Chapter 1
Computational Models for Environmental
Systems

Francesca Pianosi

Abstract Mathematical models are increasingly used to represent, understand,
predict and manage environmental systems. In recent years, increasing data availabil-
ity and computing power have induced dramatic changes in the way environmental
models are developed and used. Models are being constructed at increasingly high
resolution and complexity, while computer-based simulations allow for unprece-
dented uses of environmental models and data. Nonetheless, the complexity of envi-
ronmental systems and the uncertainty in environmental data still pose a number
of challenges in the construction, validation and use of environmental models. In
this chapter, the relation between observations, modelling and numerical computing,
and their implications in the environmental domain will be discussed through several
examples. Without pretending to be exhaustive, the selection of examples mainly aim
at highlighting the variety of contexts, application domains and modelling purposes
affected by new computing technology.

Keywords Environmental modelling - Physically-based and data-driven mod-
elling + Environmental uncertainty

1.1 Introduction

Mathematical models are increasingly used to represent, understand, predict and
manage environmental systems, including the atmospheric system, water resources,
ecosystems, agro-forestry systems, etc. [1]. The application domains and purposes
of environmental models are manifold [2]. In some contexts, models are used to test
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Fig. 1.1 Application domain, use and goal of environmental models

hypothesis, validate theories and ultimately improve our understanding of natural
processes. Alternatively, models may be used for forecasting future system conditions
or for assessing their response to human interventions via model simulation and
what-if analysis. In many applications, models are expected to inform and support
decision-making processes, from early warning systems to the sustainable planning
and management of natural resources (Fig. 1.1).

Ever growing computing power on the one hand, and increasing data availability
on the other, are revolutionizing the way environmental models are constructed and
used. Advances in pervasive sensor networks [3] and remote sensing techniques [4]
can provide environmental data at local and global scale at increasingly higher tem-
poral and spatial resolution. Cheaper and more easily accessible computing facilities
allow for processing this huge data flow and including them into more and more
sophisticated models and innovative applications [5]. In this chapter the contribu-
tion of numerical computing to environmental modelling will be discussed through
several examples. Without pretending to be exhaustive, the selection of examples
mainly aim at highlighting the variety of contexts, application domains and mod-
elling purposes affected by new computing technology.

The example in Sect. 1.2 comes from the field of ecology. The use of mathematical
models to describe population dynamics has a long history and started much before
the advent of computers.! The equations appearing in these models can sometimes

! The first quantitative population growth model can be traced back to the Essay on the Principle
of Population by Thomas Robert Malthus in 1798. Another classical topic of ecology is the prey-
predator dynamics, that was first modeled by Alfred J. Lotka and Vito Volterra in the 1920s.
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be solved by pencil and paper, at least under specific conditions, for instance at equi-
librium. However, computer-based numerical integration has allowed for solving
ecological models virtually at any conditions, and this in turn has dramatically
enlarged our possibility of testing models and their underlying theories, as shown in
this example.

The example in Sect. 1.3 deals with water systems. Here again the mathematical
models used to describe rivers and reservoirs translate simple hydraulic principles
that have been known for decades, while the reservoir operation model is based on
the Bellman optimality principle [6] dating back to the late 1950s. However, the
implementation of these simulation and optimization models at the resolution scale
used in this example would have been impossible up to few years ago because of
limited computing power.

These examples illustrate how numerical computing has unlocked new uses of
existing models with dramatic impacts from both the scientific and engineering per-
spective. Besides model use, numerical computing has also significantly impacted
model construction. This is true in many different instances but is especially remark-
able in the context of the so called empirical models, which simply could not exist
without the computer programs that are used for their construction. This is discussed
in Sect. 1.4.

Still, the improvement in our modelling capacity made possible by increasing
availability of data and computing power is likely to confront limits in the environ-
mental domain. The complexity of the investigated processes and the uncertainty in
the data are so high that computers are not seemingly to resolve all the conflicting
issues inherent in the construction and use of environmental models. This is discussed
in Sect. 1.5.

