
Chapter 33
Study of Stability Matter Problem in Micropolar
Generalised Thermoelastic

Arminder Singh and Gurpinder Singh

Abstract The theory of micropolar thermoelasticity has many applications. One
form of the recent years concerning the problem of propagation of thermal waves at
finite speed and the possibility of “second sound” effects established a new thermo
mechanical theory of deformable media that uses a general entropy balance as postu-
lated and the theory is illustrated in detail in the context of flow of heat in a rigid solid,
with particular reference to the propagation of thermal waves at finite speed. Then
theory of thermoelasticity for non-polar bodies, based on the new procedures, was
discussed and employed the eigen value approach to study the effect of rotation and
relaxation time in two dimensional problem of generalized thermoelasticity. Recently
investigation shows the dynamic response of a homogeneous, isotropic, generalized
thermoelastic half-space with voids subjected to normal, tangential force and thermal
stress. In this paper we introduce the eigen value approach, following Laplace and
Fourier transformation has been employed to find the general solution of the field
equation in a micropolar generalized thermoelastic medium for plane strain problem.
An application of an infinite space with an impulsive mechanical source has been
taken to illustrate the utility of the approach. The integral transformation has been
inverted by using a numerical inversion technique to get result in physical domain.
The result in the form of normal displacement, normal force stress, tangential force
stress, tangential couple stress and temperature field components have been obtained
numerically and illustrated graphically. Special case of a thermoelastic solid has also
been deduced.
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33.1 Introduction

The theory of micropolarthermoelasticity has been a subject of intensive study. A
comprehensive review of works on the subject was given by [4] and [19]. There has
been very much written in recent years concerning the problem of propagation of
thermal waves at finite speed. A generalized theory of linear micropolarthermoelas-
ticity that admits the possibility of “second sound” effects was established by [1].
Recently, [9] established a new thermomechanical theory of deformable media that
uses a general entropy balance as postulated by [8]. The theory is illustrated in detail in
the context of flow of heat in a rigid solid, with particular reference to the propagation
of thermal waves at finite speed. A theory of thermoelasticity for non-polar bodies,
based on the new procedures, was discussed by [10]. Bahshi et al. [2] employed
the eigen value approach to study the effect of rotation and relaxation time in two
dimensional problem of generalized thermoelasticity. Kumar and Rani [15] studied
the deformation due to mechanical and thermal sources in generalized orthorhomtic-
thermoelastic material. Kumar and Rani [16] investigated the dynamic response of a
homogeneous, isotropic, generalized thermoelastic half-space with voids subjected
to normal, tangential force and thermal stress. The micropolar theory was extended to
include thermal effects by [4] and [19]. Kumar and Chadha [13] derived the expres-
sions for displacements, microrotation, force stress, couple stress and first moment
for a half - space subjected to an arbitrary temperature field and a particular case of
line heat source has been discussed in detail. The uniqueness of the solution of some
boundary value problems of the linear micropolarthermoelasticity was investigated
by [3]. Passarella [21] solved the initial-boundary value problem for micropolarther-
moelasticity and proved a uniqueness theorem for the problem. Mahalanabis and
Manna [17] discussed eigen value approach to linear micropolarthermoelasticity by
arranging basic equations of elasticity in the form of matrix deferential equation in
the Hankel transform and extended the approach to linear thermoelasticity. Marin and
Lupu [18] investigated harmonic vibrations in thermoelasticity of micropolar bodies.
Kumar and Deswal [14] discussed the disturbance due to mechanical and thermal
sources in homogeneous isotropic micropolar generalized thermoelastic half-space.

33.2 Formulation and Solution of the Problem

We consider a homogeneous, isotropic, micropolar generalized thermoelastic solid in
an undisturbed state and initially at uniform temperature. We take a cartesian system
(x, y, z) and z-axis pointing vertically into the medium.

