Chapter 6
The Cerenkov Effect Revisited: From Swimming
Ducks to Zero Modes in Gravitational Analogues

Iacopo Carusotto and Germain Rousseaux

Abstract We present an interdisciplinary review of the generalized Cerenkov emis-
sion of radiation from uniformly moving sources in the different contexts of classi-
cal electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The
details of each specific physical systems enter our theory via the dispersion law of
the excitations. A geometrical recipe to obtain the emission patterns in both real and
wave-vector space from the geometrical shape of the dispersion law is discussed and
applied to a number of cases of current experimental interest. Some consequences of
these emission processes onto the stability of condensed-matter analogues of gravi-
tational systems are finally illustrated.

6.1 Introduction

The emission of radiation by a uniformly moving source is a widely used paradigm
in field theories to describe a number of very different effects, from the wake
generated by a swimming duck on the surface of a quiet lake [1-12], to the
Cerenkov emission by a charged particle relativistically moving through a dielec-
tric medium [13], to the sound waves emitted by an object travelling across a fluid
or a superfluid at super-sonic speed [14—18]. Of course, the radiated field has a dif-
ferent physical nature in each case, consisting e.g. of gravity or capillary waves at
the water/air interface, or electromagnetic waves in a dielectric medium, or Bogoli-
ubov excitations in the superfluid. In spite of this, the basic qualitative features of the
emission process are very similar in all cases and a unitary discussion is possible.
In the present chapter, we shall present an interdisciplinary review of this gener-
alized Cerenkov effect from the various points of view of classical electromagnetism,
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superfluid hydrodynamics, and classical hydrodynamics. The details of each specific
physical systems enter our theory via the dispersion law £2 (k) of its excitations. In
particular, the emission patterns in both real and wave-vector space can be extracted
from the geometrical shape of the intersection of the £2(k) dispersion law with the
£2 =k - v hyper-plane that encodes energy-momentum conservation. Once the dis-
persion law of a generic system is known, our geometrical algorithm provides an
efficient tool to obtain the most significant qualitative features of wake pattern in a
straightforward and physically transparent way.

In the last years, the interest of the scientific community on this classical prob-
lem of wave theory has been revived by several experiments which have started
exploring the peculiar features that appear in new configurations made accessible
by the last technological developments, e.g. the Cerenkov emission of electromag-
netic radiation in resonant media [19, 20] and the Bogoliubov—éerenkov emission
of sound waves in bulk dilute superfluids [16—18]. Another reason for this renewed
interest comes from the condensed-matter models of gravitational systems that are
the central subject of the present book. In many of such analogue models, the pres-
ence of a horizon may be responsible for the emission of waves from the horizon by
generalized Cerenkov processes. A full understanding of these classical effects is
then required if one is to isolate quantum features such as the analogues of Hawking
radiation, dynamical Casimir emission and anomalous Doppler effect.

The structure of the chapter is the following. In Sect. 6.2, we shall introduce the
general field-theoretical formalism to calculate the real and momentum space emis-
sion patterns and the geometrical construction to obtain qualitative information on
them. These methods will then be applied in the following sections to a few differ-
ent systems of current interest. As a first example, in Sect. 6.3 we will review the
main features of the Cerenkov emission of electromagnetic waves from relativisti-
cally moving charges in a dielectric medium. We shall restrict our attention to the
simplest case of a non-dispersive dielectric with frequency-independent refractive
index n, where the phase and group velocities are equal and constant. In this case, a
Cerenkov emission takes place as soon as the charge speed exceeds the velocity of
light in the medium ¢ = co/n. Modern developments for the case of a strongly dis-
persive media [19-21], photonic crystals, and left-handed metamaterials [22] will
be briefly mentioned. In Sect. 6.4 we shall review the emission of sound waves by a
supersonically moving impurity in the bulk of a dilute superfluid. In addition to the
Mach cone that appears in the wake behind the object, the presence of single-particle
excitations in the excitation spectrum is responsible for the appearance of a series of
curved wavefronts ahead of the impurity. On the other hand, a subsonically moving
impurity will produce no propagating wave and the perturbation will remain local-
ized in its vicinity: the resulting frictionless motion is one of the clearest examples
of the class of phenomena that go under the name of superfluidity [24-26]. This
physics is currently of high experimental relevance, as first real-space images of
the density perturbation pattern induced by a moving impurity have been recently
obtained using Bose-Einstein condensates of ultracold atoms [17] and of exciton-
polaritons in semiconductor microcavities [16]. The case of a parabolic dispersion
will be presented in Sect. 6.5: this specific functional form allows for an elementary
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analytical treatment of the wake pattern in both real and momentum space. On one
hand, this discussion provides a useful guideline to understand the qualitative shape
of the wake in superfluids and in surface waves. On the other hand, it is of central
importance in view of the experimental realization of gravitational analogues based
on magnon excitations in magnetic solids [27]. The physics of a material object such
as a boat, a duck or a fishing line creating surface waves on the air/water interface
of a lake will be considered in Sect. 6.6: not only does this example provide the
most intuitive example of the generalized Cerenkov effect, but is perhaps also the
richest one in terms of different behaviours that can be observed depending on the
system parameters, e.g. the velocity of the object with respect to the fluid, the depth
of the water, the surface tension of the fluid [1-12]. The concepts that have been laid
down so far are finally applied in Sect. 6.7 to analogue models of gravity based on
flowing superfluids or surface waves on flowing water. In both these cases, classical
Cerenkov emission into the so-called zero modes at the horizon may disturb detec-
tion of the analogue Hawking radiation as well as affect the dynamical stability of
the analogue black/white hole [28]. Conclusions are finally drawn in Sect. 6.8.

6.2 Generic Model

In this section, we introduce the generic model that will be used to study the dif-
ferent physical systems in the following sections. The model is based on a linear
partial differential equation for a scalar C-number field ¢ (r,7): in most relevant
cases, the multi-component physical field (i.e. the vector electromagnetic field or
the Bogoliubov spinor) can in fact be reduced to a single scalar field upon straight-
forward algebraic manipulations under controlled approximations. We are also as-
suming that quantum fluctuations of the field ¢ (r, #) can be fully neglected. The ge-
ometry under investigations consists of a spatially homogeneous system interacting
with a spatially localized moving source describing the moving electric charge, or
the interaction potential of the moving impurity with the fluid, or the extra pressure
exerted on the fluid surface by the moving object. In this geometry, the microscopic
information on the field dynamics is summarized in the dispersion law relating the
frequency £2 of a plane wave to its wave-vector k: different forms of dispersion
laws corresponding to first- or higher-order partial differential equations are dis-
cussed in the subsections Sects. 6.2.1 and 6.2.3. The geometric construction of the
wake pattern starting from the dispersion law £2 (k) is discussed in Sect. 6.2.2.

6.2.1 The Wave Equation and the Source Term

We start by considering a generic, d-dimensional classical complex field ¢ (r, f)
(d =2 in the figures) that evolves according to the generic linear, first-order in time,
partial differential equation:

i0:p(xr, 1) =2(—iVe)p(r,t) + S(r, 1) (6.1)

with a source term S(r, ).
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The function §2 (k) defines the so-called dispersion law for free field propagation,
that is the frequency of the plane wave solutions

¢(r’ t) — ¢Oeikl‘e—iﬂ(k)t (62)

as a function of the wave-vector Kk in the absence of sources, S(r,) = 0.
Throughout this chapter we shall consider a spatially localized and uniformly
moving source term of the form

S, 1) = So(r — vt), (6.3)

with a spatial profile So(r) concentrated in the vicinity of r = 0 and moving at a
speed v.

Thanks to the translational invariance of the free field problem in both space and
time, solution of the full wave equation (6.1) in the presence of the source term is
easily obtained in Fourier space with respect to both space and time. Defining the
Fourier transform in the usual way

bk, w) = / dt / dirp(r, 1)e KTl (6.4)
the source term in Fourier space has the simple form
Sk, w) =278y(K)8(w — Kk - V) (6.5)

in terms of the structure factor S‘o (k) defined as the Fourier transform of the source
shape So(r).
In Fourier space, the solution of (6.1) is then

~ 27 So(k)§(w —k - v)

oo = Qa0 66
where an infinitesimally small imaginary part is introduced in the denominator of
(6.6) to specify the integration contour to be followed around the poles and, in this
way, ensure causality of the solution. This trick dates back to Rayleigh [4, 5] and
is equivalent to a infinitesimal shift of the dispersion law into the lower half-space,
2(k) — £2(k) —i0™". Physically, it corresponds to introducing a very weak damp-
ing of the plane wave solutions in time,

¢)(I‘, t) — ¢Oeikre—iﬂ(k)te—0+t (67)

or to assume that the source term is slowly switched on in time [11].
The real-space pattern is obtained by an inverse Fourier transform of (6.6),

ddk SO (k)eik(rfvt)

m)d 2(k) —k-v—i0t
Thanks to the § (@w — k - v) factor in (6.6), this expression only depends on the com-
bination 1’ =r — vi: as expected, the wake pattern is rigidly moving at the speed of
the source. Within Galilean invariance, the r’ coordinate corresponds to the spatial
coordinate in the reference frame of the source in motion at velocity v.

