
Planning Sensors with Cost-Restricted Subprocess
Calls: A Rare-Event Simulation Approach

Frédéric Dambreville�

Lab-STICC UMR CNRS 6285, ENSTA Bretagne
2 rue François Verny, 29806 Brest Cedex 9, France

submit@fredericdambreville.com

Abstract. This paper deals with optimal sensor planning in the con-
text of an observation mission. In order to accomplish this mission, the
observer may request some intelligence teams for preliminary prior in-
formation. Since team requests are expensive and resources are bound,
the entire process results in a two-level optimization, the first level being
an experiment devoted to enhance the criterion modelling. The paper
proposes a solve of this problem by rare-event simulation, and a mission
scenario is addressed.

1 Introduction

The main background of this paper is the optimal planning of sensors in the
context of an acquisition mission. Typically, the acquisition mission may result
in the localisation of a target, with the final purpose of intercepting this target.
In this work, we focus especially on dealing with the modelling errors of the
sensor planning problem. Then, the question of interest is: how to spend resources
optimally in order to reduce the model errors, and how does that affect the sensor
planning problem?

Sensor planning, especially in order to localize a target, has been thoroughly
studied in the literature. First works in this domain track back to the works of
Koopman during World War II [1,2]. This seminal works has been extended in
various manner, so as to take into account motion models [3,4], or reactive be-
haviours of the target [5,6]. Sensor planning now deals with the general domain of
search and surveillance [7,8]. The combination of multiple sensors with their con-
straints is addressed by some works and in various application contexts: optimiz-
ing the performance of a sensor network [9,10]; optimizing the tasks-to-sensors
affectation in the context of an intelligence collection process [11,12,13,14]. An-
other major issue in sensor planning is also to maximize the positive effect of
subsequent data processing in regards to mission objectives. In [15], entropic-
based criterion are used in order to take into account optimal post-processing
of the collected information (typically data fusion). A more direct approach has
also been addressed by means of Partially Observable Markov Decision Pro-
cesses [16,17]. From this last point of view, sensor planning is clearly related to
the domain of robotic.
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Thus, a variety of approach have been investigated for many contexts of the
sensor planning. Nevertheless, there is not as much works dedicated to the ques-
tion of modelling the sensor planning. In the inspiring work[18,19], Koopman
addressed initially this formalisation, priorly to sensor planning problem. In [20],
Le Cadre studied various practical case of use of the model of Koopman, and
deduced related parametrization of the models. Whatever, it appears that a
minimal effort is necessary for acquiring a good estimation of the parameters
modelling our sensor planning. In the case of a reproducible scenario, it is pos-
sible to learn such parameters. However, there are cases where a prior learning
of the parameters is clearly impossible. Such cases hold typically when the plan-
ning team has a limited control on the sensors, and relies on sub-processes or
on sub-teams in order to implement the sensors or compute their performance
parameters. Learning the parameters is generally not possible in such case, since
any experiment on the sensors is a request to a sub-process, which is generally
done at the expense of limited resources.

The main purpose of this paper is to handle the sensor planning as a bi-level
optimization, involving:

– The improvement of the prior knowledge on the mission. This is done by
planning probing experiments, which result in requests to sub-processes,

– The optimal sensor planning on the basis of the enhanced prior.

This problem is related to some issues in optimal experiment planning. Espe-
cially in [21,22], approaches (inspired from kriging) are proposed in order to plan
experiments when the model of measure is known imperfectly. In such approach,
the experiments are optimized in order to both enhance the measure model and
the measure plan. The problem considered in this paper is somewhat different:
the resources allocable for enhancing the models are distinct to the resources
allocable for performing the mission.

In the first section 2 of this paper, we propose a general formalisation of the
sensor planning with experiment sub-processes. In section 3, a rare-event simu-
lation approach is proposed for solving this bi-level sensor planning. Section 4
presents a scenario and numerical results. Section 5 concludes.