Following [6], [12] and [11], the field equations and the constitutive relations in
micropolar generalized thermoelastic solid without body forces, body couples and
heat sources can be written as
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(λ + 2μ + K ) ∇ (∇.u) − (μ + K )∇ × ∇ × u + K∇ × φ − ν

(
1 + τ1

∂

∂t

)
∇T = ρ

∂2u

∂t2

(α + β + γ )∇ (∇.φ) − γ∇ × ∇ × φ + K∇ × u − 2Kφ = ρ j
∂2φ

∂t2

K ∗∇2T = ρC∗
(

∂T

∂t
+ τ0

∂2T

∂t2

)
+ νT0

(
∂

∂t
+ 	 τ0

∂2

∂t2

)
∇ · u

mi j = αϕr,r δi j + βϕi, j + γϕ j,i ,

ti j = λur,r δi j + μ
(
ui, j + u j,i

) + K
(
u j,i − εi jr ϕr

) −ν

(
T + τ1

∂T

∂t

)
δij,

For the L-S (Lord Shulman) theory τ1 = 0, 	 = 1 and for G - L (Green Lindsay)
theory τ1 = 0, 	 = 0,

The thermal relaxations τ0 and τ1 satisfy the inequality τ1 ≥ τ0 > 0 for the
G-L theory only. However, it has been proved by [22] that the inequalities are not
mandatory for τ0 and τ1 to follow.

For two dimensional plane strain problem parallel to xz-plane, we assume

u = (u1, 0, u3) , φ = (0, φ2, 0)

The displacement components u1, u3and microrotation component depend upon
x, z and t and are independent of co-ordinate y, so that ∂

∂y ≡ 0. With these consider-
ations and using (2.6) and introducing the non-dimensional quantities as

x ′ = ω∗x

C1
, z′ = ω∗z

C1
,

T ′ = T

T0
, u′

1 = ρω∗C1u1

νT0
,

m′
32 = ω∗

C1νT0
m32,

where

ω∗ = C∗ (λ + 2μ)

K ∗ , C2
1 = λ + 2μ

ρ
.

Now applying Laplace and Fourier transform defined by

f (x, z, p) =
∫ ∞

0
f (x, z, t)exp(−pt)dt,

f̃ (ξ, z, p) =
∫ ∞

−∞
f (x, z, p)e(−ιξ x)dx,

on the set of Eq. (2.1)–(2.3), after suppressing primes, we get

http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
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d2ũ1

dz2 = 1

m3

[(
m1ξ

2 + p2
)

ũ1 − ιξm2
dũ3

dz
+ m4

dφ̃2

dz
+ ιξ (1 + τ1 p) T̃

]

d2ũ3

dz2 = 1

m1

[
−ιm2ξ

dũ1

dz
+

(
m3ξ

2 + p2
)

ũ3 − m4ιξ φ̃2 + dT̃1

dz

]

d2φ̃2

dz2 = −m5
dũ1

dz
+ ιξm5ũ3 +

(
2m5 + ξ2 + m6p2

)
φ̃2

d2T̃

dz2 = εp (1 + τ0 p	)

{
ιξ ũ1 + dũ3

dz

}
+

{
ξ2 + p (1 + τ0 p) T̃

}

where

m1 = λ + 2μ + K

ρC2
1

, m2 = λ + μ

ρC2
1

,

m4 = K

ρC2
1

, m5 = K C2
1

ρω∗2 ,

m7 = μ

ρC2
1

, m8 = λ

ρC2
1

,

ε = T0β
2
1

ρK ∗ω∗ .

Equations (2.9)– (2.12) can be written in the vector matrix differential equation
form as

d

dz
W (ξ, z, p) = A (ξ, p) W (ξ, z, p)

where

W =
[

U
DU

]
, A =

[
O I
A2 A1

]

A1 =

⎡
⎢⎢⎣

0 f12 f13 0
f21 0 0 f24
f31 0 0 0
0 f42 0 0

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

g11 0 0 g14
0 g22 g23 0
0 g32 g33 0

g41 0 0 g44

⎤
⎥⎥⎦

and O is the Null matrix of order 4 with

f12 = −lξm2

m3
, f13 = m4

m3
,

f31 = −m5, f42 = εp (1 + τ0 p	) ,

g22 =
(
m3ξ

2 + p2
)

m1
, g22 = −lm4ξ

m1
,

http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
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g41 = lεξp (1 + τ0 p	) , g44 = ξ2 + p (1 + τ0 p) ,

To solve the Eq. (2.14), we take W (ξ, z, p) = X (ξ, p)eqz for some q, So we
obtain

