: (57)

Indeed, by Remark 9 (i), the integral

Z
V

Z �

0

ˇ̌
ˇ˚.s; u/eh .s;u/;xi



eh .s;u/;�i � 1 � h .s; u/; �.�/i

�ˇ̌
ˇ dsF.d�/

is well-defined, whence by Fubini’s theorem we can interchange the integration.
From (57) it thus follows that

lim
�!0

.gu;�.x// D .ehu;xi/

D ehu;xi
 

hˇ; ui C 1

2
hu; �ui C

Z
V



ehu;�i � 1 � hu; �.�/i

�
F.d�/

!
: (58)

Moreover, by [20, Lemma II.2.44] or simply as a consequence of the completeness
of the class C �, as defined in (55), the function u 7! .ehu;xi/ admits a unique
representation of form (58), that is, if .eh�;xi/ also satisfies (58) with . Q̌; Q�; QF /,
then ˇ D Q̌; � D Q� and F D QF . This property carries over to the class C . Indeed,
for every x 2 D, there exists some � > 0 such that ˇ D Q̌; � D Q� and F D QF if
u 7! .gu;�.x// also satisfies (57) with . Q̌; Q�; QF /. This proves that C is a complete
class. ut

In order to establish the semimartingale property of X and to study its character-
istics, we need to handle explosions and killing. Similar to [6], we consider again
the stopping times T� defined in (52) and T 0

k given by

T 0
k WD infft j kXt�k 
 k or kXtk 
 kg; k 
 1:

By the convention k�k D 1, T 0
k � T� for all k 
 1. As a transition to � occurs

either by a jump or by explosion, we additionally define the stopping times:

Tjump D
�
T�; if T 0

k D T� for some k;
1; if T 0

k < T� for all k;

Texpl D
�
T�; if T 0

k < T� for all k;
1; if T 0

k D T� for some k;

Tk D
�
T 0
k; if T 0

k < T�;

1; if T 0
k D T�:

(59)
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Note that fTjump < 1g \ fTexpl < 1g D ; and limk!1 Tk D Texpl with
Tk < Texpl on fTexpl < 1g. Hence Texpl is predictable with announcing sequence
Tk ^ k. In order to turn X into a semimartingale and to get explicit expressions
for the characteristics, we stop X before it explodes, which is possible, since Texpl

is predictable. Note that we cannot stop X before it is killed, as Tjump is totally
inaccessible. For this reason we shall concentrate on the process .X�

t / WD .Xt^� /,
where � is a stopping time satisfying 0 < � < Texpl, which exists by the above
argument and the càdlàg property of X . Since X D XT� , we have

X�
t D Xt1ft<.�^T�/g CX�^T�1ft	.�^T�/g

D Xt1ft<.�^Tjump/g CX�^Tjump1ft	.�^Tjump/g;

which implies that a transition to � can only occur through a jump.
Recall that� is assumed to be an arbitrary point which does not lie inD. We can

thus identify� with some point in V nD such that every C2
b .D/-function f can be

extended continuously toD� with f .�/ D 0. Indeed, without loss of generality we
may assume that such a point exists, because otherwise we can always embed D�

in V � R.

Theorem 6. Let X be an affine process and let � be a stopping time with � <

Texpl, where Texpl is defined in (59). Then X1Œ0;T�/ and X� are semimartingales
with state space D [ f0g and D�, respectively. Moreover, let .B; C; �/ denote the
characteristics of X� relative to some truncation function �. Then there exists a
version of .B; C; �/, which is of the form

Bt;i D
Z t^�

0

bi .Xs�/ds;

Ct;ij D
Z t^�

0

cij .Xs�/ds;

�.!I dt; d�/ D K.Xt ; d�/1Œ0;��dt;

(60)

where b W D ! V and c W D ! SC.V / are measurable functions and K.x; d�/ is
a positive kernel from .D;D/ into .V;B.V //, which satisfies

R
V
.k�k2 ^ 1/K.x;

d�/ < 1, K.x; f0g/ D 0 and x C supp.K.x; �//  D� for all x 2 D.

Proof. We adapt the proof of [5, Theorem 7.9 (ii), (iii)] to our setting. By Lemma 4,

gu;�.X/ D 1

�

Z �

0

˚.s; u/eh .s;u/;Xids

is a semimartingale for every u 2 U and � > 0. Since Lemma 5 asserts that C ,
as defined in (56), is a full class, an application of Itô’s formula to the function hi
appearing in (53) shows that Xi coincides with a semimartingale on each stochastic
interval Œ0; �r Œ, where
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�r D infft 
 0 j kXtk 
 rg ^ T�:

Since we have Px-a.s. limr!1 �r D T� and since being a semimartingale is
a local property (see [20, Proposition I.4.25]), we conclude that X1Œ0;T�/ is a
semimartingale.

Let now � denote a stopping time with � < Texpl. Then X� is also a semimartin-
gale with state space D�, since explosion is avoided and the transition to � can
only occur via killing, that is, a jump to �, which is incorporated in the jump
characteristic (see [6, Sect. 3]).

By [5, Theorem 6.25], one can find a version of the characteristics .B; C; �/ of
X� , which is of the form

Bt;i D
Z t^�

0

Qbs�;idFs;

Ct;ij D
Z t^�

0

Qcs�;ijdFs;

�.!I dt; d�/ D 1Œ0;��dFt .!/ QK!;t .d�/;

(61)

where F is an additive process of finite variation, which is Px-indistinguishable
from an .Ft /-predictable process, Qb and Qc are .Ft /-optional processes with
values in V and SC.V /, respectively, and QK!;t .d�/ is a positive kernel from
.˝ � RC;O.Ft //

8 into .V;B.V //, which satisfies
R
V .k�k2 ^ 1/ QK!;t .d�/ < 1,

QK!;t .f0g/ D 0 and Xt.!/ C supp. QK!;t /  D� for all t 2 Œ0; �� and Px-almost all
!. Moreover, by [20, Theorem II.2.42], for every f 2 C2

b .V /, the process

f .X�
t / � f .x/ �

Z t^�

0

h Qbs�;rf .Xs�/idFs � 1

2

Z t^�

0

X
i;j

Qcs�;ijDijf .Xs�/dFs

�
Z t^�

0

Z
V

.f .Xs� C �/ � f .Xs�/ � hrf .Xs�/; �.�/i/ QK!;s�.d�/dFs (62)

is a .Ft ;Px/-local martingale and the last three terms are of finite variation. Let us
denote

QL f .Xt�.!// WD h Qbt�;rf .Xt�.!//i � 1

2

X
i;j

Qct�;ijDijf .Xt�.!//

�
Z
V

.f .Xt�.!/C �/ � f .Xt�.!//� hrf .Xt�.!//; �.�/i/ QK!;t�.d�/:

8Here, O.Ft / denotes the .Ft /-optional � -algebra.
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As proved in Lemma 5, the class of functions C defined in (56) is complete. Let
now QC � C be the countable set satisfying the property stated in Definition 6 and
let g�;u 2 QC for some u 2 iV and � > 0. Then Lemma 4 and Definition 4 imply
that

g�;u.X
�
t /� g�;u.x/ �

Z t^�

0

G g�;u.Xs�/ds

D g�;u.X
�
t /� g�;u.x/ �

Z t^�

0

1

�



P�e

hu;Xs�i � ehu;Xs�i� ds (63)

is a .Ft ;Px/-martingale, while .
R t^�
0

G g�;u.Xs�/ds/ is a predictable finite variation
process. Due to (62) and uniqueness of the canonical decomposition of the special
semimartingale g�;u.X�/ (see [20, Definition I.4.22, Corollary I.3.16]), we thus have

Z t^�

0

QL g�;u.Xs�/dFs D
Z t^�

0

G g�;u.Xs�/ds up to an evanescent set. (64)

Set now

� D
n
.!; t/ W QL g�;u.X.t^�^T�/�.!// D 0 for every g�;u 2 QC

o
:

Then the characteristic property (54) of QC implies that � is exactly the set where
Qb D 0, Qc D 0 and QK D 0. Hence we may replace F by 1�cF without altering (61),
that is, we can suppose that 1�F D 0. This property together with (64) implies that
dFt � dt Px-a.s. Hence we know that there exists a triplet .b0; c0; K 0/ such that F
replaced by t and . Qb; Qc; QK/ replaced by .b0; c0; K 0/ satisfy all the conditions of (61).
In particular, we have by [20, Proposition II.2.9 (i)] thatX� is quasi-left continuous.
Due to [5, Theorem 6.27], it thus follows that

b0
t D b.Xt/1Œ0;��;

c0
t D c.Xt /1Œ0;��;

K 0
!;t .d�/ D K.Xt ; d�/1Œ0;��;

where the functions b, c and the kernel K have the properties stated in (60). This
proves the assertion. ut

6 Regularity

By means of the above derived semimartingale property, in particular the fact that
the characteristics are absolutely continuous with respect to the Lebesgue measure,
we can prove that every affine process is regular in the following sense:
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Definition 7 (Regularity). An affine processX is called regular if for every u 2 U
the derivatives

F.u/ D @˚.t; u/

@t

ˇ̌
ˇ̌
ˇ
tD0
; R.u/ D @ .t; u/

@t

ˇ̌
ˇ̌
ˇ
tD0

(65)

exist and are continuous on U m for everym 
 1.

Remark 10. In the case of the canonical state spaceD D R
mC �R

n�m, the derivative
of �.t; u/ at t D 0 is also denoted by F.u/ (see [12, Eq. (3.10)] and Remark 2).
Since ˚.t; u/ D e�.t;u/, we have

@t˚.t; u/jtD0 D e�.0;u/@t �.t; u/jtD0 D @t�.t; u/jtD0:

Hence our definition of F coincides with the one in [12].

Lemma 6. Let X be an affine process. Then the functions t 7! ˚.t; u/ and t 7!
 i.t; u/, i 2 f1; : : : ; ng, defined in (6) are of finite variation for all u 2 U .

Proof. Due to Assumption 1, there exist n C 1 vectors such that .x1; : : : ; xn/ are
linearly independent and xnC1 D Pn

iD1 �ixi for some � 2 V with
Pn

iD1 �i ¤ 1.
Let us now take n C 1 affine processes X1; : : : ; XnC1 such that Pxi ŒX

i
0 D xi � D 1

for all i 2 f1; : : : ; n C 1g. It then follows from Theorem 6 that, for every
i 2 f1; : : : ; n C 1g, Xi is a semimartingale with respect to the filtered proba-
bility space .˝;F ; .Ft /;Pxi /. We can then construct a filtered probability space
.˝ 0;F 0; .F 0

t /;P
0/, with respect to which X1; : : : ; XnC1 are independent semi-

martingales such that P0 ı .Xi/�1 D Pxi . One possible construction is the product
probability space

.˝nC1;˝nC1
iD1F ; .˝nC1

iD1Ft /;˝nC1
iD1Pxi /:

We write yi D .1; xi /
> and Y i D .1;Xi /> for i 2 f1; : : : ; n C 1g. Then the

definition of xi implies that .y1; : : : ; ynC1/ are linearly independent. Moreover, as
Xi exhibits càdlàg paths for all i 2 f1; : : : ; nC 1g, there exists some stopping time
ı > 0 such that, for all ! 2 ˝ 0 and t 2 Œ0; ı.!//, the vectors .Y 1t .!/; : : : ; Y

nC1
t .!//

are also linearly independent. Let now T > 0 and u 2 U be fixed and choose some
0 < ".!/ � ı.!/ such that, for all t 2 Œ0; ".!//, ˚.T � t; u/ ¤ 0.

Denoting the .F 0
t ;P

0/-martingales˚.T �t; u/eh .T�t;u/;Xit i byMT;u;i
t and choos-

ing the right branch of the complex logarithm, we thus have for all t 2 Œ0; ".!//

0
B@
1 X1

t;1.!/ : : : X
1
t;n.!/

:::
:::

: : :
:::

1 XnC1
t;1 .!/ : : : XnC1

t;n .!/

1
CA

�10
B@

lnMT;u;1
t .!/
:::

lnMT;u;nC1
t .!/

1
CA D

0
BBB@

ln˚.T � t; u/
 1.T � t; u/

:::

 n.T � t; u/

1
CCCA :
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This implies that .˚.s; u//s and . .s; u//s coincide on the stochastic interval .T �
".!/; T � with deterministic semimartingales and are thus of finite variation. As this
holds true for all T > 0, we conclude that t 7! ˚.t; u/ and t 7!  i.t; u/ are of finite
variation. ut

Using Lemma 6 and Theorem 6, we are now prepared to prove regularity of
affine processes. Additionally, our proof reveals that the functions F and R have
parameterizations of Lévy–Khintchine type and that the (differential) semimartin-
gale characteristics introduced in (60) depend in an affine way on X .

Theorem 7. Every affine process is regular. Moreover, the functions F and R, as
defined in (65), are of the form

F.u/ D hu; bi C 1

2
hu; aui � c

C
Z
V



ehu;�i � 1 � hu; �.�/i

�
m.d�/; u 2 U ;

hR.u/; xi D hu; B.x/i C 1

2
hu; A.x/ui � h�; xi

C
Z
V



ehu;�i � 1 � hu; �.�/i

�
M.x; d�/; u 2 U ;

where � W V ! V denotes some truncation function such that �.�� x/ D 0 for all
x 2 D, b 2 V , a 2 S.V /, m is a (signed) measure, c 2 R, � 2 V and x 7! B.x/,
x 7! A.x/, x 7! M.x; d�/ are restrictions of linear maps on V such that

b.x/ D b C B.x/;

c.x/ D a C A.x/;

K.x; d�/ D m.d�/CM.x; d�/C .c C h�; xi/ı.��x/.d�/:

Here, the left hand side corresponds to the (differential) semimartingale character-
istics introduced in (60).

Furthermore, on the set Q D f.t; u/ 2 RC �U j˚.s; u/ ¤ 0; for all s 2 Œ0; t �g,
the functions ˚ and  satisfy the ordinary differential equations

@t˚.t; u/ D ˚.t; u/F. .t; u//; ˚.0; u/ D 1; (66)

@t .t; u/ D R. .t; u//;  .0; u/ D u 2 U : (67)

Remark 11. Recall that without loss of generality we identify � with some point
in V nD such that every f 2 C2

b .D/ can be extended continuously to D� with
f .�/ D 0.
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Proof. Letm 
 1 and u 2 U m be fixed and choose Tu > 0 such that˚.Tu � t; u/ ¤
0 for all t 2 Œ0; Tu�. As t 7! ˚.t; u/ and t 7!  .t; u/ are of finite variation by
Lemma 6, their derivatives with respect to t exist almost everywhere and we can
write

˚.Tu � t; u/� ˚.Tu; u/ D
Z t

0

�d˚.Tu � s; u/;

 i .Tu � t; u/�  i .Tu; u/ D
Z t

0

�d i .Tu � s; u/;

for i 2 f1; : : : ; ng. Moreover, by the semiflow property of ˚ and  (see
Proposition 1 (iii)), differentiability of ˚.t; u/ and  .t; u/ with respect to t at some
" 2 .0; Tu� implies that the derivatives @t jtD0 .t;  ."; u// and @t jtD0˚.t;  ."; u//
exist as well. Let now ."k/k2N denote a sequence of points where˚.t; u/ and .t; u/
are differentiable such that limk!1 "k D 0. Then there exists a sequence .uk/k2N
given by

uk D  ."k; u/ 2 U with lim
k!1 uk D u (68)

such that the derivatives

@t jtD0 .t; uk/; @t jtD0˚.t; uk/ (69)

exist for every k 2 N. Moreover, since jExŒexp.hu; X"k i/�j < m, there exists some
constantM such that uk 2 U M for all k 2 N.

Furthermore, due to Theorem 6, the canonical semimartingale representation
of X� (see [20, Theorem II.2.34]), where � is a stopping time with � < Texpl, is
given by

X�
t D x C

Z t^�

0

b.Xs�/ds CN�
t C

Z t^�

0

Z
V

.� � �.�//�X
�

.!I ds; d�/;

where �X
�

is the random measure associated with the jumps of X� and N� is a
local martingale, namely the sum of the continuous martingale part and the purely
discontinuous one, that is,

Z t^�

0

Z
V

�.�/.�X
�

.!I ds; d�/ �K.Xs�; d�/ds/:

Let now .uk/ be given by (68). Applying Itô’s formula (relative to the measure

Px) to each of the martingales M
Tuk ;uk
t^� D ˚.Tuk � .t ^ �/; u/eh .Tuk�.t^�/;uk/;Xt^� i,

k 2 N, we obtain
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M
Tuk ;uk
t^�

D M
Tuk ;uk
0 C

Z t^�

0

M
Tuk ;uk
s�

��d˚.Tuk � s; uk/

˚.Tuk � s; uk/ C h�d .Tuk � s; uk/; Xs�i
�

C
Z t^�

0

M
Tuk ;uk
s�

 
h .Tuk � s; uk/; b.Xs�/i

C 1

2
h .Tuk � s; uk/; c.Xs�/ .Tuk � s; uk/i

C
Z
V



eh .Tuk�s;uk /;�i � 1 � h .Tuk � s; uk/; �.�/i

�
K.Xs�; d�/

!
ds

C
Z t^�

0

M
Tuk ;uk
s� h .Tuk � s; uk/; dN�

s i

C
Z t^�

0

Z
V

M
Tuk ;uk
s�



eh .Tuk�s;uk/;�i � 1 � h .Tuk � s; uk/; �.�/i

�

�


�X

�

.!I ds; d�/�K.Xs�; d�/ds
�
:

As the last two terms are local martingales and as the rest is of finite variation, we
thus have, for almost all t 2 Œ0; Tuk ^ ��, Px-a.s. for every x 2 D,

d˚.Tuk � t; uk/
˚.Tuk � t; uk/ C hd .Tuk � t; uk/; Xt�i

D h .Tuk � t; uk/; b.Xt�/i dt C 1

2
h .Tuk � t; uk/; c.Xt�/ .Tuk � t; uk/i dt

C
Z
V



eh .Tuk�t;uk /;�i � 1 � h .Tuk � t; uk/; �.�/i

�
K.Xt�; d�/dt:

(70)

By setting t D Tuk on a set of positive measure with PxŒ� 
 Tuk � and letting
Tuk ! 0, we obtain due to (69) for each k 2 N and x 2 D

@t jtD0˚.t; uk/C h@t jtD0 .t; uk/; xi

D huk; b.x/idt C 1

2
huk; c.x/uki dt C

Z
V



ehuk ;�i � 1 � huk; �.�/i

�
K.x; d�/dt:

(71)

Since the right hand side is continuous in uk , which is a consequence of the support
properties of K.x; �/ and the fact that uk 2 U M for all k 2 N, the limit for
uk ! u of the left hand side exists as well. By the affine independence of the
n C 1 elements in D, the coefficients @t jtD0˚.t; uk/ and @t jtD0 .t; uk/ converge
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for uk ! u, whence the limit is affine, too. Since m 
 1 and u was arbitrary, it
follows that

hu; b.x/i dt C 1

2
hu; c.x/ui dt C

Z
V



ehu;�i � 1 � hu; �.�/i

�
K.x; d�/dt

is an affine function in x for all u 2 U .
By uniqueness of the Lévy–Khintchine representation and the assumption thatD

contains nC1 affinely independent elements, this implies that x 7! b.x/, x 7! c.x/

and x 7! K.x; d�/ are affine functions in the following sense:

b.x/ D b C B.x/;

c.x/ D aC A.x/;

K.x; d�/ D m.d�/CM.x; d�/C .c C h�; xi/ı.��x/.d�/;

where b 2 V , a 2 S.V /, m a (signed) measure, c 2 R, � 2 V and x 7! B.x/,
x 7! A.x/, x 7! M.x; d�/ are restrictions of linear maps on V . Indeed, c C h�; xi
corresponds to the killing rate of the process, which is incorporated in the jump
measure. Here, we explicitly use the convention that ehu;�i D 0, b.�/ D 0, c.�/ D
0, K.�; d�/ D 0 and the fact that �.� � x/ D 0 for all x 2 D.

Moreover, for t small enough, we have for all u 2 U

˚.t; u/� ˚.0; u/ D
Z t

0

˚.s; u/

 
h .s; u/; bi C 1

2
h .s; u/; a .s; u/i � c

C
Z
V



eh .s;u/;�i � 1 � h .s; u/; �.�/i

�
m.d�/

!
ds;

h .t; u/�  .0; u/; xi D
Z t

0

 
h .s; u/; B.x/i C 1

2
h .s; u/; A.x/ .s; u/i � h�; xi

C
Z
V



eh .s;u/;�i � 1 � h .s; u/; �.�/i

�
M.x; d�/

!
ds:

Note again that the properties of the support of K.x; �/ carry over to the measures
M.x; �/ and m.�/ implying that the above integrals are well-defined. Due to the
continuity of t 7! ˚.t; u/ and t 7!  .t; u/, we can conclude that the derivatives
of ˚ and  exist at 0 and are continuous on U m for every m 
 1, since they are
given by
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F.u/ D @˚.t; u/

@t

ˇ̌
ˇ̌
ˇ
tD0

D hu; bi C 1

2
hu; aui � c

C
Z
V



ehu;�i � 1 � hu; �.�/i

�
m.d�/;

hR.u/; xi D
*
@ .t; u/

@t

ˇ̌
ˇ̌
ˇ
tD0
; x

+
D hu; B.x/i C 1

2
hu; A.x/ui � h�; xi

C
Z
V



ehu;�i � 1 � hu; �.�/i

�
M.x; d�/:

This proves the first part of the theorem.
By the regularity of X , we are now allowed to differentiate the semiflow

equations (8) on the set Q D f.t; u/ 2 RC�U j˚.s; u/ ¤ 0; for all s 2 Œ0; t �g with
respect to s and evaluate them at s D 0. As a consequence, ˚ and  satisfy (66)
and (67). ut
Remark 12. The differential equations (66) and (67) are called generalized Riccati
equations, which is due to the particular form of F and R.

Remark 13. Using the results of Theorem 7, in particular the assertion on the
semimartingale characteristics, we aim to construct examples of affine processes on
compact state spaces, which justify that we do not restrict ourselves to unbounded
sets D. For simplicity, let n D 1. Then the pure deterministic drift process with
characteristics

b.x/ D b C Bx; B � 0; �Br1 � b � �Br2; c.x/ D 0; K.x; d�/ D 0

is an affine process on the interval Œr1; r2�. Another example of an affine process on
a compact, but discrete, state space of the form

f0; 1; : : : ; kg

can be obtained by a pure jump process X with jump size distribution ı1.d�/ and
intensity k�X . In terms of the semimartingale characteristics, we thus have b.x/ D
0, c.x/ D 0 and K.x; d�/ D .k � x/ı1.d�/. For such type of jump processes the
state space is necessarily discrete and cannot be extended to the whole interval Œ0; k�.
In the presence of a diffusion component, the state space is necessarily unbounded,
since the stochastic invariance conditions on c.x/ D aCAx, which would guarantee
that the process remains in some interval Œr1; r2� imply

aC Ar1 D 0 and a C Ar2 D 0;

yielding a D A D 0.
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9. C. Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann, Affine processes on positive
semidefinite matrices. Ann. Appl. Probab. 21(2), 397–463 (2011)

10. J. Da Fonseca, M. Grasselli, C. Tebaldi, A multifactor volatility Heston model. Quant. Finance
8(6), 591–604 (2008)

11. Q. Dai, K.J. Singleton, Specification analysis of affine term structure models. J. Finance 55(5),
1943–1978 (2000)
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Langevin Process Reflected on a Partially
Elastic Boundary II

Emmanuel Jacob

Abstract A particle subject to a white noise external forcing moves according
to a Langevin process. Consider now that the particle is reflected at a boundary
which restores a portion c of the incoming speed at each bounce. For c strictly
smaller than the critical value ccrit D exp.��=p3/, the bounces of the reflected
process accumulate in a finite time, yielding a very different behavior from the
most studied cases of perfectly elastic reflection—c D 1—and totally inelastic
reflection—c D 0. We show that nonetheless the particle is not necessarily absorbed
after this accumulation of bounces. We define a “resurrected” reflected process as
a recurrent extension of the absorbed process, and study some of its properties.
We also prove that this resurrected reflected process is the unique solution to
the stochastic partial differential equation describing the model, for which well-
posedness is nothing obvious. Our approach consists in defining the process
conditioned on never being absorbed, via an h-transform, and then giving the Itō
excursion measure of the recurrent extension thanks to a formula fairly similar to
Imhof’s relation.
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1 Introduction

A physical particle with a stochastic behavior can often be described by a Brownian
motion, for reasonably large time scales. On short time scales, however, a more
accurate model is that of a Langevin process, which exhibits C1 paths, and thus
non-exploding velocities. We study in this article reflection problems, which exhibit
an infinite number of bounces in a finite time, and hence involve extremely short
time scales. For this reason—and others—it seems pertinent to the author to be
unsatisfied with the usual models of reflected Brownian motions, and to deepen the
investigation of the reflected Langevin processes.

A Langevin equation is simply the usual Newton equation of motion of a physical
particle submitted to external forces, when these forces include a random force
modeled by a white noise. We restrict ourselves to the case when there is no other
external forces, and when the space is one-dimensional. If x is the initial position of
the particle and u its initial velocity, its position is then given by

Xt D x C ut C
Z t

0

Bsds;

where B is a Brownian motion starting from B0 D 0. We suppose B is standard in
the sense that it has variance t at time t , and callX the integrated Brownian motion,
or (free) Langevin process. The Langevin process is non-Markov, contrarily to the
two-dimensional Kolmogorov process .X; PX/, whose first coordinate is a Langevin
process, and second its derivative. We refer to Lachal [15] for a detailed account
about it.

Further, suppose the particle is constrained to stay in Œ0;1/ by a partially
elastic barrier at 0, characterized by an elasticity coefficient c 
 0: if the
particle hits the barrier with incoming velocity v < 0, it will instantly bounce
back with velocity �cv. Again, write X for the position of the particle and
PX for its (right-continuous) right derivative. The reflection is naturally modeled

by second order reflection, expressed by the following second order stochastic
differential equation:

(RLP)

8̂
<̂
ˆ̂:
Xt D x C

Z t

0

PXsds

PXt D u C Bt � .1C c/
P

0<s�t PXs��XsD0 CNt ;

whereB is the standard Brownian motion driving the motion;

N is a continuous nondecreasing process starting from N0 D 0;

increasing only when the process .X; PX/ is at .0; 0/;

in the sense �.Xt ; PXt /¤.0;0/dNt � 0I
.x; u/ is the initial or starting condition.
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Two particular cases are often considered: a perfectly elastic reflection—cD 1—and
a totally inelastic reflection—c D 0. Whatever the value of c, viewed as a two
dimensional first order differential equation, Equations (RLP) enjoy the property of
local pathwise existence and uniqueness of solutions, except maybe at .0; 0/. This
extremal point .0; 0/ yields a real obstruction to the well-posedness of the equation.
As early as in 1960, Bressan [7] pointed out that multiple solutions may occur, even
when the force is C 1. Since then, uniqueness results have been shown, but with the
requirement the force be analytic (see [1,20]). But the introduction of a white noise
leads to original behaviors of the reflected process and to (weak) uniqueness results,
as underlined by some previous works and this one.

In the totally inelastic case c D 0, it could be natural to believe that the second
order reflection of a Langevin process would mean absorption of the particle at the
barrier. In [16], Maury proceeded to numerical simulations, and was the first one
to ask whether there could be non-absorbed solutions. The surprising answer that
actually the (weak) only solution was non-absorbed is due to Bertoin, see [3,4]. The
solution enjoys the remarkable feature of spending no time at .0; 0/ and involving
no continuous push of the barrier—it solves Equations (RLP) withN � 0. His work
is mainly based on a smart construction of a solution, and on Itō excursion theory.

In his thesis, Bect [2] discussed briefly Equations (RLP) for the different values
of the elasticity coefficient, observing a phase transition phenomena. When c is
greater than the critical value ccrit D exp.��=p3/, the process .X; PX/ starting
from .x; u/ ¤ .0; 0/ will never hit .0; 0/. This includes the perfectly elastic case
c D 1, which is particularly simple, as the absolute value of a free Langevin process
yields a reflected Langevin process. A perfectly elastic barrier is also considered
by Bossy and Jabir [6], who proved the well-posedness of the problem, for more
general Langevin type processes. In a former paper [12], we studied the general
supercritical regime c > ccrit, as well as the critical regime c D ccrit, and showed in
particular that the existence of a unique reflected Langevin process stays true when
the starting condition is .0; 0/, in a weak sense.

Finally, this paper deals with the subcritical regime 0 < c < ccrit, and answers
the last questions raised by Bect about the model. In that regime, starting from a
nontrivial condition .x; u/ ¤ .0; 0/, the two-dimensional reflected process .X; PX/
hits almost surely .0; 0/ after an infinite number of bounces. We write �1 for this
hitting time, and P

c
x;u for the law of this reflected process killed at time �1, which

is Markov. We prove the existence of a unique excursion law compatible with the
semigroup of this Markov process. This defines uniquely a recurrent extension of
the Markov process, which spends no time in .0; 0/, thanks to Itō’s program. Finally
we prove that this yields the unique solution, in the weak sense, to Equations (RLP).
As in the totally inelastic case, no continuous push of the barrier is involved.

Though the similarity in the results, each regime reveals a very different behavior
of the process, and needs a particular study, with dedicated techniques. In this
work on the subcritical regime, our guiding line is largely inspired by a paper of
Rivero [19], in which he studies the recurrent extensions of a self-similar Markov
process with semigroup Pt . First, he recalls that recurrent extensions are equivalent
to excursion measures compatible with Pt , thanks to Itō’s program. Then a change
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of probability allows him to define the Markov process conditioned on never hitting
0, where this conditioning is in the sense of Doob, via an h-transform. An inverse
h-transform on the Markov process conditioned on never hitting zero and starting
from 0 then gives the construction of the excursion measure.

We will not recall it at each step throughout the paper, but a lot of parallels can
be made. However, it is a two-dimensional Markov process that we consider here.
Further, its study will rely on an underlying random walk .Sn/n2N constructed from
the velocities at bouncing times.

In the Preliminaries, we introduce this random walk and use it to estimate the
tail of the variable �1 under Pc0;1. In Sect. 3, we introduce a change of probability,

via an h-transform, to define QPx;u, law of a process which can be viewed as the
reflected Kolmogorov process conditioned on never being killed. We then show in
Sect. 3.2 that this law has a weak limit QP0C when .x; u/ goes to .0; 0/, using the
same method that was used in [12] to show that for c > ccrit, the laws P

c
0;u have

the weak limit Pc0C when u goes to zero. Section 4 contains our main results. The
first one is the construction of n, unique excursion measure compatible with the
semigroup of the killed reflected process. This construction relies on the results of
Sect. 3, involving in particular the laws Pc0C. More precisely, the measure n is given
by a formula similar to Imhof’s relation (see [10]) connecting the excursion measure
of Brownian motion and the law of a Bessel(3) process. Further, we call resurrected
Kolmogorov process the Markov process with Itō excursion measure n and which
spends no time at .0; 0/. Then comes the second result: this process, together with
N � 0, yields the unique solution to (RLP), in the weak sense. The ten last pages
contain the proofs.

2 Preliminaries

The preliminaries are partly similar to those of [12], which enter into more details,
and to which we refer, if needed.

Context

For the sake of simplicity, we use the same notation (say P ) for a probability
measure and for the expectation under this measure. We will even authorize our-
selves to write P.f;A/ for the quantity P.f �A/, when f is a positive measurable
functional and A a measurable event. The set of nonnegative (resp. positive) real
number is denoted by RC (resp. R�C). Introduce D D .f0g � R

�C/ [ .R�C � R/

and D0 WD D [ f.0; 0/g. Our working space is C , the space of càdlàg trajectories
.x; Px/ W Œ0;1/ ! D0, which satisfy

x.t/ D x.0/C
Z t

0

Px.s/ds:
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That space is endowed with the �-algebra generated by the coordinate maps and
with the topology induced by the following injection:

C ! RC � D

.x; Px/ 7! �
x.0/; Px�;

where D is the space of càdlàg trajectories on RC, equipped with Skorohod
topology.

We denote by .X; PX/ the canonical process and by .Ft ; t 
 0/ its natural
filtration, satisfying the usual conditions of right continuity and completeness. For
an initial condition .x; u/ 2 D, consider Equations (RLP), which we recall here:

8̂
<̂
ˆ̂:
Xt D x C

Z t

0

PXsds

PXt D u C Bt � .1C c/
P

0<s�t PXs��XsD0 CNt;

where B is the standard Brownian motion driving the motion;

N is a continuous nondecreasing process starting from N0 D 0;

increasing only when the process .X; PX/ is at .0; 0/;

in the sense �.Xt ; PXt /¤.0;0/dNt � 0:

In the whole paper, the coefficient c is fixed and satisfies 0<c <ccrit D
exp.��=p3/. Call �1 the first hitting time of zero for the reflected process X , that
is �1 WD infft > 0;Xt D 0g. More generally, the sequence of the successive hitting
times of zero .�n/n	1 is defined recursively by �nC1 WD infft > �n;Xt D 0g. Write
.Vn/n	1 WD . PX�n/n	1 for the sequence of the (outgoing) velocities of the process at
these hitting times. The limit of the increasing sequence .�n/n	0 coincides almost
surely with

�1 WD infft > 0;Xt D 0; PXt D 0g:

Indeed, to ensure this, the only nontrivial thing to prove is that the limit of .Xt ; PXt/
when t increases to sup �n is almost surely .0; 0/ on the event sup �n < 1. This
follows, for example, from the almost sure uniform continuity of Brownian motion
on compact sets, together with the fact X�n D 0 for all n.

Hence, Equations (RLP) yield a strong unique solution .X; PX;N/ killed at time
�1. It trivially satisfies N � 0. We write P

c
x;u for the law of the Markov process

.X; PX/ killed at time �1 and call it (killed) reflected Kolmogorov process. We also
call its first coordinate—which is no longer Markov—(killed) reflected Langevin
process. Finally, when the starting position is x D 0 and starting velocity u > 0, we
simply write Pcu for Pc0;u, and we also define �0 D 0 and V0 D u.
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The Variable �1

Now, we will not only prove the almost sure finiteness of �1—which is the
characterization of the subcritical regime—but also estimate its tail. The sequence�
�nC1 � �n

V 2
n

;
VnC1
Vn

�
n	0

is i.i.d. and of law independent of u, which can be deduced

from the law

P
c
1 ..�1; V1=c/ 2 .ds; dv// D dsdv

3v

�
p
2s2

exp.�2v
2 � v C 1

s
/

Z 4v=s

0

e� 3	
2

d	p
�	

;

(1)

given by McKean [17]. The second marginal of this law is

P
c
1.V1=c 2 dv/ D 3

2�

v
3
2

1C v3
dv: (2)

In particular, the sequence Sn WD ln.Vn/ is a random walk, with drift

P
c
1.S1 � S0/ D ln.c/C �p

3
D ln.

c

ccrit
/;

which is negative.

Lemma 1. We have

P
c
1

�
V x
1

� D cx

2 cos. xC1
3
�/

for x < 1=2: (3)

There exists a unique k D k.c/ in .0; 1=4/ such that Pc1
�
V 2k
1

� D 1, and

P
c
1.�1 > t/ �

t!1 C1t
�k; (4)

where C1 D C1.c/ 2 .0;1/ is a constant depending only on c, given by

C1 D P
c
1

�
�k1 � .�1 � �1/

k
�

kPc1.V
2k
1 ln.V 2

1 //
: (5)

In other words, k.c/ is given implicitly as the unique solution in �0; 1
4
� of the

equation

c D
�
2 cos

�
2k C 1

3
�

� 1
2k

: (6)

The upper bound 1=4 stems from the fact that P
c
1

�
V 2k
1

�
becomes infinite for

k D 1=4. The value of k.c/ converges to 1=4 when c goes to 0, and to 0 when c
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goes to ccrit, as illustrated by Fig. 1. We may notice that Formula (4) remains true
for c D 0 and k D 1=4.

Proof. Formula (3) is a particular case of formula (12) of [14] and follows easily
from Formula (2) and the well-known identity

Z 1

0

ty�1

1C t
dt D �

sin.�y/
:

Now, the function x 7! P
c
1

�
V x
1

�
is convex, takes value 1 at x D 0 and becomes

infinite at x D 1=2. Its derivative at 0 is equal to P
c
1.ln.V1// D P

c
1.S1 � S0/ < 0:

We deduce that there is indeed a unique k.c/ in .0; 1
4
/ such that Pc1

�
V 2k
1

� D 1:

The variable �1 can be expressed as the following series:

�1 D
1X
nD1

Qn

n�1Y
kD1

Mk;

where Qn WD �n��n�1

V 2n�1

and Mn WD V 2n
V 2n�1

, so that
Qn�1
kD1 Mk D V 2

n�1: The sequence

.Qn;Mn/n	1 is i.i.d. with common law that of .�1; V 2
1 / under Pc1. Kesten, in [13],

studies such series, using renewal theory. In particular, Theorem 5 of [13] states
that tkPc1.�1 > t/ converges to a positive and finite constant C1, provided that the
following conditions are satisfied:

P
c
1.ln.V

2
1 // < 0;

P
c
1.V

2k
1 / D 1;

P
c
1.V

2k
1 ln.V 2

1 /�V1	1/ < 1;

P
c
1.�

k
1 / < 1:
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The first three conditions are straightforward. The last one follows from the
inequality k < 1=4 and from the following estimate of the queue of the variable �1

P
c
1.�1 > t/ �

t!1 c0t� 1
4 ; (7)

which was already pointed out in Lemma 1 in [12]. Finally, under the same
conditions, Goldie, in Theorem (4.1) of [8], provides the explicit formula (5) for
the value of the constant C1.

Next section is devoted to the definition and study of the reflected Kolmogorov
process, conditioned on never hitting .0; 0/. This process will be of great use for
studying the recurrent extensions of the reflected Kolmogorov process in Sect. 4.

3 The Reflected Kolmogorov Process Conditioned
on Never Hitting .0; 0/

3.1 Definition via an h-Transform

Recall that under P
c
1, the sequence .Sn/n	0 D .ln.Vn//n	0 is a random walk

starting from 0, and write P0 for its law. The important fact Pc1.V
2k
1 / D 1 implies

P
c
1.V

2k
n / D 1 for any n > 0, and can be rewritten P0.	Sn/ D 1, with 	 WD exp.2k/.

The sequence 	Sn being a martingale, we introduce the change of probability

QP0.Sn 2 dt/ D 	tP0.Sn 2 dt/:

Under QP0, .Sn/n	0 becomes a random walk drifting to C1. Informally, it can be
viewed as being the random walk of law P0 and conditioned on hitting arbitrary high
levels.

There is a corresponding change of probability for the reflected Kolmogorov
process and its law P

c
1. Introduce the law QP1 of a process .Xt /0�t<�1 determined by

QP1.A/ D P
c
1.�AP

c
1.V

2k
n jFT //;

for any n 
 0, stopping-time T satisfying T < �n, and A 2 FT . Note that
this definition does not depend on the choices of n and T satisfying T < �n and
A 2 FT , and that QP1 is a probability measure. Further, write H.x; u/ for Pcx;u.V

2k
1 /

and observe that we have H.0; u/ D u2k and P
c
1.V

2k
n jFT / D H.XT ; PXT //, by the

strong Markov property. Therefore we have

QP1.A/ D P
c
1.�AH.XT ;

PXT //;
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which remains true if we just suppose T < �1 and A 2 FT . In other words, the
functionH is harmonic for the semigroup of the reflected Kolmogorov process, and
the law QP1 is the h-transform of Pc1, in the sense of Doob.

Under QP1, the law of the sequence .Sn/n	0 is QP0. This sequence is diverging to
C1, and as a consequence the time �1 is infinite QP1-almost surely. The law QP1
is that of a process indexed by the whole half-line Œ0;1/. We give now a general
definition for any starting condition .x; u/.

Definition 1. The reflected Kolmogorov process conditioned on never hitting .0; 0/
is the Markov process of law QPx;u, for any starting condition .x; u/ 2 D,
determined by

QPx;u.A; T < 1/ D 1

H.x; u/
P
c
x;u.�AH.XT ;

PXT /; T < �1/ (8)

for any stopping-time T and A 2 FT . We write QPt for its associated semigroup, and
QPu for QP0;u.

This denomination is justified by the following proposition.

Proposition 1. For any .x; u/ 2 D and t > 0, we have

QPx;u.A/ D lim
s!1P

c
x;u.Aj�1 > s/; (9)

for any A 2 Ft .

We stress that in [19], Proposition 2, Rivero defines in a similar way the self-similar
Markov process conditioned on never hitting 0. Incidentally, we can find in [11] a
thorough study of other h-transforms regarding the Kolmogorov process killed at
time �1.

In order to get Formula (9), we first prove the following lemma, which is a slight
improvement of (4):

Lemma 2. For any .x; u/ 2 D,

skPcx;u.�1 > s/ �!
s!1 C1H.x; u/: (10)

Proof. For .x; u/ D .0; 1/, this is (4). For x D 0, the rescaling invariance property
immediately yields

skPc0;u.�1 > s/ D skPc0;1.�1 > su�2/ �!
s!1 C1u

2k D C1H.0; u/:

For .x; u/ 2 D, the Markov property at time �1 yields

skPcx;u.�1 > s/ D P
c
x;u.s

k
P
c
0;V1
.�1 > s � �1//

�!
s!1 C1P

c
x;u.H.0; V1// D C1H.x; u/;

where the convergence holds by dominated convergence. The lemma is proved.
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Formula (9) then results from:

P
c
x;u.Aj�1 > s/ D 1

Pcx;u.�1 > s/
P
c
x;u



�AP

c

Xt ; PXt .�1 > s � t/; �1 > t
�

�!
s!1

1

H.x; u/
P
c
x;u

�
�AH.Xt ; PXt/; �1 > t

�

D QPx;u.A/:

3.2 Starting the Conditioned Process from .0; 0/

The study of the reflected Kolmogorov process conditioned on never hitting .0; 0/
will happen to be very similar to that of the reflected Kolmogorov process in
the supercritical case c > ccrit, done in [12]. Observe the following similarities

between the laws QPu, and P
c
u when c > ccrit: the sequence

�
�nC1 � �n
V 2
n

;
VnC1
Vn

�
n	0

is i.i.d., we explicitly know its law, and the sequence Sn D ln.Vn/ is a random
walk with positive drift. It follows that a major part of [12] can be transcribed
mutatis mutandis. In particular we will prove in this part a convergence result for
the probabilities QPu when u goes to zero, similar to Theorem 1 of [12].

Under QP1, the sequence .Sn/n	0 is a random walk of law QP0. Write � for its
drift, that is the expectation of its jump distribution, which is positive and finite. The
associated strictly ascending ladder height process .Hn/n	0, defined by Hk D Snk ,
where n0 D 0 and nk D inffn > nk�1; Sn > Snk�1

g, is a random walk with positive
jumps. Its jump distribution also has positive and finite expectation �H 
 �. The
measure

m.dy/ WD 1

�H
QP0.H1 > y/dy (11)

is the “stationary law of the overshoot”, both for the random walks .Sn/n	0 and
.Hn/n	0. The following proposition holds.

Proposition 2. The family of probability measures . QPx;u/.x;u/2D on C has a weak
limit when .x; u/ ! .0; 0/, which we denote by QP0C . More precisely, write �v for the
instant of the first bounce with speed greater than v, that is �v WD infft > 0;Xt D 0,
PXt > vg. Then the law QP0C satisfies the following properties:

.	/

8̂
<
:̂

lim
v!0C

�v D 0 almost surely:

For any u; v > 0, and conditionally on PX�v D u, the process
.X�vCt ; PX�vCt /t	0 is independent of .Xs; PXs/s<�v and has law QPu:

.		/ For any v > 0; the law of ln. PX�v=v/ is m:
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In the proof of this proposition we can take x D 0 and just prove the convergence
result for the laws QPu when u ! 0C. The general result will follow as an application
of the Markov property at time �1.

The complete proof follows mainly that of Theorem 1 in [12] and takes many
pages. Here, the reader has three choices. Skip this proof and go directly to next
section about the resurrected process. Or read the following pages for an overview
of the ideas of the proof, with details given only when significantly different from
those in [12]. Or, read [12] and the following pages for a complete proof.

Call Ty.S/ the hitting time of .y;1/ for the random walk S starting from x < y.
Call QP� the law of .Sn/n	0 obtained by taking S0 and .Sn�S0/n	0 independent, with
lawm and QP0, respectively. That is, we allow the starting position to be nonconstant
and distributed according to �. A result of renewal theory states that the law of the
overshoot .SnCTy � y/n	0 under QPx, when x goes to �1, converges to QPm. Now,
for a process indexed by an interval I of Z, we define a spatial translation operator
by �sp

y ..Sn/n2I / D .SnCTy � y/n2I�Ty . We get that under QPx and when x goes
to �1, the translated process �sp

y .S/ converges to a process called the “spatially
stationary random walk”, a process indexed by Z which is spatially stationary and
whose restriction to N is QPm (see [12]). We write QP for the law of this spatially
stationary random walk.

There exists a link between the law QPx and the law QPex : the first one is the law of
the underlying random walk .Sn/n	0 D .lnVn/n	0 for a process .X; PX/ following
the second one. Now, in a very brief shortcut, we can say that the law QP is linked to
a law written QP�

0C . And the convergence results of QPx ı �sp
y to P when x ! �1

provide convergence results of QPu to QP�
0C when u ! 0.

However, this link is different, as the spatially stationary random walk, of law QP,
is a process indexed by Z. The value S0 is thus not equal to the logarithm of the
velocity of the process at time 0, but at time �1 (recall that �1 D infft > 0;Xt D 0,
PXt 
 1g is the instant of the first bounce with speed not less than one). The sequence
.Sn/n	0 is then the sequence of the logarithms of the velocities of the process at the
bouncing times, starting from that bounce. The sequence .S�n/n	0 is the sequence
of the logarithms of the velocities of the process at the bouncing times happening
before that bounce.

The law QP�
0C is the law of a process indexed by R

�C, but we actually construct
it “from the random time �1”. In order for the definition to be clean, we have to
prove that the random time �1 is finite a.s. In [12], we used the fact that if .�1;k/k	0
is a sequence of i.i.d random variables, with common law that of �1 under Pc1, then
for any " > 0 there is almost surely only a finite number of indices k such that
ln.�1;k/ 
 "k: This was based on Formula (7), which, we recall, states

P
c
1.�1 > t/ �

t!1 c0t�
1
4 ;

where c0 is some positive constant. Here the same results holds with replacing P
c
1

by QP1 and is a consequence from the following lemma.
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Lemma 3. We have

QP1.�1 > t/ �
t!1 c0tk� 1

4 ; (12)

where c0 is some positive constant.

Proof. From (8) and (1), we get that the density of .�1; V1=c/ under QP1 is given by

f .s; v/ WD 1

dsdv
QP1..�1; V1=c/ 2 dsdv/

D .cv/2k
3v

�
p
2s2

exp.�2v
2 � v C 1

s
/

Z 4v
s

0

e� 3	
2

d	p
�	

:

Thanks to the inequality

4

r
v

s�
e� 6v

s �
Z 4v

s

0

e� 3	
2

d	p
�	

� 4

r
v

s�
;

we may write

f .s; v/ D .6
p
2:�� 3

2 c2k/s� 5
2 v

3
2C2ke�2 v2s C v

s K.s;v/;

where .s; v/ 7! K.s; v/ is continuous and bounded. The marginal density of �1 is
thus given by

1

ds
QP1.�1 2 ds/ D

Z
RC

f .s; v/dv

D .3
p
2:�� 3

2 c2k/s� 5
4Ck

Z
RC

w
1
4Cke�2wCK.s;psw/

p
w=sdw

�
s!1 .3

p
2:�� 3

2 c2k/s� 5
4Ck

Z
RC

w
1
4Cke�2wdw;

where we used successively the change of variables w D v2=s and dominated con-
vergence theorem. Just integrate this equivalence in the neighborhood of C1 to get

QP1.�1 > t/ �
t!1 c0tk� 1

4 ;

with the constant

c0 D 3
p
2:�� 3

2 c2k

1
4

� k

Z
RC

w
1
4Cke�2wdw D 3c2k

�
3
2 2

3
4Ck � 1C 4k

1 � 4k �
�
1

4
C k

�
:

For now, we have introduced QP�
0C , law of a process .X; PX/ indexed by R

�C.
We keep on following the proof of [12]. First, we get that this law satisfies conditions



Langevin Process Reflected on a Partially Elastic Boundary II 257

.	/ and .		/, and that for any v > 0, the joint law of �v and .X�vCt ; PX�vCt /t	0 under
QPu converges to that under QP�

0C . Then we establish Proposition 2 by controlling the
behavior of the process just after time 0, through the two following lemmas:

Lemma 4. Under QP�
0C , we have almost surely .Xt ; PXt/ �!

t!0
.0; 0/:

This lemma allows in particular to extend QP�
0C to RC. We call QP0C this extension.

The second lemma is more technical and controls the behavior of the process on
Œ0; �vŒ under QPu.

Lemma 5. Write Mv D supfj PXt j; t 2 Œ0; �vŒg. Then,

8" > 0;8ı > 0; 9v0 > 0; 9u0 > 0;80 < u � u0; QPu.Mv0 
 ı/ � "; (13)

In [12], we proved these two results by using the stochastic partial differential
equation satisfied by the laws P

c . They are of course not available for the laws
QP, and we need a new proof. We start by showing a rather simple but really useful
inequality:

Lemma 6. The following inequality holds for any .x; u/ 2 D,

QPx;u
�
V1=c 
 juj

2

�

 1 �

p
3

�
: (14)

For us, the important fact is that the probability is bounded below by a positive
constant, uniformly in x and u. The constant 1 � p

3=� is not intended to be the
optimal one. Note that this inequality will also be used again later on in this paper.

Proof (Proof of Lemma 6). For u D 0, there is nothing to prove. By a scaling
invariance property we may suppose u 2 f�1; 1g, what we do.

The density fx;u of V1=c under P
c
x;u is given in Gor’kov [9]. If you write

pt .x; uIy; v/ for the transition densities of the (free) Kolmogorov process, given by

pt .x; uIy; v/ D
p
3

�t2
exp

h
� 6

t3
.y�x� tu/2 C 6

t2
.y�x� tu/.v� u/� 2

t
.v� u/2

i
;

and ˚.x; uIy; v/ for its total occupation time densities, defined by

˚.x; uIy; v/ WD
Z 1

0

pt .x; uIy; v/dt;

then the density fx;u is given by

fx;u.v/ D v
h
˚.x; uI 0;�v/ � 3

2�

Z 1

0

�
3
2

�3 C 1
˚.x; uI 0; �v/d�

i
: (15)
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Now, knowing the density of V1 under P
c
x;u, we get that of V1 under QPx;u by

multiplying it by the increasing function v 7! v2k . This necessarily increases the
probability of being greater than c=2. Consequently, it is enough to prove

P
c
x;u.V1=c 
 1

2
/ 
 1 �

p
3

�

as soon as u 2 f�1; 1g. But very rough bounds give

fx;u.v/ � v˚.x; uI 0;�v/

� v

Z 1

0

p
3

�t2
exp.� .u C v/2

2t
/dt:

For u 2 f�1; 1g and v 2 Œ0; 1=2� we have ju C vj 
 1=2 and thus

fx;u.v/ � v
p
3

�

Z 1

0

1

t2
exp.� 1

8t
/dt D 8

p
3

�
v:

Consequently,

Px;u.V1=c 
 1

2
/ 
 1 �

Z 1=2

0

8
p
3

�
vdv D 1 �

p
3

�
> 0:

Proof (Proof of Lemma 4). First, observe that conditions .	/ and .		/ imply that
the variables �v D infft > 0;Xt D 0; PXt > vg and ��

v WD supft < �v; Xt D 0g
are almost surely strictly positive and go to zero when v goes to zero. Then, observe
that it is enough to show the almost sure convergence of PXt to 0 when t ! 0, and
suppose on the contrary that this does not hold.

Then, there would exist a positive x such that QP�
0C.Tx D 0/ > 0, where we have

written Tx WD infft > 0; j PXt j > xg: By self-similarity this would be true for any
x > 0 and in particular we would have

K WD QP�
0C.T1 D 0/ > 0: (16)

Informally, this, together with (14), should induce that ��
c=2 takes the value zero with

probability at least .1� p
3=�/K , and give the desired contradiction. However it is

not straightforward, because we cannot use a Markov property at time T1, which can
take value 0, while the process is still not defined at time 0. Consider the stopping
time T "1 WD infft > "; j PXt j > xg. For any � > 0, we have

lim inf
"!0

QP�
0C.T

"
1 < �/ 
 QP�

0C.lim inf
"!0

fT "1 < �g/ 
 QP�
0C.T1 < �/ 
 K;

and in particular there is some "0.�/ such that for any " < "0.�/,

QP�
0C.T

"
1 < �/ 
 K

2
: (17)
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Now, write 	 for the translation operator defined by 	x..Xt/t	0/ D .XxCt /t	0, so
that V1 ı 	T "1 denotes the velocity of the process at its first bounce after time T "1 .
From (17) and Lemma 6, a Markov property gives, for " < "0.�/,

QP�
0C



T "1 < �; V1 ı 	T "1 
 c

2

�

 K 0 WD

 
1 �

p
3

�

!
K

2
:

We have a fortiori QP�
0C.�

�
c=2 � �/ 
 K 0: This result true for any � > 0 leads to

QP�
0C.�

�
c=2 D 0/ 
 K 0 > 0, and we get a contradiction. This shows .Xt ; PXt/ �!

t!0

.0; 0/ under QP�
0C , as requested.

Proof (Proof of Lemma 5). We prove (13). Fix "; ı > 0. The event fMv 
 ıg
coincides with the event Tı � �v . From a Markov property at time Tı and (14), we
get, for any v < cı=2, and any u,

.1 � p
3=�/ QPu.Mv 
 ı/ � QPu. PX�v 
 cı=2/:

Choose v0 such that QP0C. PX�v0 
 cı=2/ � ". Then, from the convergence of the law

of PX�v0 under QPu to that under QP0C , we get, for u small enough,

QPu. PX�v0 
 cı=2/ � 2";

and hence

QPv.Mv0 
 ı/ � 2

1 � p
3=�

":

In conclusion, all this suffices to show Proposition 2.

4 The Resurrected Process

4.1 Itō Excursion Measure, Recurrent Extensions,
and (RLP) Equations

We finally tackle the problem of interest, that is the recurrent extensions of the
reflected Kolmogorov process. A recurrent extension of the latter is a Markov
process that behaves like the reflected Kolmogorov process until �1, the hitting
time of .0; 0/, but that is defined for any positive times and does not stay at .0; 0/,
in the sense that the Lebesgue measure of the set of times when the process is at
.0; 0/ is almost surely 0. More concisely, we will call such a process a resurrected
reflected process.
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We recall that Itō’s program and results of Blumenthal [5] establish an equiva-
lence between the law of recurrent extensions of a Markov process and excursion
measures compatible with its semigroup, here Pct (where as usually in Itō’s excursion
theory we identify the measures which are equal up to a multiplicative constant).
The set of excursions E is defined by

E WD f.x; Px/ 2 C j�1 > 0 and xt�t	�1 � 0g:

An excursion measure n compatible with the semigroup Pct is defined by the three
following properties:

1. The measure n is carried by E .
2. For any F1-measurable function F and any t > 0, any A 2 Ft ,

n.F ı 	t ; A \ ft < �1g/ D n.Pc
Xt ; PXt .F /; A\ ft < �1g/:

3. n.1 � e��1/ < 1:

We also say that n is a pseudo-excursion measure compatible with the semigroup
Pct if only the two first properties are satisfied and not necessarily the third one.
We recall that the third property is the necessary condition in Itō’s program in order
for the lengths of the excursions to be summable, hence in order for Itō’s program
to succeed. Besides, we are here interested in recurrent extensions which leave
.0; 0/ continuously. These extensions correspond to excursion measures n which
satisfy the additional condition n..X0; PX0/ ¤ .0; 0// D 0. Our main results are the
following:

Theorem 1. There exists, up to a multiplicative constant, a unique excursion mea-
sure n compatible with the semigroup Pct and such that n..X0; PX0/ ¤ .0; 0// D 0.
We may choose n such that

n.�1 > s/ D C1s
�k; (18)

where C1 is the constant defined by (5), and k D k.c/ has been introduced in
Lemma 1. The measure n is then characterized by any of the two following formulas:

n.f .X; PX/; �1 > T / D QP0C.f .X; PX/H.XT ; PXT /�1/; (19)

for any Ft -stopping time T and any f positive measurable functional depending
only on .Xt ; PXt/0�t�T .

n.f .X; PX/; �1 > T / D lim
.x;u/!.0;0/

H.x; u/�1Pcx;u.f .X; PX/; �1 > T /; (20)

for any Ft -stopping time T and any f positive continuous functional depending
only on .Xt ; PXt/0�t�T .
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So Itō’s program constructs a Markov process with associated Itō excursion measure
n, which spends no time at .0; 0/, that is a recurrent extension, that is a resurrected
reflected process. We call its law P

r
0. The second theorem will be the weak existence

and uniqueness of a solution to Equations (RLP) with starting condition .0; 0/. For
any solution .X; PX;N;W /, the law of .X; PX/ is Pr0, and N � 0 almost surely. The
fact that the continuous push N is degenerate is remarkable and non-obvious. Even
if we admit that the process .X; PX/ should provide a solution to Equations (RLP),
and even knowing that this process spends no time at .0; 0/, we could have imagined
that the term N be proportional to the local time spent by .X; PX/ in .0; 0/, for
example.

Theorem 2. • Consider .X; PX/ a process of law P
r
0. Then the jumps of PX on any

finite interval are summable and the process W defined by

Wt D PXt C .1C c/
X
0<s�t

PXs��XsD0

is a Brownian motion. As a consequence the quadruplet .X; PX; 0;W / is a
solution to (RLP).

• For any solution .X; PX;N;W / to (RLP), the law of .X; PX/ is P
r
0 and N � 0

almost surely.

It is implicit in this second theorem and until the end of the paper that the initial
condition is .0; 0/, though this can be easily generalized to any other initial condition
.x; u/ 2 D.

Before tackling the proofs, let us write some comments and consequences of
Theorem 1. First, the Itō excursion measure n is entirely determined by its entrance
law, which is defined by

ns.dx; du/ WD n..Xs; PXs/ 2 dx ˝ du; s < �1/

for s > 0: But Theorem 1 implies that it is characterized by any of the two following
formulas:

ns.f / D QP0C.f .Xs; PXs/H.Xs; PXs/�1/; s > 0; (21)

for f W D0 ! RC measurable.

ns.f / D lim
.x;u/!.0;0/

H.x; u/�1Pcx;u.f .Xs; PXs/; �1 > s/; s > 0; (22)

for f W D0 ! RC continuous.
Formulas similar to these are found in the case of self-similar Markov processes

studied by Rivero [19]. This ends the parallel between our works. Rivero underlined
that the self-similar Markov process conditioned on never hitting 0 that he
introduced plays the same role as the Bessel process for the Brownian motion.
In our model, this role is played by the reflected Kolmogorov process conditioned
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on never hitting .0; 0/. Here is a short presentation of this parallel. Write Px for
the law of a Brownian motion starting from position x, QPx for the law of the
“three-dimensional” Bessel process starting from x. Write n for the Itō excursion
measure of the absolute value of the Brownian motion (that is, the Brownian motion
reflected at 0), and � for the hitting time of 0. Then the inverse function is excessive
(i.e. non-negative and superharmonic) for the Bessel process and we have the two
well-known formulas

n.f .X/; � > T / D QP0.f .X/=XT /

n.f .X/; � > T / D lim
x!0

1

x
Px.f .X/; � > T /;

for any Ft -stopping time T and any f positive measurable functional (resp.
continuous functional for the second formula) depending only on .Xt /0�t�T .

Now, let us give an application of Formula (18). Write l for the local time spent
by X at zero, under Pr0. Formula (18) implies that the inverse local time l�1 is a
subordinator with jumping measure ˘ satisfying ˘.�1 > s/ / s�k: That is, it is a
stable subordinator of index k. A well-known result of Taylor and Wendel [21] then
gives that the exact Hausdorff function of the closure of its range (the range is the
image of RC by l�1) is given by �."/ D "k.ln ln 1="/1�k almost surely. The closure
of the range of l�1 being equal to the zero set Z WD ft 
 0 W Xt D PXt D 0g, we
get the following corollary:

Corollary 1. The exact Hausdorff function of the set of the passage times to .0; 0/
of the resurrected reflected Kolmogorov process is �."/ D "k.ln ln 1="/1�k almost
surely.

It is also clear that the set of the bouncing times of the resurrected reflected Langevin
process—the moments when the process is at zero with a nonzero speed—is
countable. Therefore the zero set of the resurrected reflected Langevin process has
the same exact Hausdorff function.

Finally, we should mention that the self-similarity property enjoyed by the
Kolmogorov process easily spreads to all the processes we introduced. If a is a
positive constant, denote by .Xa; PXa/ the process .a3Xa�2t ; aXa�2t /t	0. Then the
law of .Xa; PXa/ under Pcx;u is simply P

c
a3x;au

. We have H.a3x; au/ D a2kH.x; u/:

The law of .Xa; PXa/ under QPx;u, resp. QP0C , is simply QPa3x;au, resp. QP0C . Finally, the
measure of .Xa; PXa/ under n is simply a2kn.

Last two subsections are devoted to the proof of the two theorems.

4.2 The Unique Recurrent Extension Compatible with Pc
t

Construction of the Excursion Measure

The function 1=H is excessive for the semigroup QPt and the corresponding
h-transform is Pct (see Definition 1). Write n for the h-transform of QP0C via this
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excessive function 1=H . That is, n is the unique measure on C carried by f�1 > 0g
such that under n the coordinate process is Markovian with semigroup Pct , and for
any Ft -stopping time T and any AT in FT , we have

n.AT ; T < �1/ D QP0C.AT ;H.XT ; PXT /�1/:

Then, n is a pseudo-excursion measure compatible with semigroup Pct , which
verifies n..X0; PX0/ ¤ .0; 0// D 0 and satisfies Formula (19). For f continuous
functional depending only on .Xt ; PXt/t�T , we have

QP0C.f .Xs; PXs/H.Xs; PXs/�1/ D lim
.x;u/!.0;0/

QPx;u.f .Xs; PXs/H.Xs; PXs/�1/

D lim
.x;u/!.0;0/

1

H.x; u/
P
c
x;u.f .Xs;

PXs/; �1 > s/;

so that the pseudo-excursion measure n also satisfies Formula (20). In particular,
taking T D s and f D 1, and considering the limit along the half-line x D 0, this
gives

n.�1 > s/ D lim
u!0

u�2k
P0;u.�1 > s/:

Using Lemma 2 and the scaling invariance property, we get

n.�1 > s/ D C1s
�k;

where C1 is the constant defined by (5). This is exactly Formula (18). This formula
gives, in particular,

n.1 � e��1/ D C1� .1 � k/;
where � denotes the usual Gamma function. Hence, n is an excursion measure.

Finally, in order to establish Theorem 1 we just should prove that n is the
only excursion measure compatible with the semigroup Pct such that n..X0; PX0/ ¤
.0; 0// D 0. That is, we should show the uniqueness of the law of the resurrected
reflected process.

Uniqueness of the Excursion Measure

Let n0 be such an excursion measure, compatible with the semigroup Pct , and
satisfying n0..X0; PX0/ ¤ .0; 0// D 0. We will prove that n and n0 coincide, up to a
multiplicative constant. Recall that �1 is defined as the infimum of ft > 0;Xt D 0g.

Lemma 7. The measure n0 satisfies:

n0.�1 ¤ 0/ D 0
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Proof. This condition will appear to be necessary to have the third property of
excursion measures, that is n0.1 � e��1/ < 1: Suppose on the contrary that
n0.�1 ¤ 0/ > 0 and write Qn.�/ D n0.���1¤0/. The excursion measure Qn is compatible
with the semigroup Pct and satisfies Qn..X0; PX0/ ¤ .0; 0// D 0 and Qn.�1 D 0/ D 0:

Consider n..Xt ; PXt/t	0/ WD Qn..Xt�t<�1; PXt�t<�1/t	0/ the excursion measure of the
process killed at time �1.

The measure n is an excursion measure compatible with the semigroup P0t ,
semigroup of the Kolmogorov process killed at time �1 (the first hitting time
of f0g � R). Therefore its first marginal must be the excursion measure of the
Langevin process reflected on an inelastic boundary, introduced and studied in [3].
In particular, under n, the absolute value of the incoming speed at time �1, or j PX�1�j,
is distributed proportionally to v� 3

2 dv (see [3], Corollary 2, (ii)). This holds true
under Qn and implies that V1 D cj PX�1�j is also distributed proportionally to v� 3

2 dv.
Now, a Markov property at the stopping time �1 under Qn gives

Qn.�1 � �1 > t jV1 D v/ D P
c
v.�1 > t/ D P

c
1.�1 > v�2t/ �

v�2t!1
Cv2kt�k

As a consequence the function v 7! v� 3
2 Qn.�1 � �1 > t jV1 D v/ is not integrable in

the neighborhood of 0. That is Qn.�1 � �1 > t/ D C1, we get a contradiction.

Recall that we owe to prove that n0 and n are equal, up to a multiplicative
constant. Let us work on the corresponding entrance laws. Take s > 0 and f a
bounded continuous function. It is sufficient to prove n0

s.f / D Cns.f /, where C is
a constant independent of s and f .

By reformulating Lemma 7, time �1 is zero n0-almost surely, in the sense that the
n0-measure of the complementary event is 0. That is, n0-a.s., the first coordinate of
the process comes back to zero just after the initial time, while the second coordinate
cannot be zero, for the simple reason that we are working on an excursion outside
from .0; 0/. This, together with the fact that the velocity starts from PX0 D 0 and is
right-continuous, implies that n0-almost surely, the time �v (which, we recall, is the
instant of the first bounce with speed greater than v) goes to 0 when v goes to 0.

We deduce, by dominated convergence, from the continuity of f , and, again,
from the right-continuity of the paths, that

n0
s.f / D lim

v!0
n0.f .XsC�v ; PXsC�v /��v<1;�1>sC�v /: (23)

An application of the Markov property gives

n0.f .XsC�v ; PXsC�v /��v<1;�1>sC�v / D
Z
RC

n0. PX�v 2 du/Pcu.f .Xs; PXs/��1>s/

D
Z
RC

n0. PX�v 2 du/u2kg.u/;
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where g.u/ D u�2k
P
c
u.f .Xs;

PXs/��1>s/ D H.0; u/�1Pcu.f .Xs; PXs/��1>s/

converges to ns.f / when u ! 0, by Formula (20). Moreover the function u2kg.u/
is bounded by kf k1, and for any " > 0 we have n0. PX�v > "/ ! 0 when v ! 0.
Informally, all this explains that when v is small, all the mass in the integral is
concentrated in the neighborhood of 0, where we can replace g.u/ by ns.f /. More
precisely, write

Z
RC

n0. PX�v 2 du/u2kg.u/ D I.v/C J.v/;

where

I.v/ D
Z 1

0

n0. PX�v 2 du/u2kns.f /;

J.v/ D
Z 1

0

n0. PX�v 2 du/u2k.g.u/� ns.f /�u�1/:

For any " 2 .0; 1/, let us split the integral defining J.v/ on .0; "� and on .";1/. The
absolute value of the sum on .";1/ is bounded by

n0. PX�v 
 "/.kf k1 C jns.f /j/;

and therefore goes to 0 when v goes to 0. The absolute value of the sum on .0; "/ is
bounded by

I.v/

ns.f /
sup

u2.0;"�
jg.u/� ns.f /j:

The supremum goes to 0 when " goes to 0. We deduce that J.v/ is negligible
compared to 1 _ I.v/: Recalling that the sum I.v/ C J.v/ converges to n0

s.f /

(Formula (23)), we get that I.v/ converges to n0
s.f / when v ! 0, while J.v/

converges to 0.
We thus have

n0
s.f / D Cns.f /;

where C is independent of s and f and given by

C D lim
v!0

Z 1

0

n0. PX�v 2 du/u2k:

Uniqueness follows. Theorem 1 is proved.
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4.3 The Weak Unique Solution to the (RLP) Equations

We now prove Theorem 2.

Weak Solution

We consider, under P
r
0, the coordinate process .X; PX/, and its natural filtration

.Ft /t	0. We first prove that the jumps of PX are almost surely summable on any
finite interval. As there are (a.s.) only finitely many jumps of amplitude greater
than a given constant on any finite interval, it is enough to prove that the jumps
of amplitude less than a given constant are (a.s.) summable. If a jump occurs at a
time s, its amplitude is PXs � PXs� D �.1 C c/ PXs� D .1C 1=c/ PXs. Besides, write
L for a local time of the process .X; PX/ in .0; 0/, L�1 for its inverse, and n for
the associated excursion measure. Now, it is sufficient to prove that the expectation
of the sum of the jumps of amplitude less than 1 C 1=c (i.e. corresponding to an
outgoing velocity less than one), and occurring before time L�1.1/, is finite. This
expectation is equal to

.1C 1

c
/n

0
@ X
0<s<�1

PXs�XsD0; PXs�1

1
A

and can be rewritten as

.1C 1

c
/n

 X
0<s<�1

�XsD0
Z 1

0

�v� PXs�1dv
�

D .1C 1

c
/

Z 1

0

n.NŒv;1�.X; PX//dv;

where NI.X; PX/ denotes the number of bounces of the process .X; PX/ with
outgoing speed included in the interval I . For a fixed v, introduce the sequence
of stopping times defined by �v0 D 0 and �vnC1 D infft > �vn ; Xt D 0; PXt 2 Œv; 1�g
for n 
 0. Then NŒv;1�.X; PX/ is also equal to supfn; �vn < �1g. Thanks to formula
(19), for any n > 0, we have:

n.�1 > �vn / D QP0C.H.X�vn ;
PX�vn /�1��vn <1/

D QP0C. PX�2k
�vn

��vn<1/

� v�2k QP0C.�vn < 1/:

As a consequence, we have

n.NŒv;1�.X; PX// � v�2k QP0C.supfn; �vn < �1g/
� v�2k QP.N d

Œln v;0�.S//;
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where we have written Nd
Œln v;0�.S/ for the number of instants n 2 Z such that Sn 2

Œln v; 0�. Recall also that QP is the law of the spatially stationary random walk. The
stationarity property implies that the expectation QP.N d

Œln v;0�.S// is proportional to
the length of the interval Œln.v/; 0�, that is � ln v. Further, it is finite. A simple way
to check this it to observe that given SM 2 Œln.v/; 0� for some stopping time M ,
there is a positive probability, independent of the value of SM , that the process
at this time has a jump of size greater than � ln.v/, and then stay forever above
SMC1. Therefore the variableNd

Œln v;0�.S/ is stochastically dominated by a geometric
random variable and has finite expectation. As a result,

n.NŒv;1�.X; PX// D
v!0

O.v�2k ln.1=v//

and (recall k < 1=4)

.1C 1

c
/

Z 1

0

n.NŒv;1�.X; PX//dv < 1:

The jumps are summable.
Now, write

Wt D PXt C .1C c/
X
0<s�t

PXs��XsD0:

We aim to show that the continuous processW is a Brownian motion. The technique
we use is the introduction of a sequence of stopping times, which allows us to deal
with what happens just after the instants when the process is at .0; 0/. This same
method will be used several times until the end of the paper. For " > 0, define the
sequence .T "n /n	0 by T "0 D 0 and, for n 
 0,

�
T "2nC1 D infft > T "2n; Xt D 0; PXt > "g
T "2nC2 D infft > T "2nC1; Xt D PXt D 0g

We also introduce F " D S
n	0ŒT "2n; T "2nC1� and H"

t D �F ".t/. For 0 < "0 < ", we

have H"0 � H", or equivalently, F "0 � F ". When " goes to 0C, F " converges to
the zero set Z D ft; Xt D PXt D 0g, and H" converges pointwisely to H0 D �Z .
Note that the processes H" and H0 are Ft -adapted. Note, also, that Corollary 1
implies in particular that Z has zero Lebesgue measure. For ease of notations, we
will sometimes omit the superscript ".

Conditionally on PXT2nC1
D u, the process .X.T2nC1Ct /^T2nC2

/t	0 is independent
of FT2nC1

and has law P
c
u. Hence, the process .W.T2nC1Ct /^T2nC2

� WT2nC1
/t	0 is a

Brownian motion stopped at time T2nC2 � T2nC1. Write

Wt D
Z t

0

H"
s dWs C

Z t

0

.1 �H"
s /dWs:
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The process
R t
0
.1 � H"

s /dWs converges almost surely to
R t
0
.1 � H0

s /dWs . But
the process

R t
0 .1 � H0

s /dWs is a continuous martingale of quadratic variationR t
0
.1 �H0

s /ds D t and thus a Brownian motion. In order to prove that it actually
coincides with W , we only need to prove that the termD"

t WD R t
0
H"
s dWs converges

almost surely to 0 when " goes to 0. Without loss of generality, we only prove it on
the event t � L�1.1/. Rewrite

D"
t D

8̂
ˆ̂̂<
ˆ̂̂̂
:

X
k�n

�
WT2kC1

�WT2k

�
if T2nC1 � t < T2nC2;

Wt �WT2n C
X
k<n

�
WT2kC1

�WT2k

�
if T2n � t < T2nC1:

Now, for any k, we have

WT2kC1
�WT2k D PXT2kC1

C .1C c/
X

T2k<s�T2kC1

PXs��XsD0;

and, if T2n � t < T2nC1,

Wt �WT2n D PXt C .1C c/
X

T2n<s�t
PXs��XsD0:

HenceD"
t is a sum of jumps of amplitude less than .1Cc/", of the fraction c=.1Cc/

of the jumps occurring at times T2kC1, and of the possible extra term PXt if t 2 F ".
Using the summability of the jumps, we just should show that all these terms are
small when " is small. For this, it suffices to show that

sup
s�L�1.1/;s2F "

j PXsj

converges in probability to 0. Fix � > 0 and introduce �" D inffs 2 F "; j PXsj 
 �g
and � 0" D inffs 
 t; Xs D 0g. From the Markov property at the stopping time �"

and Inequality (14), we get that conditionally on �" < 1 and F�" , the probability
of the event f PX� 0" 
 �c=2g is bounded below by 1 � p

3=� . Hence we just have to
prove that the probability of the event

f�" < L�1.1/; PX� 0" 
 �c=2g
goes to 0. But this event is equivalent to the existence of an excursion, before time
L�1.1/, for which there is a bounce with velocity greater than �c=2 before any
bounce with speed greater than ". The number of such excursions is a Poisson
variable of parameter

n. PXT "1 
 �c=2; �1 > T "1 /;
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where T "1 is still defined as the time of the first bounce with velocity greater than ",
here for the excursion. We have:

n. PXT "1 
 �c=2; �1 > T "1 / D QP0C.H.0; PXT"1 /�1� PXT"1 	�c=2/

� .�c=2/�2k QP0C. PXT "1 
 �c=2/

� .�c=2/�2km
�
� ln.�c=.2"//;1Œ

�
;

where we recall that m is the stationary law of the overshoot appearing in
Proposition 2. The parameter of the Poisson variable goes to 0 when " goes to 0,
which concludes the proof. The processW is a Brownian motion, and .X; PX; 0;W /
is a solution to Equations (RLP).

Weak Uniqueness

Consider .X; PX;N;W /, with law P, be any solution to (RLP), and its associated
filtration .Ft /t	0. Then we have

PXt D Wt � .1C c/
X
0<s�t

PXs��XsD0 CNt;

with W a Brownian motion.
We start with the observation that the process PX does not explode and that the

sum involves only positive terms. Therefore these terms are summable. The process
Nt C P

0<s�t PXs��XsD0 is monotone and adapted, hence PX is a semimartingale.
As a consequence, it possesses local times .L.a//a2R, and we have an occupation
formula (see for example [18], Theorem 70 Corollary 1, p. 216):

Z C1

�1
L
.a/
t g.a/da D

Z t

0

g. PXs�/ds;

for any g bounded measurable function. Taking g D �f0g shows that PX spends no
time at zero. It follows that the process .X; PX/ spends no time at .0; 0/.

The next step is to show that the process N has to be constantly equal to 0. We
use a stopping time technique. Define . OT "n /n	0 by OT "0 D 0 and, for n 
 0,

� OT "2nC1 D infft > T "2n; j PXt j > "g
OT "2nC2 D infft > T "2nC1; Xt D PXt D 0g;

as well as OF " D S
n	0Œ OT "2n; OT "2nC1� and OH"

t D � OF ".t/. When " goes to 0C, the

closed set OF " decreases to the zero set Z D ft > 0;Xt D PXt D 0g. Observe thatN
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can increase only on OF ", and that for any s 2 OF ", we have j PXsj � ". Write n"t D
supfn 
 0; OT "2n � tg. In the case OT2n"t � t < OT2n"tC1, we obtain

Nt D Nt �N OT2n"t
C
X
n<n"t

.N OT2nC1
�NT2n/

D �
Z t

0

.1 � OH"
s /dWs C .1C c/

X
s2 OF ";s�t

PXs��XsD0 C PXt C
X
n<n"t

PX OT2nC1
;

by writing the equation on each interval of OF ". In the case OT2n"tC1 � t < OT2n"tC2,
we simply write Nt D N OT2n"tC1

; and we get a similar formula, without the term

PXt . In the last line of the above formula, the first term goes to 0 because Z has
zero Lebesgue measure, while the second term goes to 0 because the jumps are
summable. The third one is included in Œ�"; "� and the last one in Œ�"n"t ; "n"t �.
In order to deduceN � 0 almost surely, it suffices to prove "n"t ! 0 in probability.
Fix � > 0. We have

P."n"t > �/ D P.8n � �"�1; nC 1 � n"t / D P.8n � �"�1; OT "2nC2 � t/

� P.8n � �"�1; OT "2nC2 � OT "2nC1 � t/:

But we also have

P. OT "2nC2 � OT "2nC1 > t jF OT "2nC1
/ D P

c

X OT "
2nC1

; PX OT "
2nC1

.�1 > t/


 .1 �
p
3

�
/Pc0;"c=2.�1 > t/;

using Inequality (14), so that

P."n"t > �/ � �
1 � .1 �

p
3

�
/Pc0;"c=2.�1 > t/

�b�"�1c
:

Finally, by use of (4) and of the scaling invariance property, we have

P
c
0;"c=2.�1 > t/ �

"!0
C1
c2kt�k

22k
"2k:

As 2k < 1, we conclude

P."n"t > �/ �!
"!0

0:
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Now, exactly as before, introduce, for " > 0, the sequence of stopping times T "n ,
defined by T "0 D 0 and

�
T "2nC1 D infft > T "2n; Xt D 0; PXt > "g
T "2nC2 D infft > T "2nC1; Xt D PXt D 0g;

as well as F " D S
n	0ŒT "2n; T "2nC1� and H" D �F " . Finally, define the closed set

F D lim"!0 F
" and the adapted processH0 D �F :

Lemma 8. The set F has almost surely zero Lebesgue measure.

This result is not immediate. First, observe that the excursions of the process may
be of two types. Either an excursion bounces on the boundary just after the initial
time, or it doesn’t. We call E1 the set of excursions of the first type, defined by

E1 WD f.x; Px/ 2 E j�1.x; Px/ WD infft > 0; xt D 0g D 0g;

and E2 D E nE1 the set of excursions of the second type. Unlike before, we do not
know a priori that all the excursions of the process lie in E1. If the process starts an
excursion at time t , we write et for the corresponding excursion. The set F contains
not only the zero set Z , but also all the intervals Œt; tC�1.et /�, where t is the starting
time of an excursion et 2 E2. Proving Lemma 8 is equivalent to proving that there
is actually no excursion in E2.

Suppose that this fails. Then the process

L .t/ D
Z t

0

H0
s ds

is not almost surely constantly equal to zero. We introduce its right-continuous
inverse

L �1.t/ WD inffs > t;L .s/ > tg:
There exists a Brownian motionM such that for t < L .1/;

Mt D
Z L �1.t/

0

H0
s dWs:

Introduce the time-changed process stopped at time L .1/:

.Yt ; PYt/ D .XL �1.t/; PXL �1.t//; 0 � t < L .1/:

This process spends no time at .0; 0/ (before being stopped).
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Lemma 9. The quadruplet .Yt ; PYt ; 0;Mt/t<L .1/ under P is a solution of the
equations (RLP) with null elasticity coefficient, stopped at time L .1/.

Proof. Write Fd for the set of right extremities of non-trivial intervals of F ,
that is, the set of those instants t C �1.e

t /, where t is the starting time of an
excursion et 2 E2. Observe that for t 2 F nFd , we have PXt��XtD0 D 0. Fix
t < L .1/. We have:

PYt �Mt D WL �1.t/ �
Z L �1.t/

0

H0
s dWs � .1C c/

X
0<s�L �1.t/

PXs��XsD0

D
Z L �1.t/

0

�s…F dWs � .1C c/
X

0<s�L �1.t/;s…F
PXs��XsD0

�.1C c/
X

0<s�L �1.t/;s2Fd
PXs��XsD0:

Moreover, for any maximal interval .a; b/ of
�
0;L �1.t/

�nF; we have Xa D Xb D
PXb D PXb� D 0, and PXa D �c PXa�. It follows

0 D PXb� � PXa � c PXa�
D Wb �Wa � .1C c/

X
s2.a;b/

PXs��XsD0 � c PXa�:

Summing on all the intervals of
�
0;L �1.t/

�nF yields

Z L �1.t/

0

�s…F dWs � .1C c/
X

s�L �1.t/;

s…F

PXs��XsD0 � c
X

s�L �1.t/;

s2Fd

PXs��XsD0 D 0;

and thus

PYt �Mt D �
X

0<s�L �1.t/;s2Fd
PXs��XsD0: (24)

If s � L �1.t/ is in Fd , then there exists r � t such that s D L �1.r�/ and
L �1.r�/ < L �1.r/. Then PYr� D PXL �1.r�/� D PXs�, and Yr DXL �1.r/ D 0DXs .
Moreover, for r � t such that L �1.r�/ … Fd , we have L �1.r/ D L �1.r�/ and

PYr��YrD0 D PXL �1.r/��XL �1.r/
D0 D 0:

We deduce that (24) can be rewritten as
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PYt �Mt D �
X
0<r�t

PYr��YrD0:

Besides, it is easy to check Yt D R t
0

PYsds: So .Y; PY ; 0;M/ is a solution to (RLP)
with null elasticity coefficient, stopped at time L .1/.

