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Abstract. We have parallelized the fast multipole method (FMM) on
multicore computers using OpenMP programming model. The FMM is
the one of the fastest approximate force calculation algorithms for molec-
ular dynamics simulations. Its computational complexity is linear. Par-
allelization of FMM on multicore computers using OpenMP has been
reported since the multicore processors become increasingly popular.
However the number of those FMM implementations is not large. The
main reason is that those FMM implementations have moderate or low
parallel efficiency for high expansion orders due to sophisticated formu-
lae of the FMM. In addition, parallel efficiency of those implementations
for high expansion orders rapidly drops to 40% or lower as the number of
threads increases to 8 or higher. Our FMM implementation on multicore
computers using a combination approach as well as a newly developed
formula and a computational procedure (A2P) solved the above issues.
Test results of our FMM implementation on a multicore computer show
that our parallel efficiency with 8 threads is at least 70% for moderate
and high expansion orders p = 4, 5, 6, 7. Moreover, the parallel efficiency
for moderate and high expansion orders gradually drops from 96% to
70% as the number of threads increases.

Keywords: molecular dynamics simulations, fast multipole method,
multicore, OpenMP, parallelization.

1 Introduction

Molecular dynamics (MD) simulation methods [1] are orthodox means for study-
ing large-scale physical/chemical systems. The methods were originally proposed
in 1950s but they only began to use widely in the mid-1970s when digital comput-
ers became powerful and affordable. Nowadays MD methods are being continued
to use widely for studying physical/chemical systems [2,3,4].

MD is simply stated that ones numerically solve the N -body problems of
classical mechanics (Newton mechanics). Solving N -body problems for a large
number of particles N in the considered systems requires a great amount of
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time and it needs powerful computers as well as efficient algorithms. Calcula-
tion of Coulombic interaction force is the most dominated task in solving N -
body problem. The calculation often dominates 90-95% total calculation time of
MD simulations [1,2,3,4].

The simplest and most accurate algorithm for calculation force is the direct
summation (DS) algorithm. The DS calculates interaction force between every
pair of particles in the system using Coulombic force formula:

F ij = ke
qiqj

||rij ||2 .
rij

||rij || , (1)

where F ij is the Coulombic force between two particles located at ri and ri

with charges are qi and qj , respectively; ke =
1

4πε0
=

c20μ0

4π = c2o10
−7H m−1 is the

Coulomb constant and rij = rj − ri. Here c0 is the speed of light in vacuum, H
is the Henry unit and m is the meter. The potential due to qj at position ri is

Φij = ke
qj

||rij || . (2)

The DS has O(N2) computational complexity, whereN is the number of particles
in the system. However DS is only applicable for small particle systems where N
is up to 105. Using DS for larger systems will consume a huge amount of time.
To reduce force calculation cost for N -body simulations, fast algorithms such as
Barnes-Hut treecode (BH) [5,6] and fast multipole method (FMM) [7,8,9] has
been developed. The computational complexity of the algorithms are O(N logN)
and O(N), respectively.

FMM has a broad range of applications in many fields of research: large-scale
molecular dynamics simulations [10], accelerating boundary elements methods
[11], vortex methods [12] etc. Large-scale N -body or MD simulations those have
a very large N or where periodic boundary condition is not applicable are good
examples of FMM’s applications.

Because of the wide usability of FMM, there are many efforts to parallelize
FMM for achieving high performance simulations. There are different approaches
of FMM parallelization have been done so far. The first and most popular one
is parallelization of FMM on distributed memory platforms using message pass-
ing interface (MPI). The second one is usage of special-purpose hardware for
parallelization of FMM, including graphics processing units (GPU), GRAPE
(GRAvity piPE) computer family and others. The third one is using OpenMP
programming model for multiprocessor or multicore platforms. The last one com-
bines the mentioned above approaches.

