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Abstract In this paper we shall relate computational complexity to the principle
of natural selection. We shall do this by giving a philosophical account of
complexity versus universality. It seems sustainable to equate universal systems to
complex systems or at least to potentially complex systems. Post’s problem on the
existence of (natural) intermediate degrees (between decidable and universal R0

1)
then finds its analog in the Principle of Computational Equivalence (PCE). In this
paper we address possible driving forces—if any—behind PCE. Both the natural
aspects as well as the cognitive ones are investigated. We postulate a principle
GNS that we call the Generalized Natural Selection principle that together with
the Church-Turing thesis is seen to be in close correspondence to a weak version of
PCE. Next, we view our cognitive toolkit in an evolutionary light and postulate a
principle in analogy with Fodor’s language principle. In the final part of the paper
we reflect on ways to provide circumstantial evidence for GNS by means of
theorems, experiments or, simulations.

Keywords Computational complexity � Intermediate degrees � Principle of
computational equivalence � Natural selection � Dynamical systems

1 Complexity and Computation

It is a standard definition in the literature to call a computational process P
universal if it can simulate any other computational process H. In other words, P
is universal if (see for example [2] or any other basic text book on computability
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theory) for any other computational process H, we can find an easy coding
protocol C and decoding protocol C�1 so that we can encode any input x for H as
an input CðxÞ for P so that after P has performed its computation we can decode
the answer PðCðxÞÞ to the answer that H would have given us. In symbols:
C�1ðPðCðxÞÞÞ ¼ HðxÞ.

One can formalize what it means for a protocol to be easy but for the sake of
this presentation that is not too relevant. Thus, if a process is universal, it can
mimic all other processes if we just prepare the right input for it. It is certainly part
of our intuition that complex systems can incorporate, mimic, or use, less complex
systems. In this light it seems sustainable to define complex systems as those
systems that are universal. Note that under this definition a complex system need
not necessarily manifest itself in a complex appearance: a universal process can
mimic any other process whence also the very easy ones.

2 Intermediate Degrees

In this section we study the complexity that falls in between decidable and
universal in a sense to be specified below.

2.1 Turing Degrees

For sets of natural numbers, the notion of universality can also be defined. Contrary
to real-world computations, for sets of natural numbers there are infinitely many
ever-increasing notions of universality. The one that corresponds to the computa-
tional notion is that of R0

1 universality. A set K is called R0
1-universal if for any

computably enumerable set X (that is a set whose values we can computably
enumerate but not necessarily decide for each number if it is in the set or not) there is
a computable function fX : N! N so that

x 2 X () fXðxÞ 2 K:

We call such a function fX also a reduction. Post [10] raised the famous question of
whether there is some natural computably enumerable set of natural numbers that
is computationally more informative than a decidable set, but less informative than
the universal set K.

Often, instead of speaking of sets directly one considers degrees also called
Turing degrees. A Turing degree can be considered as the entity of all the sets that
contain the same amount of information in the sense of the above considered
reduction. Thus, two sets X and Y fall in the same degree—we write X� Y—
whenever there is some computable f : X ! Y such that x 2 X , f ðxÞ 2 Y and
some computable g : Y ! X such that y 2 Y , gðyÞ 2 X. For two Turing
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degrees X and Y we write X\Y to indicate that there is some computable f :
X ! Y such that x 2 X , f ðxÞ 2 Y but no computable g : Y ! X such that
y 2 Y , gðyÞ 2 X.

It is common practice to denote the degree of decidable sets by ; and the degree
of R0

1-universal sets by ;0. Post’s question stated in terms of degrees now translates
to whether there exists some degree X which falls strictly in between ; and ;0 in
terms of the above defined reduction, that is ;\X\;0. It took the scientific
community twelve years to find such an intermediate degree. However, it is
generally held that this solution does not provide a natural intermediate degree.