A(ξ, p)W (ξ, z, p) = qW (ξ, z, p),

This leads to Eigen value problem. The characteristic equation corresponding to
the matrix A is given by

det (A − qI) = 0

which on expansion provides us

q8 − σ1q6 + σ2q4 − σ3q2 + σ4 = 0

where

σ1 = g11 + g22 + g33 + g44 + f24 f42 + f12 f21 + f13 f31 ,

σ2 = g11g22 + g22g33 + g33g11 + g44g11 + g44g22 + g44g33 + f12 f24g41

+ f24 f42g11 + f24 f42g33 + f24 f42 f13 f31 − g32g23 + f12 f21g33

+ f12 f21g44 − f12 f31g23 + f13 f31g22 + f13 f31g44 − g14g41 − g14 f21 f42,

σ3 = g11g22g33 + g22g33g44 + g33g44g11 + g44g11g22 − g11g23g32 − g44g23g32

+ f24 f42g11g33 + f13 f24g41g32 + f31 f42g14g23 + f12 f21g33g44

− f13 f21g32g44 − f12 f31g23g44 − f42 f21g14g33 + f13 f31g22g44

− g14g41g22 − g14g41g33,

σ4 = g11g22g33g44 − g23g32g11g44 + g14g41g22g33 + g23g32g14g41.

The eigen values of the matrix A are the characteristic roots of the Eq. (2.19). The
vectors X (ξ, p) corresponding to the eigen values qscan be determined by solving
the homogeneous equations

[A − q I ] Xs (ξ, p) = 0.

The set of eigen vectors Xs (ξ, p) ; s = 1, 2, 3, ..., 8 may be defined as

Xs(ξ, p) =
[

Xs1(ξ, p)

Xs2(ξ, p)

]

where

Xs1(ξ, p) =

⎡
⎢⎢⎣

asqs
bs
−ξ

cs

⎤
⎥⎥⎦ , Xs2(ξ, p) =

⎡
⎢⎢⎣

asq2
s

bsqs
−ξqs
csqs

⎤
⎥⎥⎦ ,

http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2


328 A. Singh and G. Singh

Xl1(ξ, p) =

⎡
⎢⎢⎣

−asqs
bs
−ξ

cs

⎤
⎥⎥⎦ , Xl2(ξ, p) =

⎡
⎢⎢⎣

asq2
s

−bsqs
ξqs
−csqs

⎤
⎥⎥⎦ ,

as = −ξ

m3�s

[{
ξ2 + p (1 + τ0 p) − q2

s

} {
m4m5 + m2

(
2m5 + ξ2 + p2m6 − q2

s

)

+ εp
(

2m5 + ξ2 + p2m6 − q2
s

)
(1 + τ1 p) (1 + τ0 p) 	

}]

bs = ι

m3�s

[{
ξ2 + p (1 + τ0 p) − q2

s

} {
m4m5q2

s +
(

2m5 + ξ2 + p2m6 − q2
s

)

×
(

m1ξ
2 + p2 − m3q2

s

)}
+ εpξ2

(
2m5 + ξ2 + p2m6 − q2

s

)
(1 + τ1 p) (1 + τ0 p) 	

]

cs = εpqs (1 + τ0 p	) (ιξas + bs)[
q2

s − {
ξ2 + p (1 + τ0 p)

}]
�s = m5

m3
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m2q2

s −
(

m1ξ
2 + p2 − q2

s m3

)
}

+ εp (1 + τ0 p	) (1 + τ1 p)
(

q2
s − ξ2

)
]

Thus solution of Eq. (2.14) is as given by [23]

W(ξ, z, p) =
4∑

s=1

[
Es Xs (ξ, p) eqsz + Es+4 Xs+4 (ξ, p) e−qsz]

E1, E2, E3, E4, E5, E6, E7 and E8 are eight arbitrary constants. The Eq. (2.32) repre-
sents a general solution of the plane strain problem for isotropic, micropolar general-
ized thermoelastic solid and gives the displacement, microrotation and temperature
field in the transformed domain.