Parallelization of FMM using OpenMP programming model has been reported
since the multicore processors become increasingly popular. However, there are is
a small numbers of FMM implementations for OpenMP. The reason is as follows.
Due to FMM’s sophisticated formulae and data structures, existing OpenMP
implementations of FMM have moderate or low parallel efficiency. The parallel
efficiency often drops down for high expansions orders those needed by high accu-
racy applications such as molecular dynamics simulations. As an example, paral-
lel efficiency for 8 threads of a multi-level FMM implementation using OpenMP
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is about 40% and drops to less than 25% with 16 threads [13]. Parallel efficiency
of another FMM implementation using OpenMP on a single node of the Kraken
supercomputer is relatively high (78%) for a low expansion order p = 3 [14].
However such a low expansion order p = 3 is suitable for N -body simulations
in astrophysics but not for molecular dynamics simulations. Note that molecu-
lar dynamics simulations often require high expansion orders to achieve higher
accuracy than astrophysics simulations do. The parallel efficiency of this imple-
mentation for higher expansion orders is not reported in details and drops down
rapidly. The main drawback of the authors in [14] is that the parallelism of the
M2L kernel in their implementation becomes finer with high order expansions.
This would affect parallel efficiency of the implementation favourably.

In this paper we describe our approach for implementation of FMM on multi-
core computers using OpenMP programming model [15] to overcome drawbacks
of the existing implementations. We develop a new formula for L2L stage and
a computational procedure to simplify thus speed up the far field force stage
of the FMM. The main advantages our approach is its simplicity and parallel
efficiency.

The rest parts of this paper are as follows. In section 2, we describe the original
FMM and its variations. The implementation of FMM on multicore computers
is presented in section 3. Section 4 describes experimental results and section 5
concludes.

2 The Fast Multipole Method and Its Variations

In this section, we describe briefly the fast multipole method (section 2.1), and
the most relevant algorithms to our work: the Anderson’s method (section 2.2)
and the pseudoparticle multipole method (section 2.3) by Makino.

2.1 Fast Multipole Method

The FMM is an O(N) approximate algorithm to calculate forces among par-
ticles. The O(N) scaling is achieved by approximation of the forces using the
multipole and local expansion techniques. The algorithm is applicable for both
two-dimensional [7] and three-dimensional [8,9] particle systems.

Figure 1 shows schematic idea of force approximation in the FMM. The force
from a group of distant particles are approximated by a multipole expansion
(M2M). At an observation point, the multipole expansion is converted to local
expansion (M2L). The local expansion is then evaluated by each particle around
the observation point (L2L).

A hierarchical tree structure (the octree) is used for grouping the particles.
In all FMM implementations, the particle system is assume to locate inside a
cube refering as the root cell. The root cell is then subdivided into eight equal
subcells and the subdivision process for subcells continues until certain criteria
is met. The root cell and subcells form an octree and the subdivision process
is the octree construction. The octree construction stops when the number of
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M2M
M2L

L2L

Multipole expansion Local expansion

Fig. 1. Schematic idea of force approximation in FMM

octree levels reach a predefined number, often defined by the required accuracy
of the simulations. In original FMM and its variations, the octree constructions
are simple and similar. We refer readers to Greengard and Rokhlin’s paper for
details of the octree construction [7,8].

After the completion of the octree construction, the FMM goes to its main
stages: multipole expansions to multipole expansions transition (M2M), multi-
poles expansion to local expansions conversion (M2L), local expansions to local
expansions transition (L2L) and finally force evaluation. Among them, the M2L
stage in the most computationally time consuming. The force evaluation stage
contains two parts: near field force evaluation and far field force evalution. All
the variations of the FMM follow exactly stages in the original FMM: M2M,
M2L, L2L and force evalution. The only difference is that each variation uses
different mathematical formulae for the stages.

In the rest part of this section (2.1) we briefly describe the mathematical
formulae for M2M, M2L and L2L by Greengard, Cheng and Rokhlin [9].