Evaluation of (6.8) can be performed with standard numerical tools. The result
for some most interesting cases will be presented in the next sections. Now, we

pr.0)=—

=¢(r—vt). (6.8)
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shall rather proceed with some analytical manipulations of (6.8) that allow to extract
qualitative information on the emitted field pattern from the dispersion law £2 (k).
The first step in this direction is to note that the integral in (6.8) is dominated by
those k values for which the resonant denominator vanishes, that is

2(k)=k-v. (6.9)

This equation recovers the standard Cerenkov condition for emission of radia-
tion [13] and can be geometrically interpreted as the intersection of the dispersion
surface §2(k) with the £2 =k - v plane. In a quantum description of the Cerenkov
emission by a massive charged particle, the condition (6.9) naturally appears when
energy-momentum conservation is imposed to the photon emission process [13].
When reformulated in the reference frame of the moving source, the condition (6.9)
reduces to 2’ = y (£2 — k - v) = 0, meaning that the perturbation pattern around the
source at rest is stationary in time in the moving reference frame.

The locus ¥ of k # 0 modes that satisfy (6.9) is a central object in all the follow-
ing discussion as it defines the modes in k space into which the Cerenkov emission
will be peaked.! In particular, no emission of propagating waves takes place if the lo-
cus X is empty; the non-resonant contributions to (6.8) only provide a non-radiative
perturbation that remains spatially localized in the close vicinity of the source and
is not able to transport energy away. In spite of this, the momentum and energy that
are stored in the localized moving pattern of the field ¢ are responsible for a sizeable
renormalization of the particle mass [11, 30, 31].

6.2.2 Qualitative Geometrical Study of the Wake Pattern

Let us consider a generic point kg € X'. Within a neighbourhood of ko, we introduce
a new set of k-space coordinates defined as follows: for each point q, g, is the
distance of k from the X' surface and the position of the closest point on the surface
X is parametrized by the (d — 1)-dimensional q; curvilinear coordinate system.
A sketch of this coordinate system is indicated as a grid in Fig. 6.1(a).

In this new coordinate system, the Fourier integral giving the emitted field pattern
in real space can be approximately rewritten as:

- dd_lq” = , [dg eiqnﬁ-r’
") = —Soko) | AL "“‘W‘f/—"i, 6.10
P (r') =S 0)/2(2;1)61—16 27 Vyqn —i0F ©.10)

where l_((q”) is the position of the point on the surface X' corresponding to the value
q of the (d — 1)-dimensional coordinate and fi is the unit vector normal to the

IThe k = 0 mode corresponds to a spatially constant modulation that does not transport energy
nor momentum. As discussed in [29], many other interesting features of wave propagation can be
graphically studied starting from iso-frequency surfaces analogous to the locus 2.
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Fig. 6.1 (a) k-space sketch of a patch of the locus X' around the wave-vector kg. The grid shows
the (qy, ¢,) coordinate system used in the geometrical construction of the wake pattern. (b) Sketch
of the region of the wake pattern generated by the emission in the neighbourhood of ko: the blue
fringes have wave-vector K, the direction of propagation v;, is determined by the normal to the
locus X' at the point ko

surface at kg in the direction of growing £2 (k) — k - v. As the surface X' is defined
by the zeros of £2(k) — k - v, the velocity

vé,:véﬁ:Vk[Q(k)—kv]:Vg—v (6.11)

is directed along the normal i and corresponds to the group velocity of the wave,
as measured relative to the moving source at v. For a non-relativistic source speed
v K ¢, it can be interpreted as the group velocity observed from the source refer-
ence frame.

The integral over g, can be performed by closing the contour on the complex
plane. The only pole is located slightly above the real axis. Depending on the sign
of fi - I/, the contour has to be closed in the upper or lower half plane, which gives

a4 'qp ok’

o) = isatkoy [ &1 T@[v;r/]- (6.12)
The expression (6.12) can be further simplified by performing the so-called sta-
tionary phase approximation, as first proposed by Thomson [4, 5]. For each value
r’ of the relative coordinate, the integral over q is dominated by those points for
which the phase is stationary, i.e. the variation of l_((qH) on qj is orthogonal to r’.
In combination with the Heaviside-® function in (6.12), this is equivalent to requir-
ing that the vector r’ is parallel to the normal 1 to the surface X at point kg in the
direction of growing £2(k) — k - v , i.e. parallel to the relative group velocity V;,.
For a generic relative position I, there are only a few discrete points k; on X
such that this condition is met. As a consequence, for generic values of r’ in a
neighbourhood of ¥, one can approximately write

; Sotkp) Ak” v

o(r') ~ —

(6.13)
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where the sum is over the allowed k; vectors: the numerical coefficient Ak? is
inversely proportional to the curvature of X' at k; and V(,g’ j is the group velocity of
the k; mode.

A physical understanding of this result can be easily obtained by looking at the
diagram of Fig. 6.1(b). Within Galilean invariance, sitting in the moving reference
frame of the source may facilitate building an intuitive picture of the emission pro-
cess: every point on the surface X' corresponds to a continuous plane wave of wave-
vector Kq that is emitted from the source and propagates away from it at a group
velocity v;, (indicated by the green arrow in the figure). As a result, it is able to
reach all points 1’ that lie in the vicinity of the straight line of direction v/,. While
the group velocity V/g is always along the radial direction, the wave-vector k¢ (blue
arrow in the figure) can have arbitrary direction: as a result, the wave-fronts (indi-
cated by the blue fringes) are generally tilted and the emission pattern does not nec-
essarily resemble a spherical wave. Of course, all this reasoning can be performed
equally well in the laboratory frame if V;, is interpreted as the relative group velocity
of the wave with respect to the moving source.

6.2.3 Generalization to Higher-Order Wave Equations

The geometrical framework introduced in the previous subsections is not restricted
to partial differential equations that are of first-order in time, but can be extended to
more general wave equations of the form

Plio;, —iVele(r, 1) = S(r, 1), (6.14)

where P is an arbitrary polynomial in two variables, a scalar variable and a d-
component vectorial variable. The degree of the polynomial P corresponds to the
order of the partial differential equation for ¢ (r, 7): in the case of electromagnetic
waves in a non-dispersive medium, it is of second order in both variables; in the
case of Bogoliubov excitations in a superfluid, it is of second order in time and of
fourth order in space; in the case of surface waves, it is of second order in time,
but it involves arbitrarily high derivatives in the spatial coordinates. The different
branches §2(k) of the dispersion law are then defined by the roots of P via the
equation

P[2(x), k] =0. (6.15)

In the presence of a source term of the form (6.3), the solution of (6.14) has the
form
27 So(K)
T Pkv+iOt K
where the infinitesimally small imaginary part has been again added in order to

enforce causality by shifting the real roots £2 of the dispersion law (6.15) into the
lower half of the complex-plane.

Pk, 0) (6.16)
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The reasoning to extract from (6.16) the qualitative shape of the real-space pat-
tern is then the same as before, the locus X' in k-space being now defined by the
zeros of the polynomial equation

Pk-v,k)=0 (6.17)

with k # 0. In the next sections, we shall discuss in full detail a few physical ex-
amples illustrating how the geometrical structure of X' determines the shape of the
emission pattern in both real and momentum spaces.

6.3 Cerenkov Emission by Uniformly Moving Charges

As a first application of the theory, in this section we shall review the basic features
of the emission of electromagnetic radiation by a charged particle relativistically
moving through a dielectric medium at speed higher than the phase velocity of light
in the medium. This is the well-known Cerenkov effect (or, more precisely, Vavilov-
Cerenkov effect) first observed by Marie Curie, then experimentally characterized
by Vavilov and Cerenkov [32, 33] and finally theoretically understood by Frank and
Tamm [34].