2 Sensor Planning with Experiment Sub-processes

We are interested in the general problem of optimizing the planning of a sen-
sors so as to accomplish an observation mission. A main and first issue in such
optimization problem is the modelling of the formal optimization criterion and
constraints. This is prerequisite to any practical sensor planning process, and
it appears that the models are known with significant model noise. Two conse-
quences are implied. First, it is not necessary to obtain an accurate optimum
for a function when it is known to be noisy; smoothed criteria, derived from the
expectation of the model, are much more relevant. Second, it is interesting to
harvest additional information , so as to reduce this model noise. This is ob-
tained by probing experiments, which are resources expensive. A balance has to
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be decided between the experiment expense and the final accuracy of the optimal
sensor planning.

Our approach to this problem is formalized in section 2.2. In this paper, we
model the mission criterion to be optimized by means of the function (d, ε) �→
f(d, ε), which is dependent on both a decision parameter d to be optimized and
on a noise parameter ε which encompass the uncertainty about the model. It is
interesting to present as an introduction the well known Efficient Global Opti-
mization, which is a reference method applicable to a sub-case of this problem.

2.1 Efficient Global Optimization

The EGO is a method for optimizing an unknown function by planning efficiently
the point-evaluations of this function: a point evaluation is seen as an experiment
which will enhance a modelling of the actual but unknown criterion function.
EGO as introduced in [21], is based on a kriging interpolation model, with a
spatial Gaussian noise, of the criterion function, which takes the form of the
following functional prior:

f(d) = p(d)Tb+ Z(d) ,

where b = b1:N is a model parameter (typically known with a flat prior),
p = p1:N is a predefined functional basis by which the function f is interpo-
lated, and Z is a model spatial Gaussian law with zero-mean and a covariance
Cov(Z(d), Z(d′)) = K(d − d′), which is typically dependant on a distance be-
tween the decision parameters. Being given this prior model, the estimate of the
function (and of its minimizer) is computed with increasing accuracy by evaluat-
ing the real criterion function on a sequence of experimental decisions {dk}. Of
course, each experiment implies a cost, and the sequence of experiment has to
be optimized. Jones and al [21] proposed to optimize each step of experiment by
maximizing a criterion based on the estimated function d �→ ̂f(d) and the vari-
ance of the prediction error, d �→ σ̂(d) computed from the model and previous
experimental measures. A common criterion for choosing a new experimental
decision dk+1 is to maximize the Expected Improvement (EI), which is given by:

dk+1 ∈ argmax
d

EI(d) , with EI(d) = σ̂(dk+1)(uΦ(u) + φ(u)) ,

where:

u =
mini=1:k f(di)− ̂f(d)

σ̂(d)
.

There has been many successful applications and extensions of the EGO algo-
rithm during the last years [22].

In this paper, however, we will consider a different optimization scheme, in
the sense that the experiment processes and the functional evaluation will not
work on the same variables: we will not be able to probe the decision dk+1

directly; instead, we will request and experiment rk+1 which is not in the same
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space than dk+1. For solving this problem, a direct simulation-based approach
will be proposed. Notice that it is probably possible to consider extensions of
the EGO algorithm to the problem formalized subsequently, for example by
handling variables r,d as a joint variable, and defining a function prior on this
joint variable. This approach is not considered in this paper.

2.2 Formalisation of a Direct Approach

From now on, we are studying a bi-level sensor planning, involving a first stage of
model improvement by means of experiment request and a second stage of sensor
planning on the basis of the corrected model. This problem is characterized by:

variables: process variables; noise variables; control variable, including deci-
sions and experiment requests,

Known functions and parameters: noise-dependant objective function; cost
function; cumulative cost bound,

Prior probabilistic laws: model noise; measure law.

Criterion and Constraints

Definition of the variables

– d ∈ D is a variable describing the decision of the sensor planner. This variable
is intended to be optimized. The set D encompasses all the possible control
decision of the planner,

– ε ∈ E is a variable describing the error of the model. The value ε is obtained
from a known random process, and the planner cannot control this value.

– r1:N ∈ R are variables describing a sequence of N experiments requested by
the planner. These variables are intended to be optimized, but N is assumed
as a known parameter of the problem. The set R encompasses all possible
experiments likely to be required by the planner. The planner does these
requests before deciding for a control of the sensor. These experiments are
intended to reduce the uncertainty about the noise ε,

– m1:N ∈ M are variables describing a sequence of N measures resulting from
the requested experiments r1:N . The set M encompasses all possible mea-
sures.