Spherical Harmonics. We begin by the definition of the spherical harmonics
function of degree n and order m by the formula

Y m
n (θ, φ) =

√
(n− |m|)!
(n+ |m|)!P

|m|
n cos(θ)eimφ. (3)

Here, Pm
n is the assosiated Legendre functions, defined by Rodrigues’ formula

Pm
n (x) = (−1)m(1− x2)m/2 dm

dxm
Pn(x), (4)

where Pn(x) denotes the Legendre polynomials of degree n.
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Multipole Expansion. Given the definition of the spherical harmonics func-
tion, the multipole expansion is defined as

Φ(X) =

∞∑
n=0

n∑
m=−n

Mm
n

rn+1
Y m
n (θ, φ), (5)

where X1, X2, ..., Xn are positions of N charges of strength q1, q2, ..., qn with
spherical coordinates (ρ1, α1, β1), (ρ2, α2, β2), ..., (ρn, αn, βn), respectively. As-
sume that X1, X2, ..., Xn are inside a sphere of radius a centered at the origin.
The point X ’s spherical coordinate is (r, φ, θ). The Mm

n is defined as

Mm
n =

N∑
i=1

qiρ
n
i Y

−m
n (αi, βi). (6)

Local Expansion. The local expansion is defined as

Φ(X) =
∞∑
j=0

j∑
k=−j

Lk
jY

k
j (θ, φ)r

j , (7)

where

Lk
j =

N∑
l=1

ql
Y −k
j (αl, βl)

ρj+1
l

. (8)

Here we have N charges of strength q1, q2, ..., qn located at X1, X2, ..., Xn with
spherical coordinates (ρ1, α1, β1), (ρ2, α2, β2), ..., (ρn, αn, βn), respectively and
all the points X1, X2, ..., Xn are outside of a sphere radius a centered at the
origin. The point X ’s spherical coordinate is (r, φ, θ).

Transition of a Multipole Expansion (M2M). Assume that N charges
of strength q1, q2, ..., qn are located inside a sphere D of radius a centered at
X0 = (ρ, α, β). Suppose that for any point X = (r, φ, θ) ∈ R

3 \D, the potential
due to these charges is given by the multipole expansion

Φ(X) =

∞∑
n=0

n∑
m=−n

Om
n

r′n+1
Y m
n (θ′, φ′), (9)

where (r′, θ′, φ′) are the spherical coordinates of the vector X − X0. Then for
any point X = (r, θ, φ) outside a sphere D1 of radius a+ ρ center at the origin,

Φ(X) =

∞∑
j=0

j∑
k=−j

Mk
j

rj+1
Y k
j (θ, φ), (10)

where

Mk
j =

j∑
n=0

n∑
m=−n

Ok−m
j−n i|k|−|m|−|k−m|Ak−m

j−n Am
n ρnY −m

n (α, β)

Ak
j

, (11)
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with Am
n defined by

Am
n =

(−1)n√
(n−m)!(n+m)!

(12)

Conversion of a Multipole Expansion to a Local Expansion (M2L).
Suppose that N charges of strengths q1, q2, ..., qn are located inside the sphere
DX0 of radius a centered at the point X0 = (ρ, α, β), and that ρ > (c + 1)a for
some c > 1. Then the corresponding multipole (13) converges inside the sphere
D0 of radius a centered at the origin. For any point X ∈ D0 with coordinates
(r, θ, φ), the potential due to the charges q1, q2, ..., qn is described by the local
expansion

Φ(X) =
∞∑
j=0

j∑
k=−j

Lk
jY

k
j (θ, φ)r

j , (13)

where

Lk
j =

∞∑
n=0

n∑
m=−n

Om
n i|k−m|−|k|−|m|Am

n Ak
jY

m−k
j+n (α, β)

(−1)nAm−k
j+n ρj+n+1

, (14)

with Am
n defined by (12).

