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1 Introduction

The origin of modern continuum mechanics dates back to Cauchy [1]–[8] and
Poisson [9, 10], who investigated linear elastic solids and fluids subject to
infinitesimal displacements. This is stated in the well known monographs
on history of mechanics by Todhunter and Pearson [11], Dugas [12], Tim-
oshenko [13], Benvenuto [14] . We find some more hints on the origins of
the theory of elasticity also in the recent contributions by Capecchi et al.
[15, 16, 17]. Cauchy and Poisson imagined natural bodies as constituted by
very small particles of matter interacting by central forces. However, they de-
rived continuum field equations by suitable analytical tricks, and eventually
Cauchy adopted only continuous functions to describe the regions of ambient
space filled by a huge number of particles very close to each other. Since
then, continuum mechanics has influenced all basic studies on theoretical
and applied mechanics, enlarging both its scopes and range of applications:
electro-magnetism and heat/work are only two of them. Examples of contin-
uum mechanics in these fields are provided by the pioneering works by Green
[18] and Thomson [19, 20]; comprehensive expositions are the well known
ones by Truesdell and Toupin [21] and Truesdell and Noll [22]; a more recent
handbook is that by Gurtin et al. [23].

Structured continua, originated by the Cosserats [24, 25], represent an-
other branch of continuum models and their study has lead to an established
theory, see Capriz [26] for instance. Indeed, continua with (micro-)structure
are optimal models for many objects in multiple fields of application: they
may describe non-standard beams [27, 28], damaged structural elements [29],
masonry [30, 31, 32], plasticity [33]. In addition, they may provide suitable
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frameworks for multi-field physics, such as piezoelectricity or the mechanics
of mixtures or porous media: the various physical quantities entering the
phenomena are seen simply as additional degrees of freedom in a generalized
lagrangean system.

Gabrio Piola (1794–1850) stood out among the Italian scholars in me-
chanics in the first half of 1800, though he was never in charge of a university
chair. In a series of papers, published in Italian in some journals of almost
no diffusion outside Italy [34]–[38], he was perhaps the first to present: a)
a clear separation among kinematics, expressed by suitable constraint equa-
tions, and balance, expressed by Lagrange’s virtual work [39], according to
which inner actions are simply mechanical duals of suitable constraint equa-
tions; b) a clear statement that physical considerations on the constitution
of inner actions lie beyond the position of kinematics and balance, and are
independent of them; c) an imaginary ideal state for any body, made up of
a perfectly regular array of molecules, free of any stress; d) an imaginary
intermediate configuration between the natural and the actual ones, so that
constraint equations exist; and e) the possibility to obtain balance equations
by considering a change in observer for the present configuration. These key
points in Piola’s principles of mechanics are put into evidence by Hellinger
[41], and described with some depth in other studies on Piola’s works [40, 47].
The aim of this work is, however, to stress the above said points, that seem
quite original and basic for a more general theory of continua with respect
to that by Cauchy, Poisson and their successors (among them Lamé [42] and
Saint-Venant [43, 44]), well before the Cosserats’, and with a very modern
spirit.

Piola’s work is in general not well known in the international scientific me-
chanics community, because of his nationalistic attitude of writing in Italian
and to practice mechanics as an amateur. We also cannot directly ascribe any
Italian academic school to him, yet his influence is undoubtable on Francesco
Brioschi (1824–1897), who taught in Pavia and founded the polytechnical
school in Milan, and who passed this influence for sure to his doctorate stu-
dents Eugenio Beltrami (1835-1899), Felice Casorati (1835–1890), and Luigi
Cremona (1830–1903), some of the founders of the Italian school of math-
ematical physics. On the other hand, the theory of elasticity and of struc-
tures, that in France was closely linked to the scholars in the Grandes Écoles,
in Italy seem to take origin in Turin after Luigi Federico Menabrea (1809–
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1896), influenced by Lagrange’s inheritance, and his indirect pupils Carlo
Alberto Castigliano (1847–1884) and Valentino Cerruti (1850–1909) [45, 46]:
they perfected the idea of minimum work, and applied theorems of minimum
work in the study and design of engineering structures, especially trusses and
frames.

In this contribution, I will shortly sketch some instances linked to Piola’s
derivation of mechanical balance equations as presented in his first papers.
On the other hand, I will spend more time to analyze in some depth Piola’s
lucid self-criticism and self-corrections, leading him to expose, in his last two
papers, and especially in his posthumous one, a well formulated, and still
up-to-date, continuum mechanics theory.

2 Condition equations and balance

Piola’s first work on mechanics considers the application of Lagrange’s an-
alytical mechanics to many problems [34]. Apart from this testimonial of
affection to his master, all of Piola’s following works are devoted to extend
Lagrange’s ideas to continuum mechanics:

Mechanics of bodies extended according to the three dimensions, solids
and fluids of any kind, has recently been promoted through the inves-
tigations of two famous French geometers, Poisson and Cauchy, who
dealt with very difficult problems not touched before. The latter in his
Exercises of Mathematics gave some double solutions, that is, by the
hypothesis of continuous matter, and by the hypothesis of matter con-
sidered as an aggregate of distinct molecules at very small distances:
on the other hand, the former, believing that supposing the matter
continuous does not give reason of natural phenomena, kept preference
on the other hypothesis, wishing to rebuild Mechanics from the ground
by it. Before the above said geometers, Lagrange had dealt with var-
ious problems relative to the mechanics of solids and fluids, creating
a new science for this as well as for all other questions of equilibrium
and motion: I mean to speak of the Analytical Mechanics, a work still
praised nowadays, and which is called the real philosophical mechanics
but in fact is considered a bit more than a piece of erudition. Since I
have had in my first youth a particular occasion to make a profound
study of this work, I made myself so high an idea of the generality and
power of its methods, that I came to believe them, in comparison with
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the methods used before, a prodigy of invention not less than differ-
ential and integral calculus with respect to Cartesian analysis: and I
thought and wrote to be impossible henceforth any investigation on
rational mechanics that were not performed in this way. Having af-
terwards examined the recent memoirs, and having remarked how in
them (but for some rare occasion) the analysis that had struck me so
much is not used, I thought that I had gone wrong, that is, that the
new mechanical questions could not be subjected to the methods of
Analytical Mechanics. I tried, however, to convince myself of this by
means of an experiment: and then it was a great surprise of mine to
realize that in this way they fit into it very well, and get much clear:
a going in the proof that satisfies one’s spirit: confirmation in some
places, changes in other: and, which is more, new theorems in addi-
tion. This is the reason that pushed me to publish a series of Memoirs
on the quoted subject, to try to drive some readers to my belief: but
before the proofs of fact I thought of posing some general meditations
aimed at showing, at least for what is in my ability, the deep of the
knowledge which is found in the greatest work of the sublime Italian
Geometer.1

1La meccanica de’ corpi estesi secondo le tre dimensioni, solidi e fluidi di ogni sorta è
stata recentemente promossa mediante le ricerche di due insigni geometri francesi, Poisson
e Cauchy, i quali trattarono problemi assai difficili per l’addietro non toccati. Il secondo
di essi ne’ suoi Esercizi di Matematica diede alcune soluzioni in doppio, cioè nell’ipotesi
della materia continua, e nell’ipotesi della materia considerata come l’aggregato di mole-
cole distinte a piccolissime distanze: il primo invece, credendo che la supposizione della
materia continua non basti a rendere ragione di tutti i fenomeni della natura, si attenne
di preferenza all’altra supposizione, bramando rifare con essa da capo tutta la Meccanica.
Prima dei sullodati geometri, Lagrange avea trattati vari problemi relativi alla meccanica
de’ solidi e de’ fluidi, creando una nuova scienza per queste come per tutte le altre quistioni
di equilibrio e di moto: intendo parlare della Meccanica Analitica, opera cui anche oggidì si
danno molte lodi, e viene chiamata la vera meccanica filosofica ma che nel fatto si riguarda
poco più che un oggetto di erudizione. Avendo io avuta nella mia prima giovinezza par-
ticolare occasione di fare su quest’opera uno studio pertinace, erami formata un’idea così
elevata della generalità e della forza de’ suoi metodi, che giunsi a riputarli, in confronto dei
metodi antecedentemente usati, un prodigio d’invenzione non minore di quello del calcolo
differenziale e integrale in confronto dell’analisi cartesiana: e pensai e scrissi essere impos-
sibile che per l’innanzi ogni ricerca di meccanica razionale non si facesse per questa via.
Esaminate in seguito le recenti memorie, e avendo notato come in esse non si faccia uso (se
non forse qualche rara volta in maniera secondaria) dell’analisi che tanto mi avea colpito,
credetti d’essermi ingannato, che cioè le nuove questioni di meccanica non si potessero
assoggettare ai metodi della Meccanica Analitica. Provai però a convincermene anche per
mezzo di un esperimento: e allora fu molta la mia sorpresa nell’accorgermi che in quella
vece esse vi si accomodano egregiamente, e ne ricevono molta chiarezza: un andamento di
dimostrazione che accontenta lo spirito: conferma in alcuni luoghi: cangiamento in alcuni
altri: e quel che è più, aggiunta di nuovi teoremi. Ecco il motivo che mi determinò a
pubblicare una serie di Memorie sull’enunciato argomento, per tentare di ridurre alla mia
opinione qualche lettore: ma innanzi alle prove di fatto pensai mettere alcune riflessioni
generali dirette a indicare, per quanto almeno è della mia capacità, il profondo di quella

