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Preface

The book you are holding in your hands is the outcome of the ‘‘2012 Interdis-
ciplinary Symposium on Complex Systems’’ held at the beautiful Mediterranean
island of Kos of pre-and post-Socratic fame. The event was conceived as a
continuation of our series of symposia in the science of complex systems. Only
through bringing scientists and philosophers alike from different areas of modern
research together, as the organizers felt, the necessary dialogue and heat can
be generated in which a new paradigm can take a more definitive shape. The
paradigm itself—a ‘‘science of complexity’’ in a both overarching and sharply
delineated sense—has different and often not convergent trends because a ‘‘single’’
definition of complexity does not exist. Perhaps, one of the main reasons for not
yet having a unique definition is due to the lack of agreement whether complexity
is an inherent property of Nature or it only appears when one builds a model for a
given phenomenon. Accordingly, prestigious scientists and philosophers with
different points of view were brought together along with youthful budding
researchers, who jointly contributed previously unheard examples to form an
efficient engine to produce new work. Sense of wonder as to what would happen in
the next talk was palpable several times. The panel discussion—not reproduced
here—did its own part in fostering a spirit of friendship and progress in spite of
different viewpoints. The finished papers reproduced here reflect this unique spirit
of mental and physical cooperation across disciplines and continents.

The motivation to prepare this book was based on a few facts. The main one is
that the research field on complexity is an interesting area that is under intensive
investigation from the viewpoint of many branches of science today. Complexity
theory with its applications can be found in biology, physics, economy, chemical
technologies, aircraft industry, job scheduling, urban planning, and others.
Complex systems and their behavior are very important in engineering, because
such behavior can be used in many interesting applications as well as in the
interdisciplinary combinations forming on a theoretical level. This book is written
to present simplified versions of experiments and thought experiments to show
how, in principle, complexity can be put to use. Collecting different reasoned
opinions with likely different ideas and then assembling a book comprising the-
oretical physics, mathematics, engineering, and philosophy might appear odd;
nevertheless, we found that our endeavor achieved a high efficiency at arriving
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at a synthesis in this manner. Furthermore, the history of science has demonstrated
that pure mathematics and physics can combine beautifully with practical engi-
neering, as the example of ‘‘the strangest man’’ shows.1

The book consists of 12 selected papers of the symposium starting with a
comprehensive overview and classification of complexity problems. Readers can
also find other interesting papers about complexity, its observation, modeling, and
its applications in solving various problems. More concretely, readers will have an
encounter with the structural complexity of vortex flows, the use of chaotic
dynamics within evolutionary algorithms, complexity in synthetic biology, types
of complexity hidden inside evolutionary dynamics and possible controlling
methods, complexity of rugged landscapes, and more. All selected papers repre-
sent innovative ideas, philosophical overviews, and state-of-the-art discussions on
the aspects of complexity.

The book can be useful as an instructional material for senior undergraduate
and entry-level graduate students in computer science, physics, applied mathe-
matics, and engineering-type work in the area of complexity. Researchers, who are
interested how complexity and evolutionary algorithms are merged together as
well as researchers interested in the ramifications of complexity in various fields of
science and its applications, will find this book very useful as a stepping stone. The
book can also be valuable as a resource of material for practitioners who want to
apply complexity to solve real-life problems in their own challenging applications.
It goes without saying that this book does not encompass all aspects of complexity
types and fields of research due to its limited space. Only the main ideas and
results of selected papers are reported here. The authors and editors hope that
readers will be inspired to do their own experiments and simulations, based on
information reported in this book, thereby moving beyond the scope of the book.

As a token of the participants’ affection for genuine progress in the decom-
plexification of the universe, we dedicate this book to Fabiola Gianotti who bears
much responsibility for the discovery in 2012 of the Higgs Boson in fundamental
physics. At the same time, the question still remains open whether knowing more
about Nature can decomplexify it, or else makes it even nimbler to the fishing
mind.

January 2013 Ivan Zelinka
Ali Sanayei

Hector Zenil
Otto E. Rössler

1 Four years before his death, Niels Bohr told a colleague that of all the people who had ever
visited this institute, Dirac—an engineer by training—was ‘‘the strangest man’’ (cf. Graham
Farmelo’s colorful biography of Paul Dirac under this title).
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Complexity Decomplexified: A List
of 200+ Results Encountered Over
55 Years

Otto E. Rössler

Abstract The present list was compiled by a ‘‘specialist for non-specialization’’
who owes his scientific identity to the masters of three disciplines: physicist Carl-
Friedrich von Weizsäcker, biologist Konrad Lorenz and mathematician Bob
Rosen. With the in retrospect best findings compressed into a line or two, the
synopsis brings hidden patterns to the fore. Simultaneously, the individual results
become maximally vulnerable—so as to facilitate improvement or falsification.

1 Philosophical Preface

Descartes re-invented the rational world of Heraclitus. Specifically he asked the
following question (paraphrased): ‘‘Do the ‘assignment conditions’ that we find
ourselves glued to (the body, the Now, the qualia including color and joy) rep-
resent an acceptable state of affairs?’’ The answer is ‘‘yes,’’ Descartes proposed: if
and only if the other two conditions that hold us in their grip—the ‘‘laws’’ and the
‘‘initial conditions’’ that momentarily apply within the laws (to use Newton’s later
terms)—are mathematically consistent. As long as this ‘‘machine conjecture’’ is
fulfilled empirically, an infinite privilege separates the conscious observer from all
other inhabitants of the world: The others become ‘‘mere machines’’ in the
experience of the first (so that he may, for example, do a brain operation on one of
them to save this life). Lévinas called this state of one’s being totally outside the
other’s interior side, ‘‘exteriority’’. The subject has the option of not misusing
the infinite power of exteriority, by acting fairly towards the poor ‘‘machine’’ of
the other so as if it possessed a subjective side of its own—even though this cannot
be proved and indeed is absurd to assume (were there not the miracle of the first’s
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own consciousness). A single act of not misusing the infinite power of exteriority,
performed by the inmate of the dream of consciousness on a fellow machine,
would then put the Dream-Giving Instance to shame—unless it is benevolent
itself. The fact that this risk is being taken by the DGI is living proof—according
to Descartes—that the chain of colorful subjective Nows, imposed on the victim of
consciousness, is not a ‘‘bad dream’’. But this insurance applies only as long as the
‘‘steel fibers’’ of the Cartesian coordinates, which Descartes had proposed to
search for to mathematically fit the colorless sub-portion of experience (its ‘‘Hades
part’’), prove to be consistent—a machine. This empirical question endows the
study of the steel fibers with maximal dignity. In the Greek Hades, all quantitative
relations valid in our own upper world were preserved—except for the ‘‘blood’’
that endows them with color and substance. Therefore the merely relational (or
‘‘shadow’’) part of experience becomes an instrument by which to do good to one’s
fellow inhabitants of the dream who by their being machines are totally given into
the dreamer’s hand, as hostages. This ‘‘exteriority theory’’ (Lévinas) endows
science with an infinite dignity—as long as it is empirically consistent. The
modern part of this Cartesian checking task—to include quantum mechanics with
its indeterminism and nonlocality as being explicable by a ‘‘micro assignment’’ in
a transfinitely exact deterministic universe—was taken up by Everett in the
footsteps of Einstein. This rational ‘‘endo’’ approach is likely to succeed in an
experiment first conceived by Susan J. Feingold and later proposed to ESA by
Anton Zeilinger more than a decade ago. (I thank Ali Sanayei and Ivan Zelinka for
discussions and Stephen Wolfram for encouragement.)

2 The List

Introductory sentence: This is a list of scientific findings, almost all published,
accrued over time. They can be referred-to via the Roman number added at the end
of each ‘‘twitter.’’ Later related work is filed-in so that the list is not entirely
chronological. Sometimes several points are made out of one paper to facilitate
continuation and/or criticism by the reader.

Energy-saving voice-signal proportional amplitude-modulation (made distortion-
free by negative feedback between rectified high-frequency output and low-fre-
quency input) I

Z-incision (a non-mutilating circumcision method) II

‘‘Invisible machines,’’ consisting of virtually infinitely many non-negative chem-
ical variables that are almost all zero initially, (with arbitrarily long delays at very
low concentrations) III

Chemical evolution is a special case: It forms an Erdös-type growing automaton
(similarly Stu Kauffman, Joel Cohen and Koichiro Matsuno) IV

2 O. E. Rössler



Far-from-equilibrium statistical mechanics and chemical kinetics predict the
emergence of life with C–C–C– backbones in liquid water on earth and Europa and
Enceladus (and with B–N–B–N– backbones in liquid ammonia inside Jupiter; with
Artur P. Schmidt) V

Teilhard’s ‘‘second arrow’’ in statistical thermodynamics is a valid description of
the implied asymptotic approach towards ‘‘point Omega’’ VI

‘‘Recursive evolution’’: Evolution improves evolution in the first place (with
Michael Conrad in the footsteps of John von Neumann and John Holland) VII

Unlike ‘‘metabolic adaptation’’ (Darwin) which is non-predictive in its history-
dependent details, ‘‘positional adaptation’’ (discovered in a discussion with Konrad
Lorenz as being of equal rank) is predictive VIII

‘‘What are brains for?’’ is a well-posed scientific question (in that new science of
deductive biology) IX

‘‘The Rossler task’’ (Michael Conrad) or the ‘‘decision-type traveling salesman
problem’’ (as its re-discoverers Garey and Johnson called it 5 years later in their
great book ‘‘Computers and Intractability’’) X

Ric Charnov’s ‘‘optimal foraging theory’’ is closely related (finding things ‘‘just in
time’’ is what brains are for) XI

Gödel’s ‘‘incompleteness theorem’’ can be seen as a limiting solution to the NP-
complete ‘‘traveling salesman-with-alarmclocks problem’’ (so that incompleteness
suddenly becomes intuitive mathematically) XII

‘‘The bacterial brain’’ (residing in the cell membrane along with sensors and
motors) implements a local solution to the traveling-salesman-with-alarmclocks
problem (with Hans Bremermann and Dan Koshland) XIII

‘‘The brain equation’’ yields a maximally efficient local solution to the decision-
type traveling-salesman-with-alarmclocks problem XIV

The brain equation attaches a positive or negative weight to all closest sources of
different types in a lawfully smeared-out, distance- and time-dependent fashion, so
that an optimum ‘‘sum direction’’ results (since all directions are attached an either
finite or infinite, positive or negative sum weight) XV

Nonexistence of a ‘‘eusocial brain equation’’ (with Wilfried Musterle and Oswald
Berthold) XVI

‘‘A universal brain’’: The brain equation combined with a powerful ‘‘universal
simulator’’ (or synonymously ‘‘cognitive map system’’ or ‘‘VR’’–virtual-reality–
machine in the sense of William Gibson) XVII

The combined system (brain equation plus artificial cognitive map system with
overlap buffer and long-term storage device) is what Bill Seaman calls a ‘‘Neo-
sentient’’ XVIII

Complexity Decomplexified: A List of 200+ Results Encountered Over 55 Years 3



The ‘‘sinc algorithm’’ (real-space equivalent to a Fourier window in frequency
space) can be approximated by a multi-level, multi-resolution, both ascending and
descending, Reichardt-von-Foerster type multi-layer neural net (with Bernhard
Uehleke) XIX

‘‘Tolerance attractors’’ form under recurrence in such a neural net (implementing
Poincaré-Zeeman-Poston-DalCin ‘‘tolerance theory’’ by realizing Heinz von
Foerster’s 1960 early prediction of ‘‘Platonic ideation’’) XX

The technical problem of ‘‘fast picture-shifting’’ within such multi-resolution-level
neural nets or wavelets, while solved by nature, still eludes science (with Michael
Klein) XXI

‘‘Pandaka-pygmaea Institute’’ proposed in the Biophysical Journal to solve the
Platonic and other brain problems by investigating this 0.9 cm smallest fish’s brain
(along with that of its normal-sized close relative of 20-cm, Gobius niger) XXII

The attractive positive sum-potential in the brain equation—‘‘happiness’’—is
predictably displayed by the young of social animals XXIII

One of the sub-potentials in the brain equation—‘‘bonding’’—is predictably dis-
played by all social animals XXIV

Two distinct displays (like happiness and bonding) can—through an evolutionary
accident called ‘‘Huxley evolutionary ritualization’’—acquire a mutual functional
overlap XXV

This Julian-Huxleian accident happened independently in the evolution of two
mammalian species: ‘‘Tail-wagging’’ signals both bonding and happiness in
wolves, and the Smiley face signals both bonding and happiness in humans
(similarly Jan van Hoof and Frans de Waal) XXVI

‘‘All Animals Are Autistic’’ (AAAA): because the brain equation, being an
autonomous optimizer, is autistic by definition XXVII

Every brain-equation-carrier is ‘‘alive’’ independently of hardware because it
solves the universal positional-adaptation problem, solving which is as vital as
solving the metabolic-adaptation problem (hence ‘‘chemical life’’ and ‘‘brain life’’
have the same rank) XXVIII

Universal brains are ‘‘mirror-competent’’ by virtue of their high simulational
capability XXIX

Unlike humans and some other vertebrate and perhaps invertebrate species, wolves
do not have a universal brain (their VR component is too weak for mirror-com-
petence: their mirror neurons do not suffice) XXX

Smile-laughter overlap ? strong bonding ? mirror-competence = sufficient con-
dition for an ‘‘epigenetic function change’’ in the sense of Robert Rosen: The
overwhelming ‘‘personogenetic function change’’ (PFC) XXXI

4 O. E. Rössler



The PFC consists in the invention of the ‘‘suspicion of benevolence shown by the
other’’ (which leads to a state of ‘‘being moved’’ in a positive feed-back, engulfing
both sides in a maximal bonding bout) XXXII

The PFC represents an example of ‘‘creation out of nothing’’ (the suspicion of, and
in response production of, benevolence) XXXIII

‘‘Was Mom totally moved [stirred] like scrambled eggs?’’ [the German word
‘‘gerührt’’ means both being stirred and being moved], asked 3-year-old Jonas after
having shown an unexpected favor (in ‘‘Jonas’ World—The Thinking of a Child’’
[in German], edited by Reimara and Otto E. Rossler, p. 23) XXXIV

‘‘Person attractor’’ (Detlev Linke): The new stable mode of functioning that arises
in the PFC XXXV

The PFC can be seen to be nothing but a misunderstanding (a haphazard con-
vergence concocted in the universal simulator): were it not interactively confirmed
XXXVI

The fact that the PFC represents a joint functional trap allows one to speak of
‘‘Nature’s Shadchen trick’’ (with permission of Roger Malina) XXXVII

The person attractor resembles a ‘‘folie à deux’’ (a form of ‘‘animal schizophrenia’’
or ‘‘AI schizophrenia’’), compared to the physiological autistic functioning of the
two ‘‘autonomous optimizers with cognition’’ involved XXXVIII

The PFC constitutes a miracle, worked by the toddler (the only scientifically
proved worked miracle) XXXIX

Watching this ‘‘creation-out-of-nothing’’ being achieved by the toddler is a
maximally moving event (there appears to exist no recorded documentation of this
‘‘holy of holies’’ of humankind) XL

The mutually confirmed suspicion of benevolence acquires the character of an
‘‘objective truth’’ (there is no older objective truth) XLI

The miracle goes still further: A third fictitious person is involved in the perso-
nogenesis (called ‘‘god’’ or ‘‘Buddha’’ etc. in different cultures): the Dream-Giving
Instance DGI, or synonymously the ‘‘non-I’’ (or even the ‘‘palpable emptiness
behind the dream,’’ cf. http://www.youtube.com/watch?v=YWwe8HzUJu8) XLII

The ‘‘non-I’’ arises concomitantly with the ‘‘I’’ and the ‘‘you’’ (the two other
persons created in the PFC) XLIII

Mathematical proof that the orangutan brain is functionally superior to the human
brain (with Michael Langer;independently Willie Smits in the book ‘‘Thinkers of
the Jungle’’) XLIV

Friendly teasing jokes (‘‘humor’’) are implicit in the PFC (as discovered by Jesse
Bering in interaction with his gorilla, scientificamerican 2010) XLV
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Being able to ask a factual question is a new behavioral trait that is made possible
by the PFC XLVI

‘‘Nonautistic languaging’’ automatically develops as a consequence of the PFC
(similarly C. Andy Hilgartner) XLVII

Human society in all its essential aspects is formed as a consequence of the PFC:
Society is based on asking questions and giving answers, enabled by the mutual
trust between persons XLVIII

‘‘Personology’’ = ‘‘Adamology’’ = ‘‘person made out of soil’’ (with Jürgen Jonas
and Michael Langer) IL

The ‘‘physiological autism’’ of every autonomous optimizer with cognition per-
sists in human beings endowed with an innate ‘‘smile blindness’’ (when the latter is
strong enough to prevent the epigenetic PFC from occurring) L

Most alleged autism in humans is ‘‘pseudo-autism’’: A lesser-than-average fluency
in some social conventions LI

The causal explanation of autism enables a causal therapy: The caretaker delib-
erately produces an ‘‘acoustic smile’’ when momentarily happy (the acoustic smile
consists in making a tender bonding noise); a proof is the healed haircutter, fea-
tured in: 29.01.08, 22.15 VOX, Stern TV Reportage, Autisten) LII

The fact that the caretaker must be the essential bonding partner proves that
modern child cribs are a collective tragedy (their uninformed use explains the
current global rise in autism) LIII

The offered ‘‘causal therapy of autism’’ was shunned by the profession for 45 years
(only Gregory Bateson approved of it, Konrad Lorenz said he believed it but it was
‘‘too hard to understand’’ for him) LIV

The likely reason for the professional silence is the fact that the person attractor is
‘‘too easy to elicit’’: Young mirror-competent bonding animals can predictably be
lured into the personogenetic function change (which prospect, first expressed in
the 1975 San Diego Biomedical Symposium., violates a deep subconscious
taboo—the ‘‘Chewbacca taboo’’ as it can be called in honor of George Lucas’ 1978
enchanting character) LV

‘‘Galactic export’’ is the technical term for exporting the personogenetic bifurca-
tion to non-human mirror-competent bonding animals or brain-equation-controlled
robots (the ‘‘small step’’ of recruiting a second life form into personhood is ‘‘a
giant leap for mankind’’) LVI

Evolutionarily speaking, the epigenetic PFC is a ‘‘lethal factor’’ since it replaces
natural selection by person-controlled fairness LVII

The PFC nevertheless is the opposite of being ‘‘evolutionarily lethal’’: It represents
a ‘‘jump up towards point Omega’’ (which thereby ceases to be asymptotic, i.e.,
only reachable after an infinite cosmic time) LVIII

6 O. E. Rössler



The planet-wide shying-away from galactic export is an example of a collective
subconscious ‘‘speciesism’’ LIX

The fear is palpable ever since Margaret Howe, Gregory Bateson and John C.
Lilly’s student, Margaret Howe, tried to adopt a male dolphin 48 years ago; also
Koko (Francine Patterson’s gorilla life partner) and Kanzi (Susan Savage-Rumb-
augh’s grown-up adopted bonobo child) are both tragically underrated (compare
the photos in Bill Seaman’s book ‘‘Neosentience’’) LX

Stephen Spielberg played on the same taboo in his movie ‘‘AI’’ which brings-in the
added feature that this non-biochemical person is potentially immortal (a fact
played down tactfully) LXI

Leo Szilard introduced non-human persons in his 1948 sci-fi story ‘‘The Voice of
the Dolphins’’ written in the aftermath of his failure to prevent his other brain child
(the bomb) from being dropped LXII

The ‘‘Rosette phenomenon’’ of sperm whales (the carriers of the most sophisti-
cated brains on earth) deserves to be taken seriously: What function serves their
daily meeting? (Cf. the sci-fi story ‘‘The Tale of the Whale’’ abriged in the book
‘‘Neosentience’’) LXIII

Nowhere-differentiable attractors(with John L. Hudson, Carsten knudsen and
IchiroTsuda LXIV

‘‘Vertical exteriority’’: Matching term, in the theological sense of Edmond Jabès
(with Nils Röller, Klaus Sander and Kai Grehn) LXV

‘‘A program can force the programmer to reply’’ (with Christa Sommerer and
Adolf Muschg) LXVI

‘‘Simulacron Three’’ (story by Daniel F. Galouye 1964) and ‘‘A Puppeteer’s
World’’[‘‘Welt am Draht’’] (movie by Rainer Werner Fassbinder 1973) are two
anticipations of the same insight, followed by the ‘‘Matrix’’ movie, Ray Kurzw-
eil’s ‘‘Singularity Theory’’ and Eric Klien’s ‘‘Lifeboat project’’ LXVII

The ‘‘Turing test’’—a test for personhood—got passed for the first time in ancient
Rome: By the Cretan slave and subsequent stoic philosopher Epictetus (as
I learned from Bob Rosen) LXVIII

Limitology (joint work with Yukio-Pegio Gunji, John Casti and Joseph Traub)
LXIX

An equation for a universal immune system (with Robert A. Lutz) LXX

A chemical universal circuit (with Dietrich Hoffmann) LXXI

Differentiable automata exist mathematically (because certain ordinary differential
equations can approximately-if-consistently be described by automata theory)
LXXII
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‘‘Well-stirred automata’’ (fluid; liquid): Exist physically LXXIII

Reaction scheme and simulation of a temperature-compensated chemical clock
(with Wolfgang Engelmann and Marc Lefranc) LXXIV

‘‘Ultra-long-term, continuous-stirred-tank-reactor version’’ of the Belousov-
Zhabotinsky reaction: To check for a ‘‘late explosion’’ in the number of variables
produced as onset of a chemical evolution (with Michael and Debbie Conrad)
LXXV

‘‘Traffic-light version of the Belousov-Zhabotinsky reaction’’ (with Wolfgang
Engelmann and Reimara Rossler) LXXVI

‘‘Slinky attractor’’ (with Okan Gurel and Eberhard Hopf) LXXVII

‘‘Reinjection principle’’ is valid in more than two-dimensional phase spaces
(independently Floris Takens and Christian Mira) LXXVIII

A chaotic electronic multivibrator, built with Hartmut Waible in 1975 LXXIX

‘‘Rossler attractor’’ (Norman Packard and Ralph Abraham) LXXX

‘‘Spiral chaos’’ LXXXI

‘‘Screw-type chaos’’ LXXXII

‘‘The sound of chaos’’ is known to everyone (idling motor; hoarse voice; baby
cries [H. Herzel]) LXXXIII

Chaos (a stereoscopic sound movie, made with Reimara Rossler and Thomas
Wiehr 1976), now on YouTube LXXXIV

‘‘Chaos = disciplined tangle’’ (term due to Alfred Klemm who turned 100 on
February 15, 2013) and chaos in a piecewise linear system (with Igor Gumowski)
LXXXV

‘‘Hyperchaos’’ (name courtesy Paul Rapp) LXXXVI

‘‘The sound of hyperchaos’’ (like raindrops falling on a car’s roof): in the ‘‘chaos’’
movie LXXXVII

‘‘Running electric fan suspended from a long rope’’: Olafur Eliasson’s independent
hyperchaos LXXXVIII

‘‘X-attractor’’ in 4 dimensional flows (is still elusive) LXXXIX

‘‘Playdough task’’: To be given to thousands of toddlers to find the X-attractor XC
‘‘Atrio-ventricular heart chaos’’ (with Reimara Rossler and Herbert D. Landahl)
XCI

‘‘Endocrinological chaos’’ (with Reimara Rossler and Peter Sadowski, indepen-
dently Colin Sparrow and Christophe Letellier) XCII
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Chaos in the Zhabotinsky reaction (with Klaus Wegmann, in parallel to John L.
Hudson) XCIII

‘‘Cloud attractor’’ (with James A. Yorke and John L. Hudson) XCIV

‘‘Folded-towel map’’ (in parallel Masaya Yamaguti’s ‘‘folded handkerchief map’’)
XCV

‘‘Punctured hyperchaos’’ is source of every transfinitely exact self-similarity or
self-affineness in maps (with Michael Klein) XCVI

‘‘The chaotic hierarchy’’ (the simplest equation was subsequently to be found by
Gerold Baier and Sven Sahle) XCVII

Explicit Smale-Urysohn ‘‘solenoid attractor’’ (with Pal Fischer and W.R. Smith)
XCVIII

‘‘Transfinitely-invertible attractors’’ (being almost everywhere so, with György
Targonski) XCIX

Explicit Poincaré recurrence in a 2-D invertible map (with Georg C. Hartmann) C

Generic Milnor (-like) attractor (with Francisco Doria and Georg C. Hartmann) CI

‘‘Flare attractors’’ (with Georg C. Hartmann, and with Vela Vilupillai in late
homage to Richard Goodwin) CII

‘‘Society of flare attractors’’ as a model of the economy (with Georg C. Hartmann)
CIII

‘‘Hyperfat attractors’’ (with John L. Hudson) CIV

‘‘The fat hierarchy’’ (with Erik Mosekilde) CV

Particle indistinguishability is transfinitely exact (with Hans Primas, Martin
Hoffmann and Joe Ford) CVI

‘‘Deterministic entropy’’ (with Hans H. Diebner) CVII

‘‘Gibbs-Sackur cell’’ in phase space CVIII

‘‘Classical unit action’’ (in the system-specific Sackur cell) CIX

‘‘Micro time reversals’’: In the Sackur cell of the observer (with Richard Wages)
CX

‘‘An estimate of Planck’s constant’’ (based on the Sackur cell) CXI

Causal (exo) explanation of quantum mechanics (with Peter Weibel) CXII

Endophysics (with David Finkelstein and John Casti) CXIII

‘‘Boscovich covariance’’ (with Werner Kutzelnigg, Edgar Heilbronner, Jens Meier
and Matthias Schramm) CXIV

‘‘Causal explanation of spin’’ on exo-level (with Michael Conrad) CXV
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‘‘All-alpha electron chemistry’’ or ‘‘single-spin chemistry’’ in ultra-strong mag-
netic fields (with Dieter Fröhlich, Gerald Caris, Günter Häfelinger and Frank
Kuske) CXVI

Hyperchaos generated by a single feedback circuit (with René Thomas, Markus
Eiswirth and Vasileios Basios) CXVII

‘‘Cession twin of action’’: Cession has h/c for its own quantum (with Claudia
Giannetti) CXVIII

Everett’s global Psi-function: Replaced by Boltzmann’s global H-function on the
exo-level (with Siegfried Zielinski) CXIX

Everett’s observer-centered explanation of nonlocality (his 1957 paper, p. 149, left
column): Confirmed CXX

‘‘The momentarily consciousness-bearing Sackur cell in the brain’’: Determines
both h and c (a conjecture, with Reimara Rossler and Peter Weibel) CXXI

‘‘VX-diagram’’ (correlated photons measured in two mutually receding space-
ships): ‘‘The completed Einstein–Podolsky–Rosen paradox’’ (with John S. Bell; in
belated parallelism to Susan J. Feingold and in parallelism to Roger Penrose)
CXXII

‘‘Partially satellite-based VX-experiment’’: It will prove that more than one
quantum world exists (independently conceived, and actually proposed to ESA, by
Anton Zeilinger in 2001) CXXIII

‘‘Counterfactual superluminal telegraph’’ (with Uwe Niedersen and Jürgen Parisi)
CXXIV

‘‘Everett immortality’’ (with Markus Fix and Bryce DeWitt) CXXV

‘‘Aging equation’’ (with Reimara Rossler and Peter Kloeden) CXXVI

Evolutionary explanation of the higher female longevity (with Reimara Rossler,
Peter Kloeden and Bob May) CXXVII

‘‘Constant-temperature physico-chemical time-of-life clock’’: Predicted present in
the body (with Reimara Rossler) CXXVIII

Melatonin as the likely ‘‘handle’’ of the time-of-life clock (with Reimara Rossler
and Peter Kloeden) CXXIX

‘‘Lampsacus hometown of all persons on the Internet’’ (with Valentino Braiten-
berg and Gerhard J. Lischka 1994) CXXX

Attempt made to found Lampsacus in homage to Anaxagoras (with Ezer Weiz-
mann and Mohamed ElNaschie) [a verbal quotation from Beer Sheva: ‘‘This is
what Israel was meant for’’] CXXXI

‘‘Earth-Moon University’’ in Lampsacus (with Wilfried Kriese, Artur P. Schmidt
and George E. Lasker) CXXXII
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‘‘Pyramid of knowledge’’ of 16 levels in Lampsacus: A method to create an
explosion of knowledge CXXXIII

‘‘WM-diagram’’: Simultaneously-emitted signals, sent up and down across dif-
ferent levels in gravity, plotted along the upper and lower time axes drawn in
parallel (with Dieter Fröhlich) CXXXIV

Gravitational-redshift proportional size increase is implicit in WM diagram if c is
globally constant (with Dieter Fröhlich, Heinrich Kuypers and Jürgen Parisi)
CXXXV

The most energetic photon possible has the Planck mass(courtesy Heinrich
Kuypers) CXXXVI

All black holes are ‘‘almost-black holes’’: For they are never finished in finite outer
time (with Dieter Fröhlich, Heinrich Kuypers, Hans Diebner and Mohamed El-
Naschie) CXXXVII

Non-uniqueness of simultaneity: Present on rotating cylinder (with Dieter Fröh-
lich, Normann Kleiner and Francisco J. Muller) CXXXVII

Corrected proof of angular-momentum conservation in gravity (with Heinrich
Kuypers and Martin Pfaff) CXXXIX

Seeming invariance of transversal size in the locally isotropic gravitational size
increase (is a parallel to the better-known seeming invariance of transversal size in
the likewise locally isotropic Lorentz contraction) CXL

Einstein’s ‘‘gravitational time dilation’’ possesses three new corollaries: Length, Mass
and Charge all suffer a proportional—or anti-proportional—change (T-L-M-Ch
theorem or ‘‘Telemach’’ for short) CXLI