Translation of a Local Expansion (L2L). Suppose that X,X0 are a pair
of points in R

3 with spherical coordinates (ρ, α, β), (r, θ, φ), respectively, and
(r′, θ′, φ′) are the spherical coordinates of the vector X −X0 and p is a natural
number. Let X0 be the center of a p-th order local expansion with p finite; its
expression at the point X is given by

Φ(X) =

p∑
n=0

n∑
m=−n

Om
n Y m

n (θ′, φ′)r′n. (15)

Then

Φ(X) =

p∑
j=0

j∑
k=−j

Lk
jY

k
j (θ, φ)r

j , (16)

everywhere in R
3, with

Lk
j =

p∑
n=j

n∑
m=−n

Om
n i|m|−|m−k|−|k|Am−k

n−j A
k
jY

m−k
n−j (α, β)ρn−j

(−1)n+jAm
n

, (17)

and Am
n defined by (12).

The M2M, M2L and L2L stages of the FMM are depicted in Figure 1. In
sections 2.2 and 2.3, we describe two variations of the FMM those are the most
relevant to our approach: Anderson’s and Makino’s methods.
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2.2 Anderson’s Method

Anderson [16] proposed a variant of the FMM using a new formulation of the
multipole and local expansions. The advantage of his method is its simplicity.
Anderson’s method makes the implementation of the FMM significantly simple.
The following is a brief description of Anderson’s method.

Anderson’s method is based on the Poisson’s formula. This formula gives
solution of the boundary value problem of the Laplace equation. When the po-
tential on the surface of a sphere of radius a is given, the potential Φ at position
r = (r, φ, θ) is expressed as

Φ(r) =
1

4π

∫
S

∞∑
n=0

(2n+ 1)
(a
r

)n+1

Pn

(s · r
r

)
Φ(as)ds (18)

for r ≥ a, and

Φ(r) =
1

4π

∫
S

∞∑
n=0

(2n+ 1)
( r
a

)n

Pn

(s · r
r

)
Φ(as)ds (19)

for r ≤ a. Note that here we use a spherical coordinate system. Here, Φ(as) is
the given potential on the sphere surface. The area of the integration S covers
the surface of the unit sphere centered at the origin. The function Pn denotes
the n-th Legendre polynomial.

In order to use these formulae as replacements of the multipole and local
expansions, Anderson proposed a discrete version of them, i.e., he truncated the
right-hand side of the Eq. (18)–(19) at a finite n, and replaced the integrations
over S with numerical ones using a spherical t-design. Hardin and Sloane define
the spherical t-design [17] as follows.

A set of K points ℘ = {P1, ..., PK} on the unit sphere Ωd = Sd−1 = {x =
(x1, ..., xd) ∈ Rd : x · x = 1} forms a spherical t-design if the identity

∫
Ωd

f(x)dμ(x) =
1

K

K∑
i=1

f(Pi) (20)

(where μ is uniform measure on Ωd normalized to have total measure 1) holds
for all polynomials f of degree ≤ t [17].

Note that the optimal set, i.e., the smallest set of the spherical t-design is
not known so far for general t. In practice we use spherical t-designs as empir-
ically found by Hardin and Sloane. Examples of such t-designs are available at
http://www.research.att.com/~njas/sphdesigns/.

Using the spherical t-design, Anderson obtained the discrete versions of (18)
and (19) as follows:

Φ(r) ≈
K∑
i=1

p∑
n=0

(2n+ 1)
(a
r

)n+1

Pn

(si · r
r

)
Φ(asi)wi (21)
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for r ≥ a (outer expansion) and

Φ(r) ≈
K∑
i=1

p∑
n=0

(2n+ 1)
( r
a

)n

Pn

(si · r
r

)
Φ(asi)wi (22)

for r ≤ a (inner expansion). Here wi is constant weight value and p is the number
of untruncated terms.

Anderson’s method uses Eq. (21) for M2M, M2L stages and (22) for L2L
transistions. The procedures of other stages are the same as that of the original
FMM.