Definition of the parameters and functions

– (d, ε) �→ f(d, ε) is the objective function to be maximized. It depends both
on the decision variable and on the model error,

– r �→ γ(r) is a positively valued cost function. This function evaluates the
cost of the experiments,

– Γ is the cumulative cost bound. The sum of all experiment costs cannot
exceed this value.
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Definition of the laws

– ε �→ p(ε) is the law of the error of model.
– (m, r, ε) �→ p(m|r, ε) is the law of measure conditionally to the request and

model error. It is assumed that the measures are obtained independently.

Criterion and Constraints

Criterion. The success of the mission is evaluated by means of the criterion
function f . The purpose is to optimize the decision d so as to maximize the
expected success; the expectation is computed according to the law of the model
error, conditionally to the requested experiments and resulting measures:

max
d∈D

∫

ε∈E

p(ε|m1:N , r1:N )f(d, ε) dε .

The entire bi-level planning also involves the choice of a sequence of experiments,
priorly to the mission:

max
r1:N∈R

∫

m1:N∈M

p(m1:N |r1:N )max
d∈D

∫

ε∈E

p(ε|m1:N , r1:N )f(d, ε) dε dm1:N .

Combining the model and measure law in a same joint law, the entire criterion
is equivalently rewritten:

max
r1:N∈R

∫

m1:N∈M

max
d∈D

∫

ε∈E

p(ε,m1:N |r1:N )f(d, ε) dε dm1:N , (1)

where:

p(ε,m1:N |r1:N ) = p(ε)
∏

n=1:N

p(mn|rn, ε) . (2)

The optimization (1) may as well be rewritten:

max
r1:N

max
m1:N �→d

∫

m1:N∈M,ε∈E

p(ε,m1:N |r1:N )f
(

d(m1:N ), ε
)

dε dm1:N , (3)

Constraints. The only constraint is resulting form the cumulative cost bound
for the experiments:

∑

n=1:N

γ(rn) ≤ Γ . (4)

Bi-Level Optimization Problems. Summing up both (1) and (4), the opti-
mization problem comes as follows:

Solve argmax
r1:N

max
m1:N �→d

∫

m1:N∈M,ε∈E

p(ε,m1:N |r1:N )f
(

d(m1:N ), ε
)

dε dm1:N , (5)

Under constraint
∑

n=1:N

γ(rn) ≤ Γ . (6)
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Sometime, it is useful to reformulate this problem as an optimization on para-
metric laws :

Solve argmax
π∈Π

∫

m1:N∈M,ε∈E

p(ε,m1:N |r1:N )π(d, r1:N |m1:N )f(d, ε) dε dm1:N ,

(7)

where Π is a family of conditional laws π(d, r1:N |m1:N ) which are compliant with
constraint (4). As shown in [17], reformulations based on parametric laws are
efficiently used for approximating such optimization problem. These questions
are outside the scope of this paper however.

Sub-case of interest. In section 4, two scenarios are proposed where the measures
are reduced to a detection/non detection paradigm. For convenience, it is also
assumed that:

Γ = N and γ = 1 , (8)

so that:

Constraint (6) is removed. (9)

All measures are assumed independent, so that multiple experiment will multi-
plicatively decrease the probability of non detection. There are two way to handle
this, depending whether the measure processes are discrete or continuous.

Discrete case: In this case, each experiment r ∈ R is related to a predicate
Xr(ε) which may be true or false depending on the value of ε. Conditionally to
the hypothesis that Xr is true, it is assumed that each request to experiment
r will result in a positive confirmation (i.e. detection d) with probability
θ(r) ∈ [0, 1] . Otherwise, the confirmation is negative (i.e. non detection nd).
The measure set and the measure probability are then defined as follows:

M = {d,nd} and
{

p(d|r, ε) = θ(r) if Xr(ε) = true .
p(d|r, ε) = 0 if Xr(ε) = false .