General relativity is in for a far-reaching mathematical and physical re-interpre-
tation CXLII

Speed of light c is globally constant in gravitation (Max Abraham rehabilitated)
CXLIII

Nonexistence of longitudinal gravitational waves (as a corollary) CXLIV

Nonexistence of gravitons (as a corollary) CXLV

The famous ‘‘indirect evidence for gravitational waves’’ (Hulse-Taylor): explained
by tidal friction in the invisible white dwarf companion (with Dieter Fröhlich and
René Stettler) CXLVI

A ‘‘Reeb foliation in spacetime’’: exists around every rotating black hole (with
Dieter Fröhlich, following stimulation by Art Winfree) CXLVII

Kerr metric: Disproved (as a corollary to the new Reeb foliation) CXLVIII

Ur-meter: Disproved (via Telemach theorem) CIL
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Ur-kilogram: Disproved (via Telemach theorem) CL

Charge conservation in physics: Disproved (via Telemach theorem) CLI

Black holes: Shaved of one of their 3 main ‘‘hairs’’: Charge (only total mass and
angular momentum remain) CLII

Reissner-Nordström metric: Disproved (via Telemach theorem) CLIII

Eddington-Finkelstein and Kruskal-Szekeres transformation: Shown to be
unphysical via Telemach CLIV

Bekenstein theory: Disproved via Telemach CLV

Hawking radiation: Disproved via Telemach (with apology to a world hero) CLVI

‘‘Coordinate singularity at the horizon’’: Rehabilitated as a physical singularity via
Telemach CLVII

‘‘Interior Schwarzschild solution’’: Disproved via Telemach for finite outer time
CLVIII

‘‘Singularity theorem’’ inside black hole horizon: Disproved via Telemach for
finite outer times CLIX

‘‘Wormholes’’: disproved via Telemach for finite outer times CLX

Upper half of ‘‘Flamm’s paraboloid’’: replaced by a generic 2-pseudosphere (the
lower half disappears for finite outer time) CLXI

Sackur-cell explanation of Planck’s constant h as an endo phenomenon: Implies
non-existence on the exo level of all field particles CLXII

The exo-nonexistence of the field particles implies that supersymmetry is non-
existent in physics CLXIII

The human Lorenz matrix of facial expressions: A universal natural facial-
expressions simulator (with Wilfried Musterle) CLXIV

Equation for a one-dimensional—i.e. purely temporal—brain (with Michael
Conrad and Behram Kursunoglu) CLXV

Evil is a contagious disease (unlike the good, evil cannot arise spontaneously)
CLXVI

Children and adults form two different species ethologically speaking (with
Konrad Lorenz) CLXVII

‘‘Pongo goneotrophicus’’ (meaning ‘‘the parent-feeding ape’’) is the correct bio-
logical name for Homo sapiens CLXVIII

Biochemical life (including Forward’s nuclear-chemical life on neutron stars), and
‘‘brain life’’: Two independent forms of life (Hanns Ruder kindly introduced me to
Robert Forward’s scientific sci-fi book ‘‘The Dragon’s Egg’’) CLXIX
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Electrons have finite volume owing to Telemach (in confirmation of Dirac) CLXX

Corollary: String theory is qualitatively (if not quantitatively) confirmed at last
CLXXI

The new empirical confirmation of string theory implies that a successful gener-
ation of black holes at particle colliders has become much more likely CLXXII

Freshly generated black holes are undetectable by the detectors of particle colli-
ders because they are uncharged and non-evaporating CLXXIII

The empirical, ten-orders-of-magnitude wide ‘‘quasar scaling law’’ (from quasars
to microquasars) extends downwards by some 50 more orders of magnitude, owing
to the new properties of black holes CLXXIV

There exists no more unstoppable and voracious parasite in the universe than a
black hole CLXXV

Miniature black holes grow exponentially inside solid matter (once they got stuck)
CLXXVI

‘‘Clifford conjecture’’: Finite-universe solutions to the Einstein equation are
unphysical (with Walter Ratjen); if so, there exists no ‘‘Gödel solution’’ in General
Relativity and no time travel CLXXVII

The fractal dimensionality of the cosmos is close to unity, not only empirically
over a large range as is well known, but also theoretically (‘‘Fournier-Mandelbrot
solution’’ to the Einstein equation) CLXXVIII

A first consistent history of galaxy formation is taking shape (with dark ellipticals
as the end stage) CLXXIX

The newly discovered, very far-away, mature old galaxy BX442 (more than ten
billion light years old) is only the first example of its kind (besides still older
quasars) CLXXX

Low-surface-brightness large galaxies (‘‘black galaxies’’) are at least 50 billion
years old (with Henry Gebhardt and Boris Hagel) CLXXXI

Giacconi’s ultra-faint equidistributed X-ray sources most likely are ultra-distant
ultra-high-redshift quasars (‘‘blazars’’) so that redshift measurements are highly
desirable (with Dieter Fröhlich) CLXXXII

The microwave background radiation predictably merges smoothly with equal-
temperature galactic-halo objects (hence the raw data of the Planck mission
deserve to be published) CLXXXIII

There exist differentiable dynamical systems that are made up, not of locally
parallel lines as customary, but rather of 2-D locally parallel surfaces (Bouligand-
Winfree theory, with Joachim Peinke) CLXXXIV
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Re-discovery of Zwicky-Chandrasekhar ‘‘dynamical friction’’ (with Dieter Fröh-
lich and Normann Kleiner in contact with Ilya Prigogine, Alfred Klemm, Joachim
Peinke and Jürgen Parisi) CLXXXV

The new ‘‘little hook,’’ at the current end of the Hubble-(Perlmutter-Schmitt-Riess)
line, holds true in a non-expanding Fournier-Mandelbrot cosmos (with Dieter
Fröhlich, Ramis Movassagh and Anthony Moore) CLXXXVI

Dynamical friction of low-mass particles: Numerically confirmed (with Klaus
Sonnleitner) and independently by Ramis Movassagh CLXXXVII

‘‘Deterministic statistical thermodynamics’’ (with Hans Diebner) CLXXXVIII

‘‘Deterministic statistical cryodynamics’’: as a new fundamental science besides
‘‘deterministic statistical thermodynamics’’ (with Klaus Sonnleitner, Frank Kuske
and Christophe Letellier) CLXXXIX

‘‘Deterministic ectropy’’: Exists in statistical cryodynamics (with Ali Sanayei)
CXC

The smaller (almost-) black hole in a pair-interaction gets, via formation of a blue-
sky catastrophe in the sense of Ralph Abraham, re-circulated with all its in-falling
particles jointly making it up, since it never got finished over finite external time
(with Dieter Fröhlich) CXCI

Black hole mergers are a source of both charged and uncharged cosmic rays
CXCII

Conjecture: 50 percent of all matter in the cosmos is (almost-) black holes (with
Dieter Fröhlich) CXCIII

‘‘Metabállon anapaúetai’’ (metabolizing it remains at rest): Heraclitus’ transfinitely
recycling metabolic cosmology at last proven valid after 2 � millennia CXCIV

Abramowicz’s ‘‘topology inversion’’ near a black-hole’s horizon: Confirmed (with
Dieter Fröhlich) CXCV

Lawful ‘‘identity jumps across space’’ between 3 indistinguishable classical par-
ticles on a ring (with Peter Weibel and Richard Wages) CXCVI

In a classical atom containing two indistinguishable electrons, two spherical shells
are formed much as this is the case in nature with ortho-helium (with Dietrich
Hoffmann and George Kampis) CXCVII

The ‘‘flotor’’ (Ralph Hollis): A transluminally fast measuring device? (with Peter
Plath) CXCVIII

The ‘‘counterfactual superluminal telegraph’’ is subluminally confirmable (with
Uwe Niedersen) CXCIX

Counterfactual world-change machine (with Jürgen Parisi and Koichiro Matsuno)
CC
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History of the transfinitely exact indistinguishability: Anaxagoras, Gregorius of
Naziance, the Mutakallimún, Bruno, Spinoza, Leibniz, Gibbs, Pauli, Weyl, Primas
(with Martin Hoffmann, Joe Ford, Peter Weibel, Alexandre Ganoczy, Richard
Wages, Rudolf Matzka Elisabeth von Samsonow, Jurgen Heiter, Anna-Sophie
Mahler) CCI

‘‘Everett-Schrödinger Russian Roulette’’ (with Markus Fix) CCII

Unit ‘‘el-action’’: A new universal conserved quantity (like the unit action) CCIII
Unit ‘‘el-cession’’: A new universal conserved quantity (like the unit cession)
CCIV

‘‘G-zero’’ is a new fundamental constant replacing the universal gravitational
constant G and the universal vacuum permeability constant mu-zero, with both
remaining locally constant (similarly Richard J. Cook and György Darvas) CCV

The nonlinear ‘‘simultaneity generator’’ in the brain forms a qualitative analog to
general relativity (in dialogue with Eva Ruhnau) CCVI

Cryodynamics and thermodynamics, combined with black-hole theory, allow for
an eternal cosmos in the footsteps of Heraclitus and Boltzmann CCVII

Nonexistence of WIMPs, since cold dark matter got disproved CCVIII

Nonexistence of dark energy, since accelerated expansion got disproved CCIX

Nonexistence of Big Bang and space expansion and a cosmic origin of galactic
background radiation since cryodynamics explains the Lemaitre-Hubble-
Perlmutter-Schmidt-Riess-law in a stationary fractal cosmos CCX

Nonexistence of the Big Bang: Follows also from the new global constancy of the
speed of light c that is implicit in Telemach CCXI

Nonexistence of ‘‘inflation’’: Follows from the demonstrated absence of space
expansion CCXII

Nonexistence of ‘‘primordial’’ nucleosynthesis: Follows from the absence of space
expansion CCXIII

The observed absence of the Greisen-Zatsepin-Kuzmin cutoff for high cosmic ray
energies confirms the absence of a very distant origin of the microwave back-
ground radiation CCXIV

The many decades-old problem of the ‘‘survival conditions of the scientific-
technological world’’ (C.F. von Weizsäcker): Confirmed as a pressing problem for
humankind CCXV

The new results on black holes (facilitated production; non-evaporation; unchar-
gedness; exponential growth inside matter) upset the safety equation for any
attempt at producing black holes on earth CCXVI
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The LHC experiment designed to produce black holes besides searching for the
Higgs was shown to be unsafe if run at history-making energies and luminosities
CCXVII

CERN’s refusal to update its ‘‘LHC Safety Assessment Group Report’’ over 4
� years entails that its stop may come too late to prevent a black-hole-induced
Armageddon after a silent period of a few years CCXVIII

An attempt to convene an ‘‘LHC safety conference’’ made by Markus Goritschnig
and many other scientists fizzled: This even though a court humbly endorsed it and
although a whole country briefly left CERN (and although the United Nations’
Security Council was called upon) CCXIX

Leo Szilard’s 1948 proposal to slow-down scientific progress by installing the
anonymous peer-review system (in his sci-fi story ‘‘The Mark Gable Foundation’’)
is co-responsible for the dogmatic refusal by CERN to check a published scientific
proof CCXX

Sunyaev-Zeldovich inverted Compton scattering predictably cannot take place
between the Milky-Way’s microwave background radiation’s photons and the
electrons of distant galaxy clusters (with Boris Hagel, Ali Sanayei and Frank
Kuske) CCXXI

The new science of ‘‘Cryodynamics’’ is likely to be able to stabilize Tokamak-type
fusion reactors so as to generate unlimited free energy for humankind (I thank Ivan
Zelinka and Eric Klien for encouragement) CCXXII

Remark: Friedrich Valjavek kindly compiled an annotated bibliography up to
2002, so that the majority of references can be found there: http://www.
wissensnavigator.com/documents/RosslerBibliography.pdf.

3 Discussion

It was an unexpected and undeserved chance to be allowed to try and sum up in a
maximally brief form some of the topics that in retrospect would come to my mind
as having been dealt with over time.

It is not easy to say something in excuse or explanation at the end. What is
really important of the things achieved or tried? Some topics enjoyed a lot of
resonance—especially the chaos animation and sounds (http://www.youtube.com/
watch?v=Tmmdg2P1RIM)—, others that appeared to be equally exciting produced
little or none up until now. And still others triggered a lot of counter resonance, as
I had hoped, although the requested disproof—so that the danger seen could be
called-off—did not materialize.
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What are the important positive points in retrospect? Evolution theory—
extending across planets and different liquid media and even across the boundaries
of chemistry into nuclear chemistry (in confirmation of Robert Forward) is the
oldest melody. The second-oldest is person theory. Or love theory (which is the
same thing). Here the recruitment of not yet kissed-awake promising mirror-
competent bonding individuals of other species, some provably more intelligent
hardware-wise (like Willie Smits’ orangutans), is close to my heart. The brain
equation makes it possible to include artificial analogs in the embrace. Wilfried
Musterle gave the most moving contribution, with Javier Movellan’s recent video
showing what I have in mind (http://www.hansonrobotics.com/). Love theory and
Emmanuel Lévinas belong together.

Darwin’s principle of metabolic adaptation was complemented by the principle
of positional adaptation, which can be seen as the biggest formal advance, with
the implied new traveling salesman problem leading to the Brain Equation about
which Bill Seaman and I wrote a book. Transfinite indistinguishability (Pauli-
Primas) and the Sackur cell, as an explanation of Planck’s constant h, form
another important strand. The Einstein of EPR fame and his youthful pupil Everett
acquire a new shining. This strand is on its way toward a new comprehensive
theory in the footsteps of Boscovich called endophysics.

Lately, deterministic evolution à la Teilhard—based on far-from-equilibrium
thermodynamics—got complemented by thermodynamics’new sister discipline,
cryodynamics, with its second (anti-entropic) arrow. Cosmology becomes an
element of a larger theory. Here the circle to Teilhard closes. A new view of
Einstein’s happiest thought resulted in the discovery of the global constancy of
the speed of light, c (gothic-R and Telemach theorem). Cosmology thereby
ceases to be globally time-dependent—no big bang any more. Heraclitus’ ‘‘me-
tabállon anapaúetai’’—metabolizing it rests unchanged—got unexpectedly con-
firmed. At the same time, cryodynamics predictably can bring the sun’s fire down
on earth because it offers a technological means for stabilizing the ‘‘Iter.’’ So a lot
of money is implicit in the further investigation of cryodynamics—in case a
government or private institution gets interested (http://www.youtube.com/
watch?v= s73D0VIofFo).

Finally, the mystery of color and sweetness and the Now, the assignment of
being called-up by name at this very moment, cannot go unmentioned. Buber
called it the ‘‘light that never gets extinguished.’’ There is nothing, not even death,
that can stop one’s being allowed to see color and the good intention of another
soul and the Consciousness Giver. ‘‘Pánta de oiakízei keraunós’’—everything is
joysticked by the lightning-thrower. The rare word ‘‘oiax’’ (root of oiakízo) refers
to a little lever by which the helm of a ship was controlled (a precursor of the
joystick). Heraclitus was as sweet as he was fearless—like Jacob. Thank you, my
readers and friends of all age groups for your infinite tolerance. (For J.O.R.)
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The Cause of Complexity in Nature:
An Analytical and Computational
Approach

Klaus Mainzer

Abstract This work is going to present the cause of complexity in nature from an
analytical and computational point of view. The cause of complex pattern for-
mation is explained by the local activity of cells in complex systems which are
analytically modeled by nonlinear reaction-diffusion equations in physics, chem-
istry, biology, and brain research. There are not only rigorous analytical criteria of
local activity and the edge of chaos, but also constructive procedures to visualize
them by computer simulations. In technology, the question arises whether these
criteria and procedures can be used to construct artificial life and artificial minds.

Keywords Complexity � Computation � Nonlinearity � reaction-diffusion equa-
tions � Nature � Edge of chaos

1 Introduction

According to several prominent authors, a main part of twenty-first century science
will be on complexity research. The intuitive idea is that global patterns and
structures emerge from locally interacting elements like atoms in laser beams,
molecules in chemical reactions, proteins in cells, cells in organs, neurons in
brains, agents in markets etc. by self-organization [1]. But what is the cause of
self-organization? Complexity phenomena have been reported from many disci-
plines (e.g., biology, chemistry, ecology, physics, sociology, economy etc.) and
analyzed from various perspectives such as Schrödinger’s order from disorder [2],
Prigogine’s dissipative structure [3], Haken’s synergetics [4], Langton’s edge of
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chaos [5] etc. Steven Wolfram declared computer experiments with pattern for-
mation of cellular automata as ‘‘new kind of science’’ [6]. But concepts of com-
plexity are often based on experiments, examples or metaphors only. We argue for
a mathematically precise and rigorous definition and analytical theory of local
activity as the cause of self-organizing complexity which can be tested in an
explicit and constructive manner [7, 8].

Boltzmann’s struggle in understanding the physical principles distinguishing
between living and non-living matter, Schrödinger’s negative entropy in metab-
olisms, Turing’s basis of morphogenesis [9], Prigogine’s intuition of the instability
of the inhomogeneous, and Haken’s synergetics are in fact all direct manifestations
of a fundamental principle of locality. It can be considered the complement of the
second law of thermodynamics explaining the emergence of order from disorder
instead of disorder from order, in a quantitative way, at least for reaction diffusion
systems.

The principle of local activity is precisely the missing concept to explain the
emergence of complex patterns in a homogeneous medium. Cellular automata are
an illustrative model of local active cells with pattern formation. They can be
characterized as complex dynamical systems in the strictly mathematical sense
with corresponding equations and proofs. In short, there are analytical models of
cellular automata, in order to find precise answers and predictions of pattern
formation [10].

The local principle can be generalized and proven for the class of nonlinear
reaction-diffusion systems in physics, chemistry, biology, and brain research. The
principle of local activity is the cause of symmetry breaking in homogeneous
media. The Brusselator model was one of the first systems of equations used to
explain self-organizing chemical reactions of the reaction-diffusion type. Based on
this model, a theory of dissipative structures operating far from thermodynamic
equilibrium was developed [11]. Under stability theory techniques, Prigogine and
his group derived a critical bifurcation boundary for the uncoupled cell. They
studied stationary and dynamic patterns emerging in the neighborhood of this
boundary. But, except for the stability boundaries, the far from thermodynamic-
equilibrium theory is too coarse to predict sharper and more precise domain of
emergent behavior. Especially, they ignored the relatively small subset of the edge
of chaos where the emergence of complexity is most likely.

The local activity theory is applied, again, to the Gierer-Meinhardt-equations to
illustrate the emergence of complexity. On the basis of autocatalysis and lateral
inhibition, Gierer and Meinhardt proposed a mathematical model [12] to explain
pattern formation (morphogenesis) in living systems. Using numerical integration,
they were able to produce a number of patterns relevant to the formation of
biological structures. An analytical treatment of the Gierer-Meinhardt model from
the synergetics perspective was presented in Ref. [13] using the order parameter
concept combined with linear stability analysis. While the later approach offers
significant contributions in understanding the dynamics of the Gierer-Meinhardt
model, it is still too coarse to predict the precise domain in the cell parameter space
where emergent behavior may occur. The local activity theory offers a rigorous
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and effective tool for sharpening existing results in the sense that it can identify
more precisely those regions in the cell parameter space which are capable of
emergent behaviors, and also in fine tuning such regions into a relatively small
subset called the edge of chaos where the emergence of complex phenomena is
most likely [14].

The long-lasting action and pace-maker potentials of the Purkinje fiber of the
heart were first described by the Hodgkin-Huxley equations of the cardiac Purkinje
fiber model of morphogenesis in [11]. The bifurcation diagrams of the corre-
sponding computer simulations supply a possible explanation for why a heart with
a normal heart-rate may stop beating suddenly: The cell parameter of a normal
heart is located in a locally active unstable domain and just nearby an edge of
chaos. The membrane potential along a fiber is simulated in a Hodgkin-Huxley
model by a computer [15]. Computer simulations show that oscillatory patterns,
chaotic patterns, or divergent patterns may emerge if the selected cell parameters
are located in locally active domains but nearby the edge of chaos. This research
demonstrates once again the effectiveness of the local activity theory in choosing
the parameters for the emergence of complex (static and dynamic) patterns in a
homogeneous lattice formed by coupled locally active cells.

One of the marvels of the HH (Hodgkin-Huxley) equations is its ability to
generate an action potential (spikes) in response to an external current excitation
emulating the net synaptic current excitation. Although the spikes were consis-
tently generated numerically, no one knew the physical and mathematical origin of
the action potential (spikes). Local activity can be demonstrated to be the origin of
spikes. In particular, neurons can be shown to be poised near a tiny subset of the
local activity domain, which we call the edge of chaos. The domain of the edge of
chaos is determined by deriving an explicit scalar complexity function of a small-
signal Hodgkin-Huxley circuit model [16].

A completely new application of local activity is the so-called edge of chaos
where most complex phenomena emerge. In this particular case, a hidden excit-
ability allows a unit to be destabilized when interacting with dissipative envi-
ronments. Although a diffusion process has a tendency to equalize differences, an
originally dead or inactive cell becomes alive or active upon coupling with other
cells by diffusion [17]. This phenomenon seems to be counterintuitive, but can
mathematically rigorously be proven and confirmed with different applications in
reality.

In the parameter spaces of reaction diffusion systems, the domains of local
activity can be visualized in computer simulations. The edges of chaos are very
small regions with the ability of creation. They seem to be hidden in the domains
of activity like pearls in shells on the sea ground. Actually, in research, the ‘‘edge
of chaos’’ was only used as metaphor, but not as mathematically precise concept.
Its discovery in the parameter spaces of dynamical systems is, to our best
knowledge, completely new in complexity research. The local activity principle
and its pearl, the edge of chaos, are couched in rigorous mathematics. Above all,
they are characterized by constructive procedures to compute and visualize their
complexity. Therefore, researchers from other disciplines that can describe their
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dynamical systems via differential equations, such as reaction-diffusion equations,
can actually calculate easily with a computer the parameter values where com-
plexity and creativity can occur.

We argue that the principle of local activity and edge of chaos are really
fundamental in science. Twenty-first-century engineering sciences are more and
more inspired by the life sciences. In systems biology, cells, organs, and organisms
are considered complex systems which can be modeled by complex networks with
great similarity to electronic circuits. In the tradition of engineering sciences,
synthetic biology uses schemes of systems biology to construct new artificial
organisms for practical applications (e.g., new bacteria for cleaning polluted
water). Robots become more and more autonomous and self-organizing systems.
The question arises whether the principle of local activity can be applied in these
technical systems.

2 Mathematical Definition of Local Activity and Edge
of Chaos

The principle of local activity had originated from electronic circuits, but can
easily be translated into other non-electrical homogeneous media [8]. The tran-
sistor is an example of a locally-active device, whereby a ‘‘small’’ (low-power)
input signal can be converted into a ‘‘large’’ (high power) output signal at the
expense of an energy supply (namely a battery). No radios, televisions, and
computers can function without using locally-active devices such as transistors.
For the formation of complex biological and chemical patterns, Schrödinger and
Prigogine demanded nonlinear dynamics and an energy source as necessary
conditions. But, for the exhibition of patterns in an electronic circuit (i.e., non-
uniform voltage distributions), the demand for nonlinearity and energy source is
too crude. In fact, no patterns can emerge from circuits with cells made of only
batteries and nonlinear circuit elements which are not locally active.

In general, a spatially continuous or discrete medium made of identical cells
interacting with all cells located within a neighborhood is said to manifest com-
plexity if the homogeneous medium can exhibit a non-homogeneous static or
spatio-temporal pattern under homogeneous initial and boundary conditions. The
principle of local activity can be formulated mathematically in an axiomatic way
without mentioning any circuit models. Moreover, any proposed unified theory on
complexity should not be based on observations from a particular collection of
examples and explained in terms that make sense only for a particular discipline,
say chemistry. Rather it must be couched in discipline-free concepts, which means
mathematics, being the only universal scientific language.

However, in order to keep physical intuition and motivation behind this con-
cept, we start with a special class of spatially-extended dynamical systems, namely
the reaction-diffusion equations which are familiar in physics and chemistry.
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Our first definition of local activity refers to a discretized spatial model which can
easily be illustrated by cellular nonlinear networks. All results apply to the asso-
ciated systems of continuous reaction-diffusion partial differential equations which
will be later analyzed e.g., in fluid dynamics of physics and chemistry. Let us
consider a spatial lattice of identical cells located at grid points and changing their
states by local reaction-diffusion. In general, the change of a local cellular state
depends on all the other cellular states in the spatial lattice and (at least in some
cases) on the local diffusion of the cell.

In mathematical terms, the dynamics of the whole system is defined by a system
of discrete reaction-diffusion equations describing the changes of the local cellular
states in the spatial lattice [7, 18] or corresponding continuous reaction-diffusion
partial differential equations. In the discretized as well as continuous case, the state
variables pertain to reaction cells lumped at lattice points r , ðj; k; lÞ. This
dynamical system implements kinetic equations in chemistry and circuit models in
network theories. The equations can be represented in the following compact
vector form with

Va , V1; V2; . . .;Vm½ �T and Vb , Vmþ1; Vmþ2; . . .;Vn½ �T :

_Va ¼ fa Va; Vbð Þ þ Dr2Va ð1Þ

_Vb ¼ fb Va; Vbð Þ ð2Þ

where
fa Va; Vbð Þ 2 R

m denotes the first m components f 1 Va; Vbð Þ;
f 2 Va; Vbð Þ; . . .f m Va; Vbð Þ of the kinetic term,

fb Va; Vbð Þ 2 R
m denotes the remaining (n–m) components

fmþ1 Va; Vbð Þ; fmþ2 Va; Vbð Þ; . . .fn Va; Vbð Þ;
D denotes an m 9 m diagonal matrix defined by Drr ¼ Dr, and
r2Va 2 R

m denotes a m 9 1 vector defined by the m discrete Laplacian
Operators r2Vr; r ¼ 1; 2; . . .;m:

The state variables Va and Vb pertain to only one isolated cell located at the
lattice coordinate r = ðj; k; lÞ or to a point r 2 R

3 in the continuous case. Any

dynamical system has some tunable control parameters l ¼ l1l1. . .lq

� �T
asso-

ciated with changing conditions of the system. Hence, the kinetic term in the
reaction-diffusion equation for each cell at location r = ðj; k; lÞ is described by the
following cell kinetic equations:

_Va ¼ fa VaðrÞ; VbðrÞ; lð Þ ð3Þ

_Vb ¼ fb VaðrÞ; VbðrÞ; lð Þ ð4Þ

For an N 9 N 9 N cubic lattice, there are N3 identical cells, each one described

these cell kinetic equations. Since only the first m state variables VaðrÞ ¼
V1ðrÞ;V2ðrÞ; . . .VmðrÞ½ �T of each cell can interact with the neighboring cells via the
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diffusion term Dr2Va rð Þ, only the energy and matter associated with the first m
state variables can flow into a neighbor cell. Henceforth, the state variables
V1ðrÞ;V2ðrÞ; . . .VmðrÞ in Va(r) are called port variables in analogy with the transfer
of goods between islands. The remaining state variables Vmþ1ðrÞ;Vmþ2ðrÞ; . . .VnðrÞ
in Vb(r) are called non-port variables. The concept of local activity will be defined
in terms of only port variables.

Since the diffusion term can play only a dissipative and hence stabilizing role
with Di [ 0 in the reaction-diffusion equations, the origin of any complex phe-
nomenon exhibited by these equations can only come from the cell kinetic
equations. It can rigorously be proved that if the cell kinetic equations are not
locally active for a fixed control parameter l ¼ l0, the reaction-diffusion equa-
tions cannot exhibit any complexity regardless of the choices of the diffusion
coefficients Di [ 0. Moreover, explicit mathematical criteria can be given for
testing any cell kinetic equation for local activity. With these criteria, one can
identify the active parameter domain A of the parameter space l 2 R

q where a cell
kinetic equation is locally active. Since the complement P ¼ R

qnA can only lead
to homogeneous solution of the reaction-diffusion equations, it is called the pas-
sive parameter domain.

Since complexity can occur only for parameters located in the active parameter
region A, it follows that local activity is indeed the origin of complexity. A
locally-active cell kinetic equation can exhibit complex dynamics such as limit
cycles or chaos, even if the cells are uncoupled from each other by setting all
diffusion coefficients to zero. It is not surprising that coupling such cells could give
rise to complex spatio-temporal phenomena. What is surprising and counter-
intuitive is that there exists a proper subset e of the active parameter domain A,
called the edge of chaos where the uncoupled cell kinetic equation is asymptoti-
cally stable.

To illustrate this state biologically, a cell is inert or dead in the sense that the
concentrations of its enzymes achieved a constant equilibrium. In interaction,
however, the cellular system pulses or become alive in the sense that the con-
centrations of the enzymes in each cell will oscillate indefinitely. By coupling
these dead cells via a dissipative diffusion environment, it may be possible for the
reaction-diffusion equation to exhibit non-homogeneous patterns and other spatio-
temporal phenomena for appropriate diffusion coefficients. The criteria for the
edge of chaos correspond mathematically to Prigogine’s instability of the homo-
geneous and Turing’s properties of instability as origin of morphogenesis.

