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Abstract. In this paper, we prove the convergence of weak solutions of
fast rotating fluids between two infinite parallel plates towards the two-
dimensional limiting system. We also put in evidence the existence of
Ekman boundary layers when Dirichlet boundary conditions are imposed
on the domain.
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1 Introduction

In this paper, we consider a simplified model of geophysical fluids, that is the
system of fast rotating, incompressible, homogeneous fluids between two parallel
plates, with Dirichlet boundary conditions, as in [16], [18] or [8]
⎧
⎪⎪⎨

⎪⎪⎩

∂tu
ε − νh(ε)Δhu

ε − βε∂2
3u

ε + uε · ∇uε +
e3 ∧ uε

ε
= −∇pε in R+ ×Ωh × [0, 1]

div uε = 0 in R+ ×Ωh × [0, 1]

uε
|t=0

= uε
0, in Ωh × [0, 1].

(1)

Here, the fluid rotates in the domain Ωh× [0, 1], between two “horizontal plates”
Ωh×{0} and Ωh×{1}, where Ωh is a subdomain of R2. We are interested in the
case where Rossby number ε goes to zero and we suppose that νh(ε) also goes
to zero with ε. We emphasize that all along this paper, we always use the index
“h” to refer to the horizontal terms and horizontal variables, and the index “v”
or “3” to the vertical ones.

The Coriolis force ε−1e3 ∧ uε has a very important impact on the behaviors
of fast rotating fluids (corresponding to a small Rossby number ε). Indeed, if we
suppose that u is the formal limit of uε when ε goes to zero, we can prove that u
does not depend on the third space variable x3. Since the Coriolis force becomes
very large as ε becomes small, the “only theorical way” to balance that force is
to use the pressure force term −∇pε. This means that there exists a function ϕ
such that e3 ∧ u = ∇ϕ, or in a equivalent way⎛

⎝
−u2
u1

0

⎞
⎠ =

⎛
⎝
∂1ϕ
∂2ϕ
∂3ϕ

⎞
⎠ .
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Thus, ϕ (and so u1 and u2) does not depend on x3. The incompressibility of the
fluid implies that

∂3u
3 = −∂1u1 − ∂2u

2 = −∂1∂2ϕ+ ∂1∂2ϕ = 0,

which means the third component u3 does not depend on x3 neither. This in-
dependence was justified in the experiment of G.I. Taylor (see [10]), drops of
dye injected into a rapidly rotating, homogeneous fluid, within a few rotations,
formed perfectly vertical sheets of dyed fluid, known as Taylor curtains. In large-
scale atmospheric and oceanic flows, the Rossby number is often observed to be
very small, and the fluid motions also have a tendency towards columnar be-
haviors (Taylor columns). For example, currents in the western North Atlantic
have been observed to extend vertically over several thousands meters without
significant change in amplitude and direction ([23]).

The columnar behaviors of the solution of the system (1), in the case where
ν(ε) > 0 is fixed and where the domain has no boundary (T3 or R

3), were
studied by many authors. In the case of periodic domains, Babin, Mahalov and
Nicolaenko [1]-[2], Embid and Majda [11], Gallagher [13] and Grenier [15] proved
that the weak (and strong) solutions of the system (1) converge to the solution
of the limiting system, which is a two-dimensional Navier-Stokes system with
three components. In the case of R3, Chemin, Desjardins, Gallagher and Grenier
proved in [6] and [7] that if the initial data are in L2(R3) then the limiting system
is zero. If the initial data are of the form

u0 = u0 + v0, (2)

where
u0 =

(
u10(x1, x2), u

2
0(x1, x2), u

3
0(x1, x2)

)

is a divergence-free vector field, independent of x3 and

v0 =
(
v10(x1, x2, x3), v

2
0(x1, x2, x3), v

3
0(x1, x2, x3)

)
,

the limiting system is also proved to be a two-dimensional Navier-Stokes system
with three components. The case where νh(ε) → 0 as ε → 0 and the domain
is R

3 was studied by the author of this paper in [19] and [20]. We also refer
to [14] in which, Gallagher and Saint-Raymond proved the convergence of the
weak solutions of the system (1) to the solution of the two-dimensional limiting
system in the more general case where the axis of rotation is not fixed to be e3.

Things are very different in the case where the domain is Ωh × [0, 1] with
Dirichlet boundary conditions. Indeed, when the rotation goes to infinity, the
Taylor columns are only formed in the interior of the domain. Near the boundary,
Ekman boundary layers exist. The behaviors of the fluid become very complex
and the friction slows the fluid down in a way that the velocity is zero on the
boundary. In the works of Grenier and Masmoudi [16] (Ωh = T

2) and Chemin
et al. [8] (Ωh = R

2), it was proved that, in the limiting system, we obtain an
additional damping term of the form

√
2βu. This phenomenon is well known in

fluid mechanics as the Ekman pumping.
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Since the viscosity is positive in all three directions (νh = νh(ε) > 0 and
νv = βε > 0), the system (1) possesses a weak Leray solution

uε ∈ L∞(R+,L
2(Ωh × [0, 1])) ∩ L2(R+, Ḣ

1(Ωh × [0, 1])).

In the case where νh > 0 is fixed and where the initial data are well prepared,
i.e.

lim
ε→0

uε0 = u0 = (u10(x1, x2), u
2
0(x1, x2), 0) in L2(R2

h × [0, 1])

and u0 is a divergence-free two-dimensional vector field in Hσ(R2
h), σ > 2, it

was proved by Grenier and Masmoudi in [16] (Ωh = T
2
h) and by Chemin et al.

in [8] (Ωh = R
2
h) that, when ε goes to zero, uε converges to the solution of the

following limiting system in L∞(R+,L
2(R3))

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t u
h − νhΔhu

h + uh · ∇h u
h +

√
2β uh = −∇h p

∂t u
3 − νhΔhu

3 + uh · ∇h u
3 +

√
2β u3 = 0

div hu
h = 0

∂3u = 0

u|t=0
= u0.

(3)

The case of ill-prepared data, where u0 = (u10(x1, x2), u
2
0(x1, x2), u

3
0(x1, x2)) has

all the three components different from 0, was studied in [8].
In this paper, we consider the system (1) in the case where Ωh = R

2, where
νh(ε) → 0 as ε → 0 and where the data are well prepared. The limiting system
is the following

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t u
h + uh · ∇h u

h +
√
2β uh = −∇h p

∂t u
3 + uh · ∇h u

3 +
√
2β u3 = 0

div hu
h = 0

∂3u = 0

u|t=0
= u0.