33.3 Applications

Mechanical Source

We consider an infinite micropolar generalized thermoelastic space in which a con-
centrated force where F0 is the magnitude of the force, F = −F0δ(x)δ(t) acting in
the direction of the z-axis at the origin of the Cartesian co-ordinate system as shown
in Fig. 33.1. The boundary condition for present problem on the plane z = 0 are

http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
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MICROPOLAR THERMOELASTIC
MEDIUM-II

z< 0 

MICROPOLAR THERMOELASTIC
MEDIUM-I

x

z> 0 

O

F0

Fig. 33.1 .

u1(x, 0+, t) − u1(x, 0−, t) = 0, u3(x, 0+, t) − u3(x, 0−, t) = 0,

φ2(x, 0+, t) − φ2(x, 0−, t) = 0, T (x, 0+, t) − T (x, 0−, t) = 0,

∂T

∂z

(
x, 0+, t

) − ∂T

∂z

(
x, 0−, t

) = 0, t31
(
x, 0+, t

) − t31
(
x, 0−, t

) = 0,

t33
(
x, 0+, t

) − t33
(
x, 0−, t

) = −F0δ(x)δ(t), m32
(
x, 0+, t

) − m32
(
x, 0−, t

) = 0

Making use of Eq. (2.6)–(2.7) and F ′
0 = F0

K in Eq. (2.4)–(2.5), we get the stresses
in the non-dimensional form with primes. After suppressing the primes, we apply
Laplace and Fourier transforms defined by Eq. (2.8) on the resulting equations and
from Eq. (3.1), we get transformed components of displacement, microrotation, tem-
perature field, tangential force stress, normal force stress and tangential couple stress
for z > 0 are given by

ũ1(ξ, z, p) = − {
a1q1E5e−q1z + a2q2E6e−q2z + a3q3E7e−q3z + a4q4E8e−q4z} ,

ũ3(ξ, z, p) = b1E5e−q1z + b2E6e−q2z + b3E7e−q3z + b4E8e−q4z,

φ̃2(ξ, z, p) = −ξ
{
E5e−q1z + E6e−q2z + E7e−q3z + E8e−q4z} ,

T̃ (ξ, z, p) = c1E5e−q1z + c2E6e−q2z + c3E7e−q3z + c4E8e−q4z,

t̃31(ξ, z, p) = (
m3a1q2

1 + ιξb1s10 + ξm4
)

E5e−q1z + (
m3a2q2

2 + ιξb2m7 + ξm4
)

E6e−q2z+(
m3a3q2

3 + ιξb3m7 + ξm4
)

E7e−q3z + (
m3a4q2

4 + ιξrmb4m7 + ξm7
)

E8e−q4z,

t̃33(ξ, z, p) = −[(ιξm8a1q1 + m1b1q1 + c1 (1 + τ1 p)) E5e−q1z

+ (ιξm8a2q2 + m1b2q2 + c2 (1 + τ1 p)) E6e−q2z

+ (ιξm8a3q3 + m1b3q3 + c3 (1 + τ1 p)) E7e−q3z

+ (ιξm8a4q4 + m1b4q4 + c4 (1 + τ1 p)) E8e−q4z,

m̃32(ξ, z, p) = ξs8
{
q1E5e−q1z + q2E6e−q2z + q3E7e−q3z + q4E8e−q4z} ,

for z<0, the above expressions get suitably modified, e.g.

ũ1(ξ, z, p) = a1q1E1eq1z + a2q2E2eq2z + a3q3E3eq3z + a4q4E4eq4z,

Making use of the transformed displacements, microrotation, microstretch and
stresses given by (3.6)–(3.12) in the transformed boundary conditions, we obtain

http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
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eight linear relations between the Ei ’s, which on solving gives

E1 = E5 = F0

2q1�1
[c2 (a3 − a4) + c3 (a4 − a2) + c4 (a2 − a3)] ,

E2 = E6 = F0

2q2�1
[c1 (a4 − a3) + c3 (a1 − a4) + c4 (a3 − a1)] ,

E3 = E7 = F0

2q3�1
[c1 (a2 − a4) + c2 (a4 − a1) + c4 (a1 − a2)] ,

E4 = E8 = F0

2q4�1
[c1 (a3 − a2) + c2 (a1 − a3) + c3 (a2 − a1)] ,

where

�1 = m1[c1 {(a2b3 − a3b2) + (a3b4 − a4b3) + (a4b2 − a2b4)}
+ c2 {(a3b1 − a1b3) + (a1b4 − a4b1) + (a4b3 − a3b4)}
+ c3 {(a1b2 − a2b1) + (a4b1 − a1b4) + (a2b4 − a4b2)}
+ c4 {(a2b1 − a1b2) + (a1b3 − a3b1) + (a3b2 − a2b3)}],

Thus functions ũ1, ũ3, ϕ̃2, T̃ , t̃31, t̃33 and m̃32 have been determined in the trans-
formed domain and these enable us to find the displacements, microrotation, tem-
perature field and stresses.