Since local activity is defined only with respect to m port variables in

Va ¼ V1;V2; . . .Vm½ �T, and since it does not involve the diffusion coefficients
D1;D2; . . .;Dm in the reaction-diffusion equation, an interaction term Ia , Dr2Va

can be defined as port input vector at the diffusion-driven ports. By substituting
this input term into the compact vector form of the reaction-diffusion equations,
we get the cell kinetic equations

_VaðrÞ ¼ fa VaðrÞ; VbðrÞ; lð Þ þ Ia ð5Þ
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_VbðrÞ ¼ fb VaðrÞ; VbðrÞ; lð Þ ð6Þ

with control parameter l 2 R
q. They are called forced cell kinetic equations,

because Ia 2 R
m can be physically interpreted as an external force applied at the m

diffusion ports. Since all the cells are identical, this equation represents the state
dynamics of an isolated cell driven at its diffusion ports by an external force
Ia 2 R

m representing the external world.
The equilibrium states of an isolated cell can be obtained by setting the state

change to zero with _Va ¼ 0 and _Vb ¼ 0, namely

0 ¼ fa Va; Vb; lð Þ þ Ia ð7Þ

0 ¼ fb Va; Vb; lð Þ; ð8Þ

and solving these equations for Va 2 R
m and Vb 2 R

n�m for each fixed parameter
l 2 R

q. In general, there are multiple equilibrium points for each input Ia 2 R
m.

Let Va and Vb denote the coordinates of any cell equilibrium point Q, where Q
depends on the constant input Ia 2 R

m and control parameter l 2 R
q. In the case

of an infinitesimal change ia tð Þ of the constant input Ia, we consider infinitesimal
deviations va tð Þ and vb tð Þ in the neighborhood of the equilibrium point Q with
coordinates Va and Vb, namely

VaðtÞ , Va þ vaðtÞ ð9Þ

VbðtÞ , Vb þ vbðtÞ ð10Þ

IaðtÞ , Ib þ iaðtÞ: ð11Þ

Linearized Cell State Equations. In order to approximate the forced cell
kinetic dynamics at the cell equilibrium point with constant input Ia ¼ Ia, we use
the Taylor series expansion of fa Va; Vb; lð Þ and fb Va; Vb; lð Þ about the cell
equilibrium point Q Va ¼ Va; Vb ¼ Vb

� �
. In general, a Taylor series is a repre-

sentation of a function as an infinite sum of terms that are calculated from the
values of the function’s derivatives at a single point. It is usual to approximate a
function by using a finite number of terms of its Taylor series. Taylor’s theorem
gives quantitative estimates on the error in this approximation. Any finite number
of initial terms of the Taylor series of a function is called a Taylor polynomial. The
Taylor series of a function is the limit of that function’s Taylor polynomials,
provided that the limit exists. If we delete the higher-order terms of the Taylor
series, we obtain linearized cell state equations. They can be interpreted as the cell
dynamics along a tangent plane at the cell equilibrium point Q which depends on
the input Ia and the control parameter value l, namely

dvaðtÞ
dt
¼ A11 Qð ÞvaðtÞ þ A12 Qð ÞvbðtÞ þ iaðtÞ ð12Þ
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dvbðtÞ
dt
¼ A21 Qð ÞvaðtÞ þ A22 Qð ÞvbðtÞ ð13Þ

where

A11 Qð Þ ,
ofaðVa;Vb; lÞ

oVa
jVa ¼ Va;Vb ¼ Vb; ð14Þ

A12 Qð Þ ,
ofaðVa;Vb; lÞ

oVb
jVa ¼ Va;Vb ¼ Vb ð15Þ

A21 Qð Þ ,
ofbðVa;Vb; lÞ

oVa
jVa ¼ Va;Vb ¼ Vb; ð16Þ

A22 Qð Þ ,
ofbðVa;Vb; lÞ

oVb
jVa ¼ Va;Vb ¼ Vb: ð17Þ

In the linearized cell state equation, A11 Qð Þ is an m 9 m matrix, A12 Qð Þ is an
m 9 (n–m) matrix, A21 Qð Þ is an (n–m) 9 m matrix, and A22 Qð Þ is an (n–
m) 9 (n–m) matrix. They are constant real matrices whose elements depend on the
constant input Ia 2 R

m, the control parameter l 2 R
q, and the cell equilibrium

point Q Ia; lð Þ.
We are now able to define local activity at a cell equilibrium point Q. Given

any continuous input function of time ia tð Þ for t C 0 and assuming zero initial
conditions va 0ð Þ ¼ 0; vb 0ð Þ ¼ 0, a solution of the linearized cell state equations
about cell equilibrium point Q is an infinitesimal cell state in the neighborhood of
the cell equilibrium point Q, denoted by vaðtÞ and vb tð Þ for t C 0. Let us define the
local power flow pðtÞ , vaðtÞ � iaðtÞ as rate of change of energy at time t at cell
equilibrium point Q Va ¼ Va; Vb ¼ Vb

� �
. Mathematically, the term p(t) denotes

the scalar (dot) product between the two vectors vaðtÞ and ia tð Þ.
The principle of local activity is based on the idea that when operating in an

infinitesimal neighborhood of a cell equilibrium point Q, a locally-active cell must
behave like a unit (e.g., a transistor in technology) operating at an active operating
point whereby a small (low-power) input can be converted into a large (high-
power) output at the expense of an energy supply (e.g., a battery in the case of a
transistor). In general, a cell is said to be locally active at an equilibrium point Q if
it is possible to find a local (i.e., infinitesimal) input ia tð Þ such that by applying the
global input IaðtÞ , Ia þ iaðtÞ, we can extract more infinitesimal energy at Q over
some time interval 0 \ T \? than what the cell has taken from its external
environment which consists of the coupling spatial grid of all the other cells.

Let w(t) be the total energy (i.e., the ‘‘infinitesimal sum’’ or integral of power
flow pðtÞ , vaðtÞ � iaðtÞ) accumulated since the initial time t = 0 until t = T. It is
convenient though arbitrary to distinguish the reference direction of the total
energy entering and leaving the cell at t = T. If w(t) [ 0, then there is a net total
energy accumulated since the initial time t = 0 entering the cell at
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t = T. Conversely, if w(t) \ 0, then at t = T, the cell is actually delivering energy
to the external circuit. In this case, at t = T, the cell behaves like a local source of
energy, rather than a sink.

Definition of Local Activity. A cell is said to be locally active at a cell
equilibrium point Q if and only if there exists a continuous input time function
iaðtÞ 2 R

m; t� 0, such that at some finite time T, 0 \ T \?, there is a net energy
flowing out of the cell at t = T, assuming the cell has zero energy at t = 0, namely

wðtÞ ¼
Z T

0
vaðtÞ � iaðtÞ dt\0; ð18Þ

where va tð Þ is a solution of the linearized cell state equation about Q with zero
initial state va 0ð Þ ¼ 0 and vb 0ð Þ ¼ 0.

Definition of Local Passivity. A cell is said to be locally passive at a cell
equilibrium point Q if and only if it is not locally active at Q, namely

wðtÞ ¼
Z T

0
vaðtÞ � iaðtÞ dt [ 0; ð19Þ

for all continuous input time functions ia tð Þ and for all t C 0, under zero initial
states va 0ð Þ ¼ 0 and vb 0ð Þ ¼ 0.

Definition of Locally Active Reaction-Diffusion Equations. Reaction-diffu-
sion equations are called locally active if and only if its associated cells are locally
active at some cell equilibrium point. Otherwise, they are said to be locally
passive.

Understanding the Local Activity Principle. In the definition of local activity,
we need the assumption of zero energy at t = 0, because otherwise the cell may
have some stored energy t = 0 and it could be discharging it to the outside circuit
even though it is locally passive. The cell’s ability to act as a source of small-
signal energy implies that it can amplify an initially small input signal into a
larger-energy signal. The increase in energy must, of course, come from some
external energy supply, such as a kind of external pump or battery if the cell is a
transistor, or ‘‘glucose’’ if the cell is a neuron. According to the conservation
principle of energy, there is nothing coming from nothing, or, in economic terms,
there is ‘‘no free lunch’’.

Mathematically, the signal must be infinitesimal small in order that we can
model the cell by only the linear terms in its Taylor series expansion. This in turn
allows us to apply well-known linear mathematics and derive explicit analytical
criteria for the cell to be locally active at the equilibrium point where the Taylor
series expansion is computed. This also proves that complexity originates from
infinitesimal small perturbations, notwithstanding the fact that the complete sys-
tem is typically highly nonlinear.

Intuitively, a cell is locally-active if it is endowed with some excitable ‘‘innate’’
potential, such that under certain conditions, it can become ‘‘mathematically alive’’,
capable of exhibiting oscillation and chaos. The deepest and counter-intuitive
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property of local activity is that a ‘‘mathematically dead’’ but locally active cell can
become explosive, even if it is interfaced with a locally-passive load, or ‘‘sink’’.
That can never happen with a locally-passive cell, whose entropy must increase
continuously.

Complexity Function and Complexity Matrix. In order to prove that a cell is
locally-active at an equilibrium point Q, the definition of local activity requires
that an input time function ia tð Þ must be found which initiates a positive energy

flow
R T

0 vaðtÞ � iaðtÞ dt out of the cell at some finite time 0 \ T \?, assuming
va 0ð Þ ¼ 0 and vb 0ð Þ ¼ 0. The definition is intuitively clear and mathematically
precise, but misses a constructive procedure whether such an input time function
exists or not. Therefore, computationally practical necessary and sufficient con-
ditions must be found to test the local activity of some cell at an equilibrium point.
In natural and engineering sciences, Laplace transforms are used for analysis of
linear time-invariant systems (e.g., electrical circuits, harmonic oscillators, optical
devices, and mechanical systems). In this analysis, the Laplace transform is
sometimes interpreted as a transformation from the time-domain, in which inputs
and outputs are functions of time, to the frequency-domain, where the same inputs
and outputs are functions of complex angular frequency (in radians per unit time).
In any way, given a simple mathematical or functional description of an input or
output to a system, the Laplace transform provides an alternative functional
description that often simplifies the process of analyzing the behavior of the
system, because it converts a system of linear differential equations to a system of
linear algebraic equations. Therefore, we consider the Laplace transforms of each
component of the vectors va tð Þ, vb tð Þ, and ia tð Þ.

By this procedure, a complexity function YQðsÞ can be derived for complex
number s = a ? ib with Re[s] = a and Im[s] = b, in short, s = Re[s] ? i Im[s].
The complexity function can be illustrated as mapping on a complex plane. It is
said to be a positive-real function iff (1) YQðsÞ is a real number whenever s is a real
number, (2) Re YQðsÞ½ � � 0 for all s with Re[s] C 0 where YQðsÞ is not singular.
Since YQðsÞ is assumed to be a rational function, condition (1) is always satisfied.
In this case, YQðsÞ is a positive-real function iff the closed right-half s-plane is
mapped into the closed right-half YQ-plane.

In the simplest case with only one diffusion coefficient (m = 1), one port state
variable v̂a sð Þ and one non port variable v̂b sð Þ n ¼ 2ð Þ, the complexity function
YQðsÞ reduces to a scalar rational function. For m = 1 and n = 2, we get a rational
function of complex variable s. For m [ 1, we get a m 9 m complexity matrix
YQðsÞ whose elements are rational functions of complex variable s.

In the scalar case (one port state variable), the Local Passivity Principle can be
proved ([7], 3442):

The Local Passivity Theorem. A uncoupled cell with one port state variable
m = 1 is locally passive at a cell equilibrium point Q V1 ¼ V1

� �
if, and only if, the

complexity function YQðsÞ is a positive real function.
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It follows from the Local Passivity Theorem that a cell is locally passive if, and
only if, the closed right-half s-plane maps into the closed right-half YQ-plane.
These insights deliver a practical test for local passivity ([7], 3443).

Test for Local Passivity. A cell with one port state variable is locally passive at
equilibrium point Q V1 ¼ V1

� �
if, and only if, all four conditions are satisfied:

(i) YQðsÞ has no poles in the open right plane Re[s] [ 0.
(ii) YQðsÞ has no multiple poles on the imaginary axis.
(iii) If YQðsÞ has a simple pole s ¼ ixP on the imaginary axis, then

KQ ixPð Þ , lim
s!ixP

ðs� ixPÞYQðsÞ must be a positive real number.

(iv) Re YQðixÞ½ � � 0 for all x 2 �1;1ð Þ where s ¼ ix is not a pole.

Since all four conditions must be satisfied for YQðsÞ to be locally passive, the
negation of any one of these conditions gives us the desired

Test for Local Activity of Complexity Function YQðsÞ. A cell with one port
state variable is locally active at equilibrium point Q V1 ¼ V1

� �
if, and only if, any

one of the following conditions is true:

(i) YQðsÞ has a pole in the open right plane Re[s] [ 0.
(ii) YQðsÞ has a multiple pole on the imaginary axis.
(iii) YQðsÞ has a simple pole s ¼ ixP on the imaginary axis and

KQ ixPð Þ , lim
s!ixP

ðs� ixPÞYQðsÞ is either a negative real number, or a

complex number.
(iv) Re YQðixÞ½ � � 0 for some x 2 �1;1ð Þ.

By the same procedure, one can prove the general test for local activity of
complexity matrix YQðsÞ for any m C 2.

The complexity matrix YQðsÞ depends not only on the cell equilibrium point
Q Va ¼ Va

� �
, but also on the cell control parameters l 2 R

q. For each cell state
Q; lð Þ, we can test whether any one of the four conditions in our Local Activity

Test is satisfied. This explicit procedure can be derived analytically in simple
cases, or numerically by a computer. We can partition therefore the parameter
space into a locally-passive domain P and a locally-active domain A, over all
possible cell equilibrium points corresponding to Va 2 R

m with P [ A ¼ R
m.

It can be proven that no reaction-diffusion equation can exhibit complexity if its
cell parameters lie in the locally-passive domain P ([7] 3447). The larger the size
of the locally-active domain A, the more chances are for the reaction-diffusion
equation to exhibit complexity. Since the number of non-state variables can be
increased by setting more diffusion coefficients to zero, it follows that
A1 � A2 � . . . � Am . . . � An, where Am denotes the local-activity domain of a
cell with m port state variables, and m is equal to the number of positive diffusion
coefficients. The local activity domain Am is defined as the union of all locally-
active parameter domains at cell equilibrium points corresponding to all possible
port state variables Va 2 R

m.
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By definition, a cell is locally passive iff it is not locally active. Therefore, to
prove that local activity is the origin of complexity, it suffices to prove that the
reaction-diffusion equation cannot exhibit any form of complexity if the cells are
locally passive. But what does complexity mean here?

Definition of Complexity. A spatially continuous or discrete medium made of
identical cells which interact with all cells located within a neighborhood (called
sphere of influence) with identical interaction laws is said to manifest complexity
iff the homogeneous medium can exhibit a non-homogeneous static or spatio-
temporal pattern, under homogeneous initial and boundary conditions.

It follows that a reaction-diffusion medium is capable of exhibiting complexity
if, and only if, the corresponding continuous reaction-diffusion partial differential
equations, or their discretized version, have at least one non-homogeneous static or
spatio-temporal solution for some homogeneous initial and boundary conditions.
The initial condition is required to be homogeneous since otherwise, we can
consider a system made of only cells which are not coupled to each other, such as a
system of reactive-diffusion equations with zero diffusion coefficients. This system
can exhibit a non-homogeneous static pattern by choosing the initial condition to
correspond to any pattern of cell equilibrium states, assuming each cell has two or
more equilibrium states.

The main result is that if the cells are strictly locally passive, then all solutions
of the reaction-diffusion differential equations must converge to a unique steady
state as t!1. Since the homogeneous steady state consisting of all uncoupled
cells at the same equilibrium state is one such solution, it must be the only solution
due to the uniqueness property. Therefore, the corresponding medium cannot
exhibit any form of complexity.

The local activity domain Am is the union of four local activity parameter
subsets l Ið Þ; l IIð Þ; l IIIð Þ; and l IVð Þ of the parameter space l 2 R

q, each one
satisfying the local activity conditions (i) – (iv) in the test for local activity of
complexity matrix YQðsÞ. Although the first three subsets are disjoint subsets of
R

q, the fourth subset l IVð Þ may intersect each of the other three subsets. The
subset of l IVð Þ which does not intersect l Ið Þ; l IIð Þ; or l IIIð Þ has poles only in the
open left-half plane and hence its associated cell equilibrium points are both
locally active and asymptotically stable, for all port input vectors Ia 2 R

m.
Although reaction-diffusion equations with cell parameters chosen from this subset
may exhibit complexity, the most interesting phenomena are observed from
uncoupled cells with Ia ¼ 0.

Definition of the Edge of Chaos. An uncoupled cell (with Ia ¼ 0) of a reac-
tion-diffusion equation is said to be on the edge of chaos iff all of its cell equi-
librium points are locally active but asymptotically stable. The set e of all locally
active parameters l 2 R

q with this property is called the edge of chaos parameter
set.

The edge of chaos parameter set e can be expressed in terms of the restricted
parameter subsets with Ia ¼ 0:

e ¼ l IVð Þn l IVð Þ \ l Ið Þ½ � [ l IVð Þ \ l IIð Þ½ � [ l IVð Þ \ l IIIð Þ½ � ð20Þ
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where all subsets are restricted to the uncoupled condition Ia ¼ 0. The area e
which does not intersect l Ið Þ; l IIð Þ; and l IIIð Þ is the edge of chaos parameter set.
The restricted local activity parameter subsets l Ið Þ; l IIð Þ; l IIIð Þ; and l IVð Þ are
calculated with Ia ¼ 0.

3 Local Activity and Edge of Chaos of the Brusselator
Equations

The Brusselator model (named after its research group in Brussels) was one of the
first systems of equations used to explain self-organizing chemical reactions of the
reaction-diffusion type. Based on this model, a theory of dissipative structures
operating far from thermodynamic equilibrium was developed by Ilya Prigogine
[3, 19, 20]. Under stability theory techniques, Prigogine and his group derived a
critical bifurcation boundary for the uncoupled cell. They studied stationary and
dynamic patterns emerging in the neighborhood of this boundary. But, except for
the stability boundaries, the far from thermodynamic-equilibrium theory is too
coarse to predict sharper and more precise domain of emergent behavior. Espe-
cially, they ignored the relatively small subset of the edge of chaos where the
emergence of complexity is most likely [21, 22].

Brusselator Equations. The mathematical model of the Brusselator is defined
by two partial differential equations (PDE)

oV1ðx; yÞ
ot

¼ a� bþ 1ð ÞV1ðx; yÞ þ V2ðx; yÞðV1ðx; yÞÞ2 þ D1r2 V1ðx; yÞ ð21Þ

oV2ðx; yÞ
ot

¼ b V1ðx; yÞ � V2ðx; yÞðV1ðx; yÞÞ2 þ D2r2 V2ðx; yÞ ð22Þ

with two diffusion coefficients D1 and D2 and two state variables V1 and V2

characterizing the chemical dynamics. The cell parameters are denoted by a and b,
the spatial coordinates are denoted by x and y. The coupling coefficients are
assumed as diffusion with D1� 0 and D2� 0.

Local Activity Test of Brusselator. A local activity test can be applied in
following steps of an algorithm:

1. In a first step, the Brusselator PDE is mapped into a discrete-space version with
two diffusion coefficients. For the edge of chaos, it suffices to consider the zero-
input current case I1= I2 = 0.

2. In the second step, the equilibrium points Qi with I1 = I2 = 0 are determined.
In the case of a Brusselator, there is a unique equilibrium point Q1.

3. In the third step, the Jacobian matrix of the discretized Brusselator equations at
the equilibrium point Q1 is determined.
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4. In the fourth step, the input data of the Jacobian matrix are used to classify each
cell parameter point (a, b) at the equilibrium point Q1 with a test algorithm into
one of the three disjoint categories:

(a) Locally Active and Stable S ðQ1ÞA ðQ1Þ): Because there is only one equilib-
rium point of a Brusselator, this region coincides with the edge of chaos
domain. The edge of chaos domain is defined as the region in the cell
parameter space where the isolated cell is locally active and stable at least at
one equilibrium point.

(b) Locally Active and Unstable A ðQ1ÞU ðQ1Þ): This region corresponds to the
oscillatory or unstable region of an isolated cell.

(c) Locally Passive P (Q1): This is the region in the cell parameter space where
complex phenomena are unlikely to occur in reaction-diffusion systems.

Pattern formation. Most of the parameter points found by Prigogine as
examples of self-organization are located nearby the bifurcation boundary sepa-
rating the stable from the unstable region. The local activity test is a general check
and also identifies the ignored domain of local passivity b B 1. The boundary
b = 1 between the local passivity and the local activity domain cannot be deter-
mined via Prigogione’s linear stability analysis, because cells with parameters in
both S(Q1)A(Q1) and P(Q1) are always stable. The various static and dynamic
patterns generated by the Brusselator are totally predicted by the local activity
principle. Static patterns are not reduced to Turing’s stationary patterns with both
diffusion coefficients non zero, but also mean the emergence of patterns with only
one diffusion coefficient. Some of them are located in the edge of chaos domain.

4 Local Activity and Edge of Chaos of the Gierer-
Meinhardt Equations

The local activity theory is applied, again, to the Gierer-Meinhardt-equations to
illustrate the emergence of complexity. On the basis of autocatalysis and lateral
inhibition, Gierer and Meinhardt proposed a mathematical model [12] to explain
pattern formation (morphogenesis) in living systems. Using numerical integration,
they were able to produce a number of patterns relevant to the formation of
biological structures. But, it is still too coarse to predict the precise domain in the
cell parameter space where emergent behavior may occur. The local activity
theory offers a rigorous and effective tool for sharpening existing results in the
sense that it can identify more precisely those regions in the cell parameter space
which are capable of emergent behaviors, and also in fine tuning such regions into
a relatively small subset called the edge of chaos where the emergence of complex
phenomena is most likely [14].
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Gierer-Meinhardt Equations. The Gierer-Meinhardt model is described by
the following system of partial differential equations (PDE) with two diffusion
coefficients D1 and D2

oV1ðx; yÞ
ot

¼ aþ V1ðx; yÞð Þ2

V2ðx; yÞ
� bV1ðx; yÞ þ D1r2 V1ðx; yÞ ð23Þ

oV2ðx; yÞ
ot

¼ V1ðx; yÞð Þ2�V2ðx; yÞ þ D2r2 V2ðx; yÞ ð24Þ

where V1and V2 are the two state variables characterizing the cell dynamics. The
cell parameters are denoted by a, and b, and the spatial coordinates are denoted by
x and y. In keeping with the physical meaning of diffusion we will assume the
coupling coefficients D1� 0 and D2� 0.

Local Activity Test of Gierer-Meinhardt Model. A local activity test can be
applied, again, in following steps of an algorithm:

1. The Gierer-Meinhardt PDE is mapped into a discrete-space version with two
diffusion coefficients. For the edge of chaos, it suffices to consider the zero-
input current case I1 ¼ I2 ¼ 0.

2. In the second step, the equilibrium points Qi with I1 ¼ I2 ¼ 0 are determined.
In the case of the Gierer-Meinhardt model, it is sufficient to determine the

equilibrium point Q1 with V1ðQ1Þ ¼ aþ1
b and V2ðQ1Þ ¼ aþ1

b

� �2
. An equilibrium

point Q2 with V1ðQ2Þ ¼ V2ðQ2Þ ¼ 0 is also a solution of the system, when
I1 = I2 = 0, a = 0 and for zero derivatives. It can easily be checked that this
equilibrium is always unstable, independent of cell parameters.

3. In the third step, the Jacobian matrix of the discretized Gierer-Meinhardt
equations at the equilibrium point Q1 is determined.

4. In the fourth step, the input data of the Jacobian matrix are used to classify each
cell parameter point (a, b) at the equilibrium point Q1 with a test algorithm into
one of the three disjoint categories:

(a) Locally Active and Stable S ðQ1ÞA(ðQ1Þ: The edge of chaos domain is defined
as the region in the cell parameter space where the isolated cell is locally
active and stable at least at one equilibrium point.

(b) Locally Active and Unstable A ðQ1ÞU ðQ1Þ: This region corresponds to the
oscillatory or unstable region of an isolated cell.

(c) Locally Passive P ðQ1Þ: This is the region in the cell parameter space where
complex phenomena are unlikely to occur in reaction-diffusion systems. The
restricted local passivity region with I1 = I2 = 0 can be partially or totally
included in the local activity region which is defined for all possible equi-
librium points when I1; I2 eð�1;þ1Þ:

Pattern Formation. The classification of a cell parameter point into one of
these three categories depends on whether there is only one diffusion coefficient, or
there are two nonzero diffusion coefficients. Gierer and Meinhardt only considered
selected cell parameter points. All of them lie within the edge of chaos region.
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Many other examples can be determined by the local activity principle. Again, the
boundary between local passivity and local activity domain cannot be determined
by a linear stability analysis (in the sense of Prigogine, Gierer, and Meinhardt).
The dynamics of associated computer simulations is displayed with respect to
points of the parameter space. For the same cell parameter point different sets of
coupling coefficients and/or initial states may lead to completely different
behaviors.

5 Local Activity and Edge of Chaos of the Hodgkin-Huxley
Equation

The long-lasting action and pace-maker potentials of the Purkinje fiber of the heart
were first described by the Hodgkin-Huxley equations of the cardiac Purkinje fiber
model of morphogenesis in [11]. The bifurcation diagrams of the corresponding
computer simulations supply a possible explanation for why a heart with a normal
heart-rate may stop beating suddenly: The cell parameter of a normal heart is
located in a locally active unstable domain and just nearby an edge of chaos. The
membrane potential along a fiber is simulated in a Hodgkin-Huxley model by a
computer [23]. Computer simulations show that oscillatory patterns, chaotic pat-
terns, or divergent patterns may emerge if the selected cell parameters are located
in locally active domains but nearby the edge of chaos. This research demonstrates
once again the effectiveness of the local activity theory in choosing the parameters
for the emergence of complex (static and dynamic) patterns in a homogeneous
lattice.

In the previous examples, the analytical criteria for testing the local activity of
models with one and two local state variables have been presented. The criteria
have been used to describe the bifurcation diagrams of the corresponding computer
simulations, in particular finding the edge of chaos domains. In this section, the
analytic criteria for testing the local activity of computer simulations with four
state variables, and one diffusion coefficient are set up. After mapping the cardiac
Purkinje fiber (CPF) equations to each cell of a computer simulation, which is then
called the Hodgkin-Huxley cell, we choose the sodium equilibrium potential
(denoted by ENa ) and the potassium equilibrium potential (denoted by EK) as cell
parameters for calculating the bifurcation diagrams since ENa and EK depend on
the corresponding ionic concentrations which are not constants in vivo.

It is interesting to find that the cell parameter of a normal heart is located in the
locally active unstable domain but nearby an edge of chaos domain. Roughly
speaking, a computer simulation shows that as the values of ENa and EK are
increased, the frequency of the heartbeat (corresponding to the periodic frequency
of the membrane potential described via the CPF equations) also increases [11].
However the amplitude of the membrane potential decreases until the heart stops
beating. Conversely as the values of ENa and EK are decreased, the frequency of

34 K. Mainzer



the heartbeat is also decreased until the heart stops beating. These phenomena can
be explained well via the corresponding bifurcation diagrams. Extensive computer
simulations show that if the chosen cell parameters are nearby the edge of chaos
and are located in a locally active unstable region, the corresponding patterns may
show chaotic, periodic, or unbounded characteristics.

Cardiac Purkinje Fiber (CPF) Equations. The cardiac Purkinje Fiber (CPF)
equations introduced by [11] have been used to describe the action pacemaker
potentials of the Purkinje fibers of the heart. The behavior of the equation corre-
sponds quite well with the observed behavior of the Purkinje fibers. The original
CPF equations have the form

dV

dt
¼� 1

Cm
ðð400 m3hþ 0:14Þ V � að Þ þ 1:2 expð �V � 90=50ð Þ

þ 0:015 exp V þ 90ð Þ=60ð Þ þ 1:2n4 þ V þ bð ÞÞ
ð25Þ

dm

dt
¼ amðVÞð1� mÞ � bmðVÞm ð26Þ

dh

dt
¼ ahðVÞð1� hÞ � bhðVÞh ð27Þ

dn

dt
¼ anðVÞð1� nÞ � bnðVÞn ð28Þ

where a ¼ ENa ¼ 40, b ¼ �Ek ¼ 100, Cm ¼ 12 and ENa , Ek and Cm are sodium
equilibrium potential, potassium equilibrium potential and membrane capacity,
respectively. The other terms are defined as follows,

amðVÞ ¼ 0:1ð�V � 48Þ=ðexpðð�V � 48Þ=15Þ � 1Þ ð29Þ

bmðVÞ ¼ 0:2ðV þ 8Þ=ðexpððV þ 8Þ=5Þ � 1Þ ð30Þ

ahðVÞ ¼ 0:17ðexpðð�V � 90Þ=20ÞÞ ð31Þ

bhðVÞ ¼ 1=ðexpðð�V � 42Þ=10Þ þ 1Þ ð32Þ

anðVÞ ¼ 0:0001ð�V � 50Þ=ðexpðð�V � 50Þ=10Þ � 1Þ
ð33Þ

bnðVÞ ¼ 0:002 expðð�V � 90Þ=80Þ ð34Þ

where V is equal to the membrane potential E minus the resting potential Er. V is
called the membrane potential.

Hodgkin-Huxley Discrete Computer Model. In the next step [11], the original
CPF equations are mapped into a four-dimensional 4 9 30 Hodgkin-Huxley
computer simulation, which is a discrete version of the CPF partial differential
equation with one diffusion coefficient D1
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_Vi;j ¼ �
1

cm
ðð400 m3

i;jhi;j þ 0:14ÞðVi;j � aÞ þ 1:2 expðð�Vi;j � 90=50Þ

þ0:015 expððVi;j þ 90Þ=60Þ þ 1:2n4
i;jÞðVi;j þ bÞÞ þ D1ðViþ1;j

þVi�1;j þ Vi;jþ1 þ Vi;j�1 � 4Vi;jÞ

_mi;j ¼ amðVi;jÞð1� mi;jÞ � bmðVi;jÞmi;j ð36Þ

_hi;j ¼ c ahðVi;jÞð1� hi;jÞ � bhðVi;jÞhi;j ð37Þ

_ni;j ¼ anðVi;jÞð1� ni;jÞ � bnðVi;jÞni;j ði ¼ 1; 2; 3; 4; j ¼ 1; 2; . . .; 30Þ ð38Þ

where parameters a and b are considered to be the relevant parameter space, and c
is an additional parameter to observe the effect of small disturbances on the
bifurcation diagrams on the computer simulations.