1.2 Numerical Computing and New Understanding of
Environmental Systems: Scientific Perspective

The first example comes from the domain of quantitative ecology. Ecological mod-
els aim at providing quantitative explanations and predictions of the relationships
among living organisms and the environment, including infra-specific and inter-
specific processes like population growth, stability and extinction, competition for
available resources, predation, symbiosis, parasitism, etc. One issue that has puzzled
scientists in the domain of aquatic ecology is the so called “paradox of the plankton”.
The paradox consists in a mismatch between model predictions and real-world obser-
vations. Competition models predict that, at equilibrium, the number of coexisting
species cannot exceed the number of the limiting resources they consume. However,
for phytoplankton species the number of limiting resources (e.g., nitrogen, phos-
phorus, silicon, iron) is very low while empirical observations show that dozens of
phytoplankton species coexist. A very interesting contribution to the debate comes
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from [7], that provides a solution to the plankton paradox made possible by computer-
based simulations.

The competition model is a set of differential equations that describe the rate
of growth of the n phytoplankton species and of the k resources. Equations are
derived by translating basic principles of mortality, fertility and competition into
mathematical relations. By setting to zero all the differential equations, one can
derive the equilibrium state of the system. This is the condition when population
and resource densities are constant. Usually it is assumed that the ecosystem should
spontaneously tend towards this condition and return to it when recovering from
external disturbances. Given the relative simplicity of the model, the equilibrium
solution can be derived analytically with pencil and paper. It says that the populations
with nonzero density (i.e., that can coexist at equilibrium) are in number lower or
equal to the number k of resources. The conclusion has been named the “principle of
competitive exclusion” and, as anticipated, it is in contrast with empirical experience.

Alternative models have been proposed to explain the observed species diver-
sity of planktonic communities. They include factors external to the phytoplankton
dynamics, like selective predators, spatial heterogeneity, or time-varying weather
conditions. By using computer-based simulation, instead, [7] demonstrates that the
paradox can be resolved using the original competition model, provided that one
looks at its simulated behaviour when the equilibrium is not reached. Specifically,
numerical integration of the model equations show that: first, when there are at least
three species and three resources, the equilibrium may not be reached and the sim-
ulated species densities may exhibit oscillations; second, the number of species that
keep oscillating in time and do not go to extinction may be higher than the number of
resources. As oscillations are not generated by other sources of external variability,
this study demonstrates that competition theory is in fact sufficient to explain the
coexistence of phytoplankton species.

1.3 Numerical Computing and New Understanding of
Environmental Systems: Engineering Perspective

The second example comes from the domain of integrated water resources manage-
ment. Mathematical models are widely used in this sector to support the operation
and planning of water resources systems like rivers, lakes, wetlands, and human
artifacts like dams, irrigation and drainage systems, urban supply networks, etc.

The example here reported is an application developed by the author and others,
to the efficient use of regulated lakes and reservoirs. Reservoirs may enhance the
economic, social and environmental value of watersheds by enabling water reallo-
cation in space and time. However, often watersheds comprise multiple reservoirs
that are operated independently one to another to meet different targets. The lack of
coordination generates inefficiency and economic loss and induces conflicts among
different water uses.
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The lake Como watershed considered in [8] is a typical example. The water sys-
tem develops along the river Adda in Northern Italy, with a topology common to
many Alpine watersheds: a large storage capacity distributed in many hydropower
reservoirs in the upper watershed region; a large regulated lake in the middle region;
and multiple water consumption users, mostly farmers, in the lower region. Spring
snowmelt is the most important contribution to the creation of the seasonal stor-
age, which is reallocated over time according to two different strategies. The lake
regulation exploits the accumulated volume in the summer to supply downstream
irrigation, while hydropower operators keep their storages full up until the follow-
ing winter when the demand for energy peaks and the production is more valuable.
This results in the potential for conflict between farmers and hydropower compa-
nies, which is highest in particularly dry summers, when farmer associations claim
that water shortages could be mitigated if the water retained by the hydropower
companies were available.