The article [4], dealing with equations (RLP) with null elasticity coefficient, shows
that .Y; PY / must be a Markov process, with Itō excursion law n (stopped at time
L .1/). We immediately introduce another change of time, in a very similar way,
but without stopping the excursions of E2 at time �1. Define the random set

A WD Z [
[

ft jet2E2g
Œt; t C �1.et /�;

and the adapted process QH D �A: Define also

QL .t/ D
Z t

0

QHsds;

and write QL �1 for its right-continuous inverse. Then, there exists a Brownian
motion QM such that

QMt D
Z QL �1.t/

0

QHsdWs

for t < QL .1/. Finally, the time-changed process

. QYt ; PQYt / D .X QL �1.t/;
PX QL �1.t//;

stopped at time QL .1/, spends no time at zero and its excursions are the excursions
of .X; PX/ included in E2. Remark that we have QL .1/ 
 L .1/ because A � F .
We also get the following lemma, similar to Lemma 9, and whose proof is left to the
reader.

Lemma 10. The quadruplet

 QYt ; PQYt ; 0; QMt

�
t� QL .1/

under P is a solution of Equa-

tions (RLP) (with elasticity coefficient c), stopped at time QL .1/.

The process . QY ; PQY / spends no time at 0, is a solution to (RLP), and its excursions,
stopped at �1, the first return time to f0g � R, are precisely those of .Y; PY /: This

induces that . QY ; PQY / is a Markov process with Itō excursion measure Qn determined by

� Qn �.xt^�1/t	0 2 �� D n.x 2 �/
Qn �.xtC�1/t	0 2 �ˇ̌ PX�1 D v/ D P

c
v.x 2 �/
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Now, the result of uniqueness of the excursion measure implies that Qn should be a
multiple of n, which is obviously not the case (for example because Qn.�1 D 0/D 0).
Therefore QL .1/ D 0 D L .1/ a.s. Lemma 8 is proved.

Finally, we introduce a last time-change, with L ".t/ WD R t
0
H"
s ds, and

.L "/�1.t/ WD inffs > 0;L ".s/ > tg. When " goes to 0, .L "/�1 goes to
L �1 D Id. It follows that the process X" WD .X.L "/�1.t//t	0 converges uniformly
on compacts to X when " goes to 0, almost surely. In particular the law of X is
entirely determined by that of X". The law of X" is in turn entirely determined
by that of . PXT "

2nC1
/n	0: We will now determine this law, which will prove the

uniqueness of the law of X .
In order to avoid complex notations, we only provide the calculation of the law

of PXT11 , which is not fundamentally different from others. For " > 0 and n 
 0, a
Markov property for the process W applied at time T "2nC1 shows that conditionally
on PXT "2nC1

D u, the process .X.T "2nC1Ct /^T "2nC2
/t	0 is independent from FT "2nC1

and

has law P
c
u. Write n1 for the integer satisfying T "2n1C1 � T 11 < T

"
2n1C2. Conditionally

on PXT "2n1C1
D u, the process .X.T "2n1C1Ct /^T "2n1C2

/t	0 has the law P
c
u conditioned on

reaching a speed greater than one after a bounce.
In other words, the law of PXT11 under P.�j PXT"

2n1C1
D u/ is equal to that of PXT11

under Pcu.�jT 11 < 1/. Besides, it should be clear now that PXT"
2n1C1

goes to 0 when "
goes to 0. Recall that �1, the hitting time of .0; 0/, is the lifetime of the excursion
(under Pcu as well as under n). For any positive continuous functional f , we have:

P
c
u.f .

PXT11 /j T
1
1 < �1/ D P

c
u

�
f . PXT11 /�T 11 <�1

�.
P
c
u.�T 11 <�1

/

D QPu



f . PXT11 /.H.0; PXT11 //

�1
�. QPu..H.0; PXT11 //

�1/

�!
u!0

QP0C
�
f . PXT11 /.H.0; PXT11 //

�1�. QP0C..H.0; PXT11 //
�1/

D n.f . PXT 11 /j T
1
1 < �1/;

where we used successively (8), Proposition 2 and (a generalization of) (19). As a
consequence, the law of PXT11 under P is entirely determined, and is equal to that

of PXT11 under n.�j T 11 < �1/. Uniqueness for the stochastic differential equation
follows.
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Stat. 46(3), 869–887 (2010)

12. E. Jacob, Langevin process reflected on a partially elastic boundary I. Stoch. Process. Appl.
122(1), 191–216 (2012)

13. H. Kesten, Random difference equations and renewal theory for products of random matrices.
Acta Math. 131, 207–248 (1973)

14. A. Lachal, Les temps de passage successifs de l’intégrale du mouvement brownien. Ann. Inst.
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Windings of Planar Stable Processes
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Abstract Using a generalization of the skew-product representation of planar
Brownian motion and the analogue of Spitzer’s celebrated asymptotic Theorem for
stable processes due to Bertoin and Werner, for which we provide a new easy proof,
we obtain some limit Theorems for the exit time from a cone of stable processes of
index ˛ 2 .0; 2/. We also study the case t ! 0 and we prove some Laws of the
Iterated Logarithm (LIL) for the (well-defined) winding process associated to our
planar stable process.
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1 Introduction

In this paper, we study the windings of planar isotropic stable processes. More
precisely, having as a starting point a work of Bertoin and Werner [7] concerning
this subject (following their previous work on windings of planar Brownian motion1

[5]) and motivated by some works of Shi [37], we attempt to generalize some results
obtained recently for the case of planar Brownian motion (see e.g. [40–42] and
the references therein). In particular, we are interested in the behaviour of stable
processes for small time, an aspect which has already been investigated e.g. by
Doney [13] in terms of Spitzer’s condition for stable processes (see e.g. [4] and
the references therein).

In Sect. 2, we recall some facts about standard isotropic stable processes of index
˛ 2 .0; 2/ taking values in the complex plane. Then, we follow Bertoin and Werner
[7] to define the process of its winding number, we generalize the skew-product
representation of planar BM (see e.g. [24, 35, 11]) and we present two Lemmas for
the winding process of isotropic stable Lévy processes obtained in [7]. Finally, we
mention some properties of the positive and the negative moments of the exit times
from a cone of this process.

In Sect. 3, we use some continuity arguments of the composition function due to
Whitt [43] and we obtain a new simple proof of the analogue of Spitzer’s Theorem
for isotropic stable Lévy processes, initially proven by Bertoin and Werner [7].
We reformulate and we extend this result in terms of the exit times from a cone.
More precisely, Spitzer’s asymptotic Theorem says that, if .#t ; t 
 0/ denotes the
continuous determination of the argument of a planar BM starting away from the
origin, then:

2

log t
#t

.law/�!
t!1 C1 ; (1)

where C1 is a standard Cauchy variable. For other proofs of (1), see e.g. [44, 17,
31, 33, 5, 46, 41, 42]. Bertoin and Werner state that because an isotropic stable Lévy
processes is transient, we expect that it winds more slowly than planar Brownian
motion and prove that, with 	 now denoting the process of its winding number
(appropriately defined, see e.g. Sect. 2), 	t=

p
log t converges in distribution to some

centered Gaussian law as t ! 1 (Theorem 1 in Bertoin and Werner [7], stated here
as Theorem 1).

In Sect. 4, and more precisely in Theorems 2 and 4, we study the asymptotics
of a symmetric Lévy process and of the winding process of isotropic stable Lévy
processes for t ! 0, respectively, which are the main results of this article.
In particular, we show that t�1=˛	t converges in distribution to an ˛-stable law as
t ! 0. Using this result, in Proposition 5 we obtain the (weak) limit in distribution

1When we simply write: Brownian motion, we always mean real-valued Brownian motion, starting
from 0. For two-dimensional Brownian motion, we indicate planar or complex BM.
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of the process of the exit times from a cone with narrow amplitude and we
further obtain several generalizations. We also study the windings of planar stable
processes in . t; 1 �, for t ! 0 and we note that, with obvious notation, Spitzer’s
law is still valid for 	. t;1 � (see Remark 4). Section 5 deals with the Law of the
Iterated Logarithm (LIL) for Lévy processes for small times, in the spirit of some
well-known LIL for Brownian motion for t ! 1 from Bertoin and Werner [5, 6]
and from Shi [36, 37], and for stable subordinators with index ˛ 2 .0; 1/ for t ! 0

from Fristedt [18,19] and Khintchine [23] (see also [3]). Moreover, we prove a LIL
for the winding number process of stable processes, for t ! 0.

Finally, in Sect. 6 we discuss the planar Brownian motion case and in Theorem 7
we obtain the asymptotic behaviour of the winding process as t ! 0. More
precisely, the process

�
c�1=2#ct ; t 
 0

�
converges in law to a one-dimensional

Brownian motion as c ! 0.

Notation. In the following text, with the symbol “H)” we shall denote the weak
convergence in distribution on the appropriate space, endowed with the Skorohod
topology.

2 Preliminaries

Following Lamperti [26], a Markov process X with values in R
d , d 
 2

is called isotropic or O.d/-invariant (O.d/ stands for the group of orthogonal
transformations on R

d ) if its transition satisfies:

Pt .�.x/; �.B// D Pt .x;B/; (2)

for any � 2 O.d/, x 2 R
d and Borel subset B � R

d .
Moreover,X is said to be ˛-self-similar if, for ˛ > 0,

P�t .x;B/ D Pt.�
�˛x; ��˛B/; (3)

for any � > 0, x 2 R
d and B � R

d .
We focus now our study on the two-dimensional case .d D 2/, where (3) holds,

and we denote by .Zt ; t 
 0/ a standard isotropic stable process of index ˛ 2 .0; 2/
taking values in the complex plane and starting from z0 C i0; z0 > 0. A scaling
argument shows that we may assume z0 D 1, without loss of generality, since, with
obvious notation:



Z
.z0/
t ; t 
 0

�
.law/D



z0Z

.1/

.t=z˛0 /
; t 
 0

�
: (4)

Thus, from now on, we shall take z0 D 1. More precisely, Z has stationary inde-
pendent increments, its sample path is right continuous and has left limits (cadlag)
and, with h�; �i standing for the Euclidean inner product, E Œexp .ih�;Zt i/� D
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exp .�t j�j˛/, for all t 
 0 and � 2 C. Z is transient, limt!1 jZt j D 1 a.s. and
it a.s. never visits single points. We remark that for ˛ D 2, we are in the Brownian
motion case.

We are now going to recall some properties of stable processes and Lévy
processes (for more details see e.g. [3] or [25]).

To start with, if Z D .Zt ; t 
 0/ denotes a planar Brownian motion starting
from 1 and S D .S.t/; t 
 0/ an independent stable subordinator with index ˛=2
starting from 0, i.e.:

E Œexp .��S.t//� D exp
��t�˛=2� ; (5)

for all t 
 0 and � 
 0, then the subordinated planar BM .Z2S.t/; t 
 0/ is a
standard isotropic stable process of index ˛. The Lévy measure of S is:

˛

2� .1� ˛=2/
s�1�˛=21fs>0gds ;

thus, the Lévy measure � of Z is:

�.dx/ D ˛

2� .1 � ˛=2/
Z 1

0

s�1�˛=2P .Z2s � 1 2 dx/ ds

D ˛

8�� .1 � ˛=2/

�Z 1

0

s�2�˛=2 exp
��jxj2=.4s/� ds

�
dx

D ˛ 2�1C˛=2� .1C ˛=2/

�� .1 � ˛=2/
jxj�2�˛dx : (6)

Contrary to planar Brownian motion, as Z is discontinuous, we cannot define its
winding number (recall that, as is well known [21], for planar BM, since it starts
away from the origin, it does not visit a.s. the point 0 but keeps winding around it
infinitely often. In particular, the winding process is well defined, for further details
see also e.g. [33]). However, following [7], we can consider a path on a finite time
interval Œ0; t � and “fill in” the gaps with line segments in order to obtain the curve
of a continuous function f W Œ0; 1� ! C with f .0/ D 1. Now, since 0 is polar and
Z has no jumps across 0 a.s., we have f .u/ ¤ 0 for every u 2 Œ0; 1�. Hence, we
can define the process of the winding number of Z around 0, which we denote by
	 D .	t ; t 
 0/. It has cadlag paths of absolute length greater than � and, for all
t 
 0,

exp.i	t / D Zt

jZt j : (7)

We also introduce the clock:

H.t/ �
Z t

0

ds

jZs j˛ ; (8)
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and its inverse:

A.u/ � infft 
 0;H.t/ > ug : (9)

Bertoin and Werner following [20] obtained these two Lemmas for ˛ 2 .0; 2/ (for
the proofs see [5]):

Lemma 1. The time-changed process .	A.u/; u 
 0/ is a real-valued symmetric
Lévy process. It has no Gaussian component and its Lévy measure has support in
Œ��; ��.
We now denote by dz the Lebesgue measure on C. Then, for every complex number
z ¤ 0, �.z/ denotes the determination of its argument valued in . � �; � �.

Lemma 2. The Lévy measure of 	A.�/ is the image of the Lévy measure � of Z by
the mapping z ! �.1C z/. As a consequence,EŒ.	A.u//2� D uk.˛/, where

k.˛/ D ˛ 2�1C˛=2� .1C ˛=2/

�� .1 � ˛=2/
Z
C

jzj�2�˛j�.1C z/j2dz : (10)

Using Lemma 1, we can obtain the analogue of the skew product representation
for planar BM which is the Lamperti correspondence for stable processes. Indeed,
following [20] and using Lamperti’s relation (see e.g. [26, 24, 11, 10] or [35]) and
Lemma 1, there exist two real-valued Lévy processes .�u; u 
 0/ and .�u; u 
 0/,
the first one non-symmetric whereas the second one symmetric, both starting from
0, such that:

log jZt j C i	t D .�u C i�u/
ˇ̌
ˇ
uDHtD

R t
0

ds
jZs j

˛

: (11)

We remark here that jZj and ZA.�/=jZA.�/j are NOT independent. Indeed, the
processes jZA.�/j and ZA.�/=jZA.�/j jump at the same times hence they cannot be
independent. Moreover,A.�/ depends only upon jZj, hence jZj andZA.�/=jZA.�/j are
not independent. For further discussion on the independence, see e.g. [30], where is
shown that an isotropic ˛-self-similar Markov process has a skew-product structure
if and only if its radial and its angular part do not jump at the same time.

We also remark that

H�1.u/ � A.u/ � infft 
 0 W H.t/ > ug D
Z u

0

expf˛�sg ds : (12)

Hence, (11) may be equivalently written as:

(
jZt j D exp .�.Ht // , ˇ̌

ZA.t/
ˇ̌ D exp .�t / ; (extension of Lamperti’s identity)

	t D �.Ht / , 	 .A.t// D �.t/ :

(13)
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We also define the random times T j	 j
c � infft W j	t j 
 cg and T j�j

c � infft W j�t j 
 cg,
.c > 0/. Using the “generalized” skew-product representation (11) (or (13)),
we obtain:

T j	 j
c D H�1

u

ˇ̌
ˇ
uDT j�j

c

D
Z T

j� j
c

0

ds exp.˛�s/ � A
T

j�j
c
: (14)

Following [42], for the random times T 	�d;c � infft W 	t … .�d; c/g, d; c > 0, and
T 	c � infft W 	t 
 cg, we have:

Remark 1. For 0 < c < d , the random times T 	�d;c , T
j	 j
c and T 	c satisfy the trivial

inequality:

T j	 j
c � T 	�d;c � T 	c : (15)

Hence, with p > 0:

E
h

T j	 j
c

�pi � E
h�
T 	�d;c

�pi � E
h�
T 	c
�pi

; (16)

and for the negative moments:

E
h�
T 	c
��pi � E

h�
T 	�d;c

��pi � E
h

T j	 j
c

��pi
: (17)

Remark 2. For further details concerning the finiteness of the positive moments of
T

j	 j
c , see e.g. [12, 2]. Recall also that for the positive moments of the exit time from

a cone of planar Brownian motion, Spitzer showed that (with obvious notation)
[39, 9]:

E
h

T j#j
c

�pi
< 1 , p <

�

4c
; (18)

whereas all the negative moments E
h

T

j#j
c

��pi
are finite [42].

We denote now by 
.u/ the exponent of the symmetric Lévy process �, hence
(Lévy–Khintchine formula) EŒeiu�t � D e�t
.u/, with:


.u/ D
Z
.�1;1/

�
1 � eiux C iux1fjxj�1g

�
�.dx/; u 2 R; (19)

where � is a Radon measure on R n f0g such that:

Z
.�1;1/

.x2 ^ 1/�.dx/ < 1 :

� is the Lévy measure of � and is symmetric.
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3 Large Time Asymptotics

Concerning the clock H , we have the almost sure convergence (see Corollary 1 in
Bertoin and Werner [7]):

H.eu/

u

a:s:�!
u!1 2�˛ � .1 � ˛=2/

� .1C ˛=2/
� K.˛/ D E ŒjZ1j�˛� : (20)

Moreover, we have the following:

Proposition 1. The family of processes

H.u/
x �

�
H.eux/

u
; x 
 0

�

is tight, as u ! 1.

Proof. To prove this, we could repeat some arguments of Pitman and Yor [34]
(see the estimates in their proof of Theorem 6.4), however, we give here a
straightforward proof, using the definition of tightness:
for every "; � > 0, there exist ı > 0 and Cı > 0 such that, for every 0 < x < y:

P

 
sup

jx�yj�ı
jH.euy/ �H.eux/j 
 u"

!
� � ; for u 
 Cı ; (21)

or equivalently:

P

�
1

u

ˇ̌
H.eu.xCı// �H.eux/

ˇ̌ 
 "

�
� � ; for u 
 Cı : (22)

First, following Bertoin and Werner [7], we introduce the “Ornstein–Uhlenbeck
type” process:

QZu D exp.�u=˛/Zexp.u/; u 
 0 ; (23)

which is a stationary Markov process under P0 (see e.g. [8]). We denote by pt .�/ the
semigroup of Z:

pt .Nz/ D P0.Zt 2 d Nz/=d Nz; Nz 2 C:

We denote by Z.0/ another stable process starting at 0. Then, using the scaling
property, given that QZ0 � Z1 � 1CZ.0/

1 D Nx, the semigroup qu.�/ of QZ is given by:

qu. Nx; Ny/ D pexp.u/�1
�
eu=˛ Ny � Nx� e2u=˛

D .eu � 1/�2=˛e2u=˛p1
�
.eu � 1/�1=˛.eu=˛ Ny � Nx/�

D .l.u//2p1
�
l.u/. Ny � e�u=˛ Nx/� ; (24)
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where l.v/ D ev=˛.ev�1/�1=˛ . For every ı > 0 and changing variables s D exp.v/,
with obvious notation, we have:

E
�ˇ̌
H.eu.xCı//�H.eux/

ˇ̌	 D
Z eu.xCı/

eux
E ŒjZs j�˛� ds D

Z u.xCı/

ux
E QZ0

�j QZvj�˛
	

dv:

(25)

We also define ".v/ � l.v/e�v=˛ D .ev � 1/�1=˛ . From (23), using the stability of
Z, we have:

QZv D e�v=˛Zexp.v/ D e�v=˛ �Zexp.v/�1 CZ1
� .law/D e�v=˛



.ev � 1/1=˛Z.0/

1 CZ1

�

D .l.v//�1


Z
.0/
1 C ".v/Z1

�
: (26)

Hence (for simplicity, we use E � E0):

E QZ0
�j QZvj�˛

	 D .l.v//˛E
h
jZ.0/

1 C ".v/ QZ0j�˛
i

� .l.v//˛ .E1 C E2/ ; (27)

where, with ı0 > 0,

E1 D E
h
jZ.0/

1 C ".v/ QZ0j�˛ W jZ.0/
1 C ".v/ QZ0j 
 ı0

i
;

E2 D E
h
jZ.0/

1 C ".v/ QZ0j�˛ W jZ.0/
1 C ".v/ QZ0j � ı0i :

We have: l.v/
v!1�! 1 and ".v/

v!1�! 0, thus, by Dominated Convergence Theorem:

E1
v!1�! E

h
jZ.0/

1 j�˛ W jZ.0/
1 j 
 ı0i ı0!0�! E

h
jZ.0/

1 j�˛
i
: (28)

Moreover, changing the variables: Nw D Nz C ".v/ Nx, we have:

E2 D
Z

Nx;NzWjNzC".v/ Nxj�ı0

P. QZ0 2 dNx/ P.Z.0/
1 2 dNz/ jNz C ".v/ Nxj�˛

D
Z

Nx; NwWj Nwj�ı0

P. QZ0 2 dNx/ P.Z.0/
1 2 d Nw/ j Nwj�˛:

Remarking now that for stable processes: P.Z.0/
1 2 d Ny/ � C 0d Ny, where C 0 stands

for a positive constant and using w D .w1;w2/, we have:

E2 � C 0
Z

Nx; NwWj Nwj�ı0

P. QZ0 2 dNx/ dw1 dw2
j Nwj˛ D C 0

Z
NzWj Nwj�ı0

dw1 dw2
j Nwj˛

ı0!0�! 0 : (29)
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Thus, from (27), (28) and (29), invoking again the Dominated Convergence
Theorem, we deduce:

lim
u!1E QZ0

�j QZvj�˛
	 D E

h
jZ.0/

1 j�˛
i
; (30)

which is a constant. Hence, for every "; � > 0, there exist ı > 0 and Cı > 0 such
that (22) is satisfied for u 
 Cı. ut
Bertoin and Werner in [7] obtained the analogue of Spitzer’s Asymptotic Theorem
[39] for isotropic stable Lévy processes of index ˛ 2 .0; 2/:
Theorem 1. The family of processes

�
.c/
t � �

c�1=2	exp.ct/; t 
 0
�

converges in distribution on D.Œ 0;1 / ;R/ endowed with the Skorohod topology,

as c ! 1, to

p

r.˛/Bt ; t 
 0
�

, where .Bs; s 
 0/ is a real valued Brownian

motion and

r.˛/ D ˛ 2�1�˛=2

�

Z
C

jzj�2�˛j�.1C z/j2dz : (31)

Using some results due to Whitt [43], we can obtain a simple proof of this theorem.

Proof (new proof). Essentially, an argument of continuity of the composition
function (Theorem 3.1 in [43]) may replace the martingale argument in the lines of
the proof for t ! 1 from Bertoin and Werner. We split the proof in three parts:

(i) Concerning the clock H , we have the almost sure convergence (20):

H.eu/

u

a:s:�!
u!1 K.˛/ D E ŒjZ1j�˛� :

From this result follows the convergence of the finite dimensional distributions
of v�1H.exp.vt//, for v ! 1 and every t > 0.

Moreover, from Proposition 1, the family of processes

H.u/
x �

�
H.eux/

u
; x 
 0

�

is tight as u ! 1. Hence, from (20) and (21), finally, H.u/.t/ �
.u�1H.exp.ut//; t 
 0/ converges weakly to .tK.˛/; t 
 0/ as u ! 1, i.e.:

�
H.eut /

u
; t 
 0

�
.d/H)

u!1 .tK.˛/; t 
 0/; (32)

where the convergence in distribution is viewed on D.Œ 0;1 / ;R/ endowed
with the Skorohod topology.
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(ii) Using the skew product representation analogue (11) and Lemma 2, we have:
�
�tup

u
; t 
 0

�
.d/H)

u!1


p
k.˛/ Bt ; t 
 0

�
; (33)

where the convergence in distribution is viewed again on D.Œ 0;1 / ;R/

endowed with the Skorohod topology and k.˛/ is given by (10). This follows
from the convergence of the finite dimensional distributions:

�up
u

D 	A.u/p
u

.d/�!
u!1

p
k.˛/ B1 ; (34)

a condition which is sufficient for the weak convergence (33), since Lévy
processes are semimartingales with stationary independent increments; for
further details see e.g. [38] or [22] (Corollary 3.6, Chap. VII, p. 415).

(iii) Theorem 3.1 in [43] states that the composition function on D.Œ 0;1 / ;R/ �
D.Œ 0;1 / ; Œ 0;1 // is continuous at each .�;H/ 2 .C.Œ 0;1 / ;R/ �
D0.Œ 0;1 / ; Œ 0;1 ///, with C denoting the set of continuous functions and
D0 the subset of increasing cadlag functions in D (hence the subset of non-
decreasing cadlag functions in D). Hence, from (32) and (33), we have: for
every t > 0,

	exp.ct/p
c

D �H.exp.ct//p
c

D �c.H.ect /=c/p
c

: (35)

The result now follows from the continuity of the composition function
together with (35) and the weak convergence of H.c/.�/ and c�1=2�c , as
c ! 1.

ut
From Theorem 1, we can obtain the asymptotic behaviour of the exit times from a
cone for isotropic stable processes which generalizes a recent result in [42]:

Proposition 2. For c ! 1, for every x > 0, we have the weak convergence:
�
1

c
log



T 	
x

p
c

�
; x 
 0

�
.d/H)
c!1



�
.1=2/p
1=r.˛/

; x 
 0
�
; (36)

where for every y > 0, �.1=2/y stands for the 1
2
-stable process defined by: �.1=2/y �

infft W Bt D yg.

Proof. We rely now upon Theorem 1, the analogue of Spitzer’s Theorem for stable
processes by Bertoin and Werner:

�
.c/
t � �

c�1=2	exp.ct/; t 
 0
� .d/H)
c!1

�
Br.˛/t ; t 
 0

�
: (37)

Hence, for every x > 0,
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1

c
log



T 	
x

p
c

�
D 1

c
log

�
inf
˚
t W 	t > x

p
c
��

tDexp.cs/D 1

c
log

�
inf

�
ecs W 1p

c
	exp.cs/ > x

��

D inf

�
s W 1p

c
	exp.cs/ > x

�

c!1�! inf
˚
s W Br.˛/s > x

�

D inf
n
s W pr.˛/Bs > x

o
� �

.1=2/

x=
p
r.˛/

: (38)

Moreover, from Theorem 7.1 in [43], we know that the first passage time function
mapping is continuous, thus, we deduce (36). ut
If we replace c by ac, we can obtain several variants of Proposition 2 for the random
times T 	�bc;ac , 0 < a; b � 1, for c ! 1, and a; b > 0 fixed:

Corollary 1. The following asymptotic results hold:

1

c
log



T 	p

ac

�
.law/�!
c!1 �

.1=2/p
a=r.˛/

; (39)

1

c
log



T

j	 jp
ac

�
.law/�!
c!1 �

jBjp
a=r.˛/

; (40)

1

c
log



T 	�p

bc;
p
ac

�
.law/�!
c!1 �B�p

b=r.˛/;
p
a=r.˛/

; (41)

where for every x; y>0, � jBj
x � infft W jBt jDxg and �B�y;x � infft W Bt … .�y; x/g.

Proposition 3. The following asymptotic result for ˛ 2 .0; 2/, holds: for every
b > 0,

P


T 	
b
p

log t > t
�
t!1�! erf

 
bp
2r.˛/

!
; (42)

where erf.x/ � 2p
�

R x
0
e�y2dy is the error function.

Proof. Using the notation of Theorem 1, for every b > 0, we have:

P


T 	
b
p

log t > t
�

D P

�
sup
u�t

	u < b
p

log t

�
uDt vD P

 
sup
v�1
.log t/�1=2	tv < b

!

tDecD P

 
sup
v�1

c�1=2	exp.cv/ < b

!
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Hence, using Theorem 1 for t ! 1, we deduce:

P


T 	
b
p

log t > t
�
t!1�! P

 
sup
v�1

p
r.˛/Bv < b

!
D P

 
jB1j < bp

r.˛/

!

D 2

Z b=
p
r.˛/

0

dwp
2�

e�w2=2 ;

and changing the variables w D y
p
2, we obtain (42). ut

As mentioned in [7], because an isotropic stable Lévy process Z is transient, the
difference between 	 and the winding number around an arbitrary fixed z ¤ 1 is
bounded and converges as t ! 1. Hence, with

�
	it ; t > 0

�
, 1 � i � n denoting

the continuous total angle wound of Z of index ˛ 2 .0; 2/ around zi (z1; : : : ; zn

are n distinct points in the complex plane C) up to time t , we obtain the following
concerning the finite dimensional distributions (windings around several points):

Proposition 4. For isotropic stable Lévy processes of index ˛ 2 .0; 2/, we have:

 
	itp
log t

; 1 � i � n

!
.d/H)
t!1


p
r.˛/Bi

1; 1 � i � n
�
; (43)

where
�
Bi
s ; 1 � i � n; s 
 0

�
is an n-dimensional Brownian motion and r.˛/ is

given by (31).

4 Small Time Asymptotics

We turn now our study to the behaviour of 	t for t ! 0.

Theorem 2. For ˛ 2 .0; 2/, the following convergence in law holds:

�
t�1=˛�ts; s 
 0

� .d/H)
t!0

.�s; s 
 0/ ; (44)

where .�s; s 
 0/ is a symmetric one-dimensional ˛-stable process and the
convergence in distribution is considered on D.Œ 0;1 / ;R/ endowed with the
Skorohod topology.

Proof. From Lemma 2, we use the Lévy measure, say Q� , of 	A.�/ (thus the Lévy
measure of �) and we prove that for t ! 0 it converges to the Lévy measure of a
one-dimensional ˛-stable process. Indeed, with

L � ˛ 2�1C˛=2� .1C ˛=2/

�� .1 � ˛=2/ ;
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and z denoting a number in C, using polar coordinates, we have:

� .1C z/ D
Z
C

dz

1C z
D 2L

Z �

0

Z 1

0

r dr d'

.1C r2 � 2r cos'/1C˛=2
:

We remark that:

1C r2 � 2r cos' D .r � cos'/2 C sin2 ' ;

hence, changing the variables .r � cos'/2 D t�1 sin2 ' and denoting by:

B.yI a; b/ D
Z y

0

ua�1.1 � u/b�1du ;

the incomplete Beta function, for ' > 0 (we can repeat the same arguments for
' < 0) we have:

Q�.d'/ D d' 2L

Z 1

0

r dr

.r � cos '/2 C sin2 '

�1C˛=2

D d'
2L

2

 
2

˛
C cos '



1 � cos2 '

�� 1
2� ˛

2

Z 1� 1

cos2 '

0
t� 1

2C ˛
2 .1C t/� ˛

2 �1 dt

!

uD�tD d' L

 
2

˛
C cos '



�1C cos2 '

�� 1
2� ˛

2

Z 1� 1

cos2 '

0
u� 1

2C ˛
2 .1 � u/� ˛

2 �1 du

!

D d' L

 
2

˛
C cos '



�1C cos2 '

�� 1
2� ˛

2
B

�
1 � 1

cos2 '
I 1
2

C ˛

2
;�˛
2

�!

'�0Ï QL'�1�˛ d' ; (45)

which is the Lévy measure of an ˛-stable process. The result now follows by
standard arguments. ut
Concerning the clock H and its increments, we have:

Theorem 3. The following a.s. convergence holds:
�
H.ux/

u
; x 
 0

�
a:s:�!

u!0
.x; x 
 0/ : (46)

Proof. From the definition of the clock H we have:

H.ux/

u
D 1

u

Z ux

0

ds

jZsj˛ :
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Hence, for every x0 > 0, we have:

sup
x�x0

ˇ̌
ˇ̌H.ux/ � ux

u

ˇ̌
ˇ̌ D sup

x�x0
1

u

ˇ̌
ˇ̌
Z ux

0

�
1

jZsj˛ � 1

�
ds

ˇ̌
ˇ̌ � 1

u

Z ux0

0

ˇ̌
ˇ̌ 1

jZs j˛ � 1

ˇ̌
ˇ̌ ds

sDuwD
Z x0

0

ˇ̌
ˇ̌ 1

jZuwj˛ � 1

ˇ̌
ˇ̌ dw

a:s:�!
u!0

0 : (47)

because:

jZuj˛ a:s:�!
u!0

1 : (48)

Thus, as (47) is true for every x0 > 0, we obtain (46). ut
Remark 3. We remark that this behaviour of the clock is different for the case t !
1, where (20) can be equivalently stated as:

�
H.ux/

log u
; x 
 0

�
.d/H)

u!1

�
2�˛ � .1 � ˛=2/

� .1C ˛=2/
x; x 
 0

�
: (49)

Using Theorems 2 and 3, we obtain:

Theorem 4. With ˛ 2 .0; 2/, the family of processes

�
c�1=˛	ct ; t 
 0

�

converges in distribution on D.Œ 0;1 / ;R/ endowed with the Skorohod topology,
as c ! 0, to a symmetric one-dimensional ˛-stable process .�t ; t 
 0/.

Proof. We will use Theorems 2 and 3. More precisely, we shall rely again upon the
continuity of the composition function as studied in Theorem 3.1 in [43].

(i) First, concerning the clock H , for every t > 0, we have the almost sure
convergence (46), which yields the weak convergence (on D.Œ 0;1 / ;R/

endowed with the Skorohod topology) of the family of processes QH.u/.t/ �
.u�1H.ut/; t 
 0/ to .t; t 
 0/ as u ! 0.

(ii) We use another result of Whitt [43] which states that the composition function
on D.Œ 0;1 / ;R/ � D.Œ 0;1 / ; Œ 0;1 // is continuous at each .�;H/ 2
.D.Œ 0;1 / ;R/ � C0.Œ 0;1 / ; Œ 0;1 ///, with D denoting the set of cadlag
functions and C0 the subset of strictly-increasing functions in C . Hence, from
Theorem 2 and (46), using the weak convergence of QH.c/.�/ and of c�1=˛�c , as
c ! 0, we deduce: for every t > 0,

	ct

c1=˛
D �H.ct/

c1=˛
D �c.H.ct/=c/

c1=˛

.d/H)
c!0

�t ; (50)

where the convergence in distribution is viewed on D.Œ 0;1 / ;R/ endowed
with the Skorohod topology.

ut
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From the previous results, we deduce the asymptotic behaviour, for c ! 0, of the
first exit times from a cone for isotropic stable processes of index ˛ 2 .0; 2/ taking
values in the complex plane:

Proposition 5. For c ! 0, we have the weak convergence:

�
1

c
T 	
c1=˛x

; x 
 0

�
.d/H)
c!0

�
T �x x 
 0

�
; (51)

where for every x, T �x is the first hitting time defined by: T �x � infft W �t D xg.

Proof. Using Theorem 4, we have:

1

c
T 	
c1=˛x

D 1

c
inf
˚
t W 	t > c1=˛x

� tDcsD 1

c
inf
˚
cs W c�1=˛	cs > x

�

D inf
˚
s W c�1=˛	cs > x

� c!0�! inf fs W �s > xg ;

which, using again the continuity of the first passage time function mapping (see
Theorem 7.1 in [43]), yields (51). ut
Finally, we can obtain several variants of Proposition 5 for the random times T 	�bc;ac ,
0 < a; b � 1 fixed, for c ! 0:

Corollary 2. The following asymptotic results hold:

1

c
T 	
ac1=˛

.law/�!
c!0

T �a ; (52)

1

c
T

j	 j
ac1=˛

.law/�!
c!0

T j�j
a ; (53)

1

c
T 	�bc1=˛;ac1=˛

.law/�!
c!0

T
�

�b;a ; (54)

where, for every x; y >0, T j�j
x � infft W j�t j Dxg and T ��y;x � infft W �t … .�y; x/g.

Remark 4 (Windings of planar stable processes in .t; 1� for t ! 0).

(i) We consider now our stable process Z starting from 0 and we want to
investigate its windings in . t; 1 � for t ! 0. We know that it doesn’t visit
again the origin but it winds a.s. infinitely often around it, hence, its winding
process 	 in . t; 1 � is well-defined. With obvious notation, concerning now the
clock H. t;1 � D R 1

t
du jZuj�˛ , the change of variables u D tv and the stability

property, i.e.: Ztv
.law/D t1=˛Zv , yield:

H. t;1 � D
Z 1=t

1

t dv

jZtvj˛
.law/D

Z 1=t

1

dv

jZvj˛ D H.1;1=t � :
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Hence, as before, using Whitt’s result [43] on the continuity of the compo-
sition function on D.Œ 0;1 / ;R/ � D.Œ 0;1 / ; Œ 0;1 // at each .�;H/ 2
.D.Œ 0;1 / ;R/ � C0.Œ 0;1 / ; Œ 0;1 ///, we have (with obvious notation):

	. t;1 � D �H. t;1 �
.law/D �H. 1;1=t � D 	. 1;1=t � : (55)

The only difference with respect to the “normal” stable case is that the winding
process is considered from 1 and not from 0, but this doesn’t provoke any
problem.

Hence, Bertoin and Werner’s Theorem 1 is still valid forZ in . t; 1 �, t ! 0:
for ˛ 2 .0; 2/:

1p
log.1=t/

	. t;1 �
.law/D 1p

log.1=t/
	. 1;1=t �

.d/H)
t!0

p
r.˛/N; (56)

with r.˛/ defined in (31) and N v N .0; 1/.
(ii) We note that this study is also valid for a planar Brownian motion starting from

0 in . t; 1 � for t ! 0 and for planar stable processes or planar Brownian motion
starting both from a point different from 0 (in order to have an well-defined
winding number) in Œ0; 1�. In particular, for planar Brownian motion Z with
associated winding number # , we obtain that Spitzer’s law is still valid for
t ! 0 (see e.g. [35, 27]):

2

log.1=t/
#. t;1 �

.law/�!
t!0

C1; (57)

where C1 is a standard Cauchy variable. We also remark that this result could
also be obtained from a time inversion argument, that is: with Z 0 denoting
another planar Brownian motion starting from 0, with winding number # 0, by
time inversion we have: Zu D uZ 0

1=u. Changing now the variables u D 1=v, we
obtain:

#. t;1 � � Im

�Z 1

t

dZu

Zu

�
D Im

 Z 1

t

d.uZ 0
1=u/

uZ 0
1=u

!
D Im

 Z 1

t

dZ 0
1=u

Z 0
1=u

!

D Im

 Z 1=t

1

dZ 0
v

Z 0
v

!
� # 0

. 1;1=t � ;

and we continue as before.
Note that this time inversion argument is NOT valid for planar stable processes.
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5 The Law of the Iterated Logarithm (LIL)

In this section, we shall use some notation introduced in [15, 16]. Recall (19); then,
for all x > 0, because � is symmetric, we define:

L.x/ D 2 O�.x/ D 2�.x;C1/; U.x/ D 2

Z x

0

yL.y/dy :

We remark that U plays essentially the role of the truncated variance in the random
walk case (see e.g. [14]).

Hence, from (44), for t ! 0, we have ( QK.˛/ is a constant depending on ˛):

U.x/
x�0Ï QK.˛/x2�˛: (58)

Then, we obtain the following Law of the Iterated Logarithm (LIL) for Lévy
processes for small times:

Theorem 5. (LIL for Lévy processes for small times)
For any non-decreasing function f > 0,

lim sup
t!0

�t

f .t/
D
�
0 I
1 a:s: ,

Z 1

1

.f .t//�˛dt

�
< 1 I
D 1 :

(59)

We can reformulate Theorem 5 by using the skew-product representation (13)
stating: �t D 	A.t/ , in order to deduce a LIL for the winding process 	A.�/ for
small times.

Corollary 3. For any non-decreasing function f > 0,

lim sup
t!0

	A.t/

f .t/
D
�
0 I
1 a:s: ,

Z 1

1

.f .t//�˛dt

�
< 1 I
D 1 :

(60)

Proof (Theorem 5).
First, we define:

h.y/ D y�2U.y/; y > 0: (61)

Then, we consider tn D 2�n and we note that (Cauchy’s test):

I.f / �
Z 1

1

dt h.f .t// < 1 ”
1X
nD1

tnh.f .tn// < 1 :

Using now Lemma 2 from Doney and Maller [15], because � is symmetric, there
exists a positive constant c1 such that for every x > 0, t > 0,
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P .�t 
 x/ � P

 
sup
0�u�t

�u 
 x

!
� c1t h.x/ D c1t

U.x/

x2
: (62)

Thus:

1X
nD1

P .�tn�1 
 f .tn// � c1

1X
nD1

tn
U.f .tn//

.f .tn//2
:

From (58), we have that,

U.f .tn//

.f .tn//2
tn�0Ï .f .tn//

�˛:

Hence, when I.f / < 1, from Borel–Cantelli Lemma we have that with probability
1, �tn�1 � f .tn/ for all n’s, except for a finite number of them. Now, from a
monotonicity argument for f , if t 2 Œtn; tn�1�, we have that: �tn�1 � f .tn/ � f .t/

for every t sufficiently small. It follows now that limt!0.�t=f .t// � 1 a.s. Finally,
we remark that as I.f / < 1, we also have that I."f / < 1, for arbitrarily small
" > 0 and follows that �t=f .t/ ! 0 a.s.
The proof of the second statement follows from the same kind of arguments. Indeed,
using Lemma 2 from Doney and Maller [15] and the fact that � is symmetric, there
exists a positive constant c2 such that for every x > 0, t > 0,

P

 
sup
0�u�t

�u � x

!
� c2

t h.x/
: (63)

Hence:

1X
nD1

P .�tn�1 � f .tn�1// �
1X
nD1

P

 
sup

0�u�tn�1

�u � f .tn�1/

!
�

1X
nD1

c2

tn�1 h.f .tn�1//
:

Thus, for I.f / D 1 (or equivalently
P
h.f .tn�1// D 1), Borel–Cantelli Lemma

yields that for every n, a.s. �tn�1 > f .tn�1/ infinitely often, which finishes the proof.
ut

Remark 5. For other kinds of LIL for Lévy processes for small times e.g. of the
Chung type, see [1] and the references therein.

Theorem 6 (LIL for the angular part of planar stable processes for small
times).
For any non-decreasing function f > 0,
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lim sup
t!0

	t

f .t/
D
�
0 I
1 a:s: ,

Z 1

1

.f .t//�˛dt

�
< 1 I
D 1 :

(64)

Proof. We use the skew-product representation (13) together with (46), which

essentially writes: t�1H.t/ a:s:�!
t!0

1. Thus, for every "; ı > 0, there exists t0 > 0

such that:

P

�
H.t/

t
� 1C "

�

 1 � ı; for t � t0 : (65)

We define now the setting:

K � K .!/ �
�
! W H.t/

t
� 1C "

�
; thus W K � K .!/ �

�
! W H.t/

t

 1C "

�
;

hence, there exists t0 > 0 such that: for every t � t0,

P.K / 
 1 � ı and P.K / � ı :

Hence, choosing ı > 0 small enough, it suffices to restrict our study in the set K
and it follows that:

P

 
sup
0�u�t

	u > x

!
D P

 
sup
0�u�t

�H.u/ > x

!
D P

 (
sup
0�u�t

�H.u/ > x

)
\ K

!

� P

 
sup
0�u�t

�u.1C"/ > x
!

Changing now the variables Qu D u.1 C "/, and invoking (62), there exists another
positive constant c3 such that, for every x > 0 and t > 0:

P

 
sup
0�u�t

	u > x

!
� P

 
sup

0�Qu�t .1C"/
�Qu > x

!
� c3 t.1C "/

U.x/

x2
: (66)

Mimicking now the proof of Theorem 5, we obtain the first statement.
For the second statement, we use the settings:

K 0 � K 0.!/ �
�
! W H.t/

t

 1 � "

�
;

thus:

K
0 � K

0
.!/ �

�
! W H.t/

t
� 1 � "

�
:
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Hence, for every "; ı > 0, there exists t0 > 0 such that: for every t � t0,

P.K 0/ 
 1 � ı and P.K
0
/ � ı :

As before, we choose ı > 0 small enough and we restrict our study in the set K 0.
The proof finishes by repeating the arguments of the proof of Theorem 5. ut

6 The Planar Brownian Motion Case

Before starting, we remark that the notations used in this section are independent
from the ones used in the text up to now.

In this section, we state and give a new proof of the analogue of Theorem 4 for
the planar Brownian motion case, which is equivalent to a result obtained in [42].
For this purpose, and in order to avoid complexity, we will use the same notation
as in the “stable” case. Hence, for a planar BM Z starting from a point different z0
from 0 (without loss of generality, let z0 D 1) and with # D .#t ; t 
 0/ denoting
now the (well defined—see e.g. [21]) continuous winding process, we have the skew
product representation (see e.g. [35]):

log jZt j C i#t �
Z t

0

dZs

Zs

D .ˇu C i�u/
ˇ̌
ˇ
uDHtD

R t
0

ds

jZs j2

; (67)

where .ˇu C i�u; u 
 0/ is another planar Brownian motion starting from log 1 C
i0 D 0. The Bessel clock H plays a key role in many aspects of the study of the
winding number process .#t ; t 
 0/ (see e.g. [45]). We shall also make use of the
inverse of H , which is given by:

H �1
u D infft 
 0 W H .t/ > ug D

Z u

0

ds exp.2ˇs/ D Au : (68)

Rewriting (67) as:

log jZt j D ˇHt I #t D �Ht ; (69)

we easily obtain that the two �-fields �fjZt j ; t 
 0g and �fˇu; u 
 0g are identical,
whereas .�u; u 
 0/ is independent from .jZt j ; t 
 0/, a fact that is in contrast to
what happens in the “stable” case.
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Theorem 7. The family of processes

�
c�1=2#ct ; t 
 0

�

converges in distribution, as c ! 0, to a one-dimensional Brownian motion
.�t ; t 
 0/.

Proof. We split the proof in two parts:

(i) First, repeating the arguments in the proof of Theorem 3 with ˛ D 2, we obtain:
�

H .ux/

u
; x 
 0

�
a:s:�!

u!0
.x; x 
 0/ : (70)

which also implies the weak convergence:
�

H .ux/

u
; x 
 0

�
.d/H)

u!0
.x; x 
 0/ : (71)

(ii) Using the skew product representation (69) and the scaling property of BM
together with (70), we have that for every s > 0:

t�1=2#st D t�1=2�H .st/
.law/D

r
H .st/

t
�1

a:s:�!
t!0

p
s�1

.law/D �s ; (72)

which finishes the proof.

We remark that for part (ii) of the proof, we could also invoke Whitt’s Theorem
3.1 concerning the composition function [43], however, the independence in the
planar Brownian motion case simplifies the proof. ut
From Theorem 7 now, with T j#j

c � infft W j#t j D cg and T j� j
c � infft W j�t j D cg,

.c > 0/, we deduce for the exit time from a cone of planar BM (this result has
already been obtained in [42], where one can also find several variants):

Corollary 4. The following convergence in law holds:

�
1

c2
T j#j
cx ; x 
 0

�
.law/�!
c!0



T j� j
x ; x 
 0

�
: (73)

Remark 6. We highlight the different behaviour of the clock H for t ! 0 and for
t ! 1 (for the second see e.g. [32], followed by [33, 28, 29], a result which is
equivalent to Spitzer’s Theorem [39] stated in (1)), that is:

H .t/

t

a:s:�!
t!0

1 ; (74)

4H .t/

.log t/2
.law/�!
t!1 T1 � infft W ˇt D 1g ; (75)
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where the latter follows essentially from the classical Laplace argument:

k � kpp!1�! k � k1 :

We also remark that, from Remark 3, the behaviour of the clock for t ! 0 is a.s.
the same for Brownian motion and for stable processes, whereas it is different for
t ! 1. In particular, for t ! 1, compare (49) to (75).
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motion. Séminaire de Probabilités XXVIII, ed. by J. Azéma, M. Yor, P.A. Meyer. Lecture Notes
in Mathematics, vol. 1583 (Springer, Berlin, 1994), pp. 122–137

37. Z. Shi, Windings of Brownian motion and random walks in the plane. Ann. Probab. 26(1),
112–131 (1998)

38. A.V. Skorohod, Random Processes with Independent Increments (Kluwer, Dordrecht, 1991)
39. F. Spitzer, Some theorems concerning two-dimensional Brownian motion. Trans. Am. Math.

Soc. 87, 187–197 (1958)
40. S. Vakeroudis, Nombres de tours de certains processus stochastiques plans et applications à la
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An Elementary Proof that the First Hitting Time
of an Open Set by a Jump Process
is a Stopping Time

Alexander Sokol

Abstract We give a short and elementary proof that the first hitting time of an open
set by the jump process of a càdlàg adapted process is a stopping time.

1 Introduction

For a stochastic process X and a subset B of the real numbers, the random variable
T D infft 
 0jXt 2 Bg is called the first hitting time of B by X . A classical
result in the general theory of processes is the début theorem, which has as a
corollary that under the usual conditions, the first hitting time of a Borel set for
a progressively measurable process is a stopping time, see [3], Sect. III.44 for a
proof of this theorem, or [1] and [2] for a recent simpler proof. For many purposes,
however, the general début theorem is not needed, and weaker results may suffice,
where elementary methods may be used to obtain the results. For example, it is
elementary to show that the first hitting time of an open set by a càdlàg adapted
process is a stopping time, see [4], Theorem I.3. Using somewhat more advanced,
yet relatively elementary methods, Lemma II.75.1 of [5] shows that the first hitting
time of a compact set by a càdlàg adapted process is a stopping time.

These elementary proofs show stopping time properties for the first hitting times
of a càdlàg adapted processX . However, the jump process�X in general has paths
with neither left limits nor right limits, and so the previous elementary results do not
apply. In this note, we give a short and elementary proof that the first hitting time of
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2100 Copenhagen, Denmark
e-mail: alexander@math.ku.dk

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLV,
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an open set by�X is a stopping time when the filtration is right-continuous andX is
càdlàg adapted. This result may be used to give an elementary proof that the jumps
of a càdlàg adapted process are covered by the graphs of a countable sequence of
stopping times.

2 A Stopping Time Result

Assume given a filtered probability space .˝;F ; .Ft /; P / such that the filtration
.Ft /t	0 is right-continuous in the sense that Ft D \s>tFs for all t 
 0. We use
the convention that X0� D X0, so that there is no jump at the timepoint zero.

Theorem 1. Let X be a càdlàg adapted process, and let U be an open set in R.
Define T D infft 
 0j�Xt 2 U g. Then T is a stopping time.

As X has càdlàg, �X is zero everywhere except for on a countable set, and
so T is identically zero if U contains zero. In this case, T is trivially a stopping
time. Thus, it suffices to prove the result in the case where U does not contain
zero. Therefore, assume that U is an open set not containing zero. As the filtration
is right-continuous, an elementary argument yields that to show the stopping time
property of T , it suffices to show .T < t/ 2 Ft for t > 0, see Theorem I.1 of [4].

To this end, fix t > 0 and note that

.T < t/ D .9 s 2 .0;1/ W s < t and Xs �Xs� 2 U / : (1)

Let Fm D fx 2 Rj 8 y 2 U c W jx � yj 
 1=mg, Fm is an intersection of closed
sets and therefore itself closed. Clearly, .Fm/m	1 is increasing, and since U is open,
U D [1

mD1Fm. Also,Fm  F ı
mC1, whereF ı

mC1 denotes the interior of FmC1. Let�k
be the subset of Q2 defined by �k D f.p; q/ 2 Q

2j0 < p < q < t; jp � qj � 1
k
g.

We will prove the result by showing that

.9 s 2 .0;1/ W s < t and Xs �Xs� 2 U /
D [1

mD1 [1
nD1 \1

kDn [.p;q/2�k .Xq � Xp 2 Fm/ : (2)

To obtain this, first consider the inclusion towards the right. Assume that there is
0 < s < t such that Xs � Xs� 2 U . Take m such that Xs � Xs� 2 Fm. As Fm 
F ı
mC1, we then haveXs �Xs� 2 F ı

mC1 as well. As F ı
mC1 is open and asX is càdlàg,

it holds that there is " > 0 such that whenever p; q 
 0 with p 2 .s � "; s/ and
q 2 .s; s C "/, Xq � Xp 2 F ı

mC1. Take n 2 N such that 1=2n < ". We now claim
that for k 
 n, there is .p; q/ 2 �k such that Xq � Xp 2 FmC1. To prove this,
let k 
 n be given. By the density properties of QC in RC, there are elements
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p; q 2 Q with p; q 2 .0; t/ such that p 2 .s � 1=2k; s/ and q 2 .s; s C 1=2k/.
In particular, then 0 < p < q < t and jp � qj � jp � sj C js � qj � 1=k, so
.p; q/ 2 �k . As 1=2k � 1=2n < ", we have p 2 .s � "; s/ and q 2 .s; s C "/, and
so Xq �Xp 2 F ı

mC1  FmC1. This proves the inclusion towards the right.
Now consider the inclusion towards the left. Assume that there is m 
 1 and

n 
 1 such that for all k 
 n, there exists .p; q/ 2 �k with Xq � Xp 2 Fm.
We may use this to obtain sequences .pk/k	n and .qk/k	n with the properties that
pk; qk 2 Q, 0 < pk < qk < t , jpk �qkj � 1

k
andXqk �Xpk 2 Fm. Putting pk D pn

and qk D qn for k < n, we then find that the sequences .pk/k	1 and .qk/k	1 satisfy
pk; qk 2 Q, 0 < pk < qk < t , limk jpk � qkj D 0 and Xqk � Xpk 2 Fm. As all
sequences of real numbers contain a monotone subsequence, we may by taking two
consecutive subsequences and renaming our sequences obtain the existence of two
monotone sequences .pk/ and .qk/ in Q with 0 < pk < qk < t , limk jpk � qkj D 0

and Xqk � Xpk 2 Fm. As bounded monotone sequences are convergent, both .pk/
are .qk/ are then convergent, and as limk jpk � qkj D 0, the limit s 
 0 is the same
for both sequences.

We wish to argue that s > 0, that Xs� D limk Xpk and that Xs D limk Xqk .
To this end, recall that U does not contain zero, and so as Fm  U , Fm does
not contain zero either. Also note that as both .pk/ and .qk/ are monotone,
the limits limk Xpk and limk Xqk exist and are either equal to Xs or Xs�. As
Xqk �Xpk 2 Fm and Fm is closed and does not contain zero, limk Xqk � limk Xpk D
limk Xqk � Xpk ¤ 0. From this, we can immediately conclude that s > 0,
as if s D 0, we would obtain that both limk Xqk and limk Xpk were equal to
Xs , yielding limk Xqk � limk Xpk D 0, a contradiction. Also, we cannot have
that both limits are Xs or that both limits are Xs�, and so only two cases are
possible, namely that Xs D limk Xqk and Xs� D limk Xpk or that Xs D limk Xpk
and Xs� D limk Xqk . We wish to argue that the former holds. If Xs D Xs�,
this is trivially the case. Assume that Xs ¤ Xs� and that Xs D limk Xpk and
Xs� D limk Xqk . If qk 
 s from a point onwards or pk < s from a point onwards,
we obtainXs D Xs�, a contradiction. Therefore, qk < s infinitely often and pk 
 s

infinitely often. By monotonicity, qk < s and pk 
 s from a point onwards, a
contradiction with pk < qk . We conclude Xs D limk Xqk and Xs� D limk Xpk , as
desired.

In particular,Xs �Xs� D limk Xqk �Xpk . As Xqk �Xpk 2 Fm and Fm is closed,
we obtain Xs � Xs� 2 Fm  U . Next, note that if s D t , we have pk; qk < s for
all k, yielding that both sequences must be increasing and Xs D limXqk D Xs�, a
contradiction with the fact that Xs � Xs� ¤ 0 as Xs � Xs� 2 U . Thus, 0 < s < t .
This proves the existence of s 2 .0;1/ with s < t such that Xs �Xs� 2 U , and so
proves the inclusion towards the right.

We have now shown (2). Now, as Xs is Ft measurable for all 0 � s � t , it holds
that the set [1

mD1 [1
nD1 \1

kDn [.p;q/2�k .Xq � Xp 2 Fm/ is Ft measurable as well.
We conclude that .T < t/ 2 Ft and so T is a stopping time.
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Catalytic Branching Processes via Spine
Techniques and Renewal Theory

Leif Döring and Matthew I. Roberts

Abstract In this article we contribute to the moment analysis of branching
processes in catalytic media. The many-to-few lemma based on the spine technique
is used to derive a system of (discrete space) partial differential equations for the
number of particles in a variation of constants formulation. The long-time behaviour
is then deduced from renewal theorems and induction.

1 Introduction and Results

A classical subject of probability theory is the analysis of branching processes in
discrete or continuous time, going back to the study of extinction of family names
by Francis Galton. There have been many contributions to the area since, and we
present here an application of a recent development in the probabilistic theory. We
identify qualitatively different regimes for the longtime behaviour for moments of
sizes of populations in a simple model of a branching Markov process in a catalytic
environment.

To give some background for the branching mechanism, we recall the discrete-
time Galton–Watson process. Given a random variable X with law � taking values
in N, the branching mechanism is modeled as follows: for a deterministic or random
initial number Z0 2 N of particles, one defines for n D 1; 2; : : :
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ZnC1 D
ZnX
rD0

Xr.n/;

where all Xr.n/ are independent and distributed according to �. Each particle in
generation n is thought of as giving birth to a random number of particles according
to �, and these particles together form generation n C 1. For the continuous-
time analogue each particle carries an independent exponential clock of rate 1 and
performs its breeding event once its clock rings.

It is well-known that a crucial quantity appearing in the analysis is m D EŒX�,
the expected number of offspring particles. The process has positive chance of long-
term survival if and only ifm > 1. This is known as the supercritical case. The cases
m D 1 (critical) andm < 1 (subcritical) also show qualitatively different behaviour
in the rate at which the probability of survival decays. As this paper deals with
the moment analysis of a spatial relative to this system, we mention the classical
trichotomy for the moment asymptotics of Galton–Watson processes:

lim
t!1 e�k.m�1/t

E
�
Zk
t

	 2 .0;1/ 8k 2 N if m < 1; (1)

lim
t!1 tk�1

E
�
Zk
t

	 2 .0;1/ 8k 2 N if m D 1 (2)

lim
t!1 e�k.m�1/t

E
�
Zk
t

	 2 .0;1/ 8k 2 N if m > 1 (3)

so that all moments increase exponentially to infinity if m > 1, increase polynomi-
ally if m D 1, and decay exponentially fast to zero if m < 1.

In the present article we are interested in a simple spatial version of the Galton–
Watson process for which a system of branching particles moves in space and
particles branch only in the presence of a catalyst. More precisely, we start a
particle � which moves on some countable set S according to a continuous-time
Markov process with Q-matrix A . This particle carries an exponential clock of rate
1 that only ticks if � is at the same site as the catalyst, which we assume sits at
some fixed site 0 2 S . If and when the clock rings, then the particle dies and is
replaced in its position by a random number of offspring. This number is distributed
according to some offspring distribution �, and all newly born particles behave as
independent copies of their parent: they move on S according to A and branch after
an exponential rate 1 amount of time spent at 0.

In recent years several authors have studied such branching systems. Often the
first quantities that are analyzed are moments of the form

Mk.t; x; y/ D E
�
Nt.y/

k
ˇ̌
�0 D x

	
and Mk.t; x/ D E

�
Nk
t

ˇ̌
�0 D x

	
;

where Nt.y/ is the number of particles alive at site y at time t , and Nt DP
y2S Nt.y/ is the total number of particles alive at time t . Under the additional

assumption that A D � is the discrete Laplacian on Z
d , the moment analysis was

first carried out in [1–3] via partial differential equations and Tauberian theorems.
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More recently, the moment analysis, and moreover the study of conditional limit
theorems, was pushed forward to more general spatial movement A assuming

(A1) irreducibility,
(A2) spatial homogeneity,
(A3) symmetry,
(A4) finite variance of jump sizes.

Techniques such as Bellman–Harris branching processes (see [5,6,16,17]), operator
theory (see [20]) and renewal theory (see [12]) have been applied successfully.
Some of these tools also apply in a non-symmetric framework. We present a purely
stochastic approach avoiding the assumptions (A1)–(A4). In order to avoid many
pathological special cases we only assume

(A) the motion governed by A is irreducible:

This assumption is not necessary, and the interested reader may easily reconstruct
the additional cases from our proofs.

In order to analyze the moments Mk one can proceed in two steps. First, a set
of partial differential equations for Mk is derived. This can be done for instance as
in [3] via analytic arguments from partial differential equations for the generating
functions ExŒe

�zNt .y/� and ExŒe
�zNt � combined with Faà di Bruno’s formula of

differentiation. The asymptotic properties of solutions to those differential equations
are then analyzed in a second step where more information on the transition
probabilities corresponding to A implies more precise results on the asymptotics
for Mk. This is where the finite variance assumption is used via the local central
limit theorem.

The approach presented in this article is based on the combinatorial spine
representation of [11] to derive sets of partial differential equations, in variation
of constants form, for the kth moments of Nt.y/ and Nt . A set of combinatorial
factors can be given a direct probabilistic explanation, whereas the same factors
appear otherwise from Faà di Bruno’s formula. Those equations are then analyzed
via renewal theorems. We have to emphasize that under the assumption (A) only,
general precise asymptotic results are of course not possible so that we aim at giving
a qualitative description. Compared to the fine results in the presence of a local
central limit theorem (such as Lemma 3.1 of [12] for finite variance transitions on
Z
4) our qualitative description is rather poor. On the other hand, the generality of our

results allows for some interesting applications. For example, one can easily deduce
asymptotics for moments of the number of particles when the catalyst is not fixed at
zero, but rather follows some Markov process of its own, simply by considering the
difference walk.

To state our main result, we denote the transition probabilities of A by
pt .x; y/ D Px.�t D y/ and the Green function by

G1.x; y/ D
Z 1

0

pt .x; y/ dt:
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Recall that, by irreducibility, the Green function is finite for all x; y 2 S if and only
if A is transient. For the statement of the result let us further denote by

Lt.y/ D
Z t

0

�f�sDygds

the time of � spent at site y up to time t .

Theorem 1. Suppose that � has finite moments of all orders; then the following
regimes occur for all integers k 
 1:

(i) If the branching mechanism is subcritical, then

lim
t!1Mk.t; x/ 2 .0;1/ if A is transient;

lim
t!1Mk.t; x/ D 0 if A is recurrent;

and

lim
t!1Mk.t; x; y/ D 0 in all cases.

(ii) If the branching mechanism is critical, then

lim
t!1

Mk.t; x/

ExŒLt .0/k�1�
2 .0;1/ and M1.t; x; y/ D pt .x; y/:

(iii) If the branching mechanism is supercritical, then there is a critical constant

ˇ D 1

G1.0; 0/
C 1 
 1

such that

(a) form < ˇ

lim
t!1M1.t; x/ 2 .0;1/ and lim

t!1M1.t; x; y/ D 0I

further, there exist constants c and C such that

cExŒLt .0/
k�1� � Mk.t; x/ � C tk�1:

(b) form D ˇ

lim
t!1Mk.t; x/ D 1;
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and

lim
t!1Mk.t; x; y/ D 1 if

Z 1

0

rpr .0; 0/ dr D 1

lim
t!1

Mk.t; x; y/

tk�1 2 .0;1/ if
Z 1

0

rpr .0; 0/ dr < 1:

(In both cases the growth is subexponential.)
(c) form > ˇ

lim
t!1 e�kr.m/tM k.t; x; y/2 .0;1/ and lim

t!1 e�kr.m/tM k.t; x/2 .0;1/

where r.m/ equals the unique solution � to
R1
0
e��tpt .0; 0/ dt D 1

m�1 .

We did not state all the asymptotics in cases (ii) and (iii)(a). Our methods, see
Lemma 3, do allow for investigation of these cases too; in particular they show
how Mk.t; x; y/ can be expressed recursively by Mi.t; x; y/ for i < k. However,
without further knowledge of the underlying motion, it is not possible to give
any useful and general information. If more information on the tail of pt .x; y/
is available then the recursive equations can indeed be analyzed: for instance for
kernels on Z

d with second moments the local central limit theorem can be applied
leading to pt .x; y/ � Ct�d=2, and such cases have already been addressed by other
authors.

The formulation of the theorem does not include the limiting constants. Indeed,
the proofs give some of those (in an explicit form involving the transition proba-
bilities pt ) in the supercritical regime but they seem to be of little use. The use of
spectral theory for symmetric Q-matrices A allows one to derive the exponential
growth rate r.m/ as the maximal eigenvalue of a Schrödinger operator with one-
point potential and the appearing constants via the eigenfunctions. Our renewal
theorem based proof gives the representation of r.m/ as the inverse of the Laplace
transform of pt .0; 0/ at 1=.m � 1/ and the eigenfunction expressed via integrals of
pt .0; 0/. As pt .0; 0/ is rarely known explicitly, the integral form of the constants
is not very useful (apart from the trivial case of Example 1 below). Only in case
(iii) (b) for

R1
0 rpr .0; 0/ dr D 1 are the proofs unable to give strong asymptotics.

This is caused by the use of an infinite-mean renewal theorem which only gives
asymptotic bounds up to an unknown factor between 1 and 2. There is basically one
example in which pt.0; 0/ is trivially known:

Example 1. For the trivial motion A D 0, i.e. branching particles are fixed at the
same site as the catalyst, the supercritical cases (iii) (a) and (b) do not occur as A
is trivially recurrent so that ˇ D 1. Furthermore, in this example pt .0; 0/ D 1 for
all t 
 0 so that r.m/ D m � 1. In fact by examining the proof of Theorem 1 one
recovers (1), (2), (3) with all constants.

Remark 1. We reiterate here that our results can be generalized when the fixed
branching source is replaced by a random branching source moving according
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to a random walk independent of the branching particles. For the proofs the
branching particles only have to be replaced by branching particles relative to the
branching source.

2 Proofs

The key tool in our proofs will be the many-to-few lemma proved in [11] which
relies on modern spine techniques. These emerged from work of Kurtz, Lyons,
Pemantle and Peres in the mid-1990s [13–15]. The idea is that to understand certain
functionals of branching processes, it is enough to study carefully the behaviour
of one special particle, the spine. In particular very general many-to-one lemmas
emerged, allowing one to easily calculate expectations of sums over particles like

E

2
4X
v2Nt

f .v/

3
5 ;

where f .v/ is some well-behaved functional of the behaviour of the particle v up to
time t , and Nt here is viewed as the set of particles alive at time t , rather than the
number. It will always be clear from the context which meaning for Nt is intended.

It is natural to ask whether similar results exist for higher moments of sums
over Nt . This is the idea behind [11], wherein it turns out that to understand the
kth moment one must consider a system of k particles. The k particles introduce
complications compared to the single particle required for first moments, but this
is still significantly simpler than controlling the behaviour of the potentially huge
random number of particles in Nt .

While we do not need to understand the full spine setup here, we shall require
some explanation.

For each k 
 0 let pk D P.X D k/ and mk D EŒXk�, the kth moment of
the offspring distribution (in particular m1 D m). We define a new measure Q D
Q
k
x, under which there are k distinguished lines of descent known as spines. The

construction of Q relies on a carefully chosen change of measure, but we do not
need to understand the full construction and instead refer to [11]. In order to use
the technique, we simply have to understand the dynamics of the system under Q.
Under Qk

x particles behave as follows:

• We begin with one particle at position x which (as well as its position) has a mark
k. We think of a particle with mark j as carrying j spines.

• Whenever a particle with mark j , j 
 1, spends an (independent) exponential
time with parametermj in the same position as the catalyst, it dies and is replaced
by a random number of new particles with law Aj .

• The probability of the event fAj D ag is aj pam�1
j . (This is the j th size-biased

distribution relative to �.)
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Fig. 1 An impression of the start of the process: each particle in the skeleton is a different color,
and particles not in the skeleton are drawn in pale grey. The circles show the number of spines
being carried by each particle in the skeleton

• Given that a particles v1; : : : ; va are born, the j spines each choose a particle to
follow independently and uniformly at random. Thus particle vi has mark l with
probability a�l .1 � a�1/j�l , l D 0; : : : ; j , i D 1; : : : ; a. We also note that this
means that there are always k spines amongst the particles alive; equivalently the
sum of the marks over all particles alive always equals k.

• Particles with mark 0 are no longer of interest (in fact they behave just as under
P, branching at rate 1 when in the same position as the catalyst and giving birth
to numbers of particles with law �, but we will not need to use this).

For a particle v, we letXv.t/ be its position at time t andBv be its mark (the number
of spines it is carrying). Let �v be the time of its birth and �v the time of its death,
and define �v.t/ D �v ^ t and �v.t/ D �v ^ t . Let �it be the current position of the
i th spine. We call the collection of particles that have carried at least one spine up
to time t the skeleton at time t , and write skel.t/. Figure 1 gives an impression of
the skeleton at the start of the process.

A much more general form of the following lemma was proved in [11].

Lemma 1 (Many-to-few). Suppose that f W R ! R is measurable. Then, for any
k 
 1,

E

2
4 X
v1;:::;vk2Nt

f .Xv1.t// � � � f .Xvk .t//
3
5

D Q
k

2
4f .�1t / � � � f .�kt /

Y
v2skel.t /

exp

 
.mBv � 1/

Z �v.t /

�v.t/

�0.Xv.s//ds

!3
5 :

Clearly if we take f � 1, then the left hand side is simply the kth moment of the
number of particles alive at time t . The lemma is useful since the right-hand side
depends on at most k particles at a time, rather than the arbitrarily large random
number of particles on the left-hand side.
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Having introduced the spine technique, we can now proceed with the proof
of Theorem 1. We first use Lemma 1 for the case k D 1, which is simply
the many-to-one lemma, to deduce two convenient representations for the first
moments: a Feynman–Kac expression and a variation of constants formula. Indeed,
the exponential expression equally works for other random potentials and, hence,
is well known for instance in the parabolic Anderson model literature. More
interestingly, the variation of constants representation is most useful in the case of
a one-point potential: it simplifies to a renewal type equation. Understanding when
those are proper renewal equations replaces the spectral theoretic arguments of [1]
and explains the different cases appearing in Theorem 1.

Lemma 2. The first moments can be expressed as

M1.t; x/ D Ex

�
e.m�1/ R t0 �0.�r / dr

	
; (4)

M1.t; x; y/ D Ex

�
e.m�1/ R t0 �0.�r / dr

�y.�t /
	
; (5)

where �t is a single particle moving with Q-matrix A . Furthermore, these quantities
fulfil

M1.t; x/ D 1C .m � 1/pt.x; 0/ 	M1.t; 0/; (6)

M1.t; x; y/ D pt .x; y/C .m � 1/pt.x; 0/ 	M1.t; 0; y/; (7)

where 	 denotes ordinary convolution in t .

For completeness we include a proof of these well-known relations. First let us
briefly mention why the renewal type equations occur naturally. The Feynman–
Kac representation can be proved in various ways; we derive it simply from the
many-to-few lemma. The Feynman–Kac formula then leads naturally to solutions
of discrete-space heat equations with one-point potential:

(
@
@t

u.t; x/ D A u.t; x/C .m � 1/�0.x/u.t; x/

u.0; x/ D �y.x/
:

Applying the variation of constants formula for solutions gives

u.t; x/ D Ptu.0; x/C
Z t

0

Pt�s.m � 1/�0.x/u.s; x/ ds

D pt .x; y/C .m � 1/

Z t

0

pt�s.x; 0/u.s; x/ ds;

where Pt is the semigroup corresponding to A , i.e. Ptf .x/ D ExŒf .�t /�.

Proof (of Lemma 2). To prove (4) and (5) we apply the easiest case of Lemma 1: we
choose k D 1 and f � 1 (resp. f .z/ D �y.z/ for (5)). Since there is exactly one
spine at all times, the skeleton reduces to a single line of descent. HencemBv � 1 D
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m�1 and the integrals in the product combine to become a single integral along the
path of the spine up to time t . Thus

M1.t; x/ D Qx

�
e.m�1/ R t0 �0.�r / dr	 and M1.t; x; y/ D Qx

�
e.m�1/ R t0 �0.�r / dr

�y.�t /
	

which is what we claimed but with expectations taken under Q rather than the
original measure P. However we note that the motion of the single spine is the
same (it has Q-matrix A ) under both P and Q, so we may simply replace Q with P,
giving (4) and (5).

The variation of constants formulas can now be derived from the Feynman–Kac
formulas. We only prove the second identity, as the first can be proved similarly. We
use the exponential series to get

Ex

h
e.m�1/

R t
0 �0.�r / dr

�y.�t /
i

D Ex

"
1X
nD0

.m � 1/n

nŠ

�Z t

0

�0.�r / dr

�n
�y.�t /

#

D Px.�t D y/C Ex

"
1X
nD1

.m � 1/n

nŠ

Z t

0

: : :

Z t

0

�0.�r1 / � � ��0.�rn / drn : : : dr1�y.�t /

#

D pt .x; y/

C Ex

"
1X
nD1

.m � 1/n
Z t

0

Z t

r1

: : :

Z t

rn�1

�0.�r1 / � � ��0.�rn / drn : : : d r2dr1�y.�t /

#
:

The last step is justified by the fact that the function that is integrated is symmetric
in all arguments and, thus, it suffices to integrate over a simplex. We can exchange
sum and expectation and obtain that the last expression equals

pt .x; y/C .m � 1/

Z t

0

1X
nD1

.m � 1/n�1
Z t

r1

: : :

Z t

rn�1

PxŒ�r1 D 0; : : : ; �rn D 0� drn : : : dr2dr1:

Due to the Markov property, the last expression equals

pt .x; y/C .m � 1/
Z t

0

pr1.x; 0/

1X
nD1
.m � 1/n�1

�
Z t

r1

: : :

Z t

rn�1

P0Œ�r2�r1 D 0; : : : ; �rn�r1 D 0� drn : : : dr2dr1
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and can be rewritten as

pt .x; y/C .m � 1/

Z t

0

pr1.x; 0/

�
 1X
nD1
.m� 1/n�1

Z t�r1

0

: : :

Z t�r1

rn�1

P0Œ�r2 D 0; : : : ; �rn D 0� drn : : : dr2

!
dr1:

Using the same line of arguments backwards for the term in parentheses, the
assertion follows.

Having derived variation of constants formulas, there are different ways to
analyze the asymptotics of the first moments. Assuming more regularity for the
transition probabilities, this can be done as sketched in the next remark.

Remark 2. Taking Laplace transforms L in t , one can transform (6), and similarly
(7), into the algebraic equation

LM1.�; x/ D 1

�
C .m � 1/LM1.�; 0/Lp�.x; 0/ ; � > 0;

which can be solved explicitly to obtain

LM1.�; x/ D 1

�.1 � .m � 1/Lp�.x; 0//
; � > 0: (8)

Assuming the asymptotics of pt .x; 0/ are known for t tending to infinity (and
are sufficiently regular), the asymptotics of Lp�.x; 0/ for � tending to zero can
be deduced from Tauberian theorems. Hence, from (8) one can then deduce the
asymptotics of LM1.�; x/ as � tends to zero. This, using Tauberian theorems in
the reverse direction, allows one to deduce the asymptotics ofM1.t; x/ for t tending
to infinity.

Unfortunately, to make this approach work, ultimate monotonicity and asymp-
totics of the type pt .x; 0/ � C t�˛ are needed. This motivated the authors of [1] to
assume (A4) so that by the local central limit theorem

pt .x; 0/ �
�
d

2�

�d=2
t�d=2:

As we did not assume any regularity for pt , the aforementioned approach fails in
general. We instead use an approach based on renewal theorems recently seen in [7].

Proof (of Theorem 1 for M1). Taking into account irreducibility and the Markov
property of A , we see that the property “

R1
0
�0.�r / dr D 1 almost surely” does

not depend on the starting value �0. To prove case (i), we simply apply dominated
convergence to (4) and (5). If A is transient, then

R1
0
�0.�r / dr < 1 almost surely

and M1.t; x/ converges to a constant. On the other hand if A is recurrent, then
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R1
0 �0.�r / dr D 1 almost surely and M1.t; x/ ! 0. In both cases M1.t; x; y/ !
0, because if A is transient then �f�tDyg ! 0 almost surely, and if A is recurrent
then M1.t; x; y/ � M1.t; x/ ! 0.

Regime (ii) is trivial as here M1.t; x/ D 1 and M1.t; x; y/ D pt .x; y/. Next,
for regime (iii) (a) we exploit both the standard and the reverse Hölder inequality
for p > 1:

M1.t; x; y/ 
 Ex

�
e�.1=.p�1//.m�1/ R t0 �0.�r / dr

	�.p�1/
pt .x; y/

p; (9)

M1.t; x; y/ � Ex

�
ep.m�1/ R t0 �0.�r / dr

	1=p
pt .x; y/

.p�1/=p: (10)

In the recurrent case G1.0; 0/ D 1 and thus ˇ D 1, so this case has already
been dealt with in regime (ii). Hence we may assume that A is transient so thatR1
0
�0.�r / dr < 1 with positive probability. This shows that the expectation in the

lower bound (9) converges to a finite constant. By assumption m � 1 < ˇ so that
there is p > 1 satisfying p.m�1/ < ˇ. With this choice of p, part 3) of Theorem 1
of [7] implies that also the expectation in the upper bound (10) converges to a finite
constant. In total this shows that

Cpt .x; y/
p � M1.t; x; y/ � C 0pt .x; y/.p�1/=p

and the claim for M1.t; x; y/ follows. For M1.t; x/ we can directly refer to
Theorem 1 of [7].

For regimes (iii) (b) and (c) we give arguments based on renewal theorems. A
closer look at the variation of constants formula (7) shows that only for x D 0,
M1.t; x; y/ occurs on both sides of the equation. Hence, we start with the case
x D 0 and afterwards deduce the asymptotics for x ¤ 0.

Let us begin with the simpler case (iii) (c). As mentioned above, in this case
we may assume that A is transient so that

R1
0 pr .0; 0/ dr < 1. Hence, dominated

convergence ensures that the equation
R1
0 e��tpt .0; 0/ dt D 1=.m�1/ has a unique

positive root �, which we call r.m/. The definition of r.m/ shows that U.dt/ WD
.m � 1/e�r.m/tpt .0; 0/ dt is a probability measure on Œ0;1/ and furthermore
e�r.m/tpt .0; y/ is directly Riemann integrable. Hence the classical renewal theorem
(see page 349 of [9]) can be applied to the (complete) renewal equation

f .t/ D g.t/C f 	 U.t/;
with f .t/ D e�r.m/tM 1.t; 0; y/ and g.t/ D e�r.m/tpt .0; y/. The renewal theorem
implies that

lim
t!1f .t/ D

R1
0
g.s/ dsR1

0
U..s;1// ds

2 .0;1/ (11)

so that the claim for M1.t; 0; y/ follows including the limiting constants.
For (iii) (b), we need to be more careful as the criticality implies that .m �

1/
R1
0
pr .0; 0/ dr D 1. Hence, the measure U as defined above is already a
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probability measure so that the variation of constants formula is indeed a proper
renewal equation. The renewal measure U only has finite mean if additionally

Z 1

0

rpr .0; 0/ dr < 1: (12)

In the case of finite mean the claim follows as above from (11) without the
exponential correction (i.e. r.m/ D 0). Note that pt .0; y/ is directly Riemann
integrable as the case ˇ > 0 implies that A is transient and pt .0; y/ is decreasing.

If (12) fails, we need a renewal theorem for infinite mean variables. Iterating (7)
reveals the representation

M1.t; 0; y/ D pt.0; y/ 	
X
n	0
.m � 1/npt .0; 0/

�n; (13)

where 	n denotes n-fold convolution in t and pt .0; y/	pt .0; 0/�0 D pt .0; y/. Note
that convergence of the series is justified by

.m � 1/npt.0; 0/�n �
�
.m � 1/

Z t

0

pr .0; 0/ dr

�n

and the assumption onm. Lemma 1 of [8] now implies that

X
n	0
.m � 1/npt.0; 0/�n � t

.m � 1/ R t
0

R1
s
pr.0; 0/ drds

(14)

which tends to infinity as .m�1/ R1
s
pr .0; 0/ dr ! 0 for s ! 1 since we assumed

that .m � 1/pr.0; 0/ is a probability density in r . To derive from this observation
the result for M1.t; 0; y/, note that the simple bound pt.0; y/ � 1 gives the upper
bound

M1.t; 0; y/ �
Z t

0

X
n	0
.m � 1/npr.0; 0/�n dr: (15)

For a lower bound, we use that due to irreducibility and continuity of pt .0; y/ in t ,
there are 0 < t0 < t1 and $ > 0 such that pt .0; y/ > $ for t0 � t � t1. This shows
that

M1.t; 0; y/ 
 $

Z t�t1

t�t0

X
n	0
.m � 1/npr.0; 0/�n dr: (16)

Combined with (14) the lower and upper bounds directly prove the claim for
M1.t; 0; y/.
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It remains to deal with regime (iii) (b) and (c) for x ¤ 0. The results follow from
the asymptotics of the convolutions as those do not vanish at infinity. But this can
be deduced from simple upper and lower bounds similar to (15) and (16).

The asymptotic results for the expected total number of particlesM1.t; x/ follow
from similar ideas: estimating as before

1C $

Z t�t1

t�t0
M 1.r; 0/ dr � M1.t; x/ � 1C

Z t

0

M 1.r; 0/ dr;

and applying case (2) of Theorem 1 of [7] to (4) with x D 0, the result follows.

We now come to the crucial lemma of our paper. We use the many-to-few lemma
to reduce higher moments of Nt and Nt.y/ to the first moment. More precisely, a
system of equations is derived that can be solved inductively once the first moment
is known. This particular useful form is caused by the one-point catalyst. A similar
system can be derived in the same manner in the deterministic case if the one-
point potential is replaced by a n-point potential. However the case of a random
n-point potential is much more delicate as the sources are “attracted” to the particles,
destroying any chance of a renewal theory approach.

Lemma 3. For k 
 2 the kth moments fulfil

Mk.t; x/ D M1.t; x/CM1.t; x; 0/ 	 gk
�
.M1.t; 0/; � � � ;M k�1.t; 0/

�
; (17)

Mk.t; x; y/ D M1.t; x; y/CM1.t; x; 0/ 	 gk
�
M1.t; 0; y/; � � � ;M k�1.t; 0; y/

�
;

(18)

where

gk
�
M1; : : : ;M k�1� D

kX
jD2

E

" 
X

j

!# X
i1;:::;ij >0

i1C:::CijDk

kŠ

i1Š � � � ij ŠM
i1 � � �Mij :

Proof. We shall only prove (17); the proof of (18) is almost identical. We recall
the spine setup and introduce some more notation. To begin with, all k spines are
carried by the same particle � which branches at rate mk D EŒXk� when at 0. Thus
the k spines separate into two or more particles at ratemk �m when at 0 (since it is
possible that at a birth event all k spines continue to follow the same particle, which
happens at rate m). We consider what happens at this first “separation” time, and
call it T .

