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1 Introduction

In the past, the term ‘mathematical physics’ had substantially two meanings.
On one hand, it simply indicated modern physics, which considered math-
ematics its own language; in this sense, Galileo, Newton, Kepler, etc., were
distinguished mathematical physicists. On the other hand, it pointed to the
branch of science that developed in the XIX century and had enabled the
solution of some specific problems governed by partial differential equations,
such as, for instance, heat propagation, potential theory, theory of elastic-
ity; in this sense Fourier, Lamé, Gauss, Piola, Beltrami, etc., stood among
the most important mathematical physicists. Today the term indicates an
academic discipline, practiced by mathematicians, having some principles of
physical nature at its basis.

The relation between mathematics and physics – i.e., mathematical physics
in the broad meaning – has been the subject of an endless number of pa-
pers, from the historical, epistemological and ‘scientific’ points of view. The
mathematical physics of the XIX century, potential theory, and the modern
mathematical physics are only a little less investigated.

Rather than giving exhaustive accounts of mathematical physics, the ob-
jective of this paper is to use some historical instances to define the meaning
that the term ‘mathematical physics’ assumed in some selected historical pe-
riods. To begin with, the first instances of application of mathematics to
physics, then the first appearance of something like modern mathematical
physics, and, eventually, a particular kind of mathematical physics theory,
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called rational mechanics, are discussed. For the sake of brevity, the golden
age of physics, ranging from Galileo to Newton, has been ignored, without
preventing this paper from reaching its objective, that is, the discussion of
the meaning of the discipline called mathematical physics.

2 Epistemological aspects

Examining the epistemological aspects of mathematical physics gives us the
opportunity to precise the meaning of the term, or at least to stipulate its
appropriate conventional meaning. However, it is necessary to explain what
a physical theory is in its essence first. It is made up of three parts:

An abstract calculus, which comprehends undefined or theoretical terms,
definitions, principles and inference rules.

A conceptual model, which, more or less, provides a sensible represen-
tation of the interested part of the world (not strictly necessary).

Some correspondence rules, which connect the theoretical terms and
the theorems of the theory with the experimental data.

For example, a mechanical theory (a particular kind of physical theory) of
the solar system has material point, mass, force, displacement, time, and so
on, as primitive terms. The principles are the Newtonian laws of motion, and
the inference rules are those offered by differential calculus. The conceptual
model may be the set of planets, thought as spheres rotating around the sun.
The correspondence rules provide numerical values to the mass of planets, to
the gravitational constant, to the quantities corresponding to displacements,
velocities and accelerations as furnished by the mechanical theory. Fig. 1
shows the general structure of a physical theory.

The essential part is that in grey; the two boxes with dashed sides rep-
resent parts which could actually be missed: i.e. the formalized structure,
obtained according to the symbols and principles of predicative logic, and
the conceptual model which, according to the dominant point of view, has
heuristic and didactic value only.
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laws which necessarily should be ‘true’. In case they were not verified, this
would mean there were errors in the experimental apparatus. At the opposite
pole there is the position of a pure physicists who has a good understanding
of mathematics and considers his theoretical developments as a way to verify
the goodness of the principles assumed for the theory, the only thing which
is interesting to him.

In previous considerations the difference between pure mathematics and
mathematical physics was not specified in detail, and various positions could
be assumed. Clifford Truesdell (1919-2000), for instance, does not see the
difference and states that mathematical physics is simply a branch of pure
mathematics, and in any case it is not applied mathematics. He actually
speaks of rational mechanics only, but his considerations apply to any math-
ematical physical theory:

Is rational mechanics part of applied mathematics? Most cer-
tainly not. While in some cases known mathematical techniques
can be used to solve new problems in rational mechanics, in other
cases new mathematics must be invented. It would be misleading
to claim that each achievement in rational mechanics has brought
new light in mathematics as a whole as to claim the opposite, that
rational mechanics is a mere reflection from known parts of pure
mathematics [42].1

One cannot but agree that mathematical physics is not an applied science
in the usual meaning of the adjective ‘applied’. Truesdell’s insistence that
mathematical physics is a distinct branch of pure mathematics is less con-
vincing. In fact, it is true that developing a physical mathematical theory
one can discover new theorems; this is what occurred in the past. But new
discoveries can always be framed in the existing mathematics, or open a new
branch of pure mathematics no longer connected to physics. So, the fact that
mathematical physics be pure or not pure mathematics is in part a matter of
words. All depends on the meaning one wants to give to ‘pure mathematics’.
If, as most mathematicians think, a pure mathematical theory should con-
cern only objects that are usually classified as objects of mathematics, such
as topology, geometry, abstract algebra, theory of numbers do, then rational
mechanics and any other mathematical physical theories are not part of pure
mathematics, otherwise they are.