(4)

We want to remark that in this case where the data are well prepared, as u30 = 0,
the third component u3 = 0 for any t > 0. In [16] and [8], it was proved that, in
the case where νh → 0 as ε → 0, the weak solutions of the system (1) converge
to the solution of the limiting system (4), but the convergence is only local with
respect to the time variable. In this paper, we show the exponential decay of the
solution of the system (4) in appropriate Sobolev norms, and we improve the
result of [16] and [8]. More precisely, we prove the uniform convergence (with
respect to the time variable) of (1) towards (4).

Theorem 1. Suppose that

lim
ε→0

νh(ε) = 0 and lim
ε→0

ε
1
2

νh(ε)
= 0.
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Let uε0 ∈ L2(R2
h × [0, 1]) be a family of initial data such that

lim
ε→0

uε0 = u0 = (u10(x1, x2), u
2
0(x1, x2), 0) in L2(R2

h × [0, 1]),

where u0 is a divergence-free two-dimensional vector field in Hσ(R2
h), σ > 2. Let

u be the solution of the limiting system (4) with initial data u0 and, for each
ε > 0, let uε be a weak solution of (1) with initial data uε0. Then

lim
ε→0

‖uε − u‖L∞(R+,L2(R2
h×[0,1])) = 0.

2 Preliminaries

In this section, we briefly recall the properties of dyadic decompositions in the
Fourier space and give some elements of the Littlewood-Paley theory. Using
dyadic decompositions, we redefine some classical function spaces, which will
be used in this paper. In what follows, we always denote by (cq) (respectively
(dq)) a square-summable (respectively summable) sequence, with

∑
q c

2
q = 1

(respectively
∑

q dq = 1), of positive numbers (which can depend on several
parameters). We also remarque that, in order to simplify the notations, we use
the bold character X to indicate the space of vector fields, each component of
which belongs to the space X .

We recall that F and F−1 are the Fourier transform and its inverse, and
that we also write û = Fu. For any d ∈ N

∗ and 0 < r < R, we denote
Bd(0, R) =

{
ξ ∈ R

d | |ξ| ≤ R
}
, and Cd(r, R) =

{
ξ ∈ R

d | r ≤ |ξ| ≤ R
}
. The

following Bernstein lemma gives important properties of a distribution u when
its Fourier transform is well localized. We refer the reader to [5] for the proof of
this lemma.

Lemma 2. Let k ∈ N, d ∈ N
∗ and r1, r2 ∈ R satisfy 0 < r1 < r2. There exists

a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0
and for any u ∈ La(Rd), we have

supp (û) ⊂ Bd(0, r1λ) =⇒ sup
|α|=k

‖∂αu‖Lb ≤ Ckλk+d( 1
a− 1

b ) ‖u‖La , (5)

and

supp (û) ⊂ Cd(r1λ, r2λ) =⇒ C−kλk ‖u‖La ≤ sup
|α|=k

‖∂αu‖La ≤ Ckλk ‖u‖La .

(6)

Let ψ be an even smooth function in C∞
0 (R), whose support is contained in the

ball B1(0,
4
3 ), such that ψ is equal to 1 on a neighborhood of the ball B1(0,

3
4 ).

Let

ϕ(z) = ψ
(z
2

)
− ψ(z).
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Then, the support of ϕ is contained in the ring C1(
3
4 ,

8
3 ), and ϕ is identically

equal to 1 on the ring C1(
4
3 ,

3
2 ). The functions ψ and ϕ allow us to define a

dyadic partition of Rd, d ∈ N
∗, as follows

∀z ∈ R, ψ(z) +
∑
j∈N

ϕ(2−jz) = 1.

Moreover, this decomposition is almost orthogonal, in the sense that, if |j − j′| ≥
2, then

supp ϕ(2−j(·)) ∩ supp ϕ(2−j′(·)) = ∅.
We introduce the following dyadic frequency cut-off operators. We refer to [3]
and [5] for more details.

Definition 3. For any d ∈ N
∗ and for any tempered distribution u ∈ S ′(Rd),

we set

Δqu = F−1
(
ϕ(2−q |ξ|)û(ξ)) , ∀q ∈ N,

Δ−1u = F−1 (ψ(|ξ|)û(ξ)) ,
Δqu = 0, ∀q ≤ −2,

Squ =
∑

q′≤q−1

Δq′u, ∀q ≥ 1.

Using the properties of ψ and ϕ, one can prove that for any tempered distribution
u ∈ S ′(Rd), we have

u =
∑
q≥−1

Δqu in S ′(Rd),

and the (isotropic) nonhomogeneous Sobolev spaces Hs(Rd), with s ∈ R, can be
characterized as follows

Proposition 4. Let d ∈ N
∗, s ∈ R and u ∈ Hs(Rd). Then,

‖u‖Hs :=

(∫

Rd

(1 + |ξ|2)s |û(ξ)|2 dξ
) 1

2

∼
⎛
⎝∑

q≥−1

22qs ‖Δqu‖2L2

⎞
⎠

1
2

Moreover, there exists a square-summable sequence of positive numbers {cq(u)}
with

∑
q cq(u)

2 = 1, such that

‖Δqu‖L2 ≤ cq(u)2
−qs ‖u‖Hs .

The decomposition into dyadic blocks also gives a very simple characterization
of Hölder spaces.
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Definition 5. Let d ∈ N
∗ and r ∈ R+ \ N.

1. If r ∈]0, 1[, we denote Cr(Rd) the set of bounded functions u : Rd → R such
that there exists C > 0 satisfying

∀ (x, y) ∈ R
d × R

d, |u(x)− u(y)| ≤ C |x− y|r .

2. If r > 1 is not an integer, we denote Cr(Rd) the set of [r] times differentiable
functions u such that ∂αu ∈ Cr−[r](Rd), for any α ∈ N

d, |α| ≤ [r], where [r]
is the largest integer smaller than r.

One can prove that the set Cr(Rd), endowed with the norm

‖u‖Cr :=
∑

|α|≤[r]

(
‖∂αu‖L∞ + sup

x 
=y

|∂αu(x)− ∂αu(y)|
|x− y|r−[r]

)

is a Banach space. Moreover, we have the following result, the proof of which
can be found in [5].