In the study [8], mathematical models are used to compare the system perfor-
mances under different institutional settings and thus assess the space for improving
the overall system efficiency. First, the study simulates the hypothetical condition
where a single super-operator has full access to the system data conditions and makes
all the decisions simultaneously, balancing upstream (hydropower) and downstream
(irrigation) interests. Simulation experiments show that under such a centralized
approach there exists a win-win solution in which the irrigation deficit can be signifi-
cantly reduced without economic loss in the hydropower production. In other terms,
the study demonstrates that the main limitations to the current system performance
do not stem from physical constraints (e.g., limited storing capacity) but they come
from the institutional, legal and operational framework. Subsequently, the central-
ized operating policy is analyzed in order to gain insights into suitable strategies to
foster cooperation among the involved agents. The analysis suggests a coordination
mechanism based on constraining the minimum release of upstream hydropower
reservoirs in particularly critical situations. Simulations show that this coordinated
approach, although suboptimal with respect to the ideal centralized solution, still can
significantly improve the historical operation.

The study combines simulation models of the physical components like reservoirs,
hydropower plants and the river network, and optimization models that can mimic
the decision-making process of reservoir operators. The application of the latter is
particularly challenging from the computational standpoint. The optimization algo-
rithm there used, stochastic dynamic programming, has computational complexity
that grows exponentially with the number of system variables, so that the application
to a multi-reservoir network like the one in [8] would have been computationally
unaffordable only few years ago.
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1.4 Numerical Computing and New Modelling Paradigms

Environmental models are often divided into three categories, physically-based, con-
ceptual and empirical. The classification is based on the way models are constructed,
i.e., by deduction from a scientific theory or by induction from the data, but also
reflects the purpose they are constructed for, i.e., explanation or prediction (Fig. 1.2).
Numerical computing has had a significant and sometimes predominant influence on
the development and use of all the three model categories.

Physically-based models provide a detailed description of the processes occur-
ring in the system. They consider both temporal and spatial variability and thus
take the form of a set of partial differential equations with distributed parameters.
Model identification is based on the translation of physical principles into the model
equations, and parameter values are mainly decided based on field measurements or
laboratory experiments. Historically, the progress in the development of such mod-
els was limited by our imperfect knowledge of environmental processes as well as
by computer capability. Cheaper and more easily accessible computing power has
allowed for simultaneously increasing the number of processes reproduced in the
model, their spatial resolution and the length of simulation horizons. For instance,
[9] reviews the advances of physically-based climate models boosted by the advent
of supercomputers.

Conceptual models give a simplified description of the system functioning. They
reproduce only the main processes and usually neglect the spatial dimension or give
it a very simplified representation. The model variables represent spatial averages of
the quantities of interest and their temporal dynamics is given by a set of differential
equations with lumped parameters. Since parameters are not associated to measur-
able quantities their value must be guessed or inferred from data by minimizing the
distance between model outputs and observations. The data-based parameter esti-
mation exercise, or model calibration, can be carried out manually or by means of
automatic procedures. Ever increasing availability of data and computing power has
dramatically encouraged the use of automatic calibration procedures and nowadays
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most of the software packages implementing environmental models also include
specific routines for automatic calibration.

As increasing computing power has made model calibration techniques faster
and faster, data-based inference can be used not only to derive parameter esti-
mates but also the model structure itself, by repetition and comparison of calibration
results under different hypothesized model structures. The models so obtained are
called empirical, or data-driven or black-box. The latter term highlights the purely
predictive nature of these models, which relate system inputs and outputs without
any attempt at reproducing the inner system processes. The use of empirical models
in the environmental domain has often been questioned because they are deemed
to be hardly understood and trusted by their expected users. Nonetheless, they have
gained more and more attention because they are usually cheaper to develop and
easier to use, requiring less data and computing power at both stages, while provid-
ing comparatively good performances at least for operational purposes. Note that
for empirical models, numerical computing is not simply a factor influencing the
accuracy, usability or range of application of the model, but rather it is the essential
reason for their very existence.