6.3.1 Non-dispersive Dielectric

In the simplest case of a non-dispersive dielectric with a frequency-independent
refractive index 7, the dispersion law satisfies the second-order equation

c2

22 =3k (6.18)

n
in the (£2, k) space, the dispersion §2 (k) corresponds to a conical surface with vertex
in 2 =k =0. A cut of this cone along the k, = 0 line is shown in Fig. 6.2(a): the
thick lines indicate the positive frequency part of the conical surface, the thin line
indicate the negative frequency part. In the absence of dispersion, the phase and
group velocities coincide and are equal to ¢ = cg/n.

The shape of the locus ¥ of k # 0 points satisfying £2(k) — k - v =0 crucially
depends on whether the charge is moving at a sub-luminal v < ¢ or super-luminal
v > ¢ speed. In the former case, the locus X' is empty and no radiation is emitted.
The localized, non-radiative perturbation that is present around the charge due to the
non-resonant excitation of the field modes contributes to the (velocity-dependent)
Coulomb field around the charge.

The locus X' in the case of a super-luminally moving charge in the positive x
direction is illustrated in Fig. 6.2(b): it has the analytic form

k> :k2<”—2 - 1) (6.19)
y X 2 .

C
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Fig. 6.2 (a) Cutalong ky =0 6
of the photon dispersion in a (a)
non-dispersive medium of
frequency-independent
refractive index n. The
dashed line indicates the

§2 =Kk - v plane for a
super-luminal charge speed

v > c. (b) k-space locus X' of
resonant modes into which
the Cerenkov emission
occurs, the so-called
Cerenkov cone; the green
arrows indicate the normal to
the X locus, that is the
direction of the relative group
velocity

v’g = Vk[£2(k) — k- v].

(c) Real-space pattern of the
electric field amplitude in the
wake of the charge; the
pattern is numerically
obtained as the fast Fourier
transform of the k-space
perturbation (6.16). The
Mach cone around the
negative x axis is apparent
with aperture ¢

and consists of a pair of half straight lines originating from k = 0 and symmetrically
located with respect to the k, axis at an angle 6 such that cos6 = ¢/v. The higher
the particle speed v/c, the wider the angle 6 made by the direction of the Cerenkov
emission with the direction of the charge motion.

The most peculiar feature of the locus X' is that the normal vector to X' indicating
the direction of the relative group velocity vfg, = Vk[£2 (k) —k-v] = v, — v [indicated
by the green arrows on Fig. 6.2(b)] is constant for all points k lying on each of the
two straight lines forming X' and points in the backward direction. This last feature
is a straightforward consequence of the fact that the charge velocity is larger than
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the speed of light ¢ in the medium. As a result, all modes on X' propagate (as seen
from the charge reference frame) in the same direction and the electromagnetic field
radiated by the charge is spatially concentrated around the direction of Vé. This
defines a single-sheet conical surface in real space, i.e. a pair of half straight lines in
the two dimensional geometry considered here,

2 02x2

V=57 with x < 0. (6.20)
Ve —c

Its aperture ¢ around the negative x axis” is determined by the condition sing =
c/v: the faster the charge speed, the narrower the cone behind the charge. In the
analogue y with the conical sonic wake generated by a super-sonically moving bullet
in a bulk fluid, we will refer to this real space cone as the Mach cone. The very thin
shape of the Mach cone results from the interference of the continuum of points on
the X' locus. For each kg € X, the fringes are orthogonal to the Mach cone and have
different spacing: the interference is everywhere destructive but for the thin surface
of the Mach cone. If the correct form of the structure factor So(k) is included, the
usual §-shape for the Mach cone is recovered [13].

In view of the discussion of the next sections, it is crucial to clearly keep in mind
the conceptual distinction between the Mach cone in real space on which the elec-
tric field intensity is spatially concentrated and the k-space Cerenkov cone defining
the directions into which the radiation does occur. The former was experimentally
detected and characterized in [20, 35] by looking at the spatial profile of the electric
field wake behind the charge.? The latter is observed in any standard Cerenkov ra-
diation experiment measuring the far-field angular distribution of the radiation, that
turns out to be concentrated in the forward direction on a conical surface making a
Cerenkov radiation angle 6 with the charge velocity.

The conceptual distinction between the Cerenkov and the Mach cones is related
to the distinction between the so-called phase and group cones, first pointed out in
the context of the Cerenkov emission in dispersive media in [36, 37]. Restricting for
a moment our attention to a given emission frequency, the wave cone is defined as
the real space conical wavefront passing through the source and orthogonal to the
direction of the far-field emission in k space: its aperture ¢, around the negative
X axis is determuined by the phase velocity as sin¢,, = vpn/v and is related to the
aperture of the Cerenkov cone by ¢, = s /2 — 6. With some caveats, it can be in-
terpreted as the wavefront on which the Cerenkov emission has a constant phase.
On the other hand, the group cone is defined as the Mach cone for the given fre-
quency and describes the spatial points on which the (spectrally filtered) electric
field intensity is peaked. Its aperture ¢ depends on the group velocity of light vg,

2The coefficients of the analytical form (6.20) can be understood from the Fourier transform of a
delta function peaked on the conically-shaped locus X' of Eq. (6.19).

3t is interesting to note that in both these experiments the moving charge responsible for the
Cerenkov emission did not consist of a charged physical particle travelling through the medium,

but rather consisted of a moving bullet of nonlinear optical polarization generated by a femtosecond
optical pulse via the so-called inverse electro-optic effect.
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as sin¢ = vy /v. The distinction between the phase and group cones has been an-
ticipated in [21] to be most striking in the case of ultra-slow light media where v,
is reduced to the m/s range while vpn remains of the order of the speed of light in
vacuum c¢o 2~ 3 x 108 m/s [38—41].

The study of the Cerenkov effect in strongly dispersive media where the refrac-
tive index n(w) has a strong dependence on the frequency and/or the medium ex-
hibits a non-trivial spatial patterning is still a very active domain of research from
both the theoretical and the experimental points of view. For instance, the conse-
quences of a strong resonance in n(w) were theoretically investigated in [19]: the
sub-linear dispersion of the photon in a resonant medium is responsible for the dis-
appearance of the threshold velocity for the Cerenkov emission and for a non-trivial
spatial patterning of the electric field wake behind the charge. These striking re-
sults were experimentally confirmed in [20] and bear a close resemblance to the
surface wave pattern in the wake of a duck swimming on shallow water that will be
discussed in Sect. 6.6.3. Another active and promising research line is addressing
those new features of Cerenkov radiation that follow from the peculiar band dis-
persion of photons in spatially periodic media [22] and in negative refractive index
metamaterials, the so-called left-handed media [23].

6.4 Moving Impurities in a Superfluid

A central concept in the theory of superfluids [24-26] is the so-called Landau crite-
rion for superfluidity, that determines the maximum speed at which a weak impurity
can freely travel across a superfluid without experiencing any friction force and
without generating any propagating perturbation in the fluid. In terms of the disper-
sion £2(k) of the excitations in the superfluid, the Landau critical velocity has the
form

Q(k)}. (6.21)

Ver = Min
Kk

This cornerstone of our theoretical understanding of quantum liquids has a simple
interpretation in terms of the theory of the generalized Cerenkov effect reviewed in
Sect. 6.2: the friction force experienced by the moving impurity is due to the emis-
sion of elementary excitations in the fluid by a mechanism that is a quantum fluid
analogue of Cerenkov emission. The v < v condition for superfluidity corresponds
to imposing that the locus X of excited modes is empty, while for faster impurities
a characteristic wake pattern is generated around the impurity.

An experimental image of this wake using a dilute Bose-Einstein condensate
of ultracold atoms hitting* the repulsive potential of a blue-detuned laser is repro-
duced in the left panel of Fig. 6.3; an analogous image for a condensate of exciton-
polaritons in a semiconductor microcavity is reproduced in the middle panel. In both

4Needless to say that the configuration of a moving superfluid hitting an impurity at rest is fully
equivalent modulo a Galilean transformation to the case of a moving impurity crossing a superfluid
at rest.



120 I. Carusotto and G. Rousseaux

40 pm
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Fig. 6.3 Left panel: experimental image of the real-space wake pattern that appears in a Bose-E-
instein condensate of ultracold atoms hitting the repulsive potential of a blue-detuned laser beam.
The condensate motion is from right to left. Figure taken from [17], as published in [18]. Middle
and right panels: experimental images of the real-space wake pattern (middle) and the momentum
distribution (right) for a Bose-Einstein condensate of exciton-polaritons hitting a fabrication defect
in the planar microcavity. The polariton flow is from top to bottom. The value of the density in the
right panel is very small and interactions negligible. Figures taken from [16]

cases, the density wake extends both behind and ahead of the impurity. The geomet-
rical shape of the X' locus is instead clearly visible in the momentum distribution
pattern shown in the right panel.