Proposition 6. There exists a constant C > 0 such that, for any r ∈ R+ \ N

and for any u ∈ Cr(Rd), we have

sup
q

2qr ‖Δqu‖L∞ ≤ Cr+1

[r]!
‖u‖Cr .

Conversely, if the sequence
(
2qr ‖Δqu‖L∞

)
q≥−1

is bounded, then

‖u‖Cr ≤ Cr+1

(
1

r − [r]
+

1

[r] + 1− r

)
sup
q

2qr ‖Δqu‖L∞ .

Finally, we need the following results (for a proof, see [21]). Let [., .] denote the
usual commutator.

Lemma 7. Let d ∈ N
∗. There exists a constant C > 0 such that, for any tem-

pered distributions u, v in S ′(Rd), we have

‖[Δq, u] v‖L2 = ‖Δq(uv)− uΔqv‖L2 ≤ C2−q ‖∇u‖L∞ ‖v‖L2 .

3 Estimates for the Limiting System

In this section, we give useful auxiliary results concerning the 2D limiting system
(4). Throughout this paper, for any vector field u = (u1, u2, u3) independent
of the vertical variable x3, we denote by w the associated horizontal vorticity,
w = ∂1u

2 − ∂2u
1. For the sake of the simplicity, let γ =

√
2β. The first result of

this section is the following lemma
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Lemma 8. Let u0 = (u10(x1, x2), u
2
0(x1, x2), u

3
0(x1, x2)) ∈ L2(R2

h) be a divergence-
free vector field, the horizontal vorticity of which

w0 = ∂1u
2
0 − ∂2u

1
0 ∈ L2(R2

h) ∩ L∞(R2
h).

Then, the system (4), with initial data u0, has a unique, global solution

u ∈ C(R+,L
2(R2

h)) ∩ L∞(R+,L
2(R2

h)).

Moreover,
(i) There exists a constant C > 0 such that, for any p ≥ 2 and for any t > 0,

we have
∥∥∇hu

h(t)
∥∥
Lp(R2

h)
≤ CMp e−γt, (7)

∥∥uh(t)∥∥
Lp(R2

h)
≤ CMe−γt, (8)

where
M = max

{∥∥uh0
∥∥
L2(R2

h)
, ‖w0‖L2(R2

h)
, ‖w0‖L∞(R2

h)

}
.

(ii) For any p ≥ 2, if u30 ∈ Lp(R2
h), then,∥∥u3(t)∥∥

Lp(R2
h)

≤ ∥∥u30
∥∥
Lp(R2

h)
e−γt. (9)

To prove of Lemma 8, we remark that in (4), the first two components of u
verify a two-dimensional Euler system with damping term. Then, according
to the Yudovitch theorem [25] (see also [5]), this system has a unique solu-
tion uh ∈ C

(
R+,L

2(R2
h)
) ∩L∞ (

R+,L
2(R2

h)
)
such that the horizontal vorticity

w ∈ L∞(R+,L
2(R2

h))∩L∞(R+,L
∞(R2

h)). Since the third component u3 satisfies
a linear transport-type equation, then we can deduce the existence and unique-
ness of the solution u of the limiting system (4). Then, Inequalities (7)-(9) can be
deduced from classical Lp estimates for Euler equations and transport equations.

�

Next, we need the following Brezis-Gallouet type inequality. For a proof of
Lemma 9 below, see [5] or [20]. We also refer to ([4]).

Lemma 9. Let r > 1. Under the hypotheses of Lemma 8 and the additional
hypothesis that w0 ∈ Hr(R2

h), there exists a positive constant Cr such that

∥∥∇hu
h
∥∥
L∞(R2

h
)
≤ Cr ‖w‖L∞(R2

h)
ln

(
e+

‖w‖Hr(R2
h)

‖w‖L∞(R2
h)

)
. (10)

Now, we can give a L∞-estimate of ∇hu
h in the following lemma.

Lemma 10. Under the hypotheses of Lemma 9, there exist positive constants
C1, C2, depending on γ, ‖w0‖Hr(R2), such that

‖w(t)‖Hr(R2
h)

≤ C1e
−γt, (11)

and ∥∥∇hu
h(t)

∥∥
L∞(R2

h
)
≤ C2e

−γt. (12)
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Proof of Lemma 10

First of all, there exist a constant C > 0 and a summable sequence of positive
numbers (dq)q≥−1 such that (see [20])

∣∣〈Δh
q (u

h · ∇hw)
∣∣ Δh

qw
〉∣∣ ≤ Cdq2

−2qr
(∥∥∇hu

h
∥∥
L∞ + ‖w‖L∞

) ‖w‖Hr . (13)

Then, for any r > 1, we get the following energy estimate in Sobolev Hr-norm:

1

2

d

dt
‖w(t)‖2Hr + γ ‖w(t)‖2Hr ≤ C

(‖w(t)‖L∞ +
∥∥∇hu

h(t)
∥∥
L∞
) ‖w(t)‖2Hr . (14)

Taking into account Estimate (10), we rewrite (14) as follows

d

dt
‖w(t)‖Hr +γ ‖w(t)‖Hr ≤ C ‖w‖L∞

(
1 + ln

(
e+

‖w‖Hr

‖w‖L∞

))
‖w(t)‖Hr . (15)

Since w is solution of a linear transport equation, it is easy to prove that
‖w(t)‖Lp ≤ CMe−γt, where C is a positive constant and

M = max
{∥∥uh0

∥∥
L2(R2

h)
, ‖w0‖L2(R2

h)
, ‖w0‖L∞(R2

h)

}
.

Since C and M do not depend on p, we have

‖w(t)‖L∞ ≤ CMe−γt.

Therefore, considering y(t) = ‖w(t)‖Hr eγt, we can deduce from (15) that

d

dt
y(t) ≤ CMe−γty(t) [1 + ln (e+ y(t))] . (16)

Integrating (16) with respect to t, we obtain the existence of C1 > 0 such that

‖w(t)‖Hr ≤ C1e
−γt.

Combining the above estimate with (10) and using the fact that x ln
(
e+ α

x

)
is an

increasing function, we obtain the existence of a positive constant C2, depending
on γ and ‖w0‖Hr , such that

∥∥∇hu
h(t)

∥∥
L∞ ≤ C2e

−γt. �

In what follows, we wish to prove an estimate similar to (12) for the third
component u3 of the solution u of the system (4).