Information and communications technology is likely to further shape the way
models are constructed, used and verified in even more complex and unpredictable
fashions. Mobile devices and online applications can be used to give people an active
role in the collection and verification of data that are lately used to feed models, and to
disseminate and verify the information derived by models. For instance, [10] reviews
a number of recent applications in the water domain, where mobile phones are used
for gathering user-recorded water level data, for providing model-based advices to
farmers, for disseminating flood forecasts, etc. Social computing will allow for new
ways of eliciting distributed knowledge and expertise that can be used to verify
and complement with analytic knowledge embodied in mathematical models [11].
Although these applications are still at a prototype stage, their development is gaining
increasing interest from researchers and entrepreneurs, and in the next future they
may challenge the traditional boundaries between expert-based and mathematical
models, as well as between physically-based, conceptual and empirical models.

1.5 Environmental Models, Data and Uncertainty

The discussion in the previous section seems to suggest that increasing computing
power can only lead to expand our modelling capability. However, this may be not
so obvious, due to the high level of system complexity and uncertainty in the data. In
environmental systems many different physical, biological, chemical processes over-
lap and influence each other, variables are strongly heterogenous in time and space,
controlled experiments are often impossible, observations are highly uncertain, even
the very definition of the system boundaries is critical and sometimes arbitrary since
interfaces between climate, water, soils, vegetation, etc. are not clearcut and recip-
rocal influences may be negligible or not depending on the scale of interest. Finally,
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the influence of human behavior on the earth systems has become so broad and
deep in the last decades that scientists have coined the term Anthropocene to refer
to the geological era we are living in [12], and consequently, in many instances,
natural processes cannot be investigated independently from socio-economic ones
[13], which adds up new dimensions of complexity to the problem of modelling
environmental systems.

In such a context, the fit-to-data, which is the guiding principle of model validation,
can be critical. To discuss this topic, consider the formalization in Fig. 1.3, whichis a
personal elaboration of the one given in [14]. A mathematical model f is expected to
provide a relation between an input variable x and an output variable y. In predictive
modelling, model f is used to produce output predictions. In explanatory modelling,
model f is used to test the causal hypothesis F. In other words, f is obtained by
translation of F into mathematical equations and tested against data, so that if model
f fits the data, then the underlying theory F is deemed to explain reality.

Because of measurement errors, the measured input x that feeds the model dif-
fers from the real input x, and the model estimate y must be evaluated against the
observed output y instead of the actual output y. Still, if measurement errors are
small, x and X, or y and y can be confounded, as we usually do for instance when
we say that we predict a variable while we actually predict its measurement. Also,
in formulating the causal hypothesis F, inputs and outputs are usually given in terms
of “theoretical constructs” 2" and % (see again [14] and reference herein), which
later are associated to some measurable variables x and y. For instance, in hydrology,
theoretical constructs may be the rainfall over a catchment (input) and the river flow
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(output), while measurable variables are rainfall and flow at some specific sites where
climate and hydrological stations are located. So again there is a slight shifting in
meaning when we say that we use models to reproduce “natural processes” because
actually we use models to reproduce variables (y) that we consider representative
of processes (%). And in practice we end up in representing data (y) instead of
variables, because data is the only thing we possess.

The confusion is acceptable when the choice of observable variables is robust and
observation errors are small, so that observations y and x are really representative of
processes 2~ and %. However, this is often not the case in environmental modelling,
where system complexity makes the choice of model variables far from obvious,
and measurement errors are usually large and sometimes even in the same order of
magnitude as the measured variable.”