Clearly the notion of being natural is rather vague and auto-determined by the
scientific community itself. A clear indication for a mathematical notion to be
natural is that it occurs in various other fields as well. Likewise, applicability to
other kind of problems or admitting different proof methods are typically also
considered an indication of naturalness. The canonical way of finding intermediate
degrees is by what are called priority arguments with finite injury and it is
generally held that they do not meet the above mentioned indications for being
natural. We refer the reader to [13] for a more detailed account of priority
arguments in the context of this paper.

2.2 Church-Turing Thesis and PCE

Post’s question on intermediate degrees finds it real-world analog in the Principle
of Computational Equivalence (PCE) which was postulated by Wolfram in his
NKS book [14]:

PCE: Almost all processes that are not obviously simple can be viewed as computations of
equivalent and maximal sophistication.

The processes here referred to are processes that occur in nature, or at least,
processes that could in principle be implemented in nature. Thus, processes that
require some oracle or black box that give the correct answer to some hard
questions are of course not allowed here.

As noted in the book, PCE implies the famous Church-Turing Thesis (again,
see [2] for more details) (CT):

CT: Everything that is algorithmically computable is computable by a Turing Machine.

Both theses—PCE and CT—have some inherent vagueness in that they try to
capture/define an intuitive notion. While the CT thesis aims at defining the intu-
itive notion of algorithmic computability, PCE aims at defining what degrees of
complexity occur in natural processes. But note, this is not a mere definition as, for
example, the notion of what is algorithmically computable comes with a clear
intuitive meaning. And thus, the thesis applies to all such systems that fall under
our intuitive meaning.
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As a consequence, the CT thesis would become false if some scientists were to
point out an algorithmic computation that cannot be performed on a Turing
Machine with unlimited time and space resources. With the development and
progress of scientific discovery the thesis has to be questioned and tested time and
again. And this is actually what we have seen over the past decades with the
invention and systematic study of new computational paradigms like DNA
computing [9], quantum computing [8], membrane computing [1], etc. Most
scientists still adhere to the CT thesis.

But the PCE says more. It says that the space of possible degrees of compu-
tational sophistication between obviously simple and universal is practically void.
In what follows we shall address the question what might cause this. We put
forward two observations. First we formulate a natural candidate principle that can
account for PCE and argue for its plausibility. Second, we shall briefly address
how cognition can be important. In particular, the way we perceive, interpret and
analyze our environment could be such that in a natural way it will not focus on
intermediate degrees even if they were there.

3 Complexity and Evolution

In this section we shall dwell on the intimate relation between evolution and the
emergence of complexity. We shall follow [6] in great lines citing certain passages
but also adding new insights.

In various contexts but in particular in evolutionary processes one employs the
principle of Natural Selection, often also referred to as Survival of the Fittest.
These days basically everyone is familiar with this principle. It is often described
as species being in constant fight with each other over a limited amount of
resources. In this fight only those species that outperform others will have access
to the limited amount of resources, whence will be able to pass on its reproductive
code to next generations causing the selection.

We would like to generalize this principle to the setting of computations. This
leads us to what we call the principle of Generalized Natural Selection:

GNS: In nature, computational processes of high computational sophistication are more
likely to maintain/abide than processes of lower computational sophistication provided
that sufficiently many resources are around to sustain the processes.

If one sustains the view that all natural processes can be viewed as computa-
tional ones, this generalization is readily made. For a computation, to be executed,
it needs access to the three main resources space, matter, and time. If now one
computation outperforms the other, it will win the battle over access to the limited
resources and abide. What does outperform mean in this context?

Say we have two neighboring processes P1 and P2 that both need resources to
be executed. Thus, P1 and P2 will interfere with each other. Stability of a process
is thus certainly a requirement for survival. Moreover, if P1 can incorporate, or
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short-cut P2 it can actually use P2 for its survival. As an analogy we mention a
monkey that can predict and thereby use the behavior of an ant by inserting a stick
into an ant colony waiting for ants to climb on the stick so that the monkey can eat
the ants by pulling the stick out again.