Lemma 11. Let 2 < r < 3 and u(t, x) be a solution of (4), with initial data
u0 in Hr(R2

h). Then, there exist a positive constant C3, depending on γ and
‖u0‖Hr(R2

h)
such that, for any t ≥ 0,

∥∥u3(t)∥∥
Hr(R2

h
)
≤ C3e

−γt. (17)
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Proof of Lemma 11

Differentiating two times the equation verified by u3, for any i, j ∈ {1, 2}, we
have

∂t∂i∂ju
3 + γ∂i∂ju

3 + (∂i∂ju
h) · ∇hu

3 + (∂iu
h) · ∇h∂ju

3

+ (∂ju
h) · ∇h∂iu

3 + uh · ∇h∂i∂ju
3 = 0.

Taking the Hr−2 scalar product of the above equation with ∂i∂ju
3, we get

1

2

d

dt

∥∥∂i∂ju3
∥∥2
Hr−2 + γ

∥∥∂i∂ju3
∥∥2
Hr−2 (18)

≤ ∣∣〈(∂i∂juh) · ∇hu
3 | ∂i∂ju3

〉
Hr−2

∣∣+ ∣∣〈(∂iuh) · ∇h∂ju
3 | ∂i∂ju3

〉
Hr−2

∣∣
+
∣∣〈(∂juh) · ∇h∂iu

3 | ∂i∂ju3
〉
Hr−2

∣∣+ ∣∣〈uh · ∇h∂i∂ju
3 | ∂i∂ju3

〉
Hr−2

∣∣ .
The divergence-free property allow us to write

(∂i∂ju
h) · ∇hu

3 = ∂i
(
(∂ju

h) · ∇hu
3
)− (∂ju

h) · ∇h∂iu
3

= ∂i
(
(∂ju

h) · ∇hu
3
)− divh

(
∂iu

3∂ju
h
)
.

Then, using the Cauchy-Schwarz inequality, classical estimates for Sobolev spaces
(see [[5], Theorem 2.4.1]) and the Sobolev embedding Hr−1(R2

h) ↪→ L∞(R2
h), we

obtain
∣∣〈(∂i∂juh) · ∇hu

3 | ∂i∂ju3
〉
Hr−2

∣∣
≤ ∥∥(∂juh) · ∇hu

3
∥∥
Hr−1

∥∥∂i∂ju3
∥∥
Hr−2 +

∥∥∂iu3∂juh
∥∥
Hr−1

∥∥∂i∂ju3
∥∥
Hr−2

≤ (∥∥∂juh
∥∥
L∞
∥∥u3∥∥

Hr +
∥∥∇hu

3
∥∥
L∞
∥∥∂juh

∥∥
Hr−1

) ∥∥u3∥∥
Hr

+
(∥∥∂iu3

∥∥
L∞

∥∥∂juh
∥∥
Hr−1 +

∥∥∂juh
∥∥
L∞
∥∥u3∥∥

Hr

) ∥∥u3∥∥
Hr

≤ C ‖w‖Hr−1

∥∥u3∥∥2
Hr .

The same arguments imply
∣∣〈(∂iuh) · ∇h∂ju

3 | ∂i∂ju3
〉
Hr−2

∣∣
≤ ∥∥divh

(
∂ju

3∂iu
h
)− ∂ju

3∂i(divhu
h)
∥∥
Hr−2

∥∥∂i∂ju3
∥∥
Hr−2

≤ (∥∥∂ju3
∥∥
L∞
∥∥∂iuh

∥∥
Hr−1 +

∥∥∂iuh
∥∥
L∞
∥∥u3∥∥

Hr

) ∥∥u3∥∥
Hr

≤ C ‖w‖Hr−1

∥∥u3∥∥2
Hr ,

and likewise,

∣∣〈(∂juh) · ∇h∂iu
3 | ∂i∂ju3

〉
Hr−2

∣∣ ≤ C ‖w‖Hr−1

∥∥u3∥∥2
Hr .

For the last term of (18), since 2 < r < 3, a slightly different version of Estimate
(13) yields

∣
∣
∣

〈

uh · ∇h∂i∂ju
3 | ∂i∂ju3

〉

Hr−2

∣
∣
∣ ≤ C

∥
∥
∥∇hu

h
∥
∥
∥
L∞

∥
∥∂i∂ju

3
∥
∥
2

Hr−2 ≤ C
∥
∥
∥∇hu

h
∥
∥
∥
L∞

∥
∥u3

∥
∥
2

Hr .
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Multiplying (18) by eγt, then integrating the obtained equation with respect to
time and using Lemma 10, we get

∥∥u3(t)∥∥
Hr e

γt ≤ ∥∥u30
∥∥
Hr + C

∫ t

0

(∥∥∇hu
h(τ)

∥∥
L∞ + ‖w(τ)‖Hr−1

) ∥∥u3(τ)∥∥
Hr e

γτdτ

≤ ∥∥u30
∥∥
Hr + C(C1 + C2)

∫ t

0

(∥∥u3(τ)∥∥
Hr e

γτ
)
e−γτdτ.

Thus, the Gronwall lemma allow us to obtain (17). �

In the next paragraphs, we will not directly compare the system (1) with the
limiting system (4) because of technical difficulties. Instead of (4), we consider
the following system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tu
ε,h − νh(ε)Δhu

ε,h + γuε,h + uε,h · ∇hu
ε,h = −∇pε

∂tu
ε,3 − νh(ε)Δhu

ε,3 + γuε,3 + uε,h · ∇hu
ε,3 = 0

divh u
ε,h = 0

∂3u
ε = 0

uε |t=0
= u0

(19)

with lim
ε→0

νh(ε) = 0.

Proposition 12. Like the system (4), the system (19) has a unique, global so-
lution

uε ∈ C
(
R+,L

2(R2
h)
) ∩ L∞ (

R+,L
2(R2

h)
) ∩ L2

(
R+, Ḣ

1(R2
h)
)
,

which also satisfies Lemmas 8, 9, 10 and 11.

In the following lemma, we will prove the convergence of uε towards u when ε
goes to zero.

Lemma 13. Suppose that νh(ε) converges to 0 when ε goes to 0 and that u0 ∈
Hσ(R2

h), σ > 2. Then, uε converges towards the solution u of (4) in
L∞(R+,L

2(R2
h)), as ε goes to 0.