. (10)

Continuous case: In this case, it is considered that the requests are imple-
mented continuously, so that a request takes the form of a ratio of time
dedicated to an experiment. It is defined the set K of experiments (in this
case, the experiments k ∈ K are distinguished from the requests). Instead
of making N sequential requests, we will do a single, but vectorial, request.
The (single) measure is a vector of confirmation for all possible experiment.
As a consequence, N , M and R are defined as follows:

N = 1 , (11)

M = {d,nd}K , (12)

R =

{

ρK ∈ IR+K
/

∑

k∈K

ckρk = C

}

, (13)

where ck is a cost rate for request k and C is a cumulative cost bound.
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Now, an experiment k ∈ K is related to a predicate Xk(ε) which may
be true or false depending on the value of ε. Conditionally to the hypothesis
that Xk is true, it is assumed that each request ρk to an experiment k
will result in a positive confirmation (i.e. detection d) with the exponential
probability 1− exp(−ωkρk) , where ωk is a detection rate characterizing the
infinitesimal probability of detection. Otherwise, the confirmation is negative
(i.e. non detection nd). The measure probability is then defined as follows:

For any mK ∈ M, p(mK |ρK , ε) =
∏

k∈K

pk(mk|ρk, ε) (14)

where
{

pk(d|ρk, ε) = 1− exp(−ωkρk) if Xk(ε) = true .
pk(d|ρk, ε) = 0 if Xr(ε) = false .

.

(15)

These cases of interest will be implemented in the scenarios of section 4.

3 A Rare-Event Simulation-Based Implementation

A mathematical approach for solving problem (5) and corollaries is not straight-
forward, and would need more refinement on the model. On the other hand, this
problem is well suited to simulation approaches, especially as the optimization
criterion is obtained by means of an expectation. Especially, we are interested in
model-based simulation approaches, which encompass the cross-entropy method
(CE) created by Rubinstein [23], or the model reference adaptive search method
(MRAS) [24]. In the current stage of this work, the cross-entropy method (CE)
is implemented. The MRAS method seems promising but is not considered for
this paper.

3.1 The Cross-Entropy Method

It is assumed a IR-valued function y �→ ϕ(y) to be optimized for y ∈ Y . The
domain Y is probabilized. The purpose is to optimize y so as to maximize ϕ(y) :

max
y∈Y

ϕ(y) .

For solving this optimization, model-based simulation approaches have been pro-
posed, based on the following general synopsis:

– Generate samples by means of a parametric distribution,
– Evaluate the quality of the samples in accordance with the criterion function,
– Update the parametrized distribution by learning from the samples graded

with their quality.

Especially, the implementation of the Cross-Entropy method will involve the
following elements:
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– A sampling distributions family, π(·|λ) with λ ∈ Λ , which applies on variable
y,

– An increasing selection function, σ : IR → [0, 1],
– A smoothing prameter θ ∈]0, 1].

The CE algorithm for maximizing ϕ(y) on the basis of π is derived as follows:

1. Initialize λ ∈ Λ ,
2. Generate S samples y1:S by means of π(·|λ) ,
3. Compute the weighting parameters σs = σ

(

ϕ(ys)
)

for all samples ys,
4. Learn ˜λ , by minimizing the Kullback-Leibler divergence with the weighted

samples:
˜λ ∈ argmax

λ∈Λ

∑

s=1:S

σs lnπ(ys|λ) , (16)

5. Set λ = θλ+ (1 − θ)˜λ ,
(it is assumed that this operation makes sense in Λ)

6. Repeat from step 2 until convergence.

It is noticed that the selection function may evolve with the iteration step and
the samples statistic. In the classical implementation of the CE for example,
the sample selection is based on the quantiles: being given the selection rate
ρ ∈]0, 1[ , the �ρS� best samples are selected. In this case, the selection function
is computed as follows:

– Build γ ∈ IR and Σ ⊂ [[ 1, S ]] such that:

card (Σ) = �ρS� , and ϕ(y) ≤ γ ≤ ϕ(z) for any y ∈ [[ 1, S ]] \Σ et z ∈ Σ ,

– Define σ(ϕ) = I[ϕ ≥ γ] , where:

I[true] = 1 and I[false] = 0 . (17)

This selection principle will be used in this work.