Case I : For L-S theory, as , bs and cs in the expressions (3.5)–(3.12) take the form

as = −ξ

m3�s
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m4m5 + m2

(
2m5 + ξ2 + p2m6 − q2

s

)

+ εp
(

2m5 + ξ2 + p2m6 − q2
s

)
(1 + τ0 p)}],

bs = ι

m3�s
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m4m5q2

s +
(

2m5 + ξ2 + p2m6 − q2
s

)

×
(

m1ξ
2 + p2 − m3q2

s

)
} + εpξ2

(
2m5 + ξ2 + p2m6 − q2

s

)
(1 + τ0 p)],

cs = εpqs (ιξas + bs)[
q2

s − {
ξ2 + p (1 + τ0 p)

}] ,

where

�s = m5

m3
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m2q2

s −
(

m1ξ
2 + p2 − q2

s m3

)
}

+ εp (1 + τ1 p)
(

q2
s − ξ2

)
] ; s = 1,2,3,4

http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3


33 Study of Stability Matter Problem in Micropolar Generalised Thermoelastic 331

and ±qs (s = 1, 2, 3, 4) are roots of the Eq. (2.19) in which σ1, σ2, σ3 and σ4 are
obtained respectively from expressions(2.20)–(2.23) by taking τ1 = 0, 	 = 1.

Case II : For G-L theory, as b’s and c’s in the expressions (3.5)–(3.12) take the
form

as = −ξ

m3�s
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m4m5 + m2

(
2m5 + ξ2 + p2m6 − q2

s

)

+ εp
(

2m5 + ξ2 + p2m6 − q2
s

)
(1 + τ1 p)}],

bs = ι

m3�s
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m4m5q2

s +
(

2m5 + ξ2 + p2m6 − q2
s

)
(

m1ξ
2 + p2 − m3q2

s

)
} + εpξ2

(
2m5 + ξ2 + p2m6 − q2

s

)
(1 + τ1 p)],

cs = εpqs (ιξas + bs)[
q2

s − {
ξ2 + p (1 + τ0 p)

}] ,

where

�s = m5

m3
[
{
ξ2 + p (1 + τ0 p) − q2

s

}
{m2q2

s −
(

m1ξ
2 + p2 − q2

s m3

)
}

+ εp (1 + τ1 p)
(

q2
s − ξ2

)
] ; s = 1,2,3,4

and ±qs (s =1, 2, 3, 4) are roots of the equation (2.19) in which σ1, σ2, σ3andσ4are
obtained respectively from expressions (2.20)–(2.23) by taking 	 = 0

Case III : For Green and Naghdi theory (G-N), Eq. (2.1), (2.3) and (2.4) can be
written as

(λ + 2μ + K )∇ (∇.u) − (μ + K )∇ × ∇ × u + K∇ × φ − ν∇T = ρ
∂2u
∂t2

K∗∇2T = ρC∗ ∂2T

∂t2 + νT0
∂2 (∇.u)

∂t2

ti j = λur,rδi j + μ
(
ui,j + uj,i

) + K
(
uj,i − εi j,rφr

) − νT δi j

and K ∗ is not the usual thermal conductivity but a material characteristics constant

in G - N & theory and is given K ∗
(
= C∗(λ+2μ)

4

)
With the help of Eq. (3.26)–(3.28) and following the procedure of the previous

sections, we get the expressions for displacements, microrotation, temperature, field,
force stresses and couple stress by taking in Eq. (3.5)-(3.11).

(1 + τ1 p) = 1, (1 + τ0 p) = 4p,

http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_2
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
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Particular Case I : Neglecting micropolarity effect i.e. α = β = γ = K = j = 0
in Eq. (3.5)–(3.12), the expressions for displacement components, force stresses and
temperature field are obtained in a thermoelastic medium as

ũ1(ξ, z, p) = −
{

a∗
1q1E∗

4e−q∗
1 z + a∗

2q∗
2E∗

5e−q∗
2 z + a∗

3q∗
3E∗

6e−q∗
3 z

}
,

ũ3(ξ, z, p) = b∗
1E∗

4e−q∗
1 z + b∗

2E∗
5e−q∗

2 z + b∗
3E∗

6e−q∗
3 z,

T̃ (ξ, z, p) = −ξ
{

E∗
4e−q∗

1 z + E∗
5e−q∗

2 z + c3E∗
6e−q∗

3 z
}

,

t̃31(ξ, z, p) = m7{
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a∗
1q∗2

1 + ιξb∗
1

)
E∗

4e−q∗
1 z +

(
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2q∗2
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2

