
Chapter 35
A New Computational Approach to Infinity
for Modelling Physical Phenomena

Yaroslav D. Sergeyev

Abstract A new computational methodology for computations with infinite and
infinitesimal quantities is described. It is based on the principle ‘The part is less than
the whole’ introduced by Ancient Greeks and observed in the physical world. It is
applied to all sets and processes (finite and infinite) and all numbers (finite, infinite,
and infinitesimal). It is shown that it becomes possible to work with all of them in
a unique framework (different from non-standard analysis) allowing one to easily
manage mathematical situations that traditionally create difficulties (divergences of
various kind, indeterminate forms, etc.) and to construct mathematical models of
physical phenomena of a new type.

35.1 Introduction

Physicists use (and create)Mathematics as an instrument that allows them to construct
and to study mathematical models describing the physical world. As a consequence,
each concrete mathematical language used for this purpose reflects in some sense
the opinion of physicists that they have about the world at that concrete historical
period. This opinion is based on a sum of knowledge obtained from experiments that,
in their turn, are made by scientific instruments having their accuracy that bounds our
possibility of the observation of physical phenomena. As a result, also mathematical
theories describing physical phenomena have their accuracy determined by the accu-
racy of physical experiments. Obviously, a good theory can also show directions for
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new experiments and new tools that would confirm or refuse theoretical hypotheses.
Thus, there exists a strong link between themathematical theories describing physical
world and the current level of accuracy of physical instruments.

In different historical periods, various mathematical disciplines were used for
constructingphysicalmodels.MathematicalAnalysis is oneof themand, obviously, it
is widely used in Physics. However, the foundations of Analysis have been developed
more than 200 years ago with the goal to develop mathematical tools allowing one
to solve problems arising in the real world at that time. Thus, Analysis that we use
now does not reflect in itself numerous achievements of Physics of the twentieth
century.1 For instance, in Physics, the same object can be viewed as either discrete
or continuous in dependence of the instrument used for the observation (we see a
table continuous when we look at it by eye and we see it discrete (consisting of
molecules, atoms, etc.) when we observe it at a microscope). Moreover, physicists
together with the result of the observation supply the accuracy of the instrument used
for this observation.

InMathematics, both facts are absent: each mathematical object (e.g., function) is
either discrete or continuous and nothing is said about the accuracy of the observation
of themathematical objects and about tools used for these observations.Mathematical
notions have an absolute character and the ideas of relativity are not present in it. In
some sense, there exists a gap between the physical achievements made in the last
two hundred years and their mathematical models that continue to be written using
the mathematical language developed two hundred years ago on the basis (among
other things) of physical ideas of that remote time.

The point of view presented in this paper tries to fill up this gap. It uses strongly
such methodological ideas borrowed from Physics and applied to Mathematics as:
the distinction between the object (we speak here about a mathematical object) of
an observation and the instrument used for this observation; interrelations holding
between the object and the tool used for this observation; the accuracy of the obser-
vation determined by the tool. In particular, from this new physical point of view
the ways to deal with infinities and infinitesimals are studied. The main attention is
dedicated to mathematical languages, more precisely, to numeral systems2 that we
use to write down numbers, functions, models, etc. and that are among our tools
of investigation of mathematical objects. It is shown that numeral systems strongly
influence our capabilities to describe the inhabitants of the mathematical world.