Let i1; : : : ; ij > 0, i1 C : : : C ij D k, and define Ak.j I i1; : : : ; ij / to be the
event that at a separation event, i1 spines follow one particle, i2 follow another,
. . . , and ij follow another. The first particle splits into a new particles with
probability akpam�1

k (see the definition of Qk). Then given that the first particle
splits into a new particles, the probability that i1 spines follow one particle, i2 follow
another, . . . , and ij follow another is
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1

ak
�
 
a

j

!
� kŠ

i1Š � � � ij Š

(the first factor is the probability of each spine making a particular choice from the
a available; the second is the number of ways of choosing the j particles to assign
the spines to; and the third is the number of ways of rearranging the spines amongst
those j particles). Thus the probability of the event Ak.j I i1; : : : ; ij / under Qk is

1

mk

E

" 
X

j

!#
kŠ

i1Š � � � ij Š :

(Note that, as expected, this means that the total rate at which a separation event
occurs is

mk � 1

mk

kX
jD2

E

" 
X

j

!# X
i1;:::;ij >0

i1C:::CijDk

kŠ

i1Š � � � ij Š D mk �m

since the double sum is just the expected number of ways of assigning k things to
X boxes without assigning them all to the same box.)

However, for j 
 2, given that we have a separation event, Ak.j I i1; : : : ; ij /
occurs with probability

1

mk

E

" 
X

j

!#
kŠ

i1Š � � � ij Š
�

mk

mk �m

�
:

Write �t for the position of the particle carrying the k spines for t 2 Œ0; T /,
and define Ft to be the filtration containing all information (including about the
spines) up to time t . Recall that the skeleton skel.t/ is the tree generated by particles
containing at least one spine up to time t ; let skel.sI t/ similarly be the part of the
skeleton falling between times s and t . Using the many-to-few lemma with f D 1,
the fact that by definition before T all spines sit on the same particle and integrating
out T , we obtain

E
�
Nk
t

	 D Q
k

2
4 Y
v2skel.t/

e
.mBv�1/ R �v .t/�v .t/

�0.Xv.s//ds

3
5

D Q
k

2
4e.mk�1/ R T0 �0.�s/ds

�fT�tgQk
2
4 Y
v2skel.T I t /

e
.mBv�1/ R �v .t/�v .t/

�0.Xv.s//ds

ˇ̌
ˇ̌
ˇ̌FT

3
5
3
5

C Q
k
h
e.mk�1/ R t0 �0.�s/ds

�fT>tg
i
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D
Z t

0
Q
k

"
e.mk�1/ R u

0 �0.�s/ds.mk �m/�0.�u/e
�.mk�m/ R u

0 �0.�s/ds

� Qk
� Y
v2skel.uI t /

e
.mBv�1/ R �v .t/�v .t/

�0.Xv.s//ds
ˇ̌
ˇ̌FuI T D u

#
du

C Q
k
h
e.mk�1/ R t0 �0.�s/dse�.mk�m/ R t0 �0.�s/ds

i
:

To prove (18), the same arguments are used with f D �y in place of f D 1. Now
we split the sample space according to the distribution of the numbers of spines
in the skeleton at time T . Since, given their positions and marks at time T , the
particles in the skeleton behave independently, we may split the product up into j
independent factors. Thus

E
�
Nk
t

	 D
Z t

0

kX
jD2

X
i1;:::;ij >0

i1C:::CijDk

E

" 
X

j

!#
kŠ

i1Š � � � ij ŠQ
k

"
e.m�1/ R u

0 �0.�s/ds
�0.�u/

�
jY
lD1

Q
il

� Y
v2skel.t�u/

e
.mBv�1/ R �v .t�u/

�v .t�u/ �0.Xv.s//ds
#

du

C Q
k
h
e.m�1/ R t0 �0.�s/ds

i

D
Z t

0

kX
jD2

X
i1;:::;ij >0

i1C:::CijDk

E

" 
X

j

!#
kŠ

i1Š � � � ij ŠEx ŒNu.0/� �
jY
lD1

E0

h
N
il
t�u

i
du C Ex ŒNt � ;

where we have used the many-to-few lemma backwards with f D �0 (first
expectation) and f D 1 (two last expectations) to obtain the last line. This is exactly
the desired equation (17). For (18) we again use f D �y in place of f D 1 and
copy the same lines of arguments.

Remark 3. The factors appearing in gk are derived combinatorially from splitting
the spines. In Lemma 3.1 of [3] they appeared from Faà di Bruno’s differentiation
formula.

We need the following elementary lemma before we can complete our proof.

Lemma 4. For any non-negative integer-valued random variable Y , and any
integers a 
 b 
 1,

EŒY a�EŒY � 
 EŒY b�EŒY a�bC1�:
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Proof. Assume without loss of generality that b 
 a=2. Note that for any two
positive integers j and k,

j ak C jka � j bka�bC1 � j a�bC1kb D jk.j � k/2


j a�3 C 2j a�4k C 3j a�5k2 C : : :

C .a � b/j b�2ka�b�1 C .a � b � 1/j b�3ka�b

C � � � C 2jka�4 C ka�3�


 0:

Thus

EŒY a�EŒY � � EŒY b�EŒY a�bC1�

D
X
j	1

j aP.Y D j /
X
k	1

kP.Y D k/�
X
j	1

j bP.Y D j /
X
k	1

ka�bC1
P.Y D k/

D
X
j	1

X
k>j

.j ak C kaj � j bka�bC1 � j a�bC1kb/P.Y D j /P.Y D k/


 0

as required.

We can now finish the proof of the main result.

Proof (of Theorem 1 for Mk). Case (i) follows just as for M1, applying dominated
convergence to the Qk-expectation in Lemma 1. Note that if T is the first split time

of the k spines (as in Lemma 3) then e.mk�1/ R T0 �0.�s/ds is stochastically dominated
by e.mk�1/� where � is an exponential random variable of parameter mk �m1; this
allows us to construct the required dominating random variable.

For case (ii), using Lemmas 2 and 3 we find the lower bound

Mk.t; x/ 
 1CC
Z t

0

ps.x; 0/M
k�1.t�s; 0/ds 
 C

Z t

0

ps.x; 0/M
k�1.t�s; 0/ds:

(19)

An upper bound can be obtained by additionally using Lemma 4 (to reduce gk to
the leading term M1Mk�1) to obtain

Mk.t; x/ � 1C C

Z t

0

ps.x; 0/M
k�1.t � s; 0/ds: (20)

Using inductively the lower bound (19) and furthermore the iteration
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Z t

0

Px.Xs1D0/
Z t�s1

0

P0.Xs2D0/ : : :
Z t�s1�:::�sk�2

0

P0.Xsk�1
D0/dsk�1 : : : ds2ds1

D
Z t

0

Z t

s1

: : :

Z t

sk�2

Px.Xs1 D 0;Xs2 D 0; : : : ; Xsk�1
D 0/dsk�1 : : : ds2ds1

D 1

.k � 1/Š
Z t

0

Z t

0

: : :

Z t

0

Px.Xs1 D 0;Xs2 D 0; : : : ; Xsk�1
D 0/dsk�1 : : : ds2ds1

D 1

.k � 1/ŠEx
"�Z t

0

�fXsD0gds

�k�1#

D 1

.k � 1/ŠEx
�
Lt.0/

k�1	
(21)

we see that Mk.t; x/ goes to infinity if A is recurrent and to a constant if A
is transient. This implies that the additional summand 1 in (20) can be omitted
asymptotically in both cases. The claim follows.

The lower bound of case (iii)(a) follows by the same argument as for case (ii),
and the upper bound is a straightforward induction using Lemmas 3 and 4. The cases
(iii)(b) and (c) also follow from Lemma 3 and induction based on the asymptotics
forM1.
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1 Introduction

Let .˝;F ; P / be a probability space and .Wt/t	0 a one-dimensional Brownian
motion on this space. Let F be a random variable defined on ˝ which is
differentiable in the sense of the Malliavin calculus. Then using the so-called Stein
method introduced by Nourdin and Peccati in [13] (see also [14] and [12]), it is
possible to measure the distance between the law of F and the standard normal law
N .0; 1/. This distance, denoted by d , can be defined in several ways, such as the
Kolmogorov distance, the Wasserstein distance, the total variation distance or the
Fortet–Mourier distance. More precisely we have, if L .F / denotes the law of F ,

d.L .F /;N .0; 1// � c

q
E
�
1 � hDF;D.�L/�1F iL2.Œ0;1�/

�2
: (1)

Here D denotes the Malliavin derivative with respect to W , and L is the generator
of the Ornstein–Uhlenbeck semigroup. We will explain in the next section how
these operators are defined. The constant c is equal to 1 in the case where d is
the Kolmogorov distance as well as in the case where d is the Wasserstein distance,
c D 2 for the case where d is the total variation distance and c D 4 in the case
where d is the Fortet–Mourier distance.

Our purpose is to apply Stein’s method combined with Malliavin calculus and in
particular the bound (1) to self-normalized sums. Let us recall some basic facts on
this topic. We refer to [7] and the references therein for a more detailed exposition.
Let X1;X2; : : : be independent random variables. Set Sn D Pn

iD1 Xi and V 2
n DPn

iD1 X2
i . Then Sn

Vn
converges in distribution as n ! 1 to the standard normal law

N .0; 1/ if and only if E.X/ D 0 andX is in the domain of attraction of the standard
normal law (see [7], Theorem 4.1). The “if” part of the theorem has been known for
a long time (it appears in [11]) while the “only if” part remained open until its proof
in [8]. The Berry–Esséen theorem for self-normalized sums has been also widely
studied. We refer to [2,9] and [17] (see also [3,4] for the situation where the random
variablesXi are non i.i.d. ). These results say that the Kolmogorov distance between
the law of Sn

Vn
and the standard normal law is less than

C

 
B�2
n

nX
iD1

E
�
X2
i 1.jXi j>Bn/

�C B�3
n

nX
iD1

E
�
X3
i 1.jXi j	Bn/

�!

where Bn D Pn
iD1 E.X2

i / and C is an absolute constant. We mention that, as
far as we know, these results only exist for the Kolmogorov distance. To use
our techniques based on the Malliavin calculus and multiple stochastic integrals,
we will put ourselves on a Gaussian space where we will consider the following
particular case: the random variables Xi are the increments of the Wiener process
Xi D Wi � Wi�1. The Berry–Esséen bound from above reduces to (see [7], page
53): for 2 < p � 3
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sup
z2R

jP.Fn � z/ � ˚.z/j � 25E .jZjp/ n1� p
2 (2)

where Z is a standard normal random variable and ˚ is its distribution function. In
particular for p D 3 we get

sup
z2R

jP.Fn � z/ �˚.z/j � 25E
�jZj3� n� 1

2 : (3)

We will compare our result with the above relation (3). The basic idea is as follows:
we are able to find the chaos expansion into multiple Wiener–Itô integrals of the
random variable Sn

Vn
for every n 
 2 and to compute its Malliavin derivative. Note

that the random variable Sn
Vn

has a decomposition into an infinite sum of multiple
integrals in contrast to the examples provided in the papers [5, 13, 14]. Then, we

compute the Berry–Esséen bound given by
q

E
�
1 � hDF;D.�L/�1F iL2.Œ0;1�/

�2
by

using properties of multiple stochastic integrals. Of course, we cannot expect to
obtain a rate of convergence better than c 1p

n
, but we have an explicit expression

of the constant appearing in this bound and our method is available for several
distances between the laws of random variables (not limited to the Kolmogorov
distance). This aspect of the problem is new: we provide new bounds with an
explicit constant c in the cases of other useful distances. This computation of the
Berry–Esséen bound is also interesting in and of itself as it brings to light original
relations involving Gaussian measure and Hermite polynomials. It gives an exact
expression of the chaos expansion of the self normalized sum and it also shows that
the convergence to the normal law of Sn

Vn
is uniform with respect to the chaos, in the

sense that every chaos of Sn
Vn

is weakly convergent to the standard normal law and
that the rate is the same for every chaos. Moreover, he hope that this approach which
uses Malliavin calculus could lead to another results which may be interesting for a
statistician: the bounds in the multidimensional case (see [15]) or exact confidence
intervals (see [6]).

We have organized our paper as follows: Sect. 2 contains the elements of
the Malliavin calculus needed in the paper and in Sect. 3 we discuss the chaos
decomposition of self-normalized sums as well as study the asymptotic behavior
of the coefficients appearing in this expansion. Section 4 contains the computation
of the Berry–Esséen bound given in terms of the Malliavin calculus. Finally, Sect. 5
is dedicated to the proofs of the results as well as to some technical lemmas needed
in those proofs.

2 Preliminaries

We will begin by describing the basic tools of multiple Wiener–Itô integrals
and Malliavin calculus that will be needed in our paper. Let .Wt /t2Œ0;T � be a
classical one-dimensional Wiener process on a standard Wiener space .˝;F ; P /.
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If f 2 L2.Œ0; T �n/with n 
 1 integer, we introduce the multiple Wiener–Itô integral
of f with respect toW . We refer to [16] for a detailed exposition of the construction
and the properties of multiple Wiener–Itô integrals.

Let f 2 Sn, which means that there exists n 
 1 integers such that

f WD
X
i1;:::;in

ci1;:::;in1Ai1�:::�Ain

where the coefficients satisfy ci1;:::;in D 0 if two indices ik and i` are equal and where
the sets Ai 2 B.Œ0; T �/ are disjoint. For a such step function f we define

In.f / WD
X
i1;:::;in

ci1;:::;inW.Ai1/ : : :W.Ain/

where we putW.Œa; b�/ D Wb�Wa. It can be seen that the application In constructed
above from Sn equipped with the scaled norm 1p

nŠ
k � kL2.Œ0;T �n/ to L2.˝/ is an

isometry on Sn, i.e. for m; n positive integers,

E .In.f /Im.g// D nŠhf; giL2.Œ0;T �n/ if m D n;

E .In.f /Im.g// D 0 if m 6D n:

It also holds that

In.f / D In
� Qf �

where Qf denotes the symmetrization of f defined by

Qf .x1; : : : ; xx/ D 1

nŠ

X
�2Sn

f .x�.1/; : : : ; x�.n//:

Since the set Sn is dense in L2.Œ0; T �n/ for every n 
 2, the mapping In can be
extended to an isometry from L2.Œ0; T �n/ to L2.˝/ and the above properties hold
true for this extension. Note also that In can be viewed as an iterated stochastic
integral (this follows e.g. by Itô’s formula)

In.f / D nŠ

Z 1

0

Z tn

0

: : :

Z t2

0

f .t1; : : : ; tn/dW t1 : : : dWtn

We recall the product for two multiple integrals (see [16]): if f 2 L2.Œ0; T �n/

and g 2 L2.Œ0; T �m/ are symmetric, then it holds that

In.f /Im.g/ D
m^nX
`D0

`ŠC `
mC

`
nImCn�2`.f ˝` g/ (4)

where the contraction f ˝` g belongs to L2.Œ0; T �mCn�2`/ for ` D 0; 1; : : : ; m ^ n
and is given by
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.f ˝` g/.s1; : : : ; sn�`; t1; : : : ; tm�`/

D
Z
Œ0;T �`

f .s1; : : : ; sn�`; u1; : : : ; u`/g.t1; : : : ; tm�`; u1; : : : ; u`/du1 : : : du`:

We recall that any square integrable random variable that is measurable with respect
to the �-algebra generated by W can be expanded into an orthogonal sum of
multiple stochastic integrals

F D
X
n	0

In.fn/ (5)

where fn 2 L2.Œ0; 1�n/ are (uniquely determined) symmetric functions and
I0.f0/ D E .F /.

Let L be the Ornstein–Uhlenbeck operator

LF D �
X
n	0

nIn.fn/ and L�1F D �
X
n	1

1

n
In.fn/

if F is given by (5). We denote by D the Malliavin derivative operator that acts on
smooth functionals of the form F D g.W.'1/; : : : ;W.'n// where g is a smooth
function with compact support and 'i 2 L2.Œ0; 1�/. For i D 1; : : : ; n, the derivative
operator is defined by

DF D
nX
iD1

@g

@xi
.W.'1/; : : : ;W.'n//'i :

The operator D can be extended to the closure D
p;2 of smooth functionals with

respect to the norm

kF k2p;2 D E
�
F 2
�C

pX
iD1

E


kDiF k2

L2.Œ0;1�i /

�

where the i th order Malliavin derivativeDi is defined iteratively.
Let us recall how this derivative acts for random variables in a finite chaos. If f 2

L2.Œ0; T �n/ is a symmetric function, we will use the following rule to differentiate
in the Malliavin sense

DtIn.f / D n In�1.f .�; t//; t 2 R:

Let us also recall how the distances between the laws of random variables are
defined. We have

d.L .X/;L .Y // D sup
h2A

.jE .h.X//� E .h.Y //j/
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where A denotes a set of functions. When A D fh W khkL 
 1g (here
k � kL is the finite Lipschitz norm) we obtain the Wasserstein distance, when
A D fh W khkBL 
 1g (with k � kLB D k � kL C k � k1) we get the Fortet–Mourier
distance, when A is the set of indicator functions of Borel sets we obtain the total
variation distance, and when A is the set of indicator functions of the form 1.�1;z/

with z 2 R, we obtain the Kolmogorov distance that has been presented above.

3 Chaos Decomposition of Self-Normalized Sums

The tools of the Malliavin calculus presented above can be successfully applied in
order to study self-normalized sums. Because of the nature of Malliavin calculus,
we put ourselves in a Gaussian setting and we consider Xi D Wi �Wi�1 to be the
increments of a classical Wiener process W . We then consider the sums

Sn D
nX
iD1

Xi and V 2
n D

nX
iD1

X2
i

as well as the self-normalized sum Fn defined by

Fn D Sn

Vn
D Wn�Pn

iD1.WiC1 �Wi/2
� 1
2

: (6)

3.1 The Chaos Expansion Theorem

Let us now concentrate our efforts on finding the chaotic decomposition of the
random variable Fn. This will be the key to computing Berry–Esséen bounds for
the distance between the law of Fn and the standard normal law in the next section.

Proposition 1. Let Fn be given by (6) and let f W Rn ! R be given by

f .x1; : : : ; xn/ D x1 C : : :C xn

.x21 C : : :C x2n/
1
2

: (7)

Let 'i D 1Œi�1;i � for i D 1; : : : ; n. Then for every n 
 2, we have

Fn D
X
k	0

1

kŠ

nX
i1;:::;ikD1

ai1;:::;ik Ik
�
'i1 ˝ : : :˝ 'ik

�



Malliavin Calculus and Self Normalized Sums 329

with

ai1;:::;ik
defD E

�
@kf

@xi1 ; : : : ; xik
.W.'1/; : : : ;W.'n//

�
: (8)

Remark 1. The coefficients ai1;:::;ik also depend on n. We omit n in their notation in
order to simplify the presentation.

3.2 Computing the Coefficients in the Chaos Expansion

An important step in the analysis of the decomposition coefficients is to explicitly
compute the coefficients ai1;��� ;ik appearing in Proposition 1. Let Hn.x/ denote the
nth Hermite polynomial:

Hn.x/ D .�1/nex2=2 d
n

dxn
e�x2=2:

Define

Wn
defD W.'1/CW.'2/C � � � CW.'n/

Vn
defD

 nX
iD1

W.'i/
2
�1=2

:

The following proposition is the main result of this subsection and provides
an explicit expression for the coefficients of the chaos decomposition proved in
Proposition 1.

Proposition 2. For every k 
 0 and for every 1 � i1; � � � ; i2kC1 � n, let d?r ; 1 �
r � n be the number of times the integer r appears in the sequence fi1; � � � ; i2kC1g.
Then,

ai1;��� ;i2kC1
D E

�
1

Vn
W.'1/Hd?1

.W.'1//Hd?2
.W.'2// � � � Hd?n

.W.'n//


(9)

if there is only one odd integer in the sequence d?r ; 1 � r � n. If there is more than
one odd integer in the sequence d?r ; 1 � r � n, we have ai1;��� ;i2kC1

D 0.

Remark 2. Note that in (9), it might be understood that d?1 is always the only odd
integer in d?r ; 1 � r � n. This is obviously not always the case and if d?1 is not
the odd integer but let’s say, d?i with 1 < i � n is, one can use the equality in law
between W.'i/ and W.'1/ to perform an index swap .i $ 1/ and the equality (9)
remains unchanged.
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Remark 3. If one is in the case where a11;��� ;i2kC1
¤ 0, one can rewrite

d?1 ; d
?
2 ; � � � ; d?n as 2d1 C 1; 2d2; � � � ; 2dn and finally rewrite (9) as

ai1;��� ;i2kC1
D E

�
1

Vn
W.'1/H2d1C1 .W.'1//H2d2 .W.'2// � � � H2dn .W.'n//


:

(10)

3.3 Asymptotic Behavior of the Coefficients

Having an explicit expression of the coefficients in the chaos decomposition will
allow us to finally determine their asymptotic behavior as n ! 1. We established
the following result.

Proposition 3. For every 1 � i1; � � � ; i2kC1 � n, let ai1;��� ;i2kC1
be as defined in

(8). As in (10), let 2d1 C 1; 2d2; � � � ; 2dr ; � � � ; 2dn denote the number of times the
integers 1; 2; : : : ; n appears in the sequence fi1; i2; � � � ; i2kC1g with

Pn
rD1 dr D k

(see Remark 3). Then when n ! 1, (the symbol � means that the ratio of the two
sides converges to 1 as n ! 1)

ai1;��� ;i2kC1
� 1

kŠ
.2k � 1/ŠŠ

.2d1 C 1/Š.2d2/Š � � � .2dn/Š
.d1Šd2Š � � �dnŠ/2

� 2�2k.�1/k
0
@ nY
jD0

djX
ljD0

.�1/lj C lj
dj
l
dj
j

1
A 1

n
1
2CjAj (11)

where

A WD f2d1 C 1; 2d2; � � � ; 2dng n f0; 1g
and jAj is the cardinal of A.

4 Computation of the Berry–Esséen Bound

Let us first recall the following result (see [7], page 53): for 2 < p � 3,

sup
z2R

jP.Fn � z/ � ˚.z/j � 25E .jZjp/ n1� p
2 (12)

where Z is a standard normal random variable and ˚ is its distribution function. In
particular for p D 3 we get

sup
z2R

jP.Fn � z/� ˚.z/j � 25E
�jZj3�n� 1

2 :
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We now compute the Berry–Esséen bound obtained via Malliavin calculus in
order to compare it with (12). This is the objet of the main result of this section.

Theorem 1. For any integer n 
 2,

E

�hDFn;D.�L/�1Fni � 1

�2� � c0

n

with

c0 D
X
m	1

.2m/Š

0
@ 2mX
kD0

1

2kŠ

1

.2m� 2k/Š

X
r	0

1

.2r/Š

1

2m � 2k C 2r C 1
c.k; r;m/

1
A
2

(13)

C
0
@ 2mX
kD0

1

.2k C 1/Š

1

.2m � 2k � 1/Š

X
r	0

1

.2r � 1/Š

1

2m � 2k C 2r C 1
c.k; r;m/

1
A
2

and where c.k; r;m/ is given by (22).

An immediate consequence of this theorem is the fact that the self-normalized
sequence Fn converges uniformly to its limit in the sense that each element of the
chaos decomposition converges weakly to a standard normal random variable.

Corollary 1. Let Jm.Fn/ denotes the projection on the mth Wiener chaos of the
random variable Fn. Then for every m 
 1 the sequence Jm.Fn/ converges as
n ! 1 to a standard normal random variable.

5 Proofs and Technical Lemmas

5.1 Proofs of Propositions 1, 2 and 3

Proof (Proof of Proposition 1). First note that Fn can be written as

Fn D f .W.'1/; � � � ;W.'n// :

We can also write

f .x1; � � � ; xn/ D
nX
iD1

fi .x1; � � � ; xn/;

where fi .x1; � � � ; xn/ is defined by

fi .x1; � � � ; xn/ D xi

.x21 C � � � C x2n/
1
2

:
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The chaotic decomposition of fi .W.'1/; � � � ;W.'n// was obtained (in a slightly
different setting) by Hu and Nualart in the proof of Proposition 10 in [10]. They
proved that

fi .W.'1/; � � � ;W.'n// D
1X
kD0

nX
j1;��� ;jkD1

bi;j1;��� ;jk Ik
�
'j1 ˝ � � � ˝ 'jk

�
;

where

bi;j1;��� ;jk D .�1/k
.2�/n=2

Z
Rd

�
@k

@xj1 � � � @xjk
e� .x1C���Cxn/

2

2


fi .x1; � � � ; xn/dx1 � � � dxn:

Define bj1;��� ;jk D Pn
iD1 bi;j1;��� ;jk . By the above result, we have

bj1;��� ;jk D .�1/k
.2�/n=2

Z
Rd

�
@k

@xj1 � � � @xjk
e� .x1C���Cxn/

2

2


f .x1; � � � ; xn/dx1 � � � dxn:

Thus,

Fn D
X
k	0

nX
i1;��� ;ikD1

bi1;��� ;ik Ik
�
'i1 ˝ � � � ˝ 'ik

�
:

Finally, using the Gaussian integration by part formula yields bi1;��� ;ik D ai1;��� ;ik ,
where ai1;��� ;ik is defined by (8), which concludes the proof.

Proof (Proof of Proposition 2). Since
Pn

rD1 d?r D 2k C 1, there is an odd number
of odd integers in the sequence d?r ; 1 � r � n. Recall that by Lemma 1 (see the
technical lemmas subsection), we have

ai1;���i2kC1
D

nX
uD1

E

 
W.'u/

Vn

nY
rD1

Hd?r

�
W.'r/

�!

D E
�
1

Vn
W.'1/Hd?1

.W.'1//Hd?2
.W.'2// : : :Hd?n

.W.'n//



C E
�
1

Vn
W.'2/Hd?1

.W.'1//Hd?2
.W.'2// � � � Hd?n

.W.'n//



:::

C E
�
1

Vn
W.'n/Hd?1

.W.'1//Hd?2
.W.'2// � � � Hd?n

.W.'n//


: (14)

Because of Lemma 3 (see the technical lemmas section), for each i , the term

E
�
1

Vn
W.'i /Hd?1

.W.'1//Hd?2
.W.'2// � � � Hd?n

.W.'n//
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is non null if d?i is the only odd integer in fd?r g ; 1 � r � n. Thus, ai1;��� ;i2kC1
¤ 0

if there is only one odd integer in fd?r g ; 1 � r � n. Let d?i with 1 � i � n be this
only odd integer. Then, if j ¤ i , by Lemma 3,

E
�
1

Vn
W.'j /Hd?1

.W.'1//Hd?2
.W.'2// � � � Hd?n

.W.'n//


D 0:

Thus, using (14) yields

ai1;��� ;i2kC1
D E

�
1

Vn
W.'i /Hd?1

.W.'1//Hd?2
.W.'2// � � � Hd?n

.W.'n//



if there is only one odd integer in the sequence fd?r g ; 1 � r � n and ai1;��� ;i2kC1
D 0

if there is more than one odd integer in the sequence fd?r g ; 1 � r � n. Using the
equality in law betweenW.'i/ andW.'1/, one can perform an index swap .i $ 1/

to finally obtain the desired result.

Proof (Proof of Proposition 3). We recall the following explicit formula for the
Hermite polynomials (see for example [1], p. 775):

Hd .x/ D dŠ

Œ d2 �X
lD0

.�1/l
2l lŠ.d � 2l/Šx

d�2l : (15)

Using (15) and (10) we can write

ai1;��� ;i2kC1
D E

�
1

Vn
W.'1/H2d1C1 .W.'1//H2d2 .W.'2// � � � H2dn .W.'n//



D .2d1 C 1/Š.2d2/Š � � � .2dn/Š
d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���Cln
2l1Cl2C���Cln l1Š � � � lnŠ

�
E
h
1
Vn
W.'1/

2d1C2�2l1W.'2/2d2�2l2 � � �W.'n/2dn�2ln
i

.2d1 C 1 � 2l2/Š.2d2 � 2l2/Š � � � .2dn � 2ln/Š :

At this point, we use Lemma 5 (see the technical lemmas section) to rewrite the
expectation in the last equation:

E
�
1

Vn
W.'1/H2d1C1 .W.'1//H2d2 .W.'2// � � � H2dn .W.'n//



D .2d1 C 1/Š.2d2/Š � � � .2dn/Š
d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���Cln
2l1Cl2C���Cln l1Š � � � lnŠ
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� 2d1C1Cd2C���Cdn�.l1Cl2C���Cln/C n�1
2

.2�/
n
2 .2d1 C 1 � 2l2/Š.2d2 � 2l2/Š � � � .2dn � 2ln/Š

��
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n�1

2

�
�
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n

2

�

��
�
d1 C 1 � l1 C 1

2

�
�

�
d2 � l2 C 1

2

�
� � ��

�
dn � ln C 1

2

�

D .2d1 C 1/Š.2d2/Š � � � .2dn/Š
d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���Cln
22.l1Cl2C���Cln/l1Š � � � lnŠ

� 2d1C1Cd2C���Cdn� 1
2

�
n
2 .2d1 C 1 � 2l2/Š.2d2 � 2l2/Š � � � .2dn � 2ln/Š

��
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n�1

2

�
�
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n

2

�

��
�
d1 C 1 � l1 C 1

2

�
�

�
d2 � l2 C 1

2

�
� � ��

�
dn � ln C 1

2

�
:

We claim that for any integers d 
 l ,

.�1/l
2�2l lŠ.2d � 2l/Š�

�
d � l C 1

2

�
D p

�
2�2d .�1/l

d Š
C l
d : (16)

Recall the relation satisfied by the Gamma function: for every z > 0,

� .z C 1/ D z� .z/ and � .z/� .z C 1

2
/ D p

�21�2z� .2z/: (17)

Then

.�1/l
2�2l l Š.2d � 2l/Š

�

�
d � l C 1

2

�
D .�1/l
2�2l l Š.2d � 2l/Š

�


d � l C 1C 1

2

�

d � l � 1
2

D .�1/l
2�2l l Š.2d � 2l/Š

� .2d � 2l C 2/

� .d � l C 1/

p
�21�2.d�lC1/

D p
�2�2d .�1/l

lŠ.2d � 2l/Š

.2d � 2l C 1/Š

.d � l/Š.2d � 2l C 1/

D p
�
2�2d .�1/l

d Š
C ld
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and (16) is proved. In the same way, using only the second relation in (17), we obtain

.�1/l1
2�2l1 l1Š.2d1 C 1 � 2l1/Š

�

�
d1 C 1 � l1 C 1

2

�
D p

�
2�1�2d1 .�1/l1

d1Š
C
l1
d1
: (18)

Putting together (16) and (18) we find

E
�
1

Vn
W.'1/H2d1C1 .W.'1//H2d2 .W.'2// � � � H2dn .W.'n//



D .2d1 C 1/Š.2d2/Š � � � .2dn/Š
d1Šd2Š � � �dnŠ 2�.d1C���Cdn/� 1

2

�
d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���ClnC l1
d1

� � �C ln
dn

��
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n�1

2

�
�
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n

2

� :

By Stirling’s formula, when n goes to infinity, we have

�
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n�1

2

�
�
�
d1 C 1C d2 C � � � C dn � .l1 C l2 C � � � C ln/C n

2

�

� 1p
k C 1 � .l1 C � � � C ln/C n

2

:

Therefore we need to study the behavior of the sequence

tn WD
d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���ClnC l1
d1

� � �C ln
dn

1p
k C 1 � .l1 C � � � C ln/C n

2

as n ! 1. We can write

tn D 1p
n

p
2g.

1

n
/

where

g.x/ D
d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���ClnC l1
d1

� � �C ln
dn

1p
2k C 2 � .l1 C � � � C ln/x C 1

:
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Since for every d 
 1

dX
lD0
.�1/lC l

d D 0;

we clearly have g.0/ D 0. The qth derivative of g at zero is

g.q/.0/ D .�1/q .2q � 1/ŠŠ

2q
Œ2k C 2 � .l1 C � � � C ln/�

q :

Repeatedly using the relation Ck
n D n

k
C k�1
n�1 we can prove that

dX
lD0
.�1/lC l

d l
q D 0

for every q D 0; 1; � � � ; d � 1. Therefore the first non-zero term in the Taylor
decomposition of the function g around zero is

d1X
l1D0

d2X
l2D0

� � �
dnX
lnD0

.�1/l1Cl2C���ClnC l1
d1

� � �C ln
dn
l
d1
1 � � � ldnn

which appears when we take the derivative of order d1 C d2 C � � � C dn. We obtain
that, for x close to zero,

g.x/ � .�1/d1C���Cdn .2.d1 C � � � C dn/� 1/ŠŠ

2d1C���Cdn
nY

jD0

djX
ljD0

.�1/lj C lj
dj
l
dj
j �H.d1; � � � ; dn/xjAj

where

A D fd1; � � � ; dng n f0g D f2d1 C 1; 2d2; � � � ; 2dng n f0; 1g

and H.d1; � � � ; dn/ is the coefficient of ld11 � � � ldnn in the expansion of .l1 C � � � C
ln/

d1C���Cdn . That is

H.d1; � � � ; dn/ D C
d1
d1C���CdnC

d2
d2C���Cdn � � �Cdn�1

dn�1Cdn D .d1 C � � � C dn/Š

d1Š � � �dnŠ :

We finally have
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ai1;��� ;i2kC1

D .2d1 C 1/Š.2d2/Š � � � .2dn/Š
.d1Šd2Š � � �dnŠ/2 2�.d1C���Cdn/.�1/d1C���Cdn .2.d1 C � � � C dn/� 1/ŠŠ

2d1C���Cdn

�
0
@ nY
jD0

djX
ljD0

.�1/lj C lj
dj
l
dj
j

1
A .d1 C � � � C dn/Š

d1Š � � �dnŠ
1

n
1
2CjAj

D kŠ.2k � 1/ŠŠ .2d1 C 1/Š.2d2/Š � � � .2dn/Š
.d1Šd2Š � � �dnŠ/2 2�2k.�1/k

�
0
@ nY
jD0

djX
ljD0

.�1/lj C lj
dj
l
dj
j

1
A 1

n
1
2CjAj

D kŠ.2k � 1/ŠŠ .2d1 C 1/Š.2d2/Š � � � .2dn/Š
.d1Šd2Š � � �dnŠ/2 2�2k.�1/k

0
@ nY
jD0

t.dj /

1
A 1

n
1
2CjAj

with for i D 1; � � � ; n

t.dj / WD
djX
ljD0

.�1/lj C lj
dj
l
dj
j : (19)

5.2 Proof of Theorem 1

Before proving our main result, let us discuss a particular case as an example in order
to better understand the general phenomenon. This is both useful and important in
order to have a good overview of how a simple case works. Assume that k D 0 and
l D 1. The corresponding summand in (27) reduces to

1

3Š

nX
uD1

au

nX
j1;j2D1

au;j1;j2I2
�
'j1 ˝ 'j2

�
:

Its L2-norm is

1

3

nX
j1;j2D1

 
nX

uD1
auau;j1;j2

!2
D 1

3

nX
j1D1

 
nX

uD1
auau;j1;j1

!2

because au;j1;j2 D 0 if j1 6D j2. Using (11), it reduces to a quantity equivalent to

1

3
.na21a

2
1;1;1 C n..n � 1/a1a1;1;2/

2/
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which, using (11) again, is of order

n

�
1p
n

�2 �
1

n
3
2

�2
C n

�
.n � 1/ 1p

n

1

n
3
2

�2
� n�1:

Proof (Proof of Theorem 1). Observe that the integers r C 1 C k and r C 1 C
2m � k both have to be odd numbers (otherwise the coefficients au1;u2;��� ;urC1;i1;��� ;ik
and au1;u2;��� ;urC1;ikC1;��� ;i2m vanish). This implies two cases: either r is even and k is
even or r is odd and k is odd. Thus, we can write

E

�hDFn;D.�L/�1Fni � 1

�2�

D
X
m	1

.2m/Š

nX
i1;��� ;i2mD1

 
2mX
kD0

1

2kŠ

1

.2m � 2k/Š

X
r	0

1

.2r/Š

1

2m � 2k C 2r C 1

�
nX

u1;��� ;u2rC1D1
au1;u2;��� ;u2rC1;i1;��� ;i2k au1;u2;��� ;u2rC1;i2kC1;��� ;i2m

!2

C
X
m	1

.2m/Š

nX
i1;��� ;i2mD1

 
2mX
kD0

1

.2k C 1/Š

1

.2m � 2k � 1/Š

�
X
r	0

1

.2r � 1/Š

1

2m � 2k C 2r C 1

�
nX

u1;��� ;u2rD1
au1;u2;��� ;u2r ;i1;��� ;i2kC1

au1;u2;��� ;u2r ;i2kC2;��� ;i2m

!2
: (20)

Let us treat the first part of the sum (20). Assume that the number of common
numbers occurring in the sets fu1; � � � ; u2rC1g and fi1; � � � ; i2kg is x and the number
of common numbers occurring in the sets fu1; � � � ; u2rC1g and fi2kC1; � � � ; i2m�2kg
is y. This can be formally written as

jfu1; � � � ; u2rC1g \ ffi1; � � � ; i2kgj D x

and

jfu1; � � � ; u2rC1g \ fi2kC1; � � � ; i2m�2kgj D y:

It is clear that

x � .2r C 1/ ^ 2k and y � .2r C 1/ ^ 2m � 2k:
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This also implies x C y � 2m. According to the definitions of x and y, it can
be observed that x and y must be even. We will denote them by 2x and 2y from
now on.

The next step in the proof is to determine how many distinct sequences of
numbers can occur in the set

fu1; � � � ; u2rC1; i1; � � � ; i2kg:
We can have sequences of lengths (all of the lengths that we consider from now on
are greater or equal to one) 2c1; 2c2; � � � ; 2cl1 with 2.c1 C � � � C cl1 / D 2x in the
set fu1; � � � ; u2rC1g \ fi1; � � � ; i2kg but also sequences of lengths 2d1; 2d2; � � � ; 2dl2
with 2.d1C� � �Cdl2 / D 2k�2x in the set fi1; � � � ; i2kg n fu1; � � � ; u2rC1g as well as
sequences of lengths 2e1C1; 2e2; � � � ; 2el3 with 1C2.e1C� � �Cel3/ D 2rC1�2x
in the set fu1; � � � ; u2rC1gnfi1; � � � ; i2kg: In this last sequence we have one (and only
one) length equal to 1 (because we are allowed to choose only one odd number in the
set fu1; � � � ; u2rC1gnfi1; � � � ; i2kg). We will have, if we have a configuration as above,

au1;u2;��� ;u2rC1;i1;��� ;i2k � c.r; c; e/n� 1
2�l1�l2�l3

where

c.r; c; e/ D rŠ.2r � 1/ŠŠ .2c1/Š � � � .2cl1/Š.2e1 C 1/Š.2e2/Š � � � .2el3/Š
.c1Š � � � cl1 Še1Š � � � el3Š/2

�t.c1/ � � � t.cl1 /t.e1/ � � � t.el3/ (21)

and the constants t.�/ are given by (19).
In the same way, assuming that we have sequences of lengths 2f1; 2f2; � � � ; 2fl4

with 2.f1C� � �Cfl4 / D 2m�2k�2y in the set fi2kC1; � � � ; i2mgnfu1; � � � ; u2rC1g and
sequences of lengths 2g1C1; 2g2; � � � ; 2gl5 with 1C2.g1C� � �Cg5/ D 2rC1�2y
in the set fu1; � � � ; u2rC1g n fi2kC1; � � � ; i2mg: We will obtain

au1;u2;��� ;u2rC1;i2kC1;��� ;i2n � c.k; c; d /n� 1
2�l1�l4�l5C1

with c.k; c; d / defined as in (21). The sum over u1; � � � ; urC1 from 1 to n reduces to
a sum of l1 C l3 C l5 � 1 distinct indices from 1 to n. Therefore we get

nX
u1;��� ;u2rC1D1

au1;u2;��� ;u2rC1;i1;��� ;i2k au1;u2;��� ;u2rC1;i2kC1;��� ;i2n

� c.k; r;m/n�l1�l2�l4

with

c.k; r;m/ D
X

xCyD2m

X
c1C���Ccl1Dx

X
d1C���Cdl2Dy

X
e1C���Cel3Dr�x

c.r; c; e/c.k; c; d/:

(22)
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We need to consider the sum i1; � � � ; i2m from 1 to n. It reduces to a sum over l2C l4
distinct indices. Thus

nX
i1;��� ;i2mD1

0
@ 2mX
kD0

1

2kŠ

1

.2m � 2k/Š

X
r	0

1

.2r/Š

1

2m� 2k C 2r C 1

nX
u1;��� ;u2rC1D1

nX
u1;��� ;u2rC1D1

au1;u2;��� ;u2rC1;i1;��� ;i2k au1;u2;��� ;u2rC1;i2kC1;��� ;i2m
�2

� nl2Cl4
�

1

n2l1Cl2Cl4

�2 2mX
kD0

1

2kŠ

1

.2m� 2k/Š

X
r	0

1

.2r/Š

1

2m � 2k C 2r C 1
c.k; r; m/

D 1

n2l1Cl2Cl4

0
@ 2mX
kD0

1

2kŠ

1

.2m� 2k/Š

X
r	0

1

.2r/Š

1

2m � 2k C 2r C 1
c.k; r; m/

1
A
2

:

Note that either l1 C l2 
 1 or l1 C l4 
 1 (this is true becausem 
 1). Then this
term is at most of order of n�1.

Let us now look at the second part of the sum in (20). Suppose that
in the sets fu1; � � � ; u2rg \ fi1; � � � ; i2kC1g, fi1; � � � ; i2kC1g n fu1; � � � ; u2rg,
fu1; � � � ; u2rg n fi1; � � � ; i2kC1g, fi2kC2; � � � ; i2m�2kg n fu1; � � � ; u2rg, fu1; � � � ; u2rg n
fi2kC2; � � � ; i2m�2kg we have sequences with lengths

p1; p2; p3; p4; p5

respectively (the analogous of l1; � � � ; l5 above). Then the behavior with respect
to n of

nX
u1;��� ;u2rD1

au1;u2;��� ;u2r ;i1;��� ;i2kC1
au1;u2;��� ;u2r ;i2kC2;��� ;i2m

is of order of np1Cp3 1

n2p1Cp3Cp4
. Therefore the behavior with respect to n of the

second sum in (20) is of order

np2C1Cp4C1
�

1

n1 C 2p1 C p2 C p4

�2
D 1

n2p1Cp2Cp4
:

Again, since either p1 C p2 
 1 or p1 C p4 
 1, the behavior of the term is at most
of order n�1. Therefore

E

�hDFn;D.�L/�1Fni � 1

�2� � c0

n

where the constant c0 is given by (13). The fact that the sum over m is finite is a
consequence of the following argument: hDFn;D.�L/�1Fni belongs to D

1;2.˝/



Malliavin Calculus and Self Normalized Sums 341

(which is true based on the derivation rule—Exercise 1.2.13 in [16]—and since Fn
belongs to D

1;2 as a consequence of Proposition 1.2.3 in [16]), this implies thatP
m mŠm

kkh.n/m k2 < 1 for every k where h.n/m is given by (28). Therefore, the
constant c.m; k; r/ defined in (22) behaves at most as a power function with respect
to m:

5.3 Some Technical Lemmas

Let us first give the following lemma that can be proved using integration by part.

Lemma 1. For every 1 � i1; :; ik � n, let ai1;���ik be as defined in (8). Let
dr; 1 � r � n denote the number of times the integer r appears in the sequence
fi1; i2; � � � ; ikg with

Pn
rD1 dr D k. Then we have

ai1;���ik D E

 
Wn

Vn

nY
rD1

Hdr

�
W.'r/

�!
:

Proof. If X � N .0; 1/, then for any g 2 C .n/.R/ with g and its derivatives having
polynomial growth at infinity, we have the Gaussian integration by part formula

E.g.n/.X// D E.g.X/Hn.X//

where g.n/.x/
defD dn

dxn g.x/.
Notice that the function f defined in (7) satisfies jf .x/j � C jxj;8x 2 R

n for
a constant C , and thus applying the above integration by part formula recursively
yields

ai1;���ik D 1

.
p
2�/n

Z
Rn

 
@kf

@x
d1
1 ; � � � ; xdnn

!
.x1; � � � ; xn/ e�

x21
2 � � � e�

x2n
2 dx1 � � � dxn

D 1

.
p
2�/n

Z
Rn

 
@kf

@x
d1
1 ; � � � ; xdn�1

n�1

!
.x1; � � � ; xn/Hdn .xn/ e

�
x21
2 � � � e�

x2n
2 dx1 � � � dxn

D 1

.
p
2�/n

Z
Rn

f .x1; � � � ; xn/
nY

rD1

Hdr .xr / e
�

x21
2 � � � e�

x2n
2 dx1 � � � dxn

D E

 
Wn

Vn

nY
rD1

Hdr

�
W.'r /

�!
:

This concludes the proof.
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The next lemma ensures that ai1;���ik D 0 when k is even.

Lemma 2. If k is even, then
ai1;���ik D 0:

Proof. Let k be an even number and d1; d2; � � � ; dn be as defined in Lemma 1. By
Lemma 1, we have

ai1;���ik D
nX

uD1
E

 
W.'u/

Vn

nY
rD1

Hdr

�
W.'r/

�!
: (23)

Note that the product
Qn
rD1 Hdr

�
W.'r// is an even function of .W.'1/;W.'2/; � � � ;

W.'n//. Indeed, since k is even and
Pn

rD1 dr D k, either all of the
integers dr; r � n are even or there is an even number of odd integers in
dr; r � n. In either case the product

Qn
rD1 Hdr

�
W.'r// is an even function of

.W.'1/;W.'2/; � � � ;W.'n//, since Hm.x/ D Hm.�x/ for all even m 2 N and
Hm.x/ D �Hm.�x/ for all odd m 2 N.

Thus for each u � n, the expression W.'u/

Vn

Qn
rD1 Hdr

�
W.'r/

�
is an odd function

ofW.'u/ and thus has expectation zero since W.�u/ is a standard Gaussian random
variable. The fact that (23) is a sum of such expectations concludes the proof.

Remark 4. As a consequence of Lemma 2, we have

Fn D
X
k	0

1

.2k C 1/Š

nX
i1;��� ;i2kC1D1

ai1;��� ;i2kC1
I2kC1

�
'i1 ˝ � � � ˝ 'i2kC1

�
: (24)

This implies that in order to compute the coefficients ai1;���ik , it suffices to focus on
the case where k is odd.

Based on that last remark, we state the following lemma.

Lemma 3. Let k 
 0 be a positive integer and let dr; 1 � r � n denote the number
of times the integer r appears in the sequence fi1; i2; � � � ; i2kC1g with

Pn
rD1 dr D

2k C 1. Then, if there is more than one odd integer in the sequence dr ; 1 � r � n,
for each 1 � i � n,

E
�
1

Vn
W.'i/Hd1 .W.'1//Hd2 .W.'2// � � � Hdn .W.'n//


D 0:

Proof. Note that the equality
Pn

rD1 dr D 2k C 1 implies that there can only be an
odd number of odd integers in the sequence dr , otherwise the sum

Pn
rD1 dr could

not be odd. Therefore, more than one odd integer in the sequence dr means that there
are at least three of them. We will prove the lemma for this particular case of three
odd integers in the sequence dr for the sake of readability of the proof, as the other
cases follow with the exact same arguments. Hence, assume that there are three odd
integers dj , dk and dl in the sequence dr ; 1 � r � n. We will first consider the case
where i is different than j; k; l . Then,
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E
�
1

Vn
W.'i/Hd1 .W.'1//Hd2 .W.'2// � � � Hdn .W.'n//



D 1

.2n/
n
2

Z
Rn

xiHd1 .x1/ � � � Hdn .xn/q
x21 C � � � C x2n

e� 1
2 .x

2
1C���Cx2n/dx1 � � � dxn

D 1

.2n/
n
2

Z
Rn�1

xiHd1 .x1/ � � � Hdj�1

�
xj�1

�
HdjC1

�
xjC1

� � � � Hdn .xn/

�

0
B@
Z
R

Hdj

�
xj
�

q
x21 C � � � C x2n

e� x2j
2 dxj

1
CA exp

2
664�1

2

nX
pD1
p¤j

x2p

3
775 dx1 � � � dxj�1dxjC1 � � � dxn;

dj being odd, Hdj is an odd function of xj and xj 7! Hdj .xj /p
x21C���Cx2n

e� x2j
2 is also an

odd function of xj . Thus,
R
R

Hdj .xj /p
x21C���Cx2n

e� x2j
2 dxj D 0 and finally

E
�
1

Vn
W.'i/Hd1 .W.'1//Hd2 .W.'2// � � � Hdn .W.'n//


D 0:

The other cases one could encounter is when i D j or i D k or i D l and the proof
follows based on the exact same argument.

In the following lemma, we compute the L2 norm of Fn. This technical result is
needed in the computation of the Berry–Esséen bound.

Lemma 4. Let ai1;��� ;i2kC1
be as given in (24). Then, for every n 2 N, we have

kFnk2L2.˝/ D
X
k	0

1

.2k C 1/Š

nX
i1;��� ;i2kC1D1

a2i1;��� ;i2kC1
D 1:

Proof. Firstly, using the isometry of multiple stochastic integrals and the orthogo-
nality of the kernels 'i , one can write

E
�
F 2
n

� D
X
k	0

�
1

.2k C 1/Š

�2
.2k C 1/Š

nX
i1;��� ;i2kC1D1
j1;��� ;j2kC1D1

ai1;��� ;i2kC1
aj1;��� ;j2kC1

�
D
'i1 ˝ � � � ˝ 'i2kC1

; 'j1 ˝ � � � ˝ 'j2kC1

E
L2.Œ0;1�2k /

D
X
k	0

1

.2k C 1/Š

nX
i1;��� ;i2kC1D1

a2i1;��� ;i2kC1
:
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Secondly, using the fact that F 2
n D W 2

n

V 2n
, we have

E
�
F 2
n

� D 1

.2�/
n
2

Z
Rn

.x1 C � � � C xn/
2

x21 C � � � C x2n
e� 1

2 .x
2
1C���Cx2n/dx1 � � � dxn

D 1

.2�/
n
2

Z
Rn

x21 C � � � C x2n

x21 C � � � C x2n
e� 1

2 .x
2
1C���Cx2n/dx1 � � � dxn D 1

because the mixed terms vanish as in the proof of Lemma 2.

The following lemma is the second key result for the computation of the
coefficients.

Lemma 5. Let fa1; a2; � � �ang be non-negative numbers. Then it holds that

E


W.'1/

2a1W.'2/
2a2 ���W.'n/2an

Vn

�

D 1

.2�/
n
2
2a1C���CanC n�1

2
� .a1C���CanC n�1

2 /
� .a1C���CanC n

2 /
�
�
a1 C 1

2

� � � �� �an C 1
2

�
:

Proof. Recall that if X is a Chi-squared random variable with n degrees of freedom
(denoted by �2n) then for anym 
 0,

E .Xm/ D 2m
� .mC n

2
/

� .n
2
/

:

where � .�/ denotes the standard Gamma function.
When k D 0, the coefficients ai1;��� ;i2kC1

can be easily computed. Indeed, noticing
that V 2

n has a �2n distribution, we obtain

nX
iD1

ai D E

 
nX
iD1

1

Vn
W.'i/

2

!
D E



.V 2
n /

1
2

�
D 2

1
2
� . 1

2
C n

2
/

� .n
2
/

:

Since a1 D a2 D � � � D an we obtain that for every i D 1; ::; n

ai D 2
1
2

n

� . 1
2

C n
2
/

� .n
2
/

:

By definition, we have
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E
�
W.'1/

2a1W.'2/
2a2 � � �W.'n/2an
Vn

�

D 1

.2�/
n
2

Z
Rn

x
2a1
1 x

2a2
2 � � �x2annq

x21 C x22 C � � � C x2n

e� 1
2 .x

2
1Cx22C���Cx2n/dx1dx2 � � � dxn

D 1

.2�/
n
2

I:

To compute the above integral I , we introduce n-dimensional polar coordinates. Set

x1 D r cos 	1

xj D r cos 	j

j�1Y
iD1

sin 	i ; j D 2; � � � ; n � 2

xn�1 D r sin 
n�2Y
iD1

sin 	i ; xn D r cos 
n�2Y
iD1

sin 	i

with 0 � r < 1, 0 � 	i � � and 0 �  � 2� . It can be easily verified that
x21 C x22 C � � � C x2n D r2. The Jacobian of the above transformation is given by

J D rn�1
n�2Y
kD1

sink 	n�1�k :

Therefore our integral denoted by I becomes

Z 1

0

r2.a1C���Can/Cn�2e� r2

2 dr

Z 2�

0

.sin /2an�1C2an .cos /2and 

n�1Y
kD2

Z �

0

.sin 	n�k/2anC2an�1C���C2an�kC1Ck�1.cos 	n�k/2an�k d	n�k:

Let us compute the first integral with respect to dr . Using the change of variables
r2

2
D y, we get

Z 1

0

r2.a1C���Can/Cn�2e� r2

2 dr D 2a1C���CanC n�1
2 �1

Z 1

0

dyya1C���CanC n�1
2 �1e�y

D 2a1C���CanC n�1
2 �1�

�
a1 C � � � C an C n� 1

2

�
:

Let us now compute the integral with respect to d . We use the following formula:
for every a; b 2 Z, it holds that



346 S. Bourguin and C.A. Tudor

Z 2�

0

.sin 	/a.cos 	/bd	 D 2ˇ
�
aC1
2
; bC1

2

�
if a and b are even

D 0; if a or b are odd.

This implies that

Z 2�

0

.sin /2an�1C2an .cos /2and D 2ˇ

�
an C 1

2
; an�1 C 1

2

�
:

Finally, we deal with the integral with respect to d	i for i D 1 to n � 2. Using the
fact that, for a; b > �1, it holds that

Z �
2

0

.sin 	/a.cos 	/bd	 D 1

2
ˇ

�
aC 1

2
;
b C 1

2

�

yields

Z �

0

.sin 	n�k/2anC2an�1C���C2an�kC1Ck�1.cos 	n�k/2an�k d	n�k

D
Z �

2

0

.sin 	n�k/2anC2an�1C���C2an�kC1Ck�1.cos 	n�k/2an�k d	n�k

C
Z �

�
2

.sin 	n�k/2anC2an�1C���C2an�kC1Ck�1.cos 	n�k/2an�k d	n�k

D 1

2
ˇ

�
an C � � � C an�kC1 C k

2
; an�k C 1

2

�

C
Z �

2

0

.sin.	n�k C �

2
//2anC2an�1C���C2an�kC1Ck�1.cos.	n�k C �

2
//2an�k d	n�k

D ˇ

�
an C � � � C an�kC1 C k

2
; an�k C 1

2

�

because sin.	 C �
2
/ D cos 	 and cos.	 C �

2
/ D � sin.	/. By gathering the above

calculations, the integral I becomes

I D 2a1C���CanC n�1
2 �

�
a1 C � � � C an C n � 1

2

�
ˇ

�
an C 1

2
; an�1 C 1

2

�

�
n�1Y
kD2

ˇ

�
an C � � � C an�kC1 C k

2
; an�k C 1

2

�

D 2a1C���CanC n�1
2 �

�
a1 C � � � C an C n � 1

2

�
�
�
an C 1

2

�
�
�
an�1 C 1

2

�
� .an C an�1 C 1/
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�
n�1Y
kD2

�
�
an C � � � C an�kC1 C k

2

�
�
�
an�k C 1

2

�
�
�
an C an�1 C � � � C an�k C kC1

2

�

D 2a1C���CanC n�1
2
�
�
a1 C � � � C an C n�1

2

�
�
�
a1 C � � � C an C n

2

� �
�
a1 C 1

2

�
� � ��

�
an C 1

2

�
:

This concludes the proof.

The following lemma gives an expression of the bound appearing in the right
hand side of (1) in terms of the coefficients of the chaos decomposition of the
self-normalized sequence.

Lemma 6. For every n 
 2,

E
�
1 � hDFn;D.�L/�1Fni

�2

D
X
m	1

.2m/Š

nX
i1;��� ;i2mD1

0
@ 2mX
kD0

1

kŠ

1

.2m � k/Š

X
r	0

1

rŠ

1

2m � k C r C 1

nX
u1;��� ;urC1D1

au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;ikC1;��� ;i2m

!2
:

Proof. Formula (24) yields

D˛Fn D
X
k	0

2k C 1

.2k C 1/Š

nX
i1;��� ;i2kC1D1

ai1;��� ;i2kC1
I2k

�
.'i1 ˝ � � � ˝ 'i2kD1

/�
�
.�; ˛/

(25)

(here .'i1 ˝� � �˝'i2kD1
/� denotes the symmetrization of the function 'i1 ˝� � �˝'ik

with respect to its k variables) and

D˛.�L/�1Fn D
X
k

1

.2k C 1/Š

nX
i1;��� ;i2kC1D1

ai1;��� ;i2kC1
I2k

�
.'i1 ˝ � � � ˝ 'i2kC1

/�
�
.�; ˛/:

(26)

Using (25) and (26), we can calculate the following quantity.

hDFn;D.�L/�1Fni

D X
k;l�0

1

.2k/Š

1

.2l C 1/Š

nX
i1;��� ;i2kC1D1

ai1;��� ;i2kC1

nX
j1;��� ;j2lC1D1

aj1;��� ;j2lC1

�
Z 1

0

d˛I2k
�
.'i1 ˝ � � � ˝ 'i2kC1

/�
�
.�; ˛/I2l

�
.'j1 ˝ � � � ˝ 'j2lC1

/�
�
.�; ˛/
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D X
k;l�0

1

.2k/Š

1

.2l C 1/Š

nX
uD1

nX
i1;��� ;i2kD1

au;i1;��� ;i2k

nX
j1;��� ;j2lD1

au;j1;��� ;j2l

�I2k
�
.'i1 ˝ � � � ˝ 'i2k /

�
I2l
�
.'j1 ˝ � � � ˝ 'j2j /

�
:

The product formula (4) applied to the last equality yields

nX
i1;��� ;i2kD1

au;i1;��� ;i2k

nX
j1;��� ;j2lD1

au;j1;��� ;j2l I2k
�
.'i1 ˝ � � � ˝ 'i2k /

�
I2l
�
.'j1 ˝ � � � ˝ 'j2j /

�

D
.2k/^.2l/X
rD0

rŠC r
2kC

r
2l

�
nX

u1;��� ;urD1

nX
i1;��� ;i2k�rD1

nX
j1;��� ;j2l�rD1

au;u1;��� ;ur ;i1;��� ;i2k�r au;u1;��� ;ur ;j1;��� ;j2l�r

�I2kC2l�2r

�
'i1 ˝ � � � ˝ 'i2k�r ˝ 'j1 ˝ � � � ˝ 'j2l�r

�

and therefore we obtain

hDFn;D.�L/�1Fni

D
X
k;l	0

1

.2k/Š

1

.2l C 1/Š

.2k/^.2l/X
rD0

rŠC r
2kC

r
2l

�
nX

u1;��� ;urC1D1

nX
i1;��� ;i2k�rD1

nX
j1;��� ;j2l�rD1

au1;u2;��� ;urC1;i1;��� ;i2k�r
au1;u2;��� ;urC1;j1;��� ;j2l�r

�I2kC2l�2r
�
'i1 ˝ � � � ˝ 'i2k�r

˝ 'j1 ˝ � � � ˝ 'j2l�r
�
: (27)

Remark 5. The chaos of order zero in the above expression is obtained for k D l

and r D 2k. It is therefore equal to

X
k	0

1

.2k/Š

1

.2k C 1/Š
.2k/Š

nX
i1;��� ;i2kC1D1

a2i1;��� ;i2kC1

which is also equal to 1 as follows from Lemma 4. Therefore it will vanish when
we consider the difference 1 � hDFn;D.�L/�1Fni. This difference will have only
chaoses of even orders.

By changing the order of summation and by using the changes of indices
2k � r D k0 and 2l � r D l 0, we can write
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hDFn;D.�L/�1Fni

D
X
r	0

rŠ
X
2k	r

X
2l	r

1

.2k/Š

1

.2l C 1/Š
C r
2kC

r
2l

�
nX

u1;��� ;urC1D1

nX
i1;��� ;i2k�rD1

nX
j1;��� ;j2l�rD1

au1;u2;��� ;urC1;i1;��� ;i2k�r
au1;u2;��� ;urC1;j1;��� ;j2l�r

�I2kC2l�2r
�
'i1 ˝ � � � ˝ 'i2k�r

˝ 'j1 ˝ � � � ˝ 'j2l�r
�

D
X
r	0

X
k;l	0

1

.k C r/Š

1

.l C r C 1/Š
C r
kCrC r

lCr

�
nX

u1;��� ;urC1D1

nX
i1;��� ;ikD1

nX
j1;��� ;jlD1

au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;j1;��� ;jl

�I2kC2l�2r
�
'i1 ˝ � � � ˝ 'ik ˝ 'j1 ˝ � � � ˝ 'jl

�

D
X
k;l	0

X
r	0

rŠ
1

.k C r/Š

1

.l C r C 1/Š
C r
kCrC r

lCr

�
nX

u1;��� ;urC1D1

nX
i1;��� ;ikD1

nX
j1;��� ;jlD1

au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;j1;��� ;jl

�IkCl
�
'i1 ˝ � � � ˝ 'ik ˝ 'j1 ˝ � � � ˝ 'jl

�
:

Once again using a change of indices (k C l D m), we obtain

hDFn;D.�L/�1Fni

D
X
m	0

mX
kD0

X
r	0

rŠ
1

.k C r/Š

1

.m � k C r C 1/Š
C rkCrC rm�kCr

�
nX

u1;��� ;urC1D1

nX
i1;��� ;ikD1

nX
j1;��� ;jm�kD1

au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;j1;��� ;jm�k

�Im
�
'i1 ˝ � � � ˝ 'ik ˝ 'j1 ˝ � � � ˝ 'jm�k

�

D
X
m	0

mX
kD0

1

kŠ

1

.m � k/Š
X
r	0

1

rŠ

1

m � k C r C 1

nX
u1;��� ;urC1D1

nX
i1;��� ;imD1

�au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;ikC1;��� ;imIm
�
'i1 ˝ � � � ˝ 'ik ˝ 'ikC1

˝ � � � ˝ 'im
�
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where at the end we renamed the indices j1; � � � ; jm�k as ikC1; � � � ; im. We obtain

hDFn;D.�L/�1Fni D
X
m	0

Im.h
.n/
m /

where

h.n/m D
mX
kD0

1

kŠ

1

.m� k/Š

X
r	0

1

rŠ

1

m� k C r C 1

nX
u1;��� ;urC1D1

nX
i1;��� ;imD1

au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;ikC1;��� ;im'i1 ˝ � � � ˝ 'ik ˝ 'ikC1
˝ � � � ˝ 'im

(28)

Let us make some comments about this result before going any further. These
remarks will simplify the expression that we have just obtained. As follows from
Lemma 1, the coefficients ai1;��� ;ik are zero if k is even. Therefore, the numbers
rC1Ck and rC1Cm�k must be odd. This implies thatmmust be even and this
is coherent with our previous observation (see Remark 5) that the chaos expansion
of hDFn;D.�L/�1Fni only contains chaoses of even orders. The second comment
concerns the chaos of order zero. Ifm D 0 then k D 0 and we obtain

h
.n/
0 D

X
r	0

nX
u1;��� ;urC1D1

1

rŠ

1

r C 1
a2u1;��� ;urC1

D
X
r	1

1

rŠ

nX
u1;��� ;urD1

a2u1;��� ;ur :

Thus, because the summand
P

r	1 1
rŠ

Pn
u1;��� ;urD1 a

2
u1;��� ;ur � 1 is zero by using

Lemma 4,

hDFn;D.�L/�1Fni � 1 D
0
@X
r	1

1

rŠ

nX
u1;��� ;urD1

a2u1;��� ;ur � 1

1
AC

X
m	1

I2m.h
.n/
2m/

D
X
m	1

I2m.h
.n/
2m/

with h.n/2m given by (28).
Using the isometry formula of multiple integrals in order to compute theL2 norm

of the above expression and noticing that the function h.n/2m is symmetric, we find that

E
�


hDFn;D.�L/�1Fni � 1
�2� D

X
m	1

.2m/Šhh.n/2m; h.n/2miL2.Œ0;1�2m/

D
X
m	1

.2m/Š

2mX
k;lD0

1

kŠ

1

lŠ

1

.2m � k/Š
1

.2m � l/Š

X
r;q	0

1

rŠ

1

qŠ

1

2m � k C r C 1

1

2m � l C q C 1
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�
nX

u1;��� ;urC1D1

nX
v1;��� ;vqC1D1

nX
i1;��� ;i2mD1

�au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;ikC1;��� ;i2mav1;v2;��� ;vqC1;i1;��� ;ik av1;v2;��� ;vqC1;ikC1;��� ;i2m

D
X
m	1

.2m/Š

nX
i1;��� ;i2mD1

0
@ 2mX
kD0

1

kŠ

1

.2m � k/Š

X
r	0

1

rŠ

1

2m� k C r C 1

nX
u1;��� ;urC1D1

au1;u2;��� ;urC1;i1;��� ;ik au1;u2;��� ;urC1;ikC1;��� ;i2m
�2
;

which is the desired result.
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A Note on Stochastic Calculus in Vector
Bundles	

Pedro J. Catuogno, Diego S. Ledesma, and Paulo R. Ruffino

Abstract The aim of these notes is to relate covariant stochastic integration in a
vector bundleE [as in Norris (Séminaire de Probabilités, XXVI, vol. 1526, Springer,
Berlin, 1992, pp. 189–209)] with the usual Stratonovich calculus via the connector
Kr W TE ! E [cf. e.g. Paterson (Canad. J. Math. 27(4):766–791, 1975) or Poor
(Differential Geometric Structures, McGraw-Hill, New York, 1981)] which carries
the connection dependence.
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Stochastic calculus on vector bundles has been studied by several authors, among
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according to a given connection in E . The aim of these notes is to relate covariant
stochastic integral in vector bundles (Norris [6]) with the usual Stratonovich
calculus using an appropriate operator, the connector Kr (cf. e.g. Paterson [7] and
Poor [8]), from the tangent space TE toE which carries the connection dependence.

We denote by M a smooth differentiable manifold. Let E be an n-dimensional
vector bundle over M endowed with a connection r. This connection induces a
natural projection Kr W TE ! E called the associated connector (cf. Paterson [7]
and Poor [8]) which projects into the vertical subspace of TE identified with E .
More precisely: Given a differentiable curve vt 2 E , decompose vt D utft , where
ut is the unique horizontal lift of �.vt / in the principal bundle Gl.E/ of frames in
E starting at a certain u0 with �.u0/ D �.v0/ and ft 2 Rn. Then

Kr.v0
0/ WD u0f

0
0 :

Norris [6] defines the covariant Stratonovich integration of a section 	 in the dual
vector bundle E� along a process vt 2 E by:

Z
	Dvt WD

Z
	utı df t ;

where vt D utft ; and the corresponding covariant Itô version:

Z
	DIvt WD

Z
	ut df t :

2 Main Results

Initially, observe that using the connector Kr , the covariant integral above reduces
to a classical Stratonovich integral of 1-forms:

Proposition 1. Let vt be a semimartingale in E and 	 2 � .E�/. Then

Z
	 Dvt D

Z
	 Kr ı dvt :

Proof. Let � W Gl.E/ � Rn ! E be the action map �.u; f / D uf . The right hand
side in the equation above is

Z
	 Kr ı d�.ut ; ft / D R

��
ut 	Kr ı df t C R

��
ft
	 Kr ı dut : (1)

The second term on the right hand side vanishes since ��
ft
	 Kr D 0. The formula

holds because ��
utKr .z/ D utz for all z 2 Rn. ut
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Remark 1. In the special case ofED TM, one can compare the classical integration
of 1-forms with the covariant integration: Let Yt be a semimartingale in M and vt
be a semimartingale in E . If vt D utft such that ut is a horizontal lift of Yt and ft
is the antidevelopment of Yt , then for any 1-form 	 , the classical integration in M
and the covariant integration in E coincide:

Z
	 ı dY t D

Z
	Kr ı dvt :

Local Coordinates

Let fı1; : : : ıng be local sections inE which is a basis in a coordinate neighbourhood
.U; ' D .x1; : : : ; xd //, where d is the dimension of M . For 1 � ˛; ˇ � n and
1 � i � d , we write

r @

@xi
ı˛ D �

ˇ
i˛ıˇ;

then

Kr
�
@ı˛

@xi

�
D �

ˇ
i˛ıˇ:

Let �t be a differentiable curve in M and ut be a horizontal lift of �t in Gl.E/, we
write uˇt D ut .eˇ/ D uˇ˛t ı˛.�t /. Naturally

r� 0
t
uˇt D 0;

and the parallel transport equation is given by

du˛ˇt
dt

C d�j

dt
u˛�t �

ˇ
j� .�t / D 0:

For 	 2 � .E�/, write 	 D 	˛ı�̨, where 	˛ D 	.ı˛/. We have, for each 1 � ˛ � n



r @

@xj
	
�
ı˛ D @	˛

@xj
� 	.r @

@xj
ı˛/ D @	˛

@xj
� �

ˇ
j˛	

ˇ:

That is,

r	 D .
@	˛

@xj
� �

ˇ
j˛	

ˇ/ dxj ˝ ı�̨:
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Cross Quadratic Variation in Sections of TM� ˝ E�

In order to find a covariant conversion formula for Itô–Stratonovich integrals we
introduce stochastic integration formulae for sections of TM� ˝ E�, which is the
space where the covariant derivative r	 lives. Let vt be a semimartingale in E .
Denoting xt D �.vt /, we have the following identities:

1. For ˛ 2 � .TM�/ and 	 2 � .E�/,
Z
˛ ˝ 	 .dxt ;Dvt / D

�Z
˛ ı d�.vt /;

Z
	Dvt

�
:

2. For b 2 � .TM� ˝ E�/ and f 2 C1.M/,

Z
f b .dxt ;Dvt / D

Z
f .�.vt // ı d

Z
b .dxt ;Dvt /:

This is well defined (similarly to Emery [5, p. 23]). In particular, for b D r	 , in
local coordinates:

Z
r	 .dxt ;Dvt / D

Z
.
@	˛

@xj
� �

ˇ
j˛	

ˇ/ ı d
Z

dxj ˝ ı�̨ .dxt ;Dvt /

D
Z
.
@	˛

@xj
� �

ˇ
j˛	

ˇ/.xt / ı d < xjt ;
Z

u�˛df � >t

D
Z
.
@	˛

@xj
� �

ˇ
j˛	

ˇ/.xt /u
�˛
t ı d < xj ; f � >t :

We write in the language of stochastic integration on manifolds the Itô–Stratonovich
covariant conversion formula (26) of J. R. Norris [6].

Proposition 2. Let vt be a semimartingale in E and 	 2 � .E�/. Then

Z
	 Dvt D

Z
	DIvt C 1

2

Z
r	 .dxt ;Dvt /: (2)

Proof. In local coordinates we have that

Z
	 Dvt D

Z
	xt .ut e˛/ ı df ˛t D

Z
	xt .ut e˛/ df ˛t C 1

2
< 	.ue˛/; f

˛ > :

We have to show that
Z

r	 .dxt ;Dvt / D< 	.ue˛/; f ˛ > :
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But

< 	.ue˛/; f
˛ > D < 	ˇx ı

�̌.ue˛/; f
˛ >

D < 	ˇx .ue˛/
ˇ; f ˛ >

D
Z
.ue˛/

ˇ d < 	ˇx ; f
˛ > C

Z
	ˇx d < .ue˛/

ˇ; f ˛ >

D
Z

u˛ˇ d < 	ˇx ; f
˛ > C

Z
	ˇx d < u˛ˇ; f ˛ >

D
Z

u˛ˇ
@	ˇ

@xj
d < xj ; f ˛ > C

Z
	ˇx d < u˛ˇ; f ˛ >

D
Z

u˛ˇ
@	ˇ

@xj
d < xj ; f ˛ > �

Z
	ˇx u˛�� ˇ

j�.x/ < x
j ; f ˛ >

D
Z �

u˛ˇ
@	ˇ

@xj
� 	ˇx u˛�� ˇ

j� .x/

�
< xj ; f ˛ >

D
Z �

u˛�
@	�

@xj
� 	ˇx u˛�� ˇ

j�.x/

�
< xj ; f ˛ >

D
Z �

@	�

@xj
� 	ˇx �

ˇ
j�.x/

�
u˛� < xj ; f ˛ >

D
Z

r	 .dxt ;Dvt /: ut

Itô Representation

The vertical lift of an element w 2 E to the tangent space TeE , with e and w in the
same fiber is given by

wv D d

dt
Œe C tw�tD0 2 TeE: (3)

Let r; s be sections of E and X; Y be vector fields of M . We shall consider a
connection rh in E , a prolongation of r, which satisfies the following:

rh
rv s

v D 0; rh
Xh
sv D .rXs/

v;

rh
rvY

h D 0; rXhY
h is horizontal.
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Remark 2. An example of this connections is the horizontal connection defined by
Arnaudon and Thalmaier [1], where, considering a connection Qr in M , the extra
condition rh

Xh
Y h D . QrXY /

h characterizes this connection.

Next proposition shows a geometrical characterization of the covariant
Itô integral.

Proposition 3. Let vt be a semimartingale in E and 	 2 � .E�/. Then

Z
	 DI vt D

Z
	 Kr drh

vt ;

where drh
is the Itô differential with respect to rh.

Proof. We have to calculate each component of rh	 Kr . Using that forA;B vector
fields in E we have that

rh
A	 Kr.B/ D A.	 Kr.B// � 	 Kr.rh

AB/;

we obtain the components

rh
rv 	 Kr.sv/ D 0; rh

rv 	 Kr.Y h/ D 0;

rh
Xh
	 Kr.sv/ D rX	.s/ ı �; rh

Xh
	 Kr.Y h/ D 0:

Hence, using Itô–Stratonovich conversion formula for classical 1-form integration,
see e.g. Catuogno and Stelmastchuk [2]:

Z
	 Dvt D

Z
	 Kr ı dvt

D
Z
	 Kr drh

vt C 1

2

Z
rh	 Kr.dvt ; dvt /:

For the correction term, we have that:

rh	 Kr D r	 .�� � Kr/;

in the sense that rh
��A

	Kr.B/ D r	 .�� � Kr/.A;B/. But

Z
rh	 Kr.dvt ; dvt / D

Z
r	.dxt ;Dvt /:

Combining with Eq. (2), we have that

Z
	 DIvt D

Z
	 Kr drh

vt : ut
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Vector Bundle Mappings

Consider two vector bundles � WE!M , � 0 WE 0 !M 0 and a differentiable fibre
preserving mapping F W E ! E 0 over a differentiable map QF WM !M 0, i.e. � 0 ı
FD QF ı � .

Let Kr and K 0r be connectors inE and inE 0 respectively. We define the vertical
derivative (or derivative in the fibre) of F in the direction of w by:

DvF.e/.w/ D K 0rF�.wv/;

where the vertical component wv is given by Eq. (3). ForZ 2 T�.e/M , the horizontal
(or parallel) derivative is:

DhF.e/.Z/ D K 0rF�.Zh/:

For a vector field X in E , we have that

X D .��X/h C Kr.X/;

hence

K 0rF�.X/ D DvF.Kr.X//CDhF.��.X//: (4)

The Itô formula for the Stratonovich covariant integration includes an usual 1-
form integration, compare with Norris [6, Eq. (20)]:

Proposition 4. Given a fibre preserving map F as above,

Z
	DF.vt / D

Z
.DvF /�	Dvt C

Z
.DhF /�	 ı d.�vt /: (5)

Proof. We just have to use the decomposition of Eq. (4).

Z
	DF.vt / D

Z
	K 0rF� ı dvt

D
Z �

	DvFKr C 	DhF��
� ı dvt

D
Z
.DvF /�	Dvt C

Z
.DhF /�	 ı d.�vt /: ut

Proposition 5. For a section b0 in .TM0/� ˝ .E 0/� and a fibre preserving map
F W E ! E 0 over QF W M ! M 0 we have that
Z
b0.d� 0F.vt /;DF.vt //D

Z
. QF� ˝DvF /�b0.d�vt ;Dvt /C

Z
. QF� ˝DhF /�b0.d�vt ; d�vt /:
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Proof. We have

Z
b0.d� 0F.vt /;DF.vt // D

Z
b0 .� 0� ˝ K 0r/.dF.vt /; dF.vt //

D
Z
b0 .� 0� ˝ K 0r/ .F� ˝ F�/.dvt ; dvt /:

Using that

.� 0� ˝ K 0r/ .F� ˝ F�/ D QF� �� ˝ .DvFKr CDhF��/

yields

Z
b0.d� 0F.vt /;DF.vt //D

Z
. QF� ˝DhF /�b0.d�vt ;Dvt /C

Z
. QF� ˝DhF /�b0.d�vt ; d�vt /:

ut
Itô version of Formula (5) is given by:

Proposition 6. Given a fibre preserving map F as above,

Z
	DIF.vt / D

Z
.DvF /�	DIvt C

Z
.DhF /�	 ı d�vt C

1

2

Z �r.DvF �	/ � . QF� ˝DV F /�r 0	
�
. d�vt ;Dvt /C

1

2

Z � QF� ˝DhF
�� r 0	.d�vt ; d�vt /:

Proof. By Proposition 2 we have that

Z
	DIF.vt / D

Z
	DF.vt /� 1

2

Z
r 0	.d� 0F.vt /;DF.vt //

and
Z
.DvF /�	Dvt D

Z
.DvF /�	DIvt C 1

2
r.DvF /�.d�vt ;Dvt /:

But, Proposition 4 says that:

Z
	DF.vt / D

Z
.DvF /�	Dvt C

Z
.DhF /�	 ı d.�vt /:
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Finally, by Proposition 5, we have that

Z
r 0	.d� 0F.vt /;DF.vt // D

Z
. QF� ˝DvF /�r 0	.d�vt ;Dvt /C

Z
. QF� ˝DhF /�r 0	.d�vt ; d�vt /;

which implies the formula. ut

3 Applications

Commutation Formulae

Given a differentiable map .a; b/2 R2 7!E , let sE W TTE ! TTE be the symmetry
map given by sE.@a@bs.a; b// D @b@as.a; b/. Let C D K K� � K K� sE W
TTE ! E be the curvature of K . If u; v 2 TM and s 2 � .E/ then the relation
between the curvature of K with the curvature of the connection r is given by
RE.u; v/s D C.uvs/, see Paterson [7].

Let I � R be an open interval and consider a2 I 7! J.a/ a differentiable 1-
parameter family of semimartingales in E . Then

Z
	 DraJ D

Z
	Kr ı d.raJ /

D
Z
	 Kr ı dKr@aJ

D
Z
	Kr Kr� ı d@aJ

D
Z
	 Kr Kr� ı d@aJ �

Z
	Kr Kr� sE ı d@aJ

C
Z
	 Kr Kr� sE ı d@aJ

D
Z
C ı d@aJ C

Z
	 raDJ:
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Where we have used that
Z
	 Kr Kr� sE ı d@aJ D

Z
	 Kr Kr� @a ı dJ

D
Z
	Kr @aDJ

D
Z
	 raDJ:

Compare with Arnaudon and Thalmaier [1, Eq.(4.13)]. An Itô version, as in [1] can
be obtained by conversion formulae.

Harmonic Sections

Let M be a Riemannian manifold and � WV !M be a Riemannian vector bundle
with a connection r which is compatible with its metric. We denote by Ep the vec-
tor bundle

Vp
T �M˝V overM . In this context, we shall consider three differential

geometric operators. The exterior differential operator d W � .Ep/ ! � .EpC1/ is
defined by

d�.X1; : : : ; XpC1/ WD .�1/k.rXk�/.X0; : : : ;
OXk; : : : ; Xp/:

The co-differential operator ı W � .Ep/ ! � .Ep�1/ is defined by

ı�.X1; : : : ; Xp�1/ WD �.rek �/.ek; X1; : : : ; Xp�1/;

where feig is a local orthonormal frame field. And the Hodge–Laplace operator
� W � .Ep/ ! � .Ep/ is given by

� D .dı C ıd/:

One of the cornerstones of modern geometric analysis is the Weitzenböck formula
which states that

�� D �r2� C ˚.�/;

for a ˚ 2 End.Ep/, see e.g. Eells and Lemaire [4, p.11] or Xin [9, p.21].
Let Bt be a Brownian motion in M and et 2 End.Ep/ be the solution of

DIet D et ı ˚.Bt / dt:
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Theorem 1. A section � 2 � .Ep/ is harmonic (i.e. �� D 0) if and only if for any
	 2 � .Ep�/

Z
	 DI�t

is a local martingale, where �t D et�.Bt /.

The result now is consequence of Weitzenböck formula and the following

Lemma 1. Consider � 2 � .Ep/, 	 2 � .Ep�/ and a semimartingale xt in M .
Given V 2 End.Ep/, let et 2 End.Ep/ be the solution of

DIet D et ı V.xt / g.dxt ; dxt /:

Write �t D et�.xt /. Then

Z
	DI�t D

Z
.	 ı r�/ drM

xt C
Z
.	 ı et /

�
1

2
r2 C V.�.xt //g

�
� .dxt ; dxt /:

Proof. By covariant Itô–Stratonovich conversion formula, Eq. (2), we have that

Z
	DI�t D

Z
	 DIet .�.xt //C

Z
.	 ı et / DI .�.xt //

D
Z
.	 ı et / V .�.xt // g.dxt ; dxt /C

Z
.	 ı et / DS.�.xt //

C 1

2

Z
r.	 ı et / .dxt ; D�.xt //: (6)

Now, by usual Itô–Stratonovich conversion formula:

Z
.	 ı et / DS.�.xt // D

Z
.	 ı et /Kr �� dxt

D
Z
.	 ı et /r� drM

xt

� 1

2

Z
rM .	 ı et ı r�/.dxt ; dxt /: (7)

We have that
Z

r.	 ı et / .dxt ; D�.xt // D
Z

r.	 ı et / ı .I ˝ r�/ .dxt ; dxt / (8)
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substituing (7) and (8) in (6) one finds:

Z
	DI�t D

Z
.	 ı et / V .�.xt // g.dxt ; dxt /C

Z
.	 ı et /r� drM

xt

�1
2

Z
rM.	 ı et ı r�/.dxt ; dxt /

C1

2

Z
r.	 ı et / ı .I ˝ r�/ .dxt ; dxt /:

The result follows using that for all 	 2 � .E�/,

r	 ı .I ˝ r�/ � rM.	 ı r�/ D 	.r2�/: ut
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Functional Co-monotony of Processes
with Applications to Peacocks and Barrier
Options

Gilles Pagès

Abstract We show that several general classes of stochastic processes satisfy
a functional co-monotony principle, including processes with independent incre-
ments, Brownian bridge, Brownian diffusions, Liouville processes, fractional Brow-
nian motion. As a first application, we recover and extend some recent results
about peacock processes obtained by Hirsch et al. in (Peacocks and Associated
Martingales, with Explicit Constructions, Bocconi & Springer, 2011, 430p) [see
also (Peacocks sous l’hypothèse de monotonie conditionnelle et caractérisation des
2-martingales en termes de peacoks, thèse de l’Université de Lorraine, 2012, 169p)]
which were themselves motivated by a former work of Carr et al. in (Finance Res.
Lett. 5:162–171, 2008) about the sensitivities of Asian options with respect to their
volatility and residual maturity (seniority). We also derive semi-universal bounds
for various barrier options.