Proof of Lemma 13

Using the previously proved results of this section, for any t > 0, we have

‖u(t)‖L2(R2
h)

≤Me−γt and ‖uε(t)‖L2(R2
h)

≤Me−γt. (20)

Thus, for fixed μ > 0, there exists Tμ > 0 such that, for any t ≥ Tμ,

‖uε(t)‖L2(R2
h)

+ ‖u(t)‖L2(R2
h)

≤ μ

2
.
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On the interval [0, Tμ], let v
ε = uε − u. Then, vε is a solution of the following

system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tv
ε,h − νh(ε)Δhv

ε,h + γvε,h + uε,h · ∇hv
ε,h + vε,h · ∇hu

h = νhΔhu
h −∇p̃,

∂tv
ε,3 − νh(ε)Δhv

ε,3 + γvε,3 + uε,h · ∇hv
ε,3 + vε,h · ∇hu

3 = νhΔhu
3,

divhv
ε,h = 0,

∂3v
ε = 0,

vε|t=0
= 0.

Taking the L2-scalar product of the first two equations of the above system with
vε,h and vε,3 respectively, we get

1

2

d

dt
‖vε‖2L2+νh(ε) ‖∇hv

ε‖2L2+γ ‖vε‖2L2 ≤ νh(ε) ‖∇hu‖L2 ‖∇hv
ε‖L2+

∣
∣
∣

〈
vε,h · ∇hu|vε

〉∣
∣
∣ .

Hence,

1

2

d

dt
‖vε‖2L2 + γ ‖vε‖2L2 ≤ νh(ε) ‖∇hu‖2L2 + ‖∇hu‖L∞ ‖vε‖2L2 .

Integrating the obtained inequality, we come to

‖vε(t)‖2L2 ≤ νh(ε)

γ
‖∇hu‖2L∞([0,Tμ],L2) +

∫ t

0

‖∇hu(τ)‖L∞ e−γ(t−τ) ‖vε(τ)‖2L2 dτ.

Then, the Gronwall Lemma proves that, for any 0 < t < Tμ,

‖vε(t)‖2L2 ≤ Cνh(ε)M
2Tμ exp

{∫ t

0

‖∇hu(τ)‖L∞ dτ

}
.

Combining with (20), this above estimate implies that

lim
ε→0

‖uε − u‖L∞(R+,L2(R2
h))

= 0. �

4 Ekman Boundary Layers

As mentioned in the introduction, when ε goes to 0, the fluid has the tendency
to have a two-dimensional behavior. In the interior part of the domain, far from
the boundary, the fluid moves in vertical columns, according to the Taylor-
Proudman theorem. Near the boundary, the Taylor columns are destroyed and
thin boundary layers are formed. The movements of the fluid inside the layers
are very complex and the friction stops the fluid on the boundary. The goal
of this paragraph is to briefly recall the mathematical construction of these
boundary layers. More precisely, we will “correct” the solution of the limiting
system (4) (which is a divergence-free vector field, independent of x3) by adding
a “boundary layer term” B such that u+B is a divergence-free vector field which
vanishes on the boundary.
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In order to construct such boundary layers, a typical approach consists in
looking for the approximate solutions of the system (1) in the following form
(the Ansatz):

uεapp = u0,int + u0,BL + εu1,int + εu1,BL + . . .

pεapp =
1

ε
p−1,int +

1

ε
p−1,BL + p0,int + p0,BL + . . . ,

(21)

where the terms with the index “int” stand for the “interior” part, which is
smooth functions of (xh, x3) and the index “BL” refers to the boundary layer
part, which is smooth functions of the form

(xh, x3) → F0(t, xh,
x3
δ
) + F1(t, xh,

1− x3
δ

),

where F0(xh, ζ) and F1(xh, ζ) rapidly decrease in ζ at infinity. The quantity
δ > 0, which goes to zero as ε goes to zero, represents the size of the boundary
layers. It is proved that δ is of the same order as ε (see [16], [18], [8] and [9]). In
this paper, we simply choose δ = ε.

Let E = 2βε2 be the Ekman number and u be the solution of the limiting
system (4). We recall that the third component u3 = 0 and we pose curl(u) =
∂1u

2 − ∂2u
1. In [16], [18] and [8], by studying carefully the Ansatz (21), the

authors proved that we can write the boundary layer part in the following form

B = B1 + B2 + B3 + B4,

where Bi, i ∈ {1, 2, 3, 4}, are defined as follows.
1. The term B1 is defined by

B1 =

⎛
⎜⎝

w̃1 + w̆1

w̃2 + w̆2√
E
2 curl(u) G(x3)

⎞
⎟⎠

where

w̃1 = −e
− x3√

E

(
u1 cos

( x3√
E

)
+ u2 sin

( x3√
E

))
,

w̃2 = −e
− x3√

E

(
u2 cos

( x3√
E

)
− u1 sin

( x3√
E

))
,

w̆1 = −e
− 1−x3√

E

(
u1 cos

(1− x3√
E

)
+ u2 sin

(1− x3√
E

))
,

w̆2 = −e
− 1−x3√

E

(
u2 cos

(1− x3√
E

)
− u1 sin

(1− x3√
E

))
,

G(x3) = −e
− x3√

E sin

(
x3√
E

+
π

4

)
+ e

− 1−x3√
E sin

(
1− x3√

E
+
π

4

)
.



Ekman Layers of Rotating Fluids with Vanishing Viscosity 199

2. The terms B2 and B3 are defined by

B2 =

⎛
⎝

√
E u2

−√
E u1√

E curl(u)
(
1
2 − x3

)

⎞
⎠

B3 = e
− 1√

E cos

(
1√
E

)⎛
⎝
u1

u2

0

⎞
⎠ .

3. Finally,

B4 = f(x3)

⎛
⎝
u2

−u1
0

⎞
⎠+ g(x3)

⎛
⎝

0
0

curl(u)

⎞
⎠ ,

where

f(x3) = a
(
e
− x3√

E + e
− 1−x3√

E

)
+ b,

g(x3) = −
√
E

2
e
− 1√

E sin

(
1√
E

+
π

4

)
−
∫ x3

0

f(s)ds,

and where (a, b) is the solution of the linear system

⎧⎪⎪⎨
⎪⎪⎩

a
(
1 + e

− 1√
E

)
+ b = −

√
E + e

− 1√
E sin

(
1√
E

)

2a
√
E
(
1− e

− 1√
E

)
+ b =

√
2Ee

− 1√
E sin

(
1√
E

+
π

4

)
.