The situation is of course more complex when stronger impurities are considered,
e.g. a finite-sized impenetrable object: in this case, the critical speed for frictionless
flow was predicted in [42] to be limited by the nucleation of pairs of quantized
vortices at the surface of the object, and therefore to be significantly lower than the
speed of sound. This mechanism was recently confirmed in experiments for with
atomic [43] and polariton [44—46] condensates. Furthermore, it is worth reminding
that all our reasonings are based on a mean-field description of the condensate that
neglects quantum fluctuations: more sophisticated Bethe ansatz calculations for a
strongly interacting one-dimensional Bose gas [31] have anticipated the appearance
of a finite drag force also at sub-sonic speed. Including higher order terms of the
Bogoliubov theory led the authors of [47] to a similar claim for a three-dimensional
condensate.

6.4.1 The Bogoliubov Dispersion of Excitations

The theoretical description of superfluids is simplest in the case of a dilute Bose gas
below the transition temperature Tpgc for Bose-Einstein condensation [24]. For
T <K Tpgc and sufficiently weak interactions, most of the atoms are accumulated
in the same one-particle orbital, the so-called Bose-Einstein condensate. The ele-
mentary excitations in a dilute Bose-Einstein condensate are characterized by the
Bogoliubov dispersion [24]

5 5 R (RK?
BPRr=—(—+2u), (6.22)
2m \ 2m
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where m is the mass of the constituent particles and the chemical potential w is
given (at zero temperature) by
4w *agn

p=——"0 (6.23)
m

in terms of the particle-particle low-energy collisional scattering length ag and the
particle density x. In the standard three-dimensional case, the weak interaction (or
diluteness) condition requires that nag < 1.

The characteristic shape of the Bogoliubov dispersion (6.22) is illustrated in the
(a, d) panels of Fig. 6.4. For small momenta k£ < 1 (the so-called healing length &
being defined as h?/m&? = ), the dispersion has a sonic behaviour

22~ 2k? (6.24)

with a sound speed ¢y = </ /m, while at high wave-vectors k&€ >> 1 it grows at a
super-sonic rate and eventually recovers the parabolic behaviour of single particles,

2
2 ::I:|:hi —|—,u]. (6.25)
2m
An explicit calculation from (6.22) shows that the Landau critical velocity (6.21) in
the dilute Bose gas is determined by the speed of sound v = c¢;. It is worth remind-
ing that this is no longer true in more complex superfluids with strong interparticle
interactions as liquid He-II, where v is determined by the roton branch of the el-
ementary excitations [24-26, 48, 49]. Remarkably, super-linear dispersions in the
form (6.22) also appear in the theory of surface waves on shallow fluids when the

fluid depth is lower than the capillary length, see Egs. (6.42) in Sect. 6.6.

The effect of the moving impurity onto the superfluid can be described by a
time-dependent external potential of the form V (r, ¢) = Vo(r — vt¢) coupled to the
particles forming the superfluid. Inclusion of this external potential in the Bogoli-
ubov theory requires including a classical source term in the Bogoliubov equa-
tions of motion for the two-component spinor describing the quantum field of the
non-condensed particles: a complete theoretical discussion along these lines can be
found in the recent works [14, 15, 18]. Here we shall use an approximate, yet qual-
itatively accurate model based on the simplified scalar theory of Sect. 6.2: the real
and imaginary parts of the field ¢ (r, r) correspond to the density and phase modu-
lation of the condensate.

6.4.2 Superfluidity vs. Bogoliubov-Cerenkov Wake

As we have already mentioned, the locus X' is empty for sub-sonic impurity speeds
v < c,: the impurity is able to cross the superfluid without resonantly exciting any
propagating mode of the fluid. As a result, within mean-field theory it is not expected
to experience any friction force. Modulo a Galilean transformation, this effect is
equivalent to a frictionless flow along a containing pipe in spite of the roughness of
the walls, which is one of the clearest signatures of superfluid behaviour [24-26].
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Fig. 6.4 Top row: Bogoliubov dispersion of excitations in a dilute Bose-Einstein condensate. The
dashed line indicates the £2 = k - v plane for two different impurity speeds v/c; = 1.2 [panel (a)]
and v/cg = 2.5 [panel (d)]. Middle row: shape of the corresponding k-space locus X of resonantly
excited modes. The dashed lines indicate the Cerenkov cone in the low wave-vector region k& < 1;
the green arrows indicate the normal to the X locus, that is the direction of the relative group
velocity vfg. Bottom row: real space pattern of the density modulation. All patterns are numerically
obtained performing the integral via a fast Fourier transform of the k-space perturbation (6.16).
The black dashed lines indicate the Mach cone
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Still, the non-resonant excitation of the Bogoliubov modes by the moving impu-
rity is responsible for a sizable density modulation in the vicinity of the impurity,
that quickly decays to zero in space with an exponential law. An important conse-
quence of this localized density perturbation is a sizable renormalization of the mass
of the object [31]: the linear momentum that is associated to the moving impurity
gets in fact a contribution from the portion of fluid that is displaced by it.

For super-sonic motion, the locus X' consists of a conical region at small k£ < 1
analogue ous to what was found in Sect. 6.3.1 for a purely linear dispersion: as
in that case, the aperture angle 6 of the k-space Cerenkov cone [dashed lines in
Fig. 6.4(b, e)] defining the far-field angle at which phonons are emitted by the im-
purity is defined by the condition cos 6 = ¢ /v.

Correspondingly, the aperture ¢ of the Mach cone that is visible in the real-
space density modulation pattern behind the impurity is defined by sin¢ = ¢, /v
(dashed black lines in [Fig. 6.4(c, f)]. This cone is the superfluid analogue of the
Mach cone that is created in a generic fluid by a super-sonically moving object, e.g.
an aircraft or a bullet. An experimental image of a Mach cone in a superfluid of
exciton-polaritons is shown in the central panel of Fig. 6.3. As usual, the faster the
impurity, the narrower the Mach cone.

Differently from sound waves in an ordinary fluid, the Bogoliubov dispersion of
the excitations in a superfluid is characterized by a parabolic shape at large wave-
vectors k& > 1 according to (6.25). This region of the Bogoliubov spectrum is re-
sponsible for the smooth arc in the high wave-vector region of X' that connects the
two straight lines emerging from the origin k = 0. In experiments, the shape of ¥
can be inferred following the peak of the momentum distribution of the particles
in the superfluid: an example of experimental image using exciton-polaritons in the
low-density regime is reproduced in the right panel of Fig. 6.3 analogous images for
atomic gases can be found e.g. in [50].

In the low wave-vector region, the relative group velocity V;, is oriented along
the edges of the Mach cone. Along the high wave-vector part of X, the relative
group velocity V;, rotates in a continuous and monotonous way spanning all inter-
mediate directions external to the Mach cone. As no point on X' corresponds to a
relative group velocity oriented in the backward direction inside the Mach cone,
the density profile remains unperturbed in this region. On the other hand, the den-
sity perturbation shows peculiar features in front of the Mach cone, with a series of
curved wavefronts extending all the way ahead of the impurity. These wavefronts
are clearly visible in the experimental images that are shown in Fig. 6.3 for atomic
(left panel) and polaritonic (middle panel) superfluids. In the k-space diagrams of
Fig. 6.4(b, e), these waves correspond to the regions in the vicinity of the extreme
points of X' where V% is directed in the direction of the impurity speed along the
positive x direction.

Physically, these curved wavefronts in the density modulation pattern can be un-
derstood as originating from the interference of the macroscopic coherent wave as-
sociated to the Bose-Einstein condensate with the atoms that are coherently scat-
tered by the moving impurity. An analytic discussion of their shape is discussed in
detail in [53]; their one-dimensional restriction was first mentioned in [51, 52]. In
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the next section we shall present analytical formulas for an approximated theory
where the single particle region of the Bogoliubov dispersion is modelled with the
parabolic dispersion of single-particle excitations.

6.5 Parabolic Dispersion: Conics in the Wake

Another example of dispersion that is fully amenable to analytic treatment is the
parabolic one,
2

hk
22(K) = o + . (6.26)

In spite of its simplicity, this form of dispersion can be used to model a number
of different physical configurations, from the large wave-vector k€ > 1 region of
the Bogoliubov dispersion (6.22) of superfluids, to the resonant Rayleigh scattering
in planar microcavities [54—56], to magnons in solid-state materials [27, 57-59]. In
particular, the results of this section will shine further light on the curved wavefronts
observed in Fig. 6.4(c, f) ahead of the impurity.