4



Thus, Piola’s mechanics was a branch of pure knowledge, i.e., of philoso-
phy, following the ‘natural philosophers’ of classical Greece, Newton (remind
the latter’s distinction between ‘rational’ and ‘practical’ mechanics in the
Principia), and Lagrange. Piola’s mechanics is a procedure of logical think-
ing by rigorous deductions (hence the adjective ‘rational’ juxtaposed to the
noun ‘mechanics’), the principles of which shall be undoubtable because of
empiric evidence. Piola did not despise applications-simply, he was more in-
terested in the logical way to frame natural phenomena into a rigorous system
of deductions:

I would not like a physical mechanics2 the first equations of which,
meditated upon rather uncertain hypotheses, would obtain but a weak
confirmation, going from the general to the particular, by some cor-
rispondence with observed phenomena. Good philosophy, made expert
by the aberrations of many of those thinkers that built systems about
natural things, deduces from the multiplicity and contradiction them-
selves of their opinions, that the way of making philosophy is not right,
that has a support only in its end, and not a sufficient one in its begin-
ning. If these considerations are right, anybody sees how interesting
is to recover study and practice upon A. M., which is the only one to
establish fundamental equations needing a few dates the truth of which
is undebatable.3

Piola’s rebuilding of mechanics on undoubtable facts is based on a per-
sonal definition of inner actions. Cauchy and Poisson (and Navier before
them), independent of the corpuscular/continuous nature of matter, derived
inner actions by postulating that they derive from Newtonian central forces:
thus, the particles of a body-universe interact like the particles of the world-
universe, and ‘pressure’ (nowadays ‘stress’) derives by suitable mathematical

sapienza che trovasi nella maggior opera del sommo Geometra italiano. [35], pp. 201–202.
2Piola refers to Poisson, who criticized Lagrange’s abstraction in Analytical Mechanics

as to the constitution of natural bodies. Piola’s juxtaposition of the adjectives ‘rational’ -
to him, purely logical and undoubtable - and ‘physical’ - to him, coming from debatable
conjectures - is apparent.

3Non vorrei io però una meccanica fisica di cui le prime equazioni ragionate sopra
supposizioni alquanto incerte non ottennessero se non una lontana conferma, scendendo
dal generale al particolare, per qualche corrispondenza con fenomeni osservati. La buona
filosofia fatta esperta dalle aberrazioni di molti fra que’ pensatori che fabbricarono sistemi
intorno alle cose naturali, deduce dalla moltiplicità stessa e contrarietà delle loro opinioni,
che non è retto quel metodo di filosofare il quale, senza sufficiente appoggio nel suo prin-
cipio, ne ha uno soltanto nel suo fine. Se queste riflessioni sono giuste, ognun vede quanto
interessi rimettere in credito e in pratica lo studio della M. A. la quale è la sola che a
stabilire l’equazioni fondamentali abbisogna di pochi dati la cui verità non è disputabile.
[35], p. 205.
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procedures of averaging over a unit surface. This postulate, however, stems
from an unprovable analogy between planets and molecules, and suffices to
describe linear elasticity only. Piola was evidently disturbed by this fact,
since he wanted nothing unproved:

[Analytical mechanics] makes us put into equations facts, of which we
have clear ideas, without forcing us to consider their causes, of which
we have obscure ideas: certain facts instead of causes, to express the
action of which we form doubtable and not too convincing hypothesis.
It is a system that precisely needs only those notions to which human
mind arrives with certainty, and refrains or may refrain to state, indeed,
where it seems not possible to put a solid basis for our reasonings. [. . . ]
The action of inner active or passive forces [. . . ] is sometimes such that
we may get a concept of it, but more often [. . . ] the doubt remains, that
the laws of nature be well different than those lacking images by which
we strive to represent them. For instance: if we deal with the motion
of a point forced to stay on a surface, we may clearly represent the
surface resistance as a force operating normally to the surface itself, and
establish by this consideration only the general equations of motion. If,
on the other hand, we deal with those forces that kept the continuity
of masses in motion, I confess that, at least for me, their way to act
is so twisted, that I cannot settle the ways I could imagine it. [. . . ]
But in the A. M. we watch the effect of inner forces and not the forces
themselves, that is to say the equations of condition that must be
satisfied, or certain functions that are varied by the forces: these effects
are clear [. . . and] we have the same exact and certain equations that we
would have by a thorough knowledge of them actions. This is the big
step: we can afterwards, if we wish, dress up with the representation of
forces the undetermined coefficients introduced on purpose, and then,
once determined these coefficients by the mechanical equations, gain
some notions about the forces themselves.4

4[. . . ] ci fa mettere in equazione fatti di cui abbiamo idee chiare senza obbligarci a
considerare le cagioni di cui abbiamo idee oscure: fatti certi invece di cagioni a esprimere
l’azione delle quali si formano ipotesi dubbie e non troppo persuadenti. È desso un sistema
che abbisogna appunto di quelle sole cognizioni a cui arriva la mente umana con sicurezza,
e si astiene o può astenersi dal pronunciare appunto dove non pare possibile mettere un
fondo sodo ai nostri ragionamenti. [. . . ] L’azione delle forze interne attive o passive [. . . ]
è qualche volta tale che possiamo farcene un concetto, ma il più sovente rimane [. . . ] il
dubbio che il magistero della natura sia ben diverso da quelle immagini manchevoli colle
quali ci sforziamo di rappresentarcelo. Per un esempio: se trattisi del moto di un punto
obbligato a stare sopra una superficie, possiamo rappresentarci con chiarezza la resistenza
della superficie siccome una forza che opera normalmente alla superficie stessa, e stabilire
con questa sola considerazione le equazioni generali del moto. Se trattasi invece di quelle
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Piola’s approach is found unaltered also in contemporary handbooks of
mechanics, for instance the one by Lanczos [48]:

It frequently happens that certain kinematical conditions exist between
the particles of a moving system which can be stated a priori. For
example, the particles of a solid body may move as if the body were
“rigid” [. . . ]. Such kinematical conditions do not actually exist on a a
priori grounds. They are maintained by strong forces. It is of great
advantage, however, that the analytical treatment does not require the
knowledge of these forces, but can take the given kinematical conditions
for granted. We can develop the dynamical equations of a rigid body
without knowing what forces produce the rigidity of the body.5

Thus, the idea of physical evident conditions turned into mathematics is ba-
sic in Piola’s mechanics: to see facts and detect empirically shared truths
only, and put them into undoubtable equations, seems modern, and difficult
to contest even nowadays. This remained a corner stone in all of Piola’s pa-
pers, where he tried to broaden and improve his statements, leaving nothing
uncertain, at least for his standards.

In his work of 1833 [35] Piola made clear both his philosophical points
of view and his approach to the mechanics of continuous media, by start-
ing to describe rigid bodies. Indeed, in this case the undoubtable condition
equations exist, that (in a contemporary language) Euclidean metrics is pre-
served passing from reference to present configuration. Since Piola’s original
equations are written in components with respect to Cartesian rectangular
coordinates, writing them in full would be rather lengthy and could obscure
their actual meaning. Thus, I prefer a shorter and more suggestive form,
that is, contemporary and absolute notation, which I will keep henceforth in
order to simplify the typographical output. For a visual comparison between
the outputs of these two different notations, check [40, 16].

forze che mantengono la continuità nelle masse in moto, io confesso che, almeno per me, il
loro modo d’agire è sì inviluppato, che non posso accontentarmi alle maniere con cui vorrei
immaginarmelo. [. . . ] Ma nella M. A. si contemplano gli effetti delle forze interne e non le
forze stesse, vale a dire le equazioni di condizione che debbono essere soddisfatte, o certe
funzioni che dalle forze sono fatte variare: questi effetti sono chiari [. . . e] si hanno le stesse
equazioni sicure ed esatte che si avrebbero da una perspicua cognizione di esse azioni. Ecco
il gran passo: si può poi, se si vuole, rivestire della rappresentazione delle forze i coefficienti
indeterminati introdotti in maniera strumentale, e allora, determinati questi coefficienti a
posteriori mediante le equazioni meccaniche, acquistare delle cognizioni intorno alle forze
stesse. [35], pp. 204–205.

5[48], pp. 4-5.

7



Piola’s conditions of rigidity coincide with

C = F∗F = I, B = FF∗ = I (1)

where F is the list of the partial derivatives of the transformation of the
coordinates of each point from the present to the actual shape, that is, in
contemporary language, the transformation gradient.