1p. 337.
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3 Different conceptions of mathematical physics

In 1822 Jean Baptiste Joseph Fourier (1768-1830) published the Théorie ana-
lytique de la chaleur [10], where he formulated the theory of heat conduction
in terms of a partial differential equation, and developed methods to solve
it. In doing so, Fourier introduced many innovations because the theory of
differential equations was at an early stage of development at his time.

The principles of the theory were derived from a small number of ‘pri-
mordial’ empirical facts, the cause of which was not searched for.

The principles of this theory are derived, such as those of ra-
tional mechanics, by a very small number of essential facts, of
which the geometers in no way will consider the cause [emphasis
added], but they accept them as resulting from common obser-
vations and confirmed by all the experiments. The differential
equations of heat propagation express the most general terms,
and bring physical questions to problems of pure analysis, which
is the proper object of the theory. They are no less rigorously
demonstrated than the general equations of balance and move-
ment [10].2

The main principle of the theory of heat transmission was very simple and
easily accepted, as it can be derived from elementary and well ascertained
experimental facts:

When two molecules of the same solid are extremely close and
have unequal temperatures, the hottest molecule transmits to the
coldest an amount of heat exactly given by the product of tree
quantities which are: the duration of time, the extremely small
difference of temperature, and a certain function of the distance
between the molecules[10].3

The very nature of heat does not concern the mathematical expressions
Fourier derived.

Even in the absence of certain assumptions on the nature of
heat, the knowledge of the mathematical laws heat is subject to

2p. XI. My translation.
3p. 605. My translation.
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is independent of any hypothesis. This knowledge only requires a
careful examination of the main facts that can be observed, and
which can be confirmed by accurate experiments [10].4

What is really important is that from simple and undeniable empirical facts
a very sophisticated mathematical theory can be constructed. Fourier results
are summarized in the following theorem:

Theorem IV. It is easy to deduce from the previous theorems
the general equations of heat propagation.
Assume that the points of a homogeneous solid of any shape have
received initial temperatures varying successively by the effect of
the mutual action of the molecules, and the equation v = f(x, y, z, t)
represents the successive states of the solid, we will demonstrate
that the function v of four variables necessarily satisfies the equa-
tion [10]:5

dv

dt
=

K

C.D

(
d2v

dx2
+
d2v

dy2
+
d2v

dz2

)
(1)

Gabriel Lamé (1795-1870) used largely the term ‘mathematical physics’ in his
works, and specified what was its meaning especially in four books ranging
from 1852 to 1861, Leςons sur la théorie mathématique de l’élasticité des
corps solides (1852), Leςons sur les fonctions inverses des transcendantes et
les surfaces isotherme (1857), Leςons sur les coordonnées curvilignes et leurs
diverses applications (1859), Leςons sur la théorie analytique de la chaleur
(1861) [21, 22, 24, 23].

The titles of these books clearly show the great relevance given by Lamé
to analysis and to its high explicative power in physics. In the Leςons sur la
théorie mathematique de l’élasticité des corps solides of 1852 he defined the
‘properly said mathematical physics’:

Mathematical physics, properly said [emphasis added], is a
modern creation, belonging exclusively to the Geometers of our
century. Today, this science actually includes three chapters, var-
iously extended, that are treated rationally, that is to say, they
are based on compelling principles or laws only. These chapters
are: the theory of static electricity on the surface of conducting

4p. 18. My translation.
5p. 134-135. My translation.
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bodies, the analytical theory of heat, and the mathematical the-
ory of elasticity of solid bodies. The last is the most difficult, the
less complete, and it is also the most useful, as today the impor-
tance of a mathematical theory is proportional to the results it
can immediately deliver to industrial practice.
[. . . ]
No doubt analysis will soon embrace other parts of general physics,
such as the theory of light and electrodynamic phenomena. But
it cannot be repeated too often, that true mathematical physics
is a science as rigorous and accurate as rational mechanics [21].6

At the moment, he said, there are only three mathematical physical sciences:
the theory of static electricity, the analytical theory of heat, and the math-
ematical theory of elasticity. They are flanked by rational mechanics, which
Lamé seems to consider as the most developed physical mathematical science,
to which all the other three, and also other sciences that are coming, should
equate.