3.2 Implementation of the Sub-cases of Interest

The point here is to define the evaluation function, the sampling family and the
learning step for the discrete case and the continuous case. The choice of the
selection rate and of the smoothing parameter is not difficult in practice.

In the scenario of section 4, the decisions d are same-dimension real vectors.

Subcase of Interest: Discrete Case

Evaluation function. The evaluation function is defined by:

ϕ((m1:N �→ d), r1:N ) =

∫

m1:N∈M,ε∈E

p(ε,m1:N |r1:N )f
(

d(m1:N ), ε
)

dε dm1:N .

(18)
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By defining explicitly a function of measure m = μ(r, ε, ν), where ν is a noise of
law p(ν), the function ϕ is equivalently rewritten:

ϕ((m1:N �→ d), r1:N ) =

∫

ν,ε

p(ε)p(ν)f
(

d
(

μ(r1, ε, ν), · · · , μ(rN , ε, ν)
)

, ε
)

dε dν ,

(19)

which is computed by means of a Monte-Carlo simulation on the variables (ε, ν).

Sampling family. In our examples, the variable
(

(m1:N �→ d), r1:N
)

is sampled
by the means of the family:

(d, r;m) �→ Nd(d|μm, Σm)× πr(r1:N ) , (20)

where Nd is any multivariate Gaussian law on d (defined conditionally to m)
and πr is any discrete law defined on r1:N . The family parameter is λ =
(

(μm, Σm)m, πr

)

.

Distribution update. The optimisation (16) is easy and implies an empirical
estimation of the law parameters:

π̃r(r) =
∑

s

σsI[rs = r]
/

∑

s

σs , (21)

μ̃m =
∑

s

σsI[ms = m]ds

/
∑

s

σsI[ms = m] , (22)

˜Σm =
∑

s

σsI[ms = m](ds − μ̃m)(ds − μ̃m)T
/

∑

s

σsI[ms = m] . (23)

The values (ds,ms, rs) are issued from sample s.

Subcase of Interest: Continuous Case

Evaluation function. The evaluation function is defined by:

ϕ((mK �→ d), ρK) =

∫

mK∈M,ε∈E

p(ε,mK |ρK)f
(

d(mK), ε
)

dε dmK . (24)

By defining explicitly a function of measure mk = μk(ρk, ε, ν), where ν is a noise
of law p(ν), the function ϕ is equivalently rewritten:

ϕ((mK �→ d), ρK) =

∫

ν,ε

p(ε)p(ν)f
(

d
(

μk(ρk, ε, ν)
∣

∣k ∈ K
)

, ε
)

dε dν , (25)

which is computed by means of a Monte-Carlo simulation on the variables (ε, ν).
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Sampling family. In our examples, the variable ρK is derived by a bijective
transform from a real vector �K of dimension card (K)−1. The variable

(

(mK �→
d), �K

)

is sampled by the means of the family:

(d, r;m) �→ Nd(d|μm, Σm)×N	(�|μ	, Σ	) , (26)

where Nd is any multivariate Gaussian law on d (defined conditionally to m)
and N	 is any multivariate Gaussian law on r1:N . The family parameter is
λ =

(

(μm, Σm)m, μ	, Σ	

)

.

Distribution update. The optimisation (16) is easy and implies an empirical
estimation of the law parameters:

μ̃	 =
∑

s

σs�s

/
∑

s

σs , (27)

˜Σ	 =
∑

s

σs(�s − μ̃	)(�s − μ̃	)
T
/

∑

s

σs , (28)

μ̃m =
∑

s

σsI[ms = m]ds

/
∑

s

σsI[ms = m] , (29)

˜Σm =
∑

s

σsI[ms = m](ds − μ̃m)(ds − μ̃m)T
/

∑

s

σsI[ms = m] . (30)

The values (ds,ms, �s) are issued from sample s.