In component form, these equations become

_V ¼ f1 V;M;H;Nð Þ þ D1r2V ð39Þ

_M ¼ f2 V;M;H;Nð Þ ð40Þ

_H ¼ f3 V;M;H;Nð Þ ð41Þ

_N ¼ f4 V;M;H;Nð Þ ð42Þ

where

f1 V;M;H;Nð Þ ¼ � 1
cm
ðð400 M3Hþ 0:14ÞðV� aÞ þ 1:2 expðð�V� 90=50Þ

þ 0:015 expððVþ 90Þ=60Þ þ 1:2 N4ÞðVþ bÞÞ

f2 V;M;H;Nð Þ ¼ amðVÞð1�MÞ � bmðVÞðMÞ

f3 V;M;H;Nð Þ ¼ ahðVÞð1�HÞ � bhðVÞðHÞ

f4 V;M;H;Nð Þ ¼ anðVÞð1� NÞ � bnðVÞðNÞ

and r2 corresponds to a 120 9 120 matrix.

Equilibrium Points of the Hodgkin-Huxley Equations. In the next step, the
cell equilibrium points Qi can only be solved numerically via the equations

f1 V;M;H;Nð Þ ¼ 0 ð43Þ

f2 V;M;H;Nð Þ ¼ 0 ð44Þ

f3 V;M;H;Nð Þ ¼ 0 ð45Þ

f4 V;M;H;Nð Þ ¼ 0 ð46Þ
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The cell coefficients am;n(Qi) are defined via the corresponding Jacobian matrix.
Local Activity and Passivity of the Hodgkin-Huxley Model. According to the

local activity and passivity criteria, local activity and passivity of a cell are
characterized by certain conditions of its complexity function YQðsÞ at equilibrium
point Q [10]. Sometimes, it is convenient to use the cell impedance
ZQðsÞ , Y�1

Q ðsÞ :

A cell with one port state variable is locally active at equilibrium point
Q V1; I1
� �

if, and only if, any one of the following conditions is true:

i. ZQðsÞ has a pole in the open right plane Re[s] [ 0.
ii. ZQðsÞ has a multiple pole on the imaginary axis.
iii. ZQðsÞ has a simple pole s ¼ ixP on the imaginary axis and

KQðixpÞ , lims!ixPðs� ixPÞZQðsÞ is either a negative real number or a
complex number.

iv. Z�QðixÞ þ ZQðixÞ\0 for some x = x0, where x0 is any real number.

The locally passive domains with respect to the equilibrium points for the
Hodgkin-Huxley model can be numerically calculated via computer programs.
These domains with respect to two cell equilibrium points (denoted by Q1 and Q2)
with different cell parameters were calculated numerically and can be shown in
computer simulations. Since the equilibrium points Q1 and Q2 cannot be expressed
analytically, they are obtained via simulation tools, taking different initial iterate
values.

Although the results are not analytically exact, it can be concluded from the
bifurcation diagrams: The cell parameter value (40, 100) of a normal heart is
located in the locally active (unstable) domain with respect to the cell equilibrium
points Q1 and Q2, and nearby the edge of chaos with respect to the equilibrium
point Q2. For any fixed parameter value, the bifurcation diagrams with respect to
the equilibrium points Q1 and Q2are quite different if the parameter b is larger than
100. Roughly speaking, our computer simulation shows that the cell equilibrium
points which are located in the locally passive domains or in the edge of chaos
domains with respect to the equilibrium point Q1 seem to be globally attractive.
This result may explain why a heart with an approximately normal rate can stop
suddenly. A small perturbation of the parameter c (± 1:5 %) does not cause the
bifurcation diagrams to be noticeably changed. The same conclusion also holds for
the case where the parameter Cm is disturbed. These facts may be interpreted as an
indication of the robustness of the heart.

Applications to Cardiology. Based on the four conditions for local activity of
cells, analytical criteria for systems with four state variables and one diffusion
coefficient can be presented. The criteria can be easily implemented by a computer
program to produce bifurcation diagrams for the corresponding Hodgkin-Huxley
model. Although no chaotic phenomenon is observed, the cell parameters which
cause the heart to stop beating are always located nearby the edge of chaos
domains. It can be shown that the changes in the sodium equilibrium potential ENa

(corresponding to the parameter a) cause greater changes to the frequency of the
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heartbeat than those of the potassium potential Ek (corresponding to the parameter
-b). The parameter value (a, b) = (58, 100) seems to play an extraordinary role.
At this value, the frequency of the heartbeat is about 80 beats/min. However, if the
parameter is changed to (a, b) = (58.5, 100), the heart will stop beating. This
computer simulation seems to be able to provide some insight into why it is
possible that a patient with non-normal electrocardiogram but approximate normal
frequency of the heartbeat might suddenly die without warning.

So-called smoothed circuit equation and the corresponding computer simulations
exhibit bifurcation diagrams which show that no locally passive domain exists.
Oscillatory patterns, convergent (static) patterns, and divergent (unbounded) pat-
terns can be obtained if the parameter sets are chosen on the edge of chaos domain.
In particular, emergence of complex patterns may exist if the corresponding cell
parameters are chosen in the locally active unstable domain but nearby the edge of
chaos domains. In summary, this research confirms once again that the local activity
theory provides a practical and explicit analytical tool for determining a subset of the
cell parameter space where complexity may emerge [24].

6 The Local Activity Principle of Brains
and Artificial Minds

Artificial Brain of Memristors. On the horizon of future chip technology is the
vision of neuromorphic computers, mimicking the human brain with billions of
neurons and synaptic connections. Brains are considered complex networks with
local activities of cells such as CNNs and CAs. A technical unit modeling a living
neuron with synapses needs features of memories, digital circuits, and a form of
analog information processing. A strong candidate fulfilling all these requirements
is the memristor, a new circuit element, which was suggested [25, 26] more than
40 years ago. Modern technology assumes that the memristor will bring a new
wave of innovation in electronics, packing more bits into smaller volumes and
equipped with a non-volatile memory preventing the loss of data.

The memristor device has generated immense interests among both device
researchers and the memory-chip industry alike [27]. These interests were due to
the high potential economic impact of the HP (Hewlett-Packard) breakthrough.
Since the titanium-dioxide HP memristor could be scaled down to about 1 nm and
is compatible with current IC technology, many industry experts are predicting
that nano memristor devices would eventually replace both flash memories and
DRAMS (Dynamic Random Access Memory). Indeed, a PC with no booting time,
and which remembers all data prior to unplugging the power, could become
standard features within a few years.

Memristor is an abbreviation for ‘‘memory resistor’’ und was predicted as the
fourth missing circuit element with respect to the basic equations of electric cir-
cuits [27]. These equations are defined for the four quantities voltage (v), current
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(i), charge (q), and magnetic flux (u). Each equation determines a relation between
two of these variables. The simplest relation between voltage and current is Ohm’s
law v = Ri, meaning that voltage is proportional to current. The constant of
proportionality is given by the resistance R. If a current of I amperes flows through
a resistance of R ohms, then the voltage with respect to the resistance is v volts.
Geometrically, the graph of current versus voltage for a resistor is a straight line
with slope R.

There are 6 possible pairings of 4 variables. The 2 pairs (v, u) and (i, q) are
already related by definition v = du

dt and i = dq
dt . The 3 pairs (v, i), (u, i), and (q,

v) define a resistor, inductor, and capacitor, respectively. The missing equation
relating charge q and magnetic flux u is called memristor. Obviously, the
memristor was found by arguments of symmetry and completeness. There are two
classes of memristors, namely, locally-passive memristors and locally-active
memristors. The conventional resistor, capacitor, inductor, and the locally-passive
memristor are passive circuit elements, which must be distinguished from active
devices, such as transistors, which can amplify signals and inject power into
circuits. However, locally-active memristors are active devices and hence can also
amplify signal, with a power supply, just like transistors. The memristor is a
nonlinear device defined by the graph of a curve in the flux vs. charge plane,
whose slope, called the memristance, varies from one point to another [28].

A transistor is a three-terminal device with three connections to a circuit. It acts
as a switch or amplifier, with a voltage applied to one terminal controlling a
current flowing between the other two terminals. Although a locally-active
memristor has only two terminals, it can also realize these functions. On the other
hand, locally-passive memristors can be used to build both memory and digital
logic without the need for a power supply. This is why they are called non-volatile
memories. Metaphorically speaking, the memristor has a built-in sense of history.
A signal applied at one moment can affect another signal that travels the same path
later. The first signal realizes this control by setting the internal state of the
memristor to high or low resistance.

Therefore, in a neuromorphic computer, locally-passive memristors would not
totally supplant a transistor, but supplement them in memory functions and locic
circuits. Memristors could play the role of synapses. In biological neural networks,
each nerve cell communicates with other cells through thousands of synapses. An
important mechanism of learning is realized by adjusting the strength of the
synaptic connections. In an artificial neural network, synapses must be small, but
effective structures. Locally-passive memristors satisfy all the needed require-
ments. They change their resistance in response to the currents that flow through
them. This operation suggests a direct way of modeling the adjustment of synaptic
strength.

Recall that there are two qualitatively distinct kinds of memristors, namely
locally passive memristors and locally active memristors. The HP memristor is
locally passive because it does not require a power supply, and is said to be
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non-volatile. The potassium and sodium ion channels in the classic Hodgkin-
Huxley nerve membrane circuit model can be considered locally-active memris-
tors, powered by a sodium and a potassium pump whose energy derives from ATP
molecules. In contrast, synapses are locally passive memristors capable of
retaining their synaptic efficacies over long periods of time without consuming any
power.

Since our brains process information using only synapses and axons, it follows
that circuits made of both types of memristors should be able to emulate higher
brain functions as well. The long-term potentiation (LTP) phenomenon associated
with long-term memory can also be emulated by a memristor. Many associative
memory phenomena, such as the Pavlovian dog behavior, can be emulated by a
memristor circuit. If brains are made of memristors, then we can expect that
electronic circuits made of both locally passive and locally active memristors may
someday emulate human minds [29]. The key to this fundamental process is to
uncover how local activity could lead to the emergence of complex patterns from a
mass of homogeneous brain tissues. Formally, the local activity principle is
realized in any cellular automaton. In neurons and memristors, the local activity
principle is not only a formal model, but biological and technical reality.

Hodgkin-Huxley Electrical Circuit Model. The Hodgkin-Huxley electrical
circuit model of a squid giant axon membrane and its associated Hodgkin-Huxley
equations (henceforth referred to as HH equations) has stood the test of time and
has served as a classic reference in neurophysiology and brain science research for
70 years. The squid was chosen by Hodgkin and Huxley because they are endowed
with enormous axons, the largest of them in a large Atlantic squid (Loligo pealii)
being as much as one millimeter in diameter ([30, 31, 32, 33, 34]).

In the Hodgkin-Huxley electrical circuit model, I, INa, IK , and Il denote the
external axon membrane current, the sodium ion current, the potassium ion cur-
rent, and the leakage current, respectively. Likewise, E, ENa, EK , and El denote the
membrane capacitor voltage, the sodium ion battery voltage, the potassium ion
battery voltage, and the leakage battery voltage, respectively. The basic assump-
tion Hodgkin and Huxley made is that the squid giant axon can be modeled by a
distributed circuit consisting of a line of identical 2-terminal electrical devices
(henceforth referred to as HH cells) described by the HH Circuit Model, and
coupled by identical passive resistors. By assuming the HH cells to be physically
small and taking the limit as the length Dx ? 0, the dissipative couplings tend to a
Laplacian, thereby modeling the standard diffusion mechanism. The equations
describing the entire system then tends to a system of reaction diffusion equations
in one spatial variable.

The HH Circuit Model [31, 35] contains 7 circuit elements that must be
specified before it is possible to formulate the equations governing the circuit.
These elements and their parameter values must be determined by meticulous
experiments. For convenience in their measurement setups, Hodgkin and Huxley
had opted to measure all voltages with respect to the resting potential Er, whose
value depends on the axon specimen and measurement temperature.
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But, the time-varying resistances RK and RNa (resp., time-varying conductances
gK and gNa) assumed by Hodgkin and Huxley are fundamentally wrong from a
circuit-theoretic and scientific perspective. In particular, the two elements RK and
RNa (resp., gK and gNa) in their HH axon Circuit model belong to the funda-
mentally different class of time-invariant circuit elements of memristors. After
Hodgkin-Huxley’s mis-identification error is corrected, all of the anomalies and
confusions ([8, 23]) concerning anomalous inductances, rectification, frequency-
dependent parameters, and the fundamental mechanisms responsible for the gen-
eration of action potentials can be clearly resolved in a simple and rigorous
manner.

Memristive Hodgkin-Huxley Axon Circuit Model. Substituting the Hodgkin-
Huxley time-varying potassium resistance RK , and sodium resistance RNa by the
potassium ion-channel memristor and the sodium ion-channel memristor, respec-
tively, we obtain the memristive Hodgkin-Huxley Axon Circuit Model. Observe
that this circuit model contains only well-defined time-invariant circuit elements,
as expected of any realistic physical model of the axon. With basic circuit theory,
the Hodgkin-Huxley DC circuit model in Fig. 1 can be derived by simply deleting
the axon membrane capacitor CM , since IM ¼ CM

dVM
dt ¼ 0 at DC. For each V ¼

Vm ¼ Vm ¼ ðQÞ at an equilibrium point Q Vm; Imð Þ, where V ¼ Vm and I ¼ Im

denote the axon membrane voltage and membrane current in Fig. 1, respectively,
we can substitute the potassium ion-channel memristor by its small-signal circuit
model, about the corresponding DC equilibrium point at VK ¼ VmðQÞ�
EK ¼ VmðQÞ � 12 mV , VKðQKÞ. Similarly, we can substitute the sodium ion-
channel memristor by its small-signal circuit model, about the corresponding DC
equilibrium point at VNa ¼ VmðQÞ þ EK ¼ VmðQÞ þ 115 mV , VNaðQNaÞ:

By recognizing that the two circuit elements RK and RNa in the Hodgkin-Huxley
axon circuit model are not time-varying, but are rather time-invariant memristors,
we were able to provide a firm circuit-theoretic foundation for analyzing, inter-
preting, and explaining various anomalous phenomena and paradoxes reported in
the literature more than 70 years ago and which had remained unresolved [31]. For
example, Hodgkin [31, 32] was quite shocked to find the small-signal impedance
they measured from the axon membrane of squids had exhibited a positive reac-
tance that suggested the presence of a gigantic inductance and an enormous

Fig. 1 Memristive Hodgkin-
Huxley axon circuit model
[10]
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magnetic field in the squid axon. This inexplicable phenomenon had since been
referred to in the literature as an anomalous impedance [8]. But the terms in the
Hodgkin-Huxley equations pertaining to the time varying potassium conductance
GK is in fact a first-order memristor. Similarly, the terms pertaining to the time-
varying sodium conductance GNa is in fact a second-order memristor. The his-
torical Hodgkin-Huxley axon circuit model should therefore be replaced hence-
forth by the memristive Hodgkin-Huxley axon circuit model shown in Fig. 1.

Since the two memristors in the Hodgkin-Huxley Axon Circuit Model are time-
invariant nonlinear circuit elements, we can exploit the local activity theory to
uncover the nonlinear dynamical potentials of these two circuit elements. Classic
circuit-theoretic concepts as small-signal admittance, small-signal impedance,
pole-zero diagrams, etc. can be applied. All of these intrinsic linear circuit char-
acterizations and their explicit analytical formulas can be derived from the
memristive Hodgkin-Huxley axon circuit model. The circuit-theoretic properties
represent definitive characterizations of the Hodgkin-Huxley Axon. They play a
fundamental role in the research on the dynamics of ion channels.

The main theorem [16] asserts that the zeros of the scalar function
Yðs; VmÞ , 1

Zðs;VmÞ called the small-signal admittance of the Hodgkin-Huxley

memristor circuit model, are identical to the eigenvalues of the 4 9 4 Jacobian
matrix of the HH equation, calculated at the equilibrium point Vm = V(Iext) of the
HH equations, for each constant DC excitation current Iext. Here s = r ? ix
denotes the complex variable associated with the Laplace transform v̂ðsÞ of a time
function v(t) [16] and Iext denotes an external current source applied to the
Hodgkin-Huxley axon circuit model shown in Fig. 1. In chapter 2 it was explained
that this theorem is valid not only for the 4-dimensional HH equation, but for any
system of n differential equations. This theorem is a powerful tool because instead
of calculating the eigenvalues of a high dimensional n 9 n matrix, one only has to
calculate the roots (zeros) of a scalar polynomial equation of a single variable s,
for any integer n.

Most deep insights concerning local activity and edge of chaos can be
uncovered from an analysis of the linearized differential equations about the
equilibrium points of its associated nonlinear dynamical system. The edge of chaos
is typically a very small subset of the local activity domain. So small and yet so
profound is the edge of chaos domain that we often dramatize its significance by
dubbing it the pearl of local activity. Indeed, edge of chaos is the source of life,
and we will show that neurons are poised near this pearl of local activity. It is
rather enigmatic that while all complexity phenomena, including the generation of
spikes, require strongly nonlinear dynamics, yet the mathematical genesis of such
global phenomena is strictly local. The theory of local activity and edge of chaos is
based entirely on linearized differential equations about an equilibrium point.
Testing an equilibrium point Q for local activity in general, or edge of chaos in
particular, involves examining the linearized Hodgkin-Huxley equations about Q.

Linearized Hodgkin-Huxley Equations. For each equilibrium point Q corre-
sponding to a DC excitation current Iext, let us superimpose an infinitesimally
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small current signal di(t) and apply the composite signal Iext ? di(t) to the HH
axon circuit model Fig. 2a. Whether a system (in this case the Hodgkin-Huxley
axon) is locally active at Q or not is completely determined by the response d
v(t) to an infinitesimally small sinusoidal testing signal d i(t) = A sin xt, where
A denotes the amplitude, and x = 2pf denotes the angular frequency. It follows
from elementary circuit theory that the response d v(t) to any small-signal current
excitation d i(t) can be predicted analytically from a small-signal equivalent circuit
whose elements are calculated explicitly form the Jacobian matrix of the associ-
ated nonlinear differential equations, evaluated at the equilibrium point Q. Such an
equivalent circuit is presented in Fig. 2b.

Complexity Function of Hodgkin-Huxley Equations. In general (chapter 2),
the complexity function C(s) for a single-input single-output system is defined by

Fig. 2 Hodgkin-Huxley axon circuit model (a) and its linearized small-signal equivalent
Hodgkin-Huxley circuit (b) [8]
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the ratio between the Laplace transform of the output variable ŷðtÞ and the Laplace
transform ûðsÞ of the input variable u(t), namely,

C(s) =
Lðy tð ÞÞ
Lðu tð ÞÞ ¼

ŷðsÞ
ûðsÞ : ð47Þ

In Fig. 2a, u tð Þ ¼ di tð Þ and y tð Þ ¼ dv tð Þ, respectively. Testing for local activity
and edge of chaos of an equilibrium point Q of the HH axon circuit in Fig. 2a at
any I ¼ Iext requires that we examine the complexity function defined by

Z sð Þ ¼ v̂ðsÞ
îðsÞ

; ð48Þ

where v̂ðsÞ ¼ Lðdv tð ÞÞ and ı̂ðsÞ ¼ Lðdi tð ÞÞ denote the Laplace transform of d
v(t) and d i(t), respectively. The complexity function Z(s) is called the impedance
function in circuit theory. The impedance functions Z(s) for the small-signal
equivalent HH circuit in Fig. 2b has been derived in [16] and is reproduced below:

Zðs;VmÞ ¼
a3s3 þ a2s2 þ a1sþ a0

b4s4 þ b3s3 þ b2s2 þ b1sþ b0
: ð49Þ

The formulas for calculating the 4 coefficients a0, a1, a2, a3 in the numerator
and the 5 coefficients b0, b1, b2, b3, b4 in the denominator of Z(s) are listed in [16].

According to the test criteria of local activity and edge of chaos in previous
chapter, we extract and rephrase only the key aspects that are essential for
Hodgkin-Huxley model [8]:

Local Activity Theorem. It is impossible to generate a spike train unless the
memristive Hodgkin-Huxley one-port in Fig. 2a is locally active at some equi-
librium point.

Edge of Chaos Theorem. A locally asymptotically stable-equilibrium point
Q of the Hodgkin-Huxley equation is poised on the edge of chaos if, and only if,
Re Zðix; VmðQÞÞ\0 at some frequency x. Re Z denotes the real part of the
complex number Z: Zðix; VmðQÞÞ is the impedance function calculated at
s ¼ 0þ ix.

From action potentials to mental states. In general, it is assumed that all
mental states are correlated to corresponding cell assemblies. But, they are not
only sets of firing neurons, but hierarchical systems of neural subsystems of
subsystems with different depth and degrees of complexity. Research hypothesis
means that the corresponding cell assemblies must empirically be identified by
observational and measuring instruments. In brain reading, for example, active cell
assemblies correlated with words and corresponding objects can be identified. A
single neuron is not decisive and may differ among different persons. There are
typical distribution patters with fuzzy shapes which are represented in computer
simulations. Brain research is still far from observing the activities of each neuron
in a brain. Nevertheless, the formal hierarchical scheme of dynamics allows the
explanation of complex mental states like, for instance, consciousness. Conscious
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states mean that persons are aware of their activities. Self-awareness is realized by
additional brain areas monitoring the neural correlates of these human activities
(e.g., perceptions, feeling, or thinking). Thus, even consciousness is no mysterious
event, but observable, measurable, and explainable in this research framework. In
the next step, the formal hierarchical model offers the opportunity to build cor-
responding circuits and technical equipments for technical brains and robots with
these abilities.

Traditional terms ‘‘intelligence’’, ‘‘mind’’, ‘‘consciousness’’ etc. are historically
overloaded with many meanings depending on different point of views, experience
and historical positions. Therefore, their meaning depends on our definitions.
Concerning intelligence, a simple working definition is suggested which does not
depend on ‘‘human intelligence’’ (in the sense of Turing’s AI-test). A system is
called ‘‘intelligent’’ depending on its ability to solve problems. In that sense, a tick
has a certain degree of intelligence, because it can solve the problem of finding
blood. But, simple technical systems (e.g., a chip) can also have certain degrees of
‘‘intelligence’’, because there can solve certain problems. Thus, in philosophical
terms, this position sympathizes with the pluralism of Leibniz who distinguished
degrees of intelligence in nature instead of Descartes’ dualism who believed in a
‘‘substance’’ called ‘‘intelligent mind’’ which was reserved to human beings. In
that sense, there are already many intelligent functions of, e.g., robots [8].

Obviously, patterns of cell assemblies in the brain are not identical with our
perceptions, feeling, and thinking. But, it is well confirmed in modern brain
research that neural patterns of firing cells are correlated with mental states.
‘‘Mental states’’ can be defined and computationally modeled in state and
parameter spaces with associated dynamical systems which allow us to test our
models. With the technology of brain reading, an analysis of cell assemblies even
allows us to recognize their represented meaning (e.g., pictures, words, phrases):
Of course, there are only the first steps of research, but it seems to be possible at
least in principle. Concerning computer science, semantics is technically realized
in first steps and to certain degrees in a restricted and well-defined sense.

Motory, cognitive, and mental abilities are stored in synaptic connections of
cell assemblies. A hard core of synaptic network is already wired, when a mammal
brain is born. But many synaptic connections are generated during growth,
experience and learning phase of mammals. Firing states of neurons with repeated
action potentials enforce synaptic connections. Thus, during a learning phase, a
cell assembly of simultaneously firing neurons creates a synaptic network storing
the learnt information. Learning phases can be modeled computationally by
learning algorithms [8]. As we all know, the learnt information can be forgotten,
when learning is not repeated and the synaptic connections decay. Thus, on the
microlevel, brain dynamics is determined by billions of firing and not firing
neurons, and, on the macrolevel, by emerging and changing cell assemblies of
neural networks coding different neural information.

The efficiency of neural networks depends on their number of hierarchical
layers. They enable the brain to connect different neural states of, e.g., visual,
haptic, and auditive information. But, there are also layers monitoring perceptual
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procedures and generating visual consciousness: A person is aware and knows that
she perceives something. Even our emotions depend on specified neural networks
which are connected with all kinds of brain activity. It is a challenge of brain
research to identify the involved layers and networks of the brain during all kinds
of mental and cognitive activities.

From action potentials to semantic understanding. Semantic understanding
is made possible by hierarchical layers and learning procedures of brain dynamics.
In formal semantics, a formal language gets its meaning by mapping its formal
expressions onto expressions of another formal language. In computer science,
several layers of symbolic languages are also used to generate semantic meaning
and digital procedures. Natural languages of users refer to an advanced computer
language. In a next step, a kind of behavioral language describes the functions that
are intended to be executed in the system. They relate their arguments typically
like mathematical functions. Then, an architectural description is needed that
describes the available resources, the communication and the control. The relation
between the behavioral description and the architecture is done by binding ele-
mentary functions to resources and scheduling them in time (a task that can be
done by a compiler or an assembler). Finally, the architecture gets realized by a
register transfer layer which is close to digital circuits that in term are realized by
electrical components, voltages and currents. Each such layer has its own
descriptive language, dynamics and syntactic rules. Semantics is provided by
interaction between layers. The digital circuit provides the semantics for the
electrical circuit (vice versa, the circuit layer provides timing information to the
digital), the register transfer to the digital layer, the architecture to the register
transfer layer and the behavioral description sits on top of that all, at least five
layers of semantic abstractions, each expressed in a dedicated formal syntax. It is
only because engineers can make such a strong taxonomy and abstraction of the
semantic layers, that a digital system is understandable for the human user and the
digital machine. The communication between man and machine is realized in an
intermediate transfer process between layers.

The human brain has a much more complex architecture which, until nowadays,
cannot be completely reconstructed in clearly distinguished layers. Obviously, the
brain is not the design of an architect or engineer with specific technical purposes,
but the result of a more or less random and blind evolution during millions of
years. Thus, several functions of tissues and networks are still unknown, although
topological layers can be identified and used for explanations of semantic pro-
cesses. In the end, the brain should be totally scanned and modeled from its single
neurons, synapses, and action potentials to cell assemblies, networks, and layers, in
order to model the whole dynamics on the micro- and macrolevel. The ‘‘machine
level’’ is already well known and described by the digital behavior of firing and
non-firing neurons with emerging action potentials. The edge of chaos domains
could clearly be identified in parameter spaces of the Hodgkin-Huxley equations.
They are the origin of all kind of brain dynamics with attractors of neural states
correlated with human cognitive and intelligent activities.
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Compared with human brains, technical systems may be restricted, but they are
sometimes much more effective with their specific solutions of cognitive and
intelligent tasks. In computer science, semantic webs and i-phones can already
understand questions to some extension and even answer in natural languages. The
technology of applied (speech analysis) algorithms may be different from bio-
logical procedures which were developed during evolution. But, they solve the
problem to some degree with their computer power, high speed, parallelism and
storage which can be improved in the future. Human beings are hybrid complex
systems with additional abilities (e.g., imaginations, feelings) which are always
involved in our semantic acting. But, it cannot be excluded that these abilities
could also be managed in a future technology.

7 Local Activity and Computational Universe

Can pattern formation in our universe be understood in the analytic framework of
mathematical equations or is it too complex? Instead of the traditional analytical
approach of mathematical physics, Steven Wolfram declared computer experi-
ments with pattern formation of cellular automata as ‘‘new kind of science’’ (NKS).
It is obviously a great merit of NKS to highlight the experimental approach in the
computational sciences [6]. But we claim that even in the future quasi-empirical
computer experiments are not sufficient [10]. Cellular automata must be considered
complex dynamical systems in the strictly mathematical sense with corresponding
equations and proofs. In short, we also need analytical models of cellular automata,
in order to find precise answers and predictions in the universe of cellular automata.
In this sense, the analytical approach goes beyond Wolfram’s NKS.

In the analytical approach, cellular automata (CA) are defined as complex
dynamical systems. Their (difference or differential) equations allow precise def-
initions of a complexity index and universal symmetries. It can be proved that the
256 one-dimensional cellular automata are classified by local and global symmetry
classes of cellular automata. There is an exceptional symmetry group with uni-
versal computability which we called the ‘‘holy grail’’ in the universe of cellular
automata [10]. Many analytical concepts of complexity research (e.g., attractors,
basin of attractors, time series, power spectrum, fractality) are defined for cellular
automata. The local activity of cells leads to pattern formation which can be
analytically determined and completely classified in a rigorous mathematical
manner.

Summing up all these insights, we are on the way to conceive the universe as a
computational and dynamical system. The success of this research program
depends on the digitization of physics. The question ‘‘Is the Universe a computer’’
leads to the question: How far is it possible to map the laws of physics onto
computational digital physics? [36] Digitization is not only exciting for answering
philosophical questions of the universe. Digitization is the key paradigm of
modern research and technology. Nearly all kind of research and technical
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innovation depend on computational modeling. The emerging complexity of
nature and society cannot be handled without computers with increasing compu-
tational power and storage.