Lagrange in his Analytical Mechanics [39] had introduced constraint re-
actions as ‘passive’ forces emerging when condition equations tend to be vio-
lated. Their effect on the considered system is accounted for by introducing
an additional term in what we now call virtual work (‘moment’, according to
Lagrange) of all forces, built by the linear product of an unknown multiplier
times the first variation of the condition equation. This equals to see all
inner forces in a system as those ‘passive’ forces emerging when one isolates
an element of the system and considers its balance under rigid body motions
(“principle of solidification”; see also [40]).

In order to apply Lagrange’s techniques, thus, Piola wrote what we now
interpret as the virtual work spent on the possible violations of the rigidity
constraint, i.e., on the first variation of the quantities provided by (1):

σC = (σF∗)F+ F∗(σF) = 0, σB = (σF)F∗ + F(σF∗) = 0 (2)

The scalar components of the symmetric tensors in (2) are six, while three
suffice to make the problem kinematically determinate, i.e., to uniquely de-
termine the three cartesian components of the transformation from the ref-
erence to the present configuration, modulo the necessary, but immaterial,
integration constants. Thus, as we say nowadays, a rigid body is internally
over-constrained, or redundant; however, Piola had no clear idea of this fact
and advanced some not well explained statements on the number of neces-
sary and sufficient condition equations to provide. Such a remark on Piola’s
unclearness is found also in the well known monograph by Todhunter and
Pearson [11]. Quite likely, as it will be apparent also below, Piola wanted to
find, beyond any reasonable doubt, which, and how many, condition equa-
tions can in general be provided for an extended body.

By (2), Piola could write the moments (i.e., the virtual work) of all forces,
active (called, along with the tradition of the time, “accelerating”) and pas-
sive. In particular, the moment of passive forces is provided by the product
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of the elements of two sets of six Lagrange multipliers, that we suitably list in
the symmetric tensors T and P2, times the six components of σB and σC in
(2), respectively. Indeed, at least in in [35] Piola did not make any difference
between σB and σC in (2): both represented to him first-order variation of
well-established and undoubted condition equations, and he did not bother
to check about their actual kinematical meaning.

Piola then adopted standard techniques of calculus derived by Lagrange,
and localization made him able to obtain the local balance equations

Div(TF) + υJf = 0, Div(FP2) + υJf = 0 (3)

where: υ is the mass per unit volume in the present configuration, f is the
active force per unit volume in the present configuration, and J = detF,
called “sextinomial” by Piola, makes it possible to transform the volume unit
from the present to the reference shape (a concept introduced by Lagrange
in hydrodynamics, in order to simplify the writing of balance equations). In
addition, Div and div are the divergence operators in the reference and in the
present configurations, respectively. Remark that the localization of the inte-
grals providing the virtual work of a continuous system to a volume particle,
which is a standard tool of what we now call calculus of variations, translates
the fundamental ‘principle of solidification’, quoted above: we admit that we
may isolate a particle inside a volume and deal with it as if it were rigid [40].

In contemporary continuum mechanics of deformable bodies, we accept
the validity of the second set of (3) only, because of the different meaning
of the condition equations (2). Indeed, in rigid motions it is immaterial to
adopt B or C as condition equations: the gradient of a rigid transformation
is orthogonal and its inverse and transpose coincide. On the other hand, in
general motions this does not happen, and C characterizes metrics in the
present configuration, while it is B−1, and not B, that characterizes metrics
in the reference configuration. This comment is actually a detail if we think
of the very powerful step attempted by Piola; what is apparent, and somehow
surprising, is Piola’s attitude towards his results.

First, he did not bother in checking the consequences of its variational
procedure at the boundary of the body; he said he would deal with them in
following papers, without any specification on the reasons of such a decision.
Indeed, from a contemporary point of view, boundary terms are essential in
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characterizing the flow of physical quantities of interest into the considered
region, but Piola seemed not worried about this particular question, and
focused on bulk equations only.

Second, Piola had obtained balance equations in the reference configura-
tion, where he could write undoubtable and inalterable condition equations
more easily, following Lagrange’s techniques and examples in hydrodynamics.
On the other hand, his French contemporaries had obtained balance equa-
tions in the present shape of the body. Quite likely, Piola did not realize
he had found something original and very important for applications, since
the pull-back of quantities from the present to the reference configuration is
fundamental in all processes involving finite deformations. He wanted simply
to compare his result with Cauchy’s and Poisson’s, and, on this purpose, he
derived an original formula. Due to his relative isolation in the European
world of academic mechanicians, strongly bound to the French and English
universities and scholar institutions (Germany would emerge formidably only
in the second half of the century), this formula is rarely attributed to him. It
made him able to transform volume integrals defined over the actual shape
into similar integrals defined over the reference one, and reads

Div(LJF−∗) = JdivL (4)

for each symmetric tensor L.
By means of (4), Piola easily obtained local balance equations in the same

form of his famous French contemporaries, i.e.:6

divT+ υf = 0, JT = FP2F∗, (5)

but immediately put into evidence his contribution of generality:

Remark the perfect concurrence of this result with that obtained by
the two famous geometers quoted at the beginning of the introduction
[Cauchy and Poisson] following completely different reasonings [. . . ] I
recommend to note that in my analysis A, B, C, D, E, F [the compo-
nents of T] are not pressures acting on different planes, but are coeffi-
cients, to which I also will attach a representation of forces according

6Nowadays we call T Cauchy’s stress tensor, while we call P1 = FP2, P2 first and
second Piola stress tensors, respectively. Usually the name of Kirchhoff is juxtaposed to
Piola’s in qualifying the stress tensors in the reference shape; this sounds historically only
partially correct. Some more hints on the subject are in [40, 16].
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to what will seem more natural to me [. . . ]7

It is apparent by this quotation that Piola thought it more important to
show that Lagrange’s techniques were so powerful to encompass the results
by Cauchy and Poisson, rather than stressing the fact that he had obtained
an absolutely original result, that is, local balance equations pulled back in
the reference shape. To him, originality lay only in applying successfully the
procedures of the Analytical mechanics without accepting obscure hypothe-
ses on the mysterious nature of forces. The key point of Piola’s mechanics
emerging from this paper is that inner forces are simply reactions of suit-
able constraint equations; it is slowly, but finely, perfected in his following
memoirs.

3 Constitutive arguments separated from bal-

ance equations

In his work of 1836 [36] Piola made what may seem a temporary digression in
his personal path in mechanics. Indeed, he built a very refined procedure of
calculus of finite differences 8 to be able to apply Lagrange’s techniques and
re-obtain Poisson’s results on continuum mechanics based on molecular ac-
tions. Actually, in [35] he had focused on kinematics and balance only, thus,
he had clear in mind that he could not fully represent all the powerful descrip-
tion of linear elasticity provided by his French contemporary. This paper is,
then, the proof to everybody that he could actually recover Poisson’s equa-
tions, but that the structure of keeping kinematics separated from balance,
following Lagrange, remained unaltered. One sees again Piola’s formidable
desire to show the absolute generality of Analytical mechanics, encompassing
even Poisson’s results, that the latter claimed to be different from Lagrange’s
because they were based on a seemingly more realistic “physical mechanics”,
juxtaposed to the purely abstract “analytical mechanics” [10].

What seems very important, original, and long-lasting in this paper is
Piola’s introduction of the idea of ideal disposition, a particular kind of refer-

7Osservisi la perfetta coincidenza di questo risultato con quello ottenuto dai due cele-
bri geometri citati dal principio dell’introduzione dietro ragionamenti affatto diversi [. . . ].
Raccomando di notare che nella mia analisi le A, B, C, D, E, F non sono pressioni che si
esercitino sopra diversi piani, ma sono coefficienti, cui nel seguito attaccherò io pure una
rappresentazione di forze secondo mi sembrerà più naturale [. . . ][35], p. 220.

8A detailed exposition of all his original results in this field is found in [11].
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ence configuration, totally abstract form the mechanical point of view. This
shape is very useful for Piola’s mathematical procedures of finite differences,
but actually turns out to be very useful in general, as we will see. In Piola’s
words, if a, b, c are the set of reference Cartesian coordinates, this shape is
an

[. . . ] ideal disposition antecedent to the actual state, in which the
matter of the body itself was contained in a parallelepyped [. . . ] and
all the a differ among them but for increments equal to α, the b for
increments equal to β, the c for increments equal to γ [. . . ]. 9

In this way, such a configuration may be meshed uniformly by the coordinates
a, b, c, and

[. . . keeping into account] the irregularity required by the discontinuity
of matter, [. . . ] I obtain a regularity [. . . ] necessary for the procedure
of calculation like that used by Lagrange in the Analytical mechanics.
10

This idea is incredibly acute and powerful: a contemporary scholar in con-
tinuum mechanics would easily recognize in such a concept the ideal natural
state as proposed, for instance, by Truesdell and Noll [22]: a fictitious config-
uration, suitable only for mathematical purposes, in which the body may be
thought at rest and stress-free because of the regular, natural arrangement
of its particles. It is also interesting to remark that similar ideas of regular
disposition would appear in the well known monograph in crystallography by
Bravais [49] to justify the actual behaviour of many physical bodies. Again,
as a characteristic of all of Piola’s work, this attribution of originality is miss-
ing in international literature because of Piola’s isolation in a scientific world
dominated by languages other than Italian. Some more considerations on
Piola’s attitude towards international publication and spreading of scientific
ideas is found in [47].