1 This is true also for the modern non-standard analysis [1] that re-writes the standard one in terms
of infinitesimals and realizes the program of Leibniz. For instance, one of the basic concepts in the
non-standard analysis is monad, the notion taken from Physics that, however, is not used in Physics
for a long time.
2 We remind that a numeral is a symbol or group of symbols that represents a number. The difference
between numerals and numbers is the same as the difference between words and the things they
refer to. A number is a concept that a numeral expresses. The same number can be represented by
different numerals written in different numeral systems. For example, the symbols ‘4’, ‘four’, and
‘IV’ are different numerals, but they all represent the same number. Rules used in different numeral
systems to execute arithmetical operation can be also different.
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In particular, a new numeral system (see [2–11]) for performing computations
with infinite and infinitesimal quantities is used for the observation of mathematical
objects and modeling physical phenomena. It is based on the principle ‘The part
is less than the whole’ introduced by Ancient Greeks and observed in the physical
world. It is applied to all sets and processes (finite and infinite) and all numbers
(finite, infinite, and infinitesimal). The new methodology has allowed the author to
introduce the Infinity Computer (see the USA patent [11]) working numerically with
infinite and infinitesimal numbers. The introduced computational paradigm both
gives possibilities to execute computations of a new type and simplifies fields of
Mathematics andComputer Sciencewhere infinity and/or infinitesimals are required.
In order to see the place of the new approach in the historical panorama of ideas
dealing with infinite and infinitesimal, see [12] and [13].

The new methodology has been successfully applied for studying fractals [6, 14],
percolation [14, 15], optimization algorithms [3, 16], hyperbolic geometry [17],
Turing machines [18], cellular automata [19] , infinite series [6–9, 20], etc.

35.2 A New Methodology for Performing Computations with
Infinite and Infinitesimal Quantities

Traditionally, there exist different ways toworkwithmathematical objects connected
to the concepts of infinite and infinitesimal (see, e.g., [1, 21–24] and references
given therein). However, it is well known that we work with infinite objects in a way
differentwith respect to the rules that we are used to dealwith finite quantities. In fact,
there exist undetermined operations (for example, ∞ − ∞, 0·∞, etc.), divergences,
etc. It is worthwhile to mention also that the philosophical principle of Ancient
Greeks ‘The part is less than the whole’ observed in the physical world around us
does not hold for infinities, including infinite cardinals introduced by Cantor, e.g., it
follows x+1 = x, if x is an infinite cardinal, although for any finite x we have x+1 >

x.
In order to understand how it is possible to look at the problem of infinity in a

new way, let us consider a study published in Science (see [25]) where the author
describes a primitive tribe living in Amazonia—Pirahã—that uses a very simple
numeral system for counting: one, two, many. For Pirahã, all quantities larger than
two are just ‘many’ and such operations as 2+2 and 2+1 give the same result, i.e.,
‘many’. Using their weak numeral system Pirahã are not able to see, for instance,
numbers 3, 4, 5, and 6, to execute arithmetical operations with them, and, in general,
to say anything about these numbers because in their language there are neither words
nor concepts for that.

It is important to emphasize that the answer ‘many’ is not wrong, it is just impre-
cise. Analogously, the answer ‘many’ to the question ‘How many trees are there in
the garden in front of our house?’ is correct, but its precision is low. Already these
first considerations show us that numeral systems have their accuracy like physical



356 Y. D. Sergeyev

instruments have. This means that when one uses a numeral system, this system
defines the accuracy of mathematical results that can be obtained with its help. As a
consequence, mathematical truths are not absolute; they are relative to the precision
of the numeral systems (and, in general, to the mathematical language) used for their
formulation. The understanding of the fact that Mathematics, as all natural sciences,
depends on its instruments and is able to provide results that depend on the accuracy
of the instruments used for their description is very important.

Pirahã’s numeral system is interesting for us also because its weakness leads to
such results as

‘many’+ 1 = ‘many’, ‘many’+ 2 = ‘many’, ‘many’+ ‘many’ = ‘many’, (35.1)

which are very familiar to us in the context of views on infinity used in the
traditional calculus:

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ + ∞ = ∞. (35.2)

This similarity leads us to the following idea: Probably our difficulty in working
with infinity is not connected to the nature of infinity but is a result of inadequate
numeral systems used to express infinite numbers. Analogously, Pirahã do not distin-
guish numbers 3 and 4 not due to the nature of these numbers but due to the weakness
of their numeral system.