A generalization of incorporating, or short-cutting is given by the notion of
simulation that we have given above. Thus, if P1 can simulate P2, it is more likely
to survive. In other words, processes that are of higher computational sophisti-
cation are likely to outperform and survive processes of lower computational
sophistication. In particular, if the process P1 is universal, it can simulate any
other process P2 and thus is likely to use or incorporate any such process P2.

Of course this is merely a heuristic argument or an analogy rather than a
conclusive argument for the GNS principle. One can think of experimental
evidence where universal automata in the spirit of the Game of Life are run next to
and interacting with automata that generate regular or repetitive patterns to see if,
indeed, the more complex automata are more stable than the repetitive ones.
In setting up such experiments, much care needs to be taken to not run into hard
philosophical problems of ontological nature like the question ‘‘what are the
defining properties of a particular process’’. One can think of similar questions
about a tree without leaves still being a tree etc. In particular, it seems more
sensible to focus on some particular features, like for example entropy or other
complexity measures. We will take up these considerations in more detail in
Sect. 5.

Of course, one cannot expect that experiments and circumstantial evidence can
substitute or prove the principle. A more detailed discussion of the principle can be
found in [6].

Just like the theory of the selfish gene (see [4]) shifted the scale on which
natural selection was to be considered, now GNS is an even more drastic proposal
and natural selection can be perceived to occur already on the lowest possible
level: individual small-scale computational processes.

In [6] it was noted that under some reasonable circumstances we may see GNS
as a consequence of PCE. However, GNS only talks about computational
processes in nature and not in full generality about computational processes either
artificial or natural as was the case in PCE. Thus we cannot expect that CTþ
GNS is actually equivalent to PCE. However, if we restrict PCE to talk only about
processes in nature, let us denote this by PCE0, then we do argue that we can
expect a correspondence. That is:

PCE0 � CT þ GNS:

But PCE0 tells us that almost all computational processes in nature are either
simple or universal. If we have GNS we find that more sophisticated processes will
outperform simpler ones and CT gives us an attainable maximum. Thus the
combination of them would yield that in the limit all processes end up being
complex. The question then arises, where do simple processes come from?
(Normally, the question is where do complex processes come from, but in the
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formal setting of CTþGNS it is the simple processes that are in need of further
explanation.)

Simple processes in nature often have various symmetries. As we have argued
above these symmetries are readily broken when a simple system interacts with a
more complex one resulting in the simple system being absorbed in the more
complex one. We see two main forces that favor simple systems.

The first driving force is what we may call cooling down. For example, tem-
perature/energy going down, or material resources growing scarce. If these
resources are not available, the complex computations cannot continue their
course, breaking down and resulting in less complex systems.

A second driving force may be referred to as scaling and invokes mechanisms
like the Central Limit Theorem. The Central Limit Theorem is a phenomenon that
creates symmetry by repeating a process with stochastic outcome a large number
of times yielding the well-known Gaussian distribution. Thus the scale (number of
repetitions) of the process determines the amount of symmetry that is built up by
phenomena that invoke the Central Limit Theorem.

In analogy, we can mention that whilst various universal processes that are
executed at cell level, a tree by itself can hardly be called a universal computa-
tional process.

In the above, we have identified a driving force that creates complexity (GNS)
and two driving forces that creates simplicity: cooling down and scaling. In the
light of these two opposite forces we can restate PCE0 as saying that simplicity and
universality are the two main attractors of these interacting forces.

Note that we deliberately do not speak of an equivalence between PCE0 and
CTþGNS. Rather we speak of a correspondence. It is like when modeling the
movement of a weight on a spring on earth. The main driving forces in this
movement are gravitation and the tension of the spring. However, this does not
fully determine a final equilibrium if we do not enter in more details taking into
account friction and the like. It is in the same spirit that we should interpret the
above mentioned correspondence.