The first two sections of [36] is, thus, devoted to an over-long succession of
finite differences calculations and power series expansions, aimed at proving

9[. . . ] disposizione ideale antecedente allo stato vero nella quale la materia del corpo
stesso era contenuta in un parallelepipedo [. . . ] e tutte le a non diversificano fra loro che
di aumenti eguali ad α, le b di aumenti eguali a β, le c di aumenti eguali a γ [. . . ].[36], p.
167.

10[. . . ] l’irregolarità voluta dalla discontinuità della materia, [. . . ] ottengo una regolarità
[. . . ] necessaria pel meccanismo del calcolo quale è adoperato da Lagrange nella Meccanica
analitica.[36], p. 167.
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that, by the same physical hypothesis adopted by Poisson,11 Piola could
provide the same equations, without abandoning Lagrange’s techniques, and
leaving physical hypotheses on the very nature of inner forces to a subsequent
part of the mechanical theory.

Indeed, after the first two sections of this memoir, where he developed
his constitutive arguments based on the integration and the averaging of
discrete quantities, Piola could still apply Lagrange’s formulation of virtual
work, without the need of introducing condition equations. As a matter of
fact, now inner forces where no more seen as constraint reactions, but were
constitutively prescribed. Piola could then obtain again the local balance
equation in the ideal reference configuration

Div(P1) + f = 0, P1 = FP2, (6)

where the term %J is now missing with respect to the analogous equation
(3) because mass density is supposed uniformly equal to unity in the ideal
reference state. Since the ideal state is in principle an abstraction, Piola
pulled his balance equation (6) in the present configuration by means of his
transport theorem (4), re-obtaining the well known Poisson’s equations

divT + %f = 0, T = %P1F, (7)

and this time providing an interpretation for the components of P1. Indeed,
Piola stated that they are functions of the coordinates in the ideal state
representing the components of ‘pressure’ on planes through the point in the
present configuration corresponding to planes through the same point in the
ideal state.

Strangely enough, in this memoir Piola seems to tribute the paternity
of molecular elasticity to Poisson only, while we know that Cauchy as well
considered discrete and continuous distributions of matter. Maybe he did
not want to enter a discussion with the latter, whom he had a high esteem of
and who was in voluntary exile in Italy at the time in which the memoir was
prepared; the reference point of Cauchy’s exile in Italy was Piola himself, as
it is historically proved [52, 53].

11That is, that molecules are corpuscles very close to each other and interact by central
forces, which are attractive within a certain range of value of this distance, repulsive when
the distance becomes too small, and vanish when this distance reaches a sensible value,
called radius of the sphere of molecular action.
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In any case, as already said, this memoir actually represents only a tem-
porary digression in Piola’s path, apparently a stop to admit that a discussion
with European scholars was necessary to prove that Italian scientists could
be up-to-date and still original. Piola soon turned back to his Lagrangean
approach, and reflected quite a long time before presenting his two most
mature memoirs.

4 The return to a pure Lagrangean approach

Piola summed up his original and everlasting contributions in his last two
papers on continuum mechanics [37, 38]. They appeared quite a long time
after the first ones, and one of hem was published posthumously, edited
by his former pupil Francesco Brioschi. This is for sure a sign of a long
meditation on the subject, helped by contemporary differential and integral
calculus, for instance by Lacroix [50] and Bordoni [51], improved with respect
to Lagrange. Piola’s meditation derived, for sure, from his always declared
desire to leave nothing uncertain and unproved, and from his own realization
of some weaknesses in his previous writings:

Indeed, I do not hide now that in my previous writings some ideas were
not exposed with sufficient maturity: we have some too advanced, we
have some other too fearful: certain parts of those writings might have
been omitted, [. . . ] a fortiori those other that [. . . ] I feel bound not
to repeat anymore [. . . ] 12

Thus, Piola’s intention in his last works was fore sure to re-write his mechanics
in order to sweep all possible doubts away. In [37] he put forth precise (even
for a contemporary scholar on continuum mechanics) definitions of ambient
space, of continuum models and of the radical difference between physical
points and geometrical places: such definitions are those commonly accepted
also in contemporary textbooks. Afterwards, he recalled his ideas on the nat-
ural, ideal disposition, with uniform mass density equal to unity, remarking
that it is just a useful concept, not pretending to reflect any physical truth:

This way of conceiving the structure of different bodies is what suffices
to the Mathematician wishing to put their equilibria and motions into

12Perocchè non dissimulo accorgermi ora che ne’ precedenti miei scritti alcune idee
non furono esposte con sufficiente maturità: ve ne ha qualcuna troppo spinta, ve ne ha
qualch’altra troppo timorosa: certe parti di quelle scritture potevano essere ommesse, [. . . ]
a più forte ragione quelle altre che [. . . ] non mi sentirei più di ripetere [. . . ][37], pp. 1–2.

14



equations. It is correct to move further for the need of the Physicist,
and call molecules those material points [. . . ] of such thinness that it is
not possible for our senses, be they also a hundred times more acute, to
remark in them distinctions of parts. He can also imagine any of these
molecules composed by [. . . ] particles (called atoms) not separable if
not by means of another kind of forces different from those considered in
Mechanics, that is, chemical forces: and then put into this second sort
of particles that absolute invariability that the Mechanician supposes
just in the molecules. The Metaphysicist goes, if he wishes, further: to
him one of these atoms [. . . ] may be enlarged into almost a world, so
that it is possible to consider in them a number, large at will, of points
now imagined without extension, issuing forces keeping them always
at inalterable distances [. . . ] 13

It is scarcely to remark how modern this vision is, even if it dates back to 1845
(the paper was published in 1848, but actually submitted in 1845). Then,
Piola defined mass density and the transformation rules for volume units,
for one-, two-, and three-dimensional continua, thus showing that there is
no distinction between continuum models, at least in principle. By these, he
derived a modern expression of the equation of mass continuity for continua
of different dimensions. Then, he made precise considerations on metrics and
density to define generalized volume actions (“accelerating forces”) and, to
introduce a presentation of the techniques of analytical mechanics as wide as
possible, he began by investigating a thread (“filo materiale”).

Piola then recalled his procedure on rigid bodies and, with a clear matu-
rity, proved that the expressions providing the condition equations for rigidity
are the first variations of quantities that he calls “trinomials” and we nowa-
days recognize, in a three-dimensional ambient space, as the six components
of the Cauchy-Green strain tensor C = F∗F. In this way, he overpassed
the ambiguity he had kept in [35] making no distinction between B and C

13Questa maniera di concepire la struttura dei differenti corpi, è quanto basta al Matem-
atico che vuole metterne in equazione gli equilibrj e i movimenti. Pei bisogni del Fisico è
permesso andare innanzi, e quei punti materiali chiamarli molecole [. . . ] di tale esilità che
non sia possibile ai nostri sensi, fossero anche le cento volte più perfetti, notarvi distinzioni
di parti. Può anche immaginare ciascuna di queste molecole composta di [. . . ] particelle
(chiamate atomi) [. . . ] non separabili se non per mezzo di un altro genere di forze diverse
da quelle che si considerano in Meccanica, cioè da forze chimiche: e quindi respingere a
questa seconda sorta di particelle quella assoluta invariabilità che il Meccanico può sup-
porre addirittura nelle molecole. Il Metafisico va, se gli piace, ancora più innanzi: per lui
uno di questi atomi [. . . ] può ingrandirsi ancora quasi un mondo, sì che sia lecito consid-
erarvi per entro un numero quanto vuolsi grande di punti ridotti adesso affatto inestesi,
da cui emanino forze che li tengano a distanze sempre inalterabili [. . . ][37], p. 9.
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in (1). He then presented the balance equations for rigid bodies, this time
providing also the contributions of boundary terms, that he had neglected
in [35]. In addition, Piola presented a precise description of a rigid velocity
and acceleration field, remarking on the expression that a rigid body velocity
field superposed on a body configuration shall have.