For a generic dispersion of the parabolic form (6.26), simple analytical manip-
ulations show that the locus X has a circular shape as shown in Fig. 6.5(b, e, h).
Assuming again that the particle speed v is directed along the positive x axis, the
center of the circle is located at ky =k, =mv/h, ky = 0 and has a radius k such that

k2 mv? 6.7

o~ 2n (6:27)
Depending on the relative value of the velocity v and of the u parameter, different
regimes can be identified.

For positive  (but such that the RHS of (6.27) is still positive), the radius k
is smaller than k, and the origin k = 0 lies outside the circle. This is the typi-
cal case of large k excitations in superfluids, whose dispersion is approximated by
Eq. (6.25). The usual resonant Rayleigh scattering ring [54—56] passing through the
origin k = 0 is recovered in the u = 0 case describing the case of an ideal gas of
non-interacting particles: an experimental example of such a ring is visible in the
momentum distribution shown in Fig. 6.3(c) for a low-density gas of (almost) non-
interacting polaritons flowing against a localized impurity potential. For negative u,
the radius is instead larger k > ko and the origin k = 0 falls inside the circle.

The relative group velocity V;, is directed in the outward radial direction. As a
consequence of the smooth shape of X, Vfg spans all possible directions and the real-
space perturbation shown in Fig. 6.5(c, f, 1) extends to the whole plane. However,
the wavefronts can have very different shapes depending on the relative value of v
and u.

A closed form for the real-space wake pattern is straightforwardly obtained by
noting that the integral in the right-hand side of (6.8) is in this case closely related
to the retarded Green’s function for a free non-relativistic particle [60],

ddk eik~r

Gret(r, ) = .
el @)= | T R 2 — o — 0%

(6.28)
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Fig. 6.5 Top row: parabolic dispersion of excitations w = k%/2 + p in the pu = 0 (a),
n=-—1<0(b), u=0.4>0 (c) cases (for notational simplicity, we have set m = h = 1). The
dashed line indicates the §2 =k - v plane for a generic particle speed v = 1 along the positive x
direction. Middle row: circular shape of the k-space locus X' of resonantly excited modes. Bottom
row: real space patterns of the density modulation. All patterns are numerically obtained perform-
ing the integral in (6.8) via a fast Fourier transform algorithm

In a generic dimension d, the asymptotic form of Gy at large r has the outgoing
spherical wave form

2niCq 1,
Gret(r, ) = melkr (6.29)
with a wave-vector k such that
hik?

Of course, for @ > 0 (or w < 0), the solution such that k > 0 (or Im[k] > 0) must be
considered. Cy is a dimension- and energy-dependent normalization constant.

Using this result, the expression (6.8) for the wake generated by a point-like
source term can be simplified into

d2k eik-r’

o(r) =
() Q)+ B2 gy —jo+
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2 ik-r’ ; _
_ d°k e ei%V-l‘/ _ _27T1Cd eikr/eiknx/
B 2 hk2 2 ; = .
0% 3 — (i — ) —i0* vr

6.31)

The real part of this wave provides the wake pattern plotted in Fig. 6.5(c, f, i): The
different panels correspond to the u =0 (c), u < 0 (f) and w > 0 (i) cases, which
correspond to k=k, (), k >k, (), and k <k, (i), respectively.

The shape of the wavefronts is obtained as the constant phase loci of (6.31).
For instance, the loci of points for which the phase of the field ¢ equals an integer
multiple of 27 are described by

ky/x2+y2 +kox =27 M (6.32)

with M a generic integer. After moving the k,x term to the LHS and then tak-
ing the square of both members, this equation is straightforwardly rewritten as a
quadratic equation in the spatial coordinates. The shape of the wavefronts in the
two-dimensional plane is therefore described by conic curves: the specific nature of
the conic in the different cases depends on the ratio k/k,.

For k, = k, the wavefronts have a parabolic shape described by the equation

47> M? — 4 Mkox = ko y°. (6.33)

As the square root has by definition a non-negative value, the further condition
2w M — ko,x > 0 has to be imposed to ensure that the RHS of (6.32) is non-negative.
Combined with (6.33), this condition is equivalent to imposing that the integer
M > 0. An example of these parabolic wavefronts is shown in Fig. 6.5(c).

For k > k,, the wavefronts have an elliptic shape described by the equation

2;11\/1/%}2 A2 M2k? 635

72,2 72 2
ky+(k _ko)|:x+];2_kg ]Ez—kg :
An example of these elliptic wavefronts is shown in Fig. 6.5(f). The condition on
the non-negativity of the RHS of (6.32) imposes that M > 0. The ellipticity of ¥
is a function of the ratio k / ko: the closer this ratio is to 1, the more elongated the
ellipse is. In the limit k/k, — 1, the ellipse tends to a parabola, recovering the case
k = k, discussed above. The larger the ratio k/k,, the closer the wavefront shape to
a series of concentric circles.

Finally, for k < k,, the wavefronts have hyperbolic shapes described by the equa-
tion

271Mk0:|2 2 4 Mi? 639

2 7.2
(kg—k)[x o e

In this case, the condition on the RHS of (6.32) does not impose any condition on
M that can have arbitrary positive or negative integer values. However, combining
this condition with the equation defining the hyperbola, one finds that for each M
only the left branch of the hyperbola at lower x has to be retained. Positive vs.
negative values of M are responsible for the different periodicities that are visible
in Fig. 6.5(i) in the x > 0 and x < O regions, respectively.
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From the k space diagrams in Fig. 6.5(b, e, h), it is immediate to see that the
points on X' corresponding to the backward and forward propagating waves are the
two intersections of the circle with the x axis: the wider spacing of the wavefronts
in the backward direction is due to the smaller magnitude of the wave-vector at the
intersection point at lower x. In the parabolic case, this point coincides with the
origin, which explains the absence of density oscillations on the negative x axis.

The characteristic curvature of the forward propagating wavefronts provides a
qualitative explanation for the shape of the density modulation experimentally ob-
served ahead of the impurity and illustrated in the left and central panel of Fig. 6.3.
Of course, the absence of backward propagating waves in the superfluid behind the
impurity is due to the k = 0 singularity of the X' locus for the case of the Bogoli-
ubov dispersion. It is worth reminding that, in contrast to previous works, the shape
of the forward propagating wavefronts is exactly parabolic only in the u = 0 limit
of non-interacting particles. For the generic u > 0 case of Bogoliubov theory, the
Hartree potential in (6.25) makes their shape to be closer to (part of) an hyperbola.

6.6 Surface Waves on a Liquid

The discussion of the previous sections on the Cerenkov effect in classical electro-
magnetism and on the response of superfluids to moving impurities puts us in the
position of getting an easy qualitative understanding of the surface waves that are
generated by a duck steadily swimming on the surface of a quiet pond or, equiva-
lently, a fishing line in a uniformly flowing river.’ This system is by far the most
accessible from the experimental point of view, but perhaps also the richest one for
the variety of different behaviours that can be observed depending on the system
parameters. A few examples of experimental pictures are shown in Fig. 6.6. For the
sake of conciseness, we shall restrict ourselves to the case of the water-air inter-
face and restrict to the linear regime of wave propagation described by the model
equation (6.1). More complete treatments based on the full hydrodynamic equations
including nonlinear effects can be found in the dedicated literature, see e.g. [1-12].

6.6.1 Dispersion of Surface Waves

The dispersion of surface waves on top of a fluid layer of height 4 and at rest has
the form

k)= <gk + %k3> tanhkh, (6.36)

31t is interesting to note that, as in the case of electromagnetic waves, accelerated objects emit
surface waves independently from their speed [64].
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Fig. 6.6 Upper panels: picture of the Kelvin’s ship-wave pattern behind a duck swimming at uni-
form speed on a quiet lake (left). Photograph courtesy of Fabrice Neyret, ARTIS-CNRS, France.
Experimental picture of the Mach cone downstream of a wire immersed in radially flowing silicon
oil (upper right). Capillary waves are not visible as they are quickly damped by the larger viscos-
ity of silicon oil. Picture from [61]. Experimental picture of the Mach cone downstream of a pin
immersed in very shallow flowing water: the surface wave dispersion is supersonic and the height
modulation stays outside the Mach cone. Picture courtesy of Silke Weinfurtner (lower right). Mid-
dle panel: Original hand drawing by John Scott Russell [62] of the waves generated by a vertical
rod (diameter = 1/16 inch) moving along the water surface with a uniform velocity. The rod moves
in the leftward direction: the capillary waves are visible in front of the rod and the gravity waves
behind it. A cut of the surface height modulation is shown right above the main drawing. Lower
panel: Original hand drawing by Lord Kelvin of Kelvin’s ship-wave pattern [63]. The BCD wave-
front belongs to the so-called transverse wave pattern. The so-called diverging waves connect the
object at A to the dashed lines indicating the edges of the pattern
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where p is the mass density of the fluid, g is the gravitational acceleration, and y is
the surface tension of the fluid-air interface.