Keywords Antithetic simulation method • Asian options • Barrier options •
Co-monotony • Fractional Brownian motion • Liouville processes • Processes
with independent increments • Sensitivity

1 Introduction

The aim of this paper is to show that the classical co-monotony principle for real-
valued random variables also holds for large classes of stochastic processes like
Brownian diffusion processes, processes with independent increments, Liouville
processes, fractional Brownian motion(s), etc, if one considers the natural partial
order on the space of real-valued functions defined on an interval. We also provide
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several examples of application, with a special emphasis on peacocks (English
quasi-acronym for “processus croissants pour l’ordre convexe”) inspired by recent
works by Hirsch et al. in [9], which find themselves their original motivation in [4]
by Carr et al. about the sensitivities of Asian options in a Black–Scholes model.
We also derive (semi-)universal upper or lower bounds for various barrier options
when the dynamics of the underlying asset price satisfies an appropriate functional
co-monotony principle.

The starting point of what can be called co-monotony principle finds its origin
in the following classical proposition dealing with one-dimensional real-valued
random variables.

Proposition 1 (One dimensional co-monotony principle). Let X W .˝;A ;P/ !
R be a random variable and let f; g W R ! R be two monotone functions sharing
the same monotony property.

.a/ If f .X/, g.X/, f .X/g.X/ 2 L1.P/, then Cov.f .X/; g.X// 
 0 i:e:

Ef .X/g.X/ 
 Ef .X/Eg.X/:

Furthermore, the inequality holds as an equality if and only if f .X/ or g.X/ is
P-a:s: constant.
If f and g are monotone with opposite monotony then the reverse inequality
holds.

.b/ If f and g have the same constant sign, then integrability is no longer
requested. As a consequence, if f and g have opposite monotony, then

kf .X/g.X/k1 D Ef .X/g.X/ � Ef .X/Eg.X/ D kf .X/k1kg.X/k1:

These inequalities are straightforward consequences of Fubini’s Theorem applied
on .R�R;Bor.R/˝2;P˝2

X / to the function .x; x0/ 7! �
f .x/�f .x0/

��
g.x/�g.x0/

�
where PX denotes the distribution of X .

Typical applications of this scalar co-monotony principle are, among others, the
antithetic simulation method for variance reduction and more recently a priori sign
results for the sensitivity of derivatives in Finance.

B Antithetic simulation. Let X W .˝;A ;P/ ! R be a random variable and let ' W
R ! R be a non-increasing function such that '.X/

L� X . Then, for every mono-
tone function f W R!R such that f .X/ 2 L2.P/ and P

�
f .X/¤Ef .X/

�
>0,

we have

Var

f .X/C f ı '.X/

2

�
D 2

�
Var.f .X//C Cov.f .X/; f ı'.X//�

4

<
Var.f .X//

2

since Cov.f .X/; f ı'.X// < 0.
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The variance is reduced by more than a 2-factor whereas the complexity of the
simulation of f .X/Cf ı'.X/

2
is only twice higher than that of f .X/ (if one neglects

the additional cost of the computation of '.x/ compared to that of x).

B Sensitivity (vega of an option). Let ' W .0;1/ ! R be a convex function with (at
most) polynomial growth at 0 and C1 in the sense that there exists a real constant
C > 0 such that

8 x 2 .0;C1/; j'.x/j � C.xr C x�r /

and let Z W .˝;A ;P/ ! R be an N .0I 1/-distributed random variable. Set

f .�/ D E'
�
e�Z� �2

2
�
; � > 0:

Although it does not appear as a straightforward consequence of its definition, one
easily derives from the above proposition that f is a non-decreasing function of �
on .0;1/. In fact, ' is differentiable outside an at most countable subset of .0;C1/

(where its right and left derivatives differ) and its derivative ' 0 is non-decreasing,
with polynomial growth as well since

jf 0.x/j � max
�jf .x C 1/� f .x/j; 2x�1jf .x/ � f .x=2/j�; x 2 .0;C1/:

Since Z has no atom, one easily checks that one can interchange derivative and
expectation to establish that f is differentiable with derivative

f 0.�/ D E



' 0�e�Z� �2

2
�
e�Z� �2

2 .Z � �/
�
; � > 0:

A Cameron–Martin change of variable then yields

f 0.�/ D E



' 0�e�ZC �2

2
�
Z
�

so that, applying the co-monotony principle to the two non-decreasing (square

integrable) functions z 7! ' 0�e�z� �2

2

�
and z 7! z, implies

f 0.�/ 
 E



' 0�e�ZC �2

2
��
E
�
Z
� D E



' 0�e�ZC �2

2
�� � 0 D 0:

(However, note that a shortest proof is of course to apply Jensen’s inequality to

eW�2� �2

2
L� e�Z� �2

2 , where W is a standard Brownian motion).
Extensions of the above co-monotony principle to functions on R

d , d 
 2,
are almost as classical as the one dimensional case. They can be established by
induction when both functions ˚.x1; : : : ; xd / and 
.x1; : : : ; xd / defined on R

d

are co-monotone in each variable xi (i:e: having the same monotony property) and
when the R

d -valued random vector X has independent marginals (see Sect. 2).
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Our aim in this paper is to show that this co-monotony principle can be again
extended into a functional co-monotony principle satisfied by various classes of
stochastic processes X D .Xt /t2Œ0;T � whose paths lie in a sub-space E of the vector
space F .Œ0; T �;R/ of real-valued functions defined on the interval Œ0; T �, T > 0,
equipped with the pointwise (partial) order on functions, defined by

8˛; ˇ 2 F .Œ0; T �;R/; ˛ � ˇ if 8 t 2 Œ0; T �; ˛.t/ � ˇ.t/:

Then a functional F W E ! R is said to be non-decreasing if

8˛; ˇ 2 E; ˛ � ˇ H) F.˛/ � F.ˇ/:

The choice of E will be motivated by the pathwise regularity of the process
X . The space E will also be endowed with a metric topology (and its Borel
�-field) so that X can be seen as an E-valued random vector. The functionals F
and G involved in the co-monotony principle will be assumed to be continuous on
E (at least P-a:s:). Typical choices for E will be E D C .Œ0; T �;R/, C .Œ0; T �;Rd /,
D.Œ0; T �;R/ or D.Œ0; T �;Rd / and occasionally Lp

Rd
.Œ0; T �; dt/ (in this case we will

switch to the dt-a:e: pointwise order instead of the pointwise order). Then by
co-monotony principle, we mean that for every non-decreasing functionalsF andG
defined on E , PX -a:s: continuous,

EF.X/G.X/ 
 EF.X/EG.X/:

(The case of non-increasing functionals follows by considering the opposite func-
tionals and the opposite monotony case by considering the opposite of only one
of the functionals). Among the (classes of) processes of interest, we will consider
continuous Gaussian processes with nonnegative covariance function (like the
standard and the fractional Brownian motion, “nonnegative” Liouville processes),
the Markov processes with monotony preserving transitions (which includes of
course Brownian diffusions), processes with independent increments, etc.

The main problem comes from the fact that the naive pointwise order on
functional spaces is not total so that the formal one-dimensional proof based on
Fubini’s theorem no longer applies.

As applications of such functional results, we will be able to extend the above
sign property for the vega of a “vanilla” option (whose payoff function is a
function of the risky asset ST at the maturity T ) to “exotic” options. By “exotic”,
we classically mean that their payoff is typically a path-dependent functional
F
�
.St /t2Œ0;T �

�
of the risky asset .St /t2Œ0;T �. The dynamics of this risky asset is still

a Black–Scholes model where S�t D s0e
�WtC.r� �2

2 /t , s0; � > 0. Doing so we will
retrieve Carr et al. results about the sensitivity of Asian type options in a Black–
Scholes model with respect to the volatility (see [4]). We will also emphasize the
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close connection between co-monotony and the theory of peacocks1 characterized
by Kellerer in [13] and recently put back into light in the book [9] (see also the
references therein). Let us briefly recall that an integrable process .X�/�	0 is a
peacock if for every convex function ' W R ! R such that Ej'.X�/j < C1, � 
 0,
the function � 7! E'.X�/ is non-decreasing. Kellerer’s characterization theorem
says that a process is a peacock if and only if there exists a martingale .M�/�	0
such that X�

L� M�, � 2 RC. Moreover, the process .M�/�	0 can be chosen to be
Markovian. This proof being non-constructive, it does not help at all establishing
whether or not a process is a peacock. See also a new proof of Kellerer’s Theorem
due to Hirsch and Roynette in [8]. By contrast, one can find in [9] a huge number of
peacocks with an explicit marginal martingale representation characterized through
various tools from the theory of stochastic processes.

More generally, when applied in its “opposite” version, the co-monotony prin-
ciple between nonnegative function simply provides a significant improvement of
the Hölder inequality since it makes the L1-norm sub-multiplicative. It can be used
to produce less conservative bounds in various fields of applied probability, like
recently in [14,20] where to provide bounds depending on functionals of a Brownian
diffusion process, in the spirit of the inequalities proposed in Sect. 6.4 for barrier
options.

The paper is organized as follows: Sect. 2 is devoted to the finite-dimensional
co-monotony principle, Sect. 3 to the definition of functional co-monotony principle
and some first general results. Section 4 deals with continuous processes, Sect. 5
with càdlàg processes like Lévy processes. Section 6 deals with examples of
applications, to peacocks and to exotic options for which we establish universal
bounds (among price dynamics sharing the functional co-monotony principle).
NOTATIONS:

• x0Wn D .x0; : : : ; xn/ 2 R
nC1, x1Wn D .x1; : : : ; xn/ 2 R

n, etc. .xjy/ DP
0�k�n xkyk denotes the canonical inner product on R

nC1.
• We denote by � the componentwise order on R

nC1 defined by x0Wn � x0
0Wn if

xi � x0
i , i D 0; : : : ; n.

• M .d; r/ denotes the vector space of matrices with d rows and r columns. M �
denotes the transpose of matrix M .

• ?? will emphasize in formulas the (mutual) independence between processes.
• k˛ksup D supt2Œ0;T � j˛.t/j for any function ˛ W Œ0; T � ! R.
• uC denotes the positive part of the real number u. �d denotes the Lebesgue

measure on .Rd ;Bor.Rd // where Bor.Rd / denotes the Borel �-field on R
d

(we will often denote � instead of �1).

• X
L� � means that the random vector X has distribution �.

1Stands for the French acronym PCOC (Processus Croissant pour l’Ordre Convexe).
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2 Finite-Dimensional Co-monotony Principle

2.1 Definitions and Main Results

Let .P.x; dy//x2R be a probability transition, i:e: a family of probability measures
such that for every x 2 R, P.x; dy/ is a probability measure on .R;Bor.R// and
for every B 2 Bor.R/, x 7! P.x;B/ is a Borel function.

Definition 1. .a/ The transition .P.x; dy//x2R is monotony preserving if, for
every bounded or nonnegative monotone function f W R ! R, the function
Pf defined for every real number x 2 R by Pf .x/ D R

f .y/P.x; dy/ is
monotone with the same monotony.

.b/ Two Borel functions ˚ , 
 W R
d ! R are componentwise co-mono-

tone if, for every i 2 f1; : : : ; d g and .x1; : : : ; xi�1; xiC1; : : : ; xd / 2
R
d�1, both section functions xi 7! ˚.x1; : : : ; xi ; : : : ; xd / and xi 7!


.x1; : : : ; xi ; : : : ; xd / have the same monotony, not depending on the .d � 1/-
tuple .x1; : : : ; xi�1; xiC1; : : : ; xd / nor on i .

.c/ If ˚ and �
 are co-monotone,˚ and 
 are said to be anti-monotone.

Remark 1. If P is monotony preserving and f W R ! R is a monotone function
such that f 2 \x2RL1.P.x; dy//, then Pf has the same monotony as f . This
is an easy consequence of the Lebesgue dominated convergence theorem and the
approximation of f by the “truncated” bounded functions fN D .�N/ _ .f ^N/
which have the same monotony as f .

Definition 2 (Componentwise co-monotony principle). An R
d -valued random

vectorX satisfies a componentwise co-monotony principle if, for every pair of Borel
componentwise co-monotone functions ˚; 
 W Rd ! R such that ˚.X/, 
.X/,
˚.X/
.X/ 2 L1.P/,

E˚.X/
.X/ 
 E˚.X/E
.X/: (1)

Remark 2. • This property is also known as the positive association of the
componentsX1; : : : ; Xd of X (see e:g: [17]).

• If X satisfies a componentwise co-monotony principle, then, for every pair
of componentwise anti-monotone functions ˚;
 W R

nC1 ! R, the reverse
inequality holds. In both cases, if ˚ and 
 both take values in RC or R� then
the inequalities remain true (in R) without integrability assumption.

• Owing to elementary approximation arguments, it is clear that it suffices to
check (1) for bounded or nonnegative componentwise co-monotone functions.

As a straightforward consequence of the fact that the functions x0Wn 7! xk and
x0Wn 7! x` are co-monotone, we derive the following necessary condition for the
componentwise co-monotony property.
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Proposition 2. LetX D .Xk/1�k�d be a random vector. IfXk 2 L2, k D 1; : : : ; d ,
then,

8 k; ` 2 f1; : : : ; d g; Cov.Xk;X`/ D EXkX` � EXkEX` 
 0

i:e: the covariance matrix of X has nonnegative entries.

In finite dimension, the main result on componentwise co-monotony is the
following.

Proposition 3. .a/ Let X D .Xk/0�k�n be an R-valued Markov chain defined on
a probability space .˝;A ;P/ having a (regular) version of its transitions

Pk�1;k.x; dy/ D P.Xk 2 dy jXk�1 D x/; k D 1; : : : ; n

which are monotony preserving in the above sense. Then X satisfies a
componentwise co-monotony principle.

.b/ If the random variables X0; : : : ; Xn are independent, the conclusion remains
true under the following weak co-monotony assumption: there exists a per-
mutation � of the index set f0; : : : ; ng such that for every i 2 f0; : : : ; ng
and every .x0; : : : ; xi�1; xiC1; : : : ; xn/ 2 R

n, xi 7! ˚.x0; : : : ; xi ; : : : ; xn/ and
xi 7! 
.x0; : : : ; xi ; : : : ; xn/ have the same monotony, possibly depending on
.x�.0/; : : : ; x�.i�1//. Then the same conclusion as in .a/ holds true.

Proof (Proof of (a)). One proceeds by induction on n 2 N. If n D 0, the result
follows from the scalar co-monotony principle applied to X0 (with distribution �0).

.n/ H) .n C 1/: We may assume that ˚ and 
 are bounded and, by changing if
necessary the functionals into their opposite, that they are both componentwise non-
decreasing. Put FX

k D �.X0; : : : ; Xk/, k D 0; : : : ; n. It follows from the Markov
property that

E
�
˚.X0WnC1/ j FX

n

� D ˚.n/.X0Wn/

where

˚.n/.x0Wn/ D Pn;nC1
�
˚.x0Wn; :/

�
.xn/:

In particular, we have E
�
˚.X0WnC1/

� D E
�
˚.n/.X0Wn/

�
. Let x0Wn 2 R

nC1. Apply-
ing the one dimensional co-monotony principle with the probability distribution
Pn;nC1.xn; dy/ to ˚.x0Wn; :/ and 
.x0Wn; :/ we get

.˚ 
/.n/.x0Wn/ D Pn;nC1
�
˚ 
.x0Wn; :/

�
.xn/


 Pn;nC1
�
˚.x0Wn; :/

�
.xn/Pn;nC1

�

.x0Wn; :/

�
.xn/

D ˚.n/.x0Wn/
 .n/.x0Wn/ (2)
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so that, considering X0WnC1 and taking expectation, we get

E .˚ 
/.X0WnC1/ D E
�
.˚ 
/.n/.X0;n/

�

 E

�
˚.n/.X0Wn/
 .n/.X0Wn/

�
:

It is clear that for every i 2 f0; : : : ; n�1g, xi 7! ˚.n/.x0; : : : ; xn/ is non-decreasing
since the transition Pn;nC1 is a nonnegative operator. Now let xn; x0

n 2 R, xn � x0
n.

Then

Pn;nC1
�
˚.x0; : : : ; xn; :/

�
.xn/ � Pn;nC1

�
˚.x0; : : : ; x

0
n; :/

�
.xn/

� Pn;nC1
�
˚.x0; : : : ; x

0
n; :/

�
.x0
n/

where the first inequality follows from the non-negativity of the operatorPn;nC1 and
the second follows from its monotony preserving property since xnC1 7! ˚.x0WnC1/
is non-decreasing. The function 
.n/, defined likewise, shares the same properties.

An induction assumption applied to the Markov chain .Xk/0�k�n completes the
proof since

E



˚.n/.X0Wn/
 .n/.X0Wn/

�

 E˚.n/.X0Wn/E
.n/.X0Wn/

D E˚.X0WnC1/E
.X0WnC1/:

Proof (Proof of (b)). By renumbering the .n C 1/-tuple .X0; : : : ; Xn/ we may
assume � D id . Then the transition Pk�1;k.xk�1; dy/ D PXk.dy/ does not depend
upon xk�1 so that Pk�1;kf is a constant function. Then (2) holds as an equality and
the monotony of ˚.n/ in each of its variable x0; : : : ; xn is that of ˚ for the same
variables. A careful inspection of the proof of claim .a/ then shows that the weak
co-monotony is enough to conclude. ut
Example 1. Let A;B 2 Bor.RnC1/ be two Borel sets such that, for every x D
x0Wn 2 A, x C tei 2 A for every t 2 RC and every i 2 f0; : : : ; ng (where ei denotes
the i th vector of the canonical basis of RnC1), idem for B . Then for any R

d -Markov
chain X D .Xk/0�k�n, having monotony preserving transitions (in the sense of
Proposition 3.a/), we have

P
�
.X0; : : : ; Xn/ 2 A \ B� 
 P

�
.X0; : : : ; Xn/ 2 A�P�.X0; : : : ; Xn/ 2 B�:

The monotony preserving property of the transitions Pk�1;k cannot be relaxed as
emphasized by the following easy counter-example.

Counter-example 1. LetX D .X0;X1/ be a Gaussian bi-variate random vector with

distribution N


0I
h
1 �

� 1

i�
where the correlation � 2 .�1; 0/). One checks that the

transition P0;1.x0; dx1/ reads on bounded or nonnegative Borel functions
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P0;1.f /.x0/ WD E.f .X1/ jX0 D x0/ D Ef


� x0 C

p
1 � �2 Z

�
; Z

L� N .0I 1/:

This shows that P0;1 is monotony. . . inverting. In particular we have EX0X1 D � <

0 D EX0 EX1. In fact it is clear that .X0;X1/ satisfies the co-monotony principle
if and only if � 
 0. In the next section we extend this result to higher dimensional
Gaussian vectors.

2.2 More on the Gaussian Case

Let X D .X1; : : : ; Xd / be a Gaussian vector with covariance matrix ˙ D
Œ�ij �1�i;j�d (its mean obviously plays no role here and can be assumed to be zero).
This covariance matrix characterizes the distribution ofX so it characterizes as well
whether or not X shares a co-monotony property in the sense of (1). But can we
read easily this property on˙?

As mentioned above, a necessary condition for co-monotony is obviously that

8 i; j 2 f1; : : : ; d g; �ij D Cov.Xi ; Xj / 
 0:

In fact this simple condition does characterize co-monotony: this result, due to L.
Pitt, is established in [17].

Theorem 1 (Pitt (1982)). A Gaussian random vector X with covariance matrix
˙ D Œ�ij �1�i;j�d satisfies a componentwise co-monotony principle if and only if

8 i; j 2 f1; : : : ; d g; �ij 
 0:

Remark 3. • Extensions have been proved in [11]. Typically, if Z � N .0I Id /,
under appropriate regularity and integrability assumptions on a function h W
R
d ! R, one has



8 x 2 R

d ;
@2h

@xi @xj
.x/ 
 0

�
H)



�ij 7! E

�
h.

p
˙Z/

�
is non-decreasing

�
:

• Another natural criterion for co-monotony—theoretically straightforward
although not easy to “read” in practice on the covariance matrix itself—is to
make the assumption that there exists a matrix A D Œaij �1�i�d;1�j�r , r 2 N

�,

with nonnegative entries aij 
 0 such that ˙ D AA�. Then X
L� AZ,

Z
L� N .0I Ir/. So every component is a linear combination with nonnegative

coefficients of the components of Z and Proposition 3.b/ straightforwardly
implies that X shares the co-monotony property (1).
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However, surprisingly, this criterion is not a characterization in general: if d �
4, symmetric matrices ˙ with non-negative entries can always be decomposed as
˙ D AA� where A has non negative entries. But if d 
 5, this is no longer true.
The negative answer is inspired by a former counter-example—originally due to
Horn—when d D r 
 5, reported and justified in [7] (see Eqs. (15.39) and (15.53)
and the lines that follow, see also [5] for an equivalent formulation). To be precise,
the nonnegative symmetric 5 � 5 matrix˙ (with rank 4) defined by

˙ D

2
666664

1 0 0 1=2 1=2

0 1 3=4 0 1=2

0 3=4 1 1=2 0

1=2 0 1=2 1 0

1=2 1=2 0 0 1

3
777775

has nonnegative entries but cannot be writtenAA� whereA has nonnegative entries.
Another reference of interest about this question is [1], especially concerning more
geometrical aspects connected with this problem.

2.3 Application to the Euler Scheme

The Euler scheme of a diffusion is an important example of Markov chain to
which one may wish to apply the co-monotony principle. Let X D .Xt /t2Œ0;T � be a
Brownian diffusion assumed to be solution to the stochastic differential equation

SDE � dXxt D b.t; Xx
t /dt C �.t; Xx

t /dWt ; t 2 Œ0; T �; X0 D x:

Its Euler scheme with step h D T=n and Brownian increments is entirely
characterized by its transitions

Pk;kC1.f /.x/ D Ef


x C hb.tnk ; x/C �.tnk ; x/

p
hZ

�
; Z

L� N .0I 1/;
k D 0; : : : ; n � 1;

where tnk D kh D k
n
T , k D 0; : : : ; n. One easily checks that if the function b

is Lipschitz continuous in x uniformly in t 2 Œ0; T � and if �.t; x/ D �.t/ is
deterministic and lies inL2.Œ0; T �; dt/, then, for large enough n, the Euler transitions
Pk;kC1 are monotony preserving.

This follows from the fact that x 7! x C hb.t; x/ is non-decreasing provided
h 2 .0; 1

Œb�Lip
/, where Œb�Lip is the uniform Lipschitz coefficient of b.
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3 Functional Co-monotony Principle

The aim of this section is to extend the above co-monotony principle to continuous
time processes relying on the above multi-dimensional co-monotony result. To do
so, we will view processes as random variables taking values in a path vector
subspace E � F .Œ0; T �;R/ endowed with the (trace of the) Borel �-field of
pointwise convergence topology on F .Œ0; T �;R/, namely �

�
�t ; t 2 Œ0; T �

�
where

�t .˛/ D ˛.t/, ˛ 2 E . Consequently, a process X having E-valued paths can be
seen as an E-valued random variable if and only if for every t 2 Œ0; T �, Xt is an
R-valued random variable (which is in some sense a tautology since it is the lightest
definition of a stochastic process).

We consider on E the (partial) order induced by the natural partial “pointwise
order” on F .Œ0; T �;R/ defined by

8˛; ˇ 2 F .Œ0; T �;R/; ˛ � ˇ if 8 t 2 Œ0; T �; ˛.t/ � ˇ.t/:

Definition 3. .a/ A measurable functional F W E ! R is monotone if it is either
non-decreasing or non-increasing with respect to the order on E .

.b/ A pair of measurable functionals are co-monotone if they are both monotone,
with the same monotony.

Then, in order to establish a functional co-monotony principle (see the definition
below) our approach will be transfer a finite dimensional co-monotony principle
satisfied by appropriate converging (time) discretizations of the process X of
interest. Doing so we will need to equip E with a topology ensuring the above
convergence for the widest class of (PX -a:s: continuous) functionals. That is why
we will consider as often as we can the sup-norm topology, not only on C .Œ0; T �;R/,
but also on the Skorokhod space D.Œ0; T �;R/ of càdlàg (French acronym for right
continuous left limited) functions defined on Œ0; T � since there are more continuous
functionals for this topology than for the classical J1-Skorokhod topology (having
in mind that, furthermore, D.Œ0; T �;R/ is not a topological space for the latter). We
recall that DT WD �

�
�t ; t 2 Œ0; T �

�
is the Borel �-field related to both the k :ksup-

norm and the J1-topologies on the Skorokhod space.
We will also consider (see Sect. 5.2) the space Lp.Œ0; T �; �/, 0 < p < C1,

equipped with its usual Lp.�/-norm where � is a finite measure on Œ0; T �. In the
latter case (which is not—strictly speaking—a set of functions), we will consider
the “�-a:e:” (partial) order

˛ �� ˇ if ˛.t/ � ˇ.t/ �.dt/-a:e:

A functional F which is monotone for the order �� is called �-monotone. The
definition of �-co-monotony follows likewise.

A formal definition of the co-monotony property on a partially ordered normed
vector space is the following.
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Definition 4. A random variable X whose paths take values in a partially ordered
normed vector space .E; k : kE;�E/

2 satisfies a co-monotony principle on E if,
for every bounded, co-monotone, PX -a:s: continuous, measurable functionals F ,
G W E ! R,

EF.X/G.X/ 
 EF.X/EG.X/:

When X is a stochastic process and E is its natural path space, we will often use
the term functional co-monotony principle.

Extensions 1. • The extension to square integrable or nonnegativePX -a:s: contin-
uous functionals is canonical by a standard truncation procedure: replace F by
FN WD .�N/ _ �F ^N/, N > 0, and let N go to infinity.

• More generally, the inequality also holds for pairs of co-monotone functionals
F , G whose truncations FK and GK are limits in L2.PX/ of PX -a:s: continuous
co-monotone functionals.

3.1 A Stability Result for Series of Independent Random
Vectors

We will rely several times on the following proposition which shows that series
of independentE-valued random vectors satisfying the co-monotony principle also
share this property.

Proposition 4. .a/ Let .Xn/n	1 be a sequence of independent E-valued random
vectors defined on .˝;A ;P/where .E; k : kE;�/ is a partially ordered normed
vector space. Assume that, for every n 
 1, Xn satisfies a co-monotony
principle on E . Let .an/n	1 be a sequence of real numbers such that the
series X D P

n	1 anXn converges a:s: for the norm k : kE . Then X satisfies a
co-monotony principle on E .

.b/ Assume furthermore that .E; k : kE/ is a Banach space with an unconditional
norm, that the Xn are nonnegative random vectors for the order on E and
that

P
n	1 Xn converges in L1E.P/. Then, for every sequence of independent

random variables .An/n	1 taking values in a fixed compact interval of R and
independent of .Xn/n	1, the series X D P

n	1 AnXn satisfies a co-monotony
principle on E .

Remark 4. When E D C .Œ0; T �;R/, Lévy–Itô–Nisio’s Theorem (see e:g: [15],
Theorem 6.1, p. 151) shows to some extent the equivalence between functional
convergence in distribution and a:s: convergence for series of independent processes
as above.

2For every ˛, ˇ, � 2 E and every � 2 RC, ˛ � ˇ ) ˛ C � � ˇ C � and � 	 0 ) �˛ � �ˇ.
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Proof. .a/ We may assume without loss of generality that the two functionals
F and G are non-decreasing. We first show the result for the sum of two
independent processes, i:e: we assume ak D 0, k 
 3 (and a1a2 ¤ 0). By
Fubini’s Theorem

E



F
�
a1X1 C a2X2

�
G
�
a1X1 C a2X2

��

D E


 �
E
�
F
�
a1X1 C a2˛

�
G
�
a1X1 C a2˛

��	
j˛DX2

�
:

Let Cont.F / denote the set of elements of E at which F is continuous. It
follows, still from Fubini’s Theorem, that

1 D P
�
a1X1 C a2X2 2 Cont.F //

� D
Z

PX2.d˛2/PX1
�
F.a1:C a2˛2/

�

so that PX2.d˛2/-a:s: ˛1 7! F.a1˛1 C a2˛2
�

and ˛1 7! G.a1˛1 C a2˛2
�

are PX1-a:s: continuous. Noting that these functionals are co-monotone (non-
decreasing if a1 
 0, non-increasing if a1 � 0), this implies

E
�
F.a1X1Ca2˛2/G.a1X1Ca2˛2/

� 
 E
�
F.a1X1Ca2˛2/

�
E
�
G.a1X1Ca2˛2/

�
:

Now, both

˛2 7! EF.a1X1 C a2˛2/ D
Z

PX1.d˛1/F.a1˛1 C a2˛2/

and

˛2 7! EG.a1X1 C a2˛2/ D
Z

PX1.d˛1/G.a1˛1 C a2˛2/

are co-monotone (non-decreasing if a2 
 0, non-increasing if a2 � 0) and one
checks that both are PX2.d˛2/-a:s: continuous which implies in turn that

E


�
EF.a1X1 C a2 ˛/

	
j˛DX2

�
EG.a1X1 C a2 ˛/

	
j˛DX2

�


 E


�
EF.a1X1 C a2 ˛/

	
j˛DX2

�

�E


�
EG.a1X1 C a2˛/

	
j˛DX2

�

D E
�
F.a1X1 C a2X2/

�
E
�
G.a1X1 C a2X2/

�

where we used again Fubini’s Theorem in the second line.
One extends this result by induction to the case where X D X1 C � � � CXn.
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To make n go to infinity, we proceed as follows: let Gn D �.Xk; k 
 n C 1/.
By the reverse martingale convergence theorem, we know that for any bounded
measurable functional ˚ W E ! R,

E .˚.X/ j Gn/ D ŒE˚.X1 C � � � CXn C Q̨n/� Q̨nD QXn

where QXn D X�.X1C� � �CXn/. We know from the above case n D 2 that, for
˚ D F , G, one has P QXn.d Q̨n/-a:s:, ˛ 7! ˚.˛ C Q̨n/ is PX1 C � � � CXn.d˛/-
continuous so that

EFG.X1C� � �CXnC Q̨n/ 
 EF.X1C� � �CXnC Q̨n/EG.X1C� � �CXnC Q̨n/:

This equality also reads

E .FG.X/ j Gn/ 
 E .F.X/ j Gn/E .G.X/ j Gn/

which in turn implies by letting n ! 1

EF.X/G.X/ 
 EF.X/EG.X/

owing to the reverse martingale convergence theorem.
.b/ For every bounded sequence .an/n	1, it follows from the unconditionality of

the norm k : kE that
P

n	1 anXn a:s: converges in L1E.P/. Then it follows from
.a/ that, for every n 
 1,

E

 
F

 nX
kD1

akXk

�
G

 nX
kD1

akXk

�!

 EF


 nX
kD1

akXk

�
EG


 nX
kD1

akXk

�
:

Now for every k 2 f1; : : : ; ng, the function defined on the real line by ak 7!
EF

�Pn
iD1 aiXi

�
has the same monotony as F since Xk 
 0 and is bounded.

Consequently for any pair F , G of bounded co-monotone Borel functionals,

E


�
EF.

nX
kD1

akXk/
	

ja1WnDA1Wn
�
EG.

nX
kD1

akXk/
	

ja1WnDA1Wn
�


 E


�
EF.

nX
kD1

akXk/
	
ja1WnDA1Wn

�

�E


�
EG.

nX
kD1

akXk/
	
ja1WnDA1Wn

�
:

The conclusion follows for a fixed n 
 1 by preconditioning. One concludes
by letting n go to infinity since F and G are continuous. ut
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A First Application to Gaussian Processes. Let X D .Xt/t2Œ0;T � be a continuous
centered Gaussian process with a covariance operator CX defined on the Hilbert
space L2

T
WD L2.Œ0; T �; dt/ into itself by

CX.f / D E.hf;XiL2T X/ D
Z T

0

E.XsX:/f .s/ds 2 L2
T
:

The process X can be seen as a random vector taking values in the separable
Banach space C .Œ0; T �;R/ (equipped with the sup-norm). Assume that CX admits
a decomposition as follows

CX D AA�; A W .K; j : jK/ �! C .Œ0; T �;R/; A continuous linear mapping;

where .K; j : jK/ is a separable Hilbert space.
Then, we know from Proposition 1 (and Theorem 1) in [16], that for any

orthonormal basis (or even any Parseval frame, see [16]) .en/n	1 of K that the
sequence .A.en//n	1 is admissible for the process X in the following sense: for
any i.i.d. sequence .�n/n	1 of normally distributed random variables defined on a
probability space .˝;A ;P/

8̂
<̂
ˆ̂:

.i/
X
n	1

�nA.en/ a:s: converges in .C .Œ0; T �;R/; k : ksup/

.ii/
X
n	1

�nA.en/
L� X:

Assume furthermore that all the continuous functionsA.en/ are nonnegative. Then,
for every n 
 1, the continuous stochastic process Xn D �nA.en/ satisfies a
co-monotony principle (for the natural pointwise partial order on C .Œ0; T �;R/). This
makes up a sequence of independent random elements of C .Œ0; T �;R/. It follows
from Proposition 4.a/ that the process X satisfies a co-monotony principle.

Example 2. Let us consider the standard Brownian motion W with covariance
function EWtWs D s ^ t . One checks that CW D AA� where A W L2

T
!

C .Œ0; T �;R/ is defined by

Af �


t 7!

Z t

0

f .s/ds
�

2 C .Œ0; T �;R/:

Applied to the orthonormal basis en.t/ D
q

2
T

sin
�
�n t

T

�
, n 
 1, we get

A.en/.t/ D p
2T

1 � cos
�
�nt
T

�
�n


 0; t 2 Œ0; T �; n 
 1;
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so that

QW D p
2T

X
n	1

�n

�n



1 � cos

�
�n

:

T

��
; .�n/n	1 i.i.d.; �1

L� N .0I 1/;

is an a:s: converging series for the sup-norm which defines a standard Brownian
motion. As a consequence, the standard Brownian motion satisfies a co-monotony
principle (in the sense of Definition 4).3

As we will see further on in Sect. 4.1, the above approach is clearly neither the
most elementary way nor the most straightforward to establish the co-monotony
principle for the Wiener process. Furthermore, the above criterion is not an
equivalence as emphasized in a finite dimensional setting: a continuous Gaussian
process X may satisfy a functional co-monotony principle albeit its covariance
operator CX admits representation of the form CX D AA� for which there exists an
orthonormal basis (or even Parseval frame, see [16]) whose image by A is made
of nonnegative functions. Thus, no such decomposition is known to us for the
fractional Brownian motion (with Hurst constant H ¤ 1

2
) although it satisfies a

co-monotony principle (see Sect. 4.1.4 further on).

3.2 From Œ0; T � to RC

We state our results for processes defined on a finite interval Œ0; T �. However
they can be extended canonically on RC, provided that there exists a sequence
of positive real constants TN " C1 such that P.d˛/-a:s: on E � F .RC;R/,
˛Tn � �

t 7! ˛.t ^ Tn/
�

converges in E toward ˛ for the topology on E . Such
a sequence does exist the topology of convergence on compact sets but also for
the Skorokhod topology on the positive real line. Then the transfer of co- and anti-
monotony property (if any) from the stopped processXTn toX is straightforward for
bounded functionals. The extension to square integrable or nonnegative functionals
follows by the usual truncation arguments.

4 Application to Pathwise Continuous Processes

In this section functional co-monotony principle is always considered on the normed
vector space .C .Œ0; T �;R/; k : ksup/.

We will use implicitly that its Borel �-field of is �
�
�t ; t 2 Œ0; T �

�
, where

�t .˛/ D ˛.t/ for every ˛ 2 C .Œ0; T �;R/ and every t 2 Œ0; T � (see [2], Chap. 2).

3The fact that A.L2
T
/ is the Cameron–Martin space i:e: the reproducing space of the covariance

operator, which is obvious here, is a general fact for any such decomposition (see [16]).
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Proposition 5. Let X D .Xt /t2Œ0;T � be a pathwise continuous process defined on a
probability space .˝;A ;P/ sharing the following finite dimensional co-monotony
property: for every integer n 
 1 and every subdivision t1; : : : ; tn 2 Œ0; T �, 0 �
t1 < t2 < � � � < tn � T , the random vector .Xtk /1�k�n satisfies a componentwise
co-monotony principle. Then X satisfies a functional co-monotony principle on its
path space C .Œ0; T �;R/.

Proof. We may assume that F and G are both non-decreasing for the natural order
on C .Œ0; T �;R/. Let n 2 N, n 
 1. We introduce the uniform mesh tnk D kT

n
, k D

0; : : : ; n and, for every function ˛ 2 C .Œ0; T �;R/, the canonical linear interpolation
approximation

˛.n/.t/ D tnkC1 � t

tnkC1 � tnk
˛.tnk /C t � tnk

tnkC1 � tnk
˛.tnkC1/; t 2 Œtnk ; tnkC1�; k D 0; : : : ; n � 1:

One checks that k˛ � ˛.n/ksup � w.˛; T=n/ goes to 0 as n ! 1 where w.˛; :/
denotes the uniform continuity modulus of ˛. As a consequence, X having a:s:
continuous paths by assumption, the sequence .X.n//	1 of interpolations of X a:s:

uniformly converges toward X .
Then set for every n 
 1 and every x D x0Wn 2 R

nC1,

�n.x; t/ D tnkC1 � t
tnkC1 � tnk

xk C t � tnk
tnkC1 � tnk

xkC1; t 2 Œtnk ; tnkC1�; k D 0; : : : ; n � 1

and

Fn.x/ D F.�n.x; ://:

It is clear that if x � x0 in R
nC1 (in the componentwise sense) then Fn.x/ � Fn.x

0/
since �n.x; :/ � �n.x0; :/ as functions. This is equivalent to the fact that Fn is non-
decreasing in each of its variables.

On the other hand X.n/ D �
�
.Xtnk /0�k�n; :

�
so that Fn

�
.Xtnk /0�k�n

� D F.X.n//.
The sequence .Xtnk /0�k�n satisfies a componentwise co-monotony principle. As a
consequence, it follows from Proposition 3 that if F and G are bounded, for every
n 2 N,

EF.X.n//G.X.n// 
 EF.X.n//EG.X.n//:

One derives the expected inequality by letting n go to infinity since F and G are
continuous with respect to the sup-norm. The extension to unbounded functionals
F or G follows by the usual truncation arguments. ut
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4.1 Continuous Gaussian Processes

Let X D .Xt /t2Œ0;T � be a continuous centered Gaussian process. Its (continuous)
covariance function CX is defined on Œ0; T �2 as follows

8 s; t 2 Œ0; T �; CX .s; t/ D EXsXt :

We establish below the functional counterpart of Pitt’s Theorem.

Theorem 2 (Functional Pitt’s Theorem). A continuous Gaussian process X D
.Xt/t2Œ0;T � with covariance operatorCX satisfies a functional co-monotony principle
on C .Œ0; T �;R/ if and only if, for every s; t 2 Œ0; T �, CX .s; t/ 
 0.

Proof. For every n
 1, .Xn
tnk
/0� k� n is a Gaussian random vector satis-

fying a componentwise co-monotony principle since its covariance matrix
˙n D �

CX .t
n
k ; t

n
` /
	
0�k;`�n has nonnegative entries. One concludes by the above

Proposition 5. ut
We briefly inspect below several classical classes of Gaussian processes.

4.1.1 Brownian Motion, Brownian Bridge, Wiener Integrals

The covariance of the standard Brownian motionW is given by CW .s; t/ D s ^ t 

0, s, t 2 Œ0; T � and that of the Brownian bridge over Œ0; T �, defined by Xt D Wt �
t
T
WT , t 2 Œ0; T �, is given by for every s, t 2 Œ0; T � by

CX.s; t/ D s ^ t � st

T

 0:

As for Wiener integrals, let Xt D
Z t

0

f .s/dWs , t 2 Œ0; T �, where f 2
L2.Œ0; T �; dt/. The process X admits a continuous modification and its covariance

function is given by CX.s; t/ D
Z s_t

s^t
f 2.u/du 
 0.

They all satisfy a satisfies a co-monotony principle on C .Œ0; T �;R/.

4.1.2 Liouville Processes

Definition 5. Let f W Œ0; T � ! R be a locally �-Hölder function, � 2 .0; 1�, in the
following sense: there exists ' 2 L 2.Œ0; T �; dt/, � 2 .0; 1�, a 2 .0;C1/ such that
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.L�;a/ �

8̂
<̂
ˆ̂:

.i/ 8 t; t 0 2 Œ0; T �; jf .t/ � f .t 0/j � Œf ��;' jt � t j�'.t ^ t 0/

.i i/

Z t

0

f 2.s/ds D O.ta/:

(3)

Then the Gaussian process defined for every t 2 Œ0; T � by

Xt D
Z t

0

f .t � s/dWs

admits a continuous modification called Liouville process (related to f ) with
covariance function

C
X
.s; t/ D

Z s^t

0

f .t � u/f .s � u/du:

JUSTIFICATION: First note that f 2 L 2.dt/ since f .t/j � jf .0/j C t�j'.0/j. Then,
for every t; t 0 2 Œ0; T �, t � t 0,

Xt 0 � Xt D
Z t 0

t

f .t 0 � s/dWs C
Z t

0

.f .t 0 � s/ � f .t � s//dWs

so that

EjXt 0 �Xt j2 D
Z t 0

t

f 2.t 0 � s/ds C
Z t

0

�
f .t 0 � s/ � f .t � s/�2ds

�
Z t 0�t

0

f 2.s/ds C Œf �2�;' jt 0 � t j2�
Z T

0

'2.s/ds

� Cf .jt 0 � t ja C jt 0 � t j2�/
� Cf jt 0 � t j.2�/^a

so that, using the Gaussian feature of the processX

EjXt 0 �Xt jp � Cf;pjt 0 � t jp.�^a=2/

for every p 
 2 which in turn implies, owing to Kolmogorov’s continuity criterion,
that .Xt/t2Œ0;T � admits a version

�
�^ a

2
/���-Hölder continuous for any small enough

� > 0.
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Proposition 6. Let Xt D
Z t

0

f .t � s/dWs , t 2 Œ0; T �, be a continuous Liouville

process where W is a standard B.M. defined on a probability space .˝;A ;P/ and
f satisfies .L�;a/ for a couple .�; a/ 2 .0; 1�� .0;C1/. If furthermore f is �-a:e:
nonnegative, then X satisfies a co-monotony principle on C .Œ0; T �;R/.

The proof of the proposition is straightforward since f 
 0 �-a:e: implies that
the covariance function C

X
is nonnegative.

Example 3. If f .u/ D uH�1=2 withH 2 .0; 1�, then f satisfies .La;�/with a D 2H

and � 2 .0; 1
2

�H/ if H < 1
2
, � D H � 1

2
if H > 1

2
(and � D 1 if H D 1

2
). This

corresponds to the pseudo-fractional Brownian motion with Hurst constantH .

4.1.3 Wiener Integrals Depending on a Parameter

Now we consider a class of processes which is wider than Liouville’s class and
for which we provide a slightly less refined criterion of existence (as a pathwise
continuous process).

Xt D
Z 1

0

f .t; s/dWs ; t 2 Œ0; T �;

where f W Œ0; T � � RC ! R satisfies a dominated �-Hölder assumption reading as
follows: there exists ' 2 L 2.R; dt/, non-increasing, and � 2 .0; 1� such that

.L0
�/ � 8 t; t 0 2 Œ0; T �; 8 s 2 RC; jf .t 0; s/�f .t; s/j � Œf ��jt 0�t j�'.s/:

Such a process has a continuous modification since t 7! Xt is �-Hölder from Œ0; T �

to L2.P/ and Gaussian (still owing to Kolmogorov’s continuity criterion).
As for Liouville processes, if furthermore, for every t 2 Œ0; T �, f .t; :/ is �-a:e:

nonnegative, then the process X satisfies a co-monotony principle.

Example 4. Let fH.t; s/ D .t C s/H� 1
2 � sH� 1

2 , H 2 .0; 1�.
• If H 
 1=2, fH satisfies .L0

H� 1
2

/ with '.s/ D 1.

• If H 2 .0; 1
2
�, fH satisfies .L0

1
2�H/ with '.s/ D s2H�1.

4.1.4 Fractional Brownian Motion with Hurst Constant H 2 .0; 1�

The fractional Brownian motion is a continuous Gaussian process characterized by
its covariance function defined by

8 s; t 2 Œ0; T �; CH .s; t/ D 1

2

�
t2H C s2H � jt � sj2H �:
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Since u 7! uH is H -Hölder and jt � sj2 � t2 C s2, it is clear that C.s; t/ 
 0.
Consequently, the fractional Brownian motion satisfies a co-monotony principle on
C .Œ0; T �;R/.

Remark 5. An alternative approach could be to rely on the celebrated Mandelbrot–
Van Ness representation of the fractional Brownian motion with Hurst constantH 2
.0; 1�, given by

BH
t D

Z C1

0

�
.t C s/H� 1

2 � sH� 1
2
�
dW1

s„ ƒ‚ …
DWB

H;1
t

C
Z t

0

jt � sjH� 1
2 dW2

s„ ƒ‚ …
DWBH;2t

where W 1 and W 2 are independent standard Brownian motions. These two Wiener
integrals define pathwise continuous independent processes, both satisfying the
co-monotony principle for PBH;i -a:s: k : ksup-continuous functionals, consequently
their sum satisfies a co-monotony principle for PBH -a:s: k : ksup-continuous func-
tionals owing to Lemma 4.b/.

4.2 Continuous Markov Processes, Brownian Diffusion
Processes

Proposition 7. Let X D .Xt /t2Œ0;T � be a pathwise continuous Markov process
defined on a probability space .˝;A ;P/ with transition operators .Ps;t /0�s�t�T
satisfying the monotony preserving property. Then X satisfies a functional
co-monotony principle on its path space C .Œ0; T �;R/.

Proof. The sequence .Xtnk /0�k�n is a discrete time Markov chain whose transition
operators Ptnk ;tnkC1

, k D 0; : : : ; n � 1 satisfy the monotony preserving property. ut
The main application of this result is the co-monotony principle for Brownian

diffusions (i:e: solutions of stochastic differential equations driven by a standard
Brownian motion). We consider the Brownian diffusion

(SDE) � dXxt D b.t; Xx
t /dt C �.t; Xx

t /dWt ; X
x
0 D x

where b W Œ0; T � � R ! R is continuous, Lipschitz continuous in x, uniformly in
t 2 Œ0; T � and � W Œ0; T � � R ! R is continuous with linear growth in x, uniformly
in t 2 Œ0; T � and satisfies

8 x; y 2 R; 8 t 2 Œ0; T �; j�.t; x/ � �.t; y/j � �.jx � yj/;
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where

� W R ! R is increasing; �.0/ D 0 and
Z
0C

du

�2.u/
D C1:

Then the equation (SDE) satisfies a weak existence property since b and �

are continuous with linear growth: its Euler scheme weakly functionally con-
verges to a weak solution of (SDE) as its step T=n goes to 0 (see Theorem 5.3
in [10]). It also satisfies a strong uniqueness property (see Proposition 2.13
in [12]) hence a strong existence-uniqueness property. This implies the existence
of (Feller) Markov transitions .Ps;t .x; dy//t	s	0 such that, a:s: for every x 2 R,
Ps;t .f /.x/ D E.f .Xt / jXs D x/ (see e:g: Theorem 1.9 in [18]). Further-
more the flow .Xx

t /x2R;t2Œ0;T � satisfies a comparison principle (Yamada–Watanabe’s
Theorem) i:e: for every x; x0 2 R, x � x0, P-a:s:, for every t 2 Œ0; T �, Xx

t � Xx0

t .
The functional co-monotony principle follows immediately since it implies that the
Markov transitions Ps;t are monotony preserving.

Remark 6. • It is to be noticed that the Euler scheme does not share the com-
ponentwise co-monotony principle as a Markov chain in full generality, in
particular, when � does depend on x. So, the above result for diffusions is not a
simple transfer from the discrete time case. However when �.x; t/ D �.t/ with
� W Œ0; T � ! R continuous, the result can be transferred from the Euler scheme
(see Sect. 2) since this scheme functionally weakly converges toward Xx as its
step T=n goes to 0.

• This result is strongly related to strong uniqueness of solutions of .SDE/. The
above conditions are not minimal, see e:g: [6] for more insights on these aspects.

5 Functional Co-monotony Principle for Càdlàg Processes

The most natural idea is to mimick Proposition 5 by simply replacing
.C .Œ0; T �;R/; k : ksup/ by the space D.Œ0; T �;R/ of càdlàg functions endowed with
the J1-Skorokhod topology (see [2], Chap. 3) whose Borel �-field DT is still
�.�t ; t 2 Œ0; T �/. Although this is not a topological vector space (which make
some results fail like Proposition 5), this approach yields non-trivial results. To be
precise, let us consider, instead of the interpolation operator of a continuous function
on the uniform subdivision .tnk /0�k�n, the stepwise constant approximation operator
defined on every function ˛ 2 D.Œ0; T �;R/ by

Q̨ .n/ D
nX

kD1
˛.tnk�1/1Œtnk�1;t

n
k /

C ˛.T /1fT g; tnk D kT

n
; k D 0; : : : ; n: (4)
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It follows from Proposition 6.37 in [10], Chap. VI (second edition), that Q̨ .n/ ! ˛

for the Skorokhod topology as n ! C1. Then by simply mimicking the proof of
Proposition 5, we get the following result.

Proposition 8. Let X D .Xt /t2Œ0;T � be a pathwise càdlàg process defined on a
probability space .˝;A ;P/ sharing the finite dimensional co-monotony property.
Then X satisfies a functional co-monotony principle on its path space D.Œ0; T �;R/

for the J1-Skorokhod topology.

Thus if one considers now a general càdlàg process with independent increments
(PII) .Xt/t	0 defined on a probability space .˝;A ;P/, it is clear, e:g: from
Proposition 3.a/, that X shares the finite dimensional co-monotony property since
.Xtnk /0�k�n is a Markov chain whose transitions Ptnk�1;t

n
k
.xk�1; dy/ D L

�
xk�1 C

Xtnk � Xtnk�1

�
, k D 1; : : : ; n, are clearly monotony preserving.

Consequently any càdlàg process with independent increments (PII) .Xt /t	0
satisfies a functional co-monotony principle on its path space D.Œ0; T �;R/ for the
J1-Skorokhod topology.

Note that a continuous process which satisfies the functional co-monotony
property on its path space for the sup-norm will always satisfy the functional
co-monotony principle on D.Œ0; T �;R/ for the J1-topology since, when ˛ is con-
tinuous, convergence of a sequence .˛n/ to ˛ for the sup-norm and the Skorokhod
topology coincide.

However this result is not fully satisfactory since there are not so many
functionals which are continuous or even PX -a:s: continuous with respect to the
Skorokhod topology. Thus the partial maxima functional ˇ 7! sups2Œ0;t � jˇ.s/j is
not Skorokhod continuous at ˛ if ˛ is not continuous at t (except when t D T )
and this functional co-monotony principle will fail, e:g: for any process X having a
fixed discontinuity at t . This is the reason why we establish in the next subsection a
functional co-monotony principle for general PII on D.Œ0; T �;R/ endowed with the
sup-norm topology.

5.1 Sup-norm Co-monotony for Processes with Independent
Increments

We consider a general càdlàg process with independent increments (PII) .Xt /t	0
defined on a probability space .˝;A ;P/. We rely on its Lévy–Khintchine decom-
position as exposed in [10], Chap. II, Sect. 3. First one can decomposeX as the sum

X D X.1/
??C X.2/

where X.1/ and X.2/ are two independent PII: X.1/ is a PII without fixed
discontinuities andX.2/ is a pure jump PII, possibly jumping only at a deterministic
sequence of times, namely
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X
.2/
t D

X
n	1

Un1ftn�tg; t 2 Œ0; T �;

where .tn/n	1 is a sequence of Œ0; T �-valued real numbers and .Un/n	 is a sequence
of independent random variables satisfying the usual assumption of the three series
theorem

X
n

P.jUnj 
 1/ < C1;

X
n

EUn1fjUnj�1g < C1;

X
n

E
�
U 2
n 1fjUnj�1g � .EUn1fjUn j�1g/2

�
< C1:

Proposition 9. A càdlàg PII satisfies a co-monotony principle on .D.Œ0; T �;R/;
k : ksup/.

Proof. Owing to Lemma 4.a/, we will inspect successively the cases of PII without
fixed discontinuities and of pure jumps.
STEP 1. X is a PII without fixed discontinuities: This means that X.2/ � 0. The
classical (pathwise) Lévy–Khintchine formula for PII without fixed discontinuities
says that, a truncation level " > 0 being fixed, X reads as the sum of three mutually
independent processes as follows

8 t 2 Œ0; T �; Xt D b".t/CWc.t/

??C
X
s�t

�Xs1f�Xs j>"g
??C M"

t

where b" is a continuous function on Œ0; T �, c is a nonnegative non-decreasing
continuous function on Œ0; T � with c.0/ D 0 and M"

t is a pure jump martingale
satisfying

E

 
sup
s2Œ0;t �

jM"
s j2
!

� 4

Z
Rnf0g

x21fjxj�"g�X.Œ0; t � � dx/

where the measure �X is the Lévy measure ofX , i:e: the dual predictable projection
of the jump measure �X.ds; dx/ D P

s2Œ0;T � 1f�Xs¤0g�Xs. The Lévy measure is
characterized by the fact that, for every bounded Borel function g W R ! R null in
the neighbourhood of 0,

Z
Œ0;t �

Z
Rnf0g

g.x/.�X.ds; dx/� �X.ds; dx//; t 
 0; is a local martingale:

In particular for any such function we get the compensation formula
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E


X
t�T

g.�Xt/
�

D
Z
g.x/�X .Œ0; T � � dx/

which extends to any nonnegative function g or satisfying
Z
Rnf0g

jg.x/j�X.Œ0; T � �
dx�/ < C1. The Lévy measure �X satisfies

�X.f0g � R/ D �X.ftg � dx/ D 0;

Z
R

.x2 ^ 1/�X.Œ0; t � � dx/ < C1; t 2 RC:

In what follows, we make the convention that �˛1 D 0 for any càdlàg function
˛ defined on RC.

First, owing to Lemma 4.a/ and the result about the standard Brownian in Sect. 3,
we can assume that c � 0 in what follows, i:e: that there is no Brownian component.
Then we define two independent marked Poisson processes with positive jumps as
follows

QX";˙
t D

X
s�t
.�Xs/˙1f.�Xs/˙>"g

and QX" D QX";C � QX";�. For each process, we define their inter jump sequence
. Q�";˙

n /n	0 i:e:, with the convention Q�";˙
0 D 0,

Q�";˙
nC1 D minfs > QSṅ j .�X QS";˙n Cs/˙ > "g 2 .0;C1�; n 
 0;

where QS";˙n D Q�";˙
1 C � � � C Q�";˙

n .
Both processes QX";C and QX";� are independent since they have no common

jumps. Furthermore the four sequences . Q�";˙
n /n	1 and .� QX";˙

QS˙
n

/n	1 are mutually

independent and made of mutually independent terms.
Let F be a bounded measurable non-decreasing defined on functional on

D.Œ0; T �;R/. Now, for every n 
 1, we define on R
2n the function Fn by

Fn.�1; 	1; : : : ; �n; 	n/ D F

� nX

kD1
.�k/C

1f	1C���C	n�tg
�
t2Œ0;T �

�
;

�1; : : : ; �n 2 R; 	1; : : : ; 	n 2 R:

It is straightforward that the functions Fn are non-decreasing in each variable �i and
non-increasing in each variable 	i 2 RC.

For every n 
 1, set QX";n;˙
t D

nX
kD1

�
�X QS";˙k

�
˙1f QS";˙k �tg so that

F. QX";n;˙/ D Fn
�
..�X QS";˙k

/˙; Q�";˙
k /kD1;:::;n

�
:
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Consequently, if F and G are co-monotone (measurable) functionals on
D.Œ0; T �;R/, it follows from Proposition 3.b/ (co-monotony principle for mutually
independent random variables) that

EF. QX";n;˙/G. QX";n;˙/ 
 EF. QX";n;˙/EG. QX";n;˙/:

Now

sup
t2Œ0;T �

j QX";˙
t � QX";n;˙

t j �
X
k	nC1

�
�X QS";˙k

�
˙1f QS";˙k �T g

so that

P
�

sup
t2Œ0;T �

j QX";˙
t � QX";n;˙

t j > 0� � P. QSṅC1 � T / ! 0 as n ! 1

since the process X has finitely many jumps of size greater than " on any bounded
time interval. The continuity of F and G transfers the co-monotony inequality to
QX";˙. In turn, the independence of these two processes, combined with Lemma 4.a/,

propagates co-monotony to the global Poisson process QX".
Noting that F and F.b" C :/ have the same monotony (if any), one derives that

X � M" satisfies the co-monotony principle for every " > 0. One concludes by
noting that kM"ksup ! 0 as " ! 0 in L2. ut

5.2 Càdlàg Markov Processes and k : kL
p

T
.�/-Continuous

Functionals

It is often convenient to consider some path spaces of the form Lp.Œ0; T �; �/ where
� is a �-finite measure and p 2 Œ1;C1/, especially because of the properties
of differentiation on these spaces which allow the natural introduction of gradient
fields. Of course, less functionals are continuous for such a topology than with the
k : ksup-norm topology when the process X has continuous (or even càdlàg) paths.

Then, following the lines of the proof of Proposition 7 but with a new canonical
approximation procedure of a function ˛, this time by a stepwise constant function,
one shows the following property.

Proposition 10. Let .Xt/t2Œ0;T � be a càdlàg Markov process defined on a probabil-
ity space .˝;A ;P/ with transitions operators .Ps;t /t	s	0 satisfying the monotony
property. Let � be a finite measure on .Œ0; T �;Bor.Œ0; T �// and let p 2 Œ1;C1/.
Let F;G W D.Œ0; T �;R/ ! R be two �-co-monotone functionals, PX -a:s:
continuous with respect to the Lp

T
.�/-norm on D.Œ0; T �;R/. If F.X/, G.X/ and

F.X/G.X/ are integrable or have PX -a:s: a common constant sign, then
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EF.X/G.X/ 
 EF.X/EG.X/:

Proof. For every ˛ 2 D.Œ0; T �;R/ and very integer n 
 1 we define the stepwise
constant approximation operator Q̨ .n/ defined by (4). It is clear that ˛.n/.t/ ! ˛.t/

at every t 2 Œ0; T � and that the sequence .˛.n//n	1 is bounded by k˛ksup. Hence ˛.n/

converges to ˛ in every Lp
T
.�/, 1 � p < C1. The rest of the proof is similar to

that of Proposition 7. ut

6 Examples of Applications

6.1 Functional Antithetic Simulation Method

Of course, the first natural application is a functional version of the antithetic
simulation method which was briefly described in the introduction. In fact, if a
process X taking values in a vector subspace E � F .Œ0; T �;R/ (partially ordered
by the pointwise order) satisfies a functional co-monotony principle in the sense
of Definition 4 and is invariant in distribution under a continuous non-increasing
mapping T W E ! E (by T non-increasing we mean that ˛ � ˇ ) T .˛/ 
 T .ˇ/,
˛, ˇ 2 E) that for any sup-norm continuous monotone functional F W E ! R

(square integrable or with constant sign)

Cov.F.X/; F ıT .X// D EF.X/F ıT .X/� .EF.X//2 � 0:

As a consequence, in order to compute EF.X/ by a Monte Carlo simulation, it

follows that the computation of (independent copies of)
F.X/C F ı T .X/

2
will

induce, for a prescribed simulation budget, a lower variance than a simulation only
computing (independent copies of) F.X/ like in the scalar framework. In practice
such simulations rely on discretization schemes of X for which the co-monotony
principle is only true asymptotically (when the discretization step will go to zero).
So is the case for the Euler scheme of a Brownian diffusion with non deterministic
diffusion coefficient.

It remains that this strongly suggests, in order to compute EF.X/ where
X D .Xt/t2Œ0;T � is a Brownian diffusion and F is a monotone PX -a:s: sup-norm
continuous functional, to simulate systematically two coupled paths of an Euler
scheme (with a small enough step): one with a sequence of Brownian increments
.WtnkC1

�Wtnk
/k	0 and one with its opposite �.WtnkC1

�Wtnk
/k	0. In fact we know, e:g:

from [18] (Chap. IX, p. 341) that X D %.W /. Although we do not know whether
F ı% is monotone (and PW -a:s: sup-norm continuous) the sign of the covariance
can be roughly tested on a small simulated sample.
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6.2 A First Application to Peacocks

The aim of this section is to prove that the (centered) antiderivative of an integrable
process satisfying a co-monotony principle is a peacock in the sense of the definition
given in the introduction.

Proposition 11. Let X D .Xt/t	0 be an integrable càdlàg process satisfying a
co-monotony principle for the sup norm on every interval Œ0; T �, T > 0, and let
� be a Borel measure on .RC;Bor.RC//. Assume that supŒ0;t � E jXsj < C1 for
every t > 0 and that t 7! EXt is càdlàg. Then the process


 Z
Œ0;t �

.Xs � EXs/�.ds/
�
t	0 is a peacock.

Remark 7. If sup
t2Œ0;T �

EjXt j1C" < C1 for an " > 0, then t 7! EXt is càdlàg by a

uniform integrability argument.

Proof. First we may assume without loss of generality that the processX is centered
since .Xt � EXt/t2Œ0;T � clearly satisfies a co-monotony principles on D.Œ0; T �;R/

for every T > 0 if X does (since t 7! EXt is càdlaàg). Set for convenience Yt DR t
0
Xs�.ds/. It is clear from the assumption and Fubini’s Theorem that Yt 2 L1.P/

and EYt D 0.
B STEP 1 : Let ' W R ! R be a convex function with linear growth (so that
'.Yt/ 2 L1.P/ for every t 
 0). Its right derivative ' 0

r is a non-decreasing bounded
function. The convexity of the function ' implies, for every x, y 2 R,

'.y/ � '.x/ 
 ' 0
r .x/.y � x/

so that, if t1 < t2

'.Yt2/ � '.Yt1/ 
 ˚t1.X/

Z
.t1;t2�

Xs �.ds/

where ˚t1.˛/ D ' 0
r


 R
Œ0;t1�

˛.s/�(ds)
�

is bounded, continuous for the sup norm

topology on D.Œ0; t2�;R/ and non-decreasing for the pointwise order. The functional

˛ 7!
Z
.t1;t2�

˛.s/�(ds) is also continuous for the sup norm topology, pointwise non-

decreasing and

ˇ̌
ˇE
Z
.t1;t2�

Xs�.ds/
ˇ̌
ˇ � E

Z
.t1;t2�

jXsj�.ds/ � �..t1; t2�/ sup
s2Œt1;t2�

EjXsj < C1:

Consequently, owing to the co-monotony principle, we get
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E



˚t1.X/

Z
.t1;t2�

Xs�.ds/
�


 E˚t1.X/E

 Z

.t1;t2�

Xs�.ds/
�

D E˚t1.X/ �
Z
.t1;t2�

EXs�.ds/ D 0

so that E'.Yt2/ 
 E'.Yt1/ 2 L1.P/.
STEP 2: Assume now that ' is simply convex. For every A > 0, we define the
following convex function 'A with linear growth:

'
A
.y/ D

8<
:
'.y/ if jyj � A

'.A/C ' 0
r .A/.y � A/ if y 
 A

'.�A/C ' 0
r .�A/.y C A/ if y 
 A:

It is clear that 'A " ' as A " C1 and that E'A.Yt2/ 
 E'A.Yt1/ by Step 1.
Now 'A has linear growth so that 'A.Yt / 2 L1.P/. Consequently it follows from

the monotone convergence theorem that E'A.Yt / " E'.Yt / 2 .�1;C1� as A "
C1. This completes the proof. ut

6.3 From the Sensitivity of Asian Path-Dependent Options
to Peacocks

Let � be a finite measure on .Œ0; T �;Bor.Œ0; T �// and, for every p 2 Œ1;C1/,
let q denote its Hölder conjugate. Note that, of course, D.Œ0; T �;R/ � L1

T
.�/ �

\p	1LpT .�/.

Definition 6. .a/ Let p 2 Œ1;C1/. A measurable functional F W Lp
T
.�/ ! R

is regularly differentiable on D.Œ0; T �;R/ if, for every ˛ 2 D.Œ0; T �;R/,
there exists a measurable “gradient” functional rF W �Œ0; T � � D.Œ0; T �;R/;

Bor.Œ0; T �/˝ DT

� ! R such that

8̂
<
:̂
.i/ rF.:; ˛/ 2 Lq

T
.�/

.i i/ limkhk
L
p
T .�/

!0;h2LpT .�/

ˇ̌
ˇF.˛Ch/�F.˛/�R T0 rF.s;˛/h.s/�.ds/

ˇ̌
ˇ

khk
L
p
T .�/

D 0:
(5)

.b/ Furthermore, a gradient functional rF is monotone if, for every t 2 Œ0; T �,
rF.t; :/ is monotone on D.Œ0; T �;R/ and if this monotony does not depend on
t 2 Œ0; T �.

Proposition 12. Let X D .Xt /t2Œ0;T � be a (càdlàg) PII such that, for every u 2 R,
L.u; t/ D E euXt is bounded and bounded away from 0 over Œ0; T � so that, in
particular, the function 
.u; t/ D logE euXt can be defined as a real valued
function. Let F W Lp

T
.�/ ! R be a measurable functional, regularly differentiable
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with a monotone gradient rF on Œ0; T � � D.Œ0; T �;R/ satisfying the following
Lipschitz continuity assumption

8˛; ˇ 2 D.Œ0; T �;R/; jF.˛/ � F.ˇ/j � ŒF �Lipk˛ � ˇkLpT .�/:

Set, for every � > 0,

f .�/ D E



F


e�X:�
.�;:/

��
: (6)

Then, under the above assumptions, the function f is (differentiable and) non-
decreasing.

Remark 8. At least for Lévy processes, the assumption supt2Œ0;T � EeuXt < C1, u 2
R, is satisfied as soon as E euXt < C1 for every u 2 R (see [19], Theorem 25.18,
p. 166).

Before proving the proposition, we need the following technical lemma about the
regularity of function L whose details of proof are left to the reader.

Lemma 1. Under the assumption made on the function L in Proposition 12, the
function � defined on R

2C by �.a; t/ D E eajXt j is finite. Then for every a 2
.0;C1/, L is Lipschitz continuous in u on Œ�a; a�, uniformly in t 2 Œ0; T �, with
Lipschitz coefficient (upper-bounded by) �.a; T /. Furthermore, for every u 2 R,
there exists u;T > 0 and " D ".u; T / > 0 such that

8 t 2 Œ0; T �; 8 u0 2 Œu � "; u C "�; L.u; t/ 
 u;T :

Proof (Proof of Proposition 12). Formally, the derivative of f reads

f 0.�/ D E

�Z T

0

rF


e�X:�
.�;:/; t

�
e�Xt�
.�;t/.Xt � 
 0

� .�; t/
�
�.dt/

�

D
Z T

0

E



rF



e�X:�
.�;:/; t

�
e�Xt�
.�;t/.Xt � 
 0

� .�; t/
��
�.dt/:

To justify that this interchange of differentiation and expectation in the first line is
valid we need to prove that the ratio

F


e�

0X:�
.� 0;:/
�

� F


e�X:�
.�;:/

�

� 0 � � ; � 0 ¤ �; �; � 0 2 Œ$0; 1=$0�; $0 > 0;

is L1C�-bounded for an � > 0. Without loss of generality, we may assume that

p D 1 C � > 1 since k : kLpT � �.Œ0; T �/
1
p � 1

p0 k : k
L
p0

T

if 1 � p � p0. This follows

from the Lipschitz continuity of F and from the properties of the Laplace transform
L established in Lemma 1.
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Let Gt WD �.Xs�Xt ; s 2 Œt; T �/. This �-field is independent of FX
t . Elementary

computations show that, for every t 2 Œ0; T �,

E



rF



e�X:�
.�;:/; t

�
j Gt
�

D ˚


Xt�
.�; :/

�
;
�
Xs�
.�; :/

�

�
s2Œ0;t �; t

�

where, for every ˇ 2D.Œ0; t �;R/,

˚.�; ˇ; t/ D E
�rF �e�.X:�Xt /�.
.�;:/�
.�;t//C�ˇ.t/1.t;T � C e�ˇ1Œ0;t �; t

��
:

Note that, for every t 2 Œ0; T �, the function ˚.:; :; t/ is non-decreasing in both
remaining arguments. Now

f 0.�/ D
Z T

0

E

�
˚

�
Xs�
.�; :/

�

�
s2Œ0;t �; t

�
e�.Xt�


.�;t/
� /
�
Xt � 
 0

� .�; t/
��
�.dt/:

(7)

Set Q.t/ D e�Xt�
.�;t/ � P. It is classical that .Xs/s2Œ0;t � is still a PII under Q.t/

with exponential moment at any order and a log-Laplace transform 
.t/ given by


.t/.u; s/ D 
.� C u; s/� 
.�; s/:

Note that 
.t/ does not depend on t but on � . Consequently, for every s 2 Œ0; t �,

EQ.t/

�
Xs
� D @
.t/

@u
.0; s/ D 
 0

� .�; s/

where 
 0
� .�; s/ denotes the partial derivative of 
 with respect to � . Putting QXs D

Xs � 
 0
� .�; s/, we get

f 0.�/ D
Z T

0

EQ.t/

�
˚

� QXs C 
 0

�.�; s/ � 
.�; s/

�

�
s2Œ0;t �; t

� QXt
�
�.dt/: (8)

Applying the co-monotony principle to the PII QX and to the two non-decreasing
Lp
T
.�/-continuous functionals F.˛/ D ˚

��
˛.s/ C 
 0

� .�; s/ � 
.�;s/

�

�
s2Œ0;t �

�
and

G.˛/ D ˛.t/ yields that, for every t 2 Œ0; T �,

EQ.t/

�
˚

� QXs C 
 0

� .�; s/ � 
.�; s/

�

�
s2Œ0;t �; t

� QXt
�


 0

since EQ.t/
QXt D 0. As a consequence, f is a non-decreasing function. ut

Corollary 1 (see [9]). Under the assumptions of Proposition 12 on the càdlàg PII

X , the process � 7!
Z T

0

e�Xt�
.�;t/�.dt/, � 2 RC, is a peacock (with the definition

recalled in the introduction).
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Proof. Let ' W R ! R be a convex function and, for every A > 0, let 'A be defined
by ' 0

A.x/ D '.x/ if x 2 Œ�A;A� and 'A affine and differentiable on .�1;�A� [
ŒA;C1/. It is clear that 'A " ' since ' takes values in .�1;C1�. Then set

'A;".x/ D E'A.xC "Z/ whereZ
L� N .0I 1/. The function 'A;" is (finite) convex,

infinitely differentiable, Lipschitz continuous and converges uniformly to 'A when
" ! 0. The functional FA;".˛/ D 'A;"

� R T
0
˛.t/�.dt/

�
satisfies the assumptions of

the above Proposition 12 so that the function fA;" defined by (6) is non-decreasing.
Letting " ! 0 and A ! C1 successively implies that the function f related (still
through (6)) to the original functional F.˛/ D '

� R T
0
˛.t/�.dt/

�
is non-decreasing

which completes the proof (for A " C1 the arguments are those of the proof of
Proposition 11. ut
Remark 9. • In fact this proof remains close in spirit to that proposed in [9].

Roughly speaking we replace the notion of conditional monotony used in [9]
by a functional co-monotony argument (which also spares a time discretiza-
tion phase). The notion of conditional monotony and its applications have
been extensively investigated in the recent PhD thesis of A. Bogso (see [3]).
Conditional monotony has been developed on the basis of finite dimensional
distributions of a process but it is clear that a functional version can be derived
for (continuous) functionals. Then, when the parameter of interest is time, the
connection with functional co-monotony looks clear since it corresponds to
a weak form of the functional co-monotony principle restricted to couples of
functionals of the form F.˛t / and G.˛/ D g.˛.t// (˛t denotes the stopped
function ˛ at t).

• As already noticed in [9], specifying � into ıT or 1
T
�jŒ0;T � in the corollary

provides the two main results for peacocks devised from e�Xt�
.�;t/. When
� D 1

T
�jŒ0;T � one can combine the above results with some self-similarity

property of the PII process .Xt/t2Œ0;T � (if any) to produce other peacocks. So
is the case with the seminal example investigated in [4] where the original aim
was, for financial purposes, to prove that

�
1

t

Z t

0

eBs�
s
2 ds

�
t2.0;T �

is a peacock:

Many other examples of this type are detailed in [3, 9].

APPLICATION TO A CLASS OF ASIAN OPTIONS. As concerns the sensitivity of
exotic derivatives, one can derive or retrieve classical results in a Black–Scholes
model for the class of Asian options with convex payoff. To be precise, we consider
payoff functionals of the form˚T D '

�
1
T

R T
0
Ssds

�
where ' is a nonnegative convex

function (with linear growth) and St D s0e
.r� �2

2 /tC�Wt , t 2 Œ0; T �, where s0 > 0,
� > 0 and W is a standard Brownian motion (r is a possibly negative interest rate).
The holder of an option contract “written” on this payoff receives in cash at the
maturity T > 0 the value of the payoff ˚T . Classical arbitrage arguments yield that
the premium or price at time 0 of such an option is given by
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Premium0.s0; �; r; T / D e�rT
E'


 1
T

Z T

0

Ssds
�
:

By considering the measure �.dt/ D ert 1
T
�jŒ0;T �(dt), one derives from Corol-

lary 1 that � 7! Premium0.s0; �; r; T / is non-decreasing. When r D 0 a change
of variable shows that the premium is also non-decreasing as a function of the
maturity T .

6.4 Examples of Bounds for Barrier Options

Let S D .St /t 2 Œ0;T � be a càdlàg nonnegative stochastic process defined on a
probability space .˝;A ;P/, modeling the price dynamics of a risky asset. We will
assume that P is a pricing measure in the sense that derivatives products “written” on
the asset S are priced under P. In particular we do not ask P to be risk-neutral. We
assume for convenience that the zero-coupon bond (also known as the riskless asset)
is constant equal to 1 (or equivalently that all interest rates are constant equal to 0)
but what follows remains true if the price dynamics of this bond is deterministic.

For notational convenience, for a càdlàg function ˛ W Œ0; T � ! R, we will
denote by �˛t WD infs�t ˛s , .t 2 Œ0; T �/, the running minimum of the function
˛ and by ˛�

t WD sups�t ˛s its running maximum process. In what follows we
will extensively use the following classical facts: ˛ 7!� ˛T T and ˛ 7! ˛�

T
T are

Skorokhod continuous on D.Œ0; T �;R/ and, for every t 2 Œ0; T /, ˛ 7!� ˛t and
˛ 7! ˛�

t are sup-norm continuous on D.Œ0; T �;R/ (and Skorokhod continuous at
every ˛ continuous at t).

We assume throughout this section that the asset price dynamics .St /t2Œ0;T �
satisfies a functional co-monotony principle. This seems is a quite natural and
general assumption given the various classes of examples detailed above.
We will focus on Down-and-In Call and Down-and-Out Call with maturity T . The
payoff functional of a Down-and-In Call with maturity T is defined for every strike
price K > 0 and every barrier L 2 .0; S0/ by

FD&I .˛/ D �
˛.T / �K/C1f�˛T �Lg:

This means that the holder of the Down-and-In Call written on the risky asset S
contract receives FD&I .S/ at the maturity T , namely ST �K at the maturity T > 0
provided this flow is positive and the asset attained at least once the (low) barrier L
between 0 and T > 0.

The premium of such a contract at time 0 is defined by

CallD&In.K;L; T / D E
�
FD&I .S/

�
:

We will denote by Call.K; T / D E .ST � K/C the premium of the regular (or
vanilla) Call option with strike K (and maturity T ).
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Proposition 13. If the nonnegative càdlàg process .St /t2Œ0;T � satisfies a finite
dimensional co-monotony principle (hence functional co-monotony principle on
D.Œ0; T �;R/ for the Skorokhod topology), then the following semi-universal bound
holds:

CallD&In.K;L; T / � Call.K; T /P.�ST � L/:

Proof. For every ˛ 2 D.Œ0; T �;R/ and every " > 0, we have

FD&I .˛/ � �
˛.T / �K/C

�

1� �˛T � L

"

�
C ^ 1

�
:

The two functionals involved in the product of the right hand side of the above
equation are clearly anti-monotone, nonnegative and continuous with respect to the
Skorokhod topology, consequently

CallD&In.K;L; T / � Call.K; T /E

�

1 � �ST � L

"

�
C ^ 1

�
:

The result follows by letting " ! 0 owing to Fatou’s Lemma. ut
As concerns the Down-and-Out Call with payoff

FD&O.˛/ D �
˛.T / �K/C1f�˛T >Lg

for which the holder of the option receives ST � K at the maturity T > 0 if this
flow is positive and if the asset did not attain the (low) level L between 0 and T >

0, one gets, either by a direct approach or by using the obvious parity equation
CallD&In.K;L; T /C CallD&Out .K;L; T / D Call.K; T /,

CallD&Out .K;H; T / 
 Call.K; T /P.�ST > L/:

Similar bounds can be derived for Up-and-In and Up-and-Out Calls with barrier
L > S0 (and strike K), namely

CallU&In.K;L; T / 
 Call.K; T /P.S�
T > L/

and

CallU&Out .K;L; T / � Call.K; T /P.S�
T � L/:

If one considers extensions of the above payoffs in which the barrier needs to be
(un-)knocked strictly prior to T , at a time T 0 < T , similar semi-universal bounds
can be obtained provided one of the following assumption is true P.ST 0 D ST 0�/ D
1 or .St /t2Œ0;T � satisfies a functional co-monotony principle with respect to the sup-
norm on D.Œ0; T �;R/.
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6.5 A Remark on Running Extrema

If a càdlàg process X D .Xt /t2Œ0;T � satisfies a co-monotony principle and X
T

and
supt2Œ0;T � Xt have no atom so that, for every x, y 2 R, x � y, the functional
˛ 7! �

1f˛.T /	xg; 1fsupt2Œ0;T � ˛.t/	yg
�

is PX -a:s: k : ksup-continuous, then

8 y 2 R; P
�

sup
t2Œ0;T �

Xt 
 y
� D inf

x�y P
�

sup
t2Œ0;T �

Xt 
 y jXT 
 x
�
:

Of course the list of possible applications is not exhaustive. In more specific
problems, one can take advantage of the functional co-monotony principle to
establish less conservative inequalities and bounds on parameters of a problem. A
typical example is provided by [14] devoted to optimal order execution on a financial
market, cited here since it was partially at the origin of the present work.
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Fluctuations of the Traces of Complex-Valued
Random Matrices

Salim Noreddine

Abstract The aim of this paper is to provide a central limit theorem for complex
random matrices .Xi;j /i;j	1 with i.i.d. entries having moments of any order. Tao
and Vu (Ann. Probab. 38(5):2023–2065, 2010) showed that for large renormalized
random matrices, the spectral measure converges to a circular law. Rider and
Silverstein (Ann. Probab. 34(6):2118–2143, 2006) studied the fluctuations around
this circular law in the case where the imaginary part and the real part of the random
variable Xi;j have densities with respect to Lebesgue measure which have an upper
bound, and their moments of order k do not grow faster than k˛k , with ˛ > 0. Their
result does not cover the case of real random matrices. Nourdin and Peccati (ALEA
7:341–375, 2008) established a central limit theorem for real random matrices using
a probabilistic approach. The main contribution of this paper is to use the same
probabilistic approach to generalize the central limit theorem to complex random
matrices.

Keywords Central limit theorems • Invariance principles • Normal approxi-
mation • Nualart–Peccati criterion of asymptotic normality • Random matrices

1 Introduction

This paper provides a central limit theorem for complex random matrices with
i.i.d entries having moments of any order. It generalizes the results of Rider and
Silverstein [11] which do not include the case of discrete random variables, and
random variables with moments of order k that grow faster than k˛k , with ˛ > 0. We
use the probabilistic approach of Nourdin and Peccati [7] based on the principle of
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universality for a homogeneous sum of i.i.d random variables, which is an instance
of the Linderberg principle, see Rotar [12] and Mossel et al. [6]. This universality
principle states that, under some conditions, the convergence of a homogeneous
sum of a family of i.i.d. random variables is equivalent to the convergence of this
homogeneous sum subject to the substitution of the family of random variables by
a Gaussian i.i.d. family. Furthermore, the homogeneous sum of a Gaussian family
belongs to the Wigner chaos. Thus, we can use the fourth moment theorem of
Nualart and Peccati [9] and Peccati Tudor [10] to establish our main result.

In the particular case of symmetric band matrices, Anderson and Zeitouni [2]
have shown a central limit theorem using a version of the classical method of
moments based on graph enumerations. These techniques require the estimation of
all joint moments of traces whereas our approach merely requires the computation
of variances and fourth moments. For the case of symmetric matrices, we refer to
Sinai and Soshnikov [13] or Guionnet [5] or Anderson et al.[1].

The general statement proved by Chatterjee [3] (Theorem 3.1) concerns the nor-
mal approximation of linear statistics of possibly non-Hermitian random matrices.
However, the techniques used by the author require that the entries can be re-written
as smooth transformations of Gaussian random variables. In particular, the results
of Chatterjee [3] cannot be used for discrete distributions.