Piola now knew that condition equations for a deformable body cannot
be provided in general, thus he introduced a trick, quite probably inspired
by the results of his French acquaintance Cauchy.14 Indeed, Cauchy [54] had
proved what is now known as theorem of polar decomposition (see, for in-
stance, [21, 22, 23]): the present configuration of a continuum is reached via
the composition of a pure stretch and a rotation (or vice versa). Thus, here
is Piola’s trick: we may imagine that there exists an intermediate configu-
ration between the ideal and the present one, and that the transformation
leading from the intermediate to the present shape is rigid. Then, there is the
possibility of writing the undoubtable condition equations for rigidity, and
all the balance equations for the body are immediately found via Lagrange’s
procedure, in the same way as Piola did in his work [35]. Piola easily pushed
his equations forward to the present configuration by means of his transfor-
mation theorem (4), proving them to be equivalent to the ones provided by
Cauchy. Moreover, he managed the boundary terms, which he had neglected
in [35], and which are expressed by surface integrals on the body contour: by
the calculus of variations, he immediately derived Cauchy’s theorem of the
tetrahedron on the representation of stress, and commented that

[. . . ] the said six quantities [the Lagrange multipliers of the condition
equations of rigidity] in both cases [the intermediate and the present
configurations] are the analytical expressions containing the whole of
the effect of all the inner actions on the generic point (p, q, r) [in the
intermediate configuration] or (x, y, z) [in the present configuration]
[. . . ] 15

Thus, Piola had come to a satisfactory point, at least for his philosophical
projects on mechanics: he had shown that an acceptable trick, that does not
limit the generality of the method, lets one find well known and recognized

14As already hinted, Piola was in close relationship with Cauchy, and was also his refer-
ence during Cauchy’s exile in Italy (1830-1833). For more information and details, among
which some letters between the two, see Bottazzini [52] and Dahan Dalmedico [53].

15[. . . ] le mentovate sei quantità in ambi i casi sono le espressioni analitiche contenenti
l’effetto complessivo di tutte le azioni interne sopra il punto generico (p, q, r) ovvero (x, y, z)
[. . . ] [37], p. 101.
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balance equations for well identified terms representing contact actions. He
was, however, aware that his position was original, remarked that all his
conclusions descended from a single principle, and

[. . . ] such a principle consists in framing any system with respect to
two triads of orthogonal axes: it may be used in two ways, [. . . ] in
a first way [. . . ] with the aim of proving the principle of virtual ve-
locities, and also the other ones, of conservation of the motion of the
centre of gravity, and of areas.16 In such a case, instead of conceiving
the δx, δy, δz of the various points of the system as virtual velocities, or
infinitesimal spaces described by that fictitious motion [. . . ], it is much
more natural to imagine them as increments taken by tha coordinates
of the above said points when the system is referred to other three
orthogonal axes very close to the first ones, like the former had moved
very little [. . . ] one may then understand how the increments of the
coordinates take place without alterations of the reciprocal actions of
the parts of the system on each other [. . . ]. The simultaneous framing
of the system with respect to two triads of orthogonal axes plays effec-
tively in another way [. . . ]. Here we mean to talk about the method
that leaves δx, δy, δz at all general, and deals with condition equations,
introducing indeterminate multipliers. In such a case, considering the
two triads is very helpful for establishing condition equations, that
otherwise one cannot provide in general [. . . ]. It seems to me that La-
grange and other Geometers missed such a point of view: what might
deserve more attention in the present Memoir refers to it.17

16Piola meant the vanishing of the virtual power on rigid motions, the conservation of
momentum and of moment of momentum.

17[. . . ] tal principio sta nel riferimento simultaneo di un qualunque sistema a due terne
di assi ortogonali: esso può adoperarsi in due maniere [. . . ] in una prima maniera [. . . ] a
fine di dimostrare il principio delle velocità virtuali, e anche gli altri della conservazione del
moto del centro di gravitå, e delle aree. Invece di concepire in tal caso le δx, δy, δz dei diversi
punti del sistema come velocità virtuali o spazietti infinitesimi descritti in virtù di quel moto
fittizio [. . . ], è assai più naturale [. . . ] il ravvisarle quali aumenti che prendono le coordinate
degli anzidetti punti quando il sistema si riferisce ad altri tre assi ortogonali vicinissimi ai
primi, come se questi si fossero di pochissimo spostati. [. . . ] allora si capisce chiaro come
gli aumenti delle coordinate abbiano luogo senza alterazioni nelle azioni reciproche delle
parti del sistema le une sulle altre [. . . ] Il riferimento simultaneo del sistema a due terne
di assi ortogonali giuoca poi efficacemente in un’altra maniera [. . . ]. Qui s’intende parlare
di quel metodo che lascia alle δx, δy, δz tutta la loro generalità e tratta le equazioni di
condizione, introducendo moltiplicatori indeterminati. In tal caso la contemplazione delle
due terne di assi giova per l’impianto delle dette equazioni di condizione, che altrimenti non
si saprebbero assegnare in generale [. . . ]. Un tal punto di vista parmi sfuggito a Lagrange
e ad altri Geometri: a esso si riferisce quanto nella presente Memoria può essere più
meritevole di attenzione.[37], pp. 110–111.

17



That is, balance equations can be obtained by superposing an infinitesimal,
fictitious, rigid motion to the present configuration of the body. The same
happens also if we consider the actual configuration with respect to two
different Cartesian frames (nowadays we would call them ‘observers’) shifted
by an infinitesimal amount. This can be done irrespective of the constitutive
relations characterizing inner contact forces, thus remaining as indeterminate
Lagrange multipliers of known condition equations. In the remaining of this
very long memoir, Piola extended his results to fluid, remarking that the
differences between the two subjects should be of constitutive nature only,
and re-obtained the expressions for elastic forces by the same procedure he
had already adopted in [36].

5 Piola’s swan song

In his last paper [38], edited posthumously by Francesco Brioschi, Piola con-
tinued his ever-lasting attempt to polish his presentation of mechanics and
leave nothing uncertain and unproved. This time, apart from a general and
more mature re-writing of his procedures, he focused on what, according
to him, remained obscure in Lagrange’s technique of analytical mechanics.
Indeed, in the introduction to the memoir he stated that

[Following Lagrange, if we admit] the existence of inner forces among
the various physical points of a system, it is not difficult to recognize
some functions (like those expressing distances, angles, and so on),
the values of which are altered by the actual exercise of those forces;
well, the author wants us to multiply the variations of those functions
by indeterminate coefficients, and to introduce the products in the
general equation of Analytical Mechanics, precisely as we would have
done, according to the known method, if those functions were the left
hand sides of condition equations reduced to zero. Here we understand
at once the amplitude and the excellence of the principle: but at the
same time we feel the need of a proof that persuades us of its truth:
and even supposed this, we still find lacking the exposition, though.
Indeed, there may be at the same time many expressions of quantities
that the inner forces of a system tend to vary: which of them shall
we take, which shall we omit? Who assures us that, by using many
of these functions subjected to changes by the action of inner forces,
we do not make useless repetitions, in expressing by means of some
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an effect already written by others? And cannot it happen instead
that we omit some of these necessary to be introduced so that the
total effect of inner forces be wholly expressed? It is well true that
we come to infer by some passages of the A. M. that the functions to
be adopted in the more general cases are then the same which remain
constant in other more particular cases, i.e., when we deal with rigid
bodies, inextensible threads, incompressible fluids: yet this also is a
glimpsed, but not proved, property of such functions. To sum up, to a
good establishment of the principle under discussion, we still miss two
things: firstly, a proof resulting persuasive, afterwards a criterion to
distinguish which and how many should be the functions to put into
play with the aim of wholly describing the action of the inner forces of
systems.18

Thus, the actual problem that Piola found unsolved was to determine without
any doubt which functions should be taken for cranking the well marching
wheel of analytical mechanics. All of his preceding work, then, was simply
preparatory, and his final effort should have been to make this last point
clear, because all the rest led to the well known balance equations (bulk and
boundary) without any problem.

Piola began his memoir by stating again that the actual thing to do is to
consider the actual configuration with respect to two frames of reference:

If we call x, y, z the coordinates of the generic point, the pertaining
18Supposta l’esistenza di forze interne fra i vari punti fisici di un sistema, non è difficile

riconoscere alcune funzioni (come espressioni di distanze, di angoli, ec.), i valori delle
quali vengono alterati dall’attuale esercizio di quelle forze; or bene, l’autore vuole che
moltiplichiamo per coefficienti indeterminati le variate di quelle funzioni, e ne introduciamo
i prodotti nell’equazione generale della Meccanica Analitica, precisamente come avremmo
fatto, secondo il metodo noto, se quelle funzioni avessero costituito i primi membri di
equazioni di condizione ridotte a zero. Qui si capisce subito la vastità e l’eccellenza del
principio: ma nello stesso tempo si sente il bisogno di una dimostrazione che ce ne persuada
della realtà: e questa anche ammessa, ne troviamo tuttavia mancante l’esposizione. Infatti
molte possono essere contemporaneamente le espressioni di quantità che leforze interne di
un sistema tendono a far variare; quali di esse prenderemo, quali ommetteremo? Chi ci
assicura che adoperando parecchie di tali funzioni soggette a mutamenti per l’azione delle
forze interne, non facciamo ripetizioni inutili, esprimendo per mezzo di alcune un effetto già
scritto con altre? E non potrebbe invece accadere che ommettessimo di quelle necessarie a
introdursi affinché l’effetto complessivo delle forze interne venga espresso totalmente? Ben
è vero che da varii passi della M. A. si arriva ad intendere come le funzioni da adoperarsi
nei casi più generali siano poi le medesime che rimangono costanti in altri casi più ristretti,
quando cioè trattasi di corpi rigidi, di fili inestensibili, di fluidi incompressibili: però anche
questa è una proprietà di tali funzioni intraveduta ma non dimostrata. Insomma, a ben
stabilire l’uso del principio in discorso, due cose ancora ci mancano: primieramente una
dimostrazione che riesca persuadente, poscia un criterio per discernere quali e quante
debbano essere le funzioni da mettersi in giuoco a fine di esprimere completamente l’azione
delle forze interne dei sistemi.[38], pp. 390–391.
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variations δx, δy, δz [. . . ] can, without endangering generality, be con-
sidered those provided by the very little increments iδx, iδy, iδz that
would take the coordinates x, y, z when the system be referred to three
other rectangular axes very little far apart, either for the origin and for
the three directions, from those primarily assumed by the x, y, z, like
those had moved by a very little quantity.19