Lamé’s conception of mathematical physics was described very clearly in
the foreword of the Leςons sur la théorie analytique de la chaleur of 1861. To
Lamé, the quantities of interest were represented in all cases by continuous
mathematical functions of the three variables (x, y, z) for stationary situa-
tions, to which a fourth variable, that is, the time t, had to be added in the
dynamic case. Theory can be developed from very simple principles, which
only have the status of tentative hypotheses. For example, in the theory of
elasticity the first hypothesis was to assume that solid matter is formed by
small particles interacting by opposite forces, applied at their centres of mass.

The theory develops via subsequent approximations. The consequences of
a hypothesis are compared with well ascertained experimental facts; if there
is no agreement between each other, the hypothesis is adapted or replaced,
until an agreement is reached. This process can be carried out by a single
researcher, but more frequently is a historical process that may last many
years. For example, in the case of the theory of elasticity the first theories
assumed a homogeneous and isotropic material. However, this assumptions
was in disagreement with many experimental results, and therefore it was
modified accordingly to this:

6p. V-VI.
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After this initial exploration, we return to the starting point,
to extend the inaugurated theory to the case of a more general
homogeneity of the solid medium, such that the efficient cause
of the phenomenon changes with the direction around the same
point. But the law of this change is also imperfectly indicated
by the facts, that should be completed by the help of a second
hypothesis. From this another principle follows, which is still
likely, and that leads to a new system of linear partial differential
equations, more complicated, but more general than the first ones
[23] 7

Lamé’s attitude could be compared with the modern hypothetical-deductive
approach, and differs from Fourier’s, whose hypothesis was directly inferred
from experimental observations and was no longer object of doubts [35].

As far as the theory of heat is concerned, Lamé recalled Fourier’s theory,
and claimed he was removing Fourier’s limitations, for example the hypothesis
of isotropy, since that was necessary to study crystalline bodies.

The course I undertake today has the main purpose to estab-
lish the analytical theory of heat, without leaving any hypothet-
ical principle on the internal constitution of the solid, without
making assumptions on any law of heat exchange, or the partic-
ular radiation, without adopting any restriction for conductivity
variations around a point [. . . ]. Indeed, the Theory of Elasticity,
completely free of any hypothetical principle, can demonstrate
rigorously, basing on the facts, that in diaphanous media, the
ponderable individuals vibrate brightly [23].8

The hypothesis assumed by Lamé at the basis of his theory was the following:

Let M and M ′ be two close points of a solid medium; ζ the
distance, of insensible value, separating them; ϕ the latitude and
ψ the longitude of the direction MM ′; V the present temperature
atM ; V ′, a little lower than V , that inM ′; ω and ω′, two elements
of volume, to whichM andM ′ belong, of very small size compared
to ζ. The quantity of heat transferred, during the time dt, by the
volume ω′ to the volume ω, is: ωω′(V − V ′)Fdt. The coefficient

7p. VIII-IX. My translation.
8p. V-VI. My translation.
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F , essentially positive, depends on the distance ζ and the angles
(ϕ,ψ) [23].9

which corresponds to Fourier’s when F is assumed constant.
Lamé considered very important the fact that in all sectors of mathe-

matical physics similar or even identical differential equations were obtained.
This fact pointed to the possibility to have a unified theory for the whole of
physics. And, indeed, this was Lamé’s expectation:

These historical accounts very naturally lead to three predic-
tions that I will state, as so many propositions to verify. Firstly :
from the steady state of three of the previous theories, and the
incessant progress of the other three, it follows that the partial
principles of the capillary motion, electricity, and magnetism can-
not be known until when those of the light, elasticity and heat
will be known. Secondly : since the two theories of elasticity of
solid homogeneous bodies and the double refraction of diaphanous
crystals have had the same initiator, that is, Fresnel, one may de-
duce that these two theories should merge into a single one, or
into a group under the same partial principle. Thirdly eventu-
ally, since only two active and distinct theories will remain, one
can conclude that from their rapprochement and their future fu-
sion, sooner or later the only truly universal principle of physical
nature will derive [25].10

Fourier and Lamé, two founders of modern mathematical physics, were still
anchored to experimental facts, and for this reason they should be consid-
ered both physicists and mathematicians. But when it became clear that
the mathematical equations governing physics were well established and all
had similar form, their mathematical aspect became appealing. Many math-
ematicians embarked on the attempt to solve the differential equations of
mathematical physics in several situations, substantially ignoring physical
implications and leaving to the physicists the burden to verify their results.
For instance, Emile Matheiu (1835-1890) and Carl Neumann (1832-1925)
moved in this direction.