Let X be a centered random variable with unit variance, taking its values in C

and admitting moments of all orders. Let
˚
Xi;j

�
i;j	1 be a family of independent and

identically distributed copies of X . We denote by Xn the random matrix defined as

Xn D
�
Xi;jp
n

�
1�i;j�n

:

In this paper, we aim to find the limit (in law) of

trace.Xd
n / �E�trace.Xd

n /
	
; (1)

where Xd
n denotes the d -th power of Xn. To achieve this goal, we will make use of

the following identity:

trace.Xd
n / D n� d

2

nX
i1;:::;idD1

Xi1;i2Xi2;i3 : : : Xid ;i1 :

In the case where X is real-valued, the problem was solved by Nourdin
and Peccati [7]. The present study extends [7] to the more general case of a
complex-valued random variable X .

When d D 1, the expression (1) is very simple; we have indeed

trace.Xn/ �E�trace.Xn/
	 D 1p

n

nX
iD1
Xi;i :
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As a consequence, if X is real-valued then a straightforward application of the
standard cental limit theorem (CLT) yields the convergence in law to N.0; 1/. The
case where X is complex-valued is not much more difficult, as one only needs
to use the bidimensional CLT to get the convergence in law to Z D Z1 C iZ2,
where .Z1;Z2/ is a Gaussian vector with the same covariance matrix as that of
.Re.X/; Im.X//.

When d 
 2, we have:

trace.Xd
n / �E�trace.Xd

n /
	 D n� d

2

nX
i1;:::;idD1

�
Xi1;i2 : : : :Xid ;i1 �EŒXi1;i2 : : : :Xid ;i1 �

�
:

(2)

If X is real-valued, it is shown in [7] that there is convergence in law of (2) to
the centered normal law with variance d . The idea behind the proof is to separate
the sum in the right-hand side of (2) into two parts: a first part consisting of the sum
over the diagonal terms, i.e. the terms with indices i1; : : : ; id such that there is at
least two distinct integers p and q satisfying .ip; ipC1/ D .iq; iqC1/; and a second
part consisting of the sum over non-diagonal terms, i.e. the sum over the remaining
indices. Using combinatorial arguments, it is possible to show that the sum over
diagonal terms converges to 0 in L2. Thus, the contribution to the limit comes from
the non-diagonal terms only. In order to tackle the corresponding sum, the idea [7]
is to focus first on the particular case where the entries Xi;j are Gaussian. Indeed,
in this context calculations are much simpler because we then deal with a quantity
belonging to the d -th Wiener chaos, so that the Nualart–Peccati [9] criterion of
asymptotic normality may be applied. Then, we conclude in the general case (that is,
when the entries are no longer supposed to be Gaussian) by extending the invariance
principle of Nourdin, Peccati and Reinert [8], so to deduce that it was actually not a
loss of generality to have assumed that the entries were Gaussian.

In this paper we study the more general case of complex-valued entries. As we
will see, the obtained limit law is now that of a random variable Z D Z1 C iZ2,
where .Z1;Z2/ is a Gaussian vector whose covariance matrix is expressed by means
of the limits of the expectations of the square of (1), as well as the modulus of the
square of (1). To show our result, our strategy consists to adapt, to the complex case,
the same method used in the real case. Specifically, we show the following theorem.

Theorem 1. Let
˚
Xij

�
i;j	1 be a family of centered, complex-valued, independent

and identically distributed random variables, with unit variance and admitting
moments of all orders. Set

Xn D
�
Xi;jp
n

�
1�i;j�n

:

Then, for any integer k 
 1,

˚
trace.Xd

n /� E
�
trace.Xd

n /
	�
1�d�k

law�! fZd g1�d�k :
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The limit vector fZd g1�d�k takes its values in C
k , and is characterized as

follows: the random variablesZ1; : : : ; Zk are independent and, for any 1 � d � k,
we have Zd D Z1

d C iZ2
d , where

�
Z1
d ;Z

2
d

�
denotes a Gaussian vector with

covariance matrix equal to

p
d

�
a c

c b

�
;

with aC b D 1 and a � b C i2c D E.X2
1;1/

d .

The closest result to ours in the existing literature, other than the previously
quoted reference by Nourdin and Peccati [7], is due to Rider and Silverstein [11]. At
this stage of the exposition, we would like to stress that Theorem 1 already appears
in the paper [11], but under the following additional assumption on the law of
X1;1: Re.X1;1/ and Im.X1;1/ must have a joint density with respect to Lebesgue
measure, this density must be bounded, and there exists a positive ˛ such that
E..X1;1/

k/ � k˛k for every k > 2. These assumptions can sometimes be too
restrictive, typically when one wants to deal with discrete laws. Nevertheless, it
is fair to mention that Rider and Silverstein focus more generally on Gaussian
fluctuations of trace

�
f .Xn/

� � EŒtrace
�
f .Xn/

�
�, when f W C ! C is holomorphic

and satisfies some additional technical assumptions (whereas, in our paper, we
“only” discuss the polynomial case f 2 CŒX�).

The rest of the paper is devoted to the proof of Theorem 1. To be in position to do
so in Sect. 4, we need to establish some preliminary combinatorial results in Sect. 2,
as well as some results related to the Gaussian approximation in Sect. 3.

2 Some Preliminary Combinatorial Results

As we said, before giving the proof of Theorem 1 we need to present some
combinatorial results. In what follows, we assume that d 
 2 is fixed. Note that
the pairs .i1; i2/; : : : ; .id ; i1/ appearing in formula (2) are completely determined by
the d -tuple .i1; : : : ; id /. Indeed, it is straightforward that the set Cn of elements

..i1; i2/; ::; .id ; i1// in
�
Œ1; n�2

�d
is in bijection with Œ1; n�d via the application

..i1; i2/; ::; .id ; i1// 7! .i1; : : : ; id /. The cardinality of Cn is therefore equal to
nd . We denote by Dn the set of diagonal terms of Cn, i.e. the set of elements
of Cn such that there exist (at least) two distinct integers j and k such that
.ij ; ijC1/ D .ik; ikC1/, with the convention that idC1 D i1. We denote by NDn D
Cn n Dn the set of non-diagonal terms. If i1; : : : ; id are pairwise distinct, then
..i1; i2/; ::; .id ; i1// belongs to NDn. Thus, the cardinality of NDn is greater or equal
to n.n� 1/ : : : .n� d C 1/, or, equivalently, the cardinality ofDn is less or equal to
nd � n.n � 1/ : : : .n � d C 1/. In particular, the cardinality ofDn is O.nd�1/.

For any integer p 
 1, any integers ˛; ˇ 2 Œ1; n� and any element Ip having the
following form

Ip D �
.x1; y1/; : : : ; .xp; yp/

� 2 �Œ1; n�2�p; (3)
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we denote by mcIp .˛; ˇ/ the number of times that the pair .˛; ˇ/ appears
in (3). Furthermore, we denote by mpIp .˛/ the number of occurrences of ˛ in
fxi ; yj g1�i;j�p. For example, if I4 D ..1; 3/; .3; 4/; .1; 3/; .5; 7// then mpI4.3/ D 3,
mpI4 .1/ D 2, mcI4 .1; 3/ D 2 and mcI4 .3; 4/ D 1. For r elements

Jk D �
.i
.k/
1 ; i

.k/
2 /; : : : ; .i

.k/

d ; i
.k/
1 /

� 2 Cn; k D 1; : : : ; r;

we define the concatenation J1 t : : : t Jr as being

�
.i
.1/
1 ; i

.1/
2 /; : : : ; .i

.1/

d ; i
.1/
1 /; .i

.2/
1 ; i

.2/
2 /; : : : ; .i

.2/

d ; i
.2/
1 /; : : : ; .i

.r/
1 ; i

.r/
2 /; : : : ; .i

.r/

d ; i
.r/
1 /

�
:

As such, J1 t : : : t Jr is an element of .Cn/r .
From now on, we denote by #A the cardinality of a finite set A. The following

technical lemma will allow us to estimate the moments of (2). More precisely,
.i/; .ii/; .iii/; .iv/ will imply that the variance of the sum of the diagonal terms
converges in L2 to 0, .v/ and .vi/ will allow us to show that the variance of the
sum of the non-diagonal terms converges to d , and .vii/ and .viii/ will be used in
the computation of the fourth moment of that sum.

Lemma 1. Let the notations previously introduced prevail, and consider the
following sets:

An D ˚
I2d D J1 t J2 2 .Dn/

2 W mcI2d .˛; ˇ/ ¤ 1 for every ˛; ˇ 2 Œ1; n��
Bn D ˚

I2d 2 An W mpI2d .˛/ 2 f0; 4g for every ˛ 2 Œ1; n��
D ˚

I2d 2 An W mcI2d .˛; ˇ/ 2 f0; 2g for every ˛; ˇ 2 Œ1; n��
En D ˚

Id 2 Dn W mcId .˛; ˇ/ ¤ 1 for every ˛; ˇ 2 Œ1; n��
Fn D fId 2 En W mpId .˛/ 2 f0; 4g for every ˛ 2 Œ1; n��

D fId 2 En W mcId .˛; ˇ/ 2 f0; 2g for every ˛; ˇ 2 Œ1; n��
Gn D ˚

I2d D J1 t J2 2 .NDn/
2 W mcI2d .˛; ˇ/ 2 f0; 2g for every ˛; ˇ 2 Œ1; n��

Hn D ˚
I2d 2 Gn W mpI2d .˛/ 2 f0; 4g for every ˛ 2 Œ1; n��

D ˚
I2d 2 Gn W mcI2d .˛; ˇ/ 2 f0; 2g for every ˛; ˇ 2 Œ1; n��

Kn D ˚
I4d D J1 t J2 t J3 t J4 2 .NDn/

4 W mcI4d .˛; ˇ/ 2 f0; 2; 4g
for every ˛; ˇ 2 Œ1; n��

Ln D fI4d 2 Hn W mpI4d .˛/ 2 f0; 4g for every ˛ 2 Œ1; n��
D fI4d 2 Hn W mcI4d .˛; ˇ/ 2 f0; 2g for every ˛; ˇ 2 Œ1; n��:
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As n ! 1, we have:

(i) # .An n Bn/ D O.nd�1/.
(ii) If d is even, #Bn D n : : : .n � d C 1/; if d is odd, #Bn D 0.

(iii) #.En n Fn/ D O.n
d�1
2 /.

(iv) If d is even, #Fn D n : : : .n � d
2

C 1/; if d is odd, #Fn D 0.
(v) #Gn nHn D O.nd�1/.

(vi) #Hn D d � n : : : .n � d C 1/.
(vii) #.Kn n Ln/ D O.n2d�1/.

(viii) #Ln D 3d2 � n : : : .n � 2d C 1/.

Proof. Before giving the proof of the lemma we will present some examples of
element belonging to A4;B4 in order to understand the construction of these sets.
Then J1 D ..1; 2/; .2; 1/; .1; 2/; .2; 1/// 2 D4 because .1; 2/ appear 2 times in J1.
We have also J2 D ..5; 6/; .6; 5/; .5; 6/; .6; 5// 2 D4 then the concatenation of J1
and J2 belong to A4

J1 t J2 D ..1; 2/; .2; 1/; .1; 2/; .2; 1/; .5; 6/; .6; 5/; .5; 6/; .6; 5// 2 A4
and every element .1; 2/,.2; 1/,.5; 6/ and .6; 5/ appear exactly 2 times, this is why
it is also an element of B4.

Also ..1; 1/; .1; 1/; .1; 1/; .1; 1/; .5; 6/; .6; 5/; .5; 6/; .6; 5// is an element of A4,
but does not belong to B4 because .1; 1/ appear 4 times.

(i) Let I2d D �
.i1; i2/; : : : ; .id ; i1/; .idC1; idC2/; : : : ; .i2d ; idC1/

� 2 An n Bn. By
definition ofAn, we have mpI2d .ij / 
 4 for any j D 1; : : : ; 2d . Furthermore,
the fact that I2d … Bn ensures the existence of at least one integer j0 between
1 and 2d such that mpI2d .ij0/ > 4. Let � W Œ1; 2d � ! Œ1; 2d � be defined by
j 7! �.j / D minfk W ik D ij g. It is readily checked that

4d D
X

˛2Im.�/

mpI2d .i˛/:

We conclude that #Im.�/ < d . Therefore, # .An n Bn/ D O.nd�1/.
(ii) Assume that Bn is non-empty. Let

I2d D �
.i1; i2/; : : : ; .id ; i1/; .idC1; idC2/; : : : ; .i2d ; idC1/

� 2 Bn:

For every integer j 2 Œ1; 2d �, we have mpI2d .ij / D 4. Defining � and
proceeding as in point .i/ above, we obtain that #Im.�/ D d . We set m D
minfl 2 Im.�/ j l C 1 … Im.�/g. Since #Im.�/ D d , it follows that m � d .
In factm � d�1, otherwise the elements of the d -tuple .i1; : : : ; id / would be
all distinct, and ..i1; i2/; : : : ; .id ; i1// could not be in Dn, which would yield
a contradiction. In the case d D 2, I2d D �

.i1; i2/; .i2; i1/; .i3; i4/; .i4; i3/
� 2

Bn if and only if i1 D i2, i3 D i4 and i1 ¤ i3. Thus, the cardinality of Bn is
equal to n.n � 1/.
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In what follows we suppose that d 
 3.
Let us show that d is even (which will prove that Bn is empty if d is odd)

and that I2d can be written as

�
.l1; l2/; : : : ; .l d

2 �1; l d2 /; .l d2 ; l1/; .l1; l2/; : : : ; .l d2 �1; l d2 /; .l d2 ; l1/;

.j1; j2/ : : : ; .j d
2 �1; j d2 /; .j d2 ; j1/; .j1; j2/ : : : ; .j d2 �1; j d2 /; .j d2 ; j1/

�
;

where l1; : : : ; l d
2
; j1; : : : ; j d

2
are pairwise distinct integers in Œ1; n�, which will

prove that the formula for #Bn given in .ii/ holds true. The proof is divided
in several parts.

.a/ Using a proof by contradiction, let us assume that there exists an integer
q in ŒmC1; d � such that iq does not belong to fi1; : : : ; img. We denote by
� the smallest element verifying this. Note that � 
 mC 2 necessarily,
and that there exists an integer p � m such that i��1 D ip. Therefore,
i��1 appears in the four pairs

.ip�1; ip/; .ip; ipC1/; .i��2; i��1/; .i��1; i� /:

Note that for the four pairs above, it is possible that the two pairs in the
middle are the same. By definition of Bn, we have mpI2d .i��1/ D 4 so
these pairs are the only pairs of I2d containing the integer i��1. More-
over, by definition of An, we have mcI2d .i��1; i� / 
 2. Thus, we nec-
essarily have either .i��1; i� / D .ip; ipC1/; or .i��1; i� / D .i��2; i��1/;
or .i��1; i� / D .ip�1; ip/. If we had .i��1; i� / D .i��2; i��1/, then we
would have i��2 D i��1 D i� and i� would appear at least six times in the
writing of I2d , which is not possible . Similarly, .i��1; i� / D .ip�1; ip/
is impossible. Thus, it must hold that .i��1; i� / D .ip; ipC1/. We can
therefore state that i� D ipC1. Since we also have that p C 1 � m C 1

and imC1 2 fi1; : : : ; img, we can conclude that i� 2 fi1; : : : ; img, which
yields the desired contradiction. Hence,

fimC1; : : : ; id g � fi1; : : : ; img: (4)

.b/ Let us show that if l; k � d � 1 are two distinct integers satisfying
ik D il , then .ik; ikC1/ D .il ; ilC1/. Let l; k � d � 1 be two integers
such that l ¤ k et ik D il . The integer il appears in the four pairs
f.il�1; il /; .il ; ilC1/; .ik�1; ik/; .ik; ikC1/g (or only in three pairs, if both
pairs in the middle are the same, which happens whether l D k � 1).
As mpI2d .ik/ D 4, these pairs are the only pairs of I2d containing the
integer ik. By definition of An, all pairs of I2d must have at least two
occurrences in I2d . If we have .ik; ikC1/ D .ik�1; ik/ then we have ik D
ikC1 D ik�1 and ik appears at least six times in I2d , which cannot be
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true. Similarly, .ik; ikC1/ D .il�1; il / is impossible. Therefore, it must
hold that .ik; ikC1/ D .il ; ilC1/.

.c/ It follows from the definition of m that there exists an integer r 2 Œ1;m�
satisfying imC1 D ir . Let us show that

.i1; : : : ; id / D .i1; : : : ; im; ir ; : : : ; irCd�m�1/: (5)

If m D d � 1, then .i1; : : : ; id / D .i1; : : : ; im; ir / and (5) is verified. If
m � d � 2 then, being given that imC1 D ir and that we already showed
in .b/ that if l; k � d � 1 are two distinct integers satisfying ik D il
then ikC1 D ilC1, we can state that imC2 D irC1. Thus, if m D d � 2

then .i1; : : : ; id / D .i1; : : : ; im; ir ; irC1/, and (5) is once again verified.
Finally, if m � d � 3, we iterate this process as many times as necessary
until we get (5).

.d/ Let us now prove that the elements of .ir ; : : : ; irCd�m�1/ are all distinct.
Once again, we use a proof by contradiction. Thus, let us assume
that there exists an integer p in Œ1; n� which appears at least twice
in the uplet .ir ; : : : ; irCd�m�1/. We then have fir ; : : : ; irCd�m�1g D
fimC1; : : : ; id g � fi1; : : : ; img, see (4) and (5). Thus, p appears at
least three times overall in the uplet .i1; : : : ; id /. This latter fact implies
mpI2d .p/ 
 6, which contradicts the assumption mpI2d .p/ D 4.

.e/ Finally, let us establish that 2m D d and r D 1. The elements of
.ir ; : : : ; irCd�m�1/ being all distinct, the couple .irCd�m�1; i1/ D .id ; i1/

cannot belong to the set of pairs

f.ir ; irC1/; : : : ; .irCd�m�2; irCd�m�1/g D f.imC1; imC2/; : : : ; .id�1; id /g:

(because, by .d/, no pair of this set can have irCd�m�1 as a first coordinate.)
Moreover, since i1 does not belong to fi2; : : : ; img then the pair .irCd�m�1; i1/
cannot belong to the set of pairs f.i1; i2/; : : : ; .im�1; im/g (because no pair
of this set can have i1 as a second coordinate). Also, the integer id appear-
ing at least twice in the uplet .i1; : : : ; id /, it cannot belong to the uplet
.idC1; : : : ; i2d / (otherwise, id would appear at least six times in the pairs
of I2d ). Thus, the only way for the occurrence of the pair .id ; i1/ in I2d to
be greater or equal than 2 is that .irCd�m�1; i1/ D .im; imC1/. Therefore,
i1 D imC1 D ir . As i1; : : : ; im are all distinct and r � m, it must hold that
r D 1. Hence, rCd �m�1 D d �m and id�m D im. Since i1; : : : ; id�m are
all distinct, see indeed .d/, it must be true thatm 
 d �m. Since id�m D im,
we conclude that d � m D m, that is, d D 2m. As such, we establish
that (idC1; : : : ; i2d / D .idC1; : : : ; i 3d

2
; idC1; : : : ; i 3d

2
/. Let us finally note that

i1; : : : ; i d
2
; idC1; : : : ; i 3d

2
are necessarily distinct because mpI2d .ij / D 4. This

completes the proof of part .ii/.
(iii) Consider

I D �
.i1; i2/; : : : ; .id ; i1/

� 2 En n Fn:



Fluctuations of the Traces of Complex-Valued Random Matrices 409

Let � W Œ1; d � ! Œ1; d � be defined by j 7! �.j / D minfk j ik D ij g. From the
equation 2d D P

˛2Im.�/
mpI .i˛/, and using the fact that all mpI .i˛/ are greater

or equal than 4, as well as there exists an ˛ in Im.�/ satisfying mpI .i˛/ > 4,
we conclude that #Im.�/ < d

2
. Therefore, the cardinality of En n Fn is equal

to O.n
d�1
2 /.

(iv) Let us assume that Fn is not empty. Consider

Id D �
.i1; i2/; : : : ; .id ; i1/

� 2 Fn:
Proceeding as in point .ii/ above, we conclude that Fn is empty in the case
where d is odd, and that the elements of Fn have the following form when d
is even:�

.l1; l2/; : : : ; .l d
2 �1; l d2 /.l d2 ; l1/; .l1; l2/; : : : ; .l d2 �1; l d2 /.l d2 ; l1/

�
:

Here, l1; : : : ; l d
2

are pairwise distinct integers in Œ1; n�. The formula of #Fn
given in .iv/ follows directly from that.

(v) Consider

I D �
.i1; i2/; : : : ; .id ; i1/; .idC1; idC2/; : : : ; .i2d ; idC1/

� 2 Gn nHn:

Let � W Œ1; 2d � ! Œ1; 2d � be defined by j 7! �.j / D minfk j ik D ij g.
From the identity 4d D P

˛2Im.�/
mpI .i˛/, and using the fact that mpI .i˛/

are greater or equal than 4, as well as that there exists an ˛ in Im.�/
satisfying mpI .i˛/ > 4, we conclude as in .i/ that #Im.�/ < d . Therefore,
the cardinality of Gn nHn is O.nd�1/.

(vi) Consider

I D �
.i1; i2/; : : : ; .id ; i1/; .idC1; idC2/; : : : ; .i2d ; idC1/

� 2 Hn:

.a/ By definition of NDn, there is no redundancy neither among the pairs
.i1; i2/; : : : ; .id ; i1/ nor among the pairs .idC1; idC2/; : : : ; .i2d ; idC1/.
Therefore, to satisfy the constraint defining Hn, it is necessary and
sufficient that each couple of .i1; i2/; : : : ; .id ; i1/ matches one and only
one couple among .idC1; idC2/; .idC2; idC3/; : : : ; .i2d ; idC1/.

.b/ Using a proof by contradiction, let us show that the elements of
fi1; : : : ; id g are pairwise distinct. If p and q were two distinct integers
in Œ1; d � such that ip D iq then, according to .a/, there would exist
k 2 Œd C 1; 2d � satisfying .ip; ipC1/ D .ik; ikC1/, which would yield
ip D iq D ik and, consequently, mpI .ip/ 
 6. This would contradict the
fact that mpI .ip/ D 4.

.c/ Let us establish that, for every p 2 Œ1; d � and q 2 Œd C 1; 2d � such that
ip D iq , we have ipC1 D iqC1. Using a proof by contradiction, let us
assume that there exists an integer q0 2 Œd C1; 2d � different from q such
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that .ip; ipC1/ D .iq0 ; iq0C1/. Then it must hold that ip D iq D iq0 and
mpI .ip/ 
 6, which contradicts the fact that mpI .ip/ D 4.

The results .a/, .b/ et .c/ allow us to conclude that there exists an integer k 2
Œ1; d � satisfying .i1; : : : ; id / D .idCk; idCkC1; : : : ; i2d ; idC1; : : : ; idCk�1/.
Thus, the elements of Gn are completely characterized by a given integer
k 2 Œ1; d � and a given set fi1; : : : ; id g where ij are pairwise distinct integers
in Œ1; n�. We can therefore conclude that #Hn D d � n : : : .n � d C 1/.

(vii) Consider

I D �
.i1; i2/; : : : ; .id ; i1/; : : : ; .i3dC1; i3dC2/; : : : ; .i4d ; i3dC1/

� 2 Kn nLn:
Let � W Œ1; 4d � �! Œ1; 4d � be the application defined by �.j / D minfkj ik D
ij g. From the identity 8d D P

˛2Im.�/
mpI .i˛/, and using the fact that mpI .i˛/

are all greater or equal than 4, as well as for at least one ˛ 2 Im.�/ it must hold
that mpI .i˛/ > 4, we conclude that #Im.�/ < 2d . Therefore, the cardinality
ofKn n Ln is O.n2d�1/.

(viii) Consider

I D �
.i1; i2/; : : : ; .id ; i1/; : : : ; .i3dC1; i3dC2/; : : : ; .i4d ; i3dC1/

� 2 Ln:
For every j � 4d , we have mpI .ij / D 4. Then 2d D #Im.�/, with � as in
point .vii/.

.a/ Using a proof by contradiction, let us show that, for every k 2 Œ0; 3�,
the integers ikdC1; : : : ; i.kC1/d are all distinct. Assume that there exist
two distinct integers l and h in Œ1; d �, as well as an integer k in
Œ0; 3�, satisfying ikdCl D ikdCh. By definition of the set Ln, we have�
.ikdC1; ikdC2/; : : : ; .i.kC1/d ; ikdC1/

� 2 NDn. Then, the pairs

˚
.ikdC1; ikdC2/; : : : ; .i.kC1/d ; ikdC1/

�

are all distinct, and we have mcI .ikdCh; ikdChC1/ D 2, which implies
that there exists k0 2 Œ0; 3�, different from k, and h0 2 Œ1; d � satisfying
ikdCh D ik0dCh0 . It follows that ikdCh appears at least six times in I ,
which contradicts the fact that mpI .ikdCh/ D 4.

.b/ For any p D 0; : : : ; 3, let us introduce Mp D fipdC1; : : : ; i.pC1/d g. For
any integers p; q in Œ0; 3�, we have either Mp

T
Mq D ¿ or Mp D

Mq . Otherwise there would exist an integer j such that iqdCj 2 Mp

and iqdCjC1 … Mp and, since mcI .iqdCj ; iqdCjC1/ D 2, there would
exist q0 2 Œ0; 3�, different from p and q, and j 0 2 Œ1; d � such that
.iqdCj ; iqdCjC1/ D .iq0dCj 0; iq0dCj 0C1/; therefore iqdCj would appear
at least six times in I , which would yield a contradiction.

.c/ If Mp D Mq , then proceeding as in point .vi/, we show that there exists
j 2 Œ1; d � such that

.ipdC1; : : : ; i.pC1/d / D .iqdCj ; : : : ; i.qC1/d ; iqdC1; : : : ; idqCj�1/:
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The results .a/, .b/ et .c/ allow us to conclude that a generic element of Ln
is characterized by:

– The choice of one case among the following three cases: either M0 D M1

and M2 D M3; or M0 D M2 and M1 D M3; or M0 D M3 and M1 D M2.
In what follows, we consider the case M0 D M1 and M2 D M3 (we can
proceed similarly in the other two cases).

– The choice of 2d integers i1; : : : ; id ; i2dC1; : : : ; i3d that are pairwise
distinct in Œ1; n�.

– The choice of an integer k 2 Œ1; d � such that:

.idC1; : : : ; i2d / D .ik; : : : ; id ; i1; : : : ; ik�1/:

– The choice of an integer k0 2 Œ1; d � such that:

.i3dC1; : : : ; i4d / D .i2dCk0 ; : : : ; i3d ; i2dC1; : : : ; i2dCk0�1/:

It is now easy to deduce that #Ln D 3d2n : : : .n � 2d C 1/.

3 Gaussian Approximations

Let X D ˚
Xi
�
i	1 be a family of centered independent random variables taking

values in R
r and having pairwise uncorrelated components with unit variance. Let

G D ˚
Gi
�
i	1 be a family of independent standard Gaussian random variables

taking values in R
r and having independent components. Suppose also that X and

G are independent, and set

X D .X1
1 ; : : : ; X

1
r ; X

2
1 ; : : : ; X

2
r ; : : :/ D .X1; : : : ; Xr ; XrC1; : : : ; X2r ; : : :/:

i.e., XjC.i�1/r D Xi
j .

Consider integers m 
 1, dm 
 : : : 
 d1 
 2, N1; : : : ; Nm, as well as real
symmetric functions f1; : : : ; fm such that each function fi is defined on Œ1; rNi �di

and vanishes at the points .i1; : : : ; idi / such that 9j ¤ k for which
˙
ij =r

� D dik=re
(we remind that dxe means the unique integer k such that k < x � k C 1). Let us
define

Qi.X/ D Qdi .fi ; X/ D
rNiX

i1;:::;idD1
fi .i1; : : : ; idi / Xi1 : : : Xidi :

In the case of complex-valued matrices, the real and imaginary parts of the entries
Xi;j are not necessarily independent. Therefore, we will need to modify the results
used by Nourdin and Peccati in the paper [9]. The following lemma is a variant,
weaker in terms of assumptions, of the hypercontractivity property.
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Lemma 2. Let the notations previously introduced prevail. Assume that
˛ D sup

i

E.jXi j4/ < 1 and set K D 36 � 25r � .1C 2˛
3
4 /2. Then

E.Qd.X/
4/ � KdE.Qd.X/

2/2: (6)

Proof. Set

8̂
<
:̂

U D P
8kW ik…f.N�1/rC1;:::;Nrg

f .i1; : : : ; id /Xi1 : : : Xid

Vj D P
9ŠkWikD.N�1/rCj

f .i1; : : : ; id /Xi1 : : :
4X.N�1/rCj : : : Xid

The notation 4X.N�1/rCj means that this term is removed from the product.
Observe that X.N�1/rCj D XN

j according to the notation that we adopted
previously, and that the quantityQd.X/ is given by:

Qd.X/ D U C
rX

jD1
XN
j Vj

(as f vanishes at the points .i1; : : : ; idi / such that there exist j ¤ k for which˙
ij =r

� D dik=re). Note that, for every p � N and every i; j 2 Œ1; r�, Xp
j is

independent from U and Vi . Thus, by choosing p D N , we have

E.Qd.X/
4/ D

X
s0C:::CsrD4

24

s0Š : : : sr Š
E.U s0

rY
jD1

.VjX
N
j /

sj /

D E.U 4/C
X

s1C:::CsrD2

12

s1Š : : : sr Š
E.U 2

rY
jD1

V
sj
j /E.

rY
.

jD1
XN
j /

sj /

C
X

s1C:::CsrD3

24

s1Š : : : sr Š
E.U

rY
jD1

V
sj
j /E.

rY
jD1

.XN
j /

sj /

C
X

s1C:::CsrD4

24

s1Š : : : sr Š
E.

rY
jD1

V
sj
j /E.

rY
jD1

.XN
j /

sj /:

In the equation above, we used that

X
s1C:::CsrD1

4

s1Š : : : sr Š
E.U 3

rY
jD1

.VjX
N
j /

sj / D 0

since XN
j are centered. By using the generalized Hlder inequality, we obtain:



Fluctuations of the Traces of Complex-Valued Random Matrices 413

E.U s0

rY
jD1

V
sj
j / � E

�
U 4
� s0
4

rY
jD1

E.V 4
j /

sj
4 :

Since the terms E.V 4
j /

sj
4 are upper bounded by


Pr
jD1 E.V 4

j /
1
2

� sj
2

, we obtain:

X
s1C:::CsrD4�s0

E.U s0

rY
jD1

V
sj
j / � 5rE

�
U 4
� s0
4

0
@ rX
jD1

E.V 4
j /

1
2

1
A

4�s0
2

:

Using the generalized Hlder inequality again, we have

E.

rY
jD1

.XN
j /

sj / �
rY

jD1
E


.XN

j /
4
� sj

4 � ˛

P
sj
4 :

Therefore:

E.Qd.X/
4/ � E.U 4/C 12 � 5rE.U 4/

1
2

rX
jD1

E.V 4
j /

1
2 (7)

C24 � 5r˛ 3
4 E.U 4/

1
4

0
@ rX
jD1

E.V 4
j /

1
2

1
A

3
2

C24 � 5r˛
0
@ rX
jD1

E.V 4
j /

1
2

1
A
2

:

Note that ˛ does not appear in the second term of the right-hand side of the
inequality above because XN

j are random variables with unit variance and zero

covariance. Using the inequality x
1
4 y

3
2 � x

1
2 y C y2, obtained by separating the

cases x � y2 and x 
 y2, we get:

E.U 4/
1
4

0
@ rX
jD1

E.V 4
j /

1
2

1
A

3
2

� E.U 4/
1
2

rX
jD1

E.V 4
j /

1
2 C

0
@ rX
jD1

E.V 4
j /

1
2

1
A
2

:

Then

E.Qd.X/
4/ � E.U 4/C 12 � 5r.1C 2˛

3
4 /E.U 4/

1
2

rX
jD1

E.V 4
j /

1
2 (8)

C24 � 5r.˛ 3
4 C ˛/

0
@ rX
jD1

E.V 4
j /

1
2

1
A
2

:
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To prove the hypercontractivity property (6), we will use an induction on N .
When N D 1, because f vanishes at the points .i1; : : : ; id / such that 9j ¤ k for
which

˙
ij =r

� D dik=re, then the only case where the value taken by Qd.X/ is not
zero is when d D 1, that is, when Qd.X/ has the form

Pr
jD1 ajX1

j . In this case,

U D 0 and Vj D aj . Thus, by (7), we have E.Qd.X/
4/ � 24 � 5r˛


Pr
jD1 a2j

�2
.

It follows that E.Qd.X/
4/ � KE.Qd.X/

2/2. Let us now assume that the result
holds for N � 1. Then, because U and Vj are functions of X1; : : : ; XN�1, we can
apply the recursive hypothesis to E.U 4/ and E.V 4

j /, and obtain that:

E.Qd.X/
4/ � Kd

2
4E.U 2/2 C 12 � 5r.1C 2˛

3
4 /

K
1
2

E.U 2/

rX
jD1

E.V 2
j /

3
5

CKd 24 � 5r.˛ C ˛
3
4 /

K

0
@ rX
jD1

E.V 2
j /

1
A
2

� Kd

2
64E.U 2/2 C 2E.U 2/

rX
jD1

E.V 2
j /C

0
@ rX
jD1

E.V 2
j /

1
A
2
3
75

D Kd

2
4E.U 2/C

rX
jD1

E.V 2
j /

3
5
2

:

Furthermore, since theXN
j are centered, unit-variance and independent ofU and

of Vj , we have

E.Qd.X/
2/ D E..U C

rX
jD1

XN
j Vj /

2/

D E.U 2/C 2

rX
jD1

E.UVj /E.X
N
j /C

X
i;jD1;:::;r

E.ViVj /E.X
N
i X

N
j /

D E.U 2/C
rX

jD1
E.V 2

j /;

which completes the proof.

The following two lemmas will be used to prove the convergence in law of the
sum of the non-diagonal terms in (2), and to show that the limit does not depend on
the common law of Xi;j .

Lemma 3. Let
˚
Xi
�
i	1,

˚
Gi
�
i	1 and Qi.X/ be as in the beginning of Sect. 3.

Let us assume that ˇ D sup
i

E.jXi j3/ < 1, E.Qi.X/2/ D 1, and that V is
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the symmetric matrix defined as V.i; j / D E.Qi.X/Qj .X//. Consider ZV D
.Z1

V ; : : : ; Z
m
V / � Nm.0; V / (i.e. ZV is a Gaussian vector with a covariance matrix

equal to V ).

1. If ' W Rm ! R is a function of class C3 such that
���' 000

���1 < 1 then

ˇ̌
E.'.Q1.X/; : : : ;Qm.X///� E.'.Q1.G/; : : : ;Qm.G///

ˇ̌

�
���' 000

���1

 
ˇ C

r
8

�

!
K

3
4 .dm�1/r3m4 dmŠ

3

d1Š.d1 � 1/Š

r
max
1�k�m

max
1�j�Nk

infj fk;

where

infj fk D
rNkX

i1;:::;idk�1D1
fk.j; i1; : : : ; idk�1/2:

2. If ' W Rm ! R is a function of class C3 such that
���' 000

���1 < 1 then

ˇ̌
E.'.Q1.X/; : : : ;Qm.X/// �E.'.ZV /

ˇ̌ �
���' 00

���
1

0
@ mX
iD1

�i;i C 2
X

1�i<j�m

�i;j

1
A

C
���' 000

���1m4dmŠ
3

d1Š.d1 � 1/Š

  
ˇ C

r
8

�

!
K

3
4 .dm�1/r3 C

r
32

�

�
64

�

�dm�1!

�
r

max
1�k�m max

1�j�Nk
infj fk

where inf j fk as above and�i;j given by

dj

di�1X
sD1

.s � 1/Š

�
di � 1
s � 1

��
dj � 1

s � 1
�q

.di C dj � 2s/Š . kfi ?di�s fik2 C

kfj ?dj�s fjk2 /C 1di<dj

s
dj Š

�
dj

di

�
kfj ?dj�di fjk2;

with

fj ?r fj .i1; : : : ; i2dj�2r / D
rNjX

k1;:::;krD1
fj .k1; : : : ; kr ; i1; : : : ; idj�r /

�fj .k1; : : : ; kr ; idj�rC1; : : : ; i2dj�2r /:
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Proof. Set Q.X/ D .Q1.X/; : : : ;Qm.X// and, for any 1 � p � N C 1, consider

8̂
ˆ̂̂<
ˆ̂̂̂
:

Z.p/ D �
G1; : : : ; G.p�1/r ; X.p�1/rC1; : : : ; XrN

�
U
.i/
p D P

8kW ik…f.p�1/rC1;:::;prg
fi .i1; : : : ; id /Z

.p/
i1
: : : Z

.p/
id

V
.i/
p;j D P

9ŠkWikD.p�1/rCj
fi .i1; : : : ; id /Z

.p/
i1
: : :

4

Z
.p/

.p�1/rCj : : : Z
.p/
id

The notation
4

Z
.p/

.p�1/rCj means that this term is removed from the product. Let us

set Up D .U
.1/
p ; : : : ; U

.m/
p / and Vp;j D .V

.1/
p;j ; : : : ; V

.m/
p;j /. Note that Q.Z.p// can be

written as

Q.Z.p// D Up C
rX

jD1
X
p
j Vp;j :

Similarly, we have: Q.Z.pC1// D Up C
rP

jD1
G
p
j Vp;j :

For a vector Y D .Y1; : : : ; Ym/ in R
m and a vector s D .s1; : : : ; sm/ in N

m, we set
Y s D Qm

iD1 Y
si
i .

1. Let ' be a function of class C3. The Taylor formula gives:

ˇ̌
ˇ̌
ˇ̌E
�
'.Q.Z.p///

� �E
0
@X

jsj�2

1

sŠ
@s'.Up/

0
@ rX
jD1

X
p
j Vp;j

1
A
s1
A
ˇ̌
ˇ̌
ˇ̌

�
���' 000

���1

ˇ̌
ˇ̌
ˇ̌E
0
@X

jsjD3

0
@ rX
jD1

X
p
j Vp;j

1
A
s1
A
ˇ̌
ˇ̌
ˇ̌ :

Note that, for every p, Xp
j is independent from Up and from Vp;i . Thus, we have:

ˇ̌
ˇ̌
ˇ̌E
0
@X

jsjD3

0
@ rX
jD1

X
p
j Vp;j

1
A
s1
A
ˇ̌
ˇ̌
ˇ̌/

D
ˇ̌
ˇ̌
ˇ̌E
0
@ mX
k;l;qD1

rX
j1D1

X
p
j1
V
.k/
p;j1

rX
j2D1

X
p
j2
V
.l/
p;j2

rX
j3D1

X
p
j3
V
.q/
p;j3

1
A
ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌

mX
k;l;qD1

rX
j1D1

rX
j2D1

rX
j3D1

E


X
p
j1
X
p
j2
X
p
j3

�
E


V
.k/
p;j1
V
.l/
p;j2
V
.q/
p;j3

�ˇ̌ˇ̌
ˇ̌ :
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The Hlder inequality ensures that:

ˇ̌
ˇE


X
p
j1
X
p
j2
X
p
j3

�ˇ̌
ˇ � E

�ˇ̌
ˇXp

j1

ˇ̌
ˇ3
� 1

3

E

�ˇ̌
ˇ.Xp

j2
/
ˇ̌
ˇ3
� 1

3

E

�ˇ̌
ˇ.Xp

j3
/
ˇ̌
ˇ3
� 1

3

� ˇ:

Using the Hlder inequality, as well as the hypercontractivity property stated in

Lemma 2 and the relation E


.V

.k/
p;n /

2
�

D dkŠ
2infprCnfk , we obtain

ˇ̌
ˇE


V
.k/
p;j1
V
.l/
p;j2
V
.q/
p;j3

�ˇ̌
ˇ � E

�ˇ̌
ˇV .k/
p;j1

ˇ̌
ˇ4
� 1

4

E

�ˇ̌
ˇV .l/
p;j2

ˇ̌
ˇ4
� 1

4

E

�ˇ̌
ˇV .q/
p;j3

ˇ̌
ˇ4
� 1

4

� K
3
4 .dm�1/E

�ˇ̌
ˇV .k/
p;j1

ˇ̌
ˇ2
� 1

2

E

�ˇ̌
ˇV .l/
p;j2

ˇ̌
ˇ2
� 1

2

E

�ˇ̌
ˇV .q/
p;j3

ˇ̌
ˇ2
� 1

2

� K
3
4 .dm�1/

�
dmŠ

2 max
1�j�r max

1�k�m infprCj fk
� 3

2

:

Then,
ˇ̌
ˇ̌
ˇ̌E
�
'.Q.Z.p///

� �E
0
@X

jsj�2

1

sŠ
@s'.Up/

0
@ rX
jD1

X
p
j Vp;j

1
A
s1
A
ˇ̌
ˇ̌
ˇ̌

�
���' 000

���1 ˇK
3
4 .dm�1/.r m/3

�
dmŠ

2 max
1�j�r max

1�k�m infprCj fk
� 3

2

:

By writing the same formula forQ.Z.pC1// we obtain this time
ˇ̌
ˇ̌
ˇ̌E
�
'.Q.Z.pC1///

� �E
0
@X

jsj�2

1

sŠ
@s'.Up/

0
@ rX
jD1

G
p
j Vp;j

1
A
s1
A
ˇ̌
ˇ̌
ˇ̌

�
���' 000

���1

r
8

�
K

3
4 .dm�1/.r m/3

�
dmŠ

2 max
1�j�r max

1�k�m
infprCj fk

� 3
2

:

In the last inequality, the term
q

8
�

comes from the fact that Gp
j are standard

Gaussian which implies that E

�ˇ̌
ˇGp

j

ˇ̌
ˇ3
�

D
q

8
�

. Since the vectors Xp and Gp are

centered, have the same covariance matrix and are independent from Up and from
V
p
j , then by putting the two inequalities together, we obtain:

ˇ̌
E
�
'
�
Q.Z.pC1//

�� �E �' �Q.Z.p//
��ˇ̌

�
���' 000

���1

 
ˇ C

r
8

�

!
K

3
4 .dm�1/.r m/3

�
dmŠ

2 max
1�j�r max

1�k�m
infprCj fk

� 3
2

: (9)
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Since

r max
i
NiP

jD1
inf j fk D E..Qk.X//2/

dk Š.dk�1/Š then

max
i
NiP

pD1
max
1�j�r max

1�k�minfprCj fk �
max
i
NiX

pD1

rX
jD1

mX
kD1

infprCj fk

�
mX
kD1

r max
i
NiX

jD1
infj fk

�
mX
kD1

E
�
.Qk.X//2

�
dkŠ.dk � 1/Š � m

d1Š.d1 � 1/Š
:

By summing over p in (9), we finally obtain that:

jE .' .Q.X/// � E .' .Q.G///j

�
���' 000

���1

 
ˇ C

r
8

�

!
K

3
4 .dm�1/r3m4 dmŠ

3

d1Š.d1 � 1/Š
r

max
1�k�m max

1�j�Nk
infj fk:

2. Let ' be a function of class C3. We have

jE .'.Q.X///� E .'.ZV ///j � jE .'.Q.X/// �E .'.Q.G////j
C jE .'.Q.G/// � E .'.ZV ///j :

For the first term we use the point 1 of Lemma 3 to find an upper bound. For
the second term we observe that the vectorG have independent components, which
allows us to use Theorem 7.2 in [8] to get the following inequality:

ˇ̌
E.'.Q1.X/; : : : ;Qm.X/// �E.'.ZV /

ˇ̌ �
���' 00

���1

0
@ mX
iD1
�i;i C 2

X
1�i<j�m

�i;j

1
A

CC
���' 000

���1

r
32

�

2
4 mX
jD1

.
64

�
/
dj �1

3 dj Š

3
5
3r

max
1�k�m

max
1�j�Nk

infj fk:

The constant C is such that

max
k
NkP

iD1
max
1�j�minf i fj � C and since
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max
k
NkX

iD1
max
1�j�minfi fj �

mX
jD1

max
k
NkX

iD1
infi fj �

mX
jD1

E
�
.Qj .X//2

�
dj Š.dj � 1/Š � m

d1Š.d1 � 1/Š

then we can choose the constant C equal to m
d1Š.d1�1/Š . Thus, we obtain

ˇ̌
E.'.Q1.X/; : : : ;Qm.X/// �E.'.ZV /

ˇ̌ �
���' 00

���1

0
@ mX
iD1
�i;i C 2

X
1�i<j�m

�i;j

1
A

C
���' 000

���1

r
32

�

�
64

�

�dm�1
m4 .dmŠ/

3

d1Š.d1 � 1/Š

r
max
1�k�m

max
1�j�Nk

infj fk:

Lemma 4. Let the notations used in Lemma 3 prevail. Consider the class H of
indicator functions on measurable convex sets in R

m. Let us define

B1 D
0
@ mX
iD1
�i;i C 2

X
1�i<j�m

�i;j

1
A

B2 D m4dmŠ
3

d1Š.d1 � 1/Š

  
ˇ C

r
8

�

!
K

3
4 .dm�1/r3 C

r
32

�

�
64

�

�dm�1!

�
r

max
1�k�m max

1�j�Nk
infj fk

1. Let us assume that the covariance matrix V is them-dimensional identity matrix.
Then

sup
h2H .Rm/

ˇ̌
E
�
h.Q1.X/; : : : ;Qm.X//

	 �E Œh.ZV /�
ˇ̌

�
�
8

3
6
7

C 4

3
13
7

�
.5B1 C 5B2/

1
7 m

3
7 :

2. Let us assume that the covariance matrix V is invertible and let � D
diag.�1; : : : ; �k/ be the diagonal matrix of the eigenvalues of V . Let B be an
orthogonal matrix (i.e. BTB D Im and BBT D Im) such that V D B�BT , and
let b D maxi;j .�� 1

2 BT /. Then

sup
h2H .Rm/

ˇ̌
E
�
h.Q1.X/; : : : ;Qm.X//

	 �E Œh.ZV /�
ˇ̌

�
�
8

3
6
7

C 4

3
13
7

�
.5b2B1 C 5b3B2/

1
7 m

3
7 :
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Proof. 1. Let us assume that the covariance matrix V is them-dimensional identity
matrix. Denote by ˚ the standard normal distribution in R

m, and by � the
corresponding density function. Consider h 2 H .Rm/ and define the following
function: ht .x/ D R

Rm
h.

p
ty C p

1 � tx/˚.dy/; 0 < t < 1. The key result
is Lemma 2.11 in [4] which states that, for every probability measure Q on R

m,
every random variablesW � Q and Z � ˚ , and any 0 < t < 1, we have

sup
h2H .Rm/

jE Œh.W /�� E Œh.ZV /�j

� 4

3

"
sup

h2H .Rm/

jE Œht .W /�� E Œht .ZV /�j C 2
p
m

p
t

#
: (10)

Let us define u.x; t; z/ D .2�t/�m
2 exp

�
�

mP
iD1

.zi�
p
1�txi /2
2t

�
. Using the change of

variable z D p
ty C p

1 � tx in ht .x/ leads to

ht .x/ D
Z
Rm

h.z/u.x; t; z/dz:

By the dominated convergence theorem, we may differentiate under the integral
sign and obtain

@2ht

@x2i
.x/ D �1 � t

t

Z
Rm

h.z/u.x; t; z/dz C 1 � t
t 2

Z
Rm

h.z/.zi � p
1 � txi /2u.x; t; z/dz:

Since khk1 � 1 then we have

ˇ̌
ˇ̌@2ht
@x2i

.x/

ˇ̌
ˇ̌ � 1 � t

t
C 1 � t

t2

Z
Rm

.zi � p
1 � txi /2u.x; t; z/dz:

If .Y1; : : : ; Ym/ is a Gaussian vector with covariance matrix tIm then
R
Rm
.zi �p

1 � txi /u.x; t; z/d z D E.Y 2i / D t . Therefore, we have

ˇ̌
ˇ̌@2ht
@x2i

.x/

ˇ̌
ˇ̌ � 2

1� t

t
:

Furthermore, for i ¤ j we have

@2ht

@xi @xj
.x/ D 1 � t

t2

Z
Rm

h.z/.zi � p
1 � txi /.zj � p

1 � txj /u.x; t; z/d z;
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So that
ˇ̌
ˇ @2ht
@xi @xj

.x/
ˇ̌
ˇ � 1�t

t 2
E.jYi j/E.jYi j/ D 2.1�t /

�t
. We conclude that

���h00
���1 �

2
t

� 5
t3

. Similarly, for i; j; k in Œ1;m� it holds that:

ˇ̌
ˇ̌
ˇ

@3ht

@xi @xj @xk
.x/

ˇ̌
ˇ̌
ˇ � .1� t/

3
2

t3
max . 3E.jYi j/t CE.jYi j3/IE.

ˇ̌
Yj
ˇ̌
/t CE.jYi j2/E.

ˇ̌
Yj
ˇ̌
/I

IE.jYi j/E.
ˇ̌
Yj
ˇ̌
/E.jYk j/ / :

Therefore
���h000

���1 � 5
t3

. Combining the latter inequality with the result (10) and

point 2 of Lemma 3, we obtain

sup
h2H .Rm/

jE Œh.Q.X//�� E Œh.ZV /�j

� 4

3

"
sup

h2H .Rm/

jE Œht .Q.X//��E Œht .ZV /�j C 2
p
m

p
t

#

� 8

3

p
m

p
t C 4

3
.5B1 C 5B2/t

�3:

The function in the right-hand side of the inequality reaches its minimum at t D

15.B1CB2/p

m

� 2
7
, hence

sup
h2H .Rm/

jE Œh.Q.X//�� E Œh.ZV /�j �
�
8

3
6
7

C 4

3
13
7

�
.5B1 C 5B2/

1
7 m

3
7 :

2. Set Q.X/ D .Q1.X/; : : : ;Qm.X//. For any h 2 H .Rm/, we have

E.h.Q.X///�E.h.Zv//DE.h.B�1
2�� 1

2 BTQ.X///�E.h.B�1
2�� 1

2 BTZv//:

Define g.x/ D h.B�
1
2 x/, x 2 R

m. Since g 2 H .Rm/ then, using inequal-
ity (10), we get

sup
h2H .Rm/

jE Œh.Q.X//�� E Œh.ZV /�j

� sup
g2H .Rm/

ˇ̌
ˇE
h
g.�� 1

2 BTQ.X//
i

�E
h
g.�� 1

2 BT ZV /
iˇ̌
ˇ

� 4

3

"
sup

g2H .Rm/

ˇ̌
ˇE
h
gt .�

� 1
2 BTQ.X//

i
�E

h
gt .�

� 1
2 BTZV /

iˇ̌
ˇC 2

p
m

p
t

#
:

We can find an upper bound for the second and third derivatives of ft .x/ D
gt .�

� 1
2 BT x/. Indeed,

���f 00

t

���1 � 5b2t�3 and
���f 000

t

���1 � 5b3t�3. By using the
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same reasoning as in point 1 and replacing B1 by b2B1 and B2 by b3B2 in (10), we
obtain the result.

The main difference between the proof of Nourdin Peccati and our proof is
that we consider a family of variables Xi not necessary independent. We need this
relaxation of the hypothesis because the real part and the imaginary part of random
variables Xi;j are not independent, so we modified the Lemma 3 by including a
dependance in certain block of random variables. In the sketch proof of this lemma
we use the hypercontractity property for homogeneous sum of a family of variables
not independent, which lead us to relax the independent hypothesis in the Lemma 2.

4 Proof of Theorem 1

We use hereafter the notation adopted in the beginning of Sect. 2. If we separate the
diagonal terms from the non-diagonal terms in (2), we obtain

trace.Xd
n / �E.trace.Xd

n //

D 1

n
d
2

X
..i1;i2/;:::;.id ;i1//2Dn

. Xi1;i2 : : : Xid ;i1 � E.Xi1;i2 : : : Xid ;i1 / /

C 1

n
d
2

X
..i1;i2/;:::;.id ;i1//2NDn

Xi1;i2 : : : Xid ;i1 :

The expectation in the second sum is equal to zero because the Xi;j are
independent and centered. The variance of the term containing the diagonal terms is

upper bounded by O



1p
n

�
and, therefore, goes to 0 as n goes to infinity. Indeed, if

we set M D sup
i;j

E.
ˇ̌
Xi;j

ˇ̌2d
/, then

Var

0
@ 1

n
d
2

X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A

D 1

nd

"
E

0
B@
0
@ X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A
2
1
CA

�
0
@E

0
@ X
.i1;i2/;:::;.id ;i1/2Dn

Xi1;i2 : : : Xid ;i1

1
A
1
A
2#
:
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Keeping the notation introduced in Lemma 1, we have:

E

0
B@
0
@ X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A
2
1
CA

D
X

..i1;i2/;:::;.id ;i1/;.idC1;idC2/;:::;.i2d ;idC1//2An
E
�
Xi1;i2 : : : Xid ;i1XidC1;idC2

: : : Xi2d ;idC1

�
:

Since E
�
Xi1;i2 : : : Xid ;i1XidC1;idC2

: : : Xi2d ;idC1

�
is equal to 1 over the subset Bn

of An, and is upper bounded by M over the subset An n Bn, then we can state that:

ˇ̌
ˇ̌
ˇ̌
ˇ
E

0
B@
0
@ X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A
2
1
CA � #Bn

ˇ̌
ˇ̌
ˇ̌
ˇ

� M #.An n Bn/: (11)

Furthermore, since the Xi;j are centered and independent, then
E.Xi1;i2 : : : Xid ;i1 / D 0 if ..i1; i2/; : : : ; .id ; i1// 2 Dn n En. Thus,

E

0
@ X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A D

X
..i1;i2/;:::;.id ;i1//2En

E.Xi1;i2 : : : Xid ;i1 /:

On the other hand, E.Xi1;i2 : : : Xid ;i1 / is equal to 1 over the subset Fn of En, and
bounded by

p
M over En n Fn. Then,

ˇ̌
ˇ̌
ˇ̌E
0
@ X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A � #Fn

ˇ̌
ˇ̌
ˇ̌ � p

M#.En n Fn/: (12)

Finally, by combining the estimations (11) and (12), and using points .i/ to .iv/
of Lemma 1 and the fact that #Dn D O.nd�1/, we get the following result, with Zn
defined by Zn D P

..i1;i2/;:::;.id ;i1//2Dn
Xi1;i2 : : : Xid ;i1 :

Var .Zn/ D E.Z2
n/ �E.Zn/2

D #Bn C �
E.Z2

n/� #Bn
� � .#Fn/2 C �

.#Fn/2 �E.Zn/2

D #Bn � .#Fn/2 C �
E.Z2

n/ � #Bn
�

C�#Fn �E.Zn/
��

#Fn C E.Zn/
�
:
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From points .ii/ and .iv/ of Lemma 1, it follows that #Bn � .#Fn/2 D O.nd�1/.
Using point .i/ and the relation (11), we obtain the estimation E.Z2

n/ � #Bn D
O.nd�1/. Finally, using points .iii/–.iv/ and the relation (12), we get the following
estimations: E.Zn/ � #Fn D O.n

d�1
2 / and E.Zn/ C #Fn D O.n

d
2 /. From these

estimations, we conclude that:

Var

0
@ 1

n
d
2

X
..i1;i2/;:::;.id ;i1//2Dn

Xi1;i2 : : : Xid ;i1

1
A D O

�
1p
n

�
:

Consider now a bijection � W �1; n2	 ! Œ1; n� � Œ1; n�. Let us define Xi D X�.i/
and R D E.Re.Xi/2/. When R D 1, the Xi are real-valued, which corresponds
exactly to the result of Nourdin et Peccati [7] (there is then nothing more to prove).
By contrast, when R D 0, the Xi are purely imaginary-valued; factoring out by
id in the trace formula shows that the result in this case can be derived from the
case R D 1. In what follows, we can then freely assume that R 2 .0; 1/. Set � D
E.Re.Xi /Im.Xi //

R
p
1�R , and define:

8̂
ˆ̂̂<
ˆ̂̂̂
:

X0
i D Re.Xi /� �

q
R
1�R Im.Xi/

X1
i D Im.Xi/

X0
i;j D Re.Xi;j / � �

q
R
1�R Im.Xi;j /

X1
i;j D Im.Xi;j /

;

fn.i1; : : : ; id / D 1

n
d
2

1f.�.i1/;:::;�.id //2NDng;

and

Qd.fn; X/ D
n2X

i1;:::;idD1
fn.i1; : : : ; id / Xi1 : : : Xid :

We have:

Xi1 : : : Xid D
dY
kD1

 
X0ik C �

r
R

1 �RX
1
ik

C iX1ik

!
D

dY
kD1

 
X0ik C

 
�

r
R

1 �R C i

!
X1ik

!
:

Hence

Xi1 : : : Xid D
X

j1;:::;jd2f0;1gd

 
i C �

r
R

1 �R

!P jk

X
j1
i1
: : : X

jd
id
;
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which yields

Qd.fn; X/

D
dX
kD0

 
i C �

r
R

1 � R

!k X
.j1;:::;jd /2f0;1gd
j1C:::CjdDk

X
.i1;:::;id /2Œ1;n2�d

fn.i1; : : : ; id /X
j1
i1
: : : X

jd
id

D
dX
kD0

 
i C �

r
R

1 � R

!k X
.j1;:::;jd /2f0;1gd
j1C:::CjdDk

X
�
.i1;i2/;:::;.id ;i1/

�
2NDn

1

n
d
2

X
j1
i1;i2

: : : X
jd
id ;i1

:

We define for any two elements .i1; : : : ; id /, .j1; : : : ; jd / of Œ1; n�d , and
.p1; : : : ; pd / 2 f0; 1gd the quantity gkn Œ..i1; j1/; p1/; : : : ..id ; jd /; pd /� as follows:
gkn Œ..i1; j1/; p1/; : : : ..id ; jd /; pd /� D 1

n
d
2

if ..i1; j1/; : : : ; .id ; jd // 2 NDn

and
dP
lD1
pl D k, and gkn Œ..i1; j1/; p1/; : : : ..id ; jd /; pd /� D 0 otherwise. Set

R0 D
q

Var.X0
i /, R1 D

q
Var.X1

i /, and Y D .Y ki;j /.i;j /2Œ1;n�2
k2f0;1g

a family of random

variables defined by Y ki;j D Xki;j
Rk

. Then

Qd.g
k
n; Y /

D
X

.x1;:::;xd /2Œ1;n�d
.y1;:::;yd /2Œ1;n�

d

.p1;:::;pd /2f0;1gd

gkn Œ..x1; y1/; p1/; : : : ; ..xd ; yd /; pd /� Y
p1
x1;y1

: : : Y pdxd ;yd

D 1

.R0/d�k.R1/k
X

.j1;:::;jd /2f0;1gdP
jpDk

X
�
.i1;i2/;:::;.id ;i1/

�
2NDn

1

n
d
2

X
j1
i1;i2

: : : X
jd
id ;i1

:

We can then conclude that

Qd.fn; X/ D
dX
kD0

 
i C �

r
R

1 �R

!k
.R0/

d�k.R1/kQd.g
k
n; Y /:

If egkn stands for the symmetrization of gkn then Qd.
egkn; Y / D Qd.g

k
n; Y /, whereegkn D P

�2Sd
gk;�n and

gk;�n Œ..x1; y1/; p1/; : : : ; ..xd ; yd /; pd /�

D gkn
�
..x�.1/; y�.1//; p�.1//; : : : ; ..x�.d/; y�.d//; p�.d//

	
:
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To establish that Qd.fn; X/ converges in law to the variable Z1
d C iZ2

d where
Zd D .Z1

d ;Z
2
d / is a Gaussian vector, it is sufficient to show that theQd.g

k
n ; Y /, k D

0; : : : ; d , converge in law to a Gaussian vector having independent components.
Using part 2 of Lemma 4 (in the particular case r D 2), we show that Qd.g

k
n; Y /

converges in law to a Gaussian vector whose covariance matrix V is given by
V.k; k0/ D lim1 E.Qd.g

k
n; Y /Qd.g

k0

n ; Y //. To do so, it is sufficient to check the

assumptions of Lemma 4, that is:

.i/ max
iD1;:::;2N inf .a;b/;p

fgkN ! 0.

.ii/ for every 1 � s � d � 1,
���fgkN ?s fgkN

���
2

! 0.

.iii/ E.Qd.g
k
n ; Y /Qd.g

k0

n ; Y / ! ıi;j (with ıi;j the Kronecker symbol).
.iv/ E.Qd.g

k
n ; Y /

2/ ! �2.

We can rewrite Qd.g
k
n ; Y / as

Qd.g
k
n ; Y / D 1

n
d
2

X
.j1;:::;jd /2f0;1gn
j1C:::CjdDk

X
.i1;:::;id /2NDn

Y
j1
i1;i2

: : : Y
jd
id ;i1

:

The second-order moment of Qd.g
k
n; Y / is equal to

1

nd

X
.j1;:::;j2d /2f0;1gn

j1C:::CjdDjdC1C:::Cj2dDk

X
�
.i1;i2/;:::;.id ;i1/

�
2NDn�

.idC1;idC2/;:::;.i2d ;idC1/

�
2NDn

E.Y
j1
i1;i2

: : : Y
jd
id ;i1

Y
jdC1

idC1;idC2
: : : Y

j2d
i2d ;idC1

/:

(13)

For the expectation corresponding to the indices i1; : : : ; i2d ; j1; : : : ; j2d in (13)
to be different from zero, it must hold that .i1; : : : ; i2d / belongs to Gn, where
Gn has been defined in Lemma 1. Furthermore, since the subset Gn n Hn is
of cardinality O.nd�1/, its contribution to the moment of order 2 of Qd.g

k
n; Y /

is O. 1
n
/. It remains then to see what happens when .i1; : : : ; i2d / belongs to

Hn. In this case, let us recall from the proof of point .vi/ of Lemma 1 that
the elements of the set Hn are completely characterized by d given pairwise
distinct integers i1; : : : ; id 2 Œ1; n� and a given integer k 2 Œ1; d � such that
.idC1; : : : ; i2d / D .ik; : : : ; id ; i1; : : : ; ik�1/. Moreover, if the expectation corre-
sponding to the indices i1; : : : ; i2d ; j1; : : : ; j2d in (13) is different from zero, then
it must hold that .jdC1; : : : ; j2d / D .jk; : : : ; jd ; j1; : : : ; jk�1/ and this expectation
is equal to 1. Thus,

E
�
Qd.g

k
n ; Y /

2
� D 1

nd

X
.j1;:::;jd /2f0;1gn
j1C:::CjdDk

d � n : : : � .n � d C 1/CO

�
1

n

�

D dC k
d � n : : : � .n � d C 1/

nd
CO.

1

n
/;
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which yieldsE
�
Qd.g

k
n; Y /

2
� �!
n!1 dC k

d . Moreover,E.Qd.g
k
N ; Y /Qd.g

j
N ; Y //

is equal to

1

nd

X
.j1;:::;j2d /2f0;1gn

j1C:::CjdDk;jdC1C:::Cj2dDj

X
�
.i1;i2/;:::;.id ;i1/

�
2NDn�

.idC1;idC2/;:::;.i2d ;idC1/

�
2NDn

E.Y
j1
i1;i2

: : : Y
jd
id ;i1

Y
jdC1

idC1;idC2
: : : Y

j2d
i2d ;idC1

/:

(14)

Similarly to the computation of the second-order moment of Qd.g
k
n ; Y /, the set

of elements for which the expectation in (14) is different from zero is the set Gn
of Lemma 1. The subset Gn n Hn is of cardinality O.nd�1/, which implies that its
contribution to E.Qd.g

k
N ; Y /Qd.g

j
N ; Y // is O. 1

n
/. Furthermore, the elements of

the set Hn are characterized by d given pairwise distinct integers i1; : : : ; id 2 Œ1; n�
and a given integer k 2 Œ1; d � such that .idC1; : : : ; i2d / D .ik; : : : ; id ; i1; : : : ; ik�1/.
Moreover, for E.Y j1i1;i2 : : : Y

jd
id ;i1

Y
jdC1

idC1;idC2
: : : Y

j2d
i2d ;idC1

/ to be different from zero, it
must hold that .jdC1; : : : ; j2d / D .jk; : : : ; jd ; j1; : : : ; jk�1/, which is impossible
in the case j ¤ k. We conclude that E.Qd.g

k
N ; Y /Qd.g

j
N ; Y // ! 0 for every

j ¤ k.

From the definition of egkn , it is clear that
���egkn

���1 � ��gkn
��1 � 1

n
d
2

. Then,

inf.a;b/;p
fgkN

D
X

.x1;:::;xd�1/2Œ1;n�d�1

.y1;:::;yd�1/2Œ1;n�
d�1

.p1;:::;pd�1/2f0;1gd�1

egkn ...a; b/; p/; ..x1; y1/; p1/; : : : ; ..xd�1; yd�1/; pd�1//2

�
X

.i1;:::;id /2Œ1;n�d
.p1;:::;pd /2f0;1gd

�2Sd

gkn
�
..i�.1/; i�.1/C1/; p�.1//; : : : ; ..i�.d/; i�.d/C1/; p�.d//

�2

�1faDi�.1/g � 1fbDi�.1/C1g � 1fpDp�.1/g

� 2d�1.d/Šnd�2
���egkn

���21 � 2d�1.d/Š
n2

:

Therefore max
iD1;:::;2N inf.a;b/;p

fgkN � 2d�1.d/Š

n2
! 0.
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Now, let 1 � s � d � 1 and �1; �2 2 Sd . Then

gk;�1n ?s g
k;�2
n Œ ..x1; y1/; p1/; : : : ; ..xd�s ; yd�s/; pd�s/; ..x0

1; y
0
1/; p

0
1/; : : : ;

..x0
d�s ; y0

d�s/; p0
d�s/ �

D
X

.xd�sC1;:::;xd /2Œ1;n�s
.yd�sC1 ;:::;yd /2Œ1;n�

s

.pd�sC1;:::;pd /2f0;1gs

gk;�1n Œ ..x1; y1/; p1/; : : : ; ..xd�s ; yd�s/; pd�s/;

..xd�sC1; yd�sC1/; pd�sC1/; : : : ; ..xd ; yd /; pd / �

�gk;�2n Œ ..x0
1; y

0
1/; p

0
1/; : : : ; ..x

0
d�s ; y0

d�s/; p0
d�s/;

..xd�sC1; yd�sC1/; pd�sC1/; : : : ; ..xd ; yd /; pd / �

so that

���egkn ?s egkn
���2
2

D 1
.d Š/4

X
�1;�2;�3;�42Sd

X
.x1;:::;xd�s /2Œ1;n�d�s

.y1;:::;yd�s /2Œ1;n�
d�s

.p1;:::;pd�s /2f0;1gd�s

X
.x0
1;:::;x

0
d�s /2Œ1;n�d�s

.y0
1;:::;y

0
d�s

/2Œ1;n�d�s

.p0
1;:::;p

0
d�s

/2f0;1gd�s

X
.xd�sC1;:::;xd /2Œ1;n�s
.yd�sC1 ;:::;yd /2Œ1;n�

s

.pd�sC1;:::;pd /2f0;1gs

X
.x0
d�sC1;:::;x

0
d /2Œ1;n�s

.y0
d�sC1

;:::;y0
d
/2Œ1;n�s

.p0
d�sC1

;:::;p0
d
/2f0;1gs

�gk;�1n Œ ..x1; y1/; p1/; : : : ; ..xd�s ; yd�s/; pd�s/; ..xd�sC1; yd�sC1/; pd�sC1/; : : : ;

..xd ; yd /; pd / �

�gk;�2n Œ ..x0
1; y

0
1/; p

0
1/; : : : ; ..x

0
d�s ; y0

d�s/; p0
d�s/; ..xd�sC1; yd�sC1/; pd�sC1/; : : : ;

..xd ; yd /; pd / �

�gk;�3n Œ ..x1; y1/; p1/; : : : ; ..xd�s ; yd�s/; pd�s/; ..x0
d�sC1; y0

d�sC1/; p0
d�sC1/; : : : ;

..x0
d ; y

0
d /; p

0
d / �

�gk;�4n Œ ..x0
1; y

0
1/; p

0
1/; : : : ; ..x

0
d�s ; y0

d�s/; p0
d�s/; ..x0

d�sC1; y0
d�sC1/; p0

d�sC1/; : : : ;

..x0
d ; y

0
d /; p

0
d / � :

For the sake of notational simplicity and because this case is representative of the
difficulty, in the rest of the proof we assume that �1 D �2 D �3 D �4 D Id , where
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Id stands for the identity permutation over Œ1; d �. Since gkn is equal to zero at point
Œ..x1; y1/; p1/; : : : ; ..xd ; yd /; pd /� if yi ¤ xiC1 or yd ¤ x1, then

X
.x1;:::;xd�s /2Œ1;n�d�s

.y1;:::;yd�s /2Œ1;n�
d�s

.p1;:::;pd�s /2f0;1gd�s

X
.x0
1;:::;x

0
d�s /2Œ1;n�d�s

.y0
1;:::;y

0
d�s

/2Œ1;n�d�s

.p0
1;:::;p

0
d�s

/2f0;1gd�s

X
.xd�sC1;:::;xd /2Œ1;n�s
.yd�sC1 ;:::;yd /2Œ1;n�

s

.pd�sC1 ;:::;pd /2f0;1gs

X
.x0
d�sC1

;:::;x0
d /2Œ1;n�s

.y0
d�sC1

;:::;y0
d
/2Œ1;n�s

.p0
d�sC1

;:::;p0
d
/2f0;1gs

�gk;Idn Œ ..x1; y1/; p1/; : : : ; ..xd�s ; yd�s/; pd�s/; ..xd�sC1; yd�sC1/; pd�sC1/; : : : ;

..xd ; yd /; pd / �

�gk;Idn Œ ..x0
1; y

0
1/; p

0
1/; : : : ; ..x

0
d�s ; y0

d�s/; p0
d�s/; ..xd�sC1; yd�sC1/; pd�sC1/; : : : ;

..xd ; yd /; pd / �

�gk;Idn Œ ..x1; y1/; p1/; : : : ; ..xd�s ; yd�s/; pd�s/; ..x0
d�sC1; y0

d�sC1/; p0
d�sC1/; : : : ;

..x0
d ; y

0
d /; p

0
d / �

�gk;Idn Œ ..x0
1; y

0
1/; p

0
1/; : : : ; ..x

0
d�s ; y0

d�s/; p0
d�s/; ..x0

d�sC1; y0
d�sC1/; p0

d�sC1/; : : : ;

..x0
d ; y

0
d /; p

0
d / �

D X
.˛1;:::;˛d�sC1/2Œ1;n�d�sC1

.p1;:::;pd�s /2f0;1gd�s

X
.˛0
1;:::;˛

0
d�sC1/2Œ1;n�d�sC1

.p0
1;:::;p

0
d�s

/2f0;1gd�s

X
.i1;:::;is�1/2Œ1;n�s�1
.pd�sC1;:::;pd /2f0;1gs

X
.i 01;:::;i

0
s�1/2Œ1;n�s�1

.p0
d�sC1

;:::;p0
d
/2f0;1gs

�1f˛1D˛0
1g � 1f˛d�sC1D˛0

d�sC1
g

�gkn Œ ..˛1; ˛2/; p1/; : : : ; ..˛d�s ; ˛d�sC1/; pd�s/; ..˛d�sC1; i1/; pd�sC1/; : : : ;

..is�1; x1/; pd / �

�gkn Œ ..˛0
1; ˛

0
2/; p

0
1/; : : : ; ..˛

0
d�s ; ˛0

d�sC1/; p0
d�s/; ..˛0

d�sC1; i1/; pd�sC1/; : : : ;

..is�1; x0
1/; pd / �

�gkn Œ ..˛1; ˛2/; p1/; : : : ; ..˛d�s ; ˛d�sC1/; pd�s/; ..˛d�sC1; i 01/; p0
d�sC1/; : : : ;

..i 0s�1; x1/; p0
d / �

�gkn Œ ..˛0
1; ˛

0
2/; p

0
1/; : : : ; ..˛

0
d�s ; ˛0

d�sC1/; p0
d�s/; ..˛0

d�sC1; i 01/; p0
d�sC1/; : : : ;

..i 0s�1; x0
1/; p

0
d / �

� 22dn2d�2 ��gkn
��41 � 22dn�2:

We conclude that
���egkn ?s egkn

���2
2

! 0.
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Then, all the assumptions of Lemma 4 are fulfilled by Qd.g
k
N ; Y /. Therefore,

Qd.fN ; Y /
law�!

dX
kD1

 
i C �

r
R

1 � R

!k
Rk0 R

d�k
1

q
dC k

d Gk;

where the Gk’s are independent standard Gaussian random variables. We can
rewrite this result as:

Qd.fN ; Y /
law�! Z1

d C iZ2
d ;

where Zd D .Z1
d ;Z

2
d / is a Gaussian vector; its covariance matrix is

�
�21 �1;2

�1;2 �
2
2

�
;

with d D �21 C �22 and dE.X2
1 /
d D �21 � �22 C i 2�1;2.

This completes the proof of Theorem 1. ut
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Functionals of the Brownian Bridge

Janosch Ortmann

Abstract We discuss the distributions of three functionals of the free Brownian
bridge: its L2-norm, the second component of its signature and its Lévy area. All of
these are freely infinitely divisible. Two representations of the free Brownian bridge
as series of free semicircular random variables are introduced and used. These are
analogous to the Fourier representations of the classical Brownian bridge due to
Lévy and Kac and the latter extends to all semicircular processes.

1 Introduction

In this note we discuss the distributions of three non-commutative random variables
defined in terms of a free Brownian bridge.

In his paper [11], Lévy introduces the following representation of the Brownian
bridge. Let �n; �n be independent standard Gaussian random variables then the
process defined by

ˇ2�.t/ D
1X
nD1

cos.nt/ � 1
n
p
�

�n C
1X
nD1

sin.nt/

n
p
�
�n (1)

defines a Brownian bridge on Œ0; 2��. Another representation is given by Kac [9].
Retaining the notation for the �n it is a consequence of Mercer’s theorem that the
Gaussian process defined by

ˇ1.t/ D
1X
nD1

p
2 sin.n�t/

n�
�n (2)
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has the covariance kernel of a Brownian bridge. The analogue of the Gaussian
distribution and processes in non-commutative probability theory are the semicircle
law and semicircular processes. It turns out that the crucial properties of the
Gaussian distribution needed for the observations above are shared by the
semicircular law. Therefore if we replace �n; �n by free standard semicirculars
then (1) and (2) define free Brownian bridges on Œ0; 2�� and Œ0; 1� respectively.
We will use this fact to prove various properties of the square norm, the second
component of the signature and the Lévy area of the free Brownian bridge.

The L2-norm of the classical Brownian bridge was first considered by Kac who
used his representation (2) to compute its Fourier transform. Further calculations
were performed using Kac’s work, see Tolmatz [18] and the references therein. We
will compute the R-transform of the free analogue of this object and use the fact that
its law is freely infinitely divisible to prove that it has a smooth density for which
we give an implicit equation.

In [6] Capitaine and Donati-Martin construct the second component Z of the
signature of the free Brownian motion. This process plays a role in the theory
of rough paths, see [6], Lyons [12] and Victoir [19] for details. The second
component of the signature is a process taking values in the tensor product of
the underlying non-commutative probability space with itself. Equipped with the
product expectation this is a probability space in its own right and we compute the
R-transform of Z. A connection between the cumulants of Z and the number of
2-irreducible meanders, a combinatorial object introduced by Lando–Zvonkin [10]
and further analysed by Di Francesco–Golinelli–Guitter [7] is pointed out.

Finally we apply the Lévy-type representation to compute the R-transform of
the Lévy area corresponding to the free Brownian bridge. This random variable is
also freely infinitely divisible. Once again this allows us to deduce that the law in
question has a smooth density. Again we obtain an implicit equation.

From the considerations involving free infinite divisibility it also follows that
the support of the law of both Lévy area and square norm is a single interval, in
the former case symmetric about the origin, in the latter strictly contained in the
positive half-line. In [15] a large deviations principle is established for the blocks
of a uniformly random non-crossing partition. This result allows us to determine
the maximum of the support from the free cumulants. We obtain implicit equations
that determine the essential suprema of Lévy area and square norm. In particular we
show that the support of the law of the square norm is contained in

�
0; 1

2

	
.

2 Free Probability Theory

We recall here some definitions and properties from free probability theory. For an
introduction to the subject see for example [8, 20, 21].
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2.1 Freeness, Distributions, and Transforms

Throughout let .A ; �/ be a non-commutative probability space, i.e. a unital
�-algebra equipped with a tracial state � on A . All non-commutative probability
spaces considered in this paper are assumed to have additional topological structure.
Namely we assume that A is a C�-algebra. That is, there exists a Hilbert space H
such that A is a closed subalgebra of B.H / and �.a/ D h˝; a.˝/iH for some
fixed unit vector˝ 2 H . See also Sect. 2.3.

We think of elements a 2 A as non-commutative random variables and consider
�.a/ to be the expectation of a 2 A . We will only consider self-adjoint a 2 A .
Then there exists a compactly supported measure �a on R, called the distribution
of a, such that

�.an/ D
Z
tn �a.dt/ 8 n 2 N:

Recall that the Cauchy transform of �a is defined to be

G�a.z/ D
Z
R

�a.dt/

z � t
D

1X
nD0

�.an/z�n�1:

Since �a is compactly supported the first equality defines an analytic map G�a from
C

C toC�, and the power series expansion is valid on a neighbourhoodUa of infinity.
We will also write Ga for G�a .

Definition 1. Subalgebras B1; : : : ;BN of A are said to be free if for every set of
indices frj gmjD1  f1; : : : ; N g and collection faj 2 Brj W 1 � j � mg such that
rj ¤ rjC1 and �.aj / D 0 8 j we already have

�.a1; : : : ; am/ D 0:

Random variables a1; : : : ; aN are said to be free if the unital algebras generated by
the aj are free.

If a and b are free then the distribution of aCb is uniquely determined by those of a
and b (see Remark 1(2) below). Denote the laws of a; b by�1; �2 respectively. Then
the free convolution of �1 and �2 is defined to be the distribution of aC b. Because
self-adjoint elements of A are determined by their distribution this induces a binary
operation on the space of compactly supported probability measures, denoted �.

A partition � of the set n D f1; : : : ; ng is said to be crossing if there exist distinct
blocks V1, V2 of � and xj ; yj 2 Vj such that x1 < x2 < y1 < y2. Otherwise � is
said to be non-crossing. Equivalently, arrange the numbers 1; : : : ; n clockwise on a
circle and connect any two elements of the same block of � by a straight line. Then
� is non-crossing if and only if the lines drawn are pairwise disjoint. Let NC.n/
denote the set of non-crossing partitions on n (Fig. 1).
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Fig. 1 The partition ff8g; f9g; f10; 7; 6g; f11; 5g; f12; 4; 3; 2; 1gg is non-crossing, ff5; 1g; f8g,
f9; 3g; f10; 7; 6g; f12; 4; 2gg is crossing

Definition 2. The free cumulants of A are the maps knW A n �! C (where n 2 N),
defined indirectly by the following system of equations:

�.a1; : : : ; an/ D
X

�2NC.n/

k� Œa1; : : : ; an� (3)

where k� denotes the product of cumulants according to the block structure of � .
That is, if V1; : : : ; Vr are the components of � 2 NC.n/ then

k� Œa1; : : : ; an� D kV1 Œa1; : : : ; an� : : : kVn Œa1; : : : ; an�

where, for V D .v1; : : : ; vr / we just have kV Œa1; : : : ; an� D kjV j .av1 ; : : : ; avr /.

Note that (3) has the form �.a1; : : : ; an/ D knŒa1; : : : ; an�C lower order terms,
so that we can find the kn inductively. Alternatively, (3) defines the kn by Möbius
inversion. See [14] for details.

We will write kn.a/ for knŒa; : : : ; a�. The R-transform of a random variable
a 2 A is defined to be the formal power series

Ra.z/ D
1X
nD0

knC1.a/zn: (4)

If the law of a has compact support then Eq. (4) defines an analytic function on a
neighbourhood of zero [8, Theorem 3.2.1]. Moreover the Cauchy transform Ga of
a is locally invertible on a neighbourhood of infinity and the inverseKa satisfies

Ka.z/ D Ra.z/C 1

z
:
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Remark 1. The following three properties of the R-transform are easy to check
using the continuity of � and multilinearity of the cumulants.

1. If an converges to a in the operator topology of A then there exists a
neighbourhoodU of zero where Rn;R are defined for all n 2 N and Ran.z/ �!
Ra.z/ as n ! 1 for every z 2 U .

2. If a; b 2 A are free then RaCb.z/ D Ra.z/CRb.z/
3. For � 2 C we have R�a.z/ D �Ra.�z/.

2.2 Semicircular Processes

Definition 3. A collection S D .sj /j2I of non-commutative variables on A is
said to be a semicular family with covariance .c.i; j //i;j2I if the cumulants are
given by

k�Œsj1 ; : : : sjn� D
(Q

p��q
c.jp; jq/ if � is a pair partition

0 otherwise:

If S consists of a singleton s1 and r D 2
p
c.1; 1/ then the distribution of s1 is the

centred semicircle law of radius r , that is the measure �r on R given by

�r.dt/ D 2

�r2

p
r2 � t2 1Œ�r;r�.t/ dt:

In particular �2 is also called the standard semicircle law and non-commutative
random variables with law �r (�2) are referred to as (standard) semicirculars.

The semicircle law plays a similar role to the Gaussian distribution on classical
probability theory. In particular there exists a central limit theorem [21, Theorem
3.5.1], and a collection of random variables with a joint semicircular law is
determined by its covariance. To be more precise we recall the following result,
which is stated as Proposition 8.19 in Nica–Speicher [14].

Proposition 1. Let .si /i2I be a semicircular family of covariance .c.i; j //i;j2I and
suppose I is partitioned by I1; : : : ; Id . Then the following are equivalent:

1. The collections fsj W j 2 I1g; : : : ; fsj W j 2 Id g are free
2. We have c.r; j / D 0 whenever r 2 Ip and j 2 Iq with p ¤ q.

In particular fsj W j 2 I g is a free family if and only ifC D .c.r; j //r;j2I is diagonal.