Indeed, Piola proved that by writing the condition of rigidity of the shift in
the Cartesian frame of reference thus described, he obtained exactly the same
expressions provided by the condition equations introduced by his former
trick of imagining an intermediate configuration. He wrote

Remark well: these right hand sides vanish in the operation indicated
by the characteristic δ not because they are absolutely constant, as [. . . ]
in rigid systems [. . . ]: on the contrary, they are most often variable, for
instance in the case of fluids, but they are variable due to other quanti-
ties [. . . ] that are not those by varying which the variations δx, δy, δz

are produced, that is, the usual f, g, h, α1
20, and so on. Those twelve

quantities being absent in those right hand sides, they go away when
we derive according to δ, like when they are absolutely constant, and
here is the motivation of that property that in the preamble of the
Memoir we said glimpsed but not proved.21

That is, Piola was aware that one cannot imagine condition equations for
generic deformable bodies, yet he found it impossible that the powerful tools
of analytical mechanics could not yield fruitful results for continuum mechan-
ics as well, and employed rigidity by a change of frame. In addition, Piola
claimed that only the six equations expressed by the first of equations (2) are
necessary and sufficient to be inserted into the apparatus of analytical me-
chanics, since the other possible combinations of the products of derivatives

19Se chiamansi x, y, z le coordinate del punto generico, le rispettive variazioni δx, δy, δz
[. . . ] possono, senza nuocere alla generalità, essere ritenute quelle somministrateci dagli
aumenti piccolissimi iδx, iδy, iδz che prenderebbero le coordinate x, y, z quando il sistema
si riferisse a tre altri assi rettangolari lontani assai poco, tanto per l’origine quanto per le di-
rezioni, da quelli primieramente assunti dalle x, y, z, come se questi si fossero di pochissimo
smossi.[38], p. 392.

20The coefficients describing the change of Cartesian triad.
21Notisi bene: questi secondi membri svaniscono nell’operazione indicata dalla carat-

teristica δ, non perché siano assolutamente costanti, come [. . . ] pei sistemi rigidi: sono
anzi il più spesso variabili, per esempio nel caso de’ fluidi, ma sono variabili pel variare
di tutt’altre quantità, che non sian quelle al variar delle quali è dovuto il prodursi delle
variazioni δx, δy, δz, cioè le solite dodici f, g, h, α1, ec. Stante l’assenza di tali dodici
quantità da quei secondi membri, essi vanno via mentre si deriva secondo δ, come quando
sono assolutamente costanti, ed ecco la ragione di quella proprietà che nel preambolo della
Memoria dicemmo intraveduta ma non dimostrata.[38], p. 397.
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of the position depend on them, and suggested a proof. Then, he moved on
to obtain again bulk and boundary balance equations, both in the present
and in the ideal configuration, remarking that the Lagrange multipliers of
his procedure (i.e., the components of stress) could be explained in function
of each other by the third of the equations (5), expressing the relations be-
tween what we now call referential and present stress. Piola then moved on
to obtain balance equations for surface and linear systems with analogous
procedures, and once again claimed his originality:

I foresee an objection. It comes out from our analysis that also for
whatever body we may assume that the variations have the values
(12) n. 3:22 now, Lagrange and others said such values to belong only
to solid23 bodies, to rigid surfaces and lines: how, then, shall they
be assumed as general? I answer: I never said that the coordinate
increments in fluid systems of internally mutable in whatever way shall
always receive, also as a consequence of intestine motion, values of
the form of the above quoted (12), as it happens in the true motion
of rigid systems; I said that such is the form that they receive as a
consequence of that motion of the axes giving origin to the variations,
as we explained many times above. A distinction is essential here:
the true motion produced by the set of forces on the molecules of the
system is other than the fictitious motion of the axes: both produce
increments of the coordinates x, y, z of the generic point, but right
because the motions are different, these increments can be included
the ones in the others, and may be excluded: when they are included,
the variations δx, δy, δz may be changed into the three velocities u, v, w

along the three axes, in other cases this is not possible any more.24

22Those describing the change of Cartesian triad.
23Piola’s, among others’, synonym for rigid.
24Prevedo un’objezione. Risulta dalla nostra analisi che eziandio per corpi qualunque

possiamo supporre che le variazioni abbiano i valori (12) n. 3: ora Lagrange ed altri dissero
tali valori appartenere soltanto ai corpi solidi, alle superficie o linee rigide: come dunque
si assumono generali? Rispondo: io non dissi mai che gli aumenti delle coordinate nei
sistemi fluidi o mutabili internamente in qualsivoglia modo debbano sempre ricevere, anche
in conseguenza di un moto intestino, valori della forma dei (12) succitati, come avviene
nel moto vero de’ sistemi rigidi; dissi che tale è la forma che ricevono in conseguenza di
quel moto degli assi che dà origine alle variazioni, come sopra si è più volte spiegato. È
qui essenziale una distinzione: altro è il moto vero prodotto dall’insieme delle forza sulle
molecole del sistema, altro il moto fittizio degli assi: entrambi producono aumenti alle
coordinate x, y, z del punto generico, ma appunto perché i moti sono diversi, questi aumenti
possono comprendersi gli uni gli altri, e possono escludersi: quando si comprendono, le
variazioni δx, δy, δz possono mutarsi nelle tre velocità u, v, w secondo i tre assi, in altri casi
ciò non è più permesso.[38], pp. 421–422.

21



After a long recall of the procedure to obtain the inner forces as derived
from molecular interactions depending on distance, that he had presented
for the first time in his memoir of 1836, Piola begun the second part of this
memoir by a powerful, and still valid today, statement:

The concept that Lagrange wanted us to figure about forces, and that
we presented in the foreword, is more general than the universally ac-
cepted one. It is easily understood by everybody the force to be a cause
that, by means of its variation, changes the magnitude of certain quan-
tities. In the most obvious case, when it brings a body or a material
point near another, it changes distances, that is, it makes lengths of
straight lines vary: but it may instead make an angle, a density, and so
on, change. In these other cases the way the forces act remains obscure,
while it seems clear to us in the first case: but maybe the reason of this
is extrinsic to the nature of forces. Indeed, even in that first case we do
not understand how can the force instill its action in the body so that
it decreases or increases the distance from another body: nevertheless,
we continuously see the fact: daily observation quells in us the will to
search further. If, then, carefully investigating, we find that here also
the way the forces act is mysterious, no wonder that it appears obscure
to us in the other cases. Wishing to reduce the action of forces to that
decreasing a distance is making a wider concept smaller, is wishing
to recognize but a particular class of forces. Generally speaking, to
which point may we push our knowledge about the causes we submit
to measure? maybe so that we understand their intimate nature, and
the true way in which they act?never.Newton wrote: Caveat lector ne
per hujusmodi voces cogitet me speciem vel modum actionis causamve
aut rationem physicam alicubi definire, vel centris (quæ sunt puncta
mathematica) vires vere et physice tribuere, si forte aut centra trahere,
aut vires centrorum esse dixero (Princ. Math. I., 1.st, Def. VIII at the
end). Collected all is unknown in the measure units of the same kind,
we say we know the quantity once we may assign the ratios with the
said unity, assumed originally arbitrary. Now, even when we conceive
forces in Lagrange’s most general way, that is, as causes making quan-
tities sometimes different from lines vary, the necessary data to be able
to say that we know how to measure them occur: we have all that we
reasonably are rightful to pretend: if it seems that the image by which
we dress the concept up is missing, this is because we want to paint
it like in the particular case of forces acting along straight lines: an
unknown background remains, in these more general cases as well as
in the most common one.
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To strengthen this persuasion, let us make two considerations on
the going of the Lagrangean method. In it one says: if f, ϕ, ψ, and
so on are quantities that the force tend to vary, we must introduce in
the mechanical general equation the terms λ δf, μ δϕ, ν δψ, and so on,
and the coefficients λ, μ, ν, and so on will mean and measure those
forces. We easily understand the plausibility of this assertion, since
if we suppose that those forces were not present, those terms would
not appear, that is, the λ, μ, ν, and so on would be zero: thus proved
that such terms shall be present there, and in which way, we glimpse
that those coefficients shall in some way encompass the expression of
the forces (see also what we already said in the first part of n. 56 p.
m.). But the more suitable consideration to persuade us of this is that
those coefficients λ, μ, ν. . . enter the general equation of Mechanics in a
linear dimension: from which derives that we may have their multiples
and half-multiples, once posed one of those forces arbitrarily as basis
for the ratios.