9pp. 2-3.
10p. 985. My translation.
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Mathieu presented himself as a follower of Lamé. In his studies on the
theory of elasticity, where he introduced the fourth order equation:

∂4V

∂x4
+ 2

∂4V

∂y2∂z2
+
∂4V

∂y4
+ 2

∂4V

∂x2∂z2
+
∂4V

∂z4
+ 2

∂4V

∂x2∂y2
= 0 (2)

and called V the ‘second potential’, to distinguish it from the first potential
satisfying the equations of Laplace or Poisson (see next section).11

Mathieu’s job in mathematical physics was to uniform the different fields
of physics, also revising the different results found by his predecessors [1].12

In fact, he defined mathematical physics as a science whose object is the
study of a limited set of partial differential equations:

The principal differential equations that we meet in mathe-
matical physics are:

4u = 0, 44u = 0, 4u = −a2,
du

dt
= a24u, d

2u

dt2
= a24u

where t is time. The function u, which represents temperature,
potential or molecular motion, satisfies one of these equations
inside a solid limited by a surface σ or inside a plane limited by a
line σ. Moreover, u and its derivative must be continuous within
this domain [1].13

Carl Neumann moved similarly. He recognized that the results of mathe-
matical physics should be confirmed by experiments [39],14 but also claimed
it is not a mathematician’s concern to work out a comparison between theory
and practice. As a mathematician (or mathematical physicist), he focused
his attention on the mathematical description of principles, above all on the
improvement of mathematical means [39].15

Neumann also discussed the differences of the logical status of mathe-
matical and mathematical physical theories. At that time there was a sub-
stantially Aristotelian-Euclidean vision of mathematics, according to which a
mathematical theory should be based on indubitable axioms and the resulting
theorem should not be disputable. According to Neumann, a physical math-

11The previous relation is usually written as 44V = 0, with 4 the Laplace operator.
12p. 111.
13p. 109-110.
14p. 130.
15p. 127.
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ematical theory was different because some ‘axioms’ might be hypothetical,
and its theorems, indeed physical laws, could not necessarily be true. From
this point of view, physical mathematical theories were more interesting for
a mathematician because of their greater potential of invention (hypothetical
deductive theories).

These considerations by Neumann, partially shared also by Mathieu [1],16

contributed to the development of the modern concept of a mathematical
theory based on premises to which is not required to be true.

4 The theory of potential

Starting from the middle of the XIX century, potential theory and mathemat-
ical physics were considered as substantially synonymous. For this reason,
this large section is devoted to the origins and development of this peculiar
mathematical physical theory.

In his Theorie de la libration de la Lune of 1780, Lagrange denoted by
V a scalar function with no name attached to. Its use was very convenient
because, in the cases of conservative forces, as they are called today, its
derivatives allowed to obtain their components [17].17

It was, however, Simon Laplace (1749-1827) in his Traité de mécanique
céleste [27] who introduced a detailed and systematic study of functions hav-
ing the properties required by Lagrange. In this text several problems, very
different from each other, were treated with the methods of rational mechan-
ics, basing on the Newtonian law of attraction: from astronomy, to the theory
of capillarity, to the motion of a system of bodies. The role of the potential
function (modern term) was central to his research; in the case of a spheroid,
the centre of which coincides with the origin of a set of orthogonal Cartesian
axes, Laplace considered the attraction that the spheroid exerts on a point of
mass m and coordinates x, y, z. Denoting by ρ the mass density of the spher-
oid and x′, y′, z′ the coordinates of its points, he introduced the function V

of x, y, z (his symbols) [27]:18∫
ρdx′dy′dz′√

(x− x′)2 + (y − y′)2 + (z − z′)2
(3)

16p. 110-111.
17p. 23-24. Lagrange resumed this concept in the Méchanique analitique of 1788 [18],

p. 225.
18p. 136-137.
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the derivatives of which with respect to x, y, z give the components of gravi-
tational forces, and which must satisfy the relation (his symbols):

0 =
(
ddV

dx2

)
+

(
ddV

dy2

)
+

(
ddV

dz2

)
(4)

now called Laplace equation. The equation was introduced for the first time
by Laplace for a spherical coordinate system [28].19 Only later it was brought
back again to the case of rectilinear coordinates [27].