4 Complexity, Evolution and Our Cognitive Toolkit

Fodor has postulated a principle concerning our language. It says that (see [5]) the
structure and vocabulary of our language is such that it is efficient in describing
our world and dealing with the frame problem. The frame problem is an important
problem in artificial intelligence which deals with the problem how to describe the
world in an efficient way so that after a change in the state of affairs no entirely
new description of the world is needed. See for example [11].

In particular, Fodor considers particles that can be either frigeons or nonfri-
geons. A particle is a frigeon if Fodors refrigerator happens to stand open and
otherwise it is a nonfrigeon. It is clear that we can perfectly well define such
concepts and words. However, the mere availability of these concepts will not help
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us understand the world better. Nor are we likely to be able to act better in a
competitive setting by having access to these concepts. And what is even worse,
our description of the world becomes very cumbersome if we take these concepts
into account. In particular of course at moments when Fodor’s refrigerator is either
opened or closed.

Based on this thought experiment Fodor posed the thesis that our language—an
essential part of our cognitive toolkit—has evolved in such a way to efficiently
describe the world and the important changes occurring therein.

On a similar page, we would like to suggest that our cognitive toolkit has
evolved over the course of time so that it best deals with the processes it needs to
deal with. Now, by PCE these processes are either universal or very simple. Thus,
it seems to make sense in terms of evolution to have a cognitive toolkit that is
well-suited to deal with just two kinds of processes: the very simple ones and the
universal ones.

Taking these considerations into account, it can well be conceived that there
actually are computational processes out there that violate PCE but firstly, by
GNS these processes will be very scarce and secondly, even if they are out there,
our cognitive toolkit is just not well-equipped enough to deal with them.

Actually, throughout mathematics and mathematical logic there are various
indications present that seem to substantiate the claim that indeed many of our
most commonly used intellectual and cognitive tools within these fields, although
rather sophisticated, all fall in one of few classes of operational strength. In this
paper we have already seen that it is very hard to get sets that are not computa-
tionally universal. In [6] we gave some more examples to this same phenomenon.

In this setting we would also like to mention the program of reverse mathe-
matics (see [12]). Reverse mathematics tries to gauge the logical strength of
important mathematical theorems. One starts out with some weak base theory T0.
Next, one considers some important mathematical theorem s. These are typically
mathematical theorems that are frequently used by the mathematical community.

We mention here some examples of such theorems without further reference,
context or proof. They just serve to give the flavor of the kind of theorems
considered:

• Every countable commutative ring has a prime ideal;
• A continuous real function on the closed unit interval is Riemann integrable;
• Uniqueness of algebraic closure (of a countable field);
• Gödel’s completeness theorem: a formula u in a countable language is provable

from a set C of assumptions in that same language, if and only if u is true in
every model where all of C is true.

As said, we do not want to go into the details of these theorems. They merely
serve the purpose of illustrating what kind of theorems are considered and how
wildly divers the scope of these different theorems are. The next step in the
recursive mathematics project is to consider the system T0 þ s, that is, the base
system together with one of those particular mathematical theorems. We call two
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such systems T0 þ s and T0 þ s0 equivalent and write T0 þ s � T0 þ s0, if they
prove exactly the same set of theorems, that is,

T0 þ s ‘ u () T0 þ s0 ‘ u

for any formula u. It turns out that almost all important mathematical theorems fall
into one of five equivalent systems. That is to say, if you take six arbitrary
important mathematical theorems fsi j i 2 f1; . . .; 6gg, almost surely you will
have that T0 þ si � T0 þ sj for some i 6¼ j. We think that this is an important
indication of the fact that our intellectual/cognitive toolkit is designed in such a
way as to efficiently/naturally recognize, and deal with a limited set of problems
that are most useful to us in our daily life and fight for survival. In particular we
mention that all the above mentioned examples of important mathematical
theorems are equivalent over some natural base theory T0.