(22)

We remark that the determinant of the system (22) is

D = 1 + e
− 1√

E − 2
√
E
(
1− e

− 1√
E

)
.

Thus, for ε > 0 small enough, we have D > 1
2 and (22) always has the following

solution

a =
JE −KE

D
and b =

KE

(
1 + e

− 1√
E

)
− 2JE

√
E
(
1− e

− 1√
E

)

D
,

where

JE = −
√
E + e

− 1√
E sin

(
1√
E

)
,

KE =
√
2Ee

− 1√
E sin

(
1√
E

+
π

4

)
.

It is easy to prove that when ε > 0 is small enough, then

|a| < 4(β +
√
β)ε and |b| < 32βε2.
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With the previously defined boundary layer term B, we can verify that

div (u+ B) = 0 and (u+ B)|{x3=0} = (u+ B)|{x3=1} = 0.

Now, let

B0(x3) =

⎡
⎢⎢⎣
−e

− x3√
E cos x3√

E
− e

− 1−x3√
E cos 1−x3√

E
−e

− x3√
E sin x3√

E
− e

− 1−x3√
E sin 1−x3√

E

e
− x3√

E sin x3√
E
+ e

− 1−x3√
E sin 1−x3√

E
−e

− x3√
E cos x3√

E
− e

− 1−x3√
E cos 1−x3√

E

⎤
⎥⎥⎦

Then, we can write B in the following form

B = M(x3)A(t, x1, x2),

where

A(t, x1, x2) =
t
(
u1, u2, curl(u)

)
and M(x3) =

[
M(x3) 0

0 m(x3)

]

with M(x3) and m(x3) defined by

M(x3) = B0(x3) +
(√

E + f(x3)
)(

0 1
−1 0

)
+ e

− 1√
E cos

1√
E

(
1 0
0 1

)
,

m(x3) =

√
E

2
G(x3) +

√
E

(
1

2
− x3

)
+ g(x3).

We can also prove the existence of a constant C > 0 such that, for any p ≥ 1,
we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖M(·)‖Lp
x3

≤ Cε
1
p , ‖M(·)‖L∞

x3

≤ C, ‖M′(·)‖Lp
x3

≤ Cε
1
p−1,

‖m(·)‖L∞
x3

≤ Cε, ‖m(·)‖Lp
x3

≤ Cε

sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ≤ Cε and sup

x3∈[ 12 ,1]

∣∣(1− x3)
2M ′(x3)

∣∣ ≤ Cε.

(23)

5 Convergence to the Limiting System

In this paragraph, we provide a priori estimates needed and a sketch the proof
of Theorem 14. These a priori estimates can be justified by a classical approx-
imation by smooth fonctions (see for instance [9]). For any ε > 0, we consider
the following 2D damped Navier-Stokes system with three components:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t u
ε,h − νh(ε)Δh u

ε,h +
√
2β uε,h + uε,h · ∇h u

ε,h = −∇h p
ε

∂t u
ε,3 − νh(ε)Δh u

ε,3 +
√
2β uε,3 + uε,h · ∇h u

ε,3 = 0

divhu
ε,h = 0

∂3u
ε = 0

uε |t=0
= u0.

(24)
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Then, Lemma 13 implies that Theorem 1 is a corollary of the following
theorem

Theorem 14. Suppose that

lim
ε→0

νh(ε) = 0 and lim
ε→0

ε
1
2

νh(ε)
= 0.

Let uε0 ∈ L2(Ω) be a family of initial data such that

lim
ε→0

uε0 = u0 = (u10(x1, x2), u
2
0(x1, x2), 0) in L2(R2

h × [0, 1]),

where u0 is a divergence-free two-dimensional vector field in Hσ(R2
h), σ > 2. Let

uε be the solution of the system (24) with initial data u0 and for each ε > 0, let
uε be a weak solution of (1) with initial data uε0. Then

lim
ε→0

‖uε − uε‖L∞(R+,L2(R2
h×[0,1])) = 0.

Proof of Theorem 14

We first remark that we can construct the boundary layers term Bε for the system
(24) in the same way as we did to construct B, with u being replaced by uε. It
is easy to prove that Bε is small, i.e., Bε goes to 0 in L∞ (

R+,L
2(R2

h × [0, 1])
)

as ε goes to 0. Then, our goal is to prove that vε = uε − uε − Bε converge to 0
in L∞ (

R+,L
2(R2

h × [0, 1])
)
as ε goes to 0.

We recall that a two-dimensional divergence-free vector field (independant of
x3) belongs to the kernel of the operator P(e3∧·), where P is the Leray projection
of L2(R3) onto the subspace of divergence-free vector fields. As a consequence,
e3 ∧ uε is a gradient term. Replacing uε by vε + uε + Bε in the system (1), we
deduce that vε satisfied the following equation

∂tv
ε − νh(ε)Δhv

ε − βε∂23v
ε + L1 + uε · ∇vε + Bε · ∇Bε

+ Bε · ∇uε + vε · ∇Bε + vε · ∇uε − L2 +
e3 ∧ vε
ε

= −∇p̃ε, (25)

where

L1 = ∂tBε − νh(ε)ΔhBε + uε · ∇Bε

L2 = βε∂23Bε − e3 ∧ Bε

ε
+
√
2β uε.

Taking the L2 scalar product of (25) with vε, then integrating by parts the
obtained equation and taking into account the fact that vε satisfies the Dirichlet
boundary condition, we get

1

2

d

dt
‖vε‖2L2 + νh(ε) ‖∇hv

ε‖2L2 + βε ‖∂3vε‖2L2

= −〈L1, v
ε〉 − 〈uε · ∇vε, vε〉 − 〈Bε · ∇Bε, vε〉 − 〈Bε · ∇uε, vε〉

− 〈vε · ∇Bε, vε〉 − 〈vε · ∇uε, vε〉+ 〈L2, v
ε〉 . (26)



202 V.-S. Ngo

In what follows, we will seperately estimate the seven terms on the right-hand
side of Inequation (26). Using the same notations as in [16] and [18], we de-
note B1, B2 and b (V1, V2 and v respectively) the three components of Bε (vε

respectively) and we write B = (B1, B2) et V = (V1, V2).