In order to make this complex computational world more understandable,
cellular automata are an educational tool. NKS and the analytical approach show
that many basic principles of the expanding universe and the evolution of life and
brain can be illustrated with cellular automata. The emergence of new structures
and patterns depends on phase transitions of complex dynamical systems in the
quantum, molecular, cellular, organic, ecological, and societal world [1, 37].
Cellular automata are recognized as an intuitive modeling paradigm for complex
systems with many useful applications [38]. In cellular automata, extremely simple
local interactions of cells lead to the emergence of complex global structures. The
local principle of activity is also true in the world of complex systems with
elementary particles, atoms, molecules, cells, organs, organisms, populations, and
societies [8, 10]. Although local interactions generate a complex variety of being
in the universe, they can be mathematically reduced to some fundamental laws of
symmetry [39]. From a philosophical point of view, we cannot be sure in principle
that computational and digitalized physics described the world completely, but its
explanatory and predictive power is, until nowadays, overwhelming.
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Complexity Fits the Fittest

Joost J. Joosten

Abstract In this paper we shall relate computational complexity to the principle
of natural selection. We shall do this by giving a philosophical account of
complexity versus universality. It seems sustainable to equate universal systems to
complex systems or at least to potentially complex systems. Post’s problem on the
existence of (natural) intermediate degrees (between decidable and universal R0

1)
then finds its analog in the Principle of Computational Equivalence (PCE). In this
paper we address possible driving forces—if any—behind PCE. Both the natural
aspects as well as the cognitive ones are investigated. We postulate a principle
GNS that we call the Generalized Natural Selection principle that together with
the Church-Turing thesis is seen to be in close correspondence to a weak version of
PCE. Next, we view our cognitive toolkit in an evolutionary light and postulate a
principle in analogy with Fodor’s language principle. In the final part of the paper
we reflect on ways to provide circumstantial evidence for GNS by means of
theorems, experiments or, simulations.

Keywords Computational complexity � Intermediate degrees � Principle of
computational equivalence � Natural selection � Dynamical systems

1 Complexity and Computation

It is a standard definition in the literature to call a computational process P
universal if it can simulate any other computational process H. In other words, P
is universal if (see for example [2] or any other basic text book on computability
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theory) for any other computational process H, we can find an easy coding
protocol C and decoding protocol C�1 so that we can encode any input x for H as
an input CðxÞ for P so that after P has performed its computation we can decode
the answer PðCðxÞÞ to the answer that H would have given us. In symbols:
C�1ðPðCðxÞÞÞ ¼ HðxÞ.

One can formalize what it means for a protocol to be easy but for the sake of
this presentation that is not too relevant. Thus, if a process is universal, it can
mimic all other processes if we just prepare the right input for it. It is certainly part
of our intuition that complex systems can incorporate, mimic, or use, less complex
systems. In this light it seems sustainable to define complex systems as those
systems that are universal. Note that under this definition a complex system need
not necessarily manifest itself in a complex appearance: a universal process can
mimic any other process whence also the very easy ones.

2 Intermediate Degrees

In this section we study the complexity that falls in between decidable and
universal in a sense to be specified below.

2.1 Turing Degrees

For sets of natural numbers, the notion of universality can also be defined. Contrary
to real-world computations, for sets of natural numbers there are infinitely many
ever-increasing notions of universality. The one that corresponds to the computa-
tional notion is that of R0

1 universality. A set K is called R0
1-universal if for any

computably enumerable set X (that is a set whose values we can computably
enumerate but not necessarily decide for each number if it is in the set or not) there is
a computable function fX : N! N so that

x 2 X () fXðxÞ 2 K:

We call such a function fX also a reduction. Post [10] raised the famous question of
whether there is some natural computably enumerable set of natural numbers that
is computationally more informative than a decidable set, but less informative than
the universal set K.

Often, instead of speaking of sets directly one considers degrees also called
Turing degrees. A Turing degree can be considered as the entity of all the sets that
contain the same amount of information in the sense of the above considered
reduction. Thus, two sets X and Y fall in the same degree—we write X� Y—
whenever there is some computable f : X ! Y such that x 2 X , f ðxÞ 2 Y and
some computable g : Y ! X such that y 2 Y , gðyÞ 2 X. For two Turing
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degrees X and Y we write X\Y to indicate that there is some computable f :
X ! Y such that x 2 X , f ðxÞ 2 Y but no computable g : Y ! X such that
y 2 Y , gðyÞ 2 X.

It is common practice to denote the degree of decidable sets by ; and the degree
of R0

1-universal sets by ;0. Post’s question stated in terms of degrees now translates
to whether there exists some degree X which falls strictly in between ; and ;0 in
terms of the above defined reduction, that is ;\X\;0. It took the scientific
community twelve years to find such an intermediate degree. However, it is
generally held that this solution does not provide a natural intermediate degree.

Clearly the notion of being natural is rather vague and auto-determined by the
scientific community itself. A clear indication for a mathematical notion to be
natural is that it occurs in various other fields as well. Likewise, applicability to
other kind of problems or admitting different proof methods are typically also
considered an indication of naturalness. The canonical way of finding intermediate
degrees is by what are called priority arguments with finite injury and it is
generally held that they do not meet the above mentioned indications for being
natural. We refer the reader to [13] for a more detailed account of priority
arguments in the context of this paper.

2.2 Church-Turing Thesis and PCE

Post’s question on intermediate degrees finds it real-world analog in the Principle
of Computational Equivalence (PCE) which was postulated by Wolfram in his
NKS book [14]:

PCE: Almost all processes that are not obviously simple can be viewed as computations of
equivalent and maximal sophistication.

The processes here referred to are processes that occur in nature, or at least,
processes that could in principle be implemented in nature. Thus, processes that
require some oracle or black box that give the correct answer to some hard
questions are of course not allowed here.

As noted in the book, PCE implies the famous Church-Turing Thesis (again,
see [2] for more details) (CT):

CT: Everything that is algorithmically computable is computable by a Turing Machine.

Both theses—PCE and CT—have some inherent vagueness in that they try to
capture/define an intuitive notion. While the CT thesis aims at defining the intu-
itive notion of algorithmic computability, PCE aims at defining what degrees of
complexity occur in natural processes. But note, this is not a mere definition as, for
example, the notion of what is algorithmically computable comes with a clear
intuitive meaning. And thus, the thesis applies to all such systems that fall under
our intuitive meaning.
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As a consequence, the CT thesis would become false if some scientists were to
point out an algorithmic computation that cannot be performed on a Turing
Machine with unlimited time and space resources. With the development and
progress of scientific discovery the thesis has to be questioned and tested time and
again. And this is actually what we have seen over the past decades with the
invention and systematic study of new computational paradigms like DNA
computing [9], quantum computing [8], membrane computing [1], etc. Most
scientists still adhere to the CT thesis.

But the PCE says more. It says that the space of possible degrees of compu-
tational sophistication between obviously simple and universal is practically void.
In what follows we shall address the question what might cause this. We put
forward two observations. First we formulate a natural candidate principle that can
account for PCE and argue for its plausibility. Second, we shall briefly address
how cognition can be important. In particular, the way we perceive, interpret and
analyze our environment could be such that in a natural way it will not focus on
intermediate degrees even if they were there.

3 Complexity and Evolution

In this section we shall dwell on the intimate relation between evolution and the
emergence of complexity. We shall follow [6] in great lines citing certain passages
but also adding new insights.

In various contexts but in particular in evolutionary processes one employs the
principle of Natural Selection, often also referred to as Survival of the Fittest.
These days basically everyone is familiar with this principle. It is often described
as species being in constant fight with each other over a limited amount of
resources. In this fight only those species that outperform others will have access
to the limited amount of resources, whence will be able to pass on its reproductive
code to next generations causing the selection.

We would like to generalize this principle to the setting of computations. This
leads us to what we call the principle of Generalized Natural Selection:

GNS: In nature, computational processes of high computational sophistication are more
likely to maintain/abide than processes of lower computational sophistication provided
that sufficiently many resources are around to sustain the processes.

If one sustains the view that all natural processes can be viewed as computa-
tional ones, this generalization is readily made. For a computation, to be executed,
it needs access to the three main resources space, matter, and time. If now one
computation outperforms the other, it will win the battle over access to the limited
resources and abide. What does outperform mean in this context?

Say we have two neighboring processes P1 and P2 that both need resources to
be executed. Thus, P1 and P2 will interfere with each other. Stability of a process
is thus certainly a requirement for survival. Moreover, if P1 can incorporate, or
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short-cut P2 it can actually use P2 for its survival. As an analogy we mention a
monkey that can predict and thereby use the behavior of an ant by inserting a stick
into an ant colony waiting for ants to climb on the stick so that the monkey can eat
the ants by pulling the stick out again.

A generalization of incorporating, or short-cutting is given by the notion of
simulation that we have given above. Thus, if P1 can simulate P2, it is more likely
to survive. In other words, processes that are of higher computational sophisti-
cation are likely to outperform and survive processes of lower computational
sophistication. In particular, if the process P1 is universal, it can simulate any
other process P2 and thus is likely to use or incorporate any such process P2.

Of course this is merely a heuristic argument or an analogy rather than a
conclusive argument for the GNS principle. One can think of experimental
evidence where universal automata in the spirit of the Game of Life are run next to
and interacting with automata that generate regular or repetitive patterns to see if,
indeed, the more complex automata are more stable than the repetitive ones.
In setting up such experiments, much care needs to be taken to not run into hard
philosophical problems of ontological nature like the question ‘‘what are the
defining properties of a particular process’’. One can think of similar questions
about a tree without leaves still being a tree etc. In particular, it seems more
sensible to focus on some particular features, like for example entropy or other
complexity measures. We will take up these considerations in more detail in
Sect. 5.

Of course, one cannot expect that experiments and circumstantial evidence can
substitute or prove the principle. A more detailed discussion of the principle can be
found in [6].

Just like the theory of the selfish gene (see [4]) shifted the scale on which
natural selection was to be considered, now GNS is an even more drastic proposal
and natural selection can be perceived to occur already on the lowest possible
level: individual small-scale computational processes.

In [6] it was noted that under some reasonable circumstances we may see GNS
as a consequence of PCE. However, GNS only talks about computational
processes in nature and not in full generality about computational processes either
artificial or natural as was the case in PCE. Thus we cannot expect that CTþ
GNS is actually equivalent to PCE. However, if we restrict PCE to talk only about
processes in nature, let us denote this by PCE0, then we do argue that we can
expect a correspondence. That is:

PCE0 � CT þ GNS:

But PCE0 tells us that almost all computational processes in nature are either
simple or universal. If we have GNS we find that more sophisticated processes will
outperform simpler ones and CT gives us an attainable maximum. Thus the
combination of them would yield that in the limit all processes end up being
complex. The question then arises, where do simple processes come from?
(Normally, the question is where do complex processes come from, but in the
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formal setting of CTþGNS it is the simple processes that are in need of further
explanation.)

Simple processes in nature often have various symmetries. As we have argued
above these symmetries are readily broken when a simple system interacts with a
more complex one resulting in the simple system being absorbed in the more
complex one. We see two main forces that favor simple systems.

The first driving force is what we may call cooling down. For example, tem-
perature/energy going down, or material resources growing scarce. If these
resources are not available, the complex computations cannot continue their
course, breaking down and resulting in less complex systems.

A second driving force may be referred to as scaling and invokes mechanisms
like the Central Limit Theorem. The Central Limit Theorem is a phenomenon that
creates symmetry by repeating a process with stochastic outcome a large number
of times yielding the well-known Gaussian distribution. Thus the scale (number of
repetitions) of the process determines the amount of symmetry that is built up by
phenomena that invoke the Central Limit Theorem.

In analogy, we can mention that whilst various universal processes that are
executed at cell level, a tree by itself can hardly be called a universal computa-
tional process.

In the above, we have identified a driving force that creates complexity (GNS)
and two driving forces that creates simplicity: cooling down and scaling. In the
light of these two opposite forces we can restate PCE0 as saying that simplicity and
universality are the two main attractors of these interacting forces.

Note that we deliberately do not speak of an equivalence between PCE0 and
CTþGNS. Rather we speak of a correspondence. It is like when modeling the
movement of a weight on a spring on earth. The main driving forces in this
movement are gravitation and the tension of the spring. However, this does not
fully determine a final equilibrium if we do not enter in more details taking into
account friction and the like. It is in the same spirit that we should interpret the
above mentioned correspondence.

4 Complexity, Evolution and Our Cognitive Toolkit

Fodor has postulated a principle concerning our language. It says that (see [5]) the
structure and vocabulary of our language is such that it is efficient in describing
our world and dealing with the frame problem. The frame problem is an important
problem in artificial intelligence which deals with the problem how to describe the
world in an efficient way so that after a change in the state of affairs no entirely
new description of the world is needed. See for example [11].

In particular, Fodor considers particles that can be either frigeons or nonfri-
geons. A particle is a frigeon if Fodors refrigerator happens to stand open and
otherwise it is a nonfrigeon. It is clear that we can perfectly well define such
concepts and words. However, the mere availability of these concepts will not help
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us understand the world better. Nor are we likely to be able to act better in a
competitive setting by having access to these concepts. And what is even worse,
our description of the world becomes very cumbersome if we take these concepts
into account. In particular of course at moments when Fodor’s refrigerator is either
opened or closed.

Based on this thought experiment Fodor posed the thesis that our language—an
essential part of our cognitive toolkit—has evolved in such a way to efficiently
describe the world and the important changes occurring therein.

On a similar page, we would like to suggest that our cognitive toolkit has
evolved over the course of time so that it best deals with the processes it needs to
deal with. Now, by PCE these processes are either universal or very simple. Thus,
it seems to make sense in terms of evolution to have a cognitive toolkit that is
well-suited to deal with just two kinds of processes: the very simple ones and the
universal ones.

Taking these considerations into account, it can well be conceived that there
actually are computational processes out there that violate PCE but firstly, by
GNS these processes will be very scarce and secondly, even if they are out there,
our cognitive toolkit is just not well-equipped enough to deal with them.

Actually, throughout mathematics and mathematical logic there are various
indications present that seem to substantiate the claim that indeed many of our
most commonly used intellectual and cognitive tools within these fields, although
rather sophisticated, all fall in one of few classes of operational strength. In this
paper we have already seen that it is very hard to get sets that are not computa-
tionally universal. In [6] we gave some more examples to this same phenomenon.

In this setting we would also like to mention the program of reverse mathe-
matics (see [12]). Reverse mathematics tries to gauge the logical strength of
important mathematical theorems. One starts out with some weak base theory T0.
Next, one considers some important mathematical theorem s. These are typically
mathematical theorems that are frequently used by the mathematical community.

We mention here some examples of such theorems without further reference,
context or proof. They just serve to give the flavor of the kind of theorems
considered:

• Every countable commutative ring has a prime ideal;
• A continuous real function on the closed unit interval is Riemann integrable;
• Uniqueness of algebraic closure (of a countable field);
• Gödel’s completeness theorem: a formula u in a countable language is provable

from a set C of assumptions in that same language, if and only if u is true in
every model where all of C is true.

As said, we do not want to go into the details of these theorems. They merely
serve the purpose of illustrating what kind of theorems are considered and how
wildly divers the scope of these different theorems are. The next step in the
recursive mathematics project is to consider the system T0 þ s, that is, the base
system together with one of those particular mathematical theorems. We call two
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such systems T0 þ s and T0 þ s0 equivalent and write T0 þ s � T0 þ s0, if they
prove exactly the same set of theorems, that is,

T0 þ s ‘ u () T0 þ s0 ‘ u

for any formula u. It turns out that almost all important mathematical theorems fall
into one of five equivalent systems. That is to say, if you take six arbitrary
important mathematical theorems fsi j i 2 f1; . . .; 6gg, almost surely you will
have that T0 þ si � T0 þ sj for some i 6¼ j. We think that this is an important
indication of the fact that our intellectual/cognitive toolkit is designed in such a
way as to efficiently/naturally recognize, and deal with a limited set of problems
that are most useful to us in our daily life and fight for survival. In particular we
mention that all the above mentioned examples of important mathematical
theorems are equivalent over some natural base theory T0.

5 On Testing the Generalized Natural Selection Principle

In this final section we shall address the question on how to test the principle of
Generalized Natural Selection GNS as put forward in [6] and discussed here in
Sect. 3. As mentioned before, such tests can never substitute a full proof. Rather
they can merely supply ‘‘circumstantial evidence’’ in favor of or against the
principle. Let us start out by pointing out some subtleties underlying GNS.

5.1 General Observations

The principle GNS tells us that complex processes are more likely to be more
successful than others and thus more likely to ‘‘survive’’. Let us recall the exact
formulation of GNS and make some general observations that should always be
taken into account when studying it.

GNS: In nature, computational processes of high computational sophistication are more
likely to maintain/abide than processes of lower computational sophistication provided
that sufficiently many resources are around to sustain the processes.

In this formulation we see the following difficulties naturally emerge.

1. The first, most natural, and most fundamental question is ‘‘what is determining
the identity of a process’’. For example, suppose some process P undergoes
some minimal change, should we still call it the same process P after that
minimal change? The same sort of question arises in all kinds of sciences: ‘‘is a
human being without limbs still a human being?’’ or ‘‘when is a particular cloud
a Nimbo Cumulus?’’. It turns out even to be difficult to classify life within very
broad categories like ‘‘animal’’ versus ‘‘plant’’ etc. Naturally the question is
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related to deep philosophical questions relating, amongst others, to issues like
fuzziness (see e.g., [15]) in particular and the Sorites paradox more in general
[7]. The Sorites paradox deals with questions like ‘‘how many trees should
there be to form a forest, and what happens if I would cut one tree’’.
When trying to make quantified statements about GNS one should always first
isolate a well defined entity that substitutes either ‘‘process’’ or some essential
property representing the process. In the paradigm of The selfish gene this is
easy but in the paradigm of GNS this is not.

2. A second fundamental question is concerning what is meant by complexity and
in particular how to measure it. As mentioned before, there are various
essentially different definitions throughout the literature and we have put
forward our own proposal here in Sect. 1.

3. We think that the two problems mentioned so far are the more serious ones.
Minor but not less fundamental problems arise in also defining the other
mentioned concepts. Thus, how should we specify probability when saying that
one process is more likely to maintain/abide than another. What is exactly
understood by interaction, etc.

5.2 Mathematical Analysis

In principle one could try to formulate GNS in a fully formalized setting and then
try to prove GNS as a theorem within that formal setting. In doing so all above
mentioned points/problems should be taken into account. We shall shortly see how
many choices such an analysis entails. That naturally raises the questions on how
natural these choices are and in how much the final analysis says something about
the physical reality at all.

For example, one could identify a process by a set, or better, by a Turing degree
X. This would be a first choice. In a next choice one has to define some mathe-
matical operation � between two degrees that models the notion of interaction
between two processes aka degrees. Thus, the outcome of two processes X and Y
that interacted would be denoted and computed by X � Y .

Subsequently, we can answer the question whether X�X � Y and Y �X � Y .
However, if we wish to say something on how likely it is that either X�X � Y or
Y �X � Y we need to make yet more choices like introducing some probabilistic
tools on the space of degrees between ; and ;0.

5.3 Testing in the Laboratory

Instead of mathematical modeling, one can also try to isolate some real-world
processes that can be considered naturally as computational ones and have them
interact and run in a laboratory setting. Also here, all the difficulties as discussed in
Sect. 5.1 will manifest themselves in this setting.
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In particular we will have to decide on the identity determining aspects of the
processes involved. Moreover we have to decide on the measure of complexity
that is to be applied to these processes. Probably that is the harder and more
arbitrary task in this setting.

When working with living organisms some care has to be taken as to prevent
that we are just testing the well-established principle of natural selection instead of
GNS.

5.4 Computer Simulations

In this final section we shall discuss a possible approach to test GNS via computer
simulations. Again we should settle upon choices for the modeling problems as
posed in Sect. 5.1.

Just as with the mathematical modeling, we would like to stay as close as
possible to the physical reality in our computer simulations. Due to the inherent
parallel nature of physical reality (all goes on at the same time) and due to the
locality of causality it seems a good idea to simulate parts of reality by cellular
automata (CA).

For the sake of a simple presentation let us briefly recall the definition of one of
the simplest CAs: a one-dimensional CA with radius 1 and two symbols. We shall
depict the two different symbols by black and white respectively. Our CA acts on a
one dimensional tape of discrete cells that extend infinitely both to the left and to
the right. In CAs, time evolution is modeled by discrete time steps. An initial
condition is given by telling what cell is of what color. The color of each cell will
evolve over time. Basically our CA is just a look-up table with a rule how to
compute the color of a particular cell at a next time step depending on its current
color and the color of its two direct neighbors. An example of such a CA is
depicted in Fig. 1.

The rule numbering is according to a numbering scheme as presented in [14]
but not really relevant for the current presentation. Thus, for example, if a cell was
white at time t and both its neighbors were black at time t, then at the next step
t þ 1, the cell will turn black according to the defining look-up table of Rule 110.

As in [14] we depict the consecutive tape configurations from top to down.
Thus, for example, if we start out with just a single black cell on an otherwise
white tape, Rule 110 will give us the famous evolution as depicted in Fig. 2 below.

It is evident from Fig. 2 that complex behavior can already occur in these
simple automata. As a matter of fact, it is know that Rule 110 is universal in that it

Fig. 1 Definition of rule 110
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can -in some sense—emulate any other computational process. It is easy to see
how CA can be generalized to more symbols, more dimensions and larger radii
(taking more neighbors into account).

To come back to our test of GNS and in the setting of CAs, how should we
model processes? Should a process be modeled by a particular CA? And if so, how
should interaction be modeled? We think it is more natural to model a process by
an initial condition. Let us briefly explain why.

We have reasoned before that there is a strong analogy between physical reality
and CAs. Each cell in a CA with its respective symbol can be seen as a particular
property of physical reality at some particular locus or region. The interaction
between these properties at these regions are governed by the same laws of nature
everywhere throughout the universe. At least it is generally believed to be the case
that the laws of physics are the same throughout the universe.

One could not wish to adhere to this believe and keep the possibility open that
somewhere far away in extreme circumstances -for example close to a black hole-
the laws of physics do change. However, it still seems reasonable to expect the
laws of nature to be at least locally stable. And as we are interested on interacting

Fig. 2 Evolution of rule 110 starting with just one black cell and computed only for 700 steps.
Figure generated with Mathematica
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processes it is mainly local interaction that we are interested in. Thus, if we have a
CA simulating physical reality, it should be the same CA at every part of the tape.
Moreover, if we wish to simulate reality in which universality clearly occurs, we
better start out with a universal CA.1 Pushing the analogy further we are lead to
accept that processes correspond to the configuration of our symbols evolving over
time.

It is in this setting that the question about the defining properties of a particular
process becomes very hard. Thus, in simulations using CAs it seems more fruitful
to focus on particular features of a process rather than to find a set of defining
properties that sharply tells us what a particular process is. For the moment we
shall not address the issue of limited resources.

So now that we have identified a process with an initial condition the problem
of finding a suitable definition of complexity becomes clearly defined. Remember
that we propose to work first with one-dimensional CAs with just two symbols.
Thus, a process is nothing but a string developing over time for which there are
suitable and effective complexity measures defined (see [3] or [16]). By brute force
simulations one can now try to quantify how likely it is that the more complex
processes maintain/abide.

Even if these simulations could provide circumstantial evidence in favor of
GNS, one still has to be very careful in how to interpret the repercussions of these
simulations on the physical reality. However, positive outcomes of such simula-
tions, experiments, or theorems will certainly help gain credibility of GNS. Further
credibility could be obtained by applications of GNS in related theoretical
frameworks and only time will tell if these are to be found or not.
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Abstract We review a simple model of random walks on a rugged landscape,
representing energy or (negative) fitness, and with many peaks and valleys. This
paradigm for trapping on long timescales by metastable states in complex systems
may be visualized as a terrain with lakes in the valleys whose water level depends
on the observational timescale. The ‘‘broken ergodicity’’ structure in space and
time of trapping in the valleys can be analyzed using invasion percolation, pic-
turesquely in terms of ‘‘ponds and outlets’’ as water flows to a distant sea. Two
main conclusions concern qualitative dependence on the spatial dimension d of the
system landscape. The first is that the much-used example of a one-dimensional
rugged landscape is entirely misleading for any larger d. The second is that once d
is realistically large (above 6 seems to suffice), there are many nonmerging paths
to the sea; this may be relevant for the issue of contingency vs. convergence in
macro-evolution.
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1 Introduction

Complex systems, whether adaptive, like the immune system, or nonadaptive, like
spin glasses, are commonly characterized by a high degree of metastability. That
is, their dynamics possess multiple fixed point solutions which, while not globally
optimal, can trap the system for long periods of time; how long depends on the
depth of the metastable well and the magnitude of the noise (temperature in many
physical systems, mutation rates in asexual biological speciation, etc.). Metasta-
bility can be desirable—after all, living organisms are all metastable—or unde-
sirable, as when a folding protein or a combinatorial optimization algorithm finds
itself trapped in a misfolded state or nonoptimal solution. In disordered systems
theory, the trapping of a system on long timescales in a localized subset of its
entire state space, absent a phase transition and broken symmetry, is known as
‘‘broken ergodicity’’ [1–5]. The presence of broken ergodicity can complicate the
statistical mechanical analysis of such systems.

Mathematically, the noisy dynamics of a system with many metastable states
can be recast as a random walk on a ‘‘rugged energy (or free energy) landscape’’
[6–9]. Doing so allows one to define and analyze a well-defined mathematical
problem, make quantitative predictions, and compare with the observed phe-
nomenology of a wide spectrum of complex systems. The drawback of this
approach is that one starts not from a microscopic model of a given system, but
instead from a coarse-grained, somewhat heuristic, ansatz about its state space.

Nevertheless, to understand a common, possibly universal, feature of complex
systems, one that is independent of microscopic details, a serious analysis of
diffusion on a rugged landscape is likely unavoidable. The standard picture
invokes a high-dimensional surface with multiple ‘‘hills’’ and ‘‘valleys’’, the latter
corresponding to the various metastable states and the former to the barriers that
must be surmounted in order to escape those states and find another, perhaps
deeper, valley. (Note that in the evolutionary biology setting, the fitness landscape
is flipped relative to an energy landscape so that hills and valleys exchange roles.)
As one adopts increasingly longer timescales, one expects to observe the system
sampling an increasingly larger region of state space. The confinement here is
structural rather than dynamic; there are no constants of the motion, aside from the
fixed points, that confine the system to a particular dynamical orbit.

Of course, such a picture is meaningless unless one specifies a dynamics, such
as a single-spin-flip dynamics for a spin glass or a single-site mutation mechanism
for a genome [10]. We ignore those issues here, important though they are, and
consider more simply a given rugged landscape with a specified diffusion rule.

An often-used picture is that of Fig. 1 in [3], shown below, where configura-
tions in region A are surrounded by relatively low energy barriers, those in
region B by higher barriers, and those in region C by even higher ones. This leads
to the following picture: one can think of the energy surface as a mountainous
terrain with isolated ‘‘lakes’’ in different valleys. The ‘‘water level’’ corresponds to
the largest (free) energy scale that can be accessed at a given temperature T and
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observational timescale s. As the water level rises, lakes merge into bigger lakes in
a hierarchical fashion [2, 3, 5, 11]. At any T and s, the system is confined to a
given lake—or, to use the language of broken ergodicity, a given component [2].
Because the confining barrier increases as T ln s, the portion of state space
accessible to the system correspondingly increases. The system is therefore
ergodic in ever larger components, and accordingly will continually revisit smaller
components—now a subset of the accessible state space—to which it was once
confined.

However, a 1D sketch as in Fig. 1 can be misleading, and the physical picture
described above may be incorrect. The true configuration space is very high-
dimensional, and in high dimensions new things can happen. In particular, a route
around a mountain can often be found; one may not have to climb directly over the
top [9]. This can have profound consequences for the system dynamics, as it can
for hikers who encounter foul weather on the Tongariro Crossing [12].

2 Landscape Model

We consider a specific model with a continuum of possible free energy barriers,
and therefore of activation timescales. Consider a non-sparse graph G in d
dimensions; for specificity, we will take G to be the cubic lattice Zd, although this
will not affect our results. We next assign random variables to all edges and all
sites of G. The exact nature of the distributions from which these random variables
are chosen is not important, so long as four conditions are met: (1) the probability
distributions are continuous; (2) edge values are always greater than the values
assigned to their adjoining sites; (3) site values are bounded from below; (4) site
and edge variables are all chosen independently.

The reasoning behind these conditions is as follows. We will consider the site
values to correspond to the energies of metastable states, and edge values to

Fig. 1 Schematic picture of a rugged energy landscape, where is an abstract configuration
coordinate. At zero temperature the system is stuck in one of many local minima; however, at
positive temperature the system receives random ‘‘kicks’’ that can knock it out of its minimum.
So at longer times or higher temperatures, more of the configuration space can be explored.
From [3]
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correspond to the free energy barriers separating them. These identifications lead
naturally to conditions (2) and (3). An easy (but not necessary) way to implement
(2) is to choose the edge variables from a distribution on the positive axis and the
site variables from the negative axis. The last condition is included to simplify the
analysis, but as we will see as we proceed, will not affect our main conclusions as
applied to likely physical models. The first condition then eliminates ties. A further
simplification, not explicitly mentioned but implicit in our using a simple graph
like Zd, is choosing each distinct edge to connect a single pair of sites. Once again,
we do not expect this to affect the conclusions for physically relevant models.

The model described above is Model B of [9].
We now treat this model as describing the state space of a physical system in

equilibrium, held at inverse temperature b. This assumption provides us with a
concrete model to analyze. In that case, if Wx is the variable assigned to site x, then
the equilibrium probability density over sites pxðbÞ scales with b as

pxðbÞ� exp½�bWx�: ð1Þ

Detailed balance then requires that

pxðbÞrxyðbÞ ¼ pyðbÞryxðbÞ; ð2Þ

where rxy is understood as the rate to make a direct transition from x to y. The
rates, satisfying (2), are chosen so that

rxyðbÞ� exp �bðWxy �WxÞ
� �

ryxðbÞ� exp �bðWxy �WyÞ
� �

:
ð3Þ

The assignment of random variables defines an ordering on the (undirected)
edges of G in which fx; yg\fx0; y0g if Wxy\Wx0y0 . That is, the barriers are ordered
by increasing height, a central feature of broken ergodicity treatments. This will be
central in what follows.