In the simplest case of a deep fluid, the tanh kh factor can be approximated with 1
and the dispersion is characterized by two regions. For low wave-vectors k < ky,
the dispersion follows the sub-linear square-root behaviour

2(k) >~ £/ gk, (6.37)
of gravity waves, while for large k > k, it is dominated by capillarity effects and
has a super-linear growth as

Q) ~+ \/ka. (6.38)
0

The characteristic wave-vector scale separating the two regions is fixed by the cap-
illary wave-vector

k= |28 (6.39)

14

For the specific case of water/air interface, k,, 370 m~!, which corresponds to the
value

t,=1/k, =27%x10 m (6.40)

for the capillary length.

In fluids of finite depth, one can no longer approximate the tanh in (6.36) with 1.
As aresult, the dispersion in the low-wave-vector region recovers a sonic behaviour
at low k’s

Q) ~ +ck (6.41)

with a speed of sound c¢; = /gh proportional to the square root of the fluid depth.
The sign of the first correction to the sonic behaviour (6.41),

2
Q(k)* ~ ghk® + [6)2, — %]cfk“ (6.42)
critically depends on the depth of the fluid as compared to the capillary length (6.40).
For relatively deep fluids such that & > \/§£V, the dispersion has a sub-linear be-
haviour, while it recovers a super-linear behaviour analogue ous to the Bogoliubov
dispersion (6.22) for very shallow fluids such that & < \/53),.

Independently of the fluid depth %, the super-linear behaviour of the dispersion
§2(k) at large k makes the locus X to be either empty or to consist of a closed
curve. For very slow sub-sonic motions v < vy (With vpin to be defined in the next
subsection), the locus X' is empty. For intermediate ¢y > v > vnin (or infinitely deep
fluids, ¢y = 00), the locus X' shown in Fig. 6.7(e) consists of a smooth closed curve
that does not encircle the origin point k = 0. For super-sonic motions v > c;, the
locus X shown in Fig. 6.8(b, e) develops a conical Cerenkov singularity at k = 0.
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Fig. 6.7 Top row: dispersion of surface wave in the 4 = oo deep water limit. The dashed line
indicates the 2 =k - v plane for generic particle speeds v =2 m/s ((a) panel), v = 0.26 m/s ((d)
panel). Middle row: corresponding shapes of the k-space locus X' of resonantly excited modes
(panels (b, e)); the green arrows indicate the normal to the locus X, that is the direction of the rel-
ative group velocity Vv,,. Bortom row: real space patterns of the surface height modulation (panels
(c, ). These patterns are numerically obtained via a fast Fourier transform of the k-space per-
turbation (6.16) using the density and surface tension values of water. The (¢) panel corresponds
to the Kelvin’s ship-wave pattern behind a duck swimming on a deep lake, a picture of which is
shown in the upper left panel of Fig. 6.6. An original sketch by Lord Kelvin is shown in the lower
panel of the same figure
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Fig. 6.8 Top row: dispersion of surface wave on shallow water of height 27 = 0.2 m (left (a) panel)
and & = 0.001 m (right (d) panel). The dashed line indicates the £2 =k - v plane for generic par-
ticle speeds v = 2 m/s (left (a) panel), v = 0.14 m/s (right (d) panel). Middle row: corresponding
shapes of the k-space locus X' of resonantly excited modes (panels (b, e)). The dashed lines in-
dicate the Cerenkov cone in the low wave-vector region k& < 1. Bottom row: real space patterns
of the surface height modulation (panels (c, f)). The black dashed lines indicate the Mach cone.
These patterns are numerically obtained via a fast Fourier transform of the k-space perturbation
(6.16) using the density and surface tension values of water. The left panels correspond to a case
where / > /3¢, and the lowest-order correction to the sonic dispersion (6.42) is sub-linear. The
right panels correspond to a case where i < ﬁiy and the lowest-order correction has the same
super-linear behaviour as the Bogoliubov dispersion (6.22) illustrated in Fig. 6.4



132 I. Carusotto and G. Rousseaux
6.6.2 Deep Fluid

Let us start by investigating the deep fluid regime 2 — oo for which the sonic speed
cs — 00. The structure of the locus X' can be understood by looking at Fig. 6.7(d):

for low speeds
4 1/4
D < Vpin = <ﬁ> : (6.43)
o

the locus X' is empty and there is no emission. This critical speed depends on
the surface tension of the fluid: for the case of a water/air interface it is equal to
vmin == 0.23 m/s. The absence of emission corresponds to a vanishing wave resis-
tance experienced by the slowly moving object which is able to slide with no friction
on the surface of the fluid [12]. Still, the localized deformation of the surface around
the object is responsible for a renormalization of the mass of the object [11].

An efficient emission of surface waves with the associated wave resistance [12]
is suddenly recovered as soon as v > vpjy. In this regime, the locus X shown in
Fig. 6.7(e) has a kind of oval shape [11], with two intersections with the k, axis at
respectively

2 4

2 4
v v
k = k)(cl’z) = k)/ [— + —v — 1:| (644)

min min
As expected, the two solutions merge to ky = k,, for v 2 vmin, While at larger
v 3> Unmin they respectively tend to

kD~ g/0?, (6.45)
k2 ~ 2k, v* /v? (6.46)

min’
the former solution k,(cl) tends to zero in the large v limit and corresponds to almost

pure gravity waves, while the latter one k)(cz) quickly diverges as v and corresponds
to almost pure capillary waves.

6.6.2.1 Fast Speed v > vyin (Deep Fluid, Negligible Surface Tension)

Within the v > vy limit, we can start our discussion from the low wave vector re-
gion k < k, , where the waves have a mostly gravity nature, §2 (k) > /gk. Because
of the fourth power of v/vni, that appears in (6.44), this limit is achieved already
for moderate values of v/vpi, of the order of a few unities. In this region, the locus
X is approximately defined by the condition
472 2
2V ki(,» &

ky = o (kx — F), (6.47)
whose shape is plotted in the panel (b) of Fig. 6.7. The locus ¥ extends in the
kx| > kS = g/v? regions: for k, > k¢, it has the form

x Ky

2
ky = £/ U—‘g(kx —k¢), (6.48)
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while for large k > k¢, one recovers an asymptotic behaviour
ky = :t?kx. (6.49)

A most remarkable feature are the inflection points at kjc“ﬂ = +./3/2g/v? where
the slope dky /dk, is minimum. At these points the normal to the locus X makes
the maximum angle to the k, axis, with a value ¢max such that tan gpmax = 1/ /8~
19°28’. This angle determines the aperture of the wake cone behind the moving
object: remarkably, this value is universal and does not depend on the speed of the
object. A picture of the Kelvin’s ship-wave pattern behind a swimming duck on a
quiet lake is shown in the upper left panel of Fig. 6.6; an original hand drawing by
Lord Kelvin illustrating this physics is reproduced in the lower panel of the same
figure.

Another, related feature that is worth noticing is that for each angle |¢| < @max.,
there exist two points on the locus X' such that the normal to ¥ makes an angle ¢
with the negative k, axis: according to the theory discussed in Sect. 6.2, these two
solutions are responsible for the two inter-penetrating fringe patterns: the so-called
transverse waves with a small ky and the so-called diverging waves with large k.

The transverse waves are clearly visible as the long wavelength modulation right
behind the object along the axis of motion: their wave-vector k, = ki = g/ v? is
determined by the intersection of the locus X' with the k, axis. Remarkably, the
faster the object is moving, the smaller is the wave-vector k. On Kelvin’s hand
drawing of Fig. 6.6, the wavefront passing by point C belongs to the transverse
wave pattern.

The diverging waves are easily identified in the hand drawing as the wavefronts
with opposite curvature connecting the source at A with the edge of the wake pat-
tern where the two patterns collapse onto each other. The direction of the peculiar
fringe modulation of the edge of the wake [indicated by the blue dashed lines on
Fig. 6.7(c)] is determined by the wave-vector k" of the inflection point of the
k-space locus X: the orientation of k" fixes the angle B to a value such that
tan B = ky/kylinn = 1/+/2, i.e. B = 35°.

Of course, a complete treatment of the wake would require including the capillary
waves at very high wave-vector k ~ k)(cz) > ky, i.e. the part of the locus X' that
closes the curve at large k’s outside the field of view of Fig. 6.7(b). However, the
amplitude in these short-wavelength modes is quickly damped by viscous effects, so
their contribution to the observable pattern turns out to be irrelevant in most practical
cases.