1. Applying the operator curl to the first two equations of the system (24) (we
recall that in this paper, curl only acts on the horizontal components and we
already defined curl(u) = ∂1u

2 − ∂2u
1), we obtain

∂t(curl u
ε)− νh(ε)Δh(curl u

ε) +
√
2β (curl uε) + uε · ∇curl (uε) = 0.

We recall that A(t, x1, x2) =
t(uε1, u

ε
2, curl (u

ε)). So combining the above equa-
tion with the first two equations of (24), we deduce that

∂tA− νh(ε)ΔhA+
√
2β A+ uε · ∇A = −(∇hp

ε, 0).

Since uε,3 = 0, div vε = 0, ∂3p = 0 and Bε = M(x3)A(t, x1, x2), we can write

|〈L1, v
ε〉| = |〈M(x3) (∂tA− νh(ε)ΔhA+ uε · ∇A) , vε〉|

≤
√
2β ‖M(·)‖L2

x3

‖A‖L2
xh

‖vε‖L2 .

Then, Estimate (23), Lemma 8 and Young’s inequality imply

|〈L1, v
ε〉| ≤ C(u0) ε

1
2 e−t

√
2β
(
1 + ‖vε‖2L2

)
. (27)

2. For the second term, using the divergence-free property of uε, we simply have

〈uε · ∇vε, vε〉 = 0. (28)

3. We decompose the third term into two parts:

〈Bε · ∇Bε, vε〉 = 〈B · ∇hBε, vε〉+ 〈b∂3Bε, vε〉 .
Using an integration by parts, the “horizontal” part can be bounded as follows

|〈B · ∇hBε, vε〉| ≤ |〈(div hB)Bε, vε〉|+ |〈B ⊗ Bε,∇hv
ε〉| = |〈B ⊗ Bε,∇hv

ε〉| .
Hence, Hölder’s inequality, Estimates (23), Lemma 8 and Young’s inequality
yield

|〈B · ∇hBε, vε〉| ≤ ‖B‖L4 ‖Bε‖L4 ‖∇hv
ε‖L2 (29)

≤ ‖M(·)‖2L4
x3

(
‖uε‖2L4

xh

+ ‖∇hu
ε‖2L4

xh

)
‖∇hv

ε‖L2

≤ C(u0) ε
1
2 νh(ε)

−1e−t
√
2β +

νh(ε)

16
‖∇hv

ε‖2L2

Likewise, we have the following estimate for the vertical part:

|〈b ∂3Bε, vε〉| ≤ ‖b‖L∞ ‖∂3Bε‖L2 ‖vε‖L2 (30)

≤ C(u0) e
−t

√
2β ‖m(·)‖L∞

x3

‖M′(·)‖L2
x3

‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(
1 + ‖vε‖2L2

)
.
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4. For the fourth term, taking into account the fact that uε is independent of
x3, Estimates (23) and Lemma 8 imply

|〈Bε · ∇uε, vε〉| ≤ ‖Bε‖L4
xh

L2
x3

‖∇hu
ε‖L4

xh

‖vε‖L2 (31)

≤ ‖M(·)‖L2
x3

(
‖uε‖2L4 + ‖∇hu

ε‖2L4

)
‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(
1 + ‖vε‖2L2

)
.

5. The fifth term is the most difficult to treat. First, we decompose this term as
follows

〈vε · ∇Bε, vε〉 = 〈V · ∇hB, V 〉+ 〈V · ∇hb, v〉+ 〈v ∂3b, v〉+ 〈v ∂3B, V 〉 .
For the first term on the right-hand side, Hölder inequality implies that

|〈V · ∇hB, V 〉| ≤ C ‖V ‖L2 ‖∇hB‖L∞ ‖V ‖L2 ≤ C ‖M(·)‖L∞
x3

‖∇hu
ε‖L∞

xh

‖vε‖2L2 .

Then, using Estimates (23) and Lemma 8, we obtain

|〈V · ∇hB, V 〉| ≤ C(u0) e
−t

√
2β ‖vε‖2L2 . (32)

Next, by integrating by parts and using Hölder’s inequality, we deduce that

|〈V · ∇hb, v〉| ≤ C ‖∇hv
ε‖L2 ‖b‖L∞ ‖vε‖L2 .

So, Estimates (23), Lemmas 8 and 10 and Young’s inequality imply

|〈V · ∇hb, v〉| ≤ C ‖m(·)‖L∞
x3

‖curl uε‖L∞
xh

‖∇hv
ε‖L2 ‖vε‖L2 (33)

≤ C(u0) ε
2νh(ε)

−1e−t
√
2β ‖vε‖2L2 +

νh(ε)

16
‖∇hv

ε‖2L2 .

Performing an integration by parts, we can control the third term in the same
way as the second one:

|〈v ∂3b, v〉| = 2 |〈bv, ∂3v〉| = 2 |〈bv, div hV 〉|

≤ C(u0) ε
2νh(ε)

−1e−t
√
2β ‖vε‖2L2 +

νh(ε)

16
‖∇hv

ε‖2L2 . (34)

In order to estimate the last term of the right-hand side, we decompose it into
two parts, the first part corresponding to the boundary layer near {x3 = 0} and
the other corresponding to the one near {x3 = 1}:

〈v ∂3B, V 〉 =
∫

R
2
h×[0, 12 ]

(v ∂3B) · V dx+

∫

R
2
h×[ 12 ,1]

(v ∂3B) · V dx

For the fisrt part, since vε vanishes on {x3 = 0}, using Hölder’s inequality and
Hardy-Littlewood inequality, we get∣∣∣∣∣

∫

R
2
h×[0, 12 ]

(v ∂3B) · V dx
∣∣∣∣∣ ≤ sup

x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ‖uε‖L∞

xh

∥∥∥∥
v

x3

∥∥∥∥
L2

∥∥∥∥
V

x3

∥∥∥∥
L2

≤ sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ‖uε‖L∞

xh

‖∂3v‖L2 ‖∂3V ‖L2 .
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We recall that ∂3v = −divhV . Then, Lemmas 8 and 10, Estimates (23) and
Young’s inequality imply

∣∣∣∣∣
∫

R
2
h×[0, 12 ]

(v ∂3B) · V dx
∣∣∣∣∣ ≤ C(u0) ε e

−t
√
2β ‖divhv‖L2 ‖∂3V ‖L2 (35)

≤ C(u0) ε ‖∇hv
ε‖2L2 +

βε

4
‖∂3vε‖2L2 .