5 On Testing the Generalized Natural Selection Principle

In this final section we shall address the question on how to test the principle of
Generalized Natural Selection GNS as put forward in [6] and discussed here in
Sect. 3. As mentioned before, such tests can never substitute a full proof. Rather
they can merely supply ‘‘circumstantial evidence’’ in favor of or against the
principle. Let us start out by pointing out some subtleties underlying GNS.

5.1 General Observations

The principle GNS tells us that complex processes are more likely to be more
successful than others and thus more likely to ‘‘survive’’. Let us recall the exact
formulation of GNS and make some general observations that should always be
taken into account when studying it.

GNS: In nature, computational processes of high computational sophistication are more
likely to maintain/abide than processes of lower computational sophistication provided
that sufficiently many resources are around to sustain the processes.

In this formulation we see the following difficulties naturally emerge.

1. The first, most natural, and most fundamental question is ‘‘what is determining
the identity of a process’’. For example, suppose some process P undergoes
some minimal change, should we still call it the same process P after that
minimal change? The same sort of question arises in all kinds of sciences: ‘‘is a
human being without limbs still a human being?’’ or ‘‘when is a particular cloud
a Nimbo Cumulus?’’. It turns out even to be difficult to classify life within very
broad categories like ‘‘animal’’ versus ‘‘plant’’ etc. Naturally the question is
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related to deep philosophical questions relating, amongst others, to issues like
fuzziness (see e.g., [15]) in particular and the Sorites paradox more in general
[7]. The Sorites paradox deals with questions like ‘‘how many trees should
there be to form a forest, and what happens if I would cut one tree’’.
When trying to make quantified statements about GNS one should always first
isolate a well defined entity that substitutes either ‘‘process’’ or some essential
property representing the process. In the paradigm of The selfish gene this is
easy but in the paradigm of GNS this is not.

2. A second fundamental question is concerning what is meant by complexity and
in particular how to measure it. As mentioned before, there are various
essentially different definitions throughout the literature and we have put
forward our own proposal here in Sect. 1.

3. We think that the two problems mentioned so far are the more serious ones.
Minor but not less fundamental problems arise in also defining the other
mentioned concepts. Thus, how should we specify probability when saying that
one process is more likely to maintain/abide than another. What is exactly
understood by interaction, etc.

5.2 Mathematical Analysis

In principle one could try to formulate GNS in a fully formalized setting and then
try to prove GNS as a theorem within that formal setting. In doing so all above
mentioned points/problems should be taken into account. We shall shortly see how
many choices such an analysis entails. That naturally raises the questions on how
natural these choices are and in how much the final analysis says something about
the physical reality at all.

For example, one could identify a process by a set, or better, by a Turing degree
X. This would be a first choice. In a next choice one has to define some mathe-
matical operation � between two degrees that models the notion of interaction
between two processes aka degrees. Thus, the outcome of two processes X and Y
that interacted would be denoted and computed by X � Y .

Subsequently, we can answer the question whether X�X � Y and Y �X � Y .
However, if we wish to say something on how likely it is that either X�X � Y or
Y �X � Y we need to make yet more choices like introducing some probabilistic
tools on the space of degrees between ; and ;0.

5.3 Testing in the Laboratory

Instead of mathematical modeling, one can also try to isolate some real-world
processes that can be considered naturally as computational ones and have them
interact and run in a laboratory setting. Also here, all the difficulties as discussed in
Sect. 5.1 will manifest themselves in this setting.

Complexity Fits the Fittest 59



In particular we will have to decide on the identity determining aspects of the
processes involved. Moreover we have to decide on the measure of complexity
that is to be applied to these processes. Probably that is the harder and more
arbitrary task in this setting.

When working with living organisms some care has to be taken as to prevent
that we are just testing the well-established principle of natural selection instead of
GNS.

5.4 Computer Simulations

In this final section we shall discuss a possible approach to test GNS via computer
simulations. Again we should settle upon choices for the modeling problems as
posed in Sect. 5.1.