2.3 Pseudoparticle Multipole Method

Makino [18] proposed the pseudoparticle multipole method (P2M2) – yet another
formulation of the multipole expansion. The advantage of his method is that the
expansions can be evaluated using simple equations Eq. (1) or Eq. (2).

The basic idea of P2M2 is to use a small number of pseudoparticles to ex-
press the multipole expansions. In other words, this method approximates the
potential field of physical particles by the field generated by a small number of
pseudoparticles. This idea is very similar to that of Anderson’s method. Both
methods use discrete quantities to approximate the potential field of the original
distribution of the particles. The difference is that P2M2 uses the distribution
of point charges, while the Anderson’s method uses potential values. In the case
of P2M2, the potential is expressed by point charges using Eq. (2).

In the following, we describe the formulation procedure of P2M2. The distri-
bution of pseudoparticles is determined so that it correctly describes the coeffi-
cients of a multipole expansion. A naive approach to obtain the distribution is to
directly invert the multipole expansion formula. For relatively small expansion
order, say p ≤ 2, we can solve the inversion formula, and obtain the optimal
distribution with minimum number of pseudoparticles [19].

However, it is rather difficult to solve the inversion formula for higher p, since
the formula is nonlinear. For solution with p > 2, Makino fixed the pseudopar-
ticles positions given by the spherical t-design [17], and only their charges can
change. This makes the formula linear, although the necessary number of pseu-
doparticles increases. The degree of freedom assigned to each pseudoparticle is
then reduced from four to one.

Makino’s approach gives the solution of the inversion formula as follows:

Qj =

N∑
i=1

qi

p∑
l=0

2l+ 1

K

(ri
a

)l

Pl(cos γij), (23)

where Qj is charge of pseudoparticle, ri = (ri, φ, θ) is position of physical par-
ticle, γij is angle between ri and position vector Rj of the j-th pseudoparticle.
For the derivation procedure of Eq. (23), see [18].
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3 Implementation of the FMM on Multicore Computers
Using OpenMP

3.1 A New Calculation Procedure for L2L Stage

As described above, the FMM has five stages including the octree construction,
M2M transition, M2L conversion, L2L transition and force evaluation. The force
evaluation stage contains two parts: near field and far field force evaluation.
Anderson’s method uses outer expansion (Eq. (21)) for M2M and M2L stages
and inner expansion (Eq. (22)) for L2L stage. The P2M2 method by Makino is
only applicable for M2M stage. However using Makino’s method the M2L stage
is simplied significantly by using direct pair-wise interaction given in Eq. (2).

We have done two implementations of the FMM for the special-purpose com-
puter GRAPE so far. In the first implementation (hereafter FMMGRAPE1) [20],
we combined Anderson’s method and Makino’s method. The P2M2 formula is
used for M2M stage, then Eq. (2) is used for M2L. Next, the inner expansion
by Anderson in Eq. (22) is used for L2L. With this approach, M2L is simplified
using Eq. (2) and speeded up thanks to the special-purpose computer GRAPE.
Another advantage of the combination of Anderson’s and Makino’s methods is
that it is easy to parallelize the M2L stage for multicore architecture. However
a new computational bottleneck appears in far-field force calculation as follow.

Using Eq. (22), the far field potential on a particle at position r can be
calculated from the set of potential values of the leaf cell that contains the
particle. Consequently, the far field force is calculated using derivative of Eq.
(22) [20]:

−∇Φ(r) =

K∑
i=1

p∑
n=0

(
nrPn(u) +

ur − si r√
1− u2

∇Pn(u)

)
(2n+1)

rn−2

an
g(asi)wi, (24)

where u = si · r/r. Force calculation using Eq. (24) is complicated and hard
to parallelize efficiently. In FMMGRAPE1, calculation of Eq. (24) dominates a
significant part of the total calculation [20].