For the second part concerning the boundary layer near {x3 = 1}, since vε =
(V, v) vanishes on {x3 = 1}, Hardy-Littlewood inequality implies that

Iv =

∫

R
2
h

(∫ 1

1
2

∣∣∣∣
v(xh, x3)

1− x3

∣∣∣∣
2

dx3

)
dxh =

∫

R
2
h

(∫ 1
2

0

∣∣∣∣
v(xh, 1− x3)

x3

∣∣∣∣
2

dx3

)
dxh

≤ C

∫

R
2
h

(∫ 1
2

0

|∂3v(xh, 1− x3)|2 dx3
)
dxh

≤ C ‖∂3v‖2L2 = C ‖divhV ‖2L2 .

Likewise,

IV =

∫

R
2
h

(∫ 1

1
2

∣∣∣∣
V (xh, x3)

1− x3

∣∣∣∣
2

dx3

)
dxh ≤ C ‖∂3V ‖2L2 .

Thus, using Hölder inequality, we get

∣∣∣∣∣
∫

R
2
h×[ 12 ,1]

(v ∂3B) · V dx
∣∣∣∣∣ ≤ sup

x3∈[ 12 ,1]

∣∣(1− x3)
2M ′(x3)

∣∣ ‖uε‖L∞
xh

√
Iv
√
IV (36)

≤ C(u0) ε e
−t

√
2β ‖divhv‖L2 ‖∂3V ‖L2

≤ C(u0) ε ‖∇hv
ε‖2L2 +

βε

4
‖∂3vε‖2L2 .

6. The sixth term on the right-hand side of (26) can be treated using Hölder
inequality and Lemma 10. We have

|〈vε · ∇uε, vε〉| ≤ C ‖∇hu
ε‖L∞(R2

h)
‖vε‖2L2 ≤ C(u0) e

−t
√
2β ‖vε‖2L2 (37)

7. We will evaluate the seventh term as in [16] or [18]. We have

〈L2, v
ε〉 = 〈βε∂23Bε, vε

〉−
〈
e3 ∧ Bε

ε
, vε
〉
+
〈√

2β uε, vε
〉
.

We recall that
Bε = Bε,1 + Bε,2 + Bε,3 + Bε,4,
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and for any i ∈ {1, 2, 3, 4}, we set Bε,i = (Bi, bi), where Bi and bi denote
the horizontal and vertical components of Bε,i respectively. Then, the following
identities are immediate

∂23B
3 = 0,

βε∂23B
1 − e3 ∧ B1

ε
= 0,

βε∂23B
2 − e3 ∧ B2

ε
+
√
2β uε = 0.

For the remaining terms, we have

βε
∣∣〈∂23b, v

〉∣∣ ≤ βε ‖∂3b‖L2 ‖∂3v‖ (38)

≤ βε ‖∇hB‖L2 ‖∇hv
ε‖L2

≤ βε ‖M(x3)‖L2
x3

‖∇hu
ε‖L2

xh

‖∇hv
ε‖L2

≤ C(u0) ε
3νh(ε)

−1e−t
√
2β +

νh(ε)

16
‖∇hv

ε‖2L2 ;

∣∣∣∣
〈
e3 ∧ B3

ε
, V

〉∣∣∣∣ ≤ Cε−1e−
1
ε ‖uε‖L2 ‖vε‖L2 ≤ C(u0) ε e

−t
√
2β
(
1 + ‖vε‖2L2

)
.

(39)

We recall that

B4 = f(x3)

(
uε,2

−uε,1
)
,

where

f(x3) = a
(
e
− x3√

E + e
− 1−x3√

E

)
+ b,

and where E = 2βε2 is the Ekman number. We also recall that, if ε > 0 is small
enough, we have

|a| < 4(β +
√
β)ε and |b| < 32βε2.

Then,

βε
∣∣〈∂23B4, V

〉∣∣ = βε |〈f ′′(x3)uε, V 〉| (40)

≤ Cε
1
2 ‖uε‖L2 ‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(
1 + ‖vε‖2L2

)
.

Finally, we have

∣∣∣∣
〈
e3 ∧ B4

ε
, V

〉∣∣∣∣ ≤ C

[(∫ 1

0

∣∣∣e−
x3√
E + e

− 1−x3√
E

∣∣∣
2

dx3

) 1
2

+ βε

]
‖uε‖L2 ‖V ‖L2

(41)

≤ C(u0) ε
1
2 e−t

√
2β
(
1 + ‖vε‖2L2

)
.
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End of the proof: Summing all the inequalities from (27) to (41), we deduce
from (26) that

d

dt
‖vε‖2L2 + νh(ε) ‖∇hv

ε‖2L2 + βε ‖∂3vε‖2L2

≤ C(u0) ε
1
2 νh(ε)

−1e−t
√
2β + C(u0) e

−t
√
2β ‖vε‖2L2 + C(u0) ε ‖∇hv

ε‖2L2 .

Since

lim
ε→0

ε
1
2

νh(ε)
= 0,

there exists ε0 = ε0(u0) ∈]0, 1[ such that, for any 0 < ε < ε0, we have C(u0) ε <
νh(ε). Therefore, for any ε ∈]0, ε0[ small enough, by integrating the above in-
equality with respect to the time variable, we get

‖vε(t)‖2L2 ≤ ‖vε(0)‖2L2 +C(u0)ε
1
2 νh(ε)

−1 +C(u0)

∫ t

0

e−s
√
2β ‖vε(s)‖2L2 ds. (42)

We recall that vε = uε − uε − Bε. Thus,

‖vε(0)‖2L2 ≤ ‖uε(0)− uε(0)‖2L2 + ‖Bε(0)‖2L2

≤ ‖uε0 − u0‖2L2 + ‖M(·)‖2L2
x3

‖u0‖2L2 ≤ ‖uε0 − u0‖2L2 + Cε
1
2 ‖u0‖2L2 .

According to Gronwall lemma, it follows from (42) that

‖vε(t)‖2L2 ≤
(
‖uε0 − u0‖2L2 + Cε

1
2 ‖u0‖2L2 + C(u0)ε

1
2 νh(ε)

−1
)
exp

{
C(u0)√

2β

}
.

Using the hypotheses that

lim
ε→0

ε
1
2

νh(ε)
= 0 and lim

ε→0
‖uε0 − u0‖L2 = 0,

we obtain
lim
ε→0

‖vε‖L∞(R+,L2) = 0,

and Theorem 14 is proved. �
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