Indeed, if we dealt with a force compelling a point of the body
to lie on a surface with equation L = 0, we know, independently on
the principle discussed in this Memoir, that the term λ δL enters the
general equation, and that λ is proportional to the pressure, which
in that case is a force acting along a straight line. The λ, entering
linearly, is doubled, tripled, and so on, or becomes the half, the third,
and so one, if all the other terms of the equation are multiplied by 2,
3, and so on, or by 1

2
, 1

3
, and so on. Well: matters go the same way

also when λ is a factor introduced by virtue of the principle expounded
in the A. M. in § 1.st, Sect. II. From here we may somehow explain
what Lagrange meant, when in the said place he supported his new
principle by saying that any quantity may be represented by a straight
line: maybe he expressed himself in this way because the measure of
forces is equally obtained so by adopting the wider sense we have said,
as in the common acceptation of a force acting along a straight line.
Moreover, our Author tried (art. 5, Sez. IV) to reduce in any case the
concept of force to that of pressures along straight lines perpendicular
to surfaces: and to forces only acting linearly come our considerations
on molecular actions expounded in Chapter VI p.m., and in Chapter III
of the present Memoir. However, I do not give up considering wonderful
and very useful the sights that our Author opened us by establishing
the principle supported in this Memoir. Even if something remained
to do to recognize which and how many should be the functions to

23



adopt so to apply with certainty the above said principle: this does
not detract the merit of having widened our ideas about forces.

Here it is appropriate to remark an analogy with the going one has
for measuring some quantities relative to mathematical physics. For
instance, called unity of heat the quantity of that cause, whatever it
be, that produces a determined phenomenon, such as the fusion of a
known amount of ice: we say double, triple, and so on, the quantity of
heat producing the double, or triple, phenomenon, that is, the melting
of a double, triple amount of ice. However, do we paint us an image
of the way that unit of heat produces the unit phenomenon? I believe
not: and, though we tried to do it, for sure it were not the shortening
of a straight line. Similarly in our case the phenomenon collecting the
effect of the force, instead of the above said, is the shrinking of an
angle, the thickening of a density, and so on; the ignorance on the way
of action of the cause does not affect the possibility to measure it.25

25Il concetto che Lagrange voleva ci formassimo delle forze, e che esponemmo nel prologo,
è più generale di quello universalmente ammesso. S’intende facilmente da tutti essere la
forza una causa che mediante la sua azione altera la grandezza di certe quantità. Nel caso
più ovvio, avvicinando un corpo o un punto materiale ad un altro, cambia distanze, ossia
fa variare lunghezze di linee rette: ma può invece far variare un angolo, una densità, ec.
In questi altri casi il modo di agire delle forze ci riesce oscuro, mentre ci par chiaro nel
primo: ma forse la ragione di ciò è estrinseca alla natura delle forze. Per verità anche in
quel primo caso non si capisce come faccia la forza a infondere la sua azione nel corpo
sì da diminuirne od accrescerne la distanza da un altro corpo: nondimeno noi vediamo
continuamente il fatto: l’osservazione giornaliera sopisce in noi la voglia di cercare più
in là. Se però sottilmente esaminando si trova che qui pure il modo di agire delle forze è
misterioso, nessuna meraviglia ch’esso ci appaja oscuro negli altri casi. Voler ridurre in ogni
caso l’azione delle forze a quella che diminuisce una distanza, è impiccolire un concetto
più vasto, è un non voler riconoscere che una classe particolare di forze. Generalmente
parlando, a qual punto possono essere spinte le nostre cognizioni intorno alle cause che
sottoponiamo a misura? forse a comprenderne l’intima natura, e il vero modo con cui
agiscono?mainò.Scriveva Newton: Caveat lector ne per hujusmodi voces cogitet me speciem
vel modum actionis causamve aut rationem physicam alicubi definire, vel centris (quæ sunt
puncta mathematica) vires vere et physice tribuere, si forte aut centra trahere, aut vires
centrorum esse dixero (Princ.Math. I., 1.o, Def. VIII in fine). Radunato tutto quanto vi è
d’incognito nelle unità di misura di una stessa specie, noi diciamo di conoscere la quantità,
lorché possiamo assegnare i rapporti colla detta unità assunta originariamente arbitraria.
Ora eziandio quando si concepiscono le forze alla maniera più generale di Lagrange, cioè
siccome cause che fanno variare quantità talvolta diverse dalle linee, concorrono i dati
necessari a poter dire che sappiamo misurarle: si ha tutto ciò che ragionevolmente ci è
lecito di pretendere: se pare che ci manchi l’immagine con che rivestirne il concetto, è
perché vogliamo colorirla come nel caso particolare delle forze che agiscono lungo le rette:
un fondo incognito rimane sempre tanto in questi casi più generali, come in quello sì
comune.

Per ajutare questa convinzione facciamo due considerazioni sull’andamento del metodo
lagrangiano. In esso si dice: se f, ϕ, ψ, ec. sono quantità che le forze tendono a far variare,
debbono introdursi nell’equazione generale meccanica i termini λ δf, μ δϕ, ν δψ, ec., e i
coefficienti λ, μ, ν, ec. significheranno e misureranno quelle forze. Si capisce un cotal poco
la ragionevolezza di questa asserzione, giacché supposto che quelle forze non vi fossero,
quei termini non comparirebbero, ossia le λ, μ, ν, ec. sarebbero zero: provato adunque che
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It seems that we may find in this long passage the whole of Piola’s path in
continuum mechanics: physical phenomena should be mathematically char-
acterized only via evident, undoubtable descriptions and quantities. For
standard continua, described only via their geometry and configurations, the
evident, undoubtable descriptions are purely geometrical, and reflect the pos-
sibility to refer the same shape with respect to two different frames. This
view, dating back to 1850, is absolutely modern: without disturbing rela-
tivity, most propositions in modern and contemporary physics descend from
assumptions of invariance with respect to different observers. And, in addi-
tion, another powerful and still accepted view is that constitutive arguments
should be kept separated from kinematical and balance considerations. In-
deed, as Piola clearly and precisely remarked, the undoubtable variations of

essi termini debbano comparirvi, e a qual modo, s’intravede che quei coefficienti debbono
in qualche maniera comprendere l’espressione delle forze (vedi anche il già detto nella
prima parte del n. 56 m. p.). Ma la considerazione più atta a persuaderci di ciò è che
tali coefficienti λ, μ, ν. . . entrano nella equazione generale della Meccanica in dimensione
lineare: dal che deriva che possiamo averne i multipli e semimultipli, posta a base dei
rapporti una di esse forze arbitrariamente.

Infatti, se si trattasse di una forza che obbliga un punto del corpo a stare sopra una
superficie di equazione L = 0, sappiamo indipendentemente dal principio discusso in questa
Memoria, che nell’equazione generale entra il termine λ δL, e che λ è proporzionale ala
pressione, la quale in tal caso è una forza che agisce lungo una retta. La λ, entrando
linearmente, si raddoppia , si triplica, ec., ovvero diventa la metà, il terzo, ec., se tutti gli
altri termini dell’equazione sono moltiplicati per 2, 3, ec., ovvero per 1

2
, 1

3
, ec. Ebbene: la

cosa procede allo stesso modo anche quando λ è un fattore introdotto in forza del principio
esposto nella M.A.al § 1.o, Sez.II. Di qui può spiegarsi in qualche guisa quello che Lagrange
ha voluto intendere, allorché nel luogo citato appoggiò il suo nuovo principio col dire che
una quantità qualunque può essere rappresentata per una linea: forse così si espresse perché
la misura delle forze si ottiene egualmente tanto adottando il senso più ampio di cui si è
detto, quanto nell’accettazione comune di una forza che agisce lungo una linea. Del resto il
nostro Autore si è provato (art. 5, Sez. IV) a ridurre in ogni caso il concetto di una forza a
quello di pressioni lungo rette perpendicolari a superficie: e a sole forze agenti linearmente
riescono anche le nostre considerazioni sulle azioni molecolari esposte nel Capo VI m.p., e
nel Capo III della Memoria presente. Io però non cesso di reputare bellissime e assai utili
le viste che il nostro Autore ci aperse collo stabilire il principio difeso in questa Memoria.
Sia pure che restasse qualche cosa a fare per riconoscere quali e quante dovevano essere le
funzioni da adoperarsi onde applicare con sicurezza il principio anzidetto: ciò nulla toglie
al merito di aver allargate le nostre idee intorno alle forze.