Just as with the mathematical modeling, we would like to stay as close as
possible to the physical reality in our computer simulations. Due to the inherent
parallel nature of physical reality (all goes on at the same time) and due to the
locality of causality it seems a good idea to simulate parts of reality by cellular
automata (CA).

For the sake of a simple presentation let us briefly recall the definition of one of
the simplest CAs: a one-dimensional CA with radius 1 and two symbols. We shall
depict the two different symbols by black and white respectively. Our CA acts on a
one dimensional tape of discrete cells that extend infinitely both to the left and to
the right. In CAs, time evolution is modeled by discrete time steps. An initial
condition is given by telling what cell is of what color. The color of each cell will
evolve over time. Basically our CA is just a look-up table with a rule how to
compute the color of a particular cell at a next time step depending on its current
color and the color of its two direct neighbors. An example of such a CA is
depicted in Fig. 1.

The rule numbering is according to a numbering scheme as presented in [14]
but not really relevant for the current presentation. Thus, for example, if a cell was
white at time t and both its neighbors were black at time t, then at the next step
t þ 1, the cell will turn black according to the defining look-up table of Rule 110.

As in [14] we depict the consecutive tape configurations from top to down.
Thus, for example, if we start out with just a single black cell on an otherwise
white tape, Rule 110 will give us the famous evolution as depicted in Fig. 2 below.

It is evident from Fig. 2 that complex behavior can already occur in these
simple automata. As a matter of fact, it is know that Rule 110 is universal in that it

Fig. 1 Definition of rule 110
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can -in some sense—emulate any other computational process. It is easy to see
how CA can be generalized to more symbols, more dimensions and larger radii
(taking more neighbors into account).

To come back to our test of GNS and in the setting of CAs, how should we
model processes? Should a process be modeled by a particular CA? And if so, how
should interaction be modeled? We think it is more natural to model a process by
an initial condition. Let us briefly explain why.

We have reasoned before that there is a strong analogy between physical reality
and CAs. Each cell in a CA with its respective symbol can be seen as a particular
property of physical reality at some particular locus or region. The interaction
between these properties at these regions are governed by the same laws of nature
everywhere throughout the universe. At least it is generally believed to be the case
that the laws of physics are the same throughout the universe.

One could not wish to adhere to this believe and keep the possibility open that
somewhere far away in extreme circumstances -for example close to a black hole-
the laws of physics do change. However, it still seems reasonable to expect the
laws of nature to be at least locally stable. And as we are interested on interacting

Fig. 2 Evolution of rule 110 starting with just one black cell and computed only for 700 steps.
Figure generated with Mathematica
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processes it is mainly local interaction that we are interested in. Thus, if we have a
CA simulating physical reality, it should be the same CA at every part of the tape.
Moreover, if we wish to simulate reality in which universality clearly occurs, we
better start out with a universal CA.1 Pushing the analogy further we are lead to
accept that processes correspond to the configuration of our symbols evolving over
time.

It is in this setting that the question about the defining properties of a particular
process becomes very hard. Thus, in simulations using CAs it seems more fruitful
to focus on particular features of a process rather than to find a set of defining
properties that sharply tells us what a particular process is. For the moment we
shall not address the issue of limited resources.

So now that we have identified a process with an initial condition the problem
of finding a suitable definition of complexity becomes clearly defined. Remember
that we propose to work first with one-dimensional CAs with just two symbols.
Thus, a process is nothing but a string developing over time for which there are
suitable and effective complexity measures defined (see [3] or [16]). By brute force
simulations one can now try to quantify how likely it is that the more complex
processes maintain/abide.

Even if these simulations could provide circumstantial evidence in favor of
GNS, one still has to be very careful in how to interpret the repercussions of these
simulations on the physical reality. However, positive outcomes of such simula-
tions, experiments, or theorems will certainly help gain credibility of GNS. Further
credibility could be obtained by applications of GNS in related theoretical
frameworks and only time will tell if these are to be found or not.
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