Denis Poisson (1781-1840) in a paper published in 1813 [36]20 observed
that if the point P suffering the attraction is located within the attractive
body itself, Laplace equation is no longer valid, and V satisfies the relation
(his symbols):

d2V

da2
+
d2V

db2
+
d2V

dc2
= −4πρ (5)

with ρ the density of mass or electric charge at the point P , and a, b, c the
coordinates of the point where V is evaluated. Equation (5), called Poisson-
Laplace equation, is in fact a generalization of equation (4), for if the point
P is located outside the body it is ρ = 0, and then V satisfies Laplace
equation. Poisson tried three different demonstrations of equation (5), but
the first rigorous proof was given by Carl Friedrich Gauss (1777-1855) in his
famous Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse
wirkenden Anziehungs und Abstossungs-Kräfte of 1840 [11].21 In the same
memory Gauss used the name potential for V .

Laplace equation is fundamental to potential theory and it is valid for a
large number of phenomena, other than those it was introduced for, such as
the dilation of a solid in elastic equilibrium, and the steady state distribution
of temperature in a body. Given the importance of Laplace equation in the
field of mathematical physics, the need for assigning a symbol to the sum of
the second derivatives of a function V was felt; Robert Murphy (1806-1843)
denoted it by 4V , Gabriel Lamé by 4V 2, George Green (1793-1841) by δV ,
while the function V such that 4V = 0 was called harmonic [3].

Different ways were proposed to address equations (4) and (5). In partic-
ular, in the memoirs of Gauss [11] and Green [12, 13] and in other scientists’

19Relation (4) was already deduced by Leonhard Euler in 1753 during his research on
the equations of hydrodynamics [9], p. 300. He was actually referring to a potential of
velocities and not of forces.

20p. 391.
21p. 210.
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memoirs it was suggested that the search for a harmonic function could be
replaced by the search for the minimum of the following functional:

I =
∫ [(

∂V

∂x

)2

+
(
∂V

∂y

)2

+
(
∂V

∂z

)2
]
dx dy dz (6)

At that time, this result was not proved rigorously and now goes under the
name of Dirichlet principle, according to which I must attain a minimum
value equal to 0, and the sought harmonic function minimizes I [16].

This principle drew much criticism. First, it was not at all evident that
the class of admissible functions, namely, those functions satisfying the given
Dirichlet problem, is not empty. Second, it is not said that the integral I
always assumes finite values. Finally, I may not have a minimum or, in other
words, the lower bound of I could be given by a non admissible function. The
latter objection was clearly formulated by Karl Theodor Wilhelm Weierstrass
(1815-1897) in 187022 [38], building the example of a function that has a lower
extreme, but not a minimum. Before 1870, mathematicians had already
moved criticism to the legitimacy of Dirichlet’s principle, which provided
a criterion of existence, the only one known, for the solution of Dirichlet
problem. The objections started from Berlin, came to Italy, and Enrico Betti
(1823-1892) took part in the controversy, making the difficulties associated
with Dirichlet principle known in Italy by means of his charisma. However,
it was widely believed that Dirichlet principle held, at least under certain
assumptions, and that its rigorous proof was possible. This view was also
shared by physicists who, less sensitive to issues of rigour, continued to use
Dirichlet principle in their deductions.

The attitude of distrust towards this principle is perfectly understand-
able if one takes into account the effort of making mathematics rigorous,
which was taking place in those years. This process begun in France, with
Augustin Cauchy (1789-1857) since the twenties, and later found its continu-
ation in Germany with Weierstrass and his school of Berlin. The goal was to
make the entire mathematical foundations based on absolutely rigorous and
certain demonstrations. Was thus possible, from this point of view, to build
the fundamental results of potential theory and other mathematical theories
basing on the challenged Dirichlet principle?

Dirichlet problem and the existence of its solution were deeply connected
22But published only in 1895.
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to several mathematical theories, such as complex analysis, functional analy-
sis and variational calculus. In the second half of the XIX century, the fact
that the validity of Dirichlet principle was doubtful undermined the basis of
many developments of these theories which, until then, relied on the existence
of the solution to Dirichlet problem. Mathematicians then tried to overcome
the obstacle building, over time, the particular solution to the given Dirich-
let problem. The methods developed during the XIX century were mainly
Green’s function (analyzed in the following), the alternating method of Karl
Hermann Amandus Schwarz (1843-1921), the method of the arithmetic av-
erages of Carl Neumann (1832-1925) and the balayage of Henri Poincaré
(1854-1912) [3].23

Among the many ad hoc methods for solving Dirichlet problem, the
method proposed by Green must be discussed. It was reported in his famous
paper of 1828 An essay on the application of mathematical analysis [12], about
the application of the analysis to the study of electricity and magnetism. The
section entitled General preliminary results is that offering the greatest con-
tributions to potential theory. Relying on physical intuition also, Green felt
that a function V harmonic in a domain T , bounded by a surface S, can be
expressed in the following way (modern symbols) [12]:24

V (P ) =
1
4π

∫
S

V (Q)
∂

∂n
G(Q,P )dS (7)

where P is a fixed point, Q a variable point on the surface S, n the inner
normal to S, and G(Q,P ) = 1/r+U(Q,P ) a function vanishing at all points
of the surface, with r the distance between P and Q. The function U is
nothing but the potential of the charge induced on a conductor layer, having
the form of S, from the unit charge placed in P .