3 Invasion Percolation

The following theorem was proved in [13]:

Theorem 1 For a.e. realization of the Wxy’s and Wx’s, chosen from distributions
as described above, as b!1 the sequence in which sites are first visited, starting
from some arbitrary initial site x0, converges to the invasion percolation sequence
with the same initial site and the same edge ordering.

Before discussing the consequences of this theorem, a brief discussion of
invasion percolation is in order. Invasion percolation [14–16] is a process that can
be defined either on edges or on sites; for simplicity, we restrict this discussion to
edges, but a similar construction holds for sites. Once again consider the lattice Zd,
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and assign a random variable to each edge, chosen independently from a common
continuous distribution, say the uniform distribution on ½0; 1�. Now order the edges
by the values of their associated random variables; an edge fx; yg is of lower order
than an edge fx0; y0g if the random variable assigned to fx; yg is less than that
assigned to fx0; y0g.

Beginning now from some arbitrary initial site x0, choose the edge of lowest
order connected to it. This results in a graph consisting of two sites and all 4d � 1
edges (including the previously chosen edge) connected to them. Now choose from
among those edges not previously chosen (there are 4d � 2 of them) the edge of
lowest order. One now has a cluster of three sites; one examines all (previously
unchosen) edges connected to them, and again chooses the edge of lowest order.
Repetition of this procedure generates in the limit an infinite cluster, called the
invasion region of x0. This cluster has several interesting properties; in particular,
it exhibits the property of ‘‘self-organized criticality’’ [17] in that the invasion
region of any site asymptotically behaves, as time increases, like the incipient
infinite cluster of the associated independent bond percolation problem [18], which
appears precisely at the critical percolation probability pc. That is, the dimen-
sionality of the invasion region far from x0 approaches the fractal dimensionality
of the incipient cluster at pc in the independent bond percolation problem on the
identical lattice. We will discuss other relevant properties of invasion percolation
as we proceed.

Theorem 1 is therefore a rigorous statement about the order in which sites are
visited for the first time, given an arbitrary starting site. This is a crucial result for a
system in which broken ergodicity occurs, because it provides information about
which sites are visited (or not visited) on a given timescale, and the nature of that
process, which is what we’re interested in.

Intuitively, Theorem 1 is quite reasonable. As the temperature is lowered, the
timescales for transitions governed by different free energy barriers diverge from one
another. Consequently, the system will, with probability approaching one as tem-
perature approaches zero, make a transition over the lowest barrier available to it.

Although the idea is quite simple, it has important, and mostly unappreciated,
consequences for systems whose dynamics are controlled by rugged landscapes,
due to the geometry of invasion percolation. In this regard, an important result on
the global connectivity structure of invasion percolation was derived in [19, 20]
and says the following: for invasion percolation on the lattice Zd in low dimen-
sions, there is a unique invasion region. That is, given any two starting sites, their
invasion regions will be the same except for finitely many sites (with probability
one). However, in high dimensions, there are infinitely many disjoint invasion
regions. That is, given two starting sites far from each other, their invasion regions
will totally miss each other with high probability. The critical dimension dc for the
crossover was conjectured to be 8 in [19, 20], but more recent work suggests that
dc ¼ 6 [21, 22]. For our purposes, the crossover dimension is unimportant, since
the state space of all complex systems of interest is very high-dimensional.
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What does this imply for diffusion on a rugged landscape? To simplify the
discussion, consider the ‘‘degenerate’’ case where all site values are equal; this will
not affect the main conclusion to be drawn below. Let pc denote the critical value
for independent bond percolation on Zd and let wc denote the energy level such
that Prob ðWxy�wcÞ ¼ pc. Then from any starting site, the invasion process will
increasingly behave, as time increases, like the incipient infinite cluster at pc in the
corresponding independent bond percolation problem. Most importantly, once the
process finds an infinite cluster of edges with energy levels �w0, where w0 [ wc,
it never again crosses an edge with Wxy [ w0. One can then consider the invasion
process from any point as following a ‘‘path’’ which eventually leads to ‘‘the sea’’
at infinity. In fewer than six dimensions, all invasion regions from different points
eventually follow the same path to the sea. Along the way, all individual paths
merge, some sooner, some later.

However, in greater than six dimensions, there are an infinite number of disjoint
paths to infinity; that is, infinitely many distinct seas, each of which has many
tributaries (invasion regions flowing into the sea, or equivalently, an infinite set of
sites whose invasion regions eventually connect to the corresponding infinite
cluster). A given process, starting from an arbitrarily chosen site, flows into one of
these seas, and it will never visit any sites which connect, via the invasion process,
to any of the other seas.

This seems to contradict the well-known result that the ‘‘random walk on a
random environment’’ (hereafter referred to as the RWRE) asymptotically
approaches ordinary diffusion at long times [23–25]. The resolution is that the
older result and our result each corresponds to a different order in taking the limits
time !1 and b!1, and the behavior of the RWRE is sensitive to this. When
temperature is fixed and time goes to infinity, the RWRE will eventually exhibit
normal diffusive behavior. How long this will take depends, of course, on the
temperature and the specific model studied: there exists a temperature-dependent
timescale—an ergodic time serg, so to speak—beyond which our picture breaks
down and normal diffusion takes over (or equivalently, ergodicity is restored). The
ergodic time diverges as temperature goes to zero. A timescale of this type is a
common feature in most systems which break ergodicity [2, 3].

We now return to the situation of a random walk in a strongly inhomogeneous
environment, and apply these ideas and results to see how the process evolves.

4 Diffusion in a Random Environment

Theorem 1 and its consequences are interesting for RWRE’s in dimension higher
than one; in one dimension the conventional picture holds. That is, at fixed tem-
perature 1=b and fixed observational timescale sobs, the particle is trapped
between two barriers, neither of which are surmountable (with some prespecified
probability) on a timescale of the order of sobs. If one is willing to wait
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considerably longer (on a logarithmic timescale), then the length of the line seg-
ment the particle explores is correspondingly larger, surrounded at each end by
suitably large barriers. It is not hard to show that these grow in the manner
specified in [2]: DFesc�ð1=bÞ log sobs. Thus, as time proceeds, the particle
explores an ever larger region in both directions, diffusing over previously trav-
elled terrain infinitely often as sobs !1.

In two and higher dimensions, the picture changes dramatically. In particular, as
time increases, while components grow larger, they do not contain previously
visited portions of state space. Perhaps more surprisingly, rather than the confining
barriers increasing logarithmically with time as sobs !1, a constant barrier
value is approached (although not necessarily monotonically) [26]. To see why
this is, we need to explore the properties of the incipient infinite cluster in ordinary
percolation, which as noted above corresponds essentially to the asymptotic
invasion region.

In particular, we need to examine the process whereby invasion percolation
‘‘finds a path’’ to infinity. This process is independent of whether there are one or
many disjoint invasion regions. For any starting x0 and realization of bond and site
variables, the path to infinity is unique. To simplify the argument, suppose for the
moment that all site variables have the same value and only the edge variables are
chosen from a probability distribution (say, the uniform distribution in the interval
[0, 1]).

Consider a starting site x0, and all bonds with values smaller than some p1 [ pc.
In the associated independent bond percolation problem, these comprise a unique
infinite cluster [27]. A little thought should then convince the reader that once the
invasion process reaches any of the bonds within this infinite cluster, it will never
again cross any bond whose value is greater than p1. Consider next all bonds
whose values are less than some p2, where pc\p2\p1. These too form a unique
infinite cluster which is a subset of the first, larger one. When the invasion process
reaches any of the bonds within this newer infinite cluster, it will never again cross
any bonds greater than p2. It is easy to see that, as the process continues, the
invasion region will focus itself down to infinite clusters of increasingly smaller
maximum bond value, and will asymptotically behave like the incipient infinite
cluster of the independent bond percolation problem at pc. This, by the way, is an
excellent natural example of ‘‘self-organized criticality’’ [17].

We now need to investigate the structure of the incipient infinite cluster. It is
important to note that this is not an infinite cluster at all—there is no percolation at
pc—but rather consists of a sequence of increasingly large but disconnected
clusters (see Fig. 2). A picturesque way of understanding its structure is the
‘‘ponds and outlets’’ picture of [13], which utilizes an earlier construction of
Hammersley [28].

At the earliest stages of the process, a set of relatively smaller-valued bonds
(depending on x0) will be invaded before the process has to invade a relatively
larger one to make its way toward infinity. Picturesquely, we think of the process
as stranded on a pond; it needs to find a relatively high outlet before it can escape.
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The outlet corresponds to the bond whose value is larger than that of all others
within the pond, but smaller than all others on the perimeter of the pond. The two
important points following from this are first, this first outlet will be the bond of
largest value that the process will ever cross, and second, once this outlet is
crossed, the process will not return to the first pond [29]. That is, there is a sort of
‘‘diode effect’’ in the process.

After crossing the first outlet, the process will find itself on a second pond, and
must invade an outlet of smaller value than the first one. In this way it invades a
sequence of successively smaller outlets (with bond values larger than but tending
toward pc) on its way to the sea (see Fig. 3). The general trend is for the ponds to
grow successively larger, but this need not be true monotonically.

Fig. 2 A sketch of the so-called ‘‘incipient infinite cluster’’, which is not an infinite cluster at all
but rather a sequence of infinitely many disjoint finite clusters. In the figure, the largest cluster
seen in window Wi is (most of) Ci for i ¼ 1 or 2. C1 and C2 are both finite. From [13].
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Ponds and outlets can be defined precisely. Consider all possible paths to
infinity from the starting point x0. Each such path P will contain some bond of
maximum value; call it bP . The first ‘‘outlet’’ is then the bond b� of minimum value
from the set fbPg. The first ‘‘pond’’ is the finite cluster connected to x0 consisting
of all bonds whose values are strictly less than that of b�. The second pond and
outlet can be found using the same procedure from the starting point x1, where x1

is the site which touches b� and is outside the first pond. This procedure can be
repeated indefinitely to find ponds and outlets of any order.

Alternatively, one can define them in the following way. Starting from x0, one
considers the finite cluster connected to x0 which consists of all bonds with values
less than p ¼ pc. One then raises p in a continuous manner, causing the cluster
connected to x0 to grow. At some sharp value of p (depending on x0) the cluster
becomes infinite; it is not hard to see that there will be a single bond connecting
the (previously finite) cluster containing x0 with infinity. This bond is the first
outlet, and all bonds in the interior finite cluster comprise the first pond.

A rigorous analysis of the distribution and other features of two-dimensional
ponds and outlets was carried out by Damron and Sapozhnikov in a series of three
papers [30, 31]. They obtained very precise estimates of the asymptotic behaviors

Fig. 3 A rough sketch of the ‘‘ponds and outlets’’ picture illustrating the diode effect. The first
pond contains the starting site x0. Arrows indicate the large-scale direction of motion; once the
process leaves a given pond, it does not return. The values of the bn decrease as n increases; bn

controls the height of the minimal barrier confining the system to pond n, as described in the text.
From [13]
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of the radius and area of the kth pond and the bond value of the kth outlet as
k!1. They also analyzed the similarities and differences between the various
ponds and the critical cluster of the origin as well as between the whole invasion
region and the incipient infinite cluster (as defined by Kesten [32]).

So what do these results mean for a broken-ergodic view of diffusion in a
random environment? The first thing to notice is that, for an observational time
smaller than the ergodic time serg—which for low temperatures and in glass-like
complex systems will be much longer than the age of the universe—the diffusing
‘‘particle’’ (that is, the state of the system in a high-dimensional state space) is
confined to an infinite component that comprises an exceedingly small proportion
of the entire state space. This is markedly different from the usual idea of a finite
component. But an even more radical departure from the usual component, defined
by temperature and observational timescale (cf. Sect. 1), is that these components
are intrinsic to the system itself, and not defined with respect to any observational
timescale.

Perhaps the most serious departure from the usual view is that the evolution of
the system (in terms of states visited) is largely deterministic, depending only on
the starting point. Of course, the particle will still diffuse among the states allowed
by the above confinement mechanism, but it does so in a manner which again
differs considerably from all previous pictures of which we are aware. We now
explore this in more detail.

While the notion of broken ergodicity components is realized in our approach
through ponds and outlets on a local scale, with their union constituting a global
component, there are some important differences as well. There is no recurrence on
a large scale, though there is within a pond until an outlet is crossed. Once that
outlet is crossed, however, the system never returns to that pond. On the scale of
ponds, there is a ‘‘diode effect’’: the walker always moves forward, never back-
ward (see Fig. 3). Some possible experimental manifestations of this will be listed
in the Applications section below.

This diode effect is quite different from the nonreturn of ordinary random
walks. For example, in d ¼ 2, the diode effect remains valid even though ordinary
random walks are recurrent. On the other hand, for large d, the invasion region
dimension, which is four, is twice that of an ordinary random walk, which is two.

The other major difference is that in conventional BE, the system must sur-
mount increasingly high barriers as time progresses. The opposite again holds
here—the barriers which confine the system (that is, the outlets) diminish steadily
as time increases. The landscape through which the diffusing system travels
becomes increasingly flat. (The particle often sees many high peaks in its vicinity,
but it avoids them.) This is true in all dimensions greater than one.

What role does entropy play? As it turns out, not much. Consider the system

immediately after it has escaped the nth pond. We know already that almost all of
the time expended up to that point was used in getting to the pond in the first place.
More importantly, once inside the pond, the problem of finding its outlet is not a
needle-in-the-haystack problem: the system is not wandering around aimlessly in
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state space, eventually finding the outlet by remote chance. Because the particle is
confined to the pond on a certain timescale, the timescale for confinement within
that pond is simply exp½bW�n �, where W�n is the value assigned to the outlet for that
pond. During this time the process thermalizes within the pond.

For entropy effects to counteract the decreasing values of W�n as n increases, it
would seem to require exponentially increasing pond size, whereas pond size
almost certainly increases much more moderately, probably as a power law.
Consequently, the picture shown in Fig. 1 is a purely one-dimensional picture. In
any higher dimension (irrespective of whether there are one or many global
components), the ‘‘water level’’ does not rise as time increases at fixed temperature
(or temperature increases at fixed time). Viewed from x0, the water level initially
rises, but then stays forever fixed, because it finds a path to the ‘‘sea’’ (that is, to
infinity), into which it empties. Any additional water poured in simply escapes to
infinity.

What about barrier heights as time increases? The height of the confining
barrier, or outlet, is declining towards a limit wc, corresponding to pc in the
independent percolation model. At the same time, the energy of the lowest
‘‘valley’’ within a pond generally becomes more negative as time progresses (and
the system explores larger ponds), asymptotically (but slowly) approaching the
minimum of the distribution; call it wmin. Therefore, the barriers which the system
must surmount to escape successive ponds, rather than increasing without bound,
asymptotically approach wc � wmin.

5 Applications

Before considering specific applications, we need to consider how our picture is
modified in the usual case of fixed temperature and time going to infinity. Our
main result, that the dynamics of many RWRE models are governed by invasion
percolation, is rigorous only when the limit T ! 0 is taken before t!1.

What should we then expect to happen when temperature is fixed (at some
value small compared to the majority of barrier heights) and time increases? As
discussed earlier, there will be an ergodic timescale at which the system is likely to
escape the global component (invasion region) in which it finds itself. Beyond this
timescale we expect ordinary diffusive behavior, but of a specific sort: the system
will mostly hop from component to component on the ergodic timescale, but after
it finds itself in a new component, it stays there roughly for another ergodic time.
So on shorter timescales, one will find the system within a global component; on
longer timescales, it diffuses between components. Unless one is examining the
system on timescales extremely large compared to serg, often well beyond the
reach of laboratory timescales, one will observe the basic picture described above.

Many experiments do not hold temperature fixed, and our picture can possibly
shed light on these also. A well-known experiment on Ag:Mn spin glasses was
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performed some years ago by Chamberlin et al. [33] in which spin glass samples
were cooled to low temperature in zero magnetic field, after which a DC magnetic
field was turned on.

It was hypothesized in that paper that the application of this external field would
‘‘randomize’’ the energy surface. How might this occur? An initial guess might be
that this change would take place in a continuous, gradual manner. If this were the
case, then if the field were changed by a very small amount, a reversible change in
magnetization would result. This was not observed, however, even for the smallest
applied fields (� 40 mOe); the magnetization always displayed an irreversible
drift governed by a quasilogarithmic time dependence [33–36]. The explanation
given was that any field, no matter how small, completely ‘‘scrambles’’ the energy
surface, which would account for the irreversibility on all scales. This might be the
case, but the explanation lacks a clear underlying model in which this occurs.

How might this same effect be understood in the picture presented in this paper?
The simplest explanation is that that the surface is largely unchanged, aside from a
‘‘tilt’’ imposed by the field. The effect of this tilt is to lower the barriers in certain
directions, making escape easier from the pond in which the system found itself
before the field was turned on. Once the field is turned off, the system is in a new
pond and one is simply observing the diode effect discussed earlier.

A similar explanation can be used to understand aging experiments in which the
temperature is raised and then lowered, or vice-versa [37]. What is typically seen
is that if temperature is first lowered and then raised, the system returns to its
original state: the process is reversible. Raising the temperature first and then
lowering it, however, is irreversible. In the ponds-and-outlets picture, this is easily
understood: lowering the temperature simply confines the system to a smaller
region of the pond it was in at the start of the process. Raising the temperature then
simply restores the system to the entire pond. Raising the temperature first,
however, will generally land the system in a new pond, if not an entirely new
global component altogether, after which the diode effect insures irreversibility.
(Of course, the one-dimensional picture of Fig. 1 makes essentially the same
prediction, so these experiments do not distinguish the standard BE picture based
on Fig. 1 from our picture. The experiments are consistent with both.)

A second interesting application of these ideas is to biological evolution, par-
ticularly in its early stages. A universal feature of systems governed by the sce-
nario described in this paper is that the largest barrier the system must surmount is
the outlet corresponding to the first pond the system finds itself in; once that barrier
is surmounted, the system finds itself in ponds confined by increasingly smaller
barriers. Qualitatively, this would correspond to the earliest stages of a process
described by an RWRE as lasting the longest, and later stages having increasingly
shorter lifetimes.

A well-known feature of life on earth is that it began roughly a half-billion
years after the earth was formed; that is, relatively quickly on geological time-
scales. For the next three and a half billion years or so, life was confined mostly to
simple, single-celled organisms, or colonies of such organisms. This epoch (which
comprises most of the Earth’s history) is known as the Precambrian Era. Then,
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roughly half a billion years ago, multicellular organisms rapidly evolved, an event
known as the Cambrian explosion. Evolution thereafter proceeded rapidly.

On a qualitative level, at least, this corresponds well to the ponds-and-outlets
scenario [38]. Our model would predict that this is a feature of evolution not
confined only to earth, but that a similar distribution of timescales should occur
anywhere life forms and evolves.

An issue of particular interest concerns contingency and convergence in evo-
lution. That is, would slightly different starting situations lead to long term dif-
ferences in the nature of evolving biomes (a contingency effect) or would it not
(a convergence effect)? From the invasion percolation perspective, this corre-
sponds to the question of whether different starting sites would or would not merge
into a common path to the sea. The answer for invasion percolation, as discussed
previously, depends on the dimension with convergence for low dimensions and
contingency above a critical dimensions (now presumed to be six). Since the
relevant space for biological evolution is presumably high dimensional, this pic-
ture supports the conclusion of contingency.
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Structural Complexity of Vortex Flows
by Diagram Analysis and Knot
Polynomials

Renzo L. Ricca

Abstract In this paper I present and discuss with examples new techniques based
on the use of geometric and topological information to quantify dynamical
information and determine new relationships between structural complexity and
dynamical properties of vortex flows. New means to determine linear and angular
momenta from standard diagram analysis of vortex tangles are provided, and the
Jones polynomial, derived from the skein relations of knot theory is introduced as
a new knot invariant of topological fluid mechanics. For illustration several
explicit computations are carried out for elementary vortex configurations. These
new techniques are discussed in the context of ideal fluid flows, but they can be
equally applied in the case of dissipative systems, where vortex topology is no
longer conserved. In this case, a direct implementation of adaptive methods in a
real-time diagnostics of real vortex dynamics may offer a new, powerful tool to
analyze energy-complexity relations and estimate energy transfers in highly tur-
bulent flows. These methods have general validity, and they can be used in many
systems that display a similar degree of self-organization and adaptivity.
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1 Introduction

Networks of fluid structures, such as tangles of vortex filaments in turbulent flows
or braided magnetic fields in magnetohydrodynamics, are examples of physical
systems that by their own nature are fundamentally structurally complex [1]. This
is the result of many contributing factors, among which the highly nonlinear
character of the governing equations, the simultaneous presence of different space
scales in the emerging phenomena, and the spontaneous self-organization of the
constituent elements. In this respect ideal vortex dynamics offers a suitable the-
oretical framework to develop and apply methods of structural complexity to
investigate and analyze dynamical properties and energy-complexity relations.

In this paper I present and discuss with examples new techniques based on the use
of algebraic, geometric and topological information to quantify dynamical infor-
mation and to determine new relationships between energy and complexity in
coherent vortex flows. These flows, that arise naturally from spontaneous self-
organization of the vorticity field into thin filaments, bundles and tangles of filaments
in space, both in classical and quantum fluids, share common features, being the seeds
and sinews of homogeneous, isotropic turbulence [2, 3]. Characterization and
quantification of such flows is of fundamental importance from both a theoretical and
applied viewpoint. From a theoretical point of view detailed understanding of how
structural, dynamical and energetic properties emerge in the bulk of the fluid and
change both in space and in time is at the basis of our analysis of how self-organi-
zation and non-linearities play their role in complex phenomena. For applications,
understanding these aspects is also of fundamental importance to develop new real-
time diagnostic tools to investigate and quantify dynamical properties of turbulent
flows in classical fluid mechanics and magnetohydrodynamics.

The remarkable progress in the use of geometric and topological techniques
introduced in the last decade [5–7], associated with continuous progress in com-
putational power and visualization techniques [8, 9] in the light of the most recent
developments in the field [10], is a testimony of the success of this novel approach.
Here we shall confine ourselves to some new geometric and topological techniques
introduced recently [11, 12] to estimate dynamical properties of complex vortex
tangles of filaments in space. Most of the concepts presented here, being of geo-
metric and topological origin, are independent of the actual physical model. We
shall therefore momentarily drop the physics, and refer to the geometry and
topology of the filament centerlines. These will be simply seen as smooth curves
that may form knots, links and tangles in space, and it is to this system of curves
that our analysis will be dedicated. Then, we shall apply this analysis to vortex
dynamics, in order to get new physical information.

In Sect. 2 I start by introducing basic notions of standard and indented diagram
projections to determine signed area and crossing numbers of knots and links in
space. In Sect. 3 the definitions of linear and angular momenta of a vortex system
in ideal conditions are introduced, providing a geometric interpretation of these
quantities in terms of area. As illustration a number of examples are presented in
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Sect. 4 to evaluate the impetus of some vortex knots and links; a general statement
on the signed area interpretation of the momenta for vortex tangles is presented in
Sect. 5. Then, in Sect. 6 knot polynomial invariants used to classify topologically
closed space curves in knot theory are considered. I concentrate on the Jones
polynomial, and, for illustration, the polynomial for several elementary knots and
links (Sect. 7) are computed. By showing that it can be expressed in terms of
kinetic helicity (Sect. 8), I show that the Jones polynomial can be re-interpreted as
a new invariant of topological fluid mechanics (Sect. 9). In Sect. 10 I conclude
with some considerations on possible future implementations of these concepts in
advanced, adaptive, real-time diagnostics, to estimate energy and helicity transfers
in real, turbulent flows.

2 Standard and Indented Diagrams: Signed Areas
and Crossing Numbers of Knots and Links

To begin with, let us consider an isolated, oriented curve v in R
3; this can be

thought of as the axis of a tubular neighborhood that constitute the support of the
actual vortex filament in space; the orientation of the curve is then naturally
induced by the orientation of vorticity. v is taken sufficiently smooth (i.e. at least
C2) and simple (without self-intersections), given by the position vector X ¼ XðsÞ,
where s 2 ½0; L� is arc-length and L the total length. A Frenet triad f̂t; n̂; b̂g, given
by the unit tangent t̂ ¼ dX=ds, normal and binormal vector, is defined on any point
of v and at each point of v curvature c ¼ cðsÞ and torsion s ¼ sðsÞ are defined.
From the fundamental theorem of space curves, any curve in space is prescribed
uniquely, once curvature and torsion are given as known functions of s. For the
purpose of this paper we confine ourselves to closed and possibly knotted curves.
A closed curve is given by Xð0Þ ¼ XðLÞ and smooth closure implies that this is
also true for higher derivatives of XðsÞ.

Under continuous deformations the geometric properties of v change continu-
ously, but the topological properties remain invariant. Any curve that can be
continuously deformed to the standard circle (without going through self-inter-
sections or cuts) is not knotted and it is called the unknot. The task of knot theory
(and of topology in general) is precisely to classify curves according to the
topological characteristics of their knot (or link) type, where a collection (disjoint
union) of N such curves, knotted or unknotted, constitute a link. A link of two
mathematical tubes, centered on the axes v1 and v2, is shown in Fig. 1a. A vortex
tangle is thus an N-component link of vortex filaments, where vorticity is simply
defined within the tubular neighborhood of each component.

Standard projection. Let us consider now the standard projection of an N-
component link; for simplicity, let us take the case of the 2-component link of
Fig. 1a, and consider the orthogonal projection p of this link onto the plane. The
resulting graph K ¼ pðv1 [ v2Þ is a nodal curve in R

2 with 4 intersection points
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(Fig. 1b). Each nodal point results from the intersection of 2 incident (oriented)
arcs: these nodal points have therefore multiplicity (or degree) 2. In general, a
nodal point of multiplicity l is the intersection of l incident arcs. By a small
perturbation of the projection map p, a l-degree point can be reduced to l nodal
points of degree 2 (see the example of Fig. 2). A good, standard projection is
therefore a map that for any link of curves generates a planar graph K, with at most
nodal points of degree 2. Let us restrict our attention to such good projections and
consider the graph K, given by a collections of oriented arcs.

Indented projection. Let us focus now on the topological characteristics of a
link, for instance the 2-component link of Fig. 1a. One way to analyze topological
aspects of a link is to consider indented projections. One of these is given by
projecting the link onto a plane by keeping track of the over/under-crossings by
small indentations of the over/under-passes of the projected arcs (see the example
of Fig. 1c). As above, we must ensure that at each apparent crossing only two arcs
meet.

Signed areas from standard projections. The graph K, obtained from standard
projections, determines a number of regions, say Rj (j ¼ 1; . . .; Z), in the plane.

(a)

(b) (c)

Fig. 1 a A 2-component link of tubes centered on the oriented curves v1 and v2 in space.
b Standard projection of the link shown in (a) onto R

2; the resulting graph K ¼ pðv1 [ v2Þ is an
oriented nodal curve in the plane, with 4 intersection points. c Indented projection of the same
link onto R

2: by small indentations in the plane, over-crossings and under-crossings are shown to
preserve topological information of the original link in space

Fig. 2 A point P of multiplicity 3 can be reduced to 3 nodal points P1, P2, P3 of multiplicity
(degree) 2
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Each region may be bounded by a number of oriented arcs, that may or may not
have congruent orientation (see, for instance, the graph of Fig. 1b). In the latter
case, the standard geometric area of a region Rj must be replaced by the signed
area, to take account of the different orientation of the bounding arcs and area
contributions from the graph K. With reference to Fig. 3, let us introduce a
positive reference given by the pair of unit vectors ðq̂; t̂Þ. The radial vector q̂ is
chosen arbitrarily to have a generic foot in the region R, pointing outwardly to the
exterior of R, and t̂, the unit tangent to the boundary curve with direction induced
by the projected orientation. Let us apply now this construction to the collection of
regions Rj associated with a generic graph K, and consider the successive points of
intersection given by the q̂-line as it crosses the arcs of K in the q̂-direction. To
each intersection point let us assign the value � ¼ �1, according to the positive
reference given by ðq̂; t̂Þ determined by the orientation of each arc. For the simple
case of Fig. 3, where there is only one region and one bounding curve, and
therefore only one intersection point, we have � ¼ þ1, but in general we may have
several intersection points (see examples of Sect. 4 below), each contributing �1
according to their signed crossing.

Definition. The index of a region Rj of K 2 R
2, is given by

I j ¼ I jðRjÞ ¼
X

r2fq̂\Kg
�r ; ð1Þ

where fq̂ \ Kg denotes the set of intersection points given by the q̂ vector with all
the arcs of K in that direction, and �r ¼ �1, according to the sign of the reference
ðq̂; t̂Þ at each intersection point with K.

It can be easily proved that the index I j is a topological property of the region
Rj, independent of the choice of the position of the footpoints Oj and of the
direction of the q̂j-lines. We can now define the signed area of a graph region
according to the following definition.

Definition. The signed area of a region Rj is given by

AjðRjÞ ¼
X

j

I jAjðRjÞ ; ð2Þ

where AjðRjÞ denotes the standard area of Rj.

Fig. 3 Positive reference
ðq̂; t̂Þ, given by the radial and
tangent unit vectors
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The signed area extends naturally the concept of standard area for regions
bounded by arcs of different orientations and it will be useful in the geometric
interpretation of linear and angular momenta of vortex tangles.

Minimum number of crossings and linking number from indented projections.
Two useful topological invariants can be extracted from indented projections. One
is based on the minimum number of apparent crossings in an indented projection.
Among the infinite number of possible indented projections, we consider the
indented projection that gives the minimum number of crossings (minimal dia-
gram) and, quite simply, we define this number as the topological crossing number
of the knot or link type.