6.6.2.2 Moderate Speed v 2 vyin (Deep Fluid, Significant Surface Tension)

For moderate speeds v 2 vmin, surface tension effects are no longer negligible and
all points of the k-space locus X' contribute to the real-space pattern. In particu-
lar, the locus X is a closed curve that does not encircle the origin, as shown in

Fig. 6.7(e): the two intersections with the k, axis at k, = k)(fl’z), corresponding to
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gravity and capillary waves propagate with relative group velocities directed in op-
posite directions from the fishing line of the celebrated experiment by Thomson.
The pattern of long-wavelength gravity waves is located downstream of the fishing
line, while the short-wavelength capillary waves are located in the upstream region,
see Fig. 6.7(f) and the drawing by J.S. Russell reproduced in the middle panel of
Fig. 6.6.

An approximate analytical understanding of this pattern can be obtained by ap-
proximating the locus ¥ of Fig. 6.7(e) with a pair of circles analogue ously to the
case of a parabolic dispersion discussed in Sect. 6.5 and shown in Fig. 6.5(g—):
within this approximation, the shape of the wavefronts consists a system of hyper-
bolas, with a closer spacing ahead of the object. The qualitative agreement of the
hyperbolic wavefronts of Fig. 6.5(i) with the full calculations shown in Fig. 6.7(f) is
manifest.

6.6.2.3 Effect of the Source Structure Factor

To complete the discussion, it is worth mentioning that the emission of waves can be
hindered by the source structure factor S(K) even at large v > vpin. For example, the
emission of surface waves will be strongly suppressed if the size £ of the source term
(modelled as a Gaussian-shaped potential S(r)) is large enough to have k¢ > 1 for
all points on X'. For instance, for an object of typical size £ = 30 cm, the argument
such that k,(cl)ﬁ < 1 imposes a lower critical speed v > v‘zize = 3 m/s to the emission
of gravity waves. A similar argument for capillary waves was mentioned to explain
the characteristic swimming speed of some floating insects [65, 66].

6.6.3 Shallow Fluid

When the wavelength of the perturbation is longer than the depth % of the fluid, the
tanh(kh) term in the dispersion begins to be important and causes a radical change in
the structure of the locus X'. The left and right columns of Fig. 6.8 illustrate the two
regimes h > \/§£y and h < «/géy where the first correction to the sonic dispersion
has either a sub-linear or a super-linear nature.

6.6.3.1 Small Surface Tension (Sub-luminal Dispersion)

We start here from the case where the surface tension is small enough to have
h > «/§Ky. Depending on the speed v of the object, several regimes can be identi-
fied. For very low speeds v < vmin, the locus X is empty and there is no perturbation
to the fluid. For intermediate speeds vmin < v < +/gh, the shape of the locus X' is
determined by the high-k capillary region of the dispersion and is almost unaffected
by the finite height & of the fluid: as in the deep fluid limit, X' consists of closed,
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egg-shaped smooth curve and the real-space pattern again resembles a system of hy-
perbolas extending to the whole space, as illustrated in Fig. 6.7(d—f). For increasing,
yet sub-sonic speeds v < ¢; = +/gh, gravity recovers an important role, while the
finite height / keeps providing only a small correction to the deep water behaviour
illustrated in Fig. 6.7(a—c).

The situation is completely different for supersonic speeds v > c; [Fig. 6.8(a—c)]:
in this case, the locus X' starts from the origin, where it exhibits a conical singularity
as a result of the sonic dispersion. At larger k, the locus X' recovers a shape similar
to the infinitely deep fluid case: the sub-linear growth of the dispersion with k is
responsible for the fast increase of k, as a function of k,. Of course, the super-
sonic dispersion of capillary waves at very large k [well outside the field of view of
Fig. 6.8(a, b)] makes the locus X' to close on itself. However, as already mentioned,
these short-wavelength waves are quickly attenuated and hardly visible.

The singularity of X at the origin k = 0 is responsible for the Mach cone and the
disappearance of the transverse wave pattern, as shown in Fig. 6.8(c). As usual for
sonic dispersions, the aperture of the Mach cone [indicated by the dashed line on
Fig. 6.8(c)] depends on the source speed v as sin¢ = ¢ /v: on the X' locus shown in
Fig. 6.8(b), this corresponds to the fact that the normal to X' starts at a finite angle
¢ with the negative k, axis for k = 0. For growing k’s, the angle monotonically
decreases to 0 meaning that the perturbation is restricted to the spatial region inside
the Mach cone. The absence of the transverse wave pattern is clearly visible in
Fig. 6.8(c) as the absence of modulation along the negative x direction right behind
the object.

6.6.3.2 Shallow One-Dimensional Channel

The restriction of this model to a one-dimensional geometry provides interesting
insight on the physics of long wavelength surface waves in a spatially narrow chan-
nel of width W. Spatial confinement along the orthogonal direction (say y) makes
the corresponding wave-vector to be quantized in discrete values determined by
the boundary conditions at the edges of the channel, ky, = wp/W with the integer
p=20,1,2,.... For simplicity, we assume that the transverse shape of the source
(e.g. a boat sailing along the channel) is broad enough to only excite the lowest
mode at ky = 0, corresponding to a transversally homogeneous wave.

Neglecting for simplicity also capillarity effects, a generalized Landau criterion
for one-dimensional gravity waves anticipates that a uniformly moving object can
emit k, = 0 gravity waves only if its velocity is slower than a maximum velocity

2(kx, ky =0

Umax = max[%} =c; =+/gh. (6.50)
X X

This feature is easily understood looking at the k, = O cut of the dispersion shown in

Fig. 6.8(a): for sub-sonic speed v < ¢y, the £2 = k, v straight line corresponding to

the Cerenkov condition (6.9) has a non-trivial intersection with the dispersion law,

while the intersection reduces to the irrelevant k, = 0 point for supersonic speeds
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v > ¢s. In this case, no modes are any longer available for the emission, which
reflects into a marked decrease of the wave drag friction experienced by the object.
The observation of an effect of this kind when a ship travels at sufficiently fast speed
long a channel was first reported by Scott Russel and often goes under the name of
Houston paradox in the hydrodynamics and naval engineering literature [4, 5].

As compared to the standard Landau criterion for superfluidity, it is interesting
to note that the condition on the object speed to have a (quasi-)frictionless flow is
here reversed: friction is large at slow speeds and suddenly drops for v > ¢s. This
remarkable difference is due to the different sub-sonic rather than super-sonic shape
of the gravity wave dispersion with respect to the Bogoliubov one. Of course, this
suppression of friction is less dramatic when also higher p > 0 transverse modes of
the channel can be excited and a richer phenomenology can be observed [67-69].
As we have previously discussed at length, in a transversally unlimited geometry the
transition from sub-sonic to super-sonic speeds manifests itself as the disappearance
of the transverse wave pattern from Kelvin’s wake and a corresponding sudden but
only partial decrease of the friction force.

6.6.3.3 Large Surface Tension (Super-luminal Dispersion)

In the opposite regime of large surface tension h < «/56,,, the super-linear form
of the dispersion (6.42) makes the physics to closely resemble the behaviour of
impurities in a dilute superfluid discussed in Sect. 6.4. For a slowly moving object
at v < cg, the locus X' is empty and the perturbation of the surface remains localized
in the vicinity of the impurity. For a fast moving object at v > ¢y, the locus ¥
and the wake pattern closely resemble the corresponding ones for the case of a
supersonically moving impurity in a superfluid shown in Fig. 6.4: a Mach cone
of aperture sin¢ = c;/v located behind the object [indicated by the dashed line
on Fig. 6.8(f)] and a series of curved wavefronts ahead of the object. The most
significant difference with the i > \/gﬁy case of Sect. 6.6.3.1 is the position of the
modulation with respect to the Mach cone: in the sub-linear case of panel (c), it lies
within (i.e. behind) the Mach cone, while in the super-linear case of panel (f), it
stays outside (i.e. in front of) the Mach cone.

6.7 Cerenkov Processes and the Stability of Analogue
Black/White Holes

The systems that were considered in the previous sections are presently among the
most promising candidates for the realization of condensed matter analogues of
gravitational black (or white) holes: the key idea of analogue models is to tailor
the spatial structure of the flow in a way to obtain a horizon surface that waves can
cross only in one direction. Upon quantization, a number of theoretical works have
predicted that a condensed matter analogue of Hawking radiation should be emitted
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by the horizon. A complete review of this fascinating physics can be found in the
other chapters of the book. In this last section, we shall review some consequences
of Cerenkov processes that are most significant for the stability of analogue black
and white holes based on either flowing superfluids or surface waves on flowing
water.