In the second implementation (hereafter FMMGRAPE2) [21], we fixed the
bottleneck by developing a new formula and a new conversion procedure named
A2P. We first developed a new formula for inner expansion using pseudoparticles.
Eq. (23) by Makino gives the solution for outer expansion. We followed a similar
approach [22] and proved that the solution for inner expansion is

Qj =

N∑
i=1

qi

p∑
l=0

2l + 1

K

(
a

ri

)l+1

Pl(cos γij). (25)

The A2P conversion is used to obtain a distribution of pseudoparticles that
reproduces the potential field given by Anderson’s inner expansion. Once the
distribution of pseudoparticles is obtained, L2L stage can be performed using
formula (Eq. (25)), and then the force evaluation stage is totally done using the
simple Eq. (1). Hereafter we describe the A2P procedure indetails.
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For the first step, we distribute pseudoparticles on the surface of a sphere with
radius b using the spherical t-design. Here, b should be larger than the radius of
the sphere a on which Anderson’s potential values g(asi) are defined. According
to Eq. (25), it is guaranteed that we can adjust the charge of the pseudoparticles
so that g(asi) are reproduced. Therefore, the relation

K∑
j=1

Qj

|Rj − asi| = Φ(asi) (26)

should be satisfied for all i = 1..K. Using a matrix R = {1/|Rj − asi|} and
vectors Q = T [Q1, Q2, ..., QK ] and P = T [Φ(as1), Φ(as2), ..., Φ(asK)], we can
rewrite Eq. (26) as

RQ = P . (27)

In the next step, we solve the linear equation (27) to obtain charges Qj . For a
given cell with edge length is 1.0, the radius a and b for outer expansion and
inner expansion are 0.75 and 6.0, respectively. Because of that, solving the linear
equations system (27) is simply performing matrix-vector multiplication of R−1

and P . Once solution of Qj is obtained, far-field force calculated in Eq. (24) is
replaced by the calculation pairwise interactions with Qj using Eq. (1) that is
much simpler. Note that the calculation of R−1 is simple and takes a negligible
amount of time.

We have done numerical tests for accuracy of potential and force calculation
performed with Eq. (25) [21]. In the tests, we approximate force and potential
exerted from a particle q to a point L using Eq. (25) and the A2P procedure and
compare results with potential and force calculated using Eq. (1) and Eq. (2).
We change the distance r from q to L in a range of [1,10] and calculate relative
error for both potential and force exerted from q to L. The test results shows that
for expansion orders p = 1 to 5, potential error scales as r−(p+2) and force error
scales as r−(p+1) as theoretically expected. For p = 6, potential and force error
scales as r−(p+2) and r−(p+1) for r < 6, respectively and slowly descreasing for
r ≥ 6. The test results show that the Eq. (25) gives similar numerical accuracy
of Anderson’s given in Eq. (22).

Tables 1 and 2 compare formulae in original FMM to its variations and de-
scribe the mathematical formulae we have used in stages of our own FMM im-
plementations.

3.2 Parallelization of FMM Using OpenMP

As shown in Tables 1 and 2, we combine methods of Anderson and Makino and
our new calculation procedure A2P to implement the FMM. We apply the same
approach to implement FMM on multicore computer. Hereafter we refer this
implementation as FMMOpenMP. The main advantages of this combination is
that we are able to use very simple mathematical formulae for stages of the
FMM. In computational aspect, we have four kernels of calculation. The first
one is the Eq. (1) used for near and far field force calculation. The second one is
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Table 1. Mathematical formulae used in different variations of FMM

Stages Original FMM Anderson’s method Makino’s method

M2M Eq. (9), (10) Eq. (21) Eq. (23)
M2L Eq. (13), (14) Eq. (21) Eq. (2)
L2L Eq. (15), (16) Eq. (22) Not available
Near field force Eq. (1) Eq. (1) Eq. (1)
Far field force Evaluation of Eq. (24) Not available

local expansions

the Eq. (2) used for M2L stage. The third one is the Eq. (23) used for M2M stage
and the last one (Eq. (22)) used for L2L stage. Eq. (25) and Eq. (26) do not
dominate computationally. However, Eq. (25) and Eq. (26) help us to calculate
the far field force using the simple Eq. (1).