Definition 4. A process .X.t//t	0 on A is said to be a semicircular process if for
every t1; : : : ; tn 2 Œ0;1/, the set .X.t1/; : : : ; X.tn// is a semicircular family.
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By the considerations above the finite-dimensional distributions of a semicircular
process are determined by the covariance structure of the process, i.e. by the
function C W Œ0;1/2 �! C defined by

C.s; t/ D �.X.s/X.t//:

2.3 The Full Fock Space, Creation and Annihilation

In order to deal with convergence issues it will be useful to choose a specific
non-commutative probability space. Let H0 be an infinite-dimensional separable
complex Hilbert space and define the full Fock space to be

H D
1M
nD0

H ˝n
0 : (5)

where by convention H ˝0
0 D C˝ for a distinguished unit vector ˝ . Equip the

C�-algebra B.H / of continuous linear functionals on H with the tracial state �
given by

�.a/ D ha.˝/;˝i: (6)

Definition 5. For h 2 H0 define the creation and annihilation operators to be l.h/
and l�.h/ respectively where

l.h/.h1 ˝ : : :˝ hn/ D h˝ h1 ˝ : : :˝ hn (7)

l�.h/.h1 ˝ : : :˝ hn/ D hh; h1ih2 ˝ : : :˝ hn: (8)

Let s.h/ be the self-adjoint element of B.H / defined by s.h/ D l.h/C l�.h/. The
following result is Theorem 2.6.2 in [21].

Lemma 1. Let .en/n2N be an orthonormal sequence in H0 and put �n D s.en/.

(i) If A denotes the sub-von Neumann algebra of B.H / generated by .�n/n2N
then � is a faithful normal trace on A .

(ii) The set fs.en/Wn 2 Ng forms a semicircular family in A with covariance kernel
C.m; n/ D ımn.

Since all of the results in this paper are only concerned with the distributions of
non-commutative probability spaces we can, and will, assume throughout that A is
a C�-subalgebra of B.H /, the space of bounded linear operators on the full Fock
space, and that � is as in (6). In particular all semicircular random variables that
appear will be defined in terms of the creation and annihilation operators.
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2.4 The Lévy Representation of the Free Brownian Bridge

Definition 6. A centred semicircular process .ˇT .t//t2Œ0;T � on A is said to be a free
Brownian bridge on Œ0; T � if its covariance structure is given by

�.ˇT .s/ˇT .t// D s ^ t � st

T
:

Remark 2. In analogy with classical probability it can be easily checked that if ˇ
is a free Brownian bridge on Œ0; 1� and �0 is a free standard semicircular free from
fˇ.t/W t 2 Œ0; 1�g, then X.t/ D �0t C ˇ.t/ defines a free Brownian motion, that is

(i) the distribution of X.t/ is a centred semicircular law with radius t ;
(ii) X.t/ � X.s/ is free from fX.r/W r � sg

(iii) X.t/ � X.s/ has the same distribution as X.t � s/.
The following proposition is the analogue of Lévy’s representation of the classical
Brownian bridge [11]. Let .en; fnWn 2 N/ be an orthonormal sequence in the full
Fock space H and define �n D s.en/ and �n D s.fn/, so that

˚
�n; �mW .n;m/ 2 N

2
�

is a set of free standard semicircular variables in A .

Proposition 2. The process ˇ2� defined by

ˇ2�.t/ D
1X
nD1

cos.nt/ � 1
n
p
�

�n C
1X
nD1

sin.nt/

n
p
�
�n (9)

is a free Brownian bridge on Œ0; 2��.

Proof. By continuity and linearity of the operator s.�/ it follows that the right-hand
side of (9) converges in A and that ˇ2�.t/ is a centred semicircular variable. A direct
computation verifies that ˇ2� has the right covariance kernel. ut

2.5 A Representation for Centred Semicircular Processes

In this section we show how Kac’s representation [9] for the classical Brownian
bridge on the unit interval can be translated into the setting of free probability.
His method extends to all centred semicircular (or indeed Gaussian) processes, as
follows. Everything relies on the following classical result from functional analysis,
see Bollobas [5].

Theorem 1 (Mercer’s theorem). Let KW Œ0; 1� � Œa; b� �! R be a non-negative
definite symmetric kernel. Let TK be the operator on H associated to K , that is,

TK.f /.s/ D
Z 1

0

K.s; t/ f .t/ dt: (10)
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Then there exists an orthonormal basis .fn/n2N of L2Œ0; 1� consisting of eigen-
functions of TK such that the corresponding eigenvalues �n are non-negative,
fn 2 C Œ0; 1� whenever �n ¤ 0 and

K.s; t/ D
1X
nD1

�nfn.s/fn.t/ (11)

where the convergence is absolute and uniform, and hence also in L2Œ0; 1�.

We can use Mercer’s theorem to represent any centred semicircular process as a
series of free standard semicircular random variables, noting that if Y is a centred
semicircular process indexed by Œ0; 1� then its covariance function K defined by
K.s; t/ D �.Y.s/Y.t// is a non-negative kernel on Œ0; 1� which is also symmetric,
by traciality of �.

Corollary 1. Let K;H ; .�n; fn/n2N be as in Mercer’s theorem and let .�n/n2N
be a sequence of free standard semicirculars, defined in terms of creation and
annihilation operators as in Sect. 2.4. Then the process Y defined by

Y.t/ D
1X
nD1

p
�nfn.t/ �n (12)

is a centred semicircular process of covarianceK .

Proof. As before convergence in the operator topology of A follows from linearity
and continuity of the operator s.�/. Further it is once more immediate that Y is a
centred semicircular process. Its covariance kernel is given by

�.Y.s/Y.t// D
1X

m;nD1

p
�m�nfm.s/fn.t/�.�m�n/

D
1X
nD1

�nfn.s/fn.t/ D K.s; t/

by Mercer’s theorem. ut
For the free Brownian bridge on Œ0; 1� we have K.s; t/ D s ^ t � st . Solving the
corresponding eigenvalue-eigenvector equation we obtain Kac’s representation in
the free setting.

ˇ1.t/ D
1X
nD1

p
2 sin.n�t/

n�
�n: (13)
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3 Square Norm of the Free Brownian Bridge

In this section we consider the square-norm of a free Brownian bridge ˇ on interval.
Recall that A is a C�-algebra so that we can consider ˇ as a map from Œ0; 1� into a
Banach space which is easily seen to be continuous. We can therefore use Riemann
integration to define

� D
Z 1

0

ˇ.t/2 dt

where ˇ is a free Brownian bridge on Œ0; 1�. In this section we discuss the
distribution of the non-commutative random variable � , using the representation
(13). Kac[9] showed that the Laplace transform of the commutative analogue of �
is given by

Of .p/ D
� p

2p

sinh
p
2p

�.1=2/
:

Other properties, in particular the density function f , were computed, most recently
by Tolmatz[18].

We give here the R-transform of � and an expression for its moments involving a
sum over non-crossing partitions. Further below we show that the distribution�� of
� is freely infinitely divisible. This gives us some analytic tools to show that there
exist a; b 2 Œ0;1/ with a < b such that the support of �� is Œa; b� and that �� has
a smooth positive density on Œa; b�. We give an implicit equation and a sketch for
the density.

Finally we use a result from [15] to characterise the maximum b of the support
of �� . In particular we show that b < 1

2
.

3.1 The R-Transform

The Kac representation of semicircular process is well suited for computing
quadratic functionals. Let Y be a semicircular process with covariance kernelK and
series representation as in Corollary 1. By orthonormality of the eigenfunctions,

Z 1

0

Y 2.s/ ds D
1X
nD1

�n�
2
n:

Now the distribution of �2n is well-known: the square of a standard semicir-
cular random variable is a free Poisson element of unit rate and jump size
( Nica–Speicher [14], Proposition 12.13). So the free cumulants of �2n are all equal
to 1 and hence its R-transform is given by Rn.z/ D 1

1�z , see [14, p. 205].



442 J. Ortmann

Using the properties of the R-transform mentioned in Remark 1 we can now
compute the R-transform of

R 1
0
Y 2.s/ ds. In the case where Y is a free Brownian

bridge we obtain the following

Proposition 3. The R-transform of the square norm � of the free Brownian bridge
is given by

R� .z/ D 1 � p
z cot.

p
z/

2z
: (14)

Proof. The eigenvalues of K are given by �n D 1
n�

. So for jzj < �2 we have

R� .z/ D
1X
nD1

1

�2n2
Rn


 z

�2n2

�
D

1X
nD1

1

n2�2 � z
D 1 � p

z cot.
p

z/

2z

as claimed. ut
The free cumulants of � are therefore given by

km D �.2m/

�2m
D .�4/mC1 B2m

2.2m/Š

where Bn is the nth Bernoulli number and � the Riemann zeta function. With (3) we
obtain a formula for the moments involving a sum over non-crossing partitions:

� .� n/ D 1

�2n

X
�2NC.n/

m�Y
rD1

�.2l�r / D .�4/nC1 X
�2NC.n/

m�Y
rD1

B2l�r
2.2l�r /Š

where m� denotes the number of equivalence classes of a non-crossing partition �
and l�r is the size of the r th equivalence class of � .

While there does not seem to exist a closed-form expression for the inverse of
K� .z/ D R� .z/� 1

z (and hence, by the Stieltjes inversion formula, for the density)
we will describe some properties of the law�� of � . We will prove that�� is freely
infinitely divisible, has a positive analytic density on a single interval and give an
equation for the right end point of that interval.

3.2 Free Infinite Divisibility

The concept of infinite divisibility has a natural analogue in free probability theory.
Noting that the square norm of the free Brownian bridge is freely infinitely divisible
we will use the approach of P. Biane in his appendix to the paper [2] to prove that
the law of � has a smooth density on its support and give an implicit formula for
that density.
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Definition 7. A compactly supported probability measure � is said to be freely
infinitely divisible (or �-infinitely divisible) if for every n 2 N there exists a
compactly probability measure �n such that

� D ��n
n D �n � : : :� �n„ ƒ‚ …

n times

where � denotes free convolution (Sect. 2).

Since for each n the free random variable �2n has a free Poisson distribution and is
therefore freely infinitely divisible it follows that � is also �-infinitely divisible.

Recall that the Cauchy transform G� of � is an analytic map from the upper
half plane C

C into the lower half plane C
�, which is locally invertible on a

neighbourhood of infinity, and that its local inverse is given by the K-transform
K� where

K� .z/ D R� .z/C 1

z
D 3 � p

z cot
�p

z
�

2z
:

From Proposition 5.12 in Bercovici– Voiculescu [3] and the infinite divisibility of
� it is straightforward to deduce the following result.

Lemma 2. The law �� of the square norm of the free Brownian bridge can have
at most one atom. Moreover its Cauchy transform G� is an analytic injection from
C

C whose image is the connected component˝ in C
� of

Ő D fz 2 C
�WIm .K� .z// > 0g

that contains iy for small values of y.

It will be useful to characterise the boundary @˝ .

Lemma 3. For every t 2 .�; 2�/ there exists unique r.t/ > 0 such that

Im
��
K� .r.t/e

it/
�	 D 0:

Moreover we have

@

@z
ImK� .z/

ˇ̌
ˇ̌
zDr.t/eit

¤ 0 8 t 2 .�; 2�/: (15)

Proof. Fix t 2 .�; 2�/. The imaginary part of K� can be written in polar
co-ordinates by

ht .r/ WD ImK�



r eit

�
D �3 sin.t/

2r
C � sinh.�

p
r/ cosh.�

p
r/C � sin.�

p
r/ cos.�

p
r/

2
p
r
�
sin2.�

p
r/C sinh2.�

p
r/
�
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where � D sin.t=2/ and � D cos.t=2/. Define gt .r/ D 2r ht .r
2/. Then

gt .r/ D �6��
r

C � sin .2�r/C � sinh .2�r/

2
�
sin2.�

p
r/C sinh2.�

p
r/
	 :

The function gt blows up to C1 as r # 0. In particular gt is strictly positive on
.0;R2.t// for someR2.t/ > 0. Further there must be R1.t/ > 0 with g0

t .r/ negative
on .0;R1.t//. Splitting into the three cases whether t 2 �

�; 3�
2

�
or t 2 �

3�
2
; 5�
3

	
or t 2 �

5�
3
; 2�

�
we can check directly that there exists R3.t/ 2 .0;R1.t// such

that gt .r/ < 0 for all r > R3.t/. Further details on this lengthy but elementary
computation can be found in [16].

Hence gt has a unique zero �t , which must lie in .R2.t/; R3.t// � .0;R1.t//.
Hence g0

t .�.t// < 0 and the result follows. ut
Therefore Ő is actually simply connected: it is given by the area enclosed by the
real axis and the curve � D frteitW t 2 .�; 2�/g. In particular ˝ D Ő and @˝
is a continuous simple curve. So Carathéodory’s theorem applies, wherefore the
analytic bijectionG� WCC �! ˝ extends to a homeomorphism (denoted OG� ) from
C

C [ R [ f1g to the closure˝ of˝ in C [ f1g.
Since ˝ is bounded, so is its closure, whence OG� is finite on C

C [ R [ f1g.
The set of isolated points of the support of �� is exactly the set of t 2 R such that
OG� .t/ D 1 so supp.�� / must be an interval Œa; b�. From the Stieltjes inversion

formula (see for example [8], p.93) it now follows that if we put for x 2 Œa; b�

˚.x/ D � 1
�

lim
y!0

Im .G� .x C iy// D � 1
�
Im


 OG� .x/
�

(16)

then �� has density ˚ with respect to Lebesgue measure on Œa; b�. Since K� is the
inverse of G� and because of (15) the implicit function theorem applies and hence
˚ is smooth on Œa; b�. Moreover it follows that

supp�� D K� .@˝ \ C
�/ D ŒK� .r�C/ ^K� .r2��/ ;K� .r�C/ _K� .r2��/� :

where r�C D lims#0 r�Cs and r2�� D lims#0 r2��s .
The operator � is positive so the support of �� must be contained in Œ0;1/. (We

will show below that in fact the support is contained in Œ0; 1=2�.) Let us summarise
the results of this section.

Proposition 4. There exist b > a 
 0 and a positive smooth function ˚ W Œa; b� �!
R such that

�� .dt/ D ˚.t/1Œa;b�.t/: (17)

The function ˚ is given by ˚.x/ D � 1
�
r.�x/ sin.�x/ where �x 2 .�; 2�/ is the

unique solution to K�

�
r.�x/ e

i�x
� D x (Fig. 2).
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Fig. 2 Sketch of the density
of the L2-norm of the free
Brownian bridge, based on
numerical computations

3.3 The Maximum of the Support

We now study the maximum of the support of �� . We will need Theorem 5.4
from [15]:

Theorem 2. Let � be a compactly supported probability measure on Œ0;1/ such
that its free cumulants .kj /j2N are all positive. Then the right edge �� of the support
of � is given by

log �� D sup

(
1

m1.p/

1X
mD1

pm log

�
km

pm

�
C �

�
m1.p/

�
m1.p/

Wp 2 M1
1.N/

)
(18)

where M1
1.N/ D fp 2 M1.N/Wm1.p/ < 1g is the set of probability measures on

N with finite mean and�.m/ D log.m � 1/�m log
�
1 � 1

m

�
.

It turns out that this variational problem can be solved using the method of Lagrange
multipliers. There exists a unique maximiser p� for the supremum on the right-hand
side of (18). Using the series expansion of �.2n/ and interchanging summation we
obtain

p�
n D 1

m� � 1 �.2n/

 �
�

�2n
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where � is a rational function ofm� andm� is the unique solution on
�
3
2
;1�

of the
equation

m � 3 D
p
4m2 � 2m � 6 cot

 p
4m2 � 2m � 6
m � 1

!
(19)

Details of the computations can be found in [16]. In the end we obtain an implicit
equation for the right edge of the support of �� :

Proposition 5. The number b from Proposition 4 is given by

b D .m�/2 �m�

4 .m�/2 � 2m� � 6

where m� is the unique solution of (19) on
�
3
2
;1�

.

Remark 3. The function BWm 7�! m2�m
4m2�2m�6 is strictly decreasing on

�
3
2
; 2
�
. Since

the left-hand side of (19) is bigger than the right-hand side for m D 8
5

but smaller
for m D 2 it follows that m� 2 � 8

5
; 2
�

and hence b � B
�
8
5

�
< 1

2
. It follows that the

support of �� is contained in
�
0; 1

2

	
.

4 The Signature of the Free Brownian Bridge

4.1 Signature and Rough Paths

In T. Lyons’s paper [12] a new approach to differential equations driven by rough
paths is proposed. For a general Banach-valued path pWRC �! E we define, when
this makes sense, the signature of p to be the process S.p/ taking values in the
tensor algebra T ..E// D L1

nD0 E˝n whose nth component is given by the n-times
iterated integral against p:

S.p/n.t/ D
Z
0<t1<:::<tn<t

dp .t1/˝ : : :˝ dp .tn/:

The signature is then used to solve general differential equations of the form

dS.t/ D S.t/˝ dp .t/:

In order to show that this works if the path in question is a free Brownian motion
X , Capitaine-Donati-Martin [6] define an integral of a class of suitable processes
P against X that yields a process taking values in the tensor product A ˝ A and
prove that X itself is contained in P. The integral is defined taking Riemann-type
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approximations, so it is straightforward to extend it to processes with finite variation.
Using Remark 2 we can therefore define the second component of the signature of
a free Brownian bridge ˇ on Œ0; 2�� by

Z.t/ D
Z t

0

ˇ ˝ dˇ t 2 Œ0; 2��

where the integral is in the sense of [6], see also Victoir [19].
If A is a von Neumann algebra and � a faithful tracial state on A then its tensor

product �˝ � is a faithful tracial state on the von Neumann tensor product A ˝ A
of A with itself, see for example [19], p. 109. So we can consider .A ˝ A ; �˝ �/

as a non-commutative probability space in its own right. We will discuss here the
law of Z.2�/ with respect to this space.

We will also use the notation OA ; O� for A ˝ A , � ˝ � respectively.

4.2 Using the Lévy Representation

The representation (9) and a straightforward calculation using orthogonality of the
trigonometric functions yield

Proposition 6. The Lévy area of the free Brownian bridge at time 2� has the same
law as the random variable

Z.2�/ D
1X
nD1

1

n
.�n ˝ �n � �n ˝ �n/ : (20)

Lemma 4. Let �; � be two freely independent standard semicircular random
variables. Then f� ˝ �; �˝ �g is a free set.

Proof. Denote by A1, A2 respectively the algebras generated by � ˝ � and
� ˝ �. By Theorem 11.20 in [14] it is enough to show that the free cumulant
kn.a1; : : : ; an/ D 0 whenever n 
 2 and aj D ˛j ˝ ˇj where f˛j ; ˇj g D f�; �g
for each j , a1 D � ˝ � and for some j > 1 we have aj D � ˝ �. We will
establish this by induction, in analogy to the proof of Theorem 11.15 in [14]. If
n D 2 we must have a2 D �˝ �. Because �; � are free and centred we have

k2.a1; a2/ D O�.a1a2/ D O�.��˝ ��/ D �.��/�.��/ D 0:

Suppose now the claim holds for all l < n. Recall [14, (11.5)] that

kn.a1; : : : ; an/ D
X

�2NC.n/

O�� Œa1; : : : ; an��.�; 1n/

D
X

�2NC.n/

�� Œˇ1; : : : ; ˇn�
2�.�; 1n/
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where 1n denotes the partition of n consisting only of singletons, � is the Möbius
function on NC.n/ and �� Œa1; : : : ; an� D Q

V2� �.aj1 : : : ajsV /, using the notation
fj1; : : : ; jsV g for V . For a definition of the Möbius function see Chap. 10 of [14], but
we will not need it here since we will show that each ��Œa1; : : : ; an� D 0. Suppose
first that the aj are alternating (i.e. aj D � ˝ � if and only if j is odd). Since each
� 2 NC.n/ contains an interval, i.e. a block of the form fj; : : : ; j C pg (allowing
for the possibility p D 0), each �� Œˇ1; : : : ; ˇn�2 must vanish because of freeness of
� and �.

Turning to the general case we write a1 : : : an D A1 : : : AN so that eachAj 2 A1

if j is odd and Aj 2 A2 if j is even. That is, we group the aj into products, alter-
nating between powers of � ˝ � and �˝ �. Note that we must haveN > 1 and that
kN .A1; : : : ; AN / D 0 because of the above. Denote by � the non-crossing partition
corresponding to this grouping, i.e. two elements i; j of n are in the same block of
� if and only if ai and aj form part of the same Ar . By Theorem 11.12 in [14],

0 D kN .A1; : : : ; AN / D
X

�2NC.n/
�_�D1n

k� Œa1; : : : an�

D kn.a1; : : : ; an/C
X

�2NC.n/nf1ng

�_�D1n

k� Œa1; : : : an�

By the inductive hypothesis, the only non-zero terms in the sum on the right-hand
side are those where each block of � contains only elements from either A1 or A2,
but not both. By the way we have defined � , the same is true for � . By Remark
11.14 in [14] it now follows that a non-zero term can only appear if all appearing
elements are from the same Aj . But we started out by assuming that both � ˝ �

and �˝ � appears at least once. Hence the second summand on the right-hand side
vanishes and we have kn.a1; : : : ; an/ D 0. This completes the proof. ut
Since �n; �n have symmetric distributions, so do �n ˝ �n and �n ˝ �n. Hence the
R-transform of Z.2�/ is given by

RZ.2�/.z/ D 2

1X
nD1

1

n
R�˝�


 z

n

�
: (21)

Remark 4. By the definition of O� we have O� �.� ˝ �/k
� D �.�k/2 for k 2 N.

Recall that Ra.z/ D P1
mD0 kmC1.a/zm where km.a/ denotes the mth cumulant of

a. In particular k1.� ˝ �/ D �.�/2 D 0 so that (on a neighbourhood of zero)
R�˝�.z/ D zP.z/ for some analytic function P . Rewriting (21) yields

RZ.2�/.z/ D 2z
1X
nD1

1

n2
P

 z

n

�
; (22)

in particular the right hand side of (21) converges in a neighbourhood of zero.
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Fig. 3 (a) 1-component meander of order 3; (b) order 2, 2 components; (c) order 3, 2 components

4.3 The Distribution of � ˝ � and Meanders

We proceed to compute the R-transform of � WD � ˝ � with �; � free standard
semicirculars. Recall that the odd moments of � vanish and that �.�2n/ is given by
the nth Catalan number

�.�2n/ D Cn WD 1

2nC 1

�
2n

n

�
: (23)

Since �, � are self-adjoint, so is �. Hence its law is a probability measure � with
compact support in R. In particular � is determined by its moments which are
given by

Z
tm�.dt/ D � ..� ˝ �/m/ D �.�m/�.�m/ D

(
.Ck/

2 if m D 2k

0 if m is odd
(24)

i.e. � is the law of �1�2 where the �i are independent commutative random variables
with standard semicircular distribution. Therefore � is absolutely continuous with
respect to Lebesgue measure with density � given by

�.u/ D 1

4�2

Z 2

�2

p
4 � s2

r
4 �


u

s

�2
1Œ�2;2�


u

s

� ds

s
: (25)

The Catalan numbers Cn are well-known in combinatorics. They give, for example,
the number of Dyck paths of length 2n. Similarly there is a combinatorial interpre-
tation of the squares of the Catalan numbers, as detailed in Lando– Zvonkin [10]
and Di Francesco– Golinelli– Guitter [7]: consider an infinite line in the plane and
call it the river. A meander of order n is a closed self-avoiding connected loop
intersecting the line through 2n points (the bridges). Two meanders are said to be
equivalent if they can be deformed into each other by a smooth transformation
without changing the order of the bridges. If a meander of order n consists of k
closed connected non-intersecting (but possibly interlocking) loops it is said to have
k components (Fig. 3).

A multi-component meander is said to be k-reducible if a proper non-trivial
collection of its connected components can be detached from the meander by
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Fig. 4 Meanders that are (a) 1-reducible but 2-irreducible; (b) 1- and 2-reducible but 3-irreducible
(c) 3-reducible

cutting the river k times between the bridges. Otherwise the meander is said to
be k-irreducible (Fig. 4).

The 2-irreducible meanders have been studied extensively in [10] (where they
are called irreducible meanders). Our connection to these objects is the following

Proposition 7. Let qn denote the number of 2-irreducible meanders of order 2n
and kn D kn.� ˝ �/ the nth cumulant of � ˝ �. Then

kn.� ˝ �/ D
(
qm if n D 2m

0 if n is odd
(26)

Proof. We first prove by induction that kn D 0 if n is odd, which will follow from
the fact that O�..� ˝ �/n/ D 0 for n odd. Assume that km D 0 whenever m < n is
odd. From (3) it follows that

kn D �
X

�2NC.n/
�¤1

k�

where k� D kV1 : : : kVr if V1; : : : ; Vr are the equivalence classes of � and 1 denotes
the identity partition, i.e. Œk�1 D n. Every � 2 NC.n/nf1g must contain at least one
equivalence class of size m for some odd integer m < n. Since km is a factor of k�
and km D 0, the inductive hypothesis implies kn D 0 as required. Hence

R�˝�.z/ D
1X
nD1

k2nz2n�1:

Define the moment series of � ˝ � by

M.z/ D 1

z
G

�
1

z

�
D 1C

1X
nD1

O� ..� ˝ �/n/ zn:

It is a consequence of the relationship between Cauchy and R-transform that

M.z/ D 1C zM.z/ R.zM.z//: (27)
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We will introduce one more generating series. Put

�.z/ D
1X
nD1

qnz2n�1:

From (7.10) in [7] we have

M.z/ D 1C zM.z/ �.zM.z//: (28)

Combining (27) and (28) yields � D R as power series. That k2n D qn now follows
from comparing coefficients. ut

4.4 The Distribution of Z.2�/

So we have an explicit expression for the R-transform of � ˝ �. We will use this to
obtain the R-transform of Z.2�/.

Recall that all odd cumulants of �n ˝ �n and �n ˝ �n vanish, hence the same is
true of Z.2�/.

Proposition 8. The 2nth cumulant of Z.2�/ is 2 �.2n/ qn where � is the Riemann
zeta function.

Proof. Recall that �.m/ D P1
nD1 n�m. So

RZ.2�/.z/ D 2

1X
nD1

1

n
R�˝�


 z

n

�
D 2

1X
nD1

1

n

1X
mD1

km


 z

n

�m�1

D 2

1X
nD1

1X
mD1

n�2mqmz2m�1

D
1X
mD1

2 �.2m/qmz2m�1

where interchanging the sums overm and n is justified by absolute convergence.

Definition 8. Let .an/n2N, .bn/n2N be two sequences with generating functions f; g
respectively. The Hadamard product of f; g is defined to be the generating function
of .anbn/, denoted f � g. That is

f � g.z/ D
1X
nD1

anbnzn:
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See [17]. So RZ.2�/ is twice the Hadamard product of the generating functions of
the 2-irreducible meanders and that of the sequence f�.2m/Wm 2 Ng. From (6.3.14)
in Abramowitz–Stegun [1] we have for jzj < 1,

1X
nD2

�.nC 1/zn D �� � 
.1� z/

where � is the Euler constant and 
 is the Digamma function defined by


.z/ D d

dz
log� .z/ D � 0.z/

� .z/
:

Since the generating series can be considered as functions inside their radius of
convergence, we can use complex analysis to compute their Hadamard product.
Namely

Lemma 5. Let f; g be generating functions of .an/n2N, .bn/n2N and suppose that
they are analytic on a neighbourhood of 0. Then

.f � g/.z2/ D 1

2�i

Z
�

f .zw/ g

 z

w

� dw

w
(29)

on a neighbourhood U of 0, where � is a smooth closed curve around 0 and
contained in U .

Proof. Let U1; U2 be neighbourhoods of 0 on which f and g respectively are
analytic. Then for z 2 U D U1 \ U2,

1

2�i

Z
�

f .zw/ g

 z

w

� dw

w
D
�
f .z�/ g

�
z

�

�
�0

D
" 1X
nD0

an.z�/
n

1X
mD0

bm


 z

w

�m#

�0

D
"X
m;n

anbmznCm�n�m
#

�0

D
1X
nD0

anbnz2n D f � g.z2/

where Œ���0 denotes the constant term in a Laurent series in �.
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Corollary 2. Let $ 2 .0; �/ where � is the radius of convergence of RZ.2�/ and
choose the canonical branch of the square root on B.0; $/. Then for z 2 B.0; $/

RZ.2�/.z/ D � z1=2

�i

Z
�


.1 � z1=2w/Q

 z

w

�
dw (30)

where � D @B.0; $/ and Q is the generating series of the qm (recall that qm denotes
the number of 2-irreducible meanders of order 2n).

Proof. By Proposition 8 we have RZ.2�/ D 2Q �� where, using (29)

�.z/ D
1X
nD1

�.m/zm D �z
.1 � z/ � �z:

Lemma 5 now yields

.Q ��/.z2/ D 1

2�i

Z
�

�.zw/Q

 z

w

� dw

w

D � 1

2�i

Z
�

zw .
.1 � zw/C �/ Q

 z

w

� dw

w

D � 1

2�i

Z
�

z
.1 � zw/Q

 z

w

�
dw

� � z

2�i

Z
�

Q

 z

w

�
dw:

The argument of the integral in the second summand has a power series with only
even powers of w so the integral itself must vanish. We therefore have

.q � ˚/.z2/ D z

2�i

Z
�


.1 � zw/ q

 z

w

�
dw

Remark 5. In [7] it has been shown that the radius of convergence of Q is 4
�

� 1.
Since �.m/ �! 1 as m �! 1, it follows that the radius of convergence of RZ.2�/
is also 4

�
� 1. It also follows that the R-transform of each �n ˝ �n extends to a Pick

function on .1� 4
�
; 4
�
; 1/, see Sect. 5 below. Hence by Theorem 3 the law of �n˝�n

is �-infinitely divisible. Since free infinite divisibility is preserved by free linear
combinations and weak limits, it follows that Z.2�/ is also �-infinitely divisible.

Unfortunately it seems that there is no explicit formula for Q. It is therefore not
apparent how a similar analysis to that for the square norm could be applied in order
to obtain further details about the distribution of Z.2�/.
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5 Lévy Area of the Free Brownian Bridge

In this section we use the Lévy representation

ˇ.t/ D
1X
nD1

cos.nt/ � 1
n
p
�

�n C
1X
nD1

sin.nt/

n
p
�
�n (31)

of the free Brownian bridge to compute the distribution of the free analogue of the
classical Lévy area process defined by

L .t/ D i

2

Z t

0

Œˇ.s/; dˇ.s/� D i

2

Z t

0

.ˇ.s/dˇ.s/� dˇ.s/ˇ.s// : (32)

When ˇ is a two-dimensional commutative Brownian motion this is very similar
to the object studied by Lévy [11]. By standard properties of the non-commutative
integral [4] and self-adjointness of ˇ we have

Z t

0

ˇ.s/dˇ.s/ D
�Z t

0

dˇ.s/ˇ.s/

��
:

A straightforward calculation yields that the left hand side equals, for t D 2� ,

Z 2�

0

ˇ.s/dˇ.s/ D
1X
nD1

1

n
.�n�n � �n�n/ (33)

which is easily seen to be anti-self-adjoint. This is the reason for the factor of i
in (32): multiplying an anti-self-adjoint operator by i yields a self-adjoint random
variable whose distribution is therefore supported in R. Thus L WD L .2�/ is equal
to either side of (33) multiplied by i .

The summands are commutators of free semicircular random variables.
Commutators have been studied by Nica–Speicher [13], where the semicircle
distribution is discussed in Example 1.5(2). If cn D i .�n�n � �n�n/, then the

support of �cn is Œ�r; r� where r D
q

11C5p5
2

and

Rcn.z/ D 2z

1 � z2
D 2

1X
mD1

z2m�1: (34)

From this we can now compute the R-transform of the classical Lévy area. Let that
function be denoted RL then

RL D
1X
nD1

1

n
Rcn


 z

n

�
D

1X
nD1

2z

n2 � z2

D 1

z
� � cot.�z/: (35)
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We can deduce the free cumulants of L , either from the Taylor series of (35) or by
calculating

RL D
1X
nD1

2

n

1X
mD1


 z

n

�2m�1 D
1X
mD1

2

 1X
nD1

n�2m
!

z2m�1

D
X
mD1

2�.2m/z2m�1

where the interchanging of the infinite sums is justified by absolute convergence.
The free cumulants of L are therefore given by

km.L / D
(
2�.m/ if m is even

0 otherwise.
(36)

Free infinite divisibility is characterised by an analytic property of the R-transform.
An analytic function f WCC �! C

C is called a Pick function. For a; b 2 R with
a < b we denote by P.a; b/ the set of Pick functions f which have an analytic
continuation gWC nR[ .a; b/ �! C such that g.z/ D g.z/. The following result is
Theorem 3.3.6 of Hiai-Petz [8]:

Theorem 3. A compactly supported probability measure � is �-infinitely divisible
if and only if its R-transform extends to a Pick function in P.�$; $/ for some $ > 0.

It is easy to see that the common R-transform of the cn extends to a Pick function in
P.�1; 1/. Therefore each cn is �-infinitely divisible.

Corollary 3. The distribution of L is �-infinitely divisible.

As in Sect. 3 we can use free infinite divisibility together with the analytic properties
of the R-transform and the formula for the maximum of the support from [15] to
describe further the distribution in question.

The variational formula of Sect. 3 (Theorem 2) assumed that all free cumulants
are positive, which is not the case for L (which is symmetric and therefore has
vanishing odd free cumulants). However non-negativity of all free cumulants is
actually enough [15, Theorem 5.9]:

Theorem 4. Let a 2 A be a self-adjoint non-commutative random variable with
distribution � and free cumulants km 
 0 for all m. Denote by L the set of m 2 N

such that km > 0. Then the right edge �� of the support of � is given by

log
�
��
� D sup

(
1

m1.p/

X
n2L

pn log

�
kn

pn

�
� �.m1.p//

m1.p/
Wp 2 M1

1.L/

)
(37)

where M1
1.L/ denotes the set of p 2 M1

1.N/ such that p.Lc/ D 0 and � was
defined in Theorem 2.
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The inverse of the Cauchy transform of L is given by

KL D RL C 1

z
D 2

z
� � cot.�z/:

Similarly to the situation in Sect. 3.2 there exists, for every t 2 .�; 2�/, unique
r.t/ > 0 such that Im

�
KL

�
r.t/eit

�	 D 0 and

@

@z
Im ŒKL .z/�

ˇ̌
ˇ̌
zDr.t/eit

¤ 0 8t 2 .�; 2�/: (38)

Summarising, we obtain the following characterisation of the distribution of L :

Proposition 9. The non-commutative random variable L is distributed according
to �L .dt/ D ˚L .t/1Œ��L ;�L � dt where ˚L .x/ D � 1

�
r.�x/ sin.�x/ and �x is the

unique solution on .�; 2�/ to

2

r.�x/ ei�x
� � cot

�
�r.�x/ e

i�x
� D x: (39)

for every x 2 .��L ; �L /. The number �L is given by

�L D m��p
m2� � 2 (40)

where m� is the unique solution on .
p
2;1/ of

m � 2 D
p
m2 � 2 cot

 p
m2 � 2

m � 1

!
.See Fig: 5/: (41)

Proof of Proposition 9. The law �L of L is symmetric about 0. Together with
the analytic arguments of Sect. 3.2, suitably modified, this implies the existence of
�L > 0 such that the density˚L of�L is smooth, positive on .��L ; �L / and zero
everywhere else. The function˚L is given by ˚L .x/ D � 1

�
r.�x/ sin.�x/ where �x

is characterised by (39).
For the remainder of the statement we apply Theorem 4. Only the free cumulants

of even order are nonzero, so that the setL from Theorem 4 is given by f2nWn 2 Ng.
Otherwise the calculations are very similar to those in the proof of Proposition 5:
we apply the methods of Lagrange multipliers and deduce that the supremum on
the right-hand side of (37) is attained by a unique maximiser which is characterised
by Eq. (41). The argument of the supremum evaluated at this maximiser yields the
right edge of the support, and is given by (40). This completes the proof of the
proposition. ut
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Fig. 5 Density of the free Lévy area
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Étude spectrale minutieuse de processus moins
indécis que les autres

Laurent Miclo et Pierre Monmarché

Résumé. On cherche ici à quantifier la convergence à l’équilibre de processus de
Markov non réversibles, en particulier en temps court. La simplicité des modèles
considérés nous permet de donner une expression assez explicite de l’évolution
temporelle de l’erreur L2 en norme opérateur et de la comparer avec celle des cas
réversibles correspondants.

1 Introduction : un processus de volte-face

Le recours à la réversibilité peut parfois limiter les performances des algorithmes
stochastiques (voir par exemple [3,4,8]), ce qui nous motive à mieux comprendre la
convergence vers l’équilibre des processus non-réversibles. Dans ce papier nous
étudierons en détail un modèle, pour lequel on verra comment se quantifie le
fait que les processus non-réversibles ont d’abord tendance à aller moins vite à
l’équilibre que leur équivalent réversibles, avant d’atteindre des taux asymptotiques
de convergence bien meilleurs. On retrouvera notamment pour une chaı̂ne de
Markov en temps discret et à espace d’état fini (étudiée dans [4] d’un point de vue
asymptotique) les phénomènes d’amorce lente de convergence mis en évidence dans
[7], dans un contexte continu d’équations d’évolutions cinétiques simples.

Plus précisément, soit .Pt /t	0 un semi-groupe markovien admettant une proba-
bilité invariante �. Sous des conditions d’ergodicité, Pt converge, en divers sens,
vers � pour de grands temps t 
 0. Considérons la convergence forte dans
L2.�/ : en interprétant � comme l’opérateur f 7! .

R
f d�/1, on s’intéresse à la

norme opérateur kPt � �k dans L2.�/.
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Sous hypothèse de réversibilité, le générateur L du semi-groupe se diagonalise
dans une base orthonormée (ou plus généralement, relativement à une résolution de
l’identité formée d’une famille monotone de projections), ce qui permet de voir que

8 t 
 0; kPt � �k D exp.��t/ ;

où �� � 0 est la borne supérieure du spectre de Lj1? , la restriction de L à l’espace
orthogonal aux fonctions constantes dansL2.�/ (s’il est non nul, � est appelé le trou
spectral de L ).
Dans les cas non-réversibles, il peut en être autrement, même si la fonction RC 3
t 7! kPt � �k est toujours décroissante (il s’agit d’une conséquence de l’inégalité
de Jensen). Ainsi dans [7], pour la diffusion constituée du couple d’un processus
d’Ornstein-Uhlenbeck linéaire et de son intégrale sur le cercle, la décroissance de
ln.kPt � �k/ pour t 
 0 petit commence par être d’ordre t3.

Pour mieux appréhender ce phénomène, on va s’intéresser ici à un modèle très
simple, analogue en temps continu de la marche persistante d’ordre 2 de [4] : une
particule se déplaçant à vitesse constante sur un cercle et faisant brusquement volte-
face à taux constant. Autrement dit, on considère .Yt /t	0 un processus sur f�1; 1g
qui change de signe avec un taux exponentiel a > 0, et on pose pour tout t 
 0,
Xt �

R t
0
Y.s/ds sur T D R=2�Z, de sorte que .Xt ; Yt / représente le couple

position-vitesse de la particule au temps t 
 0. Ce modèle est cité comme exemple
simple d’hypocoercivité dans [5]. Le processus .Xt ; Yt /t	0 est caractérisé par son
générateur infinitésimal, qui agit sur des fonctions tests convenables f par

8 .x; y/ 2 T � f�1; 1g; Laf .x; y/ � y@xf .x; y/C a .f .x;�y/ � f .x; y//

ou par le semi-groupe .P a
t /t	0 qu’il engendre sur L2.�/ : pour tout f 2 L2.�/,

8 t 
 0; 8 .x; y/ 2 T � f�1; 1g; P a
t f .x; y/ � E .f .Xt ; Yt /jX0 D x; Y0 D y/ :

La mesure invariante � correspondante est la loi uniforme sur T � f�1; 1g. Il
est connu que Pt (pour alléger les notations, le paramètre a > 0 sera souvent
sous-entendu) converge fortement dans L2.�/ vers � et que la vitesse finit par
être exponentielle (voir la section 1.4 de [5], bien que le taux optimal n’y soit
pas obtenu). Comme ce serait le cas pour des opérateurs de dimension finie, on
suspecte que

lim
t!C1

1

t
log kPt � �k D �� (1)

avec

� � inff�R.	/; 	 valeur propre de Lj1?g (2)
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Fig. 1 Norme du semi-groupe pour différentes valeurs de a au cours du temps (ici t 2 Œ0; 1�). Au
début la décroissance est d’autant plus rapide que a est grand

Fig. 2 Cependant la tendance finit par s’inverser (ici t 2 Œ0; 3�)

On va vérifier que ceci est juste, mais on cherche surtout des résultats plus
quantitatifs, en estimant précisément la norme kPt � �k en tout temps t 
 0,
car en pratique des renseignements asymptotiques tels que (1) ne sont pas très
exploitables. Voilà l’essentiel des résultats obtenus (illustrés par les figures 1, 2 et 3)
sur ce modèle :

Théorème 1. Pour a 
 1, on a � D a � p
a2 � 1 et pour a � 1; � D a. Plus

précisément, pour tout t > 0,
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Fig. 3 La meilleure vitesse asymptotique est obtenue pour a D 1. Pour a < 1 il arrive que la
dérivée de la norme s’annule presque (ici t 2 Œ0; 5�)

– Si a > 1 alors, en notant ! D p
a2 � 1 et � D e�2!t ,

kPt � �k D e.�aCp
a2�1/t

vuuut1C 2

!2


1C�
1��

�
C a

r
1C !2



1C�
1��

�2 � 1

D 1 � t3

3
C o

t!0
.t3/

�
t!C1

a2

a2 � 1
e�t :

– Si a D 1 alors

kPt � �k D e�t
vuut1C 2q

1C 1
t2

� 1

D 1 � t3

3
C o

t!0
.t3/

�
t!C1 2te�t :

– Si a < 1 alors

kPt � �k D e�atpg.t/
D 1 � at3

3
C o

t!0
.t3/ ;
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avec g telle que

lim sup
t!C1

g.t/ D 1C a

1 � a
lim inf
t!C1 g.t/ D 1

et, en notant � D 2
p
1� a2, si t 2 �0; �

�

	
alors

g.t/ D

0
B@1C 2q

�2

a2
1

2.1�cos.� t/ C 1 � 1

1
CA :

Comme dans [7], on observe une décroissance initiale en t3. Dans ce contexte
non-réversible, la norme opérateur kPt � �k se comporte donc différemment du
rayon spectral de Pt ��, qui n’est autre que exp.��t/, avec � défini en (2). Comme
nous l’a fait remarquer le referee, ceci traduit aussi l’aspect anormal des opérateurs
Pt , pour t > 0. Par ailleurs, le choix optimal de a (au sens du meilleur taux
asymptotique de convergence exponentielle) correspond à aD 1 et voit le facteur
pré-exponentiel exploser linéairement en temps grand.

Le processus .Xt ; Yt /t	0 précédent est un exemple de processus de Markov
déterministe par morceaux, famille de plus en plus étudiée dans la littérature,
notamment pour ce qui concerne les processus de type TCP (voir par exemple les
articles [2, 1] et les références qu’ils contiennent). Actuellement les méthodes de
couplage semblent les plus efficaces pour étudier leur convergence, au sens de la
distance de Wasserstein ou de la variation totale. Pourtant nous nous demandons
si l’un au moins de ces processus, la version du TCP à taux de saut constant, ne
pourrait pas être étudié par le biais d’une variante de l’approche spectrale que nous
allons suivre dans ce papier. En effet, il s’agit du processus surRC dont le générateur
L agit sur des fonctions tests f par

8 x 2 RC; L f .x/ � f 0.x/C l.f .rx/ � f .x//;

où l > 0 et r 2 .0; 1/ sont des constantes. Même si la probabilité invariante associée
� est difficile à décrire explicitement, ses moments se calculent immédiatement (en
faisant agir L sur les monômes). La diagonalisation de L est facile à obtenir, car
les vecteurs propres sont des polynômes. On en déduit également une formule pour
leurs produits scalaires. On dispose donc de toute l’information spectrale nécessaire
théoriquement pour calculer les normes opérateurs. Malheureusement nous n’avons
toujours pas réussi à mener à bien les calculs. Une autre caractéristique spectrale
curieuse de L est que bien que son spectre soit formé de valeurs propres de
multiplicité 1 et bornées par l , L n’est pas borné en tant qu’opérateur dans L2.�/,
du fait de sa composante différentielle.
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Le théorème 1 sera démontré au cours de la partie 2. La partie 3 s’attache au lien
entre le modèle discret de la marche persistante et son analogue continu du volte-
face. Lorsque la fréquence de changement de vitesse devient grande ce processus
continu tend vers le mouvement brownien, ce qui est étudié en partie 4. La partie 5
quant à elle discute des généralisations de ces premiers résultats à des potentiels
quelconques et à la dimension supérieure. Enfin, l’appendice regroupe quelques
lemmes techniques utilisés dans le reste du texte.

2 Calcul exact de la norme

Remarquons une fois encore que si le processus était réversible, le travail serait
simple puisque La serait diagonalisable en base orthonormée (dans L2.�/). Ce
n’est pas le cas ici mais on va tout de même pouvoir décomposer l’espace en plans
stables orthogonaux ce qui nous ramènera à calculer des normes d’opérateurs en
dimension 2, qu’il faudra ensuite comparer entre elles.

Lemme 1. Les plans Vn D ff W .x; y/ 7! einxg.y/; g 2 C
f�1;1gg, pour n 2 Z,

sont invariants par La, orthogonaux et totaux dans L2.�/. L’action de Pa
t sur Vn

est donnée par etK
.a/
n , où pour toute fonction test g,

8 y 2 f˙1g; K.a/
n g.y/ � inyg.y/C a.g.�y/ � g.y//

(à l’instar du générateur et du semi-groupe, le paramètre a sera généralement omis
par la suite).

Preuve. L’orthogonalité et le caractère total découlent directement de ceux
de .x 7! einx/n2N dans L2.T/. On s’assure ensuite directement que pour
f .x; y/ D einxg.y/ on a bel et bien L f .x; y/ D einxKng.y/.

On est donc ramené à calculer la norme d’une matrice 2 � 2. Notons

R.t; a; n/
defD kPa

t � �k2Vn :
Notons que pour tout n ¤ 0 on a Vn � Ker.�/. Le cas n D 0 est un peu à part
et facile à régler : K0 est diagonalisable avec deux valeurs propres, 0 (associées aux
constantes, que l’on retranche ici) et �2a. Ainsi

R.t; a; 0/ D e�4at :

Cette restriction ne réalisera en fait jamais la norme globale (sauf t D 0 bien sûr) : en
effet on va voir que, quelque soit a, L possède des valeurs propres de parties réelles
�a ; ainsi sur une droite propre pour une telle valeur propre jjPt jj D e�at > e�2at .
D’autre partKn D NK�n et on se restreindra donc dans la suite à n > 0. Finalement,

kPt � �k D sup
n	1

.kPtkVn/ D sup
n	1


p
R.t; a; n/

�
:
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Calcul des normes des restrictions

Lemme 2. Si a > n alors pour tout t > 0

R.t; a; n/ D e�2.a�p
a2�n2/t �

0
BB@1C 2

!2


1C�
1��

�
C a

n

r
1C !2



1C�
1��

�2 � 1

1
CCA ;

avec ! D
q�

a
n

�2 � 1 et � D e�2pa2�n2t .

Preuve. Les deux valeurs propres de Kn, réelles, sont �1 D � aCn! >�2 D
�a � n!. On calcule que .e1; e2/ sont des vecteurs propres correspondants
unitaires ils vérifient j < e1; e2 > j D n

a
(les vecteurs propres sont � d’autant plus

orthogonaux � que a est loin de n), on peut donc choisir .e1; e2/ unitaires tels que
< e1; e2 >D n

a
. En posant u D rei	e1 C e2 on a ainsi

etKnu D rei	e�1t e1 C e�2t e2

kuk2 D r2 C 1C 2r
n

a
cos.	/

ketKn��1tuk2 D r2 C �2 C 2r�
n

a
cos.	/

D kuk2 C .� � 1/ � �� C 1C 2r
n

a
cos.	/

	
:

En conséquence

ketKn��1tuk2
kuk2 D r2 C �2 C 2r� n

a
cos.	/

r2 C 1C 2r n
a

cos.	/

D � C r2 C �2 � �r2 � �

r2 C 1C 2r n
a

cos.	/
;

quantité qui, à r fixé, est monotone en cos.	/. Les valeurs extrémales sont donc
obtenues avec cos.	/ D 1 (quitte à prendre r < 0). On a alors

ketKn��1tuk2
kuk2 D 1C .� � 1/ � � C 1C 2r n

a

r2 C 1C 2r n
a

D 1 � 2
n

a
.1� �/ � .r C n

a
/� n

a
C a

2n
.1C �/

.r C n
a
/2 C 1 � �

n
a

�2 :
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D’après le lemme 11, les valeurs extrêmales sont

ketKn��1tuk2
kuk2 D 1 �

�
n
a

�2
.1 � �/

�
n
a

�2 �


1C�
2

�
˙
r


1C�
2

�2 � �
�
n
a

�2 :

Le maximum est obtenu pour ˙ D �, et l’on obtient

ketKn��1tk2 D 1C
�
n
a

�2
.1 � �/



1C�
2

�
� �

n
a

�2 C
r


1C�
2

�2 � �
�
n
a

�2

D 1C 2

!2


1C�
1��

�
C a

n

r
1C !2



1C�
1��

�2 � 1

:

Lemme 3. Si a < n alors pour tout t > 0

R.t; a; n/ D e�2at �

0
B@1C 2q

�2n
a2

1
2.1�cos.�nt//

C 1 � 1

1
CA ;

avec �n D 2
p
n2 � a2.

Preuve. Dans ce cas les valeurs propres de Kn sont complexes conjuguées, �1 D
N�2 D � D �a C i

p
n2 � a2, de partie réelle a. On trouve des vecteurs propres

normés associés e1 et e2 vérifiant < e1; e2 >D a
n

(là encore le produit scalaire des
vecteurs propres tend vers 0 à mesure que a et n s’éloignent).

Posons u D e1 C rei	e2 avec r 2 R et 	 2� � �; ��. On a alors etKnu D
e�t



e1 C rei	 e�2ipn2�a2e2

�
, et ainsi

kuk2 D r2 C 1C 2r
a

n
cos.	/

ketKn�t�uk2 D r2 C 1C 2r
a

n
cos.	 � 2t

p
n2 � a2/ :

Par le lemme 11 on obtient que le rapport entre les deux est extrémal pour r D ˙1,
on est donc ramené à

ketKn�t�k2 D sup
	2T

˛n C cos.	 � �nt/

˛n C cos.	/
;

avec ˛n D n
a
> 1. Le lemme 12 de l’appendice conclut.
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Lemme 4. Si a D n alors pour tout t > 0

R.t; a; n/ D e�2at �

0
B@1C 2q

1C 1
n2t2

� 1

1
CA :

Preuve. Dans ce cas �n est valeur propre double de Kn. Considérons la base
g1.y/ D 1C iy et g2.y/ D 1

n
de Cf�1;1g. La matrice deKn dans cette base est alors

un bloc de Jordan, d’exponentielle e�nt
�
1 t

0 1

�
. En renormalisantg1 et g2, on obtient

des vecteurs de base unitaires e1 et e2 avec < e1; e2 >D 1p
2
, etKne1 D e�nt e1 et

etKne2 D e�nt .e2 C p
2nte1/. En posant u D .x C iy/e1 C e2, on a ainsi

etKnu D e�nt .u C p
2nte1/

kuk2 D x2 C y2 C 1C p
2x

ketKnCntuk2 D kuk2 C 2n2t2 C 2
p
2nt

�
x C 1p

2

�
:

Le rapport jjetKnCntujj2
jjujj2 est donc optimal pour y D 0. Reste à choisir x.

ketKnCntuk2
kuk2 D 1C 2

p
2nt �

x C 1p
2

C ntp
2

.x C 1p
2
/2 C 1

2

:

D’après le lemme 11, les valeurs extrêmales sont

ketKnCntuk2
kuk2 D 1C p

2nt � 1

� ntp
2

˙
q

n2t2

2
C 1

2

et le maximum est obtenu pour ˙ D C, ce qui donne le résultat escompté.

Remarquons qu’on aurait pu obtenir ce résultat par continuité à partir des cas a 7 n.

Comparaison des R.t; a; n/

Il s’agit maintenant de comparer les normes de ces restrictions entre elles. Un
développement limité en t D 0 montre que R.t; a; n/ D 1 � n3

3
t3 C o.t3/ pour

a 
 n etR.t; a; n/ D 1� an2

3
t3Co.t3/ pour a � n, ce qui laisse penser qu’au moins

au début R.t; a; 1/ prévaut (autrement dit que l’erreur décroit lentement sur V1 les
fonctions de grande longueur d’onde en x). D’autre part, si a > 1, c’est aussi sur V1
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que se trouve la droite propre associée à la valeur propre de L de plus grande partie
réelle, c’est donc également R.t; a; 1/ qui devrait prévaloir asymptotiquement. En
fait nous allons voir que, pour l’essentiel, seule compte cette norme sur V1. Notons
que les expressions calculés pour R.t; a; n/ permettent d’étendre leur définition à n
non entier et qu’alors n 2 �0;C1Œ 7! R.t; a; n/ est continue.

Dans un premier temps, on peut dériver R.t; a; n/ pour n 2�0; aŒ. Le lemme 14
de l’annexe montre que cette dérivée est négative et ainsi max

1�n<aR.t; a; n/ D
R.t; a; 1/ pour tout t > 0. Par continuité on a même max

1�n�aR.t; a; n/ D
R.t; a; 1/. Ainsi a-t-on réglé les cas a
 1 du théorème 1, puisqu’alors
kPt � �k D max

n2Z�
R.t; a; n/ D R.t; a; 1/.

Le cas des n > a est un peu plus délicat, pour qui

R.t; a; n/ D e�tapgn.t/
avec, si �n D 2

p
n2 � a2,

gn.t/ D 1C 2q
�2n
a2

1
2.1�cos.�nt//

C 1 � 1

;

qui est 2�=�n périodique. Calculer le supremum des gn pour tout t est à peu
près impossible du fait des périodes incommensurables (cf. figure 4). Cependant
on peut penser (d’après le développement limité en 0) qu’en temps petit la norme
prépondérante correspond à n minimal et qu’elle le reste jusqu’à ce que gn atteigne
son maximum. C’est effectivement le cas, comme on va le montrer dans un instant.
Ensuite le suprémum des gk oscillera entre ce maximum et 1.

Lemme 5. Si k < n alors pour tout t 2
h
0; �

�k

i
on a gk.t/ 
 gn.t/.

Preuve.

gn.t/ � gk.t/ , 1C 2q
�2n
a2

1
2.1�cos.�nt//

C 1� 1

� 1C 2r
�2k
a2

1
2.1�cos.�kt//

C 1 � 1

, 1 � cos.�nt/

�2n
� 1 � cos.�kt/

�2k
:

Ces deux termes sont égaux et de dérivées égales en t D 0, pour les comparer
il suffit donc de comparer leurs dérivées secondes. Or, si �n 
 �k alors cos.�nt/ �
cos.�kt/ pour t 2

h
0; �

�n

i
, et donc gn.t/ � gk.t/ pour ces t . Puisque gk est

croissante sur
h
0; �

�k

i
on a pour t 2

h
�
�n
; �
�k

i
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Fig. 4 Plus l est grand plus
l’amplitude et la longueur
d’onde de gl sont faibles

gk.t/ 
 gk.
�

�n
/ 
 gn.

�

�n
/ 
 gn.t/ :

On achève en constatant que �n est croissante en n.

Lemme 6. Si n > a alors pour tout t > 0 on a R.t; a; n/ � R.t; a; a/.

Preuve. D’après le lemme précédent, pour tout " > 0 on a R.t; a; n/ �
R.t; a; aC "/ pour t � �

�aC"
; or �aC" �!

"!0
0 et la continuité de R conclut.

En particulier si a 
 1 pour tout t on aura jjPt��jj D R.t; a; 1/, ce qui démontre
les deux tiers du théorème 1. Pour a < 1 on peut comparer plus finement les gn :

Lemme 7. Soit g.t/ D sup
n2N
gn.t/. Si t � �

�1
alors g.t/ D g1.t/, et d’autre part

lim sup
t!C1

g.t/ D 1C a

1 � a .D sup g/

lim inf
t!C1 g.t/ D 1 .D infg/ :

Preuve. La première assertion a déjà été démontrée, et le résultat pour la limite
supérieure découle directement de la périodicité de g1. Pour la limite inf, con-

sidérons " > 0, et soit N 2 N tel que
1C a

N

1� a
N

� 1 C ". On a ainsi, pour tout k 
 N

et pour tout t > 0, gk.t/ � 1 C ". On cherche ensuite un temps où les fonctions
restantes (en nombre fini) sont simultanément proches de leur minimum. Fixons
ı > 0 tel que pour tout n < N et tout k 2 Z, on ait

jt � 2k�

�n
j � ı ) gn.t/ � 1C ":
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Le lemme 13 de l’appendice nous fournit t 
 1 et des entiers k1; : : : ; kN�1 2 N tels
que j 2�

�n
kn� t j < ı pour tout n < N ; on obtient que gn.t/ � 1C" pour tout n < N ,

et donc pour tout n 2 N. Soit "0 le minimum sur Œ1=2; t C 1� de g � 1 (fonction
continue). Si "0 D 0 alors g est périodique et son minimum est sa limite inférieure.
Sinon on peut recommencer l’argument ci-dessus pour obtenir un temps t2 
 1 tel
que pour tout n 2 N on ait gn.t2/ � 1 C "0=2, donc nécessairement t2 > t C 1 ;
finalement en itérant le procédé on peut trouver des temps arbitrairement grand où
g est arbitrairement proche de 1, ce qui conclut.

Ce lemme finit de démontrer le théorème 1.

3 Du discret au continu

L’étude du volte-face a initialement été motivée par celle de la marche considérée
dans [4] : Yn est une chaı̂ne de Markov sur f�1;C1g qui change de signe avec
probabilité .1�˛/=2, etXN

nC1 D XN
n CYn dans Z=NZ � ZN , avecN 2 Nnf0; 1g.

Ainsi pour son nième saut la particule (dont la position est XN
n ) persiste dans le

même sens qu’au coup précédent avec une probabilité supérieure à 1/2, c’est bien
l’analogue discret du processus continu des sections précédentes. Notons que la
chaı̂ne .XN

n /n2N est markovienne d’ordre 2.
Pour peu que N soit impair la chaı̂ne est irréductible apériodique et converge

donc en loi vers son unique probabilité invariante �N , qui est la mesure uniforme
sur ZN � f˙1g. L’opérateur M˛f .x; y/ D E .f .X1; Y1/jX0 D x; Y0 D y/ associé
agit sur les fonctions deL2.�N / et la norme d’opérateur kMn

˛ ��N kL2.�N / �!
n!C1 0

(en voyant à nouveau �N comme l’opérateur f 7! .
R
f d�N /1). On a même

lim
n!C1

1

n
log

�kMn
˛ � �N k� D log.�˛/

où, en notant �.M˛/ le spectre de M˛ , �˛ D sup.j�.M˛/ X f1gj/. Ce taux
exponentiel de convergence log.�˛/ est de valeur absolue maximale (et donc de
vitesse asymptotique la meilleure) pour ˛opt D 1�sin.�=N/

1Csin.�=N/ , pour lequel �opt Dp
˛opt (cf. [4]). En comparaison, pour la marche isotrope (˛ D 0), on a �0 D

cos.�=N/. On a donc amélioré la convergence en temps long car

cos.�=N/ D p
.1 � sin.�=N//.1C sin.�=N// 


s
1 � sin.�=N/

1C sin.�=N/
:

L’étude du volte-face a permis de mieux comprendre l’amorce de convergence
en temps petit, et nous pouvons maintenant faire le lien avec la marche discrète.
D’abord constatons que des calculs identiques aux précédents nous permettent
de calculer la norme de M . Pour k 2 �1;N � on notera e2ik�=N D Ck C iSk,

˛l D 1�jSl j
1CjSl j , C

2
0 D 4˛

.1C˛/2 et S20 D �
1�˛
1C˛

�2
.
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Lemme 8. Les plans Wk D f.x; y/ 7! e2ik�x=Ng.y/; g 2 C
˙1g sont stables par

M . Notons RN.n; ˛; k/
defD kMn

˛ � �k2Wk .

– si ˛ < ˛k alors

RN.n; ˛; k/ D �2nC �

0
BB@1C 2

!2


1C�
1��

�
C S0

Sk

r
1C !2



1C�
1��

�2 � 1

1
CCA ;

avec �˙ D p
˛

 
jCk j
C0

˙
r


Ck
C0

�2 � 1
!

, � D


��

�C

�n
et !2 D



S0
Sk

�2 � 1.

– si ˛ > ˛k alors

RN.n; ˛; k/ D ˛n �

0
BB@1C 2r

2



Sk
S0

�2�1
1�cos.2n / C 1 � 1

1
CCA ;

où tan D
r


C0
Ck

�2 � 1.

– si enfin ˛ D ˛k alors

RN .n; ˛; k/ D ˛n �

0
BB@1C 2r

1C C20
S20 n

2 � 1

1
CCA :

Preuve. La démarche et les calculs sont quasiment les mêmes que dans le cas
continu et n’amènent aucune difficulté nouvelle.

Lorsqu’on veut passer du modèle discret au continu, plutôt que XN
n 2 ZN il vaut

mieux regarder UN
t D 2�

N
XN
n 2 T si t D n2�

N
que l’on prolonge de façon affine

à t 
 0 et V N
t D Yn si t 2 2�

N
Œn; n C 1Œ. Si la probabilité de changer de sens

1�˛N
2

est de l’ordre de 1
N

, la convergence des temps entre deux changements vers
une loi exponentielle donne la convergence en loi de .U N ; V N / vers le processus
continu. Remarquons que pour u D 2�

N
x on peut réécrire ei

2k�
N x D eiku, l’espace Vk

correspond donc à Wk :

Lemme 9. Pour tout t > 0 et k 2 Z, si ˛.N/ 2 Œ0; 1� est tel que N
2�

� 1�˛.N /
2

�!
N!C1

a alors

RN

��
Nt

2�

�
; ˛.N/; k

�
�!

N!C1 R.t; a; k/:
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Preuve. On le vérifie sans difficulté particulière sur les expressions analytique
données dans le lemme 8 et la partie 2.

Cependant, contrairement au cas continu, dans la marche discrète la plus grande
valeur propre (associée au j cos. 2k�

N
/j maximal) ne correspond pas à k D 1 mais

à k D ˙ �
N
2

˘
. Pour avoir la convergence des normes globales d’opérateurs il faut

ignorer les deux plans W˙bN
2 c. En un sens le caractère fini des positions prises par

la particule entraı̂ne l’existence d’observables qui convergent mal, ce qui disparaı̂t à
la limite des processus, mais pas dans le passage à la limite des normes.

Lemme 10. Pour tout t > 0 et k 2 Z, si ˛.N/ 2 Œ0; 1� est tel que N
2�

� 1�˛.N /
2

�!
N!C1

a alors

RN

��
Nt

2�

�
; ˛.N/;

�
N

2

�
� k

�
�!

N!C1 R

�
t; a; k C 1

2

�
:

Preuve. Les calculs sont les mêmes que précédemment ; le 1=2 apparaı̂t avec

sin

�
2�

N

��
N

2

�
� k

��
D sin

�
� � 2�

N

��
N

2

�
� k

��
D sin

�
2�

N

�
k C 1

2

��

Le travail de comparaison des R.t; a; n/ englobait déjà les n non-entiers, et en
notant pour tout t 
 0,

8 u 2 ZN ; 8 v 2 f˙1g; PN
t f .u; v/ � E.f .XN

n ; Y
N
n /jXN

0 D u; Y N0 D v/

avec n D bNt=.2�/c, on obtient in fine

Théorème 2. Si N
2�

� 1�˛.N /
2

�!
N!C1 a 
 1

2
alors

jjPN
t � �N jj �!

N!C1 R

�
t; a;

1

2

�
:

D’autre part si l’on note VN � Vect.WbN=2c;W�bN=2c/? et si a 
 1 alors

jjPN
t � �N jjVN �!

N!C1 jjPa
t � �jj :

Les convergences sont uniformes en t .

Preuve. Tout est déjà démontré sauf le caractère uniforme en t ; les fonctions en
présence étant toutes décroissantes et les limites continues, il découle du théorème
de Dini.
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Remarque: Notons que, grosso modo, les choses se passent bien également pour
a < 1

2
dans le premier cas et pour a < 1 dans le second mais avec de très légères

subtilités : par exemple, dans le deuxième cas et pour reprendre les notations de
la partie 2, la fonction g.t/ limite n’est pas le supremum des gn.t/ pour n entier
mais pour n entier ou demi-entier, ce qui peut éventuellement légèrement changer
la valeur exacte de la norme lors d’un � creux � de R.t; a; 1/.

Un constat particulier sur ce défaut de convergence du discret vers le continu
est que si l’on prend pour tout N la probabilité optimale (au sens du trou spectral
maximal) de changer de sens dans la marche persistante, alors on converge vers un
taux 1=2 de saut pour Yt , qui n’est pas optimal pour le processus continu, et qui
donne le même taux exponentiel 1=2 de convergence que le mouvement brownien
sur le tore.

Cependant le phénomène de décroissance initiale en t3, lui, n’est pas affecté par
cette subtilité ; c’est normal car son origine n’est pas dans la prise du supremum
des normes des restrictions mais, déjà localement, sur chacun des plans Wk . Une
interprétation possible est que prendre, au lieu d’un processus réversible, l’intégrale
d’un processus réversible retarde initialement l’effet de mélange du hasard ; ou bien
que la particule commence par se déplacer de façon déterministe et brouille donc
moins bien les pistes qu’une diffusion au moins initialement.

Si pour N grand, on compare (en oubliant le défaut de convergence et les
fonctions de Vect.WbN=2c;W�bN=2c/) la marche simple et la marche persistante pour
a D 1 à la limite, pour un nombre n d’itérations fixé, l’écart L2 à l’équilibre de la

marche réversible est environ 1� t
2

avec t D n
�
2�
N

�2
(si cette quantité est petite) et

celle de la marche persistante est 1 � t 3

3
avec t D n2�

N
(si n � N ), qui devient

meilleure que la précédente pour n �
q

3
4�
N (qui assure aussi la validité des

asymptotiques précédentes): c’est le nombre d’itérations à partir duquel la marche
d’ordre 2 est plus proche de la mesure uniforme que la réversible.

4 Du continu au mouvement brownien

Lorsque a ! C1, la vitesse du processus continu saute de plus en plus vite de �1
en 1 ; à la limite, les vitesses en deux temps distincts devraient donc être décorrelées.
Le processus devrait en conséquence être l’intégrale d’un bruit blanc, autrement dit
un mouvement brownien. Avec la bonne renormalisation, c’est effectivement le cas :

Théorème 3. Xa D .Xta/t>0 converge en loi vers un mouvement brownien
standard sur T quand a ! C1.

Preuve. Notons QYt D .�1/Nt où Nt est un processus de de Poisson de paramètre 1.
Ainsi X suit la même loi que

R :
0

QYasds
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Xa.t/
LD
Z ta

0

QYasds

D 1

a

Z ta2

0

QYudu ;

ce qui nous ramène à l’exemple 3 p. 360 de [6] où l’on nous indique la marche à
suivre.

Détaillons : on montre d’abord que M.t/ D QYt C 2
R t
0

QYudu est une martingale.
En effet le nombre de changement de signes de QYt dans une période t � s suit une
loi de Poisson de paramètre t � s, et ainsi

P. QYt D QYs/ D
X
k pair

.t � s/k

kŠ
e�.t�s/ D cosh.t � s/e�.t�s/

P. QYt D � QYs/ D
X

k impair

.t � s/k
kŠ

e�.t�s/ D sinh.t � s/e�.t�s/ :

Ainsi E. QYt jFs/ D QYse�2.t�s/ et

E.M.t/jFs/ D QYse�2.t�s/ C 2

Z s

0

QYudu C 2

Z t

s

QYse�2.u�s/du

D QYs C 2

Z s

0

QYudu

D M.s/ :

Si l’on montre la convergence de la martingale 1
n
M.n2t/ D 2Xn

t C 1
n

QYt vers
le brownien, on aura celle de Xn ; or la première s’obtient de la convergence des
crochets. La variation quadratique de

R s
0

QYudu, processus 1-lipschitzien, est nulle,
donc

< M >tD
P

lim
ı!0

X
ti2�

. QYtiC1
� QYti /2

où la limite en proba a lieu lorsque le pas ı de la partition � de Œ0; t � tend vers 0.
NotonsZt le nombre de saut de QY sur cet intervalle.

P.
X
ti2�

. QYtiC1
� QYti /2 ¤ 4Zt / � P.deux sauts sont distants de moins de ı/

!
ı!0

0 :
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Ainsi < M >tD 4Zt , et < 1
n
M.n2:/ >tD 4

n2
Zn2t �!

n!C1 4t (par la loi des

grands nombres), ce qui donne la convergence de 1
2
1
n
M.n2t/ (et donc de Xn

t ) vers
le mouvement brownien standard (cf [6]).

Qu’en est-il de la norme ? Celle du modèle irréversible converge-t-elle vers celle
du brownien ? C’est effectivement le cas. Le générateur du mouvement brownien
est 1

2
@2x , diagonalisable dans la base orthonormée des x 7! einx pour les valeurs

propres � n2

2
. Rappelons la norme du semi-groupe associé à .Xt ; Yt / sur le plan Vn,

quand a > n :

kPtk2Vn D e2�1t

0
BB@1C 2

!2

n2



1C�
1��

�
C a

n

r
1C !2

n2



1C�
1��

�2 � 1

1
CCA ;

avec �1 D �a C p
a2 � n2, ! D p

a2 � n2 et � D e�2tpa2�n2 . On observe que
a�1 ! � 1

2
n2, ! ! C1 et que �a ! 0 quand a ! C1 ; Au final, en notant Pa

t

le semi-groupe associé à .Xat ; Yat /, on récupère

kPa
t kVn �!

a!C1 e� 1
2 n

2t ;

ce qui est la norme du semi-groupeQt associé au mouvement brownien sur la droite
Vectfx 7! einxg. En particulier la convergence pour n D 1 donne la convergence de
la norme globale kPa

t � �k �! kQt � �k.

5 Généralisations

5.1 Avec un potentiel général

En fait le cas précédent, où la mesure invariante pour Xt est la loi uniforme
sur le cercle, est immédiatement généralisable à des processus admettant pour loi
limite n’importe quelle mesure de la forme � D e�V.x/dx=.2�/, où le potentiel
V est supposé normalisé de sorte que �.T/ D 1. En effet, considérons comme
précédemment Yt 2 f�1; 1g qui, avec taux a, change de signe. Soit Xt 2 T la
solution de

dXt D Yte
V.Xt /dt : (3)

Autrement dit Xt représente la position d’une particule se déplaçant à vitesse
(déterministe) inversement proportionnelle à la densité e�V.x/ (les zones � peu
intéressantes � sont parcourues plus vite) et changeant de sens de parcours selon
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des temps exponentiels . Montrons qu’alors la mesure invariante pour .Xt ; Yt / est
� D � ˝ Uf�1;1g, et que la norme 2 du semi-groupe associé se calcule exactement
comme précédemment. Le générateur markovien associé au processus est

L f .x; y/ D eV.x/y@xf .x; y/C a .f .x;�y/ � f .x; y// ;

et l’on vérifie

� ˝ Uf�1;1g
�
L f .x; y/

	

D
Z
x2T

Z
yD˙

�
eV.x/y@xf .x; y/C a .f .x;�y/ � f .x; y//

	
e�V.x/dxdy

D
Z
yD˙

y

�Z
x2T

@xf .x; y/dx

�
dy

D 0 :

Considérons pour n 2 N, gn.x/ D exp
�
in
R x
0 e

�V.u/du
�

(on a bien gn.0/ D gn.2�/

de par la normalisation de V ) et des fonctions de la forme f .x; y/ D gn.x/h.y/.
On a alors

L f .x; y/ D gn.x/
�
inyh.y/C a.h.�y/ � h.y/

	
D gn.x/K

.a/
n h.y/ ; (4)

où K.a/
n a été défini dans le lemme 1 pour le cas uniforme. On parvient donc là

encore à décomposer l’espace en plans stables Vn, et ces plans sont à nouveau
orthogonaux entre eux dans L2.�/ :

< gn; gk >L2.�/ D
Z 2�

0

exp

�
i.n� k/

Z x

0

e�V.u/du

�
e�V.x/dx

D
Z 2�

0

ei.n�k/udu

D 2�ınk :

Finalement, si PV
t est le semi-groupe associé au processus (et Pt est toujours

celui associé au potentiel nul), on a exactement

jjPV
t � �jjL2.�/ D jjPt � �˝ Uf�1;1gjjL2.�˝Uf�1;1g/

:

D’après la section 1, le meilleur taux de convergence asymptotique est donc
obtenu en choisissant a D 1. Remarquons que lorsque V n’est connu qu’à une
constante additive près et que l’on veut garder le bénéfice de l’écriture (3), il faut
modifier en conséquence la définition de � et des gn, pour n 2 N, et on doit
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remplacer K.a/
n par Z�1K.aZ/

n , avec Z �
R 2�
0
e�V.x/ dx=.2�/ dans (4). Le choix

optimal de a est alors Z�1, qui malheureusement n’est pas connu en pratique.

5.2 Remarque sur les dimensions supérieures

Remarquons que, dans l’optique d’un algorithme de Monte-Carlo non réversible, les
résultats s’adaptent à la dimension supérieure. Ainsi en définissant Y 1t ; : : : ; Y

d
t et

X1
t ; : : : ; X

d
t comme précédemment, dans le cas où V.x/ D P

Vi.xi /, on construit
un semi-groupe PV

t sur Td de mesure invariante � proportionnelle à e�V.x/dx ˝
U ˝d

f�1;1g et de norme

jjPV
t jjL2.�/ D

dY
iD1

jjPVi
t jjL2.Zi e�Vi .xi /dxi˝Uf�1;1g/

où lesZi , i 2 �1; d �, sont les constantes de normalisation. On aurait pu imaginer un
autre processus, construit en gardant l’idée d’une particule dont la vitesse scalaire
dépendrait de façon déterministe de la position mais dont la direction changerait
aléatoirement à taux constant. Cela donnerait un générateur du type :

L f .x; y/ D eV.x/rxf .x; y/:y C a

Z
Sd

.f .x; z/ � f .x; y// dz

pour des fonctions tests f régulières. Ci-dessus les vitesses sont prises uni-
formément sur la sphère mais on aurait pu les choisir différemment sans que les
remarques à suivre ne s’en trouvent modifiées. La mesure invariante est alors
Ze�V.x/dx˝USd , avecZ D Z1 � � �Zd , ce qui semble bien parti. Néanmoins, à part
pour un potentiel nul, on ne va pas pouvoir se ramener à l’étude d’un opérateur sur
les vitesses par la même méthode qu’avant, c’est-à-dire en trouvant des fonctions
propres de la famille d’opérateurs Ky W f .x/ 7! eV.x/rf .x/:y sous la forme
f .x/ D eu.x/, qui permettaient jusqu’ici de se ramener à des opérateurs n’agissant
que sur les vitesses. En effet on a alors

Kyf .x/ D eV.x/f .x/ru.x/:y :

Il s’agirait donc de trouver une fonction u W R
d ! R de différentielle x 7!

e�V.x/.c1dx1 C c2dx2 C � � � C cddxd /, avec c1; : : : ; cd des constantes. Or si d > 1,
cette 1-forme linéaire n’est pas exacte (n’étant pas fermée), et un tel u ne saurait
exister. En comparaison, pour le processus avec des coordonnées indépendantes du
début de ce paragraphe, la 1-forme linéaire qui apparaı̂t est x 7! P

e�Vi .xi /dxi , qui
est bel et bien exacte.
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6 Appendice

Lemme 11. Si f .R/ D R�a
R2Cb avec b > 0, alors f admet ses valeurs extrémales en

R˙ D a ˙ p
a2 C b, et ces valeurs sont f .R˙/ D 1

2R˙
.

Lemme 12. Si g.	/ D ˛Ccos.	�s/
˛Ccos.	/ avec ˛ > 1, alors

max
	2T

g.	/ D 1C 2q
2.˛2�1/
1�cos.s/ C 1 � 1

:

De plus ce maximum est majoré par ˛C1
˛�1 , borne atteinte uniquement pour s D

� Œ2��.

Preuve. Le premier lemme ne présente aucune difficulté. Pour le second, remar-
quons tout d’abord pour s D 0 Œ2�� que g est alors constante égale à 1 et son max
l’est également, le lemme est donc vrai dans ce cas. Supposons dans la suite que
1 � cos.s/ ¤ 0. Réécrivons maintenant

g.	/ D ˛ C cos.	 C s/

˛ C cos.	/
D cos.s/C ˛.1 � cos.s// � sin.	/ sin.s/

˛ C cos.	/
;

g.	/ étant continue périodique il suffit de déterminer ses points critiques. Or
g0.	/ D 0 équivaut à

0 D � cos.	/ sin.s/ .˛ C cos.	//C sin.	/ .˛.1 � cos.s// � sin.	/ sin.s//

D � sin.s/C sin.	/ .˛.1 � cos.s// � ˛ cos.	/ sin.s/ ;

équation affine dont les solutions sont

�
cos.	/
sin.	/

�
D
��ˇ
0

�
C t

�
1 � cos.s/

sin.s/

�
;

pour t 2 R et où l’on note ˇ D 1
˛

. La condition cos2 C sin2 D 1 équivaut à

t2 � ˇt C ˇ2 � 1
1 � cos.s/

;

qui admet nécessairement deux solutions réelles puisque g est périodique non
constante donc possède au moins deux points critiques. Ces solutions sont données
par

t.1 � cos.s// D 1

2
ˇ.1 � cos.s//C 1

2
"

q
2.1� cos.s// � ˇ2 sin2.s/ ;
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où " D ˙1. On obtient ainsi les valeurs extrêmales de g :

g.	"/ D cos.s/C ˛.1 � cos.s// � t sin2.s/

˛ � ˇ C t.1 � cos.s//

D ˛ � t sin2.s/ � ˇ cos.s/C t cos.s/� t cos. s/

˛ � ˇ C t.1 � cos.s//

D ˛ � ˇ cos.s/� t.1 � cos.s//

˛ � ˇ C t.1 � cos.s//

D
˛ � 1

2
ˇ.1C cos.s//� 1

2
"

q
2.1� cos.s// � ˇ2 sin2.s/

˛ � 1
2
ˇ.1C cos.s//C 1

2
"

q
2.1� cos.s// � ˇ2 sin2.s/

:

Puisque ˛ > 1 > ˇ, on a ˛� 1
2
ˇ.1Ccos.s// > 0 et la valeur ci-dessus est maximale

pour " D �1, et ainsi

max
	2T g.	/ D

˛ � ˇ


1Ccos.s/

2

�
C
r


1�cos.s/
2

� 

1 � ˇ2

1Ccos.s/
2

�

˛ � ˇ


1Ccos.s/

2

�
�
r


1�cos.s/
2

� 

1 � ˇ2

1Ccos.s/
2

� � ˛

˛

D
˛2 �



1Ccos.s/

2

�
C
r


1�cos.s/
2

� 

˛2 � 1Ccos.s/

2

�

˛2 �


1Ccos.s/

2

�
�
r


1�cos.s/
2

� 

˛2 � 1Ccos.s/

2

� �
q
˛2 � 1Ccos.s/

2q
˛2 � 1Ccos.s/

2

D
q
˛2 � 1Ccos.s/

2
C
q

1�cos.s/
2q

˛2 � 1Ccos.s/
2

�
q

1�cos.s/
2

�
q

1�cos.s/
2q

1�cos.s/
2

D
q

2.˛2�1/
1�cos.s/ C 1C 1q
2.˛2�1/
1�cos.s/ C 1 � 1

D 1C 2q
2.˛2�1/
1�cos.s/ C 1 � 1

:

Lemme 13. Considérons M 2 N
�, Ti > 0, pour 1 � i � M , et ı > 0 donnés. Il

existe t 
 1 et des entiers k1; : : : ; kM tels que pour tout 1 � i � M ,

jkiTi � t j < ı :



480 L. Miclo et P. Monmarché

Preuve. Considérons le réseau de R
MC1 engendré par les .0; : : : ; 0; Tn;

0; : : : ; 0/ (avec Tn en nième position) pour n � M et par .1; 1; : : : ; 1/,
de volume fondamental V le produit des Tn. Ainsi, en considérant le pavé
Œ�ı; ı��� � �� Œ�ı; ı�� Œ�V ı�M ; V ı�M �, de volume V 2d , on sait par le théorème de
Minkowski qu’il contient au moins un point du réseau autre que l’origine. Les M
premières coordonnées de ce point sont de la forme hnTnChMC1 avec hj 2 Z pour
j 2 �1;M C 1�. Si ı < min.T1; : : : ; TM ; 1/ (et quitte à réduire ı, nous supposons
ceci satisfait), aucun de ces coefficients hj ne peut être nul, et nécessairement hMC1
est de signe opposé aux autres hj . Il suffit donc de prendre kn D jhnj et t D jhMC1j.
Lemme 14. Notons, pour s > 0 et p 2�0; 1Œ,

h.p/ D p

1 � p2
1C e�ps

1 � e�ps

�.p/ D eps

0
B@1C 2

ph.p/C
q
h.p/2 C 1

1�p2 � 1

1
CA :

Alors pour tout s, p 7! �.p/ est croissante.

En prenant p D
q
1 � �

n
a

�2
et s D 2at on obtient en particulier que pour t > 0

et a > 0, n 2�0; aŒ7! R.t; a; n/ est décroissante.

Preuve. Le calcul de la dérivée est effectué via Maple :

h:=p->p/(1-pˆ2)*(1+exp(-s*p))/(1-exp(-s*p)):
phi:=p->exp(p*s)*(1+2/(p*h(p)+sqrt(h(p)ˆ2+1/(1-pˆ2))-
1)):
resultat := simplify(exp(-p*s)*diff(phi(p),p)):

Le résultat est de la forme numérateur.p/
.un terme/2.p2�1/.e�ps�1/ ; il s’agit donc de vérifier que le

numérateur est positif. À l’instruction

solve(numerateur(p)=0,p);

la réponse est

-RootOf(_Z exp(_Z) + _Z + 2 - 2 exp(_Z))/s

Autrement dit le numérateur s’annule en p si ep D 2Cp
2�p , équation dont la seule

solution est p D 0 : en effet, s’il y avait une autre solution p�, la dérivée de
ep

2�p
2Cp s’annulerait entre 0 et p�, or celle-ci est �z2ez

.2Cz/2
. Ainsi le numérateur est de

signe constant pour p 2�0; 1Œ et � est monotone. Les limites de � en 0 et 1 sont
respectivement 1C 2p

4s�2C1�1 et es , dont l’égalité est équivalente à 2es�2�s2 D 0,
d’unique solution s D 0 ; vu leurs équivalents pour s ! C1 on a donc
�.1/ > �.0/ pour s > 0, donc � est croissante.
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lemme 13.