When we have such mathematical objects as infinite numbers, then even the mod-
ern numeral systems used for the observation are not sufficiently precise. The instru-
ments of Pirahã do not allow them to distinguish 3, 4, and other numbers higher than
2. Our modern numeral systems are more precise, they allow us distinguish various
finite numbers, but they fail when it is necessary to work with infinite quantities.

The observationmade above is important fromseveral points of view; in particular,
with respect to themathematical instruments developed by Cantor (see [21]) who has
shown that there exist infinite sets having different number of elements. Cantor has
proved, by using his famous diagonal argument, that the cardinality, ℵ0, of the set,
N, of natural numbers is less than the cardinality, C, of real numbers at the interval
[0, 1]. Cantor has also developed an arithmetic for the infinite cardinals. Some of the
operations of this arithmetic including ℵ0 and C are given below:

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 + ℵ0 = ℵ0, (35.3)

C + 1 = C, C + 2 = C, C + ℵ0 = C,C + C = C. (35.4)

Again, it is possible to see a clear similarity with the arithmetic operations used
in the numeral system of Pirahã (a detailed discussion related to these issues dealing
also with the Continuum Hypothesis see in [10]). This prompts us that, probably,
Cantor’s numeral system used to measure infinite sets can be also improved. If we
were able to distinguish more infinite numbers we could understand better many
processes and objects dealing with the concepts of infinite and infinitesimal (remind
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the famous phrase of LudwigWittgenstein: ‘The limits of my language are the limits
of my world.’).

In [2–11] a new numeral system has been developed for performing computations
with infinite and infinitesimal quantities using the principle ‘The part is less than
the whole’ introduced by Ancient Greeks and observed in the physical world (it is
discussed and compared with other approaches in [12] and [13]). The main idea of
the new approach consists of the possibility to measure infinite and infinitesimal
quantities by different (infinite, finite, and infinitesimal) units of measure.

For this purpose, a new infinite unit ofmeasure expressedby the numeralCDcalled
grossone is introduced as the number of elements of the set, N, of natural numbers.
Concurrently with the introduction of grossone in our mathematical language such
symbols like ∞, Cantor’s ω, C from (35.4), all Alephs ℵ0,ℵ1, etc. are excluded from
the language because grossone ant other numbers constructed with its help not only
can be used instead of all of them but can be used with a higher accuracy. Grossone
is introduced by describing its properties postulated by the Infinite Unit Axiom [4]
added to axioms for real numbers (similarly, in order to pass from the set, N, of
natural numbers to the set, Z, of integers a new element—zero expressed by the
numeral 0—is introduced by describing its properties).

It is necessary to notice that grossone has both cardinal and ordinal properties as
usual finite natural numbers have. The new numeral allows us to construct different
numerals expressing different infinite and infinitesimal numbers and to calculate the
number of elements of certain infinite sets. For instance, it becomes possible to see
that the sets of even and odd numbers haveCD/2 elements each. The set, Z, of integers
has 2CD + 1 elements (CD positive elements, CD negative elements, and zero). The
set B = N \{b}, b ∈ N, has CD−1 elements and the set A = N U { a1; a2 }, a1 /∈ N,
a2 /∈ N, has CD + 2 elements.

Note that positive integers larger than grossone do not belong to N but they can be
also easily interpreted as the number of elements of certain infinite sets. For instance,
CD3is the number of elements of the set V, where

V = {(a1; a2; a3) : a1 ∈ N, a2 ∈ N, a3 ∈ N}.

It is worthy to mention that these results do not contradict Cantor’s one-to-one
correspondence principle (see [13] and [9, 10] for a detailed discussion). Both Can-
tor’s numeral system and the new one give correct answers, but their answers have
different accuracy. We just use a stronger (with respect to cardinals of Cantor) tool,
CD, for the observation of infinite sets that allows us to give more accurate answers
than those of Cantor. By using the physical analogy we can say that the lens of our
microscope is stronger and we are able to see many different dots where Cantor’s
microscope allows him to observe just one dot—countable sets.