Table 2. Mathematical formulae used in our implementations of FMM

Stages FMMGRAPE1 FMMGRAPE2 FMMOpenMP

M2M Eq. (23) Eq. (23) Eq. (23)
M2L Eq. (2) Eq. (2) Eq. (2)
L2L Eq. (22) Eq. (22) Eq. (22)
Near field force Eq. (1) Eq. (1) Eq. (1)
Far field force Eq. (24) Eq. (1), Eq. (25), Eq. (1), Eq. (25),

Eq. (26) Eq. (26)

Parallelization of the FMM using OpenMP becomes easier with our com-
bination method. We need to parallelize the loops for potential/force pairwise
interaction and the loops that used Eq. (23) and Eq. (22). We have developed a
flops counter to find optimal level of the octree. As reported from the counter,
number of flops due to pairwise interactions takes at least 90% number of FMM
floating point operation. Therefore parallelization of the pairwise interaction is
the most important task. Thanks to Eq. (1), Eq. (2) for their simplicity, the
parallelization pseudocode of Eq. (1) (for near and far field force calculation)
and Eq. (2) (for M2L stage) is straightforward as follows:

#pragma omp parallel for default(shared) private(i,j,...)

for (j=0;j<k;j++) { // For each destination particle

for (i=0;i<n;i++) { // For each source particle

// Calculate distance between particle i and particle j

...

// Calculate Coulombic force (Eq. (1)) or

// Coulombic potential (Eq. (2))

...

}

}
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Parallelization of M2M and L2L stages are also simple. The following is the
parallelization pseudocode of the M2M calculation:

for (l=levels-1;l>=0;l--) { // Traverse octree from leaf to root

#pragma omp parallel for default(shared) private(node,...)

for (node=0;node<num;node++) { // For every node in this level

// if the current node is a leaf then calculate

// pseudoparticles masses based on postions and masses

// of real particles inside the node,

// otherwise calculate pseudoparticles masses based on

// positions and masses of the pseudoparticles

// of its children nodes.

}

}

and the parallelization pseudocode of L2L is

#pragma omp parallel for default(shared) private(i,j,...)

for (i=0;i<nbchild;i++) { // For every child of the current node

// if the child contains no real particles then ignore,

// otherwise perform L2L using inner expansion formula

}.

We see that the parallelization of the FMM using OpenMP is relatively sim-
ple using our calculation scheme. Our calculation scheme has been implemented
for the special-purpose computer GRAPE and achieved a speedup from 3-60
depending on accuracy of force calculation. Since our method uses simple math-
ematical formulae, it is also simple to parallelize FMM on multicore computers
as shown above. We will show our experimental results in the next section.

4 Experimental Results

The FMMOpenMP is tested on a multiprocessor computer. The computer is
equiped with four dual-core Intel(R) Xeon(R) CPU X5355 2.66 GHz processors
and 4 GB RAM so that it is able to run 8 threads in parallel. The computer runs
x86 64 Ubuntu operating system with 2.6.32-21 Linux kernel. We use gcc 4.4.3

compiler with POSIX threading model enabled. We develop the FMMOpenMP
using C++ programming language.

We performed tests on performance and parallel efficiency of the FMM
OpenMP. In all the tests, we distributed particles uniformly in a unit cube
centered at the origin and evaluated force on all particles. The number of par-
ticles is from 64K to 8M, where K denotes 1024 and M denotes 1024 × 1024.
The accuracy of FMM force calculation for uniform distribution of particles is
described in table 3. Since the accuracy of force calculation with p = 1 and p = 2
is not enough for production runs, we perform tests for p ≥ 3. Figure 2 shows
FMM performance versus that of direct summation. We can see that the direct
summation algorithm scales as O(N2) while FMM scales as O(N). When N is
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Table 3. Accuracy of FMM force calculation

Expansion order Force RMS relative error

p = 1 1.6× 10−1

p = 2 2.1× 10−2

p = 3 4.9× 10−3

p = 4 7.4× 10−4

p = 5 1.6× 10−4

p = 6 5.7× 10−5

p = 7 1.7× 10−5
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Fig. 2. Performance of direct summation and FMM algorithms. The dashed and solid
curves represent the direct summation’s and FMM’s performance, respectively. Trian-
gles, squares and pentagons denote performance of FMM with p = 3, p = 5 and p = 7,
respectively.