Another topological quantity can be computed from a generic indented pro-
jection. By standard convention (see Fig. 4) we assign �r ¼ �1 to each apparent
crossing site r. We can then introduce the following:

Definition. The linking number of a link type is given by

Lk ¼ 1
2

X

r

�r ; ð3Þ

where the summation is extended to all the apparent crossing sites, in any generic
indented projection of the link.

In the example of Fig. 1c, there are 4 apparent crossings þ1, hence the linking
number Lkðv1; v2Þ ¼ þ2. Since the linking number is a topological invariant, its
value is independent from the projection.

3 Linear and Angular Momentum of a Vortex Tangle
from Geometric Information

First, let us consider a single vortex filament K in an unbounded, ideal fluid at rest
at infinity, where vorticity is confined in the filament tube. Vortex filaments arise
naturally in superfluid turbulence [3], where indeed vorticity remains localized for
very long time on extremely thin filaments, with typical length of the order of 1 cm
and vortex cross-section of the order of 10�8 cm.

Let K ¼ KðvÞ be centered on the filament axis v. Let us assume that vorticity is
given simply by x ¼ x0 t̂, where x0 is a constant, and orientation is induced by
vorticity. The vortex circulation (an invariant of the Euler’s equations, and
quantized in the superfluid case), is given by

Fig. 4 Standard sign
convention for a positive
(over-) crossing and a
negative (under-) crossing
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j ¼
Z

A
x d2X ¼ constant; ð4Þ

where A is the area of the vortex cross-section. Two fundamental invariants of
ideal fluid mechanics are the linear and angular momenta. The linear momentum
(per unit density) P ¼ PðKÞ corresponds to the hydrodynamic impulse, which is
necessary to generate the motion of the vortex from rest; from its standard defi-
nition [13], it takes the form

P ¼ 1
2

Z

V
X� x d3X ¼ 1

2
j
I

LðvÞ
X� t̂ ds ¼ constant; ð5Þ

where V is the filament volume. Similarly, for the angular momentum (per unit
density) M ¼MðKÞ (the moment of the impulsive forces acting on K), given by

M ¼ 1
3

Z

V
X� ðX� xÞ d3X ¼ 1

3
j
I

LðvÞ
X� ðX� t̂Þ ds ¼ constant: ð6Þ

Now evidently, since t̂ ds ¼ dX, the right-hand-side integrals in (5) and (6) admit
an interpretation in terms of (twice) the geometric area. It is quite surprising that
this geometric interpretation, recognized by Lord Kelvin in his early works on
vortex motion, has remained almost unexploited to date, and it is this particular
aspect that we want to exploit here. Since both P and M are vector quantities, each
vector component can be related to the area of the graph resulting from the
projection of v along the direction of projection given by that component. By
referring to the standard projection K ¼ pðvÞ, we have

pðvÞ : R
3 ! R

2 ;

px : Kyz ; Ayz ¼ AðKyzÞ ;
py : Kzx ; Azx ¼ AðKzxÞ ;
pz : Kxy ; Axy ¼ AðKxyÞ ;

8
><

>:
ð7Þ

where, in the case of a simple, non-self-interesecting, planar curve K, Að�Þ
coincides with the standard geometric area bounded by K. Hence, we can write

P ¼ ðPx;Py;PzÞ ¼ jðAyz;Azx;AxyÞ ; ð8Þ

M ¼ ðMx;My;MzÞ ¼
2
3

jðdxAyz; dyAzx; dzAxyÞ ; ð9Þ

where dxAyz, dyAzx, dzAxy are the areal moments given according to the following
definition.

Definition. The areal moment around any axis is the product of the area A
multiplied by the distance d between that axis and the axis aG, normal to A
through the centroid G of A.
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Hence, dx, dy, dz denote the Euclidean distances of the area centroid G of A
from the axes x, y, z, respectively.

4 Impetus of Vortex Knots and Links: Some Examples

4.1 Single-Component Systems: Vortex Knots

Figure-of-eight knot. Let us consider the diagram of Fig. 5a and let us evaluate the
indices of the graphs. Suppose that this diagram results from the projection of a
figure-of-eight knot (in the diagram shown we kept track of over-crossings and
under-crossings for visualization purposes only; in the standard, planar projection
all the crossings become nodal points). For each region we arbitrarily choose a
radial vector and for each vector we consider the intersections of the q̂-line with
the graph. At each intersection we assign a þ1 or a �1, according to the positive
reference defined in Sect. 2, and we sum up all the contributions according to (1),
hence determining the index of that region. Their values are shown encircled in
Fig. 5a. These values are topological in character, because they do not depend on
the choice of the footpoint of q̂, thus providing the necessary prefactor for the
standard area. Using Eq. (8) we see that the central region of the figure-of-eight
knot with index 0 does not contribute to the impetus in the direction normal to this
plane projection, whereas the nearby regions, with relative indices þ1;�1 and �2
will tend to contribute to the motion in opposite directions. The index �2 asso-
ciated with the smallest region, then, may compensate for a modest area
contribution.

Poloidal coil. Consider now the diagram of Fig. 5b, and suppose that this
results from the projection of a poloidal coil in space. Since the central area has
index þ1 and the external lobes have all indices �1, by (8) we see that the
resulting impetus component may amount to a negative value (depending on the

(b)(a)

Fig. 5 a The figure-of-eight knot shown in an indented projection. In a standard plane projection
all the apparent crossings collapse to nodal points. The encircled values denote the indices
associated with their respective regions. b A poloidal coil in a standard plane projection
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relative contributions from standard areas), giving rise to a backward motion in the
opposite direction of the normal to the plane of projection. Such strange type of
motion has been actually found by numerical simulation by Barenghi et al. in 2006
[14], and confirmed by more recent work by Maggioni et al. [15].

Trefoil knotting. A ‘‘thought experiment’’ to produce a trefoil vortex knot from
the interaction and reconnection of vortex rings was conjectured by Ricca [16].
Upon collision (see Fig. 6a), two vortex rings propagate one after the other to
reconnect, thus forming a trefoil knot (as in Fig. 6b). By assigning the indices to
the different regions, it is possible to estimate the impulse associated with the
different parts of the vortex in relation to the projected areas.

4.2 Multi-Component Systems: Vortex Links

Rings. Two vortex rings of equal but opposite circulation move towards each other
to collide (see left diagram of Fig. 7). A finite number of reconnections take place
on the colliding vortices, triggering the production of smaller vortex rings. Small
rings are thus produced (right diagram of Fig. 7). This process has been actually
realized by head-on collision of coloured vortex rings in water by Lim & Nickels
[17]. Since at the initial state linear momentum P ¼ 0 (for symmetry reason), we
expect that this remains so, till reconnections take place. The central diagram of
Fig. 7 represents (schematically) the graph in the plane of collision, at the
reconnection time. By applying the index computation, we can estimate the signed
areas contributions. By using (8), we see that the central region does not contribute
to the momentum of the system, whereas the outer regions, contribute with
opposite sign to the momentum of the emerging small vortex rings. The alternating
signs of the outer regions indicate the production of smaller rings of opposite
polarity, thus ensuring P ¼ 0 throughout the process. The generation and shoot-off
of smaller rings from the plane of collision in opposite directions seems in
agreement with the experimental results of Lim and Nickels [17].

Hopf links. Finally, let us consider the projection of a Hopf link made by two
vortex rings of circulation j1 and j2 (see Fig. 8). All indices have same sign,

(a) (b)

Fig. 6 a Two vortex ring interact and b reconnect to form a trefoil knot. The central region,
having largest area and highest index, is likely to move more rapidly than the rest of the system in
the normal direction to the projection plane
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indicating that all the graph regions in the projection contribute in the same
direction to the impetus of the system. The central part, having the highest index,
is likely to move faster than the rest of the system.

5 Momenta of a Tangle of Vortex Filaments

From the examples considered in the previous section it is clear that the geometric
interpretation of the momenta based on Eqs. (8) and (9) can be easily extended to
any complex graph resulting from the projection of a tangle T ¼ [iKðviÞ of
filaments in space. We can now state the geometric criterium for the computation
of the momenta from geometric diagram information.

Theorem (Momenta in terms of signed area interpretation) Let T be a vortex
tangle under Euler equations. Then, the linear momentum P ¼ PðT Þ ¼
ðPx;Py;PzÞ has components

Px ¼ j
XZ

j¼1

I jAyzðRjÞ ; Py ¼ . . . ; Pz ¼ . . . ; ð10Þ

and the angular momentum M ¼MðT Þ ¼ ðMx;My;MzÞ has components

Fig. 8 Projection of a Hopf
link formed by two vortex
rings of circulation j1 and j2

(a) (b)

Fig. 7 a Two vortex ring interact and b reconnect to form a trefoil knot. The central region,
having largest area and highest index, is likely to move more rapidly than the rest of the system in
the normal direction of projection
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Mx ¼
2
3
jdx

XZ

j¼1

I jAyzðRjÞ ; My ¼ . . . ; Mz ¼ . . . ; ð11Þ

where AyzðRjÞ, AzxðRjÞ, AxyðRjÞ denote the standard areas of Rjðj ¼ 1; . . .; ZÞ, for
any projection plane normal to the component of the momenta of T .

Proof of the above Theorem is based on direct applications of (8), (9) and (2).

6 Knot Polynomial Invariants from Skein Relations:
The Jones Polynomial

Indented diagrams of knot and link types are used to determine knot topology by
extracting topological invariants known as knot polynomials. Several types of knot
polynomials have been introduced as subsequent improvements, R-polynomials,
Kauffman brackets [18], Jones polynomials [19] and HOMFLY-PT [20, 21]
polynomials being such types of knot invariants. These polynomials are deter-
mined by skein relations derived from the analysis of crossing states in the
indented diagrams of knots and links, given by un-oriented or oriented curves.
With reference to Fig. 9, denoting by Lþ, L�, and L0 an over-crossing, an under-
crossing and a non-crossing, respectively, we can derive skein relations for each
polynomial.

6.1 Skein Relations of the Jones Polynomial

The Jones polynomial is a quite powerful knot invariant for oriented knots and
links. It is therefore well-suited to tackle topological complexity of vortex tangles.
The skein relations of the Jones polynomial are standardly derived by a technique
called local path-addition, that consists of computing crossing states according to
the analysis of the elementary states given by the over-crossing , the
under-crossing , and the disjoint union with a trivial circle. . The
skein relations of the Jones polynomial are given by [19, 22]:

ð12Þ

(a) (b) (c)

Fig. 9 a Over-crossing
Lþðþ1Þ, b under-crossing
L�ð�1Þ, and c non-crossing
L0 of oriented strands in an
indented knot diagram
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ð13Þ

Here we should stress that local path-additions are purely mathematical operations,
performed virtually on the knot strands, the only purpose being simply the
mathematical derivation of the polynomial terms, that give rise to the desired
polynomial invariant. No actual physical process is therefore involved.

We can apply the skein relations (12)–(13) to determine the Jones polynomial
of any given oriented knot/link. Calculations are based by applying reduction
techniques performed recursively on (apparent) crossing sites, according to the
diagrams shown in Fig. 10. These techniques resort to virtually split the over/
under-crossing (Fig. 10a and b), by adding and subtracting local paths, so as to
reduce each crossing site to a non-crossing plus a positive/negative writhe con-
tribution, denoted respectively by cþ and c�.

7 Computation of the Jones Polynomial for Trefoil Knots
and Whitehead Link

For the sake of illustration we compute the Jones polynomial by considering a
number of elementary examples. First, let us consider the diagrams of Fig. 11.
Evidently in (a) the writhe cþ and the writhe c� are both topologically equivalent
to the unknot, i.e. the standard circle; hence by (12), we have ¼ VðcþÞ ¼
Vðc�Þ ¼ 1: Now, by using (13), we have

s�1VðcþÞ � sVðc�Þ ¼ ðs
1
2 � s�

1
2ÞVðlccÞ ; ð14Þ

hence,

(a)

(b)

Fig. 10 By adding and subtracting local paths a an over-crossing Lþðþ1Þ is reduced to a non-
crossing plus a positive writhe cþ, and b an under-crossing L�ð�1Þ is reduced to a non-crossing
plus a negative writhe c�
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VðlccÞ ¼ �s�
1
2 � s

1
2 : ð15Þ

Note that the orientation of any number of disjoint rings has no effect on the
polynomial. As regards to the Hopf link Hþ (Fig. 11b), we have

s�1VðHþÞ � sVðlccÞ ¼ ðs
1
2 � s�

1
2ÞVðcþÞ ; ð16Þ

that gives

VðHþÞ ¼ �s
1
2 � s

5
2 : ð17Þ

Similarly for the Hopf link H� of Fig. 11c:

s�1VðlccÞ � sVðH�Þ ¼ ðs
1
2 � s�

1
2ÞVðc�Þ ; ð18Þ

that gives

VðH�Þ ¼ �s�
1
2 � s�

5
2 : ð19Þ

7.1 Left-Handed and Right-Handed Trefoil Knots

The left-handed trefoil knot TL and right-handed trefoil knot TR are shown by the
top diagrams of Fig. 12a and b, respectively. By re-arranging (13), we can convert
a crossing in terms of its opposite plus a contribution from parallel strands, that is

(a)

(b)

(c)

Fig. 11 a Writhes cþ, c� and disjoint union of two trivial circles lcc. b Hopf link Hþ with
crossing þ1, disjoint union of circles lcc and writhe cþ. c Hopf link H� with crossing �1, disjoint
union of circles lcc and writhe c�. Note that the orientation of any number of disjoint circles does
not influence the polynomial
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ð20Þ

By applying this relation to the encircled crossing of each trefoil knot we can
transform the top diagrams of Fig. 12 into their relative decompositions given by a
writhe and a Hopf link (bottom diagrams). With reference to the left-handed trefoil
of Fig. 12a, we have a writhe c� and a Hopf link H�.

Hence, by using the elementary results above, we have: for the left-handed
trefoil knot TL

Vðc�Þ ¼ s2VðTLÞ þ ðs3
2 � s

1
2ÞVðH�Þ ; ð21Þ

that, by using (19), gives

VðTLÞ ¼ s�1 þ s�3 � s�4 : ð22Þ

For the right-handed trefoil knot TR, we have

s�1VðTRÞ � sVðcþÞ ¼ ðs
1
2 � s�

1
2ÞVðHþÞ : ð23Þ

Thus, by using (17), we have

VðTRÞ ¼ sþ s3 � s4 : ð24Þ

By comparing (22) with (24) we see that the two mirror knots have different
polynomials.

7.2 Whitehead Link

A second example is provided by the Whitehead link W (see Fig. 13). With
reference to the bottom diagrams of Fig. 13, by applying the skein relation (13) to
the Whitehead link Wþ (of crossing þ1), we have the relation

(a) (b)

Fig. 12 aLeft-handed and bRight-handed trefoil knots (top diagrams) decomposed by applying
standard reduction techniques (local path-addition) on crossing sites. Their Jones polynomials are
obtained by analyzing the elementary states given by the diagrams of Fig. 11
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s�1VðWþÞ � sVðH�Þ ¼ ðs
1
2 � s�

1
2ÞVðTLÞ ; ð25Þ

and application of (13) to the Whitehead link W� gives

s�1VðHþÞ � sVðW�Þ ¼ ðs
1
2 � s�

1
2ÞVðF8Þ ; ð26Þ

where F8 denotes the figure-of-eight knot shown at the bottom of Fig. 13b. This
latter can be further reduced according to the diagrams of Fig. 14. By applying
(13) to the unknot with two writhes c�, denoted by c¼, and to the Hopf link with
writhe cþ, denoted by Hþ�, we have

s�1VðF8Þ � sVðc¼Þ ¼ ðs
1
2 � s�

1
2ÞVðHþ�Þ : ð27Þ

Now, since Vðc¼Þ ¼ 1 and VðHþ�Þ ¼ VðH�Þ ¼ �s�
1
2 � s�

5
2, we have

VðF8Þ ¼ s�2 � s�1 þ 1� sþ s2 : ð28Þ

As can be easily verified, the mirror image of the figure-of-eight knot of Fig. 14
has the same Jones polynomial of Eq. (28).

Hence, by substituting (19) and (22) into (25), we have the Jones polynomial for
Wþ. By similar, straightforward computation we obtain also the Jones polynomial
for W�. The two polynomials coincide, that is VðWþÞ ¼ VðW�Þ ¼ VðWÞ, given
by

VðWÞ ¼ s�
7
2 � 2s�

5
2 þ s�

3
2 � 2s�

1
2 þ s

1
2 � s

3
2 ; ð29Þ

indicating that the two knots are actually the same knot type.

(b)(a)

Fig. 13 Reduction schemes for Whitehead links Wþ and W�. aTop: Whitehead link Wþ with
crossing þ1; bottom: Hopf link H� and left-handed trefoil knot TL. bTop: Whitehead link W�
with crossing �1; bottom: Hopf link Hþ, and figure-of-eight knot F8
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8 The Jones Polynomial of Vortex Knots from Helicity

Fluid helicity is one of the most important conserved quantities of ideal fluid flows,
being an invariant of the Euler equations, and a robust quantity of the dissipative
Navier–Stokes equations [13]. In ideal conditions its topological interpretation in
terms of Gauss linking number was provided by Moffatt [23] and extended by
Moffatt & Ricca [24]. In the context of vortex dynamics (kinetic) helicity is
defined by

H �
Z

X
u � x d3x; ð30Þ

where u is the velocity field, x ¼ r� u is the vorticity, defined on X, and x the
position vector. For simplicity we assume r � u ¼ 0 everywhere, and we request
x � n̂ ¼ 0 on oX, where n̂ is orthogonal to oX, with r � x ¼ 0. For a thin vortex
filament (30) reduces to a loop integral [25], given by

H ¼ j
I

K
u � dl ; ð31Þ

where now u denotes the vortex velocity induced by the Biot-Savart law. On the
other hand, for a single tangle component Eq. (31) can be written in terms of the
well-known contributions due to the Călugăreanu-White formula [24], i.e. (by
dropping the index)

HðKÞ ¼ j2Lk ¼ j2ðWrþ TwÞ ; ð32Þ

where helicity is decomposed in terms of writhe (Wr) and twist (Tw) contributions.
As a topological invariant of the knot K, the Jones polynomial V ¼ VðKÞ is

merely a function of a dummy variable (say s), that in general has no physical

Fig. 14 Reduction scheme
for (top) the figure-of-eight
knot F8; bottom the unknot
with two writhes c�, denoted
by c¼ (left), and a Hopf
link with writhe cþ, denoted
by Hþ�
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meaning: thus VðKÞ ¼ VsðKÞ. Since in our case K is a vortex knot, during evo-
lution it carries topological as well as dynamical information. Following [12], we
can encapsulate this dual property by combining the two Eqs. (31) and (32) into
the variable s (by an appropriate transformation), showing that this new s satisfies
the skein relations of the Jones polynomial. Indeed, by using (31) and (32) and the
transformation eH ! tH ! s, we have the following [12]:

Theorem ([12]): Let K denote a vortex knot (or an N-component link) of helicity
H ¼ HðKÞ. Then

tHðKÞ ¼ t
H
K

u�dl
; ð33Þ

appropriately re-scaled, satisfies (with a plausible statistical hypothesis) the skein
relations of the Jones polynomial V ¼ VðKÞ.

Full proof of the above Theorem is given in the reference above, where the
skein relations are derived in terms of the variable

s ¼ t�4kHðcþÞ ; k 2 ½0; 1� ; ð34Þ

where k takes into account the uncertainty associated with the writhe value of cþ
(see the first diagram of Fig. 11a) and HðcþÞ denotes the helicity associated with
cþ [12].

9 The Jones Polynomial as a New Fluid Dynamical Knot
Invariant

For practical applications it is useful to go back to the original position, i.e.
s! tH ! eH , by referring to eH rather than s. By (34) we can write knot poly-
nomials for a vortex tangle of filaments as function of topology and HðcþÞ, where
the latter can be interpreted as a reference mean-field helicity of the physical
system. Indeed, by (32), we can think of HðcþÞ as a gauge for a mean writhe (or
twist) helicity of the background flow. Since in any case this contributes in terms
of an average circulation j, we can re-interpret the Jones polynomial as a new
invariant of topological fluid dynamics, i.e.

VsðKÞ ! VtðK; jÞ ! VðK; jÞ : ð35Þ

In the case of a homogeneous, isotropic tangle of superfluid filaments, all vortices
have same circulation j; thus, by normalizing the circulation in dimensionless
form, we can set

�k ¼ hki ¼ 1
2
; hHðcþÞi ¼

j2

2
; ð36Þ
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where angular brackets denote average values. Hence,

s ¼ t�j2 ! e�j2
: ð37Þ

In this case, we have

ð38Þ

VðlccÞ ¼ �e
j2
2 ð1þ e�j2Þ ; ð39Þ

Vðlc;...;cÞ ¼ ½�e
j2
2 ð1þ e�j2Þ�N�1 ; ðN vortex ringsÞ ; ð40Þ

VðHþÞ ¼ �e
�j2

2 ð1þ e�2j2Þ ; ð41Þ

VðH�Þ ¼ �e
j2
2 ð1þ e2j2Þ ; ð42Þ

VðTLÞ ¼ ej2 þ e3j2 � e4j2
; ð43Þ

VðTRÞ ¼ e�j2 þ e3j2 � e�4j2
: ð44Þ

VðF8Þ ¼ e2j2 � ej2 þ 1� e�j2 þ e�2j2
; ð45Þ

VðWÞ ¼ e�
3
2j

2 �1þ ej2 � 2e2j2 þ e3j2 � 2e4j2 þ e5j2
� �

: ð46Þ

These results are obtained by straightforward application of the transformation
(37) to the computations carried out in Sect. 7. For more complex physical systems
knot polynomials can be straightforwardly computed by implementing skein
relations and diagram analysis into a numerical code.

10 Concluding Remarks

Complex tangles of vortex filaments are ubiquitous in turbulent flows, and are key
features of homogeneous isotropic turbulence in both classical and quantum sys-
tems. Detecting their structural complexity and attempting to relate complexity to
dynamical and energetic properties are of fundamental importance for both theo-
retical and practical reasons. Moreover, vortex tangles represent a good paradig-
matic example of complex systems displaying features of self-organization and
adaptive behavior largely independent of the space scale of the phenomena; they
therefore offer a perfect test case to study and tackle aspects of structural com-
plexity in general.
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In this paper I reviewed new results obtained following an approach based on
the exploitation of geometric and topological information. Preliminary information
on standard and indented diagrams have been given in Sect. 2. Then, a new
method to compute linear and angular momenta of a tangle of vortex filaments in
ideal fluids has been presented (Sects. 3 and 4). This method relies on the direct
interpretation of these quantities in terms of geometric information (Sect. 5).
Indeed, the technique proposed here is based on a rather straightforward analysis
of planar graphs, and its direct implementation to analyze highly complex net-
works seems amenable to more sophisticated improvements. Similar consider-
ations hold for the implementation of skein relations to quantify topological
properties by knot polynomials, introduced in Sects. 6 and 7. Here, our attention
has been restricted to the Jones polynomial, and its interpretation in terms of the
helicity of fluid flows (Sect. 8). This, in turn, has led us to re-consider and present
this polynomial as a new invariant of ideal fluid mechanics, and a number of
elementary examples have been presented to demonstrate both the straightforward
application of computational techniques associated with the implementation of the
relative skein relations, and the possibility to extend this approach to more com-
plex systems (Sect. 9).

These results can be extended to real fluid flows as well. For these systems
viscosity play an important role, by producing continuous changes in the tangle
topology, leading to the gradual dissipation of all conserved quantities, momenta,
helicity and, of course, energy. This is certainly reflected in the continuous change
of geometric, topological and dynamical properties. Therefore, a real-time
implementation of an adaptive analysis that takes account of these changes can
provide a useful tool for real-time diagnostics of the exchange and transfer of
dynamical properties and energy between different regions in the fluid. This,
together with an adaptive, real-time implementation of a whole new set of mea-
sures of structural complexity based on algebraic, geometric and topological
information [25–27] will prove useful to investigate and tackle open problems in
classical, quantum and magnetic fluid flows, as well as in many other systems that
display similar features of self-organization.
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Two Conceptual Models for Aspects
of Complex Systems Behavior

Burton Voorhees

Abstract This chapter presents two toy models dealing with trade-off issues
arising in complex systems research. After comparison of modeling in classical
physics and complex systems theorizing these models are discussed in detail. The
first examines the trade-off between stability and flexibility in an environment
subject to random fluctuations. The second compares possible response strategies in
cases of potential risk and reward. The first model illustrates the general complex
systems concept of virtual stability, defined as a condition in which a system
maintains itself in an unstable state between attracting response states in order to
gain flexibility in the face of random environmental fluctuations. The second model
considers the trade-off between quickness and accuracy in cases of bounded
decision time and information. Both models relate to decision processes in complex
adaptive systems and some of their implications in this regard are discussed.

1 The Value of Toy Models

Traditionally, systems chosen for scientific analysis are simple. Simple systems
have either a small or very large number of interacting agents (or particles) that
undergo local interactions determined by fixed rules. If there are a large number of
elements in the system they are treated thermodynamically or statistically.

The way such systems are studied goes back to the Platonic method of division:
a system is decomposed into elementary components (‘‘carved at the joints’’),
properties of each component are analyzed, and the system is reconstructed taking
account of the possible interactions between the components and their now known
properties. A clock, for example, can be decomposed into component parts which
are directly understood in terms of the way that each part contributes to the overall
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time-keeping function of the clock, understood as the result of a mechanical
implementation of the analogy between the position of hands on the face of the
clock and the position of the sun in the sky.1

Saying that such systems are simple, however, does not mean that their study is
easy. The insolvability of the three-body problem in classical mechanics, and the
powerful mathematical techniques required in studies of statistical equations such
as the Boltzmann equation show that simple systems can be difficult indeed.
Sophisticated perturbation methods have been devised in order to deal with sys-
tems that are conceptually simple but mathematically intractable.

In contrast, the invention of the digital computer has made possible a science of
complex systems having an intermediate number of variables, conceptualized in
terms of interactions between agents with learning and even self-referential
capacities. Jackson [1] refers to this as ‘‘the second metamorphosis of science.’’
When interactions between system elements do not follow simple mechanical rules,
when they may depend on the global output of the system itself, then the value of
the method of decomposition is strongly curtailed. ‘‘By their very nature complex
systems resist analysis by decomposition. …The very essence of the system lies in
the interaction among all its parts, with the overall behavior of the system emerging
from these interactions. So by throwing away the interactions, one also throws away
any hope of actually understanding the workings of the system’’ [2].

For such analytically recalcitrant systems, toy models are often illuminating.
Some might question the value of toy models, models so simple that they seem to
blur matters by overly wide categorization. And there is a warning that does have
to be given before embarking on construction of these sorts of models, best cap-
tured in the story of the wealthy horse owner who hired a pure mathematician and
a theoretical physicist to come up with a system to predict winners in horse races.
After a year the mathematician turned in results: the exact winner could not be
predicted, but there is a proof that the winner is unique—up to equivalences. The
physicist, on the other hand, provided a method to predict the winner for the case
of spherical horses.

Moral: toy models are only useful if they have some practical or heuristic value.
The contention here is that toy models can play a role in complex system

theorizing equivalent to the simple solvable models that are used in classical
physics education. Kuhn [3] pointed out that a good part of the education of
students in physics involves learning to solve simple models that in one way or
another capture aspects of physical theory applicable to more general empirical
and theoretical research. These simple models provide paradigmatic exemplars
that anchor intuition; that can be recalled as patterns of approach when dealing
with more complicated problems encountered in real practice; and which provide

1 This ignores the fact that a clock imposes a fixed unit of time. The actual length of a day, hence
the position of the sun, depends on season. Abstraction from reality always introduces a lack of fit
with reality that must be compensated in practice. This is the difference between theoretical
science and engineering.
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basic models for perturbation analysis. In the same way, toy models can serve as
exemplary cases for complex systems theorizing.

With complex systems, there is danger of getting lost in detail. We are creatures
with bounded rationality, we don’t carry out exhaustive searches of huge possi-
bility spaces, or analyze in details so refined that their complexity exceeds our
cognitive capacity. We don’t play chess like Deep Blue. We do not, indeed cannot,
make decisions through complete analytic evaluation of all possibilities and their
consequences. In complex decision-making, human rationality is bounded.
‘‘[P]eople use a sequence of pattern recognition, hypothesis formation, deduction
using currently-held hypotheses, and replacement of hypotheses as needed. This
type of behavior… enables us to deal with complication: we construct plausible,
simpler models we can cope with. It enables us to deal with ill-definedness: where
we have insufficient definition, our working models fill the gap. It is not anti-
thetical to ‘reason,’ or to science for that matter. In fact, it is the way science itself
operates and progresses’’ [4].

Under conditions of bounded rationality, toy models provide points of refer-
ence, anchoring points, and test cases for understanding. Some of the uses of toy
models in complex systems research are:

1. To give simple examples of general principles that would be obscured by the
details of more complicated models.

2. Hypothesis testing, to explore implications of an idea in simple cases where
falsification will be easy.

3. Exploration of the consequences of simple assumptions (even ‘‘fishing
expeditions’’).

4. ‘‘Intuition pumps’’—means of developing intuitive understanding and gener-
ating new ideas.

The sort of understanding given by a toy model is: if the assumptions of the model
are accurate as general reflections of reality, then the results of the model ought to
provide fits to the corresponding real world cases. Since the models are toy models,
the fit can be qualitative rather than quantitative—pointing to directions of future
development rather than definite answers. Toy models can represent important
aspects of the Platonic ideal that our ‘‘messy’’ real world material systems emulate.