Note, that the new numeral system using grossone allows us to avoid records of
the type (1)–(4). In fact, it can be easily shown (see [4, 9]) that, for example,
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CD/2 < CD < 2CD < 2CD + 1 < 2CD + 2 < CD3/2 < CD3 − 1 < CD3

< CD3 + 1 < CD3 + 2.

Within the sets having cardinality of the continuum it is also possible to distinguish
infinite sets having different number of elements expressible in the numeral system
using grossone (see [4, 10]):

2CD − 1 < 2CD < 2CD + 1 < 10CD − 1 < 10CD < 10CD + 1 < CDCD − 1

< CDCD < CDCD + 1 < CDCD + 2.

The rules we use to execute arithmetical operations with 0 and 1 work with grossone,
as well:

0 ·CD = 0,CD ·0 = 0,CD−CD = 0,CD : CD = 1,CD0 = 1, 0CD = 0, 1CD = 1.

Since CD0=1, a finite number c can be represented in the new numeral system simply
as cCD0=c, where the numeral c is written down by any convenient numeral system
used to write down finite numbers.

The simplest infinitesimal numbers are represented by numerals having only neg-
ative powers of grossone that are finite or infinite. The following two numerals
are examples of infinitesimals expressed in the new numeral system: 4.2CD−3.21,
74.56CD−33.85CD. The simplest infinitesimal is CD−1being the inverse element with
respect to multiplication for CD:

CD · CD−1 = 1.

Note that all infinitesimals are not equal to zero. Particularly, it follows CD−1 > 0
because CD−1= 1 / CD, i.e., it is a result of division of two positive numbers.

It is necessary to mention that it is not easy to interpret grossone in the framework
of the traditional mathematics (including the non-standard analysis). When one tries
to compare two languages, it can often happen that their accuracies are different
and the translation becomes possible only partially. Moreover, different languages
represent the world in different ways (any person knowing more than one language
knows that there exist things that can be described better in one language than in
another). In linguistics, the relativity of the language with respect to the world around
us is well known. This fact has been formulated in the form of the Sapir–Whorf thesis
of the linguistic relativity (see [26, 27]). For example, it is impossible to translate to
the language of Pirahã the word ’four’ from English maintaining the same accuracy
in their language as in English. The same thing happens when we compare the
mathematical languages using, on the one hand, such symbols like ∞, Cantor’s
ω, C from (35.4), all Alephs ℵ0,ℵ1, etc. and, on the other hand, grossone and other
numerals constructed with its help. The accuracies of the two languages are different.

Another crucial problem related to such a translation consists of the fact that in
the traditional mathematics (even in the non-standard analysis) very often there is no



35 A New Computational Approach to Infinity for Modelling Physical Phenomena 359

a clear distinction between numbers (and sets of numbers) and numerals and sets of
numerals used to represent numbers.

However, as it happens in Physics, in Mathematics it is also always necessary to
indicate the instrument one uses for an observation in order to understandwhat can be
observed. If such a clarification is absent, then ambiguities can easily be encountered.
Let us illustrate this affirmation by considering the following set defined by the
phrase: the set of all numbers less than three. This phrase seems to identify clearly a
set because, without saying it explicitly, we keep in mind that we are speaking about
real numbers. So, it is supposed implicitly that the instrument of the observation of
the set is a positional numeral system.

However, in different historical periods such implicit suppositions were differ-
ent. Before discovering negative numbers (for instance, Roman and Greek numeral
systems do not include zero and are not able to express negative numbers; in these
systems, expression 3–7 was an undetermined form) this was the set of positive num-
bers less than three. Moreover, before discovering irrational numbers this phrase was
defining rational positive numbers less than three. In the language of Pirahã, this set
cannot be even defined because they do not know what ‘three’ is. Then, if we use the
new approach working with grossone, it can be shown (see [10]) that in dependence
on the radix of the positional system used to write down numerals, different sets of
real numbers can be observed.