References

1. J.-B. Bardet, A. Christen, A. Guillin, F. Malrieu, P.-A. Zitt, Total variation estimates for the TCP
process. Consultable sur http://hal.archives-ouvertes.fr/hal-00655462, December 2011

2. D. Chafaı̈, F. Malrieu, K. Paroux, On the long time behavior of the TCP window size process.
Stoch. Proc. Appl. 120(8), 1518–1534 (2010)

3. P. Diaconis, S. Holmes, R.M. Neal, Analysis of a nonreversible Markov chain sampler. Ann.
Appl. Probab. 10(3), 726–752 (2000)

4. P. Diaconis, L. Miclo, On the spectral analysis of second-order Markov chains. Consultable sur
http://hal.archives-ouvertes.fr/hal-00719047, 2009

5. J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for linear kinetic equations conserving
mass. Consultable sur http://hal.archives-ouvertes.fr/ccsd-00482286, 2010

6. S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convegence. Wiley Series
in Probability and Mathematical Statistics: Probability and Mathematical Statistics (Wiley,
New York, 1986)

7. S. Gadat, L. Miclo, Spectral decompositions and L
2-operator norms of toy hypocoercive semi-

groups. Consultable sur http://hal.archives-ouvertes.fr/hal-00717653, 2011
8. R.M. Neal, Improving asymptotic variance of MCMC estimators: non-reversible chains are

better. Technical Report No. 0406, Department of Statistics, University of Toronto. Consultable
sur arXiv:math/0407281, 2004

http://hal.archives-ouvertes.fr/hal-00655462
http://hal.archives-ouvertes.fr/hal-00719047
http://hal.archives-ouvertes.fr/ccsd-00482286
http://hal.archives-ouvertes.fr/hal-00717653


Combinatorial Optimization Over Two Random
Point Sets

Franck Barthe and Charles Bordenave

Abstract Let .X ;Y / be a pair of random point sets in R
d of equal cardinal

obtained by sampling independently 2n points from a common probability distri-
bution �. In this paper, we are interested by functions L of .X ;Y / which appear
in combinatorial optimization. Typical examples include the minimal length of a
matching of X and Y , the length of a traveling salesperson tour constrained to
alternate between points of each set, or the minimal length of a connected bipartite
r-regular graph with vertex set .X ;Y /. As the size n of the point sets goes to
infinity, we give sufficient conditions on the functionL and the probability measure
� which guarantee the convergence of L.X ;Y / under a suitable scaling. In the
case of the minimal length matching, we extend results of Dobrić and Yukich, and
Boutet de Monvel and Martin.

Keywords Combinatorial optimization • Geometric probability • Minimal
matching

1 Introduction

This work pertains to the probabilistic study of Euclidean combinatorial optimi-
zation problems. The starting point in this field is the celebrated theorem of
Beardwood, Halton, and Hammersley [2] about the traveling salesperson problem.
It ensures that given a sequence .Xi/i	1 of independent random variables on R

d ,
d 
 2 with common law � of bounded support, then almost surely
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lim
n!1n

1
d �1T .X1; : : : ; Xn/ D ˇ.d/

Z
f 1� 1

d : (1)

Here ˇ.d/ is a constant depending only on the dimension, f is the density of the
absolutely continuous part of � and

T .X1; : : : ; Xn/ D inf
�2Sn

n�1X
iD1

jX�.iC1/ �X�.i/j C jX�.1/ � X�.n/j

is the length (for the canonical Euclidean distance) of the shortest tour through
the points X1; : : : ; Xn. In the above formula Sn stands for the set of permutations
of f1; 2; : : : ; ng. Very informally, this result supports the following interpretation:
when the number of points n is large, for � almost every x, if the salesperson is
at Xi D x then the distance to the next point in the optimal tour is comparable
to ˇ.d/.nf .x//�1=d if f .x/ > 0 and of lower order otherwise. This should be
compared to the fact that the distance from Xi D x to fXj ; j � n and j ¤ ig also
stabilizes at the same rate.

Later, Papadimitriou [9] and Steele [14] have initiated a general theory of
Euclidean functionals F.fX1; : : : ; Xng/ that satisfy almost sure limits of this type.
We refer the reader to the monographs of Steele [15] and Yukich [19] for a full
treatment of this now mature theory, and present a short outline. It is convenient
to consider multisets rather than sets, so throughout the paper fx1; : : : ; xng will
stand for a multiset (the elements are unordered but may be repeated). The umbrella
theorem in [19] puts forward the following three features of a functional F on finite
multisets of Rd :

• F is 1-homogeneous if it is translation invariant and dilation covariant:

F.a C �X / D �F.X /

for all finite multisets X , all a 2 R
d and � 2 R

C.
• The key assumption is subadditivity: F is subadditive if there exists a constant
C > 0 such that for all multisets X ;Y in the unit cube Œ0; 1�d ,

F.X [ Y / � F.X /C F.Y /C C:

By an inductive argument, Rhee in [12] has noticed that these two assumptions
imply that there is another constant C 0 such that for all multiset in Œ0; 1�d ,

jF.X /j � C 0 .card.X //1�
1
d : (2)

Hence the worst case for n points is at most in n1� 1
d and the above mentioned

theorems show that the average case is of the same order.
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• The third important property is smoothness (or regularity). A functional F on
finite multisets Rd is smooth if there is a constant C 00 such that for all multisets
X ;Y ;Z in Œ0; 1�d , it holds

jF.X [ Y /� F.X [ Z /j � C 00 
card.Y /1� 1
d C card.Z /1� 1

d

�
:

As in the model of the Beardwood, Halton, Hammersley theorem, these three
properties are enough to prove that almost surely,

lim supn
1
d �1F.X1; : : : ; Xn/ � ˇ.d/

Z
f 1� 1

d ;

where ˇ.d/ is constant. To have the full limits, the umbrella theorem of [19]
also requires to check a few more properties of a so-called boundary functional
associated with F . They are more complicated to state in a general framework.

Next, let us present a classical optimization problem which does not enter the
above picture. Given two multi-subsets of R

d with the same cardinality, X D
fX1; : : : ; Xng and Y D fY1; : : : ; Yng, the cost of the minimal bipartite matching
of X and Y is defined as

M1.X ;Y / D min
�2Sn

nX
iD1

jXi � Y�.i/j;

where the minimum runs over all permutations of f1; : : : ; ng. It is well-known that
n�1M1

�fXigniD1; fYigniD1� coincides with the power of the L1-Wasserstein distance
between the empirical distributions

W1


1
n

X
i

ıXi ;
1

n

X
i

ıYi

�
;

(see e.g. [10, Theorem 13.3]). Hence it is easily seen to tend to 0, for example, when
� has bounded support. Recall that given two finite measures �1, �2 on R

d with the
same total mass,

W1.�1; �2/ D inf
�2˘.�1;�2/

Z
Rd�Rd

jx � yj d�.x; y/;

where˘.�1; �2/ is the set of measures on .Rd /2 having �1 as first marginal and �2
as second marginal (see e.g. [11, 18] for more background). Note that for all finite
multisets X , Y in Œ0; 1�d with card.X / D card.Y /,

M1.X ;Y / �
p
d card.X /;
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and equality holds for some well-chosen configurations of any cardinal (all elements
in X at .0; � � � ; 0/ and all elements in Y at .1; � � � ; 1/). Hence, an interesting feature
of M1 (as well as others bipartite Euclidean optimization functionals) is that the
growth bound assumption (2) fails, hence it is not subadditive in the above sense.
However Dobrić and Yukich have stated the following theorem:

Theorem 1 ([4]). Let d 
 3 be an integer. Assume that � is a probability measure
on R

d having a bounded support. Consider mutually independent random variables
.Xi/i	1 and .Yj /j	1 having distribution �. Then, almost surely,

lim
n
n
1
d �1M1

�fX1; : : : ; Xng; fY1; : : : ; Yng� D ˇ1.d/

Z
Rd

f 1� 1
d ;

where f .x/ dx is the absolutely continuous part of � and ˇ1.d/ is a constant
depending only on the dimension d .

When f is not the uniform measure on the unit cube, there is an issue in the proof
of [4] that apparently cannot be easily fixed (the problem lies in their Lemma 4.2
which is used for proving that the lim inf is at least ˇ1.d/

R
Rd
f 1� 1

d ). In any
case, the proof of Dobrić and Yukich is very specific to the bipartite matching
as it uses from the start the Kantorovich–Rubinstein dual representation of the
optimal transportation cost. It is not adapted to a general treatment of bipartite
functionals. The starting point of our work was a recent paper of Boutet de Monvel
and Martin [3] which (independently of [4]) establishes the convergence of the
bipartite matching for uniform variables on the unit cube, without using the dual
formulation of the transportation cost. Building on their approach we are able to
propose a soft approach of bipartite functionals, based on appropriate notions of
subadditivity and regularity. These properties allow to establish upper estimates on
upper limits. In order to deal with lower limits we adapt to the bipartite setting the
ideas of boundary functionals exposed in [19]. We are able to explicitly construct
such functionals for a class of optimization problems involving families of graphs
with good properties, and to establish full convergence for absolutely continuous
laws. Finally we introduce a new notion of inverse subadditivity which allows to
deal with singular parts.

This viewpoint sheds a new light on the result of Dobrić and Yukich, that
we extend in other respects, by considering power distance costs, and unbounded
random variables satisfying certain tail assumptions. Note that in the classical theory
of Euclidean functionals, the analogous question for unbounded random variables
was answered in Rhee [13] and generalized in [19].

Let us illustrate our results in the case of the bipartite matching with power
distance cost: given p > 0 and two multi-subsets of Rd , X D fX1; : : : ; Xng and
Y D fY1; : : : ; Yng, define

Mp.X ;Y / D min
�2Sn

nX
iD1

jXi � Y�.i/jp;
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where the minimum runs over all permutations of f1; : : : ; ng. Note that we have
the same result for the bipartite traveling salesperson problem, and that our generic
approach puts forward key properties that allow to establish similar facts for other
functionals. As mentioned in the title, our results apply to relatively high dimension.
More precisely, if the length of edges are counted to a power p, our study applies to
dimensions d > 2p only.

Theorem 2. Let 0 < 2p < d . Let� be a probability measure onRd with absolutely
continuous part f .x/ dx. We assume that for some ˛ > 4dp

d�2p ,

Z
jxj˛d�.x/ < C1:

Consider mutually independent random variables .Xi/i	1 and .Yj /j	1 having
distribution �. Then there are positive constants ˇp.d/; ˇ0

p.d/ depending only on
.p; d/ such that the following convergence holds almost surely

lim sup
n

n
p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� � ˇp.d/

Z
Rd

f 1� p
d ;

lim inf
n

n
p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� 
 ˇ0
p.d/

Z
Rd

f 1� p
d :

Moreover, almost surely,

lim
n
n
p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� D ˇp.d/

Z
Rd

f 1� p
d

provided one of the following hypothesis is verified:

• � is the uniform distribution over a bounded set ˝ � R
d with positive Lebesgue

measure.
• d 2 f1; 2g, p 2 .0; d=2/ or d 
 3, p 2 .0; 1�, and f is up to a

multiplicative constant the indicator function over a bounded set ˝ � R
d with

positive Lebesgue measure.

Our constant ˇ0.d/ has an explicit expression in terms of the cost of an optimal
boundary matching for the uniform measure on Œ0; 1�d (see Lemma 11). We strongly
suspect that ˇp.d/ D ˇ0

p.d/ but we have not been able to solve this important issue.

Also, assuming only ˛ > 2dp

d�2p , we can establish convergence in probability. As we
shall check, the bounded differences inequality will imply that if � has bounded
support the convergence holds also in Lq for all q 
 1.

Note that this result again supports the following heuristic interpretation: when
the number of points n is large, for � almost every x, given that Xi D x, the
i -th point is matched to a point Y�.i/ at distance of order ˇp.d/1=p.nf .x//�1=d if
f .x/ > 0 and of lower order otherwise. This can be compared to the fact that the
distance from Xi D x to fYj ; 1 � j � ng also stabilizes at the same rate. This
holds as long as 0 < 2p < d (see Section 7 for a more detailed discussion).
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The paper is organized as follows: Section 2 presents the key properties for
bipartite functionals (homogeneity, subadditivity and regularity) and gathers useful
preliminary statements. Section 3 establishes the convergence for uniform samples
on the cube. Section 4 proves upper bounds on the upper limits. These two sections
essentially rely on classical subadditive methods, nevertheless a careful analysis
is needed to control the differences of cardinalities of the two samples in small
domains. In Section 5, we introduce some examples of bipartite functionals. The
lower limits are harder to prove and require a new notion of penalized boundary
functionals. It is however difficult to build an abstract theory there, so in Section 6,
we will first present the proof for bipartite matchings with power distance cost, and
put forward a few lemmas which will be useful for other functionals. We then check
that for a natural family of Euclidean combinatorial optimization functionals defined
in Section 5.3, the lower limit also holds. This family includes the bipartite traveling
salesman tour. Finally, Section 7 mentions possible variants and extensions.

2 A General Setting

Let Md be the set of all finite multisets contained in R
d . We consider a bipartite

functional:

L W Md � Md ! R
C:

Let p > 0. We shall say that L is p-homogeneous if for all multisets X ;Y , all
a 2 R

d and all � 
 0,

L.a C �X ; a C �Y / D �pL.X ;Y /: (Hp)

Here a C �fx1; : : : ; xkg is by definition fa C �x1; : : : ; a C �xkg. For the sake of
brevity, we call the above property .Hp/. Note that a direct consequence is that
L.;;;/ D 0.

The functional L satisfies the regularity property .Rp/ if there exists a number
C such that for all multisets X ;Y ;X1;Y1;X2;Y2, denoting by� the diameter of
their union, the following inequality holds

L.X [ X1;Y [ Y1/ (Rp)

� L.X [ X2;Y [ Y2/C C�p
�
card.X1/C card.X2/C card.Y1/C card.Y2/

�
:

The above inequality implies in particular an easy size bound: L.X ;Y / �
C�p.card.X /C card.Y // when L.;;;/ D 0.

Eventually,L verifies the subadditivity property .Sp/ if there exists a number C
such that for every k 
 2 and all multisets .Xi ;Yi /

k
iD1, denoting by� the diameter

of their union, the following inequality holds
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L

 k[
iD1

Xi ;

k[
iD1

Yi
�

�
kX
iD1

L.Xi ;Yi /CC�p
kX
iD1



1C ˇ̌

card.Xi /� card.Yi /
ˇ̌�
: (Sp)

Remark 1. A less demanding notion of “geometric subadditivity” could be
introduced by requiring the above inequality only when the multisets Xi [ Yi

lie in disjoint parallelepipeds (see [19] where such a notion is used in order to
encompass more complicated single sample functionals). It is clear from the proofs
that some of our results hold assuming only geometric subadditivity (upper limit
for bounded absolutely continuous laws for example). We will not push this idea
further in this paper.

We will see in Sect. 5 that suitable extensions of the bipartite matching, of the
bipartite traveling salesperson problem, and of the minimal bipartite spanning tree
with bounded maximal degree satisfy all these properties. Our main generic result
on bipartite functionals is the following.

Theorem 3. Let d > 2p > 0 and let L be a bipartite functional on R
d with the

properties .Hp/, .Rp/ and .Sp/. Consider a probability measure � on R
d such

that there exists ˛ > 4dp

d�2p with

Z
jxj˛d�.x/ < C1:

Consider mutually independent random variables .Xi/i	1 and .Yj /j	1 having
distribution �. Let f be a density function for the absolutely continuous part of
�, then, almost surely,

lim sup
n!1

L.fX1; � � � ; Xng; fY1; � � � ; Yng/
n1�

p
d

� ˇL

Z
f 1� p

d ;

for some constantˇL depending only onL. Moreover, if� is the uniform distribution
over a bounded set˝ with positive Lebesgue measure, then there is equality: almost
surely,

lim
n!1

L.fX1; � � � ; Xng; fY1; � � � ; Yng/
n1�

p
d

D ˇLVol.˝/
p
d :

Beyond uniform distributions, lower limits are harder to obtain. In Sect. 6,
we will state a lower bound for a subclass of bipartite functionals which satisfy
the properties .Hp/, .Rp/ and .Sp/ (see the forthcoming Theorem 10 and,
for the bipartite traveling salesperson tour, Theorem 11).

Remark 2. Let B.1=2/ D fx 2 R
d W jxj � 1=2g be the Euclidean ball of

radius 1=2 centered at the origin. It is immediate that the functional L satisfies
the regularity property .Rp/ if it satisfies property .Hp/ and if for all multisets
X ;Y ;X1;Y1;X2;Y2 in B.1=2/,
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L.X [ X1;Y [ Y1/ (R)

� L.X [ X2;Y [ Y2/C C
�
card.X1/C card.X2/C card.Y1/C card.Y2/

�
:

Similarly, L will enjoy the subadditivity property .Sp/ if it satisfies property .Hp/

and if for every k 
 2 and all multisets .Xi ;Yi /
k
iD1 in B.1=2/,

L

 k[
iD1

Xi ;

k[
iD1

Yi

�
�

kX
iD1

L.Xi ;Yi /C C

kX
iD1



1C ˇ̌

card.Xi /� card.Yi /
ˇ̌�
:

(S )

The set of assumptions .Hp/, .Rp/, .Sp/ is thus equivalent to the set of assump-
tions .Hp/, .R/, .S /.

2.1 Consequences of Regularity

2.1.1 Poissonization

The proof of Theorem 3 will use partitions of Œ0; 1�d into subcubes. In order to obtain
independence and scaling properties of the point sets in each partition, it is much
more convenient to consider the Poissonized version of the above problem. Let
.Xi/i	1; .Yi /i	1 be mutually independent variables with distribution�. Considering
independent variables N1, N2 with Poisson distribution P.n/, the random sets
fX1; : : : ; XN1g and fY1; : : : ; YN2g are independent Poisson point processes with
intensity measures n�. For the sake of brevity, we set

L.n�/ WD L
�fX1; : : : ; XN1g; fY1; : : : ; YN2g�:

When d�.x/ D f .x/ dx we write L.nf / instead of L.n�/. Note that whenever we
are dealing with Poisson processes, n 2 .0;C1/ is not necessarily an integer. More
generally L.�/ may be defined for any finite measure, as the value of the functional
L for two independent Poisson point processes with intensity �.

Assume for a moment that the measure � has a bounded support, of diameter�.
The regularity property ensures that

jL.fX1; : : : ; Xng; fY1; : : : ; Yng/�L.fX1; : : : ; XN1g; fY1; : : : ; YN2g/j
� C�p

�jN1 � nj C jN2 � nj�:
Note that EjNi � nj � �

E.Ni � n/2
�1=2 D Var.Ni / D p

n. Hence the difference
between EL.fXigniD1; fYigniD1/ and EL.n�/ is at most a constant times

p
n D

o.n1�p=d / when d > 2p. Hence in this case, the original quantity and the
Poissonized version are the same in average at the relevant scale n1�p=d . The
boundedness assumption can actually be relaxed. To show this, we need a lemma.
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Lemma 1. Let ˛ > 0, n > 0 and let � be a probability measure on R
d such that

for all t > 0, �
�fxI jxj 
 tg� � c t�˛: Let X , Y be two independent Poisson

point processes of intensity n� and Tn D maxfjZj W Z 2 X [ Y g. Then, for all
0 < � < ˛ there exists a constantK D K.c; ˛; �/ such that for all n 
 1,

EŒT �n �
1
� � Kn

1
˛ :

Moreover the same conclusion holds if X D fX1; : : : ; Xng, Y D fY1; : : : ; Yng are
two mutually independent sequences of n variables with distribution �.

Proof. For t 
 0, let At D fx 2 R
d W jxj 
 tg and g.t/ D R

At
d�. By assumption,

�.At / � ct�˛ . We start with the Poisson case. Since X , Y are independent, we
have P.Tn < t/ D P.X \ At D ;/2 D e�2n�.At /. Therefore, using 1 � e�u �
min.1; u/,

EŒT �n � D �

Z 1

0

t��1
P.Tn 
 t/dt

D �

Z 1

0

t��1.1 � e�2n�.At //dt

� �

Z n1=˛

0

t��1dt C
Z 1

n1=˛
2nct��˛�1dt

D n�=˛ C 2c

˛ � � n
�=˛;

For the second case, since P.Tn 
 t/ D 1 � .1 � �.At //
2n � min.1; 2n�.At // the

same conclusion holds. ut
The next proposition implies that our original problem is well approximated by

its Poissonized version.

Proposition 1. Let d > 2p > 0. Let � be a probability measure on R
d such thatR jxj˛ d�.x/ < C1 for some ˛ > 2dp

d�2p . Let .Xi /i	1; .Yi /i	1 be mutually indepen-
dent variables with distribution �. If L satisfies the regularity property .Rp/ then

lim
n!1

E
ˇ̌
L.fXigniD1; fYigniD1/�L.n�/ˇ̌

n1�
p
d

D 0:

Remark 3. We have not proved the finiteness of EL.fXi gniD1; fYigniD1 and EL.n�/

yet. This will be done later. With the convention that 1 � 1 D 0, the above
statement establishes nevertheless that n

p
d �1.EL.fXi gniD1; fYigniD1/ � EL.n�//

converges to 0.
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Proof. Let N1 and N2 be Poisson random variables with mean value n. Let T D
maxfjZj W Z 2 fX1; � � � ; XN1g [ fY1; � � � ; YN2gg and S D maxfjZj W Z 2
fX1; � � � ; Xng[fY1; � � � ; Yngg, with the convention that the maximum over an empty
set is 0. The regularity property ensures that

ˇ̌
L
�fX1; : : : ; Xng; fY1; : : : ; Yng� �L�fX1; : : : ; XN1g; fY1; : : : ; YN2g�ˇ̌

� C.T C S/p .jN1 � nj C jN2 � nj/ :
Taking expectation gives, using Cauchy–Schwarz inequality and the bound
.aC b/q � max.1; 2q�1/.aq C bq/ valid for a; b; q > 0

E
ˇ̌
L
�fX1; : : : ; Xng; fY1; : : : ; Yng�� L

�fX1; : : : ; XN1g; fY1; : : : ; YN2g�ˇ̌

� cp



EŒT 2p�C EŒS2p�

� 1
2


EŒjN1 � nj2�C EŒjN2 � nj2�

� 1
2

D cp
p
2n


EŒT 2p�C EŒS2p�

� 1
2

Since ˛ > 2p, by Lemma 1, for some c > 0 and all n 
 1, EŒT 2p� � cn2p=˛ and
EŒS2p� � cn2p=˛ . Hence the above difference of expectations is at most a constant
times n

p
˛ C 1

2 , which is negligible with respect to n1�
p
d since ˛ is assumed to be large

enough. ut

2.1.2 Approximations

We now study the continuity of EL.�/ as a function of the finite measure�. We first
look at the regularity of EL.�/ under scaling.

Proposition 2. Assume that a bipartite functionalL satisfies the regularity property
.Rp/. Letm; n > 0 and� be a probability measure with support included in a setQ.
Then

EL.n�/ � EL.m�/C Cdiam.Q/pjm� nj:
Proof. Assume n < m (the other case is treated in the same way). Let .Xi/i	1,
.Yi /i	1, N1, N2, K1, K2 be mutually independent random variables, such that for
all i 
 1, Xi and Yi have law �, and for j 2 f1; 2g, the law of Nj is P.n/

and the law of Kj is P.m � n/. Then Mi D Ni C Ki is P.m/-distributed.
Then fX1; : : : ; XN1g and fY1; : : : ; YN2g are independent Poisson point processes of
intensity n�, while fX1; : : : ; XM1g and fY1; : : : ; YM2g are independent Poisson point
processes of intensitym�. By the regularity property,

L
�fX1; : : : ; XN1g; fY1; : : : ; YN2g�
� L

�fX1; : : : ; XN1CK1g; fY1; : : : ; YN2CK2g�C Cdiam.Q/p.K1 CK2/:

Taking expectations gives the claim. ut
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Applying the above inequality for m D 0 gives a weak size bound on EL.�/.

Corollary 1. Assume that L satisfies .Rp/ and L.;;;/ D 0 (a consequence of e.g.
.Hp/), then if � is a finite measure with support included in a set Q,

EL.�/ � Cdiam.Q/p �.Q/:

We now look at the regularity of EL.�/ under small perturbations of �. Recall
the total variation distance between two probability measures on R

d is defined as

dTV.�; �
0/ D supfj�.A/ � �0.A/j W A Borel set of Rd g:

Proposition 3. Assume thatL satisfies .Rp/. Let�;�0 be two probability measures
on R

d with bounded supports. Set � the diameter of the union of their supports.
Then

EL.n�/ � EL.n�0/C 4C�p ndTV.�; �
0/:

Proof. The difference of expectations is estimated thanks to a proper coupling
argument. Let � be a probability measure on R

d �R
d having � as its first marginal

and �0 as its second marginal. We consider mutually independent random variables
N1;N2; .Xi ; X

0
i /i	1; .Yi ; Y 0

i /i	1 such that N1;N2 are P.n/ distributed and for all
i 
 1, .Xi ; X 0

i / and .Yi ; Y 0
i / are distributed according to � . Then the random

multisets

X D fX1; : : : ; XN1g and Y D fY1; : : : ; YN2g
are independent Poisson point processes with intensity measure n�. Similarly
X 0 D fX 0

1; : : : ; X
0
N1

g and Y 0 D fY 0
1 ; : : : ; Y

0
N2

g are independent Poisson point
processes with intensity measure n�0.

The regularity property ensures that

L
�fX1; : : : ; XN1g; fY1; : : : ; YN2g�

� L
�fX 0

1; : : : ; X
0
N1

g; fY 0
1 ; : : : ; Y

0
N2

g�C 2C�p

0
@ N1X
iD1

1Xi¤X 0
i

C
N2X
jD1

1Yj¤Y 0
j

1
A :

Taking expectations yields

EL.n�/ � EL.n�0/C 2C�p
E

0
@ N1X
iD1

P.Xi ¤ X 0
i /C

N2X
jD1

P.Yj ¤ Y 0
j /

1
A

D EL.n�0/C 4C�p n�
�f.x; y/ 2 .Rd /2I x ¤ yg�:
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Optimizing the later term on the coupling � yields the claimed inequality involving
the total variation distance. ut
Corollary 2. Assume that the functional L satisfies the regularity property .Rp/.
Let m > 0, Q � R

d be measurable with positive Lebesgue measure and let f
be a nonnegative locally integrable function on R

d . Let ˛ D R
Q
f=vol.Q/ be the

average value of f on Q. It holds

EL.mf 1Q/ � EL.m˛1Q/C 2Cm diam.Q/p
Z
Q

jf .x/ � ˛j dx:

Proof. We simply apply the total variation bound of the previous lemma with
n D m

R
Q
f D m˛ vol.Q/, d�.x/ D f .x/1Q.x/dx=

R
Q
f and d�0.x/ D

1Q.x/dx=vol.Q/. Note that

2dTV .�;�
0/ D

Z ˇ̌
ˇf .x/1Q.x/R

Q
f

� 1Q.x/
vol.Q/

ˇ̌
ˇ dx D

R
Q

jf .x/ � ˛j dxR
Q
f

� ut

2.1.3 Average is Enough

It is known since the works of Rhee and Talagrand that concentration inequalities
often allow to deduce almost sure convergence from convergence in average.
Without much surprise, this is also the case in our general setting.

Proposition 4. Let L be a bipartite functional on multisets of Rd , satisfying the
regularity property .Rp/. Assume d > 2p > 0. Let � be a probability measure
� on R

d with
R jxj˛d�.x/ < C1: Consider independent variables .Xi/i	1 and

.Yi /i	1 with distribution �.
If ˛ > 2dp=.d � 2p/ then the following convergence holds in probability:

lim
n!1

L
�fXigniD1; fYigniD1� � EL

�fXigniD1; fYigniD1�
n1�

p
d

D 0:

Moreover if ˛ > 4dp=.d � 2p/, the convergence happens almost surely, and if �
has bounded support, then it also holds in Lq for any q 
 1.

Proof. This is a simple consequence of Azuma’s concentration inequality. It is
convenient to define Z.n/ D .X1; : : : ; Xn; Y1; : : : ; Yn/, Z.n/ is a vector of
dimension 2n and its i -th coordinate is denoted byZi . Assume first that the support
of � is bounded and let� denote its diameter. By the regularity property, modifying
one point changes the value of the functional by at most a constant:

jL.Z1; : : : ; Z2n/ �L.Z1; : : : ; Zi�1; Z0
i ; ZiC1; : : : ; Z2n/j � 2C�p:
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By conditional integration, we deduce that the following martingale difference:

di WD E
�
L.Z.n// jZ1; : : : ; Zi

� � E
�
L.Z.n// jZ1; : : : ; Zi�1

�

is also bounded jdi j � 2C�p almost surely. Recall that Azuma’s inequality states
that

P

 ˇ̌ kX
iD1

di
ˇ̌
> t

!
� 2e

� t2

2
P
i kdik

2
1 :

Therefore, we obtain that

P


ˇ̌
L.fXigniD1; fYi gniD1/� EL.fXigniD1; fYigniD1/

ˇ̌
> t

�
� 2e

� t2

16nC2�2p ; (3)

and there is a number C 0 (depending on � only) such that

P

 ˇ̌
L.fXigniD1; fYigniD1/� EL.fXigniD1; fYi gniD1/

ˇ̌
n1�

p
d

> t

!
� 2e�C 0t 2n

1�
2p
d
:

When d > 2p, we may conclude by the Borel–Cantelli lemma.
If � is not assumed to be of bounded support, a conditioning argument

allows to use the above method. Let S WD maxfjZi jI i � 2ng, s > 0 and
B.s/ D fxI jxj � sg. Given fS � sg, the variables fX1; � � � ; Xng and fY1; � � � ; Yng
are mutually independent sequences with distribution �jB.s/=�.B.s//. Hence,
applying (3) for �jB.s/=�.B.s// instead of � and 2s instead of �, for any t > 0,

P

 ˇ̌
ˇ̌
ˇ
L
�fXigniD1; fYigniD1�

n1�
p
d

� EL
�fXigniD1; fYigniD1�

n1�
p
d

ˇ̌
ˇ̌
ˇ > t

ˇ̌
ˇ S � s

!

� 2 exp

 
�n

1� 2p
d t2

cps2p

!
:

Hence for ı > 0 to be chosen later,

un W D P

 ˇ̌
ˇ̌
ˇ
L
�fXigniD1; fYigniD1�

n1�
p
d

� EL
�fXigniD1; fYigniD1�

n1�
p
d

ˇ̌
ˇ̌
ˇ > t

!

� P.S > n
1
ı /C 2 exp

 
�n

1� 2p
d � 2p

ı t2

cp

!
:

Since P.S > s/ D 1 � .1 � �.B.s//2n � 2n�.B.s// � 2n.
R jxj˛d�.x//=s˛,

we get that for some constant c and any ı > 0,
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un � cn1�
˛
ı C 2 exp

 
�n

1� 2p
d � 2p

ı t2

cp

!
:

Since ˛ > 2dp=.d � 2p/ we may choose ı 2 Œ2dp=.d � 2p/; ˛�, which ensures
that the latter quantities tend to zero as n increases. This shows the convergence in
probability to 0 of

L
�fXigniD1; fYi gniD1�

n1�
p
d

� EL
�fXigniD1; fYigniD1�

n1�
p
d

:

If ˛ >4dp=.d � 2p/ we may choose ı 2 Œ2dp=.d � 2p/; ˛=2�, which ensures thatP
n un < C 1. The Borel–Cantelli lemma yields the almost sure convergence to 0.

ut

2.2 Consequences of Subadditivity

We start with a very general statement, which is however not very precise when the
measures do not have disjoint supports.

Proposition 5. Let L satisfy .Sp/. Let �1; �2 be finite measures on R
d with

supports included in a set Q. Then

EL.�1 C �2/ �EL.�1/C EL.�2/C 2Cdiam.Q/p


1C

p
�1.Q/C

p
�2.Q/

�
:

Proof. Consider four independent Poisson point processes X1;Y1;X2;Y2 such that
for i 2 f1; 2g, the intensity of Xi and of Yi is �i . It is classical [8] that the random
multiset X1 [ X2 is a Poisson point process with intensity �1 C�2. Also, Y1 [ Y2

is an independent copy of the latter process. Applying the subadditivity property,

L.X1 [ X2;Y1 [ Y2/ � L.X1;Y1/C L.X2;Y2/

C Cdiam.Q/p .1C jcard.X1/� card.Y1/j C 1C jcard.X2/� card.Y2/j/ :

Since card.Xi / and card.Yi / are independent with Poisson law of parameter�i.Q/
(the total mass of �i/,

Ejcard.Xi /� card.Yi /j

�


E
�
card.Xi / � card.Yi /

�2� 1
2 D

p
2var.card.Xi // D

p
2�i .Q/:

Hence, taking expectations in the former estimate leads to the claimed inequality.
ut
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Partition techniques are essential in the probabilistic theory of Euclidean func-
tionals. The next statement allows to apply them to bipartite functionals. In what
follows, given a multiset X and a set P , we set X .P / WD card.X \ P/. If �
is a measure and f a nonnegative function, we write f � � for the measure having
density f with respect to �.

Proposition 6. Assume that the functional L satisfies .Sp/. Consider a finite
partition Q D [P2PP of a subset of Rd and let � be a measure on R

d with
�.Q/ < C1. Then

EL.1Q � �/ �
X
P2P

EL.1P � �/C 3Cdiam.Q/p
X
p2P

p
�.P /:

Proof. Consider X ;Y two independent Poisson point processes with intensity �.
Note that X \ P is a Poisson point process with intensity 1P � �, hence X .P / is
a Poisson variable with parameter �.P /. We could apply the subadditivity property
to .X \ P/P2P , .Y \ P/P2P , which yields

L.X \Q;Y \Q/ �
X
P2P

L.X \P;Y \P /CCdiam.Q/p
X
p2P

�
1 CjX .P /�Y .P /j�:

Nevertheless, doing this gives a contribution at least Cdiam.Q/p to cells which do
not intersect the multisets X ;Y . To avoid this rough estimate, we consider the cells
which meet at least one of the multisets:

QP WD fP 2 PI X .P /C Y .P / ¤ 0g:

We get that

L.X \Q;Y \Q/ �
X
P2 QP

L.X \ P;Y \ P /

CCdiam.Q/p
X
p2 QP

�
1C jX .P /� Y .P /j�

�
X
P2P

L.X \ P;Y \ P /

CCdiam.Q/p
X
p2P

1X .P /C Y .P /¤0
�
1C jX .P /� Y .P /j�

�
X
P2P

L.X \ P;Y \ P /

CCdiam.Q/p
X
p2P

�
1X .P /CY .P /¤0 C jX .P /� Y .P /j�:
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Since X .P / and Y .P / are independent Poisson variables with parameter �.P /,

P
�
X .P /C Y .P / ¤ 0

� D 1 � e�2�.P / and E
ˇ̌
X .P / � Y .P /

ˇ̌ � p
2�.P /:

Hence, taking expectation and using the bound 1 � e�t � min.1; t/ � p
t ,

EL.1Q ��/ �
X
P2P

EL.1P ��/C2p2 Cdiam.Q/p
X
p2P

p
�.P /: ut

The next statement deals with nested partitions, which are very useful in the study
of combinatorial optimization problems, see e.g. [15,19]. If P is a partition, we set
diam.P/ D maxP2P diam.P / (the maximal diameter of its cells).

Corollary 3. Assume that the functional L satisfies .Sp/. Let Q � R
d and

Q1; : : : ;Qk be a sequence of nested finite partitions of Q. Let � be a measure on
R
d with �.Q/ < C1. Then

EL.1Q � �/ �
X
q2Qk

EL.1q � �/C 3C

kX
iD1

diam.Qi�1/p
X
q2Qi

p
�.q/;

where by convention Q0 D fQg is the trivial partition.

Proof. We start with applying Proposition 6 to the partition Q1 of Q:

EL.1Q � �/ �
X
q2Q1

EL.1q � �/C 3Cdiam.Q0/
p
X
q2Q1

p
�.q/:

Next for each q 2 Q1 we apply the proposition again for the partition of q induced
by Q2 and iterate the process k � 2 times. ut

3 Uniform Cube Samples

We introduce a specific notation for n 2 .0;C1/,

NL.n/ WD EL
�
n1Œ0;1�d

�
:

In this section, we will prove that NL.n/=n1�p=d converges. This will be the basic
ingredient in the proof of Theorem 3. We first point out the following easy
consequence of the homogeneity properties of Poisson point processes.

Lemma 2. IfL satisfies the homogeneity property .Hp/ then for all a 2 R
d , � > 0

and n > 0
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EL
�
n1aCŒ0;��d

� D �p NL�n�d �:
The following theorem is obtained by adapting to our abstract setting the line of

reasoning in the paper [3] which was devoted to the bipartite matching:

Theorem 4. Let d > 2p be an integer. Let L be a bipartite functional on R
d

satisfying the properties .Hp/, .Rp/ and .Sp/. Then there exists ˇL 
 0 such that

lim
n!1

NL.n/
n1�

p
d

D ˇL:

Proof. Let m 
 1 be an integer. Let K 2 N such that 2K � m < 2KC1. Set
Q0 D Œ0; a�d where a WD 2KC1=m > 1. Let Q0 D fQ0g. We consider a sequence
of nested partitions Qj , j 
 1 where Qj is a partition of Q0 into 2jd cubes of size
a2�j (throughout the paper, this means that the interior of the cells are open cubes
of such size, while their closure is a closed cube of the same size. We do not describe
precisely how the points in the boundaries of the cubes are partitioned, since it is not
relevant for the argument). One often says that Qj , j 
 1 is a sequence of dyadic
partitions of Q0.

A direct application of Corollary 3 for the partitions Q1; : : : ;QKC1 and the
measure n1Œ0;1�d .x/ dx gives

NL.n/ D EL.n1Œ0;1�d / �
X

q2QKC1

EL.n1q\Œ0;1�d /

C 3C

KC1X
jD1

diam.Qj�1/p
X
q2Qj

q
nVol.q \ Œ0; 1�d /:

Note that QKC1 is a partition into cubes of size 1=m, so that its intersection
with Œ0; 1�d induces an (essential) partition of the unit cube into md cubes of
side-length 1=m. Hence, in the first sum, there are md terms which are equal,
thanks to translation invariance and Lemma 2 to EL.n1Œ0;m�1�d / D m�p NL.nm�d /.
The remaining terms of the first sum vanish. In order to deal with the second sum of
the above estimate, we simply use the fact that Qj contains 2jd cubical cells of size
a2�j D 2KC1�j =m � 21�j . Hence their individual volumes are at most 2d.1�j /.
These observations allow to rewrite the above estimate as

NL.n/ � md�p NL.nm�d /C 3C

KC1X
jD1

diam.Œ0; 22�j �d /p2jd
p
n 2d.1�j /

D md�p NL.nm�d /C 3C
p
n diam.Œ0; 1�d /p

KC1X
jD1

2p.2�j /C d
2 .jC1/:
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Hence, there is a numberD depending only on p; d and C such that

NL.n/ � md�p NL.nm�d /CD
p
n 2K.

d
2 �p/ � md�p NL.nm�d /CD

p
nm

d
2 �p:

Let t > 0. Setting, n D mdtd and f .u/ D NL.ud /=ud�p, the latter inequality reads as

f .mt/ � f .t/CDtp� d
2 ;

and is valid for all t > 0 and m 2 N
�. Since f is continuous (Proposition 2 shows

that u 7! NL.u/ is Lipschitz) and limt!C1 tp� d
2 D 0, it follows that limt!C1 f .t/

exists (we refer to [3] for details). ut
Remark 4. The above constant ˇL is positive as soon as L satisfies the
following natural condition: for all x1; : : : ; xn; y1; : : : yn in R

d , L.fx1; : : : ; xng;
fy1; : : : ; yng/
 cPi dist.xi ; fy1; : : : ; yng/p. To see this, one combines Proposi-
tion 1 and the lower estimate given in [16].

4 Upper Bounds, Upper Limits

4.1 A General Upper Bound

Using nested partitions, it is possible to refine Corollary 1 to a sharp order of
magnitude.

Lemma 3. Let d > 2p and let L be a bipartite functional satisfying .Sp/, .Rp/

andL.;;;/ D 0. Then there exists a constantD such that, for all finite measures �,

EL.�/ � D diam.Q/p min
�
�.Q/; �.Q/1�

p
d
�
;

where Q contains the support of �.

Proof. Thanks to Corollary 1, it is enough to deal with the case �.Q/ 
 2d (or any
other positive number). First note that we may assume that Q is a cube (given a set
of diameter�, one can find a cube containing it, with diameter no more than c times
� where c only depends on the norm). We consider a sequence of dyadic partitions
of Q, .P`/`	0, where for ` 2 N, P` divides Q into 2`d cubes of side-length 2�`
times the one of Q. Let k 2 N

� to be chosen later. By Corollary 3, we have the
following estimate

EL.�/ �
X
P2Pk

EL.1P � �/C 3C

kX
`D1

�
2�`C1diam.Q/

�p X
P2P`

p
�.P /: (4)
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Thanks to Corollary 1, the first term of the right-hand side of (4) is at most

X
P2Pk

C
�
2�kdiam.Q/

�p
�.P / D C 2�kp�diam.Q/

�p
�.Q/:

By the Cauchy–Schwarz inequality

X
P2P`

p
�.P / � �

2`d
� 1
2

0
@ X
P2P`

�.P /

1
A

1
2

D 2
`d
2

p
�.Q/:

Hence the second term of the right-hand side of (4) is at most

3C
�
2diam.Q/

�p kX
`D1

2`
�
d
2 �p

�p
�.Q/ � C 02k

�
d
2 �p

��
diam.Q/

�pp
�.Q/:

This leads to

EL.�/ � �
diam.Q/

�p

C2�kp�.Q/C C 02k

�
d
2 �p

�p
�.Q/

�
:

Choosing k D �
1
d

log2 �.Q/
˘ 
 1 completes the proof. ut

4.2 The Upper Limit for Densities

All ingredients have now been gathered in order to state our upper bound for
measures � which have a density.

Theorem 5. Let d > 2p. Let L be a bipartite functional on R
d satisfying the

properties .Hp/, .Rp/, .Sp/. Let f W R
d ! R

C be an integrable function with
bounded support. Then

lim sup
n!1

EL.nf /

n1�
p
d

� ˇL

Z
Rd

f 1� p
d ;

where ˇL is the constant appearing in Theorem 4.

Proof. By a scaling argument, we may assume that the support of f is included
in Œ0; 1�d and

R
f D 1 (the case

R
f D 0 is trivial). We consider a sequence of

dyadic partitions .P`/`2N of Œ0; 1�d : for ` 2 N, P` divides Œ0; 1�d into 2`d cubes of
side-length 2�`. Let k 2 N

� to be chosen later. Corollary 3 gives
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EL.nf / �
X
P2Pk

EL.nf 1P /C 3C

kX
`D1

�
2�`C1diam.Œ0; 1�d /

�p X
P2P`

s
n

Z
P

f :

(5)
By the Cauchy–Schwarz inequality

X
P2P`

sZ
P

f � �
2`d
� 1
2

0
@ X
P2P`

Z
P

f

1
A

1
2

D 2
`d
2

�Z
f

� 1
2

D 2
`d
2 :

Hence the second term of the right-hand side of (5) is at most

3C
�
2diam.Œ0; 1�d /

�pp
n

kX
`D1

2
`
�
d
2 �p

�
� cdn

1
2 2
k
�
d
2 �p

�
:

Let ˛P be the average of f on P , then applying Corollary 2 to the first terms of (5)
leads to

EL.nf / �
X
P2Pk

�
EL.n˛P 1P /C 2C n diam.P /p

Z
P

jf � ˛P j
�

Ccdn 1
2 2
k
�
d
2 �p

�
:

Each P in the sum is a square of side length 2�k , hence using homogeneity (see
Lemma 2)

EL.n f / �
X
P2Pk

�
2�kpM

�
n˛P 2

�kd �C n c0
d 2

�kp
Z
P

jf � ˛P j
�

C cd n
1
2 2
k
�
d
2 �p

�
:

(6)

Let us recast this inequality with more convenient notation. We set g.t/ D
NL.t/=t1�p=d and we define the piecewise constant function

fk D
X
P2Pk

˛P 1P D
X
P2Pk

R
P
f .x/ dx

Vol.P /
1P :

It is plain that
R
fk D R

f < C1. Moreover, by Lebesgue’s theorem,
limk!1 fk D f holds for almost every point x. Inequality (6) amounts to

EL.nf /

n1�
p
d

� X
P2Pk

�
g
�
n˛P 2

�kd
�
˛
1�

p
d

P 2�kd C n
p
d c0

d 2
�kp

Z
P

jf � fk j
�

Ccd n pd � 1
2 2k

�
d
2 �p

�

D X
P2Pk

�Z
P
g
�
nfk2

�kd
�
f
1�

p
d

k C n
p
d c0

d 2
�kp

Z
P

jf � fk j
�

C cdn
p
d � 1

2 2k
�
d
2 �p

�

D
Z
g
�
n 2�kd fk

�
f
1�

p
d

k C c0
d n

p
d 2�kp

Z
jf � fk j C cd

�
n
1
d 2�k

�p� d
2 :
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If there exists k0 such that f D fk0 then we easily get the claim by setting k D k0
and letting n go to infinity (since g is bounded and converges to ˇL at infinity, see
Lemma 3 and Theorem 4). On the other hand, if fk never coincides almost surely
with f , we use a sequence of numbers k.n/ 2 N such that

lim
n
k.n/D C 1; lim

n
n
1
d 2�k.n/ D C 1 and lim

n
n
1
d 2�k.n/

�Z
jf � fk.n/j

� 1
p D 0:

(7)

Assuming its existence, the claim follows easily: applying the inequality for k D
k.n/ and taking upper limits gives

lim sup
n

EL.nf /

n1�
p
d

� lim sup
n

Z
g
�
n 2�k.n/dfk.n/

�
f
1� p

d

k.n/ :

Since lim fk.n/ D f a.e., it is easy to see that the limit of the latter inte-
gral is ˇL

R
f 1� p

d : first the integrand converges almost everywhere to ˇLf 1� p
d

(if f .x/ D 0 this follows from the boundedness of g; if f .x/ ¤ 0 then the argument
of g is going to infinity). Secondly, the sequence of integrands is supported on the
unit cube and is uniformly integrable since

Z 

g
�
n 2�k.n/d fk.n/

�
f
1�

p
d

k

� d
d�p � .sup g/

d
d�p

Z
fk.n/ D .sup g/

d
d�p

Z
f < C1:

It remains to establish the existence of a sequence of integers .k.n//n
satisfying (7). Note that since fk 
 0,

R
fk D R

f D 1 and a.e. lim fk D f ,
it follows from Scheffé’s lemma that limk

R jf � fkj D 0. Hence '.k/ D
.supj	k

R jf � fj j/�d=p is nondecreasing with an infinite limit. We derive the
existence of a sequence with the following stronger properties

lim
n
k.n/ D C1; lim

n

n

.2d /k.n/
D C1 and lim

n

n

.2d /k.n/'.k.n//
D 0 (8)

as follows. Set � D 2d . Since �k
p
'.k � 1/ is increasing with infinite limit,

Œ�
p
'.0/;C1/ D [k	1

�
�k
p
'.k � 1/; �kC1p'.k/�:

For n 
 �
p
'.0/, we define k.n/ as the integer such that

�k.n/
p
'.k.n/ � 1/ � n < �k.n/C1

p
'.k.n//:

This defines a nondecreasing sequence. It is clear from the above strict inequality
that limn k.n/ D C1. Hence n��k.n/ 
 p

'.k.n/ � 1/ tends to infinity at infinity.
Eventually n=.�k.n/'.k.n/// � �=

p
'.k.n// tends to zero as required. The proof is

therefore complete. ut
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4.3 Purely Singular Measures

With Theorem 5 at hand, we should now understand what happens when � has a
singular part. Our next lemma states if � is purely singular then EL.n�/ is of order
smaller than n1�

p
d .

Lemma 4. Let d > 2p. Let L be a bipartite functional on R
d with properties .Rp/

and .Sp/. Let� be a finite singular measure on R
d having a bounded support. Then

lim
n!1

EL.n�/

n1�
p
d

D 0:

Proof. Let Q be a cube which contains the support of �. We consider a sequence
of dyadic partitions ofQ, .P`/`2N. For ` 2 N, P` dividesQ into 2`d cubes of side
length 2�` times the one of Q. As in the proof of Lemma 3, a direct application of
Corollary 3 gives for k 2 N

�:

EL.n�/ �
X
P2Pk

EL.n1P ��/C3C
kX
`D1

�
2�`C1diam.Q/

�p X
P2P`

p
n�.P /: (9)

The terms of the first sum are estimated again thanks to the easy bound of
Corollary 1: since each P in Pk is a cube of side length 2�k times the one of Q, it
holds

X
P2Pk

EL.n1P � �/ �
X
P2Pk

C
�
2�kdiam.Q/

�p
n�.P / D cp;Q 2

�kpnj�j:

Here j�j is the total mass of �. We rewrite the second term in (9) in terms of the
function

g` D
X
P2P`

�.P /

�.P /
1P ;

where � stands for Lebesgue’s measure. Since �.P / D 2�`d�.Q/, we get that

EL.n�/ � cp;Q 2
�kpnj�j

C3C �2diam.Q/
�pp

n

kX
`D1

2�`p X
P2P`

2
`d
2 �.Q/�

1
2 �.P /

s
�.P /

�.P /

D cp;Q 2
�kpnj�j C 3C

�
2diam.Q/

�p
�.Q/�

1
2
p
n

kX
`D1

2`
�
d
2 �p

� Z p
g`:
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By the differentiability theorem, for Lebesgue-almost every x, g`.x/ tends to zero
when ` tends to infinity (since � is singular with respect to Lebesgue’s measure).
Moreover, g` is supported on the unit cube and

R
.
p
g`/

2 D R
g` D j�j < C1.

Hence the sequence of functions
p
g` is uniformly integrable and we can conclude

that lim`!1
R p

g` D 0. By Cesaro’s theorem, the sequence

"k D
Pk

`D1 2`.
d
2 �p/ R p

g`Pk
`D1 2`.

d
2 �p/

also converges to zero, using here that d > 2p. By an obvious upper bound of the
latter denominator, we obtain that there exists a number c which does not depend
on .k; n/ (but depends on C;p; d;Q; j�j) such that for all k 
 1

EL.n�/ � c


n2�kp C p

n 2k.
d
2 �p/"k

�
;

where "k 
 0 and limk "k D 0. We may also assume that ."k/ is nonincreasing
(the inequality remains valid if one replaces "k by supj	k "j ). It remains to choose
k in terms of n in a proper way. Define

'.n/ D
q
"b 1d log2 nc

�1
d
2 �p :

Obviously limn '.n/ D C1. For n large enough, define k.n/ 
 1 as the unique
integer such that

2k.n/ � n
1
d '.n/ < 2k.n/C1:

Setting k D k.n/, our estimate on the cost of the optimal matching yields

EL.n�/

n1�
p
d

� c.d/

�
2

'.n/p
C "k.n/'.n/

d
2 �p

�
:

It is easy to check that the right hand side tends to zero as n tends to infinity. Indeed,
limn '.n/ D C1, hence for n large enough

k.n/ 

j

log2


n
1
d '.n/=2

�k


�
1

d
log2 n

�
:

Since the sequence ."k/ is nonincreasing, it follows that

"k.n/'.n/
d
2 �p � "b 1

d log2 nc'.n/
d
2 �p D q

"b 1
d log2 nc

tends to zero when n ! 1. The proof is therefore complete. ut
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4.4 General Upper Limits

We are now in position to conclude the proof the first statement of Theorem 3. It is
a consequence of Propositions 1, 4, and the following result.

Theorem 6. Let d > 2p > 0. Let L be a bipartite functional on R
d with the

properties .Hp/, .Rp/, and .Sp/. Consider a finite measure � on R
d such that

there exists ˛ > 2dp

d�2p with

Z
jxj˛d�.x/ < C1:

Let f be a density function for the absolutely continuous part of �, then

lim sup
n!1

EL.n�/

n1�
p
d

� ˇL

Z
f 1� p

d � (10)

Remark 5. Observe that the hypotheses ensure the finiteness of
R
f 1� p

d . Indeed
Hölder’s inequality gives

Z
Rd

f 1� p
d �

�Z
Rd

.1C jxj˛/f .x/dx
�1� p

d
�Z

Rd

.1C jxj˛/1� d
p

� p
d

where the latter integral converges since ˛ > 2dp

d�2p >
dp

d�p :

Proof. Assume first that � has a bounded support. Write � D �ac C �s where �s
is the singular part and d�ac.x/ D f .x/ dx. Applying Proposition 5 to �ac and �s ,
dividing by n1�p=d , passing to the limit and using Theorem 5 and Lemma 4 gives

lim sup
n

EL.n�/

n1�
p
d

� lim sup
n

EL.n�ac /

n1�
p
d

C lim sup
n

EL.n�s/

n1�
p
d

� ˇL

Z
f 1� p

d :

Hence the theorem is established for measures with bounded supports.
Now, let us consider the general case. Let B.t/ D fx 2 R

d W jxj � tg. Let A0 D
B.2/ and for integer ` 
 1, A` D B.2`C1/nB.2`/. Now, let X D fX1; � � � ; XN1g,
Y D fY1; � � � ; YN2g be two independent Poisson process of intensity n�, and T D
maxfjZj W Z 2 X [ Y g. Applying the subadditivity property like in the proof of
Proposition 6, we obtain

L.X ;Y / �
X
`	0

L.X \A`;Y \A`/ (11)

CCT p
X
`	0

1X .A`/CY .A`/¤0
�
1C jX .A`/ � Y .A`/j

�
:
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Note that the above sums have only finitely many nonzero terms, since � is finite.
We first deal with the first sum in the above inequality. By Fubini’s Theorem,

E

X
`	0

L.X \ A`;Y \A`/
n1�

p
d

D
X
`	0

E
L.X \A`;Y \ A`/

n1�
p
d

:

Applying (10) to the compactly supported measure �jA` for every integer ` gives

lim sup
n

E
L.X \ A`;Y \ A`/

n1�
p
d

� ˇL

Z
Al

f 1� p
d : (12)

By Lemma 3, for some constant cd ,

E
L.X \ A`;Y \A`/

n1�
p
d

� cd 2
`p�.A`/

1� p
d :

From Markov inequality, with m˛ D R jxj˛d�.x/,

�.A`/ � �.RdnB.2`// � 2�`˛m˛:

Thus, since ˛ > 2pd=.d � 2p/ > dp=.d � p/, the series
P

` 2
`p�.A`/

1� p
d

is convergent. We may then apply the dominated convergence theorem, we get
from (12) that

lim sup
n

E

X
`	0

L.X \ A`;Y \ A`/

n1�
p
d

� ˇL

Z
f 1� p

d :

For the expectation of the second term on the right hand side of (11), we use
Cauchy–Schwartz inequality,

E

2
4T pX

`	0
1X .A`/CY .A`/¤0

�
1C jX .A`/� Y .A`/j

�
3
5

�
X
`	0

p
EŒT 2p�

q
E
�
1X .A`/CY .A`/¤0

�
1C jX .A`/ � Y .A`/j

�2�

� p
2
p
EŒT 2p�

X
`	0

q
P.X .A`/C Y .A`/ ¤ 0/C E

�jX .A`/� Y .A`/j2
	

D p
2
p
EŒT 2p�

X
`	0

q
1 � e�2n�.A`/ C 2n�.A`/

� 2
p
EŒT 2p�

p
n
X
`	0

p
�.A`/;
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where we have used 1 � e�u � u. As above, Markov inequality leads to

X
`	0

p
�.A`/ � p

m˛

X
`	0

2�` ˛2 < C1:

Eventually we apply Lemma 1 with � WD 2p < 2pd=.d � 2/ < ˛ to upper bound
EŒT 2p�. We get that for some constant c > 0 and all n > 0,

n�1C p
d E

2
4T pX

`	0
1X .A`/CY .A`/¤0

�
1C jX .A`/� Y .A`/j

�
3
5 � cn� 1

2C p
d C p

˛ :

Since ˛ > 2dp=.d � 2p/, the later and former terms tend to zero as n tends to
infinity. The upper bound (10) is proved. ut

5 Examples of Bipartite Functionals

The minimal bipartite matching is an instance of a bipartite Euclidean functional
M1.X ;Y / over the multisets X D fX1; : : : ; Xng and Y D fY1; : : : ; Yng. We may
mention at least two other interesting examples: the bipartite traveling salesperson
problem over X and Y is the shortest cycle on the multiset X [ Y such that the
image of X is Y . Similarly, the bipartite minimal spanning tree is the minimal
edge-length spanning tree on X [ Y with no edge between two elements of X or
two elements of Y .

5.1 Minimal Bipartite Matching

Fix p > 0. Given two multisubsets of R
d with the same cardinality, X D

fX1; : : : ; Xng and Y D fY1; : : : ; Yng, the p-cost of the minimal bipartite matching
of X and Y is defined as

Mp.X ;Y / D min
�2Sn

nX
iD1

jXi � Y�.i/jp;

where the minimum runs over all permutations of f1; : : : ; ng. It is useful to extend
the definition to sets of different cardinalities, by matching as many points as
possible: if X D fX1; : : : ; Xmg and Y D fY1; : : : ; Yng andm � n then

Mp.X ;Y / D min
�

mX
iD1

jXi � Y�.i/jp;
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where the minimum runs over all injective maps from f1; : : : ; mg to f1; : : : ; ng.
When n � m the symmetric definition is chosenMp.X ;Y / WD Mp.Y ;X /.

The bipartite functional Mp is obviously homogeneous of degree p, i.e. it
satisfies .Hp/. The next lemma asserts that it also satisfies the subadditivity property
.Sp/. In the case p D 1, this is the starting point of the paper [3].

Lemma 5. For any p > 0, the functionalMp satisfies property (Sp) with constant
C D 1=2. More precisely, if X1; : : : ;Xk and Y1; : : : ;Yk are multisets in a bounded
subset Q � R

d , then

Mp


 k[
iD1

Xi ;

k[
iD1

Yi

�
�

kX
iD1

Mp.Xi ;Yi /C diam.Q/p

2

kX
iD1

jcard.Xi /� card.Yi /j:

Proof. It is enough to upper bound the cost of a particular matching of
Sk
iD1Xi andSk

iD1Yi . We build a matching of these multisets as follows. For each i we choose
the optimal matching of Xi and Yi . The overall cost is

P
i Mp.Xi ;Yi /, but we

have left
P

i jcard.Xi /�card.Yi /j points unmatched (the number of excess points).
Among these points, the less numerous species (there are two species: points from
Xi ’s, and points from Yi ’s) has cardinality at most 1

2

P
i jcard.Xi / � card.Yi /j.

To complete the definition of the matching, we have to match all the points of this
species in the minority. We do this in an arbitrary manner and simply upper bound
the distance between matched points by the diameter of Q. ut
The regularity property is established next.

Lemma 6. For any p > 0, the functionalMp satisfies property (Rp) with constant
C D 1.

Proof. Let X ;X1;X2;Y ;Y1;Y2 be finite multisets contained in Q D B.1=2/.
Denote by x; x1; x2; y; y1; y2 the cardinalities of the multisets and a ^ b for
min.a; b/. We start with an optimal matching for Mp.X \ X2;Y \ Y2/.
It comprises .x C x2/ ^ .y C y2/ edges. We remove the ones which have a vertex
in X2 or in Y2. There are at most x2 C y2 of them, so we are left with at least�
.x C x2/ ^ .y C y2/ � x2 � y2

�
C edges connecting points of X to points of Y .

We want to use this partial matching in order to build a (suboptimal) matching of
X \ X1 and Y \ Y1. This requires to have globally .x C x1/ ^ .y C y1/ edges.
Hence we need to add at most

.x C x1/ ^ .y C y1/ � �
.x C x2/ ^ .y C y2/ � x2 � y2

�
C

new edges. We do this in an arbitrary way, and simply upper bound their length by
the diameter ofQ. To prove the claim it is therefore sufficient to prove the following
inequalities for nonnegative numbers:

.xCx1/^.yCy1/�
�
.xCx2/^.yCy2/�x2�y2

�
C � x1Cx2Cy1Cy2: (13)
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This is obviously equivalent to

x C x1 � x1 C x2 C y1 C y2 C �
.x C x2/ ^ .y C y2/� x2 � y2

�
C

or y C y1 � x1 C x2 C y1 C y2 C �
.x C x2/ ^ .y C y2/ � x2 � y2

�
C:

After simplification, and noting that y1 
 0 appears only on the right-hand side of
the first inequality (and the same for x1 in the second one), it is enough to show that

x ^ y � x2 C y2 C �
.x C x2/ ^ .y C y2/� x2 � y2

�
C:

This is obvious, as by definition of the positive part, x ^ y � x2 C y2 C �
.x ^ y/�

x2 � y2
�

C: ut

5.2 Bipartite Traveling Salesperson Tour

Fix p>0. Given two multi-subsets of R
d with the same cardinality, X D

fX1; : : : ; Xng and Y D fY1; : : : ; Yng, the p-cost of the minimal bipartite traveling
salesperson tour of .X ;Y / is defined as

Tp.X ;Y / D min
.�;� 0/2S2n

nX
iD1

jX�.i/�Y� 0.i/jpC
n�1X
iD1

jY� 0.i/�X�.iC1/jpCjY� 0.n/�X�.1/jp;

where the minimum runs over all pairs of permutations of f1; : : : ; ng. We extend
the definition to sets of different cardinalities, by completing the longest possible
bipartite tour : if X D fX1; : : : ; Xmg and Y D fY1; : : : ; Yng and m � n then

Tp.X ;Y / D min
.�;� 0/

mX
iD1

jX�.i/�Y� 0.i/jp C
m�1X
iD1

jY� 0.i/�X�.iC1/jp CjY� 0.m/�X�.1/jp

where the minimum runs over all pairs .�; � 0/, with � 2 Sm and � 0 is an injective
maps from f1; : : : ; mg to f1; : : : ; ng. When n � m the symmetric definition is
chosen Tp.X ;Y / WD Tp.Y ;X /. This traveling salesperson functional is an
instance of a larger class of functionals that we now describe.

5.3 Euclidean Combinatorial Optimization Over Bipartite
Graphs

For integers m; n, we define Œn� D f1; � � �ng and Œn�m D fm C 1; � � � ; m C ng. Let
Bn be the set of bipartite graphs with common vertex set .Œn�; Œn�n/: if G 2 Bn, the
edge set of G is contained is the set of pairs fi; nC j g, with i; j 2 Œn�.
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We should introduce some graph definitions. IfG1 2 Bn andG2 2 Bm we define
G1 C G2 as the graph in BnCm obtained by the following rule : if fi; nC j g is an
edge of G1 then fi; nCmC j g is an edge of G1 CG2, and if fi; mC j g is an edge
of G2 then fnC i; 2nCmC j g is an edge of G1 CG2. Finally, if G 2 BnCm, the
restrictionG0 ofG to Bn is the element of Bn defined by the following construction
rule: if fi; nC m C j g is an edge of G and .i; j / 2 Œn�2 then add fi; nC j g as an
edge of G0.

We consider a collection of subsets Gn � Bn with the following properties, there
exist constants 0;  
 1 such that for all integers n;m,

(A1) (not empty) If n 
 0, Gn is not empty.
(A2) (isomorphism) If G 2 Gn and G0 2 Bn is isomorphic to G then G0 2 Gn.
(A3) (bounded degree) If G 2 Gn, the degree of any vertex is at most .
(A4) (merging) IfG 2 Gn andG0 2 Gm, there existsG00 2 GnCm such thatGCG0

and G00 have all but at most  edges in common. For 1 � m < 0, it also holds if
G0 is the empty graph of Bm.

(A5) (restriction) Let G 2 Gn and 0 C 1 � n and G0 be the restriction of G to
Bn�1. Then there exists G00 2 Gn�1 such that G0 and G00 have all but at most 
edges in common.

If jX j D jY j D n, we define

L.X ;Y / D min
G2Gn

X
.i;j /2Œn�2Wfi;nCj g2G

jXi � Yj jp:

With the convention that the minimum over an empty set is 0. Note that the
isomorphism property implies thatL.X ;Y / D L.Y ;X /. IfmD jX j � jY j Dn,
we define

L.X ;Y / D min
.G;�/

X
.i;j /2Œm�2Wfi;mCj g2G

jXi � Y�.j /jp; (14)

where the minimum runs over all pairs .G; �/, G 2 Gm and � is an injective maps
from f1; : : : ; mg to f1; : : : ; ng. When n � m the symmetric definition is chosen
L.X ;Y / WD L.Y ;X /.

The case of bipartite matchings is recovered by choosing Gn as the set of graphs
in Bn where all vertices have degree 1. We then have 0 D 1 and Gn satisfies the
merging property with  D 0. It also satisfies the restriction property with  D 1.
The case of the traveling salesperson tour is obtained by choosing Gn as the set of
connected graphs in Bn where all vertices have degree 2, this set is nonempty for
n 
 0 D 2. Also this set Gn satisfies the merging property with  D 4 (as can
be checked by edge switching). The restriction property follows by merging strings
into a cycle.

For the minimal bipartite spanning tree, we choose Gn as the set of connected
trees of Œ2n� in Bn. It satisfies the restriction property and the merging property with
 D 1. For this choice, however, the maximal degree is not bounded uniformly in n.
We could impose artificially this condition by defining Gn as the set of connected
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graphs in Bn with maximal degree bounded by  
 2. We would then get the
minimal bipartite spanning tree with maximal degree bounded by . It is not hard to
verify that the corresponding functional satisfies all the above properties.

Another interesting example is the following. Fix an integer r 
 2. Recall that
a graph is r-regular if the degree of all its vertices is equal to r . We may define
Gn as the set of r-regular connected graphs in Bn. This set is not empty for n 

0 D r . It satisfies the first part of the merging property (A4) with  D 4. Indeed,
consider two r-regular graphs G, G0, and take any edge e D fx; yg 2 G and
e0 D fx0; y0g 2 G0. The merging property holds with G00, the graph obtained from
GCG0 by switching .e; e0/ in .fx; y0g; fx0; yg/. Up to increasing the value of , the
second part of the merging property is also satisfied. Indeed, if n is large enough,
it is possible to find rm < r0 D r2 edges e1; � � � ; erm in G with nonadjacent
vertices. Now, in G00, we add m points from each species, and replace the edge
eriCq D fx; nC yg, 1 � i � m, 0 � q < r , by two edges: one between x and the
i -th point of the second species, and one between y and the i -th point of the first
species. G00 is then a connected r-regular graph in BnCm with all but at most 2r2

edges in common with G. Hence, by taking  large enough, the second part of the
merging property holds.

Checking the restriction property (A5) for r-regular graphs requires a little more
care. Let r D 0 C 1 � n and consider the restriction G1 of G 2 Bn to Bn�1. Our
goal is to show that by modifying a small number of edges of G1, one can obtain
a connected r-regular bipartite graph on Bn�1. We first explain how to turn G1
into a possibly nonconnected r-regular graph. Let us observe that G1 was obtained
from G by deleting one vertex of each species and the edges to which these points
belong. Hence G1 has vertices of degree r , and vertices of degree r � 1 (r blue
and r red vertices if the removed points did not share an edge, only r � 1 points
of each species if the removed points shared an edge). In any case G1 has at most
2r connected components and r vertices of each color with one edge missing. The
simplest way to turnG1 into a r regular graph is to connect each blue vertex missing
an edge with a red vertex missing an edge. However this is not always possible as
these vertices may already be neighbors in G1 and we do not allow multiple edges.
However given a red vertex vR and a blue vertex vB of degree r � 1 and provided
n � 1 > 2r2 there exists a vertex v in G1 which is at graph distance at least 3 from
vB and vR. Then open up an edge to which v belongs and connect its end-points to
vR and vB while respecting the bipartite structure. In the new graph vB and vR have
degree r . Repeating this operation no more than r times turns G1 into a r regular
graphs with at most as many connected components (and the initial and the final
graph differ by at most 3r edges). Next we apply the merge operation at most 2r�1
times in order to glue together the connected components (this leads to modifying at
most 4.2r�1/ edges). As a conclusion, provided we choose 0 > 2r2, the restriction
property holds for  D 11r .

We now come back to the general case. From the definition, it is clear that L sat-
isfies the property (Hp). We are going to check that it also satisfies properties (Sp)
and (Rp).
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Lemma 7. Assume (A1-A4). For anyp>0, the functionalL satisfies property (Sp)
with constant C D .3C 0/=2.

Proof. The proof of is an extension of the proof of Lemma 5. We can assume
without loss of generality k 
 2. Let X1; : : : ;Xk and Y1; : : : ;Yk be multisets
in Q D B.1=2/. For ease of notation, let xi D jXi j, yi D jYi j and n DPk

iD1 xi ^Pk
iD1 yi . If n < 0, then from the bounded degree property (A3),

L

 k[
iD1

Xi ;

k[
iD1

Yi

�
� n � 0:

If n 
 0, it is enough to upper bound the cost for an element G in Gn. For each
1 � i � k, if ni D xi ^ yi 
 0, we consider the element Gi in Gni which reaches
the minimum cost of L.Xi ;Yi /. From the merging property (A4), there exists G0
in GP

i �ni�0 ni
whose total cost is at most

L0 WD
X
i

L.Xi ;Yi /C k:

It remains at most
P

i 0 C jxi � yi j vertices that have been left aside. The less
numerous species has cardinal m0 � m D .

P
i 0 C jxi � yi j/=2. If m0 
 0,

from the nonempty property (A1), there exists a graphG00 2 Gm0 that minimizes the
cost of the vertices that have been left aside. From the merging and bounded degree
properties, we get

L

 k[
iD1

Xi ;

k[
iD1

Yi

�
� L0 CCm �

X
i

L.Xi ;Yi /C 

2

X
i

.3C 0 C jxi � yi j/ :

If m0 < 0, we apply to G0 the merging property with the empty graph: there exists
an element G in Gn whose total cost is at most

L

 k[
iD1

Xi ;

k[
iD1

Yi

�
� L0 C  �

X
i

L.Xi ;Yi /C .k C 1/:

We have proved that property (Sp) is satisfied for C D .3C 0/=2. ut
Lemma 8. Assume (A1-A5). For any p > 0, the functional L satisfies prop-
erty (Rp) with constant C D C.; 0/.

Proof. Let X ;X1;X2;Y ;Y1;Y2 be finite multisets contained in B.1=2/ D Q.
Denote by x; x1; x2; y; y1; y2 the cardinalities of the multisets. As a first step, let us
prove that

L.X [ X1;Y [ Y1/ � L.X ;Y /C C.x1 C y1/: (15)
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By induction, it is enough to deal with the cases .x1; y1/ D .1; 0/ and .x1; y1/ D
.0; 1/. Because of our symmetry assumption, our task is to prove that

L.X [ fag;Y / � L.X ;Y /C C: (16)

If card.Y / � card.X /, then the latter is obvious: choose an optimal graph for
L.X ;Y / and use it to upper estimate L.X [fag;Y /. Assume on the contrary that
card.Y / 
 card.X / C 1. Then there exists Y 0 � Y with card.Y 0/ D card.X /

and L.X ;Y 0/. Let b 2 Y nY 0. In order to establish (16), it is enough to show that

L.X [ fag;Y 0 [ fbg/ � L.X ;Y 0/C C;

but this is just an instance of the subadditivity property. Hence (15) is established.
In order to prove the regularity property, it remains to show that

L.X ;Y / � L.X [ X2;Y [ Y2/C C.x2 C y2/: (17)

Again, using induction and symmetry, it is sufficient to establish

L.X ;Y / � L.X [ fag;Y /C C: (18)

If card.X / ^ card.cY / < 0, then by the bounded degree property L.X ;Y / �
0diam.Q/p and we are done. Assume next that card.X /; card.Y / 
 0. Let us
consider an optimal graph for L.X [ fag;Y /. If a is not a vertex of this graph
(which forces card.X / 
 card.Y /) then one can use the same graph to upper
estimate L.X ;Y / and obtain (18). Assume on the contrary that a is a vertex of
this optimal graph. Let us distinguish two cases: if card.X / 
 card.Y /, then in the
optimal graph for L.X [ fag;Y /, at least a point b 2 X is not used. Consider
the isomorphic graph obtained by replacing a by b while the other points remain
fixed (this leads to the deformation of the edges out of a. There are at most  of
them by the bounded degree assumption). This graph can be used to upper estimate
L.X ;Y /, and gives

L.X ;Y / � L.X [ fag;Y /C  diam.Q/p:

The second case is when a is used but card.X / C 1 � card.Y /. Actually, the
optimal graph for L.X [ fag;Y / uses all the points of X [ fag and of a subset of
same cardinality Y 0 � Y . Choose an element b in Y 0. Then Y 00 D Y 0 n fbg has
the same cardinality as X . Obviously L.X [ fag;Y / D L.X [ fag;Y 00 [ fbg/.
Consider the corresponding optimal bipartite graph. By the restriction property, if
we erase a and b and their edges, we obtain a bipartite graph on .X ;Y 00/ which
differs from an admissible graph of our optimization problem by at most  edges.
Using this new graphs yields

L.X ;Y / �  diam.Q/pCL.X [fag;Y 00[fbg/ D  diam.Q/pCL.X [fag;Y /:

This concludes the proof. ut



Combinatorial Optimization Over Two Random Point Sets 515

6 Lower Bounds, Lower Limits

6.1 Uniform Distribution on a Set

In order to motivate the sequel, we start with the simple case where f is an indicator
function. The lower bound is then a direct consequence of Theorems 4 and 5.

Theorem 7. Let d > 2p > 0. Let L be a bipartite functional on R
d satisfying the

properties .Hp/, .Rp/, .Sp/. Let˝ � R
d be a bounded set with positive Lebesgue

measure. Then

lim
n!1

EL.n1˝/

n1�
p
d

D ˇLVol.˝/:

Proof. Theorem 5 gives directly lim supEL.n1˝/=n1�
p
d � ˇLVol.˝/. By trans-

lation and dilation invariance, we may assume without loss of generality that
˝ � Œ0; 1�d . Let ˝c WD Œ0; 1�d n ˝ . Applying Proposition 6 for the partition
Œ0; 1�d D ˝ [˝c , gives after division by n1�p=d

EL
�
n1Œ0;1�d

�
n1�

p
d

� EL
�
n1˝c

�
n1�

p
d

� EL
�
n1˝

�
n1�

p
d

C 3Cdiam.Œ0; 1�d /n
p
d � 1

2



Vol.˝/

1
2 C Vol.˝c/

1
2

�
:

Since d > 2p, letting n go to infinity gives

lim inf
n

EL
�
n1˝

�
n1�

p
d


 lim
n

EL
�
n1Œ0;1�d

�
n1�

p
d

� lim sup
n

EL
�
n1˝c

�
n1�

p
d


 ˇL � ˇLVol.˝c/ D ˇLVol.˝/;

where we have used Theorem 4 for the limit and Theorem 5 for the upper limit. ut
The argument of the previous proof relies on the fact that the quantity
limn1�p=dEL.n1˝/ D ˇLVol.˝/ is in a sense additive in˝ . This line of reasoning
does not pass to functions since f 7! R

f 1�p=d is additive only for functions with
disjoint supports. The lower limit result requires more work for general densities.

6.2 Lower Limits for Matchings

In order to establish a tight estimate on the lower limit, it is natural to try and reverse
the partition inequality given in Proposition 6. This is usually more difficult and
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there does not exist a general method to perform this lower bound. We shall first
restrict our attention to the case of the matching functional Mp with p > 0, we
define in this subsection

L D Mp:

6.2.1 Boundary Functional

Given a matching on the unit cube, one needs to infer from it matchings on the
subcubes of a dyadic partition and to control the corresponding costs. The main
difficulty comes from the points of a subcube that are matched to points of another
subcube. In other words some links of the optimal matching cross the boundaries of
the cells. As in the book by Yukich [19], a modified notion of the cost of a matching
is used in order to control the effects of the boundary of the cells of a partition. Our
argument is however more involved, since the good bound (2) used by Yukich is not
available for the bipartite matching. We define

q D 2p�1 ^ 1: (19)

Let S � R
d and " 
 0. Given multisets X D fX1; : : : ; mg and Y D

fY1; : : : ; Yng included in S we define the penalized boundary-matching cost as
follows

L@S;".X1; : : : ; XmI Y1; : : : ; Yn/ (20)

D min
A;B;�

8<
:
X
i2A

jXi � Y�.i/jp C
X
i2Ac

q


d.Xi ; @S/

p C "p
�

C
X
j2Bc

q


d.Yj ; @S/

p C "p
�9=
; ;

where the minimum runs over all choices of subsets A � f1; : : : ; mg, B �
f1; : : : ; ng with the same cardinality and all bijective maps � W A ! B . When
" D 0 we simply write L@S . Notice that in our definition, and contrary to the
definition of optimal matching, all points are matched even if m ¤ n. If X and Y
are independent Poisson point processes with intensity � supported in S and with
finite total mass, we write L@S;".�/ for the random variable L@S;".X ;Y /.

The main interest of the notion of boundary matching is that it allows to bound
from below the matching cost on a large set in terms of contributions on cells of a
partition. The following Lemma establishes a superadditive property of L@S and it
can be viewed as a counterpart to the upper bound provided by Proposition 6.

Lemma 9. Assume L D Mp . Let � be a finite measure on R
d and consider a

partitionQ D [P2PP of a subset of Rd . Then

diam.Q/p
q
2�.Rd /C EL.�/ 
 EL@Q.1IQ � �/ 


X
P2P

EL@P .1P � �/:
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Proof. Let X D fX1; : : : ; Xmg;Y D fY1; : : : ; Yng be multisets included in Q and
X 0 D fXmC1; : : : ; XmCm0g, Y 0 D fYnC1; : : : ; YnCn0g be multisets included in Qc .
By considering an optimal matching of X [ X 0 and Y [ Y 0, we have the lower
bound

diam.Q/pjmCm0 � n � n0j C L.X [ X 0;Y [ Y 0/ 
 L@Q.X ;Y /:

Indeed, if 1 � i � m and a pair .Xi ; YnCj /, is matched then jXi � YnCj j 

d.Xi ; @Q/ and similarly for a pair .XmCi ; Yj /, with 1 � j � n, jXmCi � Yj j 

d.Yj ; @Q/. The term diam.Q/pjmCm0 �n�n0j takes care of the points of X [Y
that are not matched in the optimal matching of X [ X 0 and Y [ Y 0. We apply
the above inequality to X , Y independent Poisson processes of intensity 1IQ � �,
and X 0, Y 0, two independent Poisson processes of intensity 1IQc ��, independent of
.X ;Y /. Then X [ X 0, Y [ Y 0 are independent Poisson processes of intensity
�. Taking expectation and bounding the average of the difference of cardinalities in
the usual way, we obtain the first inequality.

Now, the second inequality will follow from the superadditive property of the
boundary functional:

L@Q.X ;Y / 

X
P2P

L@P .X \ P;Y \ P/: (21)

This is proved as follows. Let .A;B; �/ be an optimal triplet for L@Q.X ;Y /:

L@Q.X ;Y / D
X
i2A

jXi � Y�.i/jp C
X
i2Ac

qd.Xi ; @Q/
p C

X
j2Bc

qd.Yj ; @Q/
p:

If x 2 Q, we denote by P.x/ the unique P 2 P that contains x. If P.Xi / D
P.Y�.i// we leave the term jXi � Y�.i/j unchanged. On the other hand if P.Xi/ ¤
P.Y�.i//, we find

jXi � Y�.i/jp 
 �
d.Xi ; @P.Xi //C d.Y�.i/; @P.Y�.i///

�p

 q d.Xi ; @P.Xi //

p C q d.Y�.i/; @P.Y�.i///
p;

where q was defined by (19) and, for 0 � p � 1, we have used Jensen inequality
jx C yjp 
 21�p.jxjp C jyjp/. Eventually, we apply the inequality

d.x; @Q/ 
 d.x; @P.x//

in order to take care of the points in Ac [ Bc . Combining these inequalities
and grouping the terms according to the cell P 2 P containing the points, we
obtain that
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L@Q.X ;Y / 

X
P2P

0
@ X
i2AI Xi2P;Y�.i/2P

jXi � Y�.i/jp C
X

i2AI Xi2P;Y�.i/…P
q d.Xi ; @P /

p

C
X

i2Ac I Xi2P
q d.Xi ; @P /

p C
X

j2BI Yj2P; j 62�.fi I Xi2P g/
q d.Yj ; @P /

p

C
X

j2BcI Yj2P
q d.Yj ; @P /

p

1
A



X
P2P

L@P .X \ P;Y \ P /;

and we have obtained the inequality (21). ut
The next lemma on the regularity of EL@Q.�/ is the analog of Corollary 2. It will
be used to reduce to uniform distributions on cubes.

Lemma 10. Assume L D Mp . Let �;�0 be two probability measures on R
d with

supports in Q and n > 0. Then

EL@Q.n�/ � EL@Q.n�
0/C 4n diam.Q/p dTV.�; �

0/:

Consequently, if f is a nonnegative locally integrable function on R
d , setting ˛ DR

Q
f=vol.Q/, it holds

EL@Q.nf 1Q/ � EL@Q.n˛1Q/C 2n diam.Q/p
Z
Q

jf .x/ � ˛j dx:

Proof. The functional L@Q satisfies a slight modification of property .Rp/: for all
multisets X ;Y ;X1;Y1;X2;Y2 in Q, it holds

L@Q.X [ X1;Y [ Y1/ � L@Q.X [ X2;Y [ Y2/

C diam.Q/p
�
card.X1/C card.X2/C card.Y1/C card.Y2/

�
:

Indeed, we start from an optimal boundary matching of L@Q.X [ X2;Y [ Y2/,
we match to the boundary the points of .X ;Y / that are matched to a point in
.X2;Y2/. There are at most card.X2/C card.Y2/ such points. Finally we match all
points of .X1;Y1/ to the boundary and we obtain a suboptimal boundary matching
of L@Q.X [ X1;Y [ Y1/. This establishes the above inequality. The statements
follow then from the proofs of Proposition 3 and Corollary 2. ut
We will need an analog of Lemma 2, i.e. an asymptotic for the boundary matching
for the uniform distribution on the unit cube. Let Q D Œ0; 1�d and denote

NL@Q.n/ D EL@Q.n1Q/:
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Lemma 11. Assume L D Mp and 0 < p < d=2, then

lim
n!1

NL@Q.n/
n1�

p
d

D ˇ0
L;

where ˇ0
L > 0 is a constant depending on p and d .