In such a context, can we conclude that, say, the predictive model f; is preferable
over the predictive model f>, based on the fact that the predictions y; by fi are
closer to observations y, when measurement errors (y — y) may be the same order
of magnitude as the difference between model predictions (31 — y2)? Or, should we
reject theory F because the associated model f does not fit well the data, when we
know that those data contain large errors? And maybe the very choice of the model
variables x and y as representative of constructs 2~ and % is doubtful?

In practice, such controversies are resolved by environmental modellers based on
their judgement and personal experience. Often, models f are trusted because the
underlying theories F. In other words, the explanatory process is reversed and, instead
of looking at the model’s fit to data in order to confirm the theory, it is the theory that is
used to motivate the credibility of the model, even against observations. In fact, a low
fit-to-data of model f is often taken as an evidence of poor data quality rather than of
a weak underlying theory. Sometimes this is justified based on previous successful
applications of the theory to other case studies. Still, the issue about which should
be trusted more, theory or data, is open and underlies the long-standing controversy
between supporters and opponents of the empirical modelling approach [18].

According to Beven [19], new computing technology will contribute to unravel
the matter. As more and more data and computing power become available and
virtually every place can be represented by mathematical models, emphasis will

2 Uncertainty stems from multiple sources including inaccuracy of measuring devices, errors intro-
duced by preprocessing, problems of sampling. The quantification of such uncertainty has become
an important research field. Some examples from the water systems domain are given in [15-17].
Mittelbach et al. [17] provides an example of problems arising in the calibration of measuring
devices. They investigate the accuracy of soil moisture sensors and show that in field conditions
none of the evaluated sensors has a level of performance consistent with the respective manufac-
turer specifications developed in laboratory conditions. Baldassarre and Montanari [16] investigates
preprocessing errors and define a methodology for quantifying the uncertainty of river flow data,
which are obtained from river stage data by application of rating curves. They show that in their
case study, overall errors may be as large as 42.8 % (at the 95 % confidence level) with an average
value of 25.6 %. An example of sampling difficulties is given in [15] when discussing river quality
modelling, where monitoring programs have sampling frequency and location designed for regula-
tion purposes and often inadequate to capture the system dynamics as required for successful model
identification.
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Fig. 1.4 From learning about processes to learning about places

change from a process of learning about model structures (theories) to a process
of learning about the specific features of particular places. In other words, if in the
past environmental modellers used to search for generalized model structures that
could be efficiently adjusted (calibrated) and applied to multiple sites, exchanging
accuracy for generality, in the next future the abundance of data and computing
power will make it possible to investigate each specific site “from scratch”, testing
different model structures and designing the ad hoc combination that guarantees
the best possible performance for a specific site and a specific purpose (Fig. 1.4).
In the words of [19], “a new generation of environmental models [will appear] that
are geared towards the management of specific places rather than general process
representation”.

1.6 Conclusions

Computer technology is changing the way environmental models are constructed
and used in many respects. Existing models are being used in new ways to per-
form simulation/optimization experiments in a wider range of conditions or at more
realistic resolution steps, providing new insights on system functioning and thus
contributing to advance our scientific knowledge as well as supporting better man-
agement of natural resources. New models are being built with increasing complexity
of structures while empirical models are becoming a viable alternative to traditional
physically-based models. Still, because of the complexity of the investigated sys-
tems, the multiplicity of interacting components, and the high level of uncertainty in
environmental data, the identification and validation of environmental models can be
regarded as a “wicked problem” that rarely has a true-or-false solution. The choice
of the most appropriate model structure or parameterization is not univocal and it
may vary with the scale and purpose of the modelling exercise and change over time
as new knowledge becomes available. Human expertise is likely to keep playing a
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crucial role in the construction of environmental models and the interpretation of
their results. By multiplying the mechanisms for information gathering and dissemi-
nation, information and communications technology itself will possibly contribute to
reinforcing the integration of human and computer intelligence in the environmental
modelling domain.
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