4 Scenario and Numerical Results

4.1 Scenario

The mission is to intercept a target (symbolized by a smiley on picture 4), which
is hidden within the theatre. In order intercept this target, the planer has to
position a patrol as close as possible to the target. Then, this patrol will proceed
to the search of the target and to its interception.

At the early beginning of the mission, the position of the target is known
with uncertainty, and this uncertainty is characterized by means of a Gaussian
distribution. In order to enhance this prior knowledge, the planner may request
some teams, which will collect information in the neighbourhood about the tar-
get, and if it is in the neighbourhood, it will assert the presence of the target
with a given probability.

The problem is then to:

1. Select the teams to request,
2. Plan the patrol in regards to the earned information.

Sensors are positioned regularly on a grid. The position, range and detection
probabilities of the team are indicated in picture 1 and 2. These pictures respect
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the relative dimension of these parameters. These parameters, position, range
(R), detection probability, are given subsequently in this order:

(−1, 1), R = 1, 0.3 (0, 1), R = 1, 0.5 (1, 1), R = 1.5, 0.25
(−1, 0), R = 0.9, 0.8 (0, 0), R = 0.5, 0.5 (1, 0), R = 1, 0.25
(−1,−1), R = 1.2, 0.3 (0,−1), R = 1, 0.8 (1,−1), R = 1, 0.1

Sensors grid with range / detection probability

The target is known with a Gaussian uncertainty with mean μT and covariance
ΣT :

μT =

(

0.5
0.25

)

and ΣT =

(

2 1
1 1

)

The target uncertainty is indicated in picture 3. The evaluation criterion of the
mission is the estimated distance between the patrol and the target, as indicated
in picture 4.

Target uncertainty / criterion: distance(target,sensor)



102 F. Dambreville

The parameters for the CE optimization are ρ = α = 0.15 and the number of
samples S = 100. The Monte-Carlo expectation is computed by means of 1000
particles. For the subsequent examples, the convergence is considered achieved
after 100 to 200 iterations.

4.2 Results

Test 1 and test 2. Test 1 and test 2 are both about discrete requests of experi-
ment. In test 1, however, only 1 request is done, while 8 are done in test 2.

Picture 5 indicate the result of the planning for test 1. Team 4 (in green) is
requested and it is shown the decided patrol positioning: this position depends
on detection (moon) or non-detection (sun). These results are compliant with
the setting of the problem.

Picture 6 indicate the result of the planning for test 2. Teams 4 (2×), 5 (1×),
7 (3×), 8 (1×) and 9 (1×) (in green) are requested. It is not possible to give here
the patrol positioning, since there are actually 32 possible cases. Again, these
results are compliant with the setting of the problem.

Planning with 1 request / Planning with 8 request

Test 3. This test implements the subcase with continuous requests of experi-
ments. The scenario parameters are identical, with 9 possible requests, K = {1 :
9}. In addition, the cumulative cost bound is C = 10, and the cost rates cK and
detection rates ωK are given by the subsequent table:

c1 = 5, ω1 = 0.36 c2 = 25, ω2 = 0.69 c3 = 10, ω3 = 0.29
c4 = 10, ω4 = 1.61 c5 = 30, ω5 = 0.69 c6 = 2, ω6 = 0.29
c7 = 10, ω7 = 0.36 c8 = 20, ω8 = 1.61 c9 = 5, ω9 = 0.11

As a result, the following table indicates the optimized efforts ρK :

ρ1 = 0.24 ρ2 = 0.03 ρ3 = 0.09
ρ4 = 0.58 ρ5 = 0.01 ρ6 = 0.10
ρ7 = 0.02 ρ8 = 0.03 ρ9 = 0.03
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Interpretation of these last results is not so easy, although it is noticed that the
optimization does the balance between the cost and detection rates.

5 Conclusion

In this paper we considered a bi-level optimization problem consisting in a first
experiment request stage and in a final mission optimization stage. The first
stage is dedicated to the improvement of the prior model, which is known with
parameter uncertainty and condition the main objective. This problem is related
to the domain of experiment plan optimization. We propose an original formal-
ization and optimization method for this problem. Our solving approach is based
on simulation methods. Our algorithm has been tested on a target search and
interception scenario. The result is promising.
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