Proof. Let m 
 1 be an integer. We consider a dyadic partition P of Q into md

cubes of size 1=m. Then, Lemma 9 applied to the measure n1Œ0;1�d .x/ dx gives

NL@Q.n/ 

X
q2P

EL@q.n1q\Œ0;1�d /:

However by scale and translation invariance, for any q 2 P we have
EL@q.n1q\Œ0;1�d / D m�p

EL@Q.nm
�d1Q/. It follows that

NL@Q.n/ 
 md�p NL@Q.nm�d /:

The proof is then done as in Theorem 4 where superadditivity here replaces
subadditivity there. ut

As already pointed, we conjecture that ˇL D ˇ0
L where ˇL is the constant

appearing in Lemma 2 for L D Mp .

6.2.2 General Absolutely Continuous Measures

We are ready to state and prove

Theorem 8. Assume L D Mp and 0 < p < d=2. Let f W R
d ! R

C be an
integrable function. Then

lim inf
n

EL.nf /

n1�
p
d


 ˇ0
L

Z
Rd

f 1� p
d :

Proof. Assume first that the support of f is bounded. By a scaling argument, we
may assume that the support of f is included in Q D Œ0; 1�d . The proof is now
similar to the one of Theorem 5. For ` 2 N, we consider the partition P` of Œ0; 1�d

into 2`d cubes of side-length 2�`. Let k 2 N
� to be chosen later. For P 2 Pk , ˛P

denotes the average of f over P . Applying Lemma 9, Lemma 10 and homogeneity,
we obtain
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2d
p
2

s
n

Z
f C EL.nf / 	 EL@Q.nf /

	
X

P2Pk

EL@P .nf 1P /

	 X
P2Pk

�
EL@P .n˛P 1P /� 2nd

p
2 2�kp

Z
P

jf � ˛P j
�

D X
P2Pk

�
2�kp

EL@Q.n˛P 2
�kd1Q/� 2nd

p
2 2�kp

Z
P

jf � ˛P j
�
:

Setting as before fk D P
P2Pk

˛P 1P and h.t/ D NL@Q.t/=t d�1
d where NL@Q.t/ D

EL@Q.t1Q/, the previous inequality reads as

2n
p
d � 1

2 d
p
2

sZ
f C EL.nf /

n1�
p
d


 EL@Q.nf /



Z
h.n2�kdfk/f

1� p
d

k � 2d p
2 n

p
d 2�kp

Z
jf � fkj:

As in the proof of Theorem 5 we may choose k D k.n/ depending on n in
such a way that limn k.n/ D C1, limn n

1=d2�k.n/ D C1 and limn n
1
d 2�k.n/� R jf � fk.n/j

� 1
p D 0. For such a choice, since lim inft!C1 h.t/ 
 ˇ0

L by
Lemma 11 and a.e. limk fk D f , Fatou’s lemma ensures that

lim inf
n

Z
h.n2�k.n/dfk.n//f

1� p
d

k.n/

 lim inf

n

Z
ff >0g

h.n2�k.n/dfk.n//f
1� p

d

k.n/

 ˇ0

L

Z
f 1�

p
d :

Our statement easily follows.
Now, let us address the general case where the support is not bounded. Let ` 
 1

andQ D Œ�`; `�d . By Lemma 9,

2diam.Q/p

s
n

Z
f C EL.nf / 
 EL@Q.nf 1IQ/:

Also, the above argument has shown that

lim inf
n

EL@Q.nf 1IQ/

n1�
p
d


 ˇ0
L

Z
Q

f 1� p
d :

We deduce that for anyQ D Œ�`; `�d ,
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lim inf
n

EL.nf /

n1�
p
d


 ˇ0
L

Z
Q

f 1� p
d :

Taking ` arbitrary large we obtain the claimed lower bound. ut

6.2.3 Dealing with the Singular Component

In this section we explain how to extend Theorem 8 from measures with densities to
general measures. Given a measure �, we consider its decomposition� D �ac C�s
into an absolutely continuous part and a singular part.

Our starting point is the following lemma, which can be viewed as an inverse
subadditivity property.

Lemma 12. Let p 2 .0; 1� and L D Mp . Let X1;X2;Y1;Y2 be four finite
multisets included in a bounded set Q. Then

L.X1;Y1/ � L.X1 [ X2;Y1 [ Y2/C L.X2;Y2/

Cdiam.Q/p


jX1.Q/� Y1.Q/j C 2jX2.Q/� Y2.Q/j

�
:

Proof. Let us start with an optimal matching achieving L.X1 [ X2;Y1 [ Y2/ and
an optimal matching achieving L.X2;Y2/. Let us view them as bipartite graphs
G1;2 and G2 on the vertex sets .X1 [ X2;Y1 [ Y2/ and .X2;Y2/ respectively
(note that if a point appears more than once, we consider its instances as different
graph vertices). Our goal is to build a possibly suboptimal matching of X1 and Y1.
Assume without loss of generality that X1.Q/ � Y1.Q/. Hence we need to build
an injection from � W X1 ! Y1 and to upper bound its cost

P
x2X1

jx � �.x/jp .
To do this, let us consider the graph G obtained as the union of G1;2 and G2

(allowing multiple edges when two points are neighbors in both graphs). It is clear
that in G the points from X1 and Y1 have degree at most one, while the points from
X2 and Y2 have degree at most 2. For each x 2 X1, let us consider its connected
component C.x/ in G. Because of the above degree considerations (and since no
point is connected to itself in a bipartite graph) it is obvious that C.x/ is a path.

It could be thatC.x/ D fxg, in the case when x is a leftover point in the matching
corresponding to G1;2. This means that x is a point in excess and there are at most
jX1.Q/C X2.Q/� .Y1.Q/C Y2.Q//j of them.

Consider now the remaining case, when C.x/ is a nontrivial path. Its first edge
belongs toG1;2. If there is a second edge, it has to be fromG2 (sinceG1;2 as degree at
most one). Repeating the argument, we see that the edges of the path are alternately
from G1;2 and from G2. Note also that the successive vertices are alternately from
X1 [ X2 and from Y1 [ Y2 (see Fig. 1). There are three possibilities:
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y

x y

y

x

x

Fig. 1 The three possibilities for the path C.x/. In blue, G1;2, in red G2, the points in X1 [ X2

are represented by a cross, points in Y1 [ Y2 by a circle

• The other end of the path is a point y 2 Y1. In this case we are done, we have
associated a point y 2 Y1 to our point x 2 X1. By the triangle inequality and
since .aCb/p � apCbp due to the assumptionp � 1, jx�yjp is upper bounded
by the sum of the p-th powers of the length of the edges in C.x/.

• The other end of the path is a point y 2 Y2. The last edge is from G1;2. So
necessarily, y has no neighbor in G2. This means that it is not matched. There
are at most jX2.Q/� Y2.Q/j such points in the matching G2.

• The other end of the path is a point x0 2 X2. The last edge is from G2. So
necessarily, x0 has no neighbor in G1;2. This means that it is not matched in G1;2.
As already mentioned there are at most jX1.Q/C X2.Q/� .Y1.Q/C Y2.Q//j
such points.

Eventually we have found a way to match the points from X1, apart maybe
jX2.Q/ � Y2.Q/j C jX1.Q/C X2.Q/ � .Y1.Q/C Y2.Q//j of them. We match
the latter points arbitrarily to (unused) points in Y1 and upper bound the distances
between matched points by diam.Q/. ut
As a direct consequence, we obtain:

Lemma 13. Let �1 and �2 be two finite measures supported in a bounded set Q.
Let p 2 .0; 1� and L D Mp be the bipartite matching functional. Then

EL.�1/ � EL.�1 C �2/C EL.�2/C 3 diam.Q/p
�p
�1.Q/C

p
�2.Q/

�
:
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Proof. Let X1;X2;Y1;Y2 be four independent Poisson point processes. Assume
that for i 2 f1; 2g, Xi and Yi have intensity measure�i . Consequently X1[X2 and
Y1 [ Y2 are independent Poisson point processes with intensity �1 C�2. Applying
the preceding Lemma 12 and taking expectations yields

EL.�1/ � EL.�1 C �2/C EL.�2/

C2diam.Q/p
�
EjX1.Q/� Y1.Q/j C EjX2.Q/� Y2.Q/j

�
:

As usual, we conclude using that

EjXi .Q/� Yi .Q/j �
q
E
�
.Xi .Q/� Yi .Q//2

� D p
2var.Xi .Q// D p

2�i .Q/:

ut
Theorem 9. Assume that d 2 f1; 2g and p 2 .0; d=2/, or that d 
 3 and p 2
.0; 1�. Let L D Mp be the bipartite matching functional. Let � be a finite measure
on R

d with bounded support. Let f be the density of the absolutely continuous part
of �. Assume that there exists ˛ > 2dp

d�2p such that
R jxj˛d�.x/ < C1. Then

lim inf
n

EL.n�/

n1�
p
d


 ˇ0
L

Z
Rd

f 1� p
d :

Moreover if f is proportional to the indicator function of a bounded set with positive
Lebesgue measure

lim
n

EL.n�/

n1�
p
d

D ˇL

Z
Rd

f 1� p
d :

Proof. Note that in any case, p � 1 is assumed. Let us write � D �ac C �s
where d�ac.x/ D f .x/dx is the absolutely continuous part and �s is the singular
part of �.

The argument is very simple if � has a bounded support: apply the previous
lemma with �1 D n�ac and �2 D n�s . When n tends to infinity, observing that

p
n

is negligible with respect to n1�
p
d , we obtain that

lim inf
n

EL.n�ac/

n1�
p
d

� lim inf
n

EL.n�/

n1�
p
d

C lim sup
n

EL.n�s/

n1�
p
d

:

Observe that the latter upper limit is equal to zero thanks to Theorem 6
applied to a purely singular measures. Eventually lim infn

EL.n�ac/

n
1�

p
d


 ˇ0
L

R
Rd
f 1� p

d

by Theorem 8 about absolutely continuous measures.
If f is proportional to an indicator function, we simply use scale invariance and

Theorem 7 in place of Theorem 8.
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Let us consider the general case of unbounded support. Let Q D Œ�`; `�d where
` > 0 is arbitrary. Let X1;Y1;X2;Y2 be four independent Poisson point processes,
such that X1 and Y1 have intensity measure n1Q ��ac , and X2 and Y2 have intensity
measure n.�s C 1Qc � �ac/. It follows that X1 [ X2 and Y1 [ Y2 are independent
Poisson point processes with intensity n�. Set T WD maxfjzjI z 2 X1 [ X2 [ Y1 [
Y2g. Applying Lemma 12 gives

L.X1;Y1/ � L.X1 [ X2;Y1 [ Y2/C L.X2;Y2/

C cpT
p
�jcard.X1/ � card.Y1/j � jcard.X2/� card.Y2/j

�
:

Taking expectations, applying the Cauchy–Schwarz inequality twice and Lemma 1
(note that ˛ > 2p) gives

EL.nf 1Q/ � EL.n�/C EL
�
n.�s C 1Qc�ac/

�

Ccp
q
E
�
T 2p

	�p
2n�ac.Q/C

q
2n.�s.Rd /C �ac.Qc//

�

� EL.n�/C EL
�
n.�s C 1Qc�ac/

�C c0
pn

p
˛ C 1

2 :

Since ˛ > 2dp

d�2p we obtain

lim inf
n

EL.n�/

n1�
p
d


 lim inf
n

EL.nf 1Q/

n1�
p
d

� lim sup
n

EL.n.�s C 1cQ � �ac//
n1�

p
d


 ˇ0
L

Z
Q

f 1� p
d � ˇL

Z
Qc

f 1� p
d ;

where we have used Theorem 8 for the lower limit for bounded absolutely
continuous measures and Theorem 6 for the upper limit. Recall that Q D Œ�`; `�d .
It remains to let ` tend to infinity. ut

Actually, using classical duality techniques (which are specific to the bipartite
matching) we can derive the following improvement of Lemma 13, which can be
seen as an average monotonicity property:

Lemma 14. Let p 2 .0; 1� and L D Mp . Let �1 and �2 be two finite measures
supported on a bounded subset Q � R

d . Then

EL.�1/ � EL.�1 C �2/C 3diam.Q/p
�p
�1.Q/Cp

�2.Q/
�
:

Proof. Since p 2 .0; 1�, the unit cost c.x; y/ WD jx � yjp is a distance on R
d .

The Kantorovich–Rubinstein dual representation of the minimal matching cost (or
optimal transportation cost) is particularly simple in this case (see e.g. [11, 16, 18]):
for fx1; : : : ; xng, fy1; : : : ; yng two multisets in Q,
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L
�fx1; : : : ; xng; fy1; : : : ; yng� D sup

f 2Lip1;0

X
i

f .xi / � f .yi /;

where Lip1;0 denotes the set of function f W Q ! R which are 1-Lipschitzian for
the distance c.x; y/ (hence they are p-Hölderian for the Euclidean distance) and
vanish at a prescribed point x0 2 Q. Observe that any function in Lip1;0 is bounded
by diam.Q/p pointwise.

Let X D fX1; : : : ; XN1g and Y D fY1; : : : ; YN2g be independent Poisson point
processes with intensity � of finite mass and supported on a set Q of diameter
D < C1. By definition, on the event fN1 � N2g,

L.X ;Y / D inf
A�f1;:::;N2gIcard.A/DN1

L
�fXi; 1 � i � N1g; fYj ; j 2 Ag�

D inf
A�f1;:::;N2gIcard.A/DN1

sup
f 2Lip1;0

0
@X
i�N1

f .Xi/ �
X
j2A

f .Yj /

1
A


 sup
f 2Lip1;0

0
@X
i�N1

f .Xi /�
X
j�N2

f .Yj /

1
A �DpjN1 �N2j

where we have used Kantorovich–Rubinstein duality to express the optimal match-
ing of two samples of the same size and used that every f 2 Lip1;0 satisfies
jf j � Dp pointwise on Q. A similar lower bound is valid when N1 
 N2. Hence,
taking expectation and boundingEjN1�N2j in terms of the variance of the number
of points in one process, one gets

EL.�/ 
 E sup
f 2Lip1;0

0
@X
i�N1

f .Xi / �
X
j�N2

f .Yj /

1
A �Dp

p
2j�j: (22)

A similar argument also gives the following upper bound

EL.�/ � E sup
f 2Lip1;0

0
@X
i�N1

f .Xi /�
X
j�N2

f .Yj /

1
ACDp

p
2j�j: (23)

Let X1;X2;Y1;Y2 be four independent Poisson point processes. Assume that
for i 2 f1; 2g, Xi and Yi have intensity �i . As already mentioned, X1 [ X2 and
Y1 [ Y2 are independent with common intensity �1 C �2. Given a compact set
Q containing the supports of both measures, and x0 2 Q we define the set Lip1;0.
Using (22),
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EL.�1 C �2/ D EL.X1 [ X2;Y1 [ Y2/


 E sup
f 2Lip1;0

0
@ X
x12X1

f .x1/ �
X
y12Y1

f .y1/C
X

x22X2

f .x2/ �
X
y22Y2

f .y2/

1
A

�Dp
p
2j�1 C �2j:

Now we use the easy inequalityE sup 
 supE whenE is the conditional expectation
given X1;Y1. Since .X2;Y2/ are independent from .X1;Y1/, we obtain

EL.�1 C �2/CDp
p
2j�1 C �2j


 E sup
f 2Lip1;0

0
@ X
x12X1

f .x1/�
X
y12Y1

f .y1/C E


 X
x22X2

f .x2/ �
X
y22Y2

f .y2/
�1A

D E sup
f 2Lip1;0

0
@ X
x12X1

f .x1/�
X
y12Y1

f .y1/

1
A


 EL.�1/�Dp
p
2j�1j;

where we have noted that the inner expectation vanishes and used (23). The claim
easily follows. ut

6.3 Euclidean Combinatorial Optimization

Our proof for the lower bound for matchings extends to some combinatorial
optimization functionals L defined by (14). In this paragraph, we explain how to
adapt the above argument at the cost of ad-hoc assumptions on the collection of
graphs .Gn/n2N. As motivating example, we will treat completely the case of the
bipartite traveling salesperson tour.

6.3.1 Boundary Functional

Let S � R
d and "; p 
 0. Set q D 2p�1 ^ 1. In what follows, p is fixed and

will be omitted in most places where it would appear as an index. Given multisets
X D fX1; : : : ; Xng and Y D fY1; : : : ; Yng included in R

d , we first set

L0@S;".X ;Y / D min
G2Gn

8<
:

X
.i;j /2Œn�2Wfi;nCj g2G

dS;";p.Xi ; Yj /

9=
; ;
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where

dS;";p.x; y/ D

8̂
<̂
ˆ̂:

jx � yjp if x; y 2 S;
0 if x; y 62 S;

q
�
dist.x; Sc/p C "p

�
if x 2 S; y 62 S

q
�
dist.y; Sc/p C "p

�
if y 2 S; x 62 S

(24)

Now, if X and Y are in S , we define the penalized boundary functional as

L@S;".X ;Y / D min
A;B�Sc L

0
@S;".X [ A;Y [ B/; (25)

where the minimum is over all multisets A and B in Sc such that card.X [ A/ D
card.Y [ B/ 
 0. When " D 0 we simply write L@S . The main idea of this
definition is to consider all possible configurations outside the set S but not to count
the distances outside of S (from a metric view point, all of Sc is identified to a point
which is at distance " from S ).

The existence of the minimum in (25) is due to the fact thatL0@S .X [A;Y [B/
can only take finitely many values less than any positive value (the quantities
involved are just sums of distances between points of X ;Y and of their distances
to Sc). Notice that definition (25) is consistent with the definition of the boundary
functional for the matching functional Mp, given by (20). If X and Y are
independent Poisson point processes with intensity � supported in S and with finite
total mass, we write L@S;".�/ for the random variable L@S;".X ;Y /. Also note that
dS;0;p.x; y/ � jx � yjp . Consequently if card.X / D card.Y / then

L0@S .X ;Y / � L.X ;Y /: (26)

The next lemma will be used to reduce to uniform distributions on squares.

Lemma 15. Assume (A1-A5). Let �;�0 be two probability measures on R
d with

supports in Q and n > 0. Then, for some constant c depending only on ; 0,

EL@Q.n�/ � EL@Q.n�
0/C 2cn diam.Q/p dTV.�; �

0/:

Consequently, if f is a nonnegative locally integrable function on R
d , setting

˛ D R
Q f=vol.Q/, it holds

EL@Q.nf 1Q/ � EL@Q.n˛1Q/C cn diam.Q/p
Z
Q

jf .x/ � ˛j dx:

Proof. The functional L@Q satisfies a slight modification of property .Rp/: for all
multisets X ;Y ;X1;Y1;X2;Y2 in Q, it holds

L@Q.X [ X1;Y [ Y1/ � L@Q.X [ X2;Y [ Y2/

C Cdiam.Q/p
�
card.X1/C card.X2/C card.Y1/C card.Y2/

�
; (27)
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with C D C.; 0/. The above inequality is established as in the proof of Lemma 8.
Indeed, by linearity and symmetry we should check (16) and (18) for L@Q. To
prove (16), we consider an optimal triplet .G;A;B/ for .X ;Y / and apply the
merging property (A4) to G with the empty graph and m D 1: we obtain a graph
G00 and get a triplet .G00; A;B [ fbg/ for .X [ fag;Y /, where b is any point in
@Q. To prove (18), we now consider an optimal triplet .G;A;B/ for .X [ fag;Y /

and move the point a to the a0 in @Q in order to obtain a triplet .G;A [ fa0g; B/
for .X ;Y /.

With (27) at hand, the statements follow from the proofs of Proposition 3 and
Corollary 2. ut

The next lemma gives a lower bound on L in terms of its boundary functional
and states an important superadditive property of L@S .

Lemma 16. Assume (A1-A5). Let � be a finite measure on R
d and consider a

partition Q D [P2PP of a bounded subset of Rd . Then, if c D 4.1 C 0/,
we have

c

q
�.Rd / diam.Q/p C EL.�/ 
 EL@Q.1Q � �/ 


X
P2P

EL@P .1P � �/:

Proof. We start with the first inequality. Let X D fX1; : : : ; Xmg; Y D
fY1; : : : ; Yng be multisets included in Q and X 0 D fXmC1; : : : ; XmCm0g,
Y 0 D fYnC1; : : : ; YnCn0g be multisets included in Qc. First, let us show that

c1jmCm0 � n � n0jdiam.Q/p C L.X [ X 0;Y [ Y 0/ 
 L@Q.X ;Y /; (28)

with c1 D .1 C 0/. To do so, let us consider an optimal graph G for L.X [
X 0;Y [Y 0/. It uses all the points but jmCm0�n�n0j points in excess. We consider
the subsets X0 � X and Y0 � Y of points that are used in G and belong toQ. By
definition there exist subsets A;B � Qc such that card.X0 [ A/ D card.Y0 [ B/

and L.X [ X 0;Y [ Y 0/ D L.X0 [ A;Y0 [ B/. By definition of the boundary
functional and using (26),

L@Q.X0;Y0/ � L0@Q.X0 [A;Y0 [B/ � L.X0 [ A;Y0 [ B/ D L.X [ X 0;Y [ Y 0/:

Finally, since there are at most jnCn0 �m�m0j points in X [ Y which are not in
X0 [ Y0 (i.e. points of Q not used for the optimal G), the modified (Rp) property
given by (27) yields (28). We apply the latter inequality to X , Y independent
Poisson processes of intensity 1IQ � �, and X 0, Y 0, two independent Poisson
processes of intensity 1IQc � �, independent of .X ;Y /. Then X [ X 0, Y [ Y 0
are independent Poisson processes of intensity �. Taking expectation, we obtain the
first inequality, with c D 4c1.
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We now prove the second inequality. As above, let X D fX1; : : : ; Xmg;Y D
fY1; : : : ; Yng be multisets included in Q. Let G 2 Gk be an optimal graph for
L@Q.X ;Y / and A D fXmC1; � � � ; Xkg, B D fYnC1; � � � ; Ykg be optimal sets in
Qc. Given this graphG and a set S , we denote by E0

S the set of edges fi; kC j g of
G such that Xi 2 S and Yj 2 S , by E1

S the set of edges fi; k C j g of G such that
Xi 2 S and Yj 2 Sc , and by E2

S the set of edges fi; k C j g of G such that Xi 2 Sc
and Yj 2 S . Then by definition of the boundary functional

L@Q.X ;Y / D L0@Q.X [A;Y [B/
D X

fi;kCjg 2E0Q

jXi � Yj jp C X
fi;kCjg2E1Q

q d.Xi ;Q
c/p C X

fi;kCjg 2E2Q

q d.Yj ;Q
c/p:

Next, we bound these sums from below by considering the cells of the partition P .
If x 2 Q, we denote by P.x/ the unique P 2 P that contains x.

If an edge e D fi; k C j g 2 G is such that Xi ; Yj belong to the same cell P , we
observe that e 2 E0

P and we leave the quantity jXi � Yj jp unchanged.
If on the contrary,Xi and Yj belong to different cells, from Hölder inequality,

jXi � Yj jp 
 q d.Xi ; P.Xi /
c/p C q d.Yj ; P.Yj /

c/p:

Eventually, for any boundary edge in E1
Q, we lower bound the contribution

d.Xi ;Q
c/p by d.Xi ; P.Xi /c/p and we do the same for E2

Q. Combining these
inequalities and grouping the terms according to the cell P 2 P to which the
points belong,

L@Q.X ;Y /

	 X
P2P

0
@ X

fi;kCjg2E0P

jXi � Yj jp C X
fi;kC jg2E1P

q d.Xi ; @P /
p C X

fi;kC jg2E2P

q d.Yj ; @P /
p

1
A :

For a given cell P , set A0 D .X [ A/\ P c and B 0 D .Y [ B/ \ P c . We get

X
fi;kCj g2E0P

jXi � Yj jp C
X

fi;kCj g2E1P
q d.Xi ; @P /

p C
X

fi;kCj g2E2P
q d.Yj ; @P /

p

D L0Pc ..X \ P/ [ A0; .Y \ P/ [ B 0/ 
 L@P .X \ P;Y \ P/:

So applying these inequalities to X and Y two independent Poisson point
processes with intensity �1IQ and taking expectation, we obtain the claim. ut
Let Q D Œ0; 1�d and denote

NL@Q.n/ D EL@Q.n1Q/:
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Lemma 17. Assume (A1-A5). Let Q � R
d be a cube of side-length 1.

If 0<2p <d , then

lim
n!1

NL@Q.n/
n1�

p
d

D ˇ0
L;

where ˇ0
L > 0 is a constant depending on L, p, and d .

Proof. The proof is the same than the proof of Lemma 11, with Lemma 16 replacing
Lemma 9. ut

6.3.2 General Absolutely Continuous Measures with Unbounded Support

Theorem 10. Assume (A1-A5) and that 0 < 2p < d . Let f W Rd ! R
C be an

integrable function. Then

lim inf
n

EL.nf /

n1�
p
d


 ˇ0
L

Z
Rd

f 1� p
d :

Proof. The proof is now formally the same than the proof of Theorem 8, invoking
Lemmas 15, 16, and 17 in place of Lemmas 10, 9, and 11 respectively. ut
Remark 6. Finding good lower bounds for a general bipartite functional L on R

d

satisfying the properties .Hp/, .Rp/, .Sp/ could be significantly more difficult.
It is far from obvious to define a proper boundary functional L@Q at this level of
generality. However if there exists a bipartite functionalL@Q on R

d indexed on sets
Q � R

d such that for any t > 0, EL@.tQ/.n1ItQ/ D tpEL@Q.nt
d1IQ/ and such that

the statements of Lemmas 16, 15, and 17 hold, then the statement of Theorem 8
also holds for the functional L. Thus, the caveat of this kind of techniques lies in
the good definition of a boundary functionalL@Q.

6.3.3 Dealing with the Singular Component: Example of the Traveling
Salesperson Tour

Let p 2 .0; 1�. We shall say that a bipartite functional L on R
d satisfies the inverse

subadditivity property .Ip/ if there is a constant C such that for all finite multisets
X1;Y1;X2;Y2 included in a bounded set Q � R

d ,

L.X1;Y1/ � L.X1 [ X2;Y1 [ Y2/C L.X2;Y2/

CCdiam.Q/p
�
1C jX1.Q/� Y1.Q/j C jX2.Q/� Y2.Q/j

�
:
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Although it makes sense for all p, we have been able to check this property on
examples only for p 2 .0; 1�. Also we could have added a constant in front of
L.X2;Y2/.

It is plain that the argument of Sect. 6.2.3 readily adapts to a functional satisfying
.Ip/, for which one already knows a general upper limit result and a limit result
for absolutely continuous laws. It therefore provides a limit result for general laws.
In the remainder of this section, we show that the traveling salesperson bipartite tour
functionalL D Tp , p 2 .0; 1� enjoys the inverse subadditivity property. This allows
to prove the following result:

Theorem 11. Assume that either d 2 f1; 2g and 0 < 2p < d , or d 
 3 and
p 2 .0; 1�. Let L D Tp be the traveling salesperson bipartite tour functional. Let �
be a finite measure such that for some ˛ > 2dp

d�2p ,
R jxj˛d� < C1: Then, if f is a

density function for the absolutely continuous part of �,

lim inf
n

EL.n�/

n1�
p
d


 ˇ0
L

Z
Rd

f 1� p
d :

Moreover if f is proportional to the indicator function of a bounded set with positive
Lebesgue measure

lim
n

EL.n�/

n1�
p
d

D ˇL

Z
Rd

f 1� p
d :

All we have to do is to check property .Ip/. More precisely:

Lemma 18. Assume p 2 .0; 1� and L D Tp. For any set X1;X2;Y1;Y2 in a
bounded set Q

L.X1;Y1/ � L.X1 [ X2;Y1 [ Y2/C L.X2;Y2/

C 2 diam.Q/p .1C jcard.X1/ � card.Y1/j C jcard.X2/� card.Y2/j/ :

Proof. We may assume without loss of generality that card.X1/ ^ card.Y1/ 
 2,
otherwise, L.X1;Y1/ D 0 and there is nothing to prove. Consider an optimal cycle
G1;2 for L.X1 [ X2;Y1 [ Y2/. In G1;2, m D jcard.X1/C card.Y1/� card.X2/�
card.Y2/j � jcard.X1/ � card.Y1/j C jcard.X2/ � card.Y2/j points have been left
aside. We shall build a bipartite tour G1 on .X 0

1 ;Y
0
1 /, the points of .X1;Y1/ that

have not been left aside by G1;2.
We consider an optimal cycleG2 for L.X 0

2 ;Y
0
2 /, where .X 0

2 ;Y
0
2 / are the points

of .X2;Y2/ that have not been left aside byG1;2. We define .X 00
2 ;Y

00
2 / � .X 0

2 ;Y
0
2 /

as the sets of points that are in G2. Since card.X 0
1 / C card.X 0

2 / D card.Y 0
1 / C

card.Y 0
2 /, we get card.X 0

1 /�card.Y 0
1 / D �card.X 0

2 /Ccard.Y 0
2 /. It implies that the

same number of points from the opposite type need to be removed in .X 0
1 ;Y

0
1 / and

.X 0
2 ;Y

0
2 / in order to build a bipartite tour. We fix an orientation on G1;2. Assume

for example that card.X 0
2 / 
 card.Y 0

2 /, if a point x 2 X 0
2 nX 00

2 , we then remove
the next point y on the oriented cycle G1;2 of Y 0

1 . Doing so, this defines a couple of
sets .X 00

1 ;Y
00
1 / � .X 0

1 ;Y
0
1 / of cardinality card.X 0

1 / ^ card.Y 0
1 / and
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Fig. 2 In blue, the oriented
cycle G1;2, in red G2, in black
G0
1;2. The points in X1 [ X2

are represented by a cross,
points in Y1 [ Y2 by a circle

L.X 0
1 ;Y

0
1 / � L.X 00

1 ;Y
00
1 /:

We defineG0
1;2 as the cycle on .X 00

1 [X 00
2 ;Y

00
1 [Y 00

2 / obtained fromG1;2 by saying
that the point after x 2 .X 00

1 [X 00
2 ;Y

00
1 [Y 00

2 / in the oriented cycleG0
1;2 is the next

point y 2 .X 00
1 [ X 00

2 ;Y
00
1 [ Y 00

2 / inG1;2. By construction,G0
1;2 is a bipartite cycle.

Also, since p 2 .0; 1�, we may use the triangle inequality: the distance between
two successive points in the circuit G0

1;2 is bounded by the sum of the length of the
intermediary edges in G1;2. We get

L.X 00
1 [ X 00

2 ;Y
00
1 [ Y 00

2 / � L.X1 [ X2;Y1 [ Y2/:

Now consider the (multi) graph G D G0
1;2 [ G2 obtained by adding all edges

of G0
1;2 and G2. This graph is bipartite, connected, and points in .X 00

1 ;Y
00
1 / have

degree 2 while those in .X 00
2 ;Y

00
2 / have degree 4. Let k be the number of edges in

G, we recall that an eulerian circuit inG is a sequenceE D .e1; � � � ; ek/ of adjacent
edges inG such that ek is also adjacent to e1 and all edges ofG appears exactly once
in the sequence E . By the Euler’s circuit theorem, there exists an eulerian circuit
in G. Moreover, this eulerian circuit can be chosen so that if ei D fui�1; uig 2 G2
then eiC1 D fuiC1; ui g 2 G0

1;2 with the convention that ekC1 D e1.
This sequenceE defines an oriented circuit of points. Now we define an oriented

circuit on .X 00
1 ;Y

00
1 /, by connecting a point x of .X 00

1 ;Y
00
1 / to the next point y

in .X 00
1 ;Y

00
1 / visited by the oriented circuit E . Due to the property that ei 2 G2

implies eiC1 2 G, if x 2 X 00
1 then y 2 Y 00

1 and conversely, if x 2 Y 00
1 then

y 2 X 00
1 . Hence, this oriented circuit defines a bipartite cycle G1 in .X 00

1 ;Y
00
1 /.

By the triangle inequality, the distance between two successive points in the
circuit G1 is bounded by the sum of the length of the intermediary edges in E .
Since each edge of G appears exactly once in E , it follows that

L.X 0
1 ;Y

0
1 / � L.X1 [ X2;Y1 [ Y2/CL.X 0

2 ;Y
0
2 /:

To conclude, we merge arbitrarily to the cycleG1 the remaining points of .X1;Y1/,
there are at most m of them (regularity .Rp/ property). ut
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7 Variants and Final Comments

As a conclusion, we briefly discuss variants and possible extensions of Theorem 2.
For d > 2p and when � is the uniform distribution on the cube Œ0; 1�d , there exists
a constant ˇp.d/ > 0 such that almost surely

lim
n!1n

p
d �1Mp

�fX1; : : : ; Xng; fY1; : : : ; Yng� D ˇp.d/:

A natural question is to understand what happens below the critical line d D 2p,
i.e. when d � 2p. For example for d D 2 and p D 1, a similar convergence is also
expected in dimension 2 with scaling

p
n lnn, but this is a difficult open problem.

The main result in this direction goes back to Ajtai, Komlós, and Tusnády [1].
See also the improved upper bound of Talagrand and Yukich in [17]. In dimension 1,
there is no such stabilization to a constant.

Recall that

�
1

n
Mp

�fXigniD1; fYigniD1�
� 1

p

D Wp

 
1

n

nX
iD1

ıXi ;
1

n

nX
iD1

ıYi

!
:

where Wp is the Lp-Wasserstein distance. A variant of Theorem 3 can be obtained
along the same lines, concerning the convergence of

n
1
d Wp

 
1

n

nX
iD1

ıXi ; �

!
;

where � is the common distribution of the Xi ’s. Such results are of fundamental
importance in statistics. Also note that combining the triangle inequality and Jensen
inequality, it is not hard to see that

EW1


1
n

nX
iD1

ıXi ; �
�

� EW1


1
n

nX
iD1

ıXi ;
1

n

nX
iD1

ıYi

�
� 2EW1


 1
n

nX
iD1

ıXi ; �
�
;

(similar inequalities hold for p 
 1). Hence it is clear that the behavior of this
functional is quite close to the one of the two-sample optimal matching. However,
the extension of Theorem 2 would require some care in the definition of the
boundary functional.

Finally, it is worthy to note that the case of uniform distribution for L D Mp

has a connection with stationary matchings of two independent Poisson point
processes of intensity 1, see Holroyd, Pemantle, Peres, and Schramm [6]. Indeed,
consider mutually independent random variables .Xi /i	1 and .Yj /j	1 having
uniform distribution on Q D Œ�1=2; 1=2�d . It is well known that for any x in the
interior of Q, the pair of point processes
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1

n

nX
iD1

ı
n
1
d .Xi�x/;

1

n

nX
iD1

ı
n
1
d .Yi�x/

!

converges weakly for the topology of vague convergence to .%1;%2/, where%1 and
%2 are two independent Poisson point processes of intensity 1. Also, we may write

n
p
d �1

EMp.fXigniD1; fYigniD1/ D 1

n
E

nX
iD1

ˇ̌
ˇn 1

d .Xi � x/ � n 1
d .Y�n.i/ � x/

ˇ̌
ˇp :

where �n is an optimal matching. Now, the fact that for 0<p<2d , limn n
p
d �1

EMp.fXigniD1; fYigniD1/ D ˇp.d/ implies the tightness of the sequence of match-
ings �n and it can be used to define a stationary matching � on .%1;%2/, see the
proof of Theorem 1 (iii) in [6] for the details of such an argument. In particular, this
matching � will enjoy a local notion of minimality for the Lp-norm, as defined by
Holroyd in [5] (for theL1-norm). See also related work of Huesmann and Sturm [7].
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the properly rescaled contour function of a critical aperiodic Galton–Watson tree,
whose offspring distribution is in the domain of attraction of a stable law of index
	 2 .1; 2�, conditioned on having total progeny n, converges in the functional sense
to the normalized excursion of the continuous-time height function of a strictly
stable spectrally positive Lévy process of index 	 . To this end, we generalize an
idea of Le Gall which consists in using an absolute continuity relation between
the conditional probability of having total progeny exactly n and the conditional
probability of having total progeny at least n. This new method is robust and can be
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Introduction

In this article, we are interested in the asymptotic behavior of critical Galton–Watson
trees whose offspring distribution may have infinite variance. Aldous [1] studied
the shape of large critical Galton–Watson trees whose offspring distribution has
finite variance and proved that their properly rescaled contour functions converge
in distribution in the functional sense to the Brownian excursion. This seminal
result has motivated the study of the convergence of other rescaled paths obtained
from Galton–Watson trees, such as the Lukasiewicz path (also known as the Harris
walk) and the height function. In [20], under an additional exponential moment
condition, Marckert and Mokkadem showed that the rescaled Lukasiewicz path,
height function and contour function all converge in distribution to the same
Brownian excursion. In parallel, unconditional versions of Aldous’ result have
been obtained in full generality. More precisely, when the offspring distribution
is in the domain of attraction of a stable law of index 	 2 .1; 2�, Duquesne and
Le Gall [8] showed that the concatenation of rescaled Lukasiewicz paths of a
sequence of independent Galton–Watson trees converges in distribution to a strictly
stable spectrally positive Lévy process X of index 	 , and the concatenation of the
associated rescaled height functions (or of the rescaled contour functions) converges
in distribution to the so-called continuous-time height function associated with X .
In the same monograph, Duquesne and Le Gall explained how to deduce a limit
theorem for Galton–Watson trees conditioned on having at least n vertices from the
unconditional limit theorem. Finally, still in the stable case, Duquesne [7] showed
that the rescaled Lukasiewicz path of a Galton–Watson tree conditioned on having
n vertices converges in distribution to the normalized excursion of the Lévy process
X (thus extending Marckert and Mokkadem’s result) and that the rescaled height
and contour functions of a Galton–Watson tree conditioned on having n vertices
converge in distribution to the normalized excursion of the continuous-time height
functionH exc associated with X (thus extending Aldous’ result).

In this work, we give an alternative proof of Duquesne’s result, which is based
on an idea that appeared in the recent papers [16, 18]. Let us explain our approach
after introducing some notation. For every x 2 R, let bxc denote the greatest
integer smaller than or equal to x. If I is an interval, let C.I;R/ be the space
of all continuous functions I ! R equipped with the topology of uniform
convergence on compact subsets of I . We also let D.I;R/ be the space of all
right-continuous with left limits (càdlàg) functions I ! R, endowed with the
SkorokhodJ1-topology (see [4, Chap. 3], [12, Chap. VI] for background concerning
the Skorokhod topology). Denote by P� the law of the Galton–Watson tree with
offspring distribution �. The total progeny of a tree � will be denoted by �.�/. Fix
	 2 .1; 2� and let .Xt/t	0 be the spectrally positive Lévy process with Laplace
exponent EŒexp.��Xt/� D exp.t�	 /.

(0) We fix a critical offspring distribution � in the domain of attraction of a
stable law of index 	 2 .1; 2�. If U1; U2; : : : are i.i.d. random variables with
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distribution �, and Wn D U1 C � � � C Un � n, there exist positive constants
.Bn/n	0 such that Wn=Bn converges in distribution to X1.

(i) Fix a 2 .0; 1/. To simplify notation, set Wa;.n/ D .W
a;.n/
j ; 0 � j �

bnac/ where W
a;.n/
j D Wj .�/=Bn and W.�/ is the Lukasiewicz path of �

(see Sect. 1.2 below for its definition). Then for every function fn W ZbancC1 !
RC, the following absolute continuity relation holds:

E�

�
fn.W

a;.n//j �.�/ D n
	 D E�

�
fn.W

a;.n//D.a/
n

�
Wbanc.�/

� j �.�/ 
 n
	
(1)

with a certain functionD.a/
n W f�1; 0; 1; 2; : : :g ! RC.

(ii) We establish the existence of a measurable function �a W RC ! RC such

that the quantity
ˇ̌
ˇD.a/

n .j / � �a.j=Bn/
ˇ̌
ˇ goes to 0 as n ! 1, uniformly in

values of j such that j=Bn stays in a compact subset of R�C. Furthermore, ifH
denotes the continuous-time height process associated withX and N stands for
the Itô excursion measure of X above its infimum, we have for every bounded
measurable function F W D.Œ0; a�;R/ ! RC:

N .F..Ht /0�t�a/�a.Xa/j � > 1/ D N .F..Ht /0�t�a/j � D 1/ ; (2)

where � is the duration of the excursion under N.
(iii) We show that under P�Œ � j�.�/ D n�, the rescaled height function converges

in distribution on Œ0; a� for every a 2 .0; 1/. To this end, we fix a bounded
continuous function F W D.Œ0; a�;R/ ! RC and apply formula (1) with
fn.W

a;.n// D F
�
Bn
n
Hbntc.�/I 0 � t � a

�
where H.�/ is the height function

of the tree � . Using the previously mentioned result of Duquesne and Le Gall
concerning Galton–Watson trees conditioned on having at least n vertices, we
show that we can restrict ourselves to the case where Wbanc.�/=Bn stays in a
compact subset of R�C, so that we can apply (ii) and obtain that:

lim
n!1E�

�
F

�
Bn

n
Hbntc.�/I 0 � t � a

�ˇ̌
ˇ̌ �.�/ D n



D lim
n!1E�

�
F

�
Bn

n
Hbntc.�/I 0 � t � a

�
D.a/
n

�
Wbanc.�/

� j �.�/ 
 n



D N .F.Ht I 0 � t � a/�a.Xa/ j � > 1/
D N .F.Ht I 0 � t � a/ j � D 1/ :

(iv) By using a relationship between the contour function and the height function
which was noticed by Duquesne and Le Gall in [8], we get that, under
P�Œ � j�.�/ D n�, the scaled contour function converges in distribution on Œ0; a�.
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(v) By using the time reversal invariance property of the contour function, we
deduce that under P�Œ � j�.�/ D n�, the scaled contour function converges in
distribution on the whole segment Œ0; 1�.

(vi) Using once again the relationship between the contour function and the height
function, we deduce that, under P�Œ � j�.�/ D n�, the scaled height function
converges in distribution on Œ0; 1�.

In the case where the variance of � is finite, Le Gall gave an alternative proof of
Aldous’ theorem in [16, Theorem 6.1] using a similar approach based on a strong
local limit theorem. There are additional difficulties in the infinite variance case,
since no such theorem is known in this case.

Let us finally discuss the advantage of this new method. Firstly, the proof is
simpler and less technical. Secondly, we believe that this approach is robust and
can be adapted to other situations. For instance, using the same ideas, we have
established invariance theorems for Galton–Watson trees having n vertices whose
degrees are prescribed to belong to a fixed subset of the nonnegative integers [14].

The rest of this text is organized as follows. In Sect. 1, we present the discrete
framework by defining Galton–Watson trees and their codings. We explain how the
local limit theorem gives information on the asymptotic behavior of large Galton–
Watson trees and present the discrete absolute continuity relation appearing in (1).
In Sect. 2, we discuss the continuous framework: we introduce the strictly stable
spectrally positive Lévy process, its Itô excursion measure N and the associated
continuous-time height process. We also prove the absolute continuity relation (3).
Finally, in Sect. 3 we give the new proof of Duquesne’s theorem by carrying out
steps (i–vi).

Notation and Main Assumptions. Throughout this work 	 2 .1; 2� is a fixed
parameter. We consider a probability distribution .�.j //j	0 on the nonnegative
integers satisfying the following three conditions:

(i) � is critical, meaning that
P1

kD0 k�.k/ D 1.
(ii) � is in the domain of attraction of a stable law of index 	 2 .1; 2�. This means

that either the variance of � is positive and finite, or �.Œj;1// D j�	L.j /,
where L W RC ! RC is a function such that L.x/ > 0 for x large enough
and limx!1L.tx/=L.x/ D 1 for all t > 0 (such a function is called slowly
varying). We refer to [5] or [9, Chap. 3.7] for details.

(iii) � is aperiodic, which means that the additive subgroup of the integers Z

spanned by fj I �.j / ¤ 0g is not a proper subgroup of Z.

We introduce condition (iii) to avoid unnecessary complications, but our results can
be extended to the periodic case.

In what follows, .Xt /t	0 will stand for the spectrally positive Lévy process with
Laplace exponent EŒexp.��Xt/� D exp.t�	 / where t; � 
 0 and p1 will denote
the density of X1. Finally, � will stand for the probability measure on Z defined by
�.k/ D �.k C 1/ for k 
 �1. Note that � has zero mean.
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1 The Discrete Setting: Galton–Watson Trees

1.1 Galton–Watson Trees

Definition 1. Let N D f0; 1; : : :g be the set of all nonnegative integers and N
� D

f1; : : :g. Let also U be the set of all labels:

U D
1[
nD0
.N�/n;

where by convention .N�/0 D f;g. An element of U is a sequence u D u1 � � � uj
of positive integers, and we set juj D j , which represents the “generation” of u.
If u D u1 � � � uj and v D v1 � � �vk belong to U , we write uv D u1 � � � uj v1 � � �vk for
the concatenation of u and v. In particular, note that u; D ;u D u. Finally, a rooted
ordered tree � is a finite subset of U such that:

1. ; 2 � .
2. if v 2 � and v D uj for some j 2 N

�, then u 2 � .
3. for every u 2 � , there exists an integer ku.�/ 
 0 such that, for every j 2 N

�,
uj 2 � if and only if 1 � j � ku.�/.

In the following, by tree we will mean rooted ordered tree. The set of all trees is
denoted by T. We will often view each vertex of a tree � as an individual of a
population whose � is the genealogical tree. The total progeny of � will be denoted
by �.�/ D Card.�/. Finally, if � is a tree and u 2 � , we set Tu� D fv 2 U I uv 2 �g,
which is itself a tree.

Definition 2. Let � be a probability measure on N with mean less than or equal
to 1 and such that �.1/ < 1. The law of the Galton–Watson tree with offspring
distribution � is the unique probability measure P� on T such that:

1. P�Œk; D j � D �.j / for j 
 0.
2. for every j 
 1 with �.j / > 0, conditionally on fk; D j g, the shifted trees
T1�; : : : ; Tj � are i.i.d. with distribution P�.

A random tree whose distribution is P� will be called a GW� tree.

1.2 Coding Galton–Watson Trees

We now explain how trees can be coded by three different functions. These codings
are crucial in the understanding of large Galton–Watson trees.

Definition 3. We write u < v for the lexicographical order on the labels U (for
example, ; < 1 < 21 < 22). Consider a tree � and order the individuals of � in
lexicographical order: ; D u.0/ < u.1/ < � � � < u.�.�/ � 1/. The height process
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Fig. 1 A tree � with its vertices indexed in lexicographical order and its contour function
.Cu.�/I 0 � u � 2.�.�/� 1/. Here, �.�/ D 26

H.�/ D .Hn.�/; 0 � n < �.�// is defined, for 0 � n < �.�/, by Hn.�/ D ju.n/j.
For technical reasons, we set Hk.�/ D 0 for k 
 �.�/. We extend H.�/ to RC
by linear interpolation by setting Ht.�/ D .1 � ftg/Hbtc.�/ C ftgHbtcC1.�/ for
0 � t � �.�/, where ftg D t � btc.

Consider a particle that starts from the root and visits continuously all edges at
unit speed (assuming that every edge has unit length), going backwards as little as
possible and respecting the lexicographical order of vertices. For 0 � t � 2.�.�/�
1/, Ct.�/ is defined as the distance to the root of the position of the particle at time t .
For technical reasons, we set Ct.�/ D 0 for t 2 Œ2.�.�/ � 1/; 2�.�/�. The function
C.�/ is called the contour function of the tree � . See Fig. 1 for an example, and [7,
Sect. 2] for a rigorous definition.

Finally, the Lukasiewicz path W.�/ D .Wn.�/; n 
 0/ of a tree � is defined
by W0.�/ D 0, WnC1.�/ D Wn.�/ C ku.n/.�/ � 1 for 0 � n � �.�/ � 1, and
Wk.�/ D 0 for k > �.�/. For u 
 0, we set Wu.�/ D Wbuc.�/.

Note that necessarily W�.�/.�/ D �1. See Fig. 2 for an example.
Let .WnIn 
 0/ be a random walk which starts at 0 with jump distribution

�.k/ D �.k C 1/ for k 
 �1. For j 
 1, define �j D inffn 
 0I Wn D �j g.

Proposition 1. .W0;W1; : : : ;W�1/ has the same distribution as the Lukasiewicz
path of a GW� tree. In particular, the total progeny of a GW� tree has the same
law as �1.

Proof. See [17, Proposition 1.5]. ut
We will also use the following well-known fact (see e.g. Lemma 6.1 in [21] and

the discussion that follows).

Proposition 2. For every integers 1 � j � n, we have PŒ�j Dn�D j

n
PŒWn D �j �.
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Fig. 2 The Lukasiewicz path .Wbuc.�/I 0 � u < �.�/C 1/ and the height function .Hu.�/; 0 �
u � �.�// of the tree � of Fig. 1

1.3 Slowly Varying Functions

Slowly varying functions appear in the study of domains of attractions of stable
laws. Here we recall some properties of these functions in view of future use.

Recall that a positive measurable function L W RC ! RC is said to be slowly
varying if L.x/ > 0 for x large enough and, for all t > 0, L.tx/=L.x/ ! 1 as
x ! 1. A useful result concerning these functions is the so-called Representation
Theorem, which states that a function L W RC ! RC is slowly varying if and only
if it can be written in the form:

L.x/ D c.x/ exp

�Z x

1

$.u/

u
du

�
; x 
 0;

where c is a nonnegative measurable function having a finite positive limit at infinity
and $ is a measurable function tending to 0 at infinity. See e.g. [5, Theorem 1.3.1]
for a proof. The following result is then an easy consequence.

Proposition 3. Fix $ > 0 and let L W RC ! R be a slowly varying function. There
exist two constants C > 1 and N > 0 such that 1

C
x�$ � L.nx/=L.n/ � Cx$ for

every integer n 
 N and x 
 1.

1.4 The Local Limit Theorem

Definition 4. A subsetA � Z is said to be lattice if there exist b 2 Z and an integer
d 
 2 such that A � bC dZ. The largest d for which this statement holds is called
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the span of A. A measure on Z is said to be lattice if its support is lattice, and a
random variable is said to be lattice if its law is lattice.

Remark 1. Since � is supposed to be critical and aperiodic, using the fact that
�.0/ > 0, it is an exercise to check that the probability measure � is non-lattice.

Recall that p1 is the density of X1. It is well known that p1.0/ > 0, that p1 is
positive, bounded, and continuous, and that the absolute value of the derivative of
p1 is bounded over R (see e.g. [23, I. 4.]). The following theorem will allow us to
find estimates for the probabilities appearing in Proposition 2.

Theorem 1 (Local Limit Theorem). Let .Yn/n	0 be a random walk on Z started
from 0 such that its jump distribution is in the domain of attraction of a stable law
of index 	 2 .1; 2�. Assume that Y1 is non-lattice, that EŒY1� D 0 and that Y1 takes
values in N [ f�1g.

(i) There exists an increasing sequence of positive real numbers .an/n	1 such that
Yn=an converges in distribution to X1.

(ii) We have lim
n!1 sup

k2Z

ˇ̌
ˇ̌anPŒYn D k� � p1

�
k

an

�ˇ̌
ˇ̌ D 0:

(iii) There exists a slowly varying function l W RC ! RC such that an D n1=	 l.n/.

Proof. For (i), see [10, Sect. XVII.5, Theorem 3] and [5, Sect. 8.4]. The fact that
.an/ may be chosen to be increasing follows from [9, Formula 3.7.2]. For (ii), see
[11, Theorem 4.2.1]. For (iii), it is shown in [11, p. 46] that akn=an converges to
k1=	 for every integer k 
 1. Since .an/ is increasing, a theorem of de Haan (see [5,
Theorem 1.10.7]) implies that there exists a slowly varying function l W RC ! RC
such that an D l.n/n1=	 for every positive integer n. ut

Let .Wn/n	0 be as in Proposition 1 a random walk started from 0 with jump
distribution �. Since � is in the domain of attraction of a stable law of index 	 , it
follows that � is in the same domain of attraction, andW1 is not lattice by Remark 1.
Since � has zero mean, by the preceding theorem there exists an increasing sequence
of positive integers .Bn/n	1 such thatBn ! 1 andWn=Bn converges in distribution
towards X1 as n ! 1. In what follows, the sequence .Bn/n	1 will be fixed, and
h W RC ! RC will stand for a slowly varying function such that Bn D h.n/n1=	 .

Lemma 1. We have:

.i/ P� Œ�.�/ D n� �
n!1

p1.0/

n1=	C1h.n/
; .ii/ P� Œ�.�/ 
 n� �

n!1
	p1.0/

n1=	h.n/
;

where we write an � bn if an=bn ! 1.

Proof. We keep the notation of Proposition 1. Proposition 2 gives that:

P�Œ�.�/ D n� D 1

n
PŒWn D �1�: (3)



A Simple Proof of Duquesne’s Theorem on Contour Processes of Conditioned . . . 545

For (i), it suffices to notice that the local limit theorem (Theorem 1) and the
continuity of p1 entail PŒWn D �1� � p1.0/=.h.n/n

1=	 /. For (ii), we use (i) to
write:

P� Œ�.�/ 
 n� D
1X
kDn

�
1

h.k/k1C1=	
p1 .0/C 1

h.k/k1C1=	
ı.k/

�
;

where ı.k/ tends to 0 as k ! 1. We can rewrite this in the form:

h.n/n1=	P� Œ�.�/ 
 n� D
Z 1

1

dufn.u/; (4)

where:

fn.u/ D h.n/n1=	C1

h.bnuc/bnuc1C1=	 .p1 .0/C ı.bnuc// :

For fixed u 
 1, fn.u/ tends to p1.0/

u1=	C1 as n ! 1. Choose $ 2 .0; 1=	/. By
Proposition 3, for every sufficiently large positive integer n we have fn.u/ �
C=u1C1=	�$ for every u 
 1, where C is a positive constant. The dominated
convergence theorem allows us to infer that:

lim
n!1

Z 1

1

dufn.u/ D
Z 1

1

du
p1.0/

u1=	C1 D 	p1.0/;

and the desired result follows from (4). ut

1.5 Discrete Absolute Continuity

The next lemma in another important ingredient of our approach.

Lemma 2 (Le Gall and Miermont). Fix a 2 .0; 1/. Then, with the notation of
Proposition 2, for every n 
 1 and for every bounded nonnegative function fn on
Z

bancC1:

E
�
fn.W0; : : : ;Wbnac/j �1 D n

	

D E

"
fn.W0; : : : ;Wbnac/

�n�Œan�.Wbanc C 1/=�n.1/

��
n�banc.Wbanc C 1/=��

n .1/

ˇ̌
ˇ̌
ˇ �1 
 n

#
; (5)

where �p.j / D P
�
�j D p

	
and ��

p.j / D P
�
�j 
 p

	
for every integers j 
 1 and

p 
 1.
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Proof. This result follows from an application of the Markov property to the random
walk W at time banc. See [18, Lemma 10] for details in a slightly different setting.

ut

2 The Continuous Setting: Stable Lévy Processes

2.1 The Normalized Excursion of the Lévy Process
and the Continuous-time Height Process

We follow the presentation of [7]. The underlying probability space will be denoted
by .˝;F;P/. Recall that X is a strictly stable spectrally positive Lévy process with
index 	 2 .1; 2� such that for � > 0:

EŒexp.��Xt/� D exp.t�	 /: (6)

We denote the canonical filtration generated by X and augmented with the P-
negligible sets by .Ft /t	0. See [2] for the proofs of the general assertions of this
subsection concerning Lévy processes. In particular, for 	 D 2 the processX is

p
2

times the standard Brownian motion on the line. Recall that X has the following
scaling property: for c > 0, the process .c�1=	Xct ; t 
 0) has the same law as X . In
particular, the density pt of the law of Xt enjoys the following scaling property:

pt .x/ D t�1=	p1.xt�1=	 / (7)

for x 2 R, t > 0. The following notation will be useful: for s < t , we set I st D
infŒs;t � X and It D infŒ0;t �X . Notice that the process I is continuous since X has no
negative jumps.

The process X � I is a strong Markov process and 0 is regular for itself with
respect to X � I . We may and will choose �I as the local time of X � I at level 0.
Let .gi ; di /; i 2 I be the excursion intervals of X � I above 0. For every i 2 I and
s 
 0, set !is D X.giCs/^di �Xgi . We view !i as an element of the excursion space
E, which is defined by:

E D f! 2 D.RC;R/I !.0/ D 0 and �.!/ WD supfs > 0I!.s/ > 0 g 2 .0;1/g:

From Itô’s excursion theory, the point measure

N.dtd!/ D
X
i2I

ı.�Igi ;!i /

is a Poisson measure on RC �E with intensity dtN.d!/, where N.d!/ is a �-finite
measure on E. By classical results, N.� > t/ D � .1 � 1=	/�1t�1=	 . Without risk
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of confusion, we will also use the notationX for the canonical process on the space
D.RC;R/.

We now define the normalized excursion of X . Let us first recall the Itô
description of the excursion measure (see [6] or [2, Chap. VIII.4] for details). Define
for � > 0 the rescaling operatorS.�/ on E by S.�/.!/ D �

�1=	!.s=�/; s 
 0
�
: Then

there exists a unique collection of probability measures .N.a/; a > 0/ on E such that
the following properties hold.

(i) For every a > 0, N.a/.� D a/ D 1.
(ii) For every � > 0 and a > 0, we have S.�/.N.a// D N.�a/.

(iii) For every measurable subsetA of E: N.A/D
Z 1

0

N.a/.A/
da

	� .1� 1=	/a1=	 C 1
.

The probability distribution N.1/ on càdlàg paths with unit lifetime is called the law
of the normalized excursion ofX and will sometimes be denoted by N. � j� D 1/. In
particular, for 	 D 2, N.1/ is the law of

p
2 times the normalized excursion of linear

Brownian motion. Informally, N. � j� D 1/ is the law of an excursion conditioned to
have unit lifetime.

We will also use the socalled continuous-time height process H associated
with X which was introduced in [19]. If 	 D 2, H is set to be equal to X � I .
If 	 2 .1; 2/, the processH is defined for every t 
 0 by:

Ht WD lim
$!0

1

$

Z t

0

�fXs<I st C$gds;

where the limit exists in P-probability and in N-measure on ft < �g. The definition
of H thus makes sense under P or under N. The process H has a continuous
modification both under P and under N (see [8, Chap. 1] for details), and from
now on we consider only this modification. Using simple scale arguments one can
also defineH as a continuous random process under N. � j� D 1/. For our purposes,
we will need the fact that, for every a 
 0, .Ht /0�t�a is a measurable function of
.Xt/0�t�a.

2.2 Absolute Continuity Property of the Itô Measure

We now present the continuous counterpart of the discrete absolute continuity
property appearing in Lemma 2. We follow the presentation of [16] but generalize
it to the stable case. The following proposition is classical (see e.g. the proof of
Theorem 4.1 in [22, Chap. XII], which establishes the result for Brownian motion).

Proposition 4. Fix t > 0. Under the conditional probability measure N. � j� > t/,
the process .XtCs/s	0 is Markovian with the transition kernels of a strictly stable
spectrally positive Lévy process of index 	 stopped upon hitting 0.

We will also use the following result (see [3, Corollary 2.3] for a proof).
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Proposition 5. Set qs.x/ D x
s
ps.�x/ for x; s > 0. For x 
 0, let T .x/ D infft 


0I Xt < �xg be the first passage time of �X above x. Then P ŒT .x/ 2 dt� D
qt .x/dt for every x > 0.

Note that qs is a positive continuous function on .0;1/, for every s > 0. It is
also known that qs is bounded by a constant which is uniform when s varies over
Œ$;1/, $ > 0 (this follows from e.g. [23, I. 4.]).

Proposition 6. For every a 2 .0; 1/ and x > 0 define:

�a.x/ D 	q1�a.x/R1
1�a ds qs.x/

:

Then for every measurable bounded function G W D.Œ0; a�;R2/ ! RC:

N .G..Xt /0�t�a; .Ht /0�t�a/�a.Xa/j � > 1/ D N .G..Xt /0�t�a; .Ht /0�t�a/j � D 1/ :

Proof. Since .Ht /0�t�a is a measurable function of .Xt /0�t�a, it is sufficient to
prove that for every bounded measurable function F W D.Œ0; a�;R/ ! RC:

N .F..Xt /0�t�a/�a.Xa/j � > 1/ D N .F..Xt /0�t�a/j � D 1/ :

To this end, fix r 2 Œ0; a�, let f; g W RC ! RC be two bounded continuous functions
and let h W R�C ! RC be a continuous function. Using the notation of Proposition 5,
we have:

N
�
f .Xr/h.Xa/g.�/�f�>ag

� D N
�
f .Xr/�f�>agE Œh.x/g.a C T .x//�xDXa

�

D
Z 1

0

dsg.a C s/N
�
f .Xr/h.Xa/qs.Xa/�f�>ag

�

D
Z 1

a

dug.u/N
�
f .Xr/h.Xa/qu�a.Xa/�f�>ag

�
; (8)

where we have used Proposition 4 in the first equality and Proposition 5 in the
second equality. Moreover, by property (iii) in Sect. 2.1:

N
�
f .Xr/g.�/�f�>ag

� D
Z 1

a

du
g.u/

	� .1 � 1=	/u1=	C1 � N.u/.f .Xr//: (9)

Now observe that (8) (with h D 1) and (9) hold for any bounded continuous function
g. Since both functions u 7! N

�
f .Xr/qu�a.Xa/�f�>ag

�
and u 7! N.u/ .f .Xr// are

easily seen to be continuous over .a;1/, it follows that for every u > a:

N
�
f .Xr/qu�a.Xa/�f�>ag

� D 1

	� .1 � 1=	/u1=	C1N.u/ .f .Xr// :
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In particular, for u D 1 we get:

N
�
f .Xr/q1�a.Xa/�f�>ag

� D 1

	� .1 � 1=	/
N.1/ .f .Xr// : (10)

On the other hand, applying (8) with g.x/ D �fx>1g and noting that N.� > 1/ D
1

� .1�1=	/ , we get:

N .f .Xr/h.Xa/ j� > 1/ D � .1 � 1=	/N
�
f .Xr/h.Xa/�f�>ag

Z 1

1�a
ds qs.Xa/

�
:

(11)

By combining (11) and (10) we conclude that:

N

 
f .Xr/

	q1�a.Xa/R1
1�a ds qs.Xa/

ˇ̌
ˇ̌
ˇ � > 1

!
D N.1/.f .Xr//:

One similarly shows that for 0 � r1 < � � � < rn � a and f1; : : : ; fn W RC ! RC
continuous bounded functions:

N

 
f1.Xr1/ � � �fn.Xrn/

	q1�a.Xa/R1
1�a ds qs.Xa/

ˇ̌
ˇ̌
ˇ � > 1

!
D N.1/.f1.Xr1/ � � �fn.Xrn//:

The desired result follows since the Borel �-field of D.Œ0; a�;R/ is generated by the
coordinate functionsX 7! Xr for 0 � r � a (see e.g. [4, Theorem 12.5 (iii)]). ut

3 Convergence to the Stable Tree

3.1 An Invariance Theorem

We rely on the following theorem, which is similar in spirit to Donsker’s invariance
theorem (see the concluding remark of [8, Sect. 2.6] for a proof).

Theorem 2 (Duquesne and Le Gall). Let tn be a random tree distributed accord-
ing to P�Œ � j �.�/ 
 n�. We have:

�
1

Bn
Wbntc.tn/;

Bn

n
Hnt.tn/

�
t	0

.d/�!
n!1 .Xt ;Ht /0�t�1 under N. � j � > 1/:
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3.2 Convergence of the Scaled Contour and Height Functions

Recall the notation �n.j / D P
�
�j D n

	
and ��

n .j / D P
�
�j 
 n

	
.

Lemma 3. Fix ˛ > 0. We have:

(i) lim
n!1 sup

1�k�˛Bn

ˇ̌
ˇ̌n�n.k/ � q1

�
k

Bn

�ˇ̌
ˇ̌ D 0;

(ii) lim
n!1 sup

1�k�˛Bn

ˇ̌
ˇ̌��
n .k/ �

Z 1

1

ds qs

�
k

Bn

�ˇ̌
ˇ̌ D 0:

This has been proved by Le Gall in [16] when � has finite variance. In full
generality, the proof is technical and is postponed to Sect. 3.3.

Lemma 4. Fix a 2 .0; 1/. Let tn be a random tree distributed according to
P�Œ � j �.�/ D n�. Then the following convergence holds in distribution in the space
C.Œ0; a�;R/:

�
Bn

n
Hnt.tn/I 0 � t � a

�
.d/�!

n!1 .Ht I 0 � t � a/ under N. � j� D 1/:

Proof. Recall the notation �a introduced in Proposition 6. We start by verifying
that, for ˛ > 1, we have:

lim
n!1

 
sup

1
˛ Bn�k�˛Bn

ˇ̌
ˇ̌
ˇ
�n�banc.k C 1/=�n.1/

��
n�banc.k C 1/=��

n .1/
� �a

�
k

Bn

�ˇ̌ˇ̌
ˇ
!

D 0: (12)

To this end, we will use the existence of a constant ı > 0 such that, for n sufficiently
large,

inf
1
˛ Bn�k�˛Bn

Z 1

1

ds qs

�
k C 1

Bn�banc

�
> ı: (13)

The existence of such ı follows from the fact that, for every ˇ > 1,
inf 1

ˇ�x�ˇ
R1
1

ds qs .x/ > 0: We will also need the fact that for every ˇ > 1

there exists a constant C > 0 such that:

sup
1
ˇ�x�ˇ

q1 .x/ � C; sup
1
ˇ�x�ˇ

Z 1

1

ds qs .x/ � C: (14)

This is a consequence of the fact that q1 is bounded for the first inequality, and the
second inequality follows from the scaling property (7) combined with the fact that
p1 is bounded (see e.g. [23, I. 4.]). To establish (12), we first show that
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lim
n!1

0
@ sup

1
˛ Bn�k�˛Bn

ˇ̌
ˇ̌
ˇ̌ �n�banc.k C 1/=�n.1/

��
n�banc.k C 1/=��

n .1/
� 	

1
1�aq1



kC1

Bn�banc

�
R1
1 ds qs



kC1

Bn�banc

�
ˇ̌
ˇ̌
ˇ̌
1
A D 0: (15)

Since Bn�banc=Bn ! .1 � a/1=	 as n ! 1, Lemma 3 guaranties the existence of

two sequences .".1/k;n; "
.2/

k;n/k;n	1 such that

.n � banc/�n�banc.k C 1/ D q1

�
k C 1

Bn�banc

�
C "

.1/

k;n;

��
n�banc.k C 1/ D

Z 1

1

ds qs

�
k C 1

Bn�banc

�
C "

.2/

k;n

and such that max.".1/k;n; "
.2/

k;n/ ! 0 as n ! 1, uniformly in 1=˛ �Bn � k � ˛Bn. To
simplify notation setmn D n�banc. By (14) and the fact thatBmn=Bn ! .1�a/1=	 ,
there exists C > 0 such that for n sufficiently large and 1=˛ � Bn � k � ˛Bn:

ˇ̌
ˇ̌
ˇ̌mn�mn.k C 1/

��
mn
.k C 1/

�
q1



kC1
Bmn

�
R1

1
ds qs



kC1
Bmn

�
ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
"
.1/

k;n � R1

1
ds qs



kC1
Bmn

�
� ".2/k;n � q1



kC1
Bmn

�
R1

1
ds qs



kC1
Bmn

�
�

R1

1
ds qs



kC1
Bmn

�
C "

.2/

k;n

�
ˇ̌
ˇ̌
ˇ̌

� 2C

ı2
� sup
1
˛ Bn�k�˛Bn

max.".1/k;n; "
.2/

k;n/;

where we have used (13) for the last inequality. This, combined with the fact that
��
n .1/=.n�n.1// ! 	 as n ! 1 by Lemma 1, implies (15). Then our claim (12)

follows the scaling property (7) and the continuity of �a.
We shall now prove another useful result before introducing some notation. Fix

˛ > 1. Let gn W R
bancC1 ! RC be a bounded measurable function. To simplify

notation, for x0; : : : ; xbanc 2 R, set

Gn.x0; : : : ; xbanc/ D gn.x0; : : : ; xbanc/�xbanc2Œ 1˛ Bn;˛Bn�

and, for a tree � , set

QGn.�/ D gn.W0.�/;W1.�/; : : : ;Wbanc.�//�fWbnac.�/2Œ 1˛ Bn;˛Bn�g:

We claim that

lim
n!1

ˇ̌
ˇ̌E � QGn.tn/

	 � E�

�
QGn.�/�a

�
Wbanc.�/
Bn

�ˇ̌
ˇ̌ �.�/ 
 n

ˇ̌
ˇ̌ D 0: (16)
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Indeed, using successively Proposition 1 and (5), we have:

E
� QGn.tn/

	 � E�

�
QGn.�/�a

�
Wbanc.�/

Bn

�ˇ̌
ˇ̌ �.�/ 
 n



D E
�
Gn.W0; : : : ;Wbnac/j �1 D n

	 � E

�
Gn.W0; : : : ;Wbnac/�a

�
Wbanc

Bn

�
j �1 
 n



D E

"
Gn.W0; : : : ;Wbnac/

 
�n�Œan�.Wbanc C 1/=�n.1/

��
n�banc

.Wbanc C 1/=��
n .1/

� �a
�
Wbanc

Bn

�!ˇ̌ˇ̌
ˇ �1 
 n

#
:

Our claim (16) then follows from (12).
We finally return to the proof of Lemma 4. Let F W D.Œ0; a�;R/ ! RC be

a bounded continuous function. We also set Fn.�/ D F
�
Bn
n
Hbntc.�/I 0 � t � a

�
.

Since .H0.�/;H1.�/; : : : ;Hbanc.�// is a measurable function of .W0.�/;W1.�/;

: : : ;Wbanc.�// (see [17, Prop 1.2]), by (16) we get:

lim
n!1

ˇ̌
ˇ̌E �Fn.tn/�A˛n.tn/

	 � E�

�
Fn.�/�A˛n.�/�a

�
Wbanc.�/
Bn

�ˇ̌
ˇ̌ �.�/ 
 n

ˇ̌
ˇ̌ D 0:

By Theorem 2, the law of
��

Bn

n
Hbntc.�/I 0 � t � a

�
;
1

Bn
Wbanc.�/

�

under P�Œ � j �.�/ 
 n� converges towards the law of ..Ht I 0 � t � a/;Xa/ under
N.� j � > 1/ (for the convergence of the second component we have also used the
fact that X is almost surely continuous at a). Thus:

lim
n!1E

h
Fn.tn/�fWbnac.tn/2Œ 1˛ Bn;˛Bn�g

i

D N


F.Ht I 0 � t � a/�a.Xa/�fXa2Œ 1˛ ;˛�g j � > 1

�

D N


F.Ht I 0 � t � a/�fXa2Œ 1˛ ;˛�g j � D 1

�
; (17)

where we have used Proposition 6 in the second equality.
By taking F � 1, we obtain:

lim
n!1P

�
Wbnac.tn/ 2

�
1

˛
Bn; ˛Bn


D N

�
Xa 2

�
1

˛
; ˛

ˇ̌
ˇ̌ � D 1

�
:

This last quantity tends to 1 as ˛ ! 1. By choosing ˛ > 1 sufficiently large, we
easily deduce from the convergence (17) that:

lim
n!1E

�
F

�
Bn

n
Hbntc.tn/I 0 � t � a

�
D N .F.Ht I 0 � t � a/ j � D 1/ :
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The path continuity of H under N . � j � D 1/ then implies the claim of Lemma 4.
ut

Theorem 3. Let tn be a random tree distributed according to P�Œ � j �.�/ D n�.
Then:

�
Bn

n
Hnt.tn/;

Bn

n
C2nt .tn/

�
0�t�1

.d/�!
n!1 .Ht ;Ht /0�t�1 under N. � j� D 1/:

Proof. The proof consists in showing that the scaled height process is close to the
scaled contour process and then using a time-reversal argument in order to show
that the convergence holds on the whole segment Œ0; 1�. To this end, we adapt [7,
Remark 3.2] and [8, Sect. 2.4] to our context. For 0 � p < n set bp D 2p�Hp.tn/
so that bp represents the time needed by the contour process to reach the .pC 1/-st
individual of tn (in the lexicographical order). Also set bn D 2.n � 1/. Note that
Cbp D Hp . From this observation, we get:

sup
t2Œbp ;bpC1�

jCt.tn/�Hp.tn/j � jHpC1.tn/�Hp.tn/j C 1: (18)

for 0 � p < n. Then define the random function gn W Œ0; 2n� ! N by setting
gn.t/ D k if t 2 Œbk; bkC1/ and k < n, and gn.t/ D n if t 2 Œ2.n � 1/; 2n� so that
for t < 2.n � 1/, gn.t/ is the index of the last individual which has been visited
by the contour function up to time t if the individuals are indexed 0; 1; : : : ; n � 1 in
lexicographical order. Finally, set Qgn.t/ D gn.nt/=n. Fix a 2 .0; 1/. Then, by (18):

sup
t� bbanc

n

ˇ̌
ˇ̌Bn
n
Cnt .tn/� Bn

n
Hn Qgn.t/.tn/

ˇ̌
ˇ̌ � Bn

n
C Bn

n
sup

k�banc
jHkC1.tn/ �Hk.tn/j;

(19)

which converges in probability to 0 by Lemma 4 and the path continuity of .Ht /.
On the other hand it follows from the definition of bn that:

sup
t� bbanc

n

ˇ̌
ˇ̌ Qgn.t/ � t

2

ˇ̌
ˇ̌ � 1

2Bn
sup
k�an

Bn

n
Hk.tn/C 1

n

.P/�! 0

by Lemma 4. Finally, by the definition of bn and using Lemma 4 we see that bbanc

n

converges in probability towards 2a and that Bn
n

supt�2a
ˇ̌
Hn Qgn.t/.tn/�Hnt=2.tn/

ˇ̌
converges in probability towards 0 as n ! 1. Using (19), we conclude that:

Bn

n
sup
0�t�a

jC2nt .tn/ �Hnt .tn/j .P/�! 0: (20)
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Together with Lemma 4, this implies:

�
Bn

n
C2nt .tn/I 0 � t � a

�
.d/�! .Ht I 0 � t � a/ under N. � j � D 1/:

Since .Ct.tn/I 0 � t � 2n � 2/ and .C2n�2�t .tn/I 0 � t � 2n � 2/ have the same
distribution, it follows that:

�
Bn

n
C2nt .tn/I 0 � t � 1

�
.d/�! .Ht I 0 � t � 1/ under N. � j � D 1/: (21)

See the last paragraph of the proof of Theorem 6.1 in [16] for details.
Finally, we show that this convergence in turn entails the convergence of the

rescaled height function of tn on the whole segment Œ0; 1�. To this end, we verify
that convergence (20) remains valid for a D 1. First note that:

sup
0�t�2

ˇ̌
ˇ̌ Qgn.t/ � t

2

ˇ̌
ˇ̌ � 1

2n
sup
k�n

Hk.tn/C 1

n
D 1

2Bn
sup
k�2n

Bn

n
Ck.tn/C 1

n

.P/�! 0

(22)

by (21). Secondly, it follows from (18) that:

sup
0�t�2

ˇ̌
ˇ̌Bn
n
Cnt .tn/� Bn

n
Hn Qgn.t/

ˇ̌
ˇ̌ � Bn

n
C Bn

n
sup
k�n�1

jHkC1.tn/�Hk.tn/j

D Bn

n
C Bn

n
sup
k�n�1

ˇ̌
ˇ̌CbkC1

n n
.tn/� Cbk

n n
.tn/

ˇ̌
ˇ̌ :

By (21), in order to prove that the latter quantity tends to 0 in probability, it is

sufficient to verify that supk�n
ˇ̌
ˇ bkC1

n
� bk

n

ˇ̌
ˇ converges to 0 in probability. But by the

definition of bn:

sup
k�n

ˇ̌
ˇ̌bkC1
n

� bk

n

ˇ̌
ˇ̌ D sup

k�n

ˇ̌
ˇ̌2CHk.tn/ �HkC1.tn/

n

ˇ̌
ˇ̌ � 2

n
C 2 sup

k�n
Hk.tn/

n

which converges in probability to 0 as in (22). As a consequence:

Bn

n
sup
0�t�1

jC2nt .tn/ �Hn Qgn.2t/.tn/j
.P/�! 0:

By (21), we get that:

�
Bn

n
Hn Qgn.2t/.tn/

�
0�t�1

.d/�!
n!1 .Ht /0�t�1 under N. � j � D 1/:
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Combining this with (22), we conclude that:

�
Bn

n
C2nt .tn/;

Bn

n
Hnt .tn/

�
0�t�1

.d/�!
n!1 .Ht ;Ht /0�t�1 under N. � j � D 1/:

This completes the proof. ut
Remark 2. If we see the tree tn as a finite metric space using its graph distance, this
theorem implies that tn, suitably rescaled, converges in distribution to the 	-stable
tree, in the sense of the Gromov–Hausdorff distance on isometry classes of compact
metric spaces (see e.g. [17, Sect. 2] for details).

Remark 3. When the mean value of � is greater than one, it is possible to replace
� with a critical probability distribution belonging to the same exponential family
as � without changing the distribution of tn (see [13]). Consequently, the theorem
holds in the supercritical case as well. The case where � is subcritical and �.i/ �
L.i/=i1C	 as i ! 1 has been treated in [15]. However, in full generality, the
noncritical subcritical case remains open.

3.3 Proof of the Technical Lemma

In this section, we prove Lemma 3.

Proof (of Lemma 3). We first prove (i). By the local limit theorem (Theorem 1 (ii)),
we have, for k 
 1 and j 2 Z:

ˇ̌
ˇ̌BnPŒWn D j � � p1

�
j

Bn

�ˇ̌
ˇ̌ � $.n/;

where $.n/ ! 0. By Proposition 2, we have n�n.j / D jPŒWn D �j �. Since
j

Bn
p1



� j

Bn

�
D q1



j

Bn

�
, we have for 1 � j � ˛Bn:

ˇ̌
ˇ̌n�n.j / � q1

�
j

Bn

�ˇ̌
ˇ̌ D j

Bn

ˇ̌
ˇ̌BnPŒWn D �j � � p1

�
j

Bn

�ˇ̌
ˇ̌ � ˛$.n/:

This completes the proof of (i).
For (ii), first note that by the definition of qs and the scaling property (7):

Z 1

1

ds qs

�
j

Bn

�
D
Z 1

1

j=Bn

s1=	C1 p1
�

�j=Bn
s1=	

�
ds:
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By Proposition 2 and the local limit theorem:

ˇ̌
ˇ̌
ˇ��
n .j / �

1X
kDn

j

kBk
p1

�
� j

Bk

�ˇ̌ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

1X
kDn

�
j

k
PŒWk D �j � � j

kBk
p1

�
� j

Bk

��ˇ̌ˇ̌
ˇ

�
1X
kDn

j

kBk
$.k/;

where $.n/ ! 0. Then write:

ˇ̌
ˇ̌
ˇ

1X
kDn

j

kBk
p1

�
� j

Bk

�
�
Z 1

1

ds
j=Bn

s1=	C1 p1
�

�j=Bn
s1=	

�ˇ̌ˇ̌
ˇ

�
Z 1

1

ds

ˇ̌
ˇ̌ jn

Bbnscbnsc � j=Bn

s1=	C1

ˇ̌
ˇ̌p1

�
� j

Bbnsc

�

C
Z 1

1

ds
j=Bn

s1=	C1

ˇ̌
ˇ̌p1

�
� j

Bbnsc

�
� p1

�
�j=Bn
s1=	

�ˇ̌
ˇ̌ :

Denote the first term of the right-hand side by P.n; j / and the second term by
Q.n; j /. Since p1 is bounded by a constant which we will denote by M , we have
for 1 � j � ˛Bn:

P.n; j / � ˛M

Z 1

1

ds
1

s1=	C1

ˇ̌
ˇ̌nBns1=	C1

Bbnscbnsc � 1

ˇ̌
ˇ̌ :

For fixed s 
 1, 1

s1=	C1

ˇ̌
ˇ nBns1=	C1

Bbnscbnsc � 1
ˇ̌
ˇ tends to 0 as n ! 1, and using Proposition 3,

the same quantity is bounded by an integrable function independent of n. The
dominated convergence theorem thus shows that P.n; j / ! 0 uniformly in 1 �
j � ˛Bn. Let us now bound Q.n; j / for 1 � j � ˛Bn. Since the absolute value
of the derivative of p1 is bounded by a constant which we will denote by M 0, we
have:

Q.n; j / � M 0

Z 1

1

ds
j=Bn

s1=	C1

ˇ̌
ˇ̌ j

Bbnsc

� j=Bn

s1=	

ˇ̌
ˇ̌ � ˛2M 0

Z 1

1

ds
1

s2=	C1

ˇ̌
ˇ̌Bns1=	
Bbnsc

� 1
ˇ̌
ˇ̌ :

The right-hand side tends to 0 by the same argument we used for P.n; j /. We have
thus proved that:

lim
n!1 sup

1�j�˛Bn

ˇ̌
ˇ̌
ˇ

1X
kDn

j

kBk
p1

�
� k

Bk

�
�
Z 1

1

ds qs

�
j

Bn

�ˇ̌ˇ̌
ˇ D 0:
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One finally shows that
P1

kDn
j

kBk
$.k/ tends to 0 as n ! 1 uniformly in 1 � j �

˛Bn by noticing that:

sup
n	1

sup
1�j�˛Bn

 1X
kDn

j

kBk

!
� ˛ sup

n	1

 1X
kDn

Bn

kBk

!
< 1:

This completes the proof. ut
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UMR 7586 du CNRS, Équipe “Géométrie et Dynamique”,
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