)
E∗

5e−q∗
2 z

+
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3 + ιξb∗
3

)
E∗

6e−q∗
3 z},

t̃33(ξ, z, p) = −[{m∗
1
q∗

1
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1
+ ιξm8a∗

1
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1
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}
E∗

4
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1
z
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1
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2
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2
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3
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where
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2
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1
ξ2 + p2 − q∗2
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)
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}
,

and ±q∗
s (s = 1, 2, 3) are the roots of the equation
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q∗6 − σ ∗
1 q04 + σ ∗
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with

m∗
1

= λ + 2μ

ρC2
1

, m∗
3 = μ

ρC2
1

i. For L-S theory : Taking τ1 = 0, 	 = 1in expression given by (3.29)–(3.33) of
particular case I, we obtain expressions for displacement components, temperature
field and force stresses.

ii. For G-L theory : Taking 	 = 0 in expressions given by (3.29)–(3.33)of
particular case I, we obtain expressions for displacement components, temperature
field and force stresses

iii. For G-N theory : Neglecting micropolarity effect i.e. (α = β = γ = K =
j = 0) in subcase III of case I, we get the expressions for displacement components,
temperature field and force stresses are obtained in a thermoelastic medium by taking

1+τ1 p = 1, 1+τ0 p = 4p, 1+τ0 p	 = p, ε = ε1

4
, ω∗ = C1

h
, ε1 = T0ν

2

ρK ∗

in Eq. (3.29)–(3.44) as

ũ1(ξ, z, p) = −
{

a0
1q1E0

4
e−q0

1z + a0
2q0

2E0
5e−q0

2z + a0
3q0

3E0
6e−q0

3z
}

,

ũ3(ξ, z, p) = b0
1
E0

4
e−q0

1
z + b0

2E0
5e−q0

2
z + b0

3E0
6
e−q0

3
z
,

T̃ (ξ, z, p) = − ξ
{

E0
4
e−q0

1
z + E0

5e−q0
2

z + c3E0
6
e−q0

3
z
}

,

t̃31(ξ, z, p) = m7{
(

a0
1
q0

1
2 + ιξb0

1

)
E0

4
e−q0

1
z +

(
a0

2q0
2

2 + ιξb0
2

)
E0

5e−q0
2

z

+
(

a0
3q0

3
2 + ιξb0

3

)
E0

6e−q0
3

z},
t̃33(ξ, z, p) = − [

{
m0

1
q0

1
b0

1
+ ιξm8a0

1
q0

1
− ξ (1 + τ1 p)

}
E0

4
e−q0

1
z

+
{

m0
1
q0

2
b0

2
+ ιξm8a0

2q0
2 − ξ (1 + τ1 p)

}
E0

5
e−q0

2
z

http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3
http://dx.doi.org/10.1007/978-3-319-00297-2_3


334 A. Singh and G. Singh
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where f̃e and f̃0 are even and odd parts of the functions f̃ (ξ, z, p) respectively. Thus,
expression (37.1) gives us the Laplace transform f̄ (x, z, p) of the function f (x, z, t).
Following [11], the Laplace transform function f̄ (x, z, p) can be inverted to f (x, z, t) .

σ 0
3 =

(
m∗

1ξ2+p2

m∗
3

) (
m∗

3ξ2+p2

m∗
1

) (
ξ2 + 4p2

) + ε1 p2ξ2

m∗
3

(
m∗

3ξ2+p2

m∗
1

)
,

Thus, the expressions given by equations (3.5)–(3.12) with the help of (3.13)–
(3.16) and (3.17) represent the solution of plane strain problem under consideration
in the transformed domain using eigen value approach.
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33.4 Inversion of the Transforms

To obtain the solution of the problem in the physical domain, we must invert the
transforms for three theories that is L-S, G-L and G-N. These expressions are func-
tions of z, the parameters of Laplace and Fourier transforms p and ξ respectively
and hence are of the form f̄ (x, z, p). To get the function f (x, z, t)in the physical
domain, first we invert the Fourier transform using

f̄ (x, z, p) =
∫ ∞

−∞
exp(iξ x) f̃ (ξ, z, p)dξ = 1

π

∫ ∞

0

{
cos(ξ x) f̃e + i sin(ξ x) f̃0

}
dξ

The last step in the inversion process is to evaluate the integral in Eq.(37.1). This
was done using Romberg’s integration with adaptive step size. This method uses
the results from successive refinements of the extended trapezoidal rule followed by
extrapolation of the results to the limit when the step size tends to zero. The details
can be found in [20].