The role of Cerenkov-like emission processes in the dynamics of the strong op-
tical pulses that are used in optical analogue models based on nonlinear optics [70]
is still in the course of being elucidated and interesting experimental observations
in this direction have recently appeared [71]. Here, it is important to remind that,
differently from the all-optical Cerenkov radiation experiments of [20, 35] where
an effective moving dipole was generated by x ) nonlinearity, the analogue models
of [70] are based on the time- and space-dependent effective refractive index profile
due to a x® optical nonlinearity: given the centro-symmetric nature of the medium
under examination, no effective moving dipole can in fact appear unless the medium
shows some material imperfection.

6.7.1 Superfluid-Based Analogue Models

Let us start from the simplest case of analogue black/white holes based on flowing
superfluids for which a complete theoretical understanding is available [28, 72-76].
In a one dimensional geometry, the horizon consists of a point separating a region
of sub-sonic flow from a region of super-sonic flow. In a black hole the sub-sonic
region lies upstream of the horizon, while in a white hole the sub-sonic region lies
downstream of the horizon. A sketch of both configurations is reproduced in Fig. 6.9
together with the Bogoliubov dispersion of excitations as observed from the labora-
tory frame: in the most common configurations, the flow has a non-trivial structure
only in a small region around the horizon and recovers a homogeneous shape with
space-independent density and speed farther away from the horizon. In the labora-
tory reference frame (corresponding to the rest frame of the impurity), the Cerenkov
emission occurs in the zero-frequency Bogoliubov modes, the so-called zero modes.

As we have discussed in detail in Sect. 6.4, the super-linear nature of Bogoli-
ubov dispersion restricts Cerenkov emission processes to super-sonic flows, where
they generate waves that propagate in the upstream direction. In the geometry under
consideration here, the flow is everywhere smooth exception made for the hori-
zon region. Combining these requirements immediately rules out the possibility of
Cerenkov emission in black hole configurations: the group velocity of the zero mode
waves emitted at the horizon points in the direction of the sub-sonic region, where
it can no longer be supported. This simple kinematic argument contributes to ex-
plaining the remarkable dynamical stability of acoustic black hole configurations,
as observed in numerical simulations of their formation starting from a uniformly
moving fluid hitting a localized potential barrier [77].

In contrast, white hole configurations are much more sensitive to the dissipation
of energy via Cerenkov processes: Bogoliubov excitations can appear in the super-
sonic region upstream of the horizon and give rise to significant modulations of
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Fig. 6.9 Main panels: sketch of the flow geometry for white (a) and black (b) hole configurations
based on superfluids. Smaller panels (al, a2, bl, b2): dispersion of Bogoliubov excitations in
the asymptotic regions far from the horizon. Cerenkov emission is only possible for white hole
configurations: the corresponding zero mode is indicated in blue in (al). Figure from [28]

the density and flow speed, the so-called undulation patterns. Several reasons make
such processes to be potentially harmful to the study of quantum features of the
white hole radiation. To the best of our knowledge, the only known realistic scheme
to generate a white hole configuration in a flowing superfluid is the one of [28] using
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a simultaneous spatial and temporal modulation of both the atom-atom interaction
strength and the external confining potential. The main difficulty of this configura-
tion is that it requires a very precise tuning of the system parameters to eliminate
unwanted Cerenkov emission processes that may mask the quantum vacuum radia-
tion.

Even if a perfect preparation of the white hole is assumed, Cerenkov emission
processes may still be triggered by nonlinear effects in the horizon region. As it
was shown in [28], an incident classical Bogoliubov wavepacket is able to induce a
distortion of the horizon proportional to the square of its amplitude, which then re-
sults in the onset of a continuous wave Cerenkov emission from the horizon and the
appearance of a spatially oscillating modulation in the density profile upstream of
the horizon. Of course, a similar mechanism is expected to be initiated by quantum
fluctuations when back-reaction effects are included in the model, i.e. the non-linear
interaction of quantum fluctuations with the underlying flow. A third, more subtle
mechanism of instability of a white hole configuration was unveiled in [28]: the
1/4/@ divergence of the matrix elements of the S-matrix for low-frequency outgo-
ing modes in the neighbourhood of the finite wave-vector zero mode is responsible
for a steady growth of the density fluctuation amplitude in time since the forma-
tion of the white hole. Even if the temporal growth of fluctuations follows a slow
logarithmic (linear at a finite initial temperature 7 > 0) law, still it is expected to
strongly affect the properties of the horizon at long times.

The situation is expected to be different if fully three dimensional systems with-
out transverse confinement are considered. In this case, Cerenkov emission can take
place also in a black hole configuration: a distortion of the horizon by classical or
quantum fluctuations with a non-trivial transverse structure is in fact able to excite
Bogoliubov modes with a finite transverse component ky, # 0. As we have seen in
Fig. 6.4, there exist such modes that can propagate in the downstream direction into
the supersonic region inside the black hole.

6.7.2 Analogue Models Based on Surface Waves

The different dispersion of surface waves is responsible for dramatic qualitative
differences in the wave propagation from the horizon of analogue black and white
holes configurations. As it is sketched in Fig. 6.10(a, b), the trans-sonic interface is
generally created in these systems by means of a spatial variation of the fluid depth
h [78-80]. Depending on the detailed shape of the transition region and/or on the
presence of fluctuations, Cerenkov emission by the horizon can occur into the zero
modes of zero energy in the laboratory frame, as observed e.g. in [81]: a quantitative
estimate of the amplitude of the resulting stationary undulation pattern for specific
configurations of actual experimental interest requires however a complete solution
of the hydrodynamic equations, which goes beyond the scope of the present work.
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Fig. 6.10 Main panels: sketch of the flow geometry for white (a) and black (b) hole configurations
based on surface waves on a fluid. Smaller panels (al, a2, b1, b2): surface wave dispersion in the
asymptotic regions far from the horizon. Cerenkov emission is only possible for white hole config-
urations: the corresponding zero mode is indicated in blue in (a2). Differently from the superfluid
case of Fig. 6.9, the zero mode now has a group velocity in the downstream direction into the sub-
sonic region. Parameters: flow speed v =2 m/s, fluid depth 4 = 0.1 m [white hole, upstream inner
region, panel (al)], v = 0.666 m/s, fluid depth # = 0.3 m [white hole, downstream outer region,
panel (a2)]; flow speed v = —2 m/s, fluid depth 7 = 0.1 m [black hole, downstream inner region,
panel (b1)], v = —0.666 m/s, fluid depth 2 = 0.3 m [black hole, upstream outer region, panel (b2)].
For the chosen parameters, the effect of surface tension at the water/air interface is negligible
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With an eye to the experiments of [78-80], we can restrict our attention to low-
wave-vector gravity waves and neglect surface tension effects in a simplest one-
dimensional geometry. In this case, Cerenkov emission processes only occur for
flow speeds lower than the sonic speed c; = +/gh and result in an emission in the
downstream direction. From the surface wave dispersions shown in Fig. 6.10(al, a2,
b1, b2), one can easily see that Cerenkov emission can again only occur in white
hole configurations, which are then expected to be again less stable than black hole
ones. As in the superfluid case, Cerenkov emission of surface waves with a finite
ky # 0 become possible also in the black hole case as soon as a two dimensional
geometry is considered and Kelvin’s diverging waves are allowed. In spite of its
importance in view of on-going experiments, we are not aware of any comprehen-
sive work having studied in full detail the dynamical stability of surface wave-based
analogue white/black holes as in the case of superfluid-based ones [28].

6.8 Conclusions

In this chapter we have presented a review on some most significant aspects of the
Cerenkov effect from a modern and interdisciplinary point of view. In our perspec-
tive the same basic process of generalized Cerenkov emission encompasses all those
emission processes that take place when a uniformly moving source is coupled to
some excitation field: as soon as the source velocity exceeds the phase velocity of
some mode of the field, this gets continuously excited. Simple geometrical argu-
ments are presented that allow to extract the shape of the emission pattern in real
and k space from the dispersion law 2 (k) of the field. Application of the general
concepts to some most illustrative cases is discussed, from the standard Cerenkov
emission of relativistically moving charged particles in non-dispersive media, to the
Mach cone behind a supersonically moving impurity in a superfluid, to the wake of
gravity and capillary waves behind a duck swimming on the surface of a quiet lake.
The impact of Cerenkov emission processes on condensed-matter analogue mod-
els of gravitational physics is finally discussed. Open questions in this direction are
reviewed.
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