8M, FMM runs faster than direct summation from 497 times to 2253 times when
p runs from 7 to 3.

In the next tests, we show speedup and parallel efficiency of the FMMOpenMP
on the computer described above. If P is the number of threads, T1 is the execu-
tion time of the sequential FMM and TP is the execution time of FMMOpenMP
with P threads then speedup is

Sp =
T1

TP
(28)

and parallel efficiency is

EP =
SP

P
. (29)
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Table 4. Speed up SP of FMMOpenMP for N=8M

P p = 3 p = 4 p = 5 p = 6 p = 7

2 1.52 1.91 1.91 1.93 1.91
4 2.23 3.59 3.60 3.62 3.62
8 2.36 5.47 5.52 5.60 5.53

Table 5. Parallel efficiency EP of FMMOpenMP for N=8M

P p = 3 p = 4 p = 5 p = 6 p = 7

2 76.1% 95.5% 95.7% 96.4% 95.4%
4 55.7% 89.7% 90.1% 90.5% 90.5%
8 29.5% 68.3% 69.0% 70.0% 69.1%

Tables 4 and 5 show speedup and parallel efficiency of FMMOpenMP for a
test with 8M uniform distribution particles. The test results are similar for other
values of N . Test results shows that speedup SP of FMMOpenMP is low with
expansion order p = 3 and becomes much higher with moderate and high order
expansions p = 4, 5, 6, 7.

As a result, the parallel efficiency EP of the FMMOpenMP rapidly drops from
76.1% to 29.5% when the number of threads increases from 2 to 8. However the
parallel efficiency gradually drops from 96% to 70% with moderate and high
expansions orders p = 4, 5, 6, 7. We can see that FMMOpenMP efficiency is
better than that of Pan et. al. [13] which equal or lower than 40% for 8 threads.

As shown in Table 5, for a given number of threads the FMMOpenMP’s
parallel efficiency increases or unchanges as expansion order p increases. This
behaviour is opposite to that of Yokota et. al. [14]. The parallel efficiency of
Yokota’s implementation is relatively high (78%) for low expansion order p = 3
but becomes low with high expansion orders [14]. The behaviour of parallel effi-
ciency in our FMMOpenMP implementation shows that our approach is better
than that of Yokota for applications require high accuracy of force calculation.

Reasons to explain our FMMOpenMP’s behaviours include the usage of com-
bination approach and simple mathematical formulae thanks to the A2P proce-
dure. With the combination approach and A2P, the easy-to-parallelize pairwise
interaction of FMMOpenMP, that has high parallel efficiency, dominates the
total calculation. As expansion order p increases, the number of pairwise inter-
action increases accordingly and so does the parallel effciency.

5 Conclusions

We have successfully implemented the fast multipole method for multicore com-
puters using OpenMP programming model. Test results show that it is simple to
parallelize our FMM code using OpenMP thanks to the combination approach
and A2P procedure. Our implementation’s parallel efficiency for moderate and
high expansion orders p are higher than those of Pan et. al. [13] and Yokota
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et. al. [14]. This behaviour makes our approach is suitable for high accuracy
demand applications. The parallel efficiency of FMMOpenMP drops gradually
for moderate and high expansion orders. This also shows another advantage of
our implementation over those of Pan et. al. and Yokota et. al.

We still have room for improvements since the parallelization of M2M and
L2L kernels is not optimized yet. The speedup and parallel efficiency of FM-
MOpenMP will become higher once the issues for improvements have been
solved.
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