33.5 Numerical Results and Discussion

Following [5], we take the following values of relevant parameters for the case of
Magnesium crystal as

ρ= 1.74 gm/cm3, j= 0.2 × 10−15 cm2, λ= 9.4 × 1011 dyne/cm2,

μ= 4.0 × 1011 dyne, K= 1.0 × 1011 dyne/cm2, C∗= 0.23 Call/gm0C,

γ = 0.779 × 10−4 dyne, ε = 0.073. K ∗ = 0.6 × 10−2 cal/cmsec,
T0 = 23◦C, τ0 = 6.131 × 10−13 sec, τ1 = 8.765 × 10−13 sec
h = 1 cm, z = 1

33.6 Discussion

The variations of normal displacement U3 with distance x for three different theories
(L-S, G-L and G-N) in both media after multiplying the original values for G-N theory
in MTE medium by 10 are shown in Fig. 33.2 The values of normal displacement
due to microrotation effect are less in MTE medium in comparison to TE medium
in the 0 ≤ x ≤ 0.5for all three theories, whereas the values of U3 oscillate as x
increases further in the rest of the range for both media. It is also evident that normal
displacement decreases for both media for L-S and G-L theories, increases gradually
in MTE medium for G-N theory and oscillate in TE medium for G-N theory.

The values of normal force stress T33in magnitude are more for three different
theories in MTE medium in comparison to TE medium. It is also noticed that the
values of normal force stress oscillate for L-S and G-L theories in MTE and TE media.
The values of normal force stress also oscillate for G-N theory in TE medium, whereas

http://dx.doi.org/10.1007/978-3-319-00297-2_37
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these decrease gradually with increasing value of x in MTE medium. These variations
of normal force stress have been shown in Fig. 33.3 after dividing the original values
by 10 in case of G-N theory in MTE medium.

Figure 33.4 depicts the variations of tangential couple stress M32 for three different
theories in MTE medium after dividing the original values for G-N theory by 10. The
behaviour of tangential couple stress is oscillatory for three theories. It is noticed that
the value of tangential couple stress for G-N theory are large in comparison to L-S
and G-L theories in the range 0 ≤ x ≤ 2.5 and the values are small for the rest of the
range.

The range of values of temperature field in magnitude is large in case of three theo-
ries in MTE medium in comparison to TE medium. It is also observed that temperature
field oscillate in TE medium for three different theories but in MTE medium for L-S
and G-L theories, the temperature field oscillate. The values of temperature field for
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G-N theory decrease gradually with increasing value of x in MTE medium. These
variations shown in Fig. 33.5 after multiplying the original values in case of L-S and
G-N theories by 102 and 102 respectively in MTE medium; the original values in case
of G-N theory (TE medium) and also magnified by multiplying 102.
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33.7 Conclusion

From the above numerical results, we conclude that micropolarity has a significant
effect on normal displacement, normal force stress and temperature field mechanical-
source for three theories.Mcropolar effect is more appreciable for normal displacement
and temperature field in, comparison to normal force stress. Application of the present
paper may also be found in the field of steel and oil industries. The present Problem
is also useful in the field of geomechanics, where, the interest is about the various
phenomenon occurring in the earthquakes and measuring of displacements, stresses
and temperature field due to the presence of certain sources.

33.8 Nomenclature

λ, μ = Lame’s constants
α, β, γ, K = Micropolar material constants
α0, λ0, λ1 = Material constants due to the presence of stretch.
λI , μI , KI , αI , ν, γI , α0I , λ0I , λ1I = Microstretch viscoelastic constants
ρ = Density j = Micro-inertia u = Displacement vector φ = Microrotation

vector
φ∗ = Scalar microstretch
ti j = Force stress tensor
mi j = Couple stress tensor
λl = Microstress tensor
δi j = Kronecker delta
εi jr = Alternating tensor
Δ = Gradient operator
ι = Iota
And dot denotes the partial derivative w.r.t. time.
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