In what follows two toy models, designed to illustrate basic principles and
issues in complex system theorizing, are presented and discussed. Both of these
models deal with trade-off situations—between stability and flexibility in the first
case and between quickness and accuracy in the second. Both of these trade-offs
are found empirically, and both are significant for system behavior and survival.

2 A Virtual Stability Model

The concept of virtual stability was introduced in [5, 6]. It refers to the capacity of
a complex adaptive system to utilize self-monitoring and adaptive control to
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maintain itself in a state that would otherwise be unstable. This requires a small
but ongoing expenditure of energy. What is purchased by this expenditure is the
ability to respond quickly to random environmental fluctuations.

2.1 Stability in Complex Systems Theory

Some degree of stability is perhaps the single most important requirement for a
complex system. Because of this, the general theoretical assumption is that most of
the time a complex system will be found in a stable, or at least metastable state,
with only brief periods of transition between such states. Heylighen [7], for
example, takes stability as axiomatic, formulated as a Principle of Selective
Retention: ‘‘Stable configurations are retained, unstable ones are eliminated.’’
May’s [8] argument, that characteristic ecosystem parameters can take on only
very specific values because only small regions in a system parameter space
provide long-term stability, applies to many complex systems. But what sort of
stability is involved is another question.

In accord with the emphasis on stability, complex systems are often thought of
in terms of a state space partitioned into basins of attraction determined by system
dynamics, with each basin representing a coarse-grained state of relative stability.
State space trajectories lie on a fitness landscape and the instantaneous system
state remains in a neighborhood of a fitness peak [9]. Applied specifically to
models of evolution, a set of phenotypic parameters characterizes each species,
and parameter values for any given species are expected to cluster in those rela-
tively small regions satisfying constraints imposed by the selective fitness barriers
defining the fitness peak. From a discrete point of view, state space trajectory are
represented as a series of transitions on a finite, although perhaps large set of
states, on which a hierarchical structure is defined [e.g., 10, 11]. This gives a
course-grain version of the continuous representation, each basin of attraction
corresponding to a distinct state in the discrete model.

The conceptual view of basins of attraction in a state space becomes more
complicated when the possibility of metastability is added. Metastability is par-
ticularly associated to chaotic systems and systems in which attractor basins can be
topologically complicated with highly interconnected boundaries [12]. Much
current research exists studying such cases, with results obtained on average time
to the boundary, optimal escape paths, and methods of control [13]. The question
of control, in particular, raises an important point [14, 15].

State space trajectories of complex adaptive systems are not random. They
represent adaptive responses to environmental contingencies, or (in systems with a
cognitive component) goal directed action sequences. In either case, control
mechanisms (which may utilize, but are not determined by random noise) deter-
mine the system trajectory. A number of researchers have shown how small
pertubative control functions can provide overall control of chaotic dynamical
systems [e.g., 16, 17], and there is an analogy in opponent process theory [18],
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where the balance between two opposing forces (e.g., two large muscle groups) is
managed by a much weaker control function (e.g., small muscle controls) through
inhibitory mechanisms.

This introduces another form of stability, called virtual stability. As already
indicated, virtual stability involves self-monitoring and adaptive control mecha-
nisms that are used to maintain a system in an otherwise unstable state. Such
processes can occur well below the level of conscious awareness. An example is
standing [19]. We learn the standing posture in early childhood and it becomes
automated as an unstable state, maintained by a process of proprioceptive feedback
and small muscular adjustments. The resulting flexibility shows up in the ease of
walking. If standing were stable, the stability would act as an attractive force
maintaining the state. Every step would require effort to overcome the stability and
would feel as if one were walking uphill. As it is, taking a step is a controlled fall.

From an overall systems point of view, it could be said that virtual stability just
is stability, so why introduce a new term. Taking that view, however, obscures the
fundamental importance of control mechanisms that manage instability, as well as
the potential value of instability for complex systems.

2.2 The Importance of Instability

Given the importance of stability, it might seem strange to suggest that instability
is also important. Ashby’s Law of Requisite Variety [20] states that the variety of
responses available to a system must be at least as great as the variety of possible
perturbations that the system can be expected to meet in its environment. In terms
of management and control, however, it is not only a matter of maintaining suf-
ficient variety in a set of possible responses, equally important is being able to
switch between responses in a timely manner. This implies the existence of a
trade-off between stability and flexibility. It is easy to change an unstable state,
difficult to change a stable one: if different possible behavioral response states are
stable, change consumes time and energy; unstable states are easy to change, but
energy is required to maintain them for any length of time.

There are many instances in which behavioral choices must be made quickly
in situations where there are minimal environmental cues. This is particularly so in
fight-or-flight situations but the general principle, of keeping options open until
choice is a necessity, is well established. If behavioral responses at the physio-
logical, neural, and habitual levels are in relatively stable attractors, avoidance of
commitment to an immediate response can be likened to remaining on an unstable
boundary between the attracting behaviors. Maintaining such a state requires effort
and so exacts a cost. The energy expended purchases increased behavioral flexi-
bility and speed of response in the face of environmental uncertainty.

Recent studies of paradoxical games also indicate the potential advantage of
behavioral flexibility. In exemplary cases, the ability to alternate between one of
two losing gambling games can result in a net winning game [21, 22], even if the
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alternation is random. The general principle is that in many cases it is important to
maintain the ability to switch quickly between differing strategies rather than
fixating on a single strategy.

It is important to be clear that virtual stability is not the same as stability or
metastability. Formally, a system is stable if there is a single global attractor, or if
it is completely deterministic and once the system trajectory enters an attractor
basin, it remains there. More generally, a system subject to noise is stable against
perturbations that are sufficiently small and which do not resonate with system
dynamics.2 Such cases can be analyzed in terms of branching ratios and the
expected lifetimes of course-grained states, determined by the frequency of dis-
ruptive perturbations and the strength of the fitness, entropy, or other barriers
between states [25].

While such cases are often termed metastable, metastability technically refers
to systems with multiple attractors, having intricately interwoven basins of
attraction with fractal basin boundaries containing chaotic saddles, and with
boundary dimensions that are close to the dimension of the full state space [26].
Under such conditions, even a small amount of noise in the system can cause
transitions between attractor basins, or equivalently, transitions between course-
grained states. The characteristic time scales involved are now the average time
that the system trajectory is in an attractor basin and the average time that it is on
basin boundaries.

Virtual stability, on the other hand, describes cases in which, through processes
of self-monitoring and adaptive control, a system maintains itself on the boundary
between two or more attractor basins. In other words, a meta-level control directs
the expenditure of energy to maintain the system on an unstable trajectory, or in an
unstable state. This expenditure purchases an increase in behavioral flexibility.

At a minimum, virtual stability requires that a system have the capacity to
monitor its momentary state and produce responses at a frequency high enough
that only small (i.e., inexpensive) corrective actions are required. Otherwise, the
energetic cost will be too large. The advantage of virtual stability is that a small
but ongoing energy expenditure allows a complex adaptive system to avoid large
(if infrequent) expenditures that would be required if the system had to escape
from a stable attractor. The high frequency of self-monitoring and adaptive control
provides cheap and rapid episodic responses to environmental change.3 An
important point is that virtual stability allows response to random environmental
fluctuations. Periodic fluctuations such as seasonal changes or night and day are
adequately dealt with by genetic adaptation or habituation.

2 If the spectrum of external noise resonates with system dynamics then even small fluctuations
can grow to macroscopic size in a process of fluctuation enhancement [e.g., 23, 24].
3 The technical questions that arise relate to how high this frequency needs to be. This, in turn,
involves the time scale for falling out of the unstable state, and the energy required for corrective
actions of varying strengths.
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2.3 A Population Model

A toy model has been constructed to explore the trade-off between stability and
flexibility [5]. A population of agents is divided into three behavioral sub-popu-
lations labeled A, B, and C. The environment for these agents can be in one of
three states, labeled A, B, and N. Populations A and B, respectively, are favored in
environmental states A and B. In the environment N, populations A and B are
equally favored. Population C is not favored in any environment. Stability is
modeled by transition probabilities between A and B types, and between the C
type and the A or B types: it is difficult for members of the stable A and B
populations to change type. The ‘‘virtually stable’’ C population can change to A
or B types with relative ease.

The model is discrete and operates on two time scales, related by a constant m
that determines how many iterations of the fast scale correspond to one slow scale
iteration. A slow scale iterations begins with the choice of an environmental state,
based on a specified probability distribution. This sets the probabilities in a state
dependent transition matrix that specifies transition probabilities for each popu-
lation over the subsequent series of m fast scale iterations. The environmental
transition matrix has adjustable parameters with the mortality rates for each
population type and the transition probabilities between population types as
independent parameters.

At each fast scale iteration, called a ‘‘short-run,’’ every population member has
the possibility of changing type, remaining the same type, or dying. The complete
process, carried out m times for every member of the population, is a ‘‘long run.’’
The transition matrices associated to the environmental states are:

TA ¼

qAB aAB 1� qAB � eAð Þ 0 0 0 0

1� qAB � eA aABqAB 0 0 0 0

0 0 dAqC aCdA 1� qC � eACð Þ dA 1� l� eCð Þ 0

0 0 dB 1� qC � eACð Þ aCdBqC dB 1� l� eCð Þ 0

0 0 qB aCqA l 0

eA eB eAC eBC eC 1

2

666666664

3

777777775

TB ¼

aBAqAB 1� qAB � eB 0 0 0 0

aBA 1� qAB � eBð Þ qAB 0 0 0 0

0 0 1
aC

dAqC dA 1� qC � eBCð Þ dA 1� l� eCð Þ 0

0 0 1
aC

dB 1� qC � eACð Þ dBqC dB 1� l� eCð Þ 0

0 0 1
aC

q0B q0A l 0

eA eB eAC eBC eC 1

2

6666666664

3

7777777775

TN ¼

qAB 1� qAB � eA 0 0 0 0

1� qAB � eA qAB 0 0 0 0

0 0 1
2 qC

1
2 1� qC � eACð Þ 1

2 1� l� eCð Þ 0

0 0 1
2 1� qC � eACð Þ 1

2 qC
1
2 1� l� eCð Þ 0

0 0 1
2 1� eACð Þ 1

2 1� eACð Þ l 0

e e eAC eAC eC 1

2

666666664

3

777777775

ð1Þ
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Rows are labeled from top to bottom, and columns from left to right in the order
A, B, AC, BC, C, and D. The state D represents death. From these matrices there
can be transitions between the A and B populations but no A or B population
member can make a transition to the C population. Introduction of the AC and BC
populations is necessary to prevent loss of identity when a C type is imitating an A
or B type.

Fundamental parameters involved are the mortality rates eA, eB, eAC, eBC, and
eC; the transition probabilities qAB, qC, and l; the number m of short runs per long
run; and the exponent n, called directionality power. Equation (2) provides defi-
nitions of the remaining parameters.

aAB ¼
1� eB

1� eA
; aBA ¼

1� eA

1� eB
; aC ¼

1� eBC

1� eAC

dA ¼
en

BC

en
AC þ en

BC

; dB ¼
en

AC

en
AC þ en

BC

qA ¼ 1� eACð Þ 1� dAð Þ þ qC dA � dBð Þ; qB ¼ 1� eACð Þ 1� dBð Þ � qC dA � dBð Þ
q0A ¼ 1� eBCð Þ 1� dAð Þ þ qC dA � dBð Þ; q0B ¼ 1� eBCð Þ 1� dBð Þ � qC dA � dBð Þ

ð2Þ

The probability qAB is close to 1, modeling stability of the A and B types. The
C type is relatively unstable, modeled by setting the probability qC high (in our
trials, equal to qAB) and the probability l low. An initial population is exposed to a
long sequence of environments (e.g., ‘‘ABBNABABNNABBBNBA…’’) and
population numbers of each type are tracked (the C population includes AC and
BC subtypes). Parameters are varied to explore conditions under which the C
population dominates.

In a long run, every individual member of the population goes through m short
runs. At each iteration in a short run, the transition matrix for the given envi-
ronmental state is used to determine probabilistically whether an agent changes
population type, remains the same type, or dies. The population type corre-
sponding to the preferred environmental state has the lowest mortality rate. Since
the subpopulations labeled AC and BC are interpreted as members of population
type C that are imitating types A and B respectively, the mortality rates eAC and
eBC are set to eA and eB. At the end of a long run the resulting population distri-
bution becomes the preliminary new population for the next long run.

Since the state D in the transition matrix is an attracting state, however, it is
necessary to introduce a redistribution of those population members that have died
off in order to avoid the eventual death of the entire population. To avoid this, a
redistribution process is introduced: the total population is kept fixed by redis-
tributing individuals that have died during a long run to the population types A, B,
AC, BC, and C in proportion to the frequencies of these types in the preliminary
new population. This gives the new initial population for the next long run.

The flexibility advantage of population C shows up in its ability to easily enter
sub-populations AC and BC and from these to return to C.
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For example, if state A is specified as preferred then on the fast time scale
members of population A remain as they are with only a small chance of making a
transition to B, and little cost is accrued. Members of population B, on the other
hand, not only have a greater mortality rate, they will also accrue a high cost since
their probability of making a transition to population A is small. Similarly, if B is
the preferred state then members of population B accrue little cost but members of
population A will accrue a high cost. In either case, members of population C
accrue a relatively low cost. The goal of the model is to explore parameter values
that distinguish between situations where the stable A and B populations dominate
and those in which the ‘‘virtually stable’’ C population dominates.

To deal with redistribution, a new representation of the transition matrices can
be introduced, in which the state D is excluded from the matrices and incorporated
instead as a scalar multiplying factor. The total population is

N ¼ NAðtÞ þ NBðtÞ þ NACðtÞ þ NBCðtÞ þ NCðtÞ: ð3Þ

Let the pre-reincarnation populations at iteration t ? 1 be Ni*(t ? 1) for i = A,
B, AC, BC, C. Then, with redistribution included,

Niðt þ 1Þ ¼ N�i ðt þ 1Þ þ N�Dðt þ 1Þ
N � N�Dðt þ 1Þ

X

j

TijNjðtÞ ð4Þ

where

N�Dðt þ 1Þ ¼ eA NAðtÞ þ NACðtÞ½ � þ eB NBðtÞ þ NBCðtÞ½ � þ eCNCðtÞ: ð5Þ

The summation at the end of Eq. (4) is just Ni*(t ? 1), hence equation can be
written as

Niðt þ 1Þ ¼ N�i ðt þ 1Þ N

N � N�Dðt þ 1Þ

� �
ð6Þ

Making use of Eq. (6) allows description of the process by the conformal
Markov equations

~Nðt þ 1Þ ¼ N

N � N�Dðt þ 1Þ

� �
T~NðtÞ

~Nð0Þ ¼ ðNAð0Þ;NBð0Þ; 0; 0;NCð0ÞÞ
ð7Þ

where the matrix T is the reduced transition matrix for environmental states A, B,
or N obtained by omitting the final row and column from the matrices of Eq. (1).

Dividing both sides of the top Eq. in (7) by the total population N gives a
frequency representation. If V(i) = (x,y,u,v,w) is the steady state frequency vector
obtained for a preferred environmental state i, then Eq. (7) becomes
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TVðiÞ ¼ 1� N � ðVðiÞÞ
N

� �
VðiÞ

N � ðVðiÞÞ ¼ eA; eB; eA; eB; eCð Þ � VðiÞ
ð8Þ

Two forms of test runs are used to determine cases in which the C population
might be favored. The first set of tests varies specific parameter values against a
background of standard parameter values. Table 1 shows the background param-
eter values used in these tests. In addition to the values given in Table 1, the
standard values m = 16 and n = 1 are used. Variations of these standard settings
produce different results, but in all cases the overall behavior remains the same.

Figures 1, 2, 3, 4 show examples of parameter test runs, with percentages of
each population type plotted over time in barycentric coordinates. The frequency
of the A population is 1 at the top of the triangle, it is 1 for the B population at the
left vertex, and 1 for the C population at the right vertex.

Figures 1, 2 show the effect of varying the number of iterations in a long run
(Fig. 1) and the directionality power (Fig. 2). The parameter n is important since it
has a possible interpretation as a control parameter. The significance of this will
appear when the environmental tests are discussed—if n is large enough it turns
out that the C population can dominate even in environments that always favor the
A or B populations.

Figures 3, 4 show the effect of varying the stability parameters. In Fig. 3
changes in l correspond to changes in the behavioral flexibility of the C population
while changes in the stability of the A and B populations involve changing the
probability qAB as illustrated in Fig. 4. The threefold structure appearing in Fig. 4
arises because at the parameter value used almost all population members are able
to make a transition to the favored state in each long run.

In all cases in the parameter tests, the general pattern remains the same, there is
a threshold value at which the system changes between A/B domination and C
domination. For the value of m (given the parameters of Table 1) this occurs at
m = 11 where Fig. 1 indicates that the system allows coexistence of all popula-
tions. For directionality power, it is at n = 10.55 where, again, all populations can
coexist.

Table 2 gives threshold values found for the parameter test runs, holding other
parameters fixed at the values given in Table 1.

The second set of test results, called environmental tests, are also shown in
barycentric coordinates. In this case the figures show percentages of the A, B, and
N environments in the environmental sequence. The percentage of the N

Table 1 Standard parameter values

Env. eA eB eAC eBC eC l qAB qC

A 0.01 0.0125 0.01 0.0125 0.015 0.25 0.965 0.965
B 0.0125 0.01 0.0125 0.01 0.015 0.25 0.965 0.965
N 0.012 0.012 0.012 0.015 0.25 0.25 0.965 0.965
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environment is 1 at the top of the triangle, the percentage of the A environment is 1
at the left vertex, and the percentage of the B environment is 1 at the right vertex.

In the parameter tests, environmental frequencies were set at 40 % each for A
and B and 20 % for N. The environmental test program runs the simulation for up
to 5150 different sets of environmental percentages, determining for each case
whether the simulation converges to A/B or to C, or does not consistently converge
to either. Points that do not consistently converge in either direction are plotted,

m = 9 m = 10

m = 11 m = 12

Fig. 1 Effect of varying number of short runs (2000 long runs: m = 9, 10 converges to A/B,
m = 12 converges to C)

n = 10 n = 11

Fig. 2 Effect of varying directionality power n
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yielding figures as indicated in Fig. 5. In all environment test conducted, the A and
B population types are treated symmetrically.

The most obvious result is that a high frequency of neutral environments leads
to A/B dominance and the death of the C type. This is expected since, in the
neutral environment, there is no distinction in mortality between the A and B types
while the mortality rate for the C type remains high. Introducing Cartesian
coordinates in which the x-axis coincides with a horizontal line through the
barycenter of the triangle and the y-axis with its vertical bisector, the expected
equation for the boundary region can be shown to be a portion of an ellipse or a
hyperbola [5].

Test 2 in Fig. 5 highlights the importance of the parameter n as a potential control
parameter. Here, so long as the frequency of the neutral environment is low the C
type always wins, even if the environment always favors A or always favors B.

The explanation for this apparent paradox lies in the effect of the high direc-
tionality power (n = 30) assumed in this test. This leads to a situation in which, so
long as the percentage of neutral states is not large, a C type agent mimicking the
preferred type has a greater overall chance of remaining that type, or of returning
to it should it make a transition away from it, than does an agent of the preferred
type. For example, assuming that the environmental sequence is entirely A, a
simple calculation using the transition matrix TA with standard values other than n,
indicates that the probability an agent beginning as an A type will again be an A

µ = .4 µ = .5

µ = .55 µ = .6

Fig. 3 Effect of varying C-type stability parameter
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type after three iterations is 0.9004, while the probability that an individual
beginning as an AC subtype will again be an AC subtype after three iterations is
0.9371. In contrast, the same probability for the A type is still 0.9004 fo the first
figure in Fig. 3 (n = 1.5), while the probability for the AC type is only 0.5190.

ρAB = .875 ρAB = .895

ρAB = .925 ρAB = .9895

Eight Consecutive Trials (2000 long runs each) at ρAB = .89362

Fig. 4 Effect of varying the A/B stability parameter
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3 The Quickness–Accuracy Trade-Off

Decision making under uncertainty is a problem not only for humans, it is a
condition faced by living systems. Members of a prey species must decide whether
something is a potential source of food, or a threat. Members of predator species
must decide whether an only partially recognized stimulus indicates a potential
meal and, if so, whether it is worth the requisite expenditure of effort.

The model presented here considers agents acting in an environment in which
threats and opportunities for resource acquisition arise at random. Further, these
events may be disguised so that a threat appears as an opportunity and vice versa.
In predator-prey terms, a predator may appear as such, or may be disguised as a
prey and a prey may appear as a prey or be disguised as a predator. Thus, an agent
faces four possible cases denoted DD (danger/danger), SD (safe/danger), DS
(danger/safe), and SS (safe/safe). The first designation refers to appearance and the
second to actuality.

Table 2 Threshold values for parameter tests against standard background

Parameter
varied

Threshold
value

Notes

m 11 m B 10 converges to A/B dominance, for m C 12 convergence is to
C dominance. m = 11 does not reliably converge to either A/B or
C.

n 10.55 n B 10 converges to A/B dominance, n C 11 converges to C
dominance.

l 0.55 l B .55 converges to C dominance, l C .55 converges to A/B
dominance. l = .55 does not reliably converge to either A/B or to
C.

qAB 0.89362 Convergence is to A/B dominance for smaller values, to C dominance
for larger values.

N

Test 1 (n = 3) Test 2 (n = 30)

N

A BA B

Fig. 5 Examples of environmental test cases
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Four possible behavioral strategies are given for response in such situations.
The four strategies considered are:

1. HT (Hair Trigger): Immediately avoid apparent danger and immediately pursue
apparent safety. In other words, this strategy reacts to immediate appearances.

2. SF (Safety First): Immediately avoid apparent danger and pause briefly to test
apparent safety.

3. CS (Cautious Skeptic): Pause to test both apparent danger and apparent safety.
4. CO (Cautious Optimist): Pause to test apparent danger but immediately pursue

apparent safety.

In the most basic terms, an agent who succumbs to danger has a high proba-
bility of becoming a meal while an agent who pursues actual safety has a high
probability of obtaining a meal.

To quantify results, two functions are defined:

fDðtÞ ¼
1

1� eaDt þ e bD�cDt2ð Þ=t

fSðtÞ ¼ 1� 1

1� eaSt þ e bS�cSt2ð Þ=t

ð9Þ

Typical graphs of fD and fS are shown in Fig. 6.
fD(t) is the probability of being eaten in a situation of actual danger and fS(t) is

the probability of obtaining a meal in a situation of actual safety. The form of these
functions is not particularly important so long as this probability condition is met
(normalized logistic functions could be used, for example). The probabilities of
being eaten or of obtaining a meal are defined in terms of these functions
according to Table 3.

Here t0 is the immediate reaction time and t1 [ t0 is the time required for testing
the immediate appearance. From Eq. (9) this leads to the following inequalities:

fD t0ð Þ\ fD t1ð Þ
fS t0ð Þ [ fS t1ð Þ

ð10Þ

Taking extra time to test appearances increases the probability of being eaten in
cases of actual danger and decreases the probability of obtaining a meal in cases of
actual safety. This is counter-balanced by the loss of opportunity arising from
avoidance of apparent danger when this appearance is deceptive, and the high
probability of being eaten if apparent safety is pursued when this appearance is
deceptive.

If (q1,q2,q3,q4) is a probability vector for the respective environmental situa-
tions DD, SD, DS, and SS while (p1,p2,p3,p4) is a strategy vector for choice of the
strategies HT, SF, CS, and CO then the probabilities PE of being eaten and PM of
having a meal are given by PE ¼~p � E �~q; PE ¼~p �M �~q where
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E ¼

fDðt0Þ 1� fDðt0Þ 0 0
fDðt0Þ fDðt1Þ 0 0
fDðt1Þ fDðt1Þ 0 0
fDðt1Þ 1� fDðt0Þ 0 0

0

BB@

1

CCA; M ¼

0 0 0 fSðt0Þ
0 0 0 fSðt1Þ
0 0 fSðt1Þ fSðt1Þ
0 0 fSðt1Þ fSðt0Þ

0

BB@

1

CCA ð11Þ

Hence

PE ¼ p1 fD t0ð Þq1 þ 1� fD t0ð Þ½ �q2f g þ p2 fD t0ð Þq1 þ fD t0ð Þq2½ � þ . . .

þ p3fD t1ð Þ q1 þ q2ð Þ þ q4 fD t1ð Þq1 þ 1� fD t0ð Þ½ �q2f g
PM ¼ p1fS t0ð Þ þ p2fS t1ð Þ½ �q4 þ p3fS t1ð Þ q3 þ q4ð Þ þ p4 fS t1ð Þq3 þ fS t0ð Þq4½ �

ð12Þ

fD with a = 1, b = .4, c = 1

fS with a = 1, b = .4, c = 1

Fig. 6 Sample probability
functions fD and fS
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The function R = PM-PE measures the advantage or disadvantage arising from
choice of a particular mixed strategy given the environmental distribution of sit-
uations described by the vector q.

Since both p and q are probability vectors, the sum of their components is 1 and
values of these components are represented in barycentric coordinates by points in
the 3-simplices p-D3 and q-D3. Further, if q is fixed then PE, PM, and R are linear
functions of p1, p2, p3, and p4 hence the maximum and minimum values will occur
at faces, edges, or vertices of p-D3.

The k-th vertex of this simplex is characterized by pk = 1, pj = 0, j = k.
Vertex values of these functions are given in Table 4.

Comparisons of values from this table leads to the following conclusions:

1. An agent utilizing the p4 (CO) strategy is the most likely to be eaten and also
the most likely to obtain a meal.

2. An agent utilizing the p2 (SF) strategy is the least likely to be eaten and the least
likely to obtain a meal.

3. In most cases, ranking strategies from most to least likely to be eaten gives the
order p4, p1, p3, p2 and ranking them from most to least likely to obtain a meal
gives the order p4, p3, p1, p2.

To be more specific, the following strict inequalities hold:

PE p4 ¼ 1ð Þ [ PE p1 ¼ 1ð Þ [ PE p2 ¼ 1ð Þ
PE p4 ¼ 1ð Þ [ PE p3 ¼ 1ð Þ [ PE p2 ¼ 1ð Þ
PM p4 ¼ 1ð Þ [ PM p1 ¼ 1ð Þ [ PM p2 ¼ 1ð Þ
PM p4 ¼ 1ð Þ [ PM p3 ¼ 1ð Þ [ PM p2 ¼ 1ð Þ

ð13Þ

The relation between strategies p1 and p3 is more complex:

Table 3 Probabilities of being eaten (fD) or of obtaining a meal (fS) for each possible strategy in
each environmental situation

Strategy/situation DD SD DS SS

HT fD(t0) 1-fD(t0) 0 fS(t0)
SF fD(t0) fD(t1) 0 fS(t1)
CS fD(t1) fD(t1) fS(t1) fS(t1)
CO fD(t1) 1-fD(t0) fS(t1) fS(t0)

Table 4 Values of PM, PE, and R for pure strategies

=1 PM PE R

p1 fS(t0)q4 fD(t0)q1 ? [1 - fD(t0)]q2 fS(t0)q4–fD(t0)q1–[1 - fD(t0)]q2

p2 fS(t1)]q4 fD(t0)q1 ? fD(t0)q2 fS(t1)q4–fD(t0)q1–fD(t0)q2

p3 fS(t1)(q3 ? q4) fD(t1)(q1 ? q2) fS(t1)(q3 ? q4)–fD(t1)(q1 ? q2)
p4 fS(t1)q3 ? fS(t0)q4 fD(t1)q1 ? [1 - fD(t0)]q2 fS(t1)q3 ? fS(t0)q4–fD(t1)q1–[1 - fD(t0)]q2
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PEðp1 ¼ 1Þ is
[ PEðp3 ¼ 1Þ if

1� fDðt0Þ � fDðt1Þ
fDðt1Þ � fDðt0Þ

[
q1

q2

�PEðp3 ¼ 1Þ otherwise

8
><

>:

PMðp1 ¼ 1Þ is
\PEðp3 ¼ 1Þ if

fSðt0Þ � fSðt1Þ
fSðt1Þ

\
q3

q4

�PMðp3 ¼ 1Þ otherwise

8
><

>:

ð14Þ

Since 1-fD(t0)-fD(t1)will be of the order of 1-2e while fD(t1)-fD(t0) is of
order e and likewise fS(t0)-fS(t1) will be of order e and fS(t1) will be of order 1-2e
(e � 1), Eqs. (13) and (14) indicate that PE(p1 = 1) \ PE(P3 = 1) requires
q1 	 q2 while PM(p1 = 1) [ PM(p3 = 1) requires q4 	 q3. That is, if there is
little or no deception, so that appearances give a good reflection of actuality, then
the HT strategy provides a better return than the CS strategy. On the other hand, if
appearances are almost always deceptive then the p3 strategy is favored over the
other three strategies.

Table 5 gives conditions under which R will be a maximum at each vertex of
the strategy representation simplex p-D3:

This partitions points of q-D3 into regions with boundaries determined by the
functions fD(t) and fS(t). Conditions for maximum values of R to occur on p-
simplex edges can also be determined from Table 3. These are shown in Table 6.

Note that R(p1 = 1) = R(p3 = 1) if and only if R(p2 = 1) = R(p4 = 1), which
implies that if R is constant on any face of the p-simplex then it is constant in the
interior as well, as it will also be if R(p1 = 1) = R(p3 = 1) or
R(p2 = 1) = R(p4 = 1). The pairs (p1,p3) and (p2,p4) are composed of opposite
strategies in the sense that while p1 reacts immediately to danger and safety, p3

pauses to test both; and while p2 reacts immediately to danger but tests safety, p4

tests danger but reacts immediately to safety. This general model can be treated
from several different directions, described below:

3.1 A Discrete Version of the Model

For a discrete model a sequence of strategic decision are required in discrete time.