In particular, since the traditional mathematics very often does not pay any atten-
tion to the distinction between numbers and numerals, many theories dealing with
infinite and infinitesimal quantities have a symbolic (not numerical) character. For
instance, many versions of the non- standard analysis are symbolic, since they have
no numeral systems to express their numbers by a finite number of symbols (this is
necessary for organizing numerical computations). Namely, if we consider a finite n
than it can be taken n = 6, or n = 12 or any other numeral consisting of a finite number
of symbols. If we consider an infinitesimal h then it is not clear which numerals con-
sisting of a finite number of symbols can be used to write h = . . . In fact, very often
in non-standard analysis texts, a generic infinitesimal h is used and it is considered
as a symbol, i.e., only symbolic computations can be done with it. Approaches of
this kind leave unclear such issues, e.g., whether the infinite 1/h is integer or not or
whether 1/h is the number of elements of an infinite set.

35.3 Examples of the Usage of the New Computational
Methodology

In this section, we give several examples showing how to use the new computational
methodology with the new numeral systems using grossone. Examples are chosen
in such a way that they can be directly used in modeling physical phenomena.

We start by showing that, in the new language, infinite (both convergent and
divergent) series can be substituted by sumswith the precisely defined infinite number
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of items. Since in the new numeral system we have many different infinite integers
and we have seen that the symbol ∞ is a kind of ‘many’, such records as

S = a1 + a2 + a3 + a4 . . . or S =
∞∑

i=1

ai

become imprecise. In the new language they are just something like “Calculate the
sum of ai where i goes from 1 to ‘many”’. This means that when we have infinitely
many items in a sum, we are in the same situation as with sums having a finite number
of items: it is not sufficient to say that the number, n, of items in the sum is finite, it is
necessary to fix explicitly the value of n using for this purpose numerals available in
a chosen traditional numeral system used for expressing finite numbers, e.g. n = VII
or n = 2,000. Analogously, now we should decide (in dependence on the problem we
deal with) how many items should be in our sum with an infinite number of items
by choosing an appropriate value for n, e.g., n=10CD or n=2000CD12, see [4, 5, 28]
for a detailed discussion.

In problems where the traditional language using ∞ fails and is not able to pro-
vide any answer, the new numeral system using grossone allows us to work with
expressions involving infinite numbers and to obtain, where it is possible, as results
infinite, finite, and infinitesimal numbers. For instance, let us consider two divergent
series

S1 = 5 + 5 + 5 + · · ·, S2 = 3 + 3 + 3 + · · ·

Then, by using the traditional language, we are not able to execute such operations
like, e.g., S1–S2 or S2 / S1 since both S1 and S2 are divergent series. In the new
language, both expressions S1 and S2 are not well defined since the number of items
in them is not specified. Instead of series, we should consider the sums S1(k1) and
S2(k2), to fix the infinite number of items, k1, in the first sum and the infinite number
of items, k2, in the second sum, to calculate the respective results, and then to execute
the further required operations, see [4, 5, 28]. For instance, if k1 = 2CD + 2 and
k2 = 4CD−1 thenwe are able to calculate easily both S1(2CD+ 2) and S2(4CD−1)
and to execute arithmetical operations with the results:

S1(2CD + 2) = 5(2CD + 2) = 10CD + 10, S2(4CD − 1) = 3(4CD − 1) = 12CD − 3,

S1(2CD + 2) − S2(4CD − 1) = 10CD + 10 − (12CD − 3) = −2CD + 13,

S1(2CD + 2) + S2(4CD − 1) = 10CD + 10 + 12CD − 3 = 22CD + 7,

S1(2CD + 2) · S2(4CD − 1) = 120CD2 + 90CD − 30,

S2(4CD − 1)/S1(2CD + 2) = 1.2 − 1.5CD−1 + 1.5CD−2 − 1.5CD−3,

where the result of division has been taken with the error that is not higher than
O(CD−4).
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The same situation we have with divergent integrals. Namely, records of the type
b∫

a
f (x) become imprecise if either a =−∞ or b=∞, or both. The limits of integration

equal to −∞ or ∞ should be substituted by exact infinite numbers. For instance, if
a = −6CD, b = 3CD2, and f(x) =x2, then

b∫

a

f (x) = ©16 + 2©13,

where the result is the infinite number. By changing any limit of integration (as it
happens in the case of finite limits a and b) the result will also change. For instance, by
taking the infinitesimal a = 3CD−2, we have that the integral is equal to CD6–CD−6.
We are able to find easily difference of the two obtained infinite numbers:

CD6 + 2CD3 − (CD6 − CD−6) = 2CD3 + CD−6,

that is the result of integration for a = −6CD, b = 3CD−2. By taking the limits a
= 3CD−2, b = 3CD2 and by taking f(x) = CDx2 we have that the integral, since
grossone is a constant and can be put out of the sign of integral, is equal to CD7–
CD−5. Note also that we can easily work with derivatives that can assume infinite
(and infinitesimal) values; e.g., if f(x) = CDx2 then f’(x) = 2CDx, analogously, if
g(x) = CD−6x2 then g’(x) = 2CD−6 x.

In general, it becomes possible to use infinite and infinitesimal numbers as con-
stants to construct new mathematical objects that are not visible when the traditional
mathematical language is used, see [4, 5, 28]. Let us consider, for example, the
following discontinuous function that cannot be described by the traditional mathe-
matical language, see Fig. 35.1.

If we try to describe this function by using the traditional mathematical language
workingwith finite numerals and the symbol∞, we shall see immediately that we are
not able to do this. Tobemore precise,we cangive only a roughqualitative description
of this function similar to the following one: The function is ∞ everywhere and it

Fig. 35.1 Example of a
discontinuous function having
the point of discontinuity at
the infinitesimal point CD−10

and assuming three different
infinite values at this point, on
its left, and on its right
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has an infinitesimal jump infinitesimally close to zero. This description has just a
qualitative character since in the traditional language there are no numerals allowing
us to express different infinite and infinitesimal numbers. In contract, the description
presented in Fig. 35.1 is quantitative; it uses new numerals that allow us to write the
function easily as follows

f (x) =
⎧
⎨

⎩

©12, x < ©1−1,

©12 + ©1−1, x = ©1−1,

©12 + 2©1−1, x > ©1−1,

The usage of new numerals allows us to quantify even infinitesimal changes in the
structure of objects under consideration. For instance, the following function g(x) is
clearly different from the function f(x)

g (x) =
⎧
⎨

⎩

©12, x < ©1−1,

©12 + ©1−1,2, x = ©1−1,

©12 + 2©1−1, x > ©1−1,

even though the difference is infinitesimal; it holds at the point x = CD−1. Note that
the traditional language is able again to give only a qualitative description of g(x);
moreover, this description will be the same as for function f(x).

The passage from a qualitative description to quantitative ones is very impor-
tant when we speak about natural sciences. It allows us to measure infinite and
infinitesimal quantities and to distinguish many different objects in cases that are
difficult for the traditional mathematics because it is able to see just ∞ or ℵ0 and ℵ1.
Let us illustrate this fact by considering what the traditional language and the new
one can say with respect to the delta-function—the object widely used in Physics.

Informally, it is a generalized function depending on a real x such that it is
zero for all values of the x except when x = 0, and its integral from −∞ to ∞
is equal to one. The new numeral system allows us to distinguish many different

Fig. 35.2 Examples of two
different delta-functions
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delta-functions assuming a concrete infinite value over a concrete infinitesimal inter-
val. Two of them are shown in Fig. 35.2. The first one is equal to CD over the
interval [−0.5CD−1, 0.5CD−1] and the second one is equal to CD2over the interval
[−0.5CD−2, 0.5CD−2].

We conclude this paper with the hope that the new numeral system allowing us
to work numerically with different infinite and infinitesimal numbers on the Infin-
ity Computer (see [11]) will allow physicists and mathematicians to construct new
models describing the physical world aroungd us better than it is done actually when
the traditional numeral systems are applied for this purpose.
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