E torna qui opportuno osservare un’analogia coll’andamento che si tiene per la misura di
alcune quantità proprie della fisica matematica. Chiamata, per esempio, unità di calore la
quantità di quella causa, qualunque essa sia, che produce un fenomeno determinato, qual
è la fusione di una nota quantità di ghiaccio: diciamo doppia, tripla, ec., la quantità di
calore che produce il fenomeno doppio, o triplo, cioè lo scioglimento di una doppia, tripla
quantità di ghiaccio. Ma ci formiamo noi una immagine del modo col quale quella unità di
calore produce il fenomeno unitario? Io credo di no: e quantunque tentassimo formarcela,
certo non sarebbe l’accorciamento di una retta. Similmente nel caso nostro il fenomeno
che raccoglie l’effetto della forza, invece del sopradetto, è il restringersi di un angolo, il
costiparsi di una densità, ec.: l’ignoranza sul modo d’agire della causa non toglie il poterla
misurare. [38], pp. 456–458.
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geometrical configurations happen independently of the nature of forces, of
which we may have obscure ideas, and which are nothing more than a useful
mathematical tool (Lagrangean multipliers).

The only postulate to be accepted is that the “most general mechanical
equation” has Lagrange’s form, that is, as we say nowadays, the balance of
(virtual) power as a linear form written on the undoubtable descriptors of the
configuration, seen by two different observers. If we accept this (and Piola
never questioned this position - to him, Lagrange’s balance of power is the ac-
tual, true mathematical translation of physical balance conditions), no matter
how complicated the problem is, in principle we have the mathematical tools
to obtain what we nowadays call its field equations. Indeed, as it is apparent
from the second part of the passage quoted above, the key point of Piola’s
mechanics does not lie in the description of forces, but rather in catching the
meaningful descriptors of the actual configuration of the considered body.

In a contemporary language, Piola stated that one shall catch the state
descriptors of the body configurations; balance is, then, simply a matter of
cranking the wheel of the well working Lagrange’s variational machinery.
Indeed, forces cannot simply be imagined as stretching a line (like the imagi-
nary hands pulling ropes that one may see in 17th and 18th century books on
mechanics, for instance in Varignon [55]): they are the most general actions
dual to any change in the meaningful descriptors of the configuration of the
body. Such an idea holds also for other physical phenomena: Piola calls for
thermal processes as well, letting intend that there must be a way to imagine
a variation of some function on which a Lagrangean multiplier, or better, a
generalized force, spends power.

Thus, we may say that the whole of Piola’s journey in continuum mechan-
ics was following a path searching for a precise definition of those quantities
characterizing the state of a continuum body. He, however, had clearly in
mind he had found an answer, that was, in the case of purely geometrical
processes (non-thermal), to adopt the variations of the quantities that we
nowadays interpret as a Cauchy-Green strain tensor. While in his former
papers Piola had neglected any interpretation for these “trinomials”, in [38]
he moved a step forward, because he said that

[. . . ] I will show that, instead of those trinomials, we may assume
quantities dressed up with a geometrical, sometimes even physical, rep-
resentation.26

26[. . . ] mostrerò che invece di que’ trinomj si possono assumere quantità rivestite di una
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And, indeed, Piola proved, simply by suitable changes of coordinates and
functions, that the three “trinomials” he had introduced as the condition
equations to be used in Lagrange’s balance of virtual power for the one-
dimensional continua express the length of the arc element, the angle of
contingence, and the angle of torsion of the curve. In this way, their varia-
tions naturally express, to a contemporary scholar in continuum mechanics,
elongation, bending, and twist, respectively, and Piola called their mechan-
ical duals tension, elasticity, and torsion, respectively, as it had been done
by other mechanicians. For two-dimensional continua, he showed that the
six “trinomials” he had introduced are expressions of the arc elements of two
curves on the surface, of the plane angle between their tangents, of the radii
of the osculating circles to these curves, and of the angle between these radii.
The only difficulty Piola found was that at his time the theory of continuum
surfaces was not so universally accepted, and there were no unique denomi-
nations for the mechanical duals of the variations of these measures (which
nowadays we would call extension, plane shear, bending and twisting cur-
vatures). For three-dimensional continua, somehow reflecting what one may
read in [54], he showed that his “trinomials” express, as we accept also nowa-
days, strains. Indeed, he declared that, if the arc elements in the ideal state
have, at a point P , tangent with director cosines δ1, δ2, δ3, the square of the
length of the arc element s∇ in the present configuration is given by:

(s∇)2 =
∑
i,j

Cijδiδj , C = F∗F (8)

where the Cij are the components of C evaluated at P , and F collects the
first derivatives of the transformation between the ideal and the present con-
figurations; the Cii coincide with the coefficients λ that were called by Cauchy
“la dilatation linéaire”27. Piola obtained also analogous expressions for the
cosines of the angles between curves, and thus the interpretation of the me-
chanical duals of their variations is that of usual stress, that can be pulled
back or pushed forward between the ideal and the present configurations.
Piola provided also considerations on what we now would call the search of
the principal axes of strain and stress, comparing his results with those by
Cauchy in [54]; he also put into evidence that it is not evident, from kinemat-

rappresentazione geometrica e qualche volta anche fisica. [38], p. 459.
27[54], p. 304.
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ics and mechanics arguments only, that the principal axes of stress and strain
coincide, thus revealing an acute outlook on one of the biggest questions of
the 18th century theory of elasticity. In the rest of the memoir, Piola re-
considered molecular actions, introducing, as we would call them nowadays,
some constitutive arguments, and some remarks on the difference between
central molecular forces or “electrical fluid” forces.

6 Piola’s modernity and contributions

The quotes from Piola’s memoirs on mechanics show how far had he gone in
his investigations, and how it is a pity that, due to a nationalistic spirit that
kept him writing in Italian only in Italian journals, almost unknown to the
international scientific community, his work has been almost forgotten until
the diffusion of his name, mainly due to Truesdell’s historic investigations on
18th and 19th century mechanics.

It is apparent, indeed, that Piola put into evidence some key ingredients
for mechanics, accepted also nowadays. In my opinion, these are:

• a clear distinction between configuration (state) variables, balance, and
constitutive arguments; only through a precise characterization of the
state and its variations, indeed, can the Lagrangean machinery work;
phenomenological specification of inner actions shall be produced sepa-
rately because, in principle, they do not enter the variational apparatus.
The state variables, or, better, the full description of the present config-
uration cannot be, apart from special cases, only geometrical: as Piola
himself stated, forces tend to vary configuration descriptors that are not
simply lengths but also angles, densities, ‘electric fluid’ quantity, and
so on. Thus, the ground is ready for seeding multi-physical description,
together with possible superposed structures that can help to describe
the observed phenomena in a definite, undoubtable way. It seems that
this position is one of the most advanced ones in mid-19th century;

• the introduction of a fictitious, yet mathematically powerful, ideal state,
where particles are so regularly assembled that all physical quantities
characterizing the configuration are represented by the simplest of func-
tions (uniform, equal to unity or even vanishing). The idea of a natural
state as a fictitious configuration that serves only as a useful term of

28



comparison with the present shape did not belong to Lagrangean me-
chanics, to which Piola was inspired, and is an original mechanical tool.
Many years later, it was Truesdell who introduced this idea again;

• a well working way of obtaining bulk and boundary balance by super-
posing a rigid body motion (or, equivalently, a change in observer) on
the present configuration of the body: this view gets rid of difficult,
if not sometimes impossible, images of forces pulling and pushing on
small cubes, and was put into evidence for its originality by Hellinger
[41] but soon forgotten because of Piola’s provincialism; it seems that
it was Truesdell, in his trip to Italy, to re-discover it and spread it again
via his monographs;

• the idea that, since forces are simply Lagrangean multipliers of the
variations of condition equations (in the truth, Piola in his last work
admitted that these equations actually represent generalized strains, or
any sensible change in the physical sensible quantities characterizing
the body configuration), it was immaterial to write bulk and boundary
equations in the present or in the reference (ideal) configurations: while
this was not so important in 19th century continuum mechanics, when
scholars turned to investigate large displacements the importance of
writing down equations in a known shape seemed apparent. A similar
attempt by Kirchhoff in 1852 [56] was not precise and accurate as Piola’s
arguments and derivations.

It seems actually a pity that Piola’s self-isolation, in the spirit of a nationalism
and of a kind of amateurism that never accepted academic positions, let
these positions be known very little outside a very small circle of pupils and
followers. Indeed, it seems that even in Italy the school of rational mechanics
soon followed the teaching of Betti, Beltrami and their schools, and forgot the
amateur Piola. Maybe a good knowledge of the past may help in preparing
the future.
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