The An essay on the application of mathematical analysis by Green, which
also anticipated some remarkable results obtained by Gauss, and introduced
new methods of potential theory, was for many years unknown to most of
the scientific world. Only in 1845, William Thomson (1824-1907) had in
his hands the Essay, and sent a copy to Arthur Cayley (1821-1895), who
published it on the prestigious German magazine Journal für die reine und
angewandte Mathematik in serial form starting from 1850. The impact of

23p. 24.
24p. 33-34.
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the publication was remarkable and, from that moment on, Green’s function
became a common method used to address issues of potential theory, and in
primis, to solve Dirichlet problem.

In the period between 1860 and 1870 some mathematicians, including
Enrico Betti, Rudolf Otto Sigismund Lipschitz (1832-1903), Franz Ernst
Neumann (1798-1895), and Carl Gottfried Neumann, tried to deduce the
functions holding the same role as Green’s function in the theories of heat,
elasticity, magnetism, and electrodynamics. Their goal was to develop proce-
dures and methods of potential theory to determine the solution of problems
similar to Dirichlet’s [41]. Among these, the so-called Neumann problem,
which aims to determine a function V harmonic in a domain with assigned
values for the normal derivative of V on the boundary, must be mentioned.
The function similar to Green’s function for a Neumann problem was derived
in the two-dimensional case by a pupil of Betti, Ulisse Dini (1845-1918), in
1876.

Towards the end of the century, mathematicians came back to Dirichlet
principle, trying to provide a rigorous proof in several occasions. Some Ital-
ian scientists, stimulated by the problems related to Dirichlet principle, gave
an important contribution in this regard, laying the foundations of modern
functional analysis [3]. However, it was David Hilbert (1862-1943) who put
Dirichlet principle on solid basis. In a two-dimensional case with a sufficiently
smooth boundary and the given function supposed piecewise analytical, he
proved that the functional (6) admits at least a harmonic function taking
assigned values on the boundary [14, 15]. Hilbert observed that Dirichlet
principle is a particular problem of variational calculus, and therefore de-
veloped a general method for determining the condition necessary to ensure
that a function is the maximum or the minimum of a functional. Hilbert
‘called back to life’ (as he himself wrote) Dirichlet principle by going directly
to construct a sequence of minimizing functions, such that their limit exists
and is precisely the sought function.

5 The role of Gabrio Piola

Gabrio Piola (1794-1850), substantially a contemporary of Lamé, concen-
trated his efforts on a particular branch of mathematical physics, that is,
rational mechanics, or, rather, rational mechanics of continuous bodies.
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Rational mechanics differed from other classical physical mathematical
theories because, at least in the formulation of the principles, the empirical
element had always been relegated to a corner, and when it was introduced it
concerned not systematic experimental observations but observations of the
common man.

Archimedes’ statics, for instance, evolved on the basis of the simple princi-
ples for which a body tends to fall down instead of rise up and ceteris paribus,
for example for a lever with two arms of same length, the greater weight has
the greater effectiveness, and moves the system down. There is no doubt
that these principles are extra-logical in nature and in a different world could
not be valid. Today there is even the possibility of falsifying Archimedes’
principles of statics by empirical experiments: it would be sufficient to set up
the bodies in deep space, where they have no weight.

Even in the statics of the XIX century the empirical element is not very
evident. There are essentially two approaches, one based on equating to zero
the sum of the forces (and moments) that are composed with the parallelo-
gram rule, and one based on the principle of virtual velocities and the calcu-
lus of variations, as developed by Lagrange in his Mécanique analytique. The
French mathematicians who had studied continua, such as Cauchy, Poisson
and Lamé, had used the first approach, Piola chose the second one. Although
he did not consider it as obvious, he considered it at least indubitable and
easily provable from evident principles:

These thoughts persuade us that he would be a bad philoso-
pher who will persist to wish to know the truth about the funda-
mental principle of mechanics in the way he clearly understands
axioms. [. . . ] But, if the fundamental principle of mechanics can-
not be evident in itself, it should at least be a truth easy to be
understood and to be convinced of [emphasis added] (Piola 1825,
p. XVI).

Piola’s approach to rational mechanics was similar to that by Lamé to the the-
ory of elasticity, with some important differences. Like Lamé, Piola thought
that mathematical physics must proceed from undoubted facts, and make ex-
tensive use of modern mathematical analysis to derive theorems as the laws
of physics, but he was even more cautious. Lamé’s foundation of his rational
mechanics was, on one hand, the explicit assumption of particles attracting
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each other by forces depending on their distance; on the other hand, the
implicit assumption of the validity of the usual laws of statics, which then
were the parallelogram rule and the vanishing of total forces and moments.
Piola believed that Lamé’s hypothesis on the constitution of matter and the
nature of internal forces were unnecessarily bold. He wanted to assume only
the geometrical constraints of bodies, which are in turn considered as math-
ematical continua, similarly to what was done by Cauchy and Lagrange, as
evident.

Regarding the criterion of balance Piola stood out from Lamé, assuming
the principle of virtual velocities, as formulated by Lagrange:

Here is the great benefit of Analytical Mechanics. It allows us
to put the facts, about which we have clear ideas, into equation,
without forcing us to consider unclear ideas [. . . ]. The action of
active or passive forces (according to a well known distinction
by Lagrange) is such that we can sometimes have some ideas
about them; but more often there remain [. . . ] all doubts that
the course of nature is different [. . . ]. In Analytical Mechanics,
however, the effects of internal forces are contemplated, not the
forces themselves; namely, the constraint equations which must be
satisfied [. . . ] and in this way, bypassed all difficulties about the
action of forces, we have the same certain and exact equations
as if those would result from the thorough knowledge of these
actions (Piola 1833, pp. 203–204.).

Piola’s work on continuum mechanics concerned fluids and solids. These last
were published in various years (Piola 1825, Piola 1832, Piola 1836, Piola
1848, Piola 1856), with La meccanica de’ corpi naturalmente estesi trattata
col calcolo delle variazioni of 1832 probably the most relevant one. The title
is ambiguous because estesi (extended) at Piola’s time meant both rigid and
deformable, while Piola in this memoir studied only rigid bodies, which he
qualified as solid, a term used by Euler and Lagrange as synonymous of rigid.
Piola maintained this ambiguity throughout the paper, since he tended to use
notations whichccould be extended to deformable bodies. The reason for this
ambiguity stems in his declared intention to study, in a companion memoir,
the case of deformable bodies also, even though this intention did actually
not concretize.25

25In the paper Piola speaks about a companion paper that will follow in the journal;
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According to Piola, in the study of the equilibrium of a rigid body the
only fact of which one has clear evidence is that the distances between the
various points of the body cannot vary, regardless of the internal forces that
are awakened as a result of the applied active forces. This fact can be ex-
pressed with algebraic equations that relate the movements of the various
points to a limited number (6) of degrees of freedom, or through differen-
tial equations that express the constraint of rigidity locally. Piola chose this
second approach, drawing inspiration from what was done by Lagrange in
the Mécanique analytique for the study of one- and three-dimensional rigid
bodies.

Here Lagrange imposed the constraint of rigidity, requiring that the mu-
tual distances of all points of the solid remain unchanged for any virtual
displacement. He got a set of differential equations in the Cartesian coordi-
nates of the points (x, y, z), of the form (Lagrange 1811, p. 183):

dnxdnδx+ dnydnδy + dnzdnδz = 0, (8)

of which only three are independent, for example those corresponding to
n = 1, 2, 3. Lagrange did not fail to notice that these expressions were already
obtained by Euler in his work Decouvert d’un nouveau principe de mécanique
(Euler 1752, pp. 197-201) in the case of motion of a body fixed to its centre
of gravity (Lagrange 1811, p. 184).

At this point Lagrange had to apply the principle of virtual velocities, to
which he referred to as the equation of moments:26

S(Xδx+ Y δy + Zδζ) dm = 0, (9)

where X,Y, Z are the components of the active forces for unity of mass m;
δx, δy, δz are the virtual displacements, not free but satisfying the constraint
relations (8). To account for these relations Lagrange had two possibilities:
Method A. To integrate them to obtain explicit expressions for δx, δy, δz,
thus depending on integration constants.
Method B. To use his multiplier method and add (8) to (9).

In the case of the mono-dimensional rigid body, Lagrange followed method
B, using the first three relations (8) (Lagrange, 1811, p. 175). In the case of

actually this paper never appeared.
26The symbol of the equation are Lagrange’s, with S indicating the integral.
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the three-dimensional rigid body Lagrange chose method A, probably because
with only three equations of condition he could not obtain any significant
results. By integrating the differential equations of condition he got the
following expression of virtual displacements of a rigid body:

δx = δl − yδN + zδM,

δy = δm+ xδN − zδL,

δx = δn− xδM + yδL,

(10)

Substituting the expressions (10) into δx, δy, δz in the moment equation (9)
Lagrange obtained the classical balance equations of statics in terms of the
active forces and their statical moments (Lagrange 1811, p. 185).

Piola followed an inverse path; he took for granted the global equation
for rigid bodies (10), the terminal point for Lagrange; by suitably deriving
them, he was able to obtain a finite number (6) of differential equation which
characterize the rigidity constraint locally.

To write down the equations of motion, the material points of a rigid body
were labelled by two sets of Cartesian coordinates. The first referred to axes
called a, b, c, as done by Lagrange in the Mécanique analytique (Lagrange
1813, Sect. XI, art. 4, p. 277) rigidly attached to the body – reference
configuration – and the second to axes called x, y, z, fixed in the ambient
space and to which the motion of the body is referred – current configuration
–. With Piola’s symbols (Piola 1832 , p. 209):

x = f + α1a+ β1b+ γ1c

y = g + α2a+ β2b+ γ2c

z = h+ α3a+ β3b+ γ3c

(11)

It was not difficult to Piola to prove the validity and the independence of the
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In writing the virtual velocities equation, Piola distinguished between the
reference (coordinates a, b, c) and the present configurations (coordinates
x, y, z). He wrote the equation with respect to the reference configuration
first (not reported here for the sake of simplicity), to concentrate then on the
equation in the present configuration, which is given by (Piola 1832, p. 215):∫

da

∫
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[(
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(14)
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where Γ is the mass density in the present configuration, H the Jacobian
of the transformation from (a, b, c) to (x, y, z), and (δx, δy, δz) the virtual
displacement of a material point of the body.27

At this point Piola accounted for the constraint relations (12) and (13).
To impose the constraint, Piola followed Lagrange’s approach for the mono-
dimensional rigid bodies (method B), by adding to the integral on the left
side of the variational equation (14) the integral of variational version of the
constraint relations. In the following, the developments corresponding to
relations (12) only are reported. Introducing the Lagrange multipliers (A, B,
C, D, E, F ), the balance equation (9) according to the original Piola’s text
are (Piola 1832, p. 215):
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After lengthy calculations Piola arrived to the following balance equations in

27Though Piola is dealing with a rigid body motion he introduced the Jacobian H of
the coordinate transformation from (a, b, c) to ( x, y, z). Its introduction is useless for a
rigid body motion where H = 1; but it allows to easily extend the analysis to the case of
deformable bodies
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the reference configuration (x, y, z) (Piola 1832, p. 220):
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(16)

Piola repeated the calculation using the equation of conditions (13) and ob-
taining an analogous result.

Piola’s approach is typical of the XIX century mathematical physics.
Starting from the equation of equilibrium (9), with an assumption which
could not be subject of any criticism, he got to prove a theorem according
to which the relation (9) with the equations of condition (12) leads to the
differential equations (16). During this demonstration Piola had to overcome
many difficulties of mathematical kind, also coming to introduce an interest-
ing transportation theorem allowing to move from the equilibrium equations
written in the reference configuration to those written in the present config-
uration (Piola, 1832, pp . 234-236).

Given the high level of abstraction that Piola wanted to keep, the equa-
tions (16) does not have any mechanical sense. Piola found that his equations
could be compared with those found by Cauchy and Poisson (Cauchy 1827,
Poisson 1829) for the balance of three-dimensional continua. The Lagrange
multipliers (A, B, C , D, E , F) are the stress components in an assigned
coordinate system in the reference configuration. He kept this position of
little interest for the mechanical aspects for all his later works. Only with his
posthumous work, Di un principio controverso della Meccanica Analitica di
Lagrange e delle sue molteplici applicazioni (Piola 1856), Piola gave a con-
vincing sense of the physical relations (9) by recognizing the expressions that
are to the left of condition equations (12) and (13) the significance of strain
components. More specifically, equations (12) correspond to the left Cauchy
- Green deformation tensor and equations (13) to the right Cauchy-Green
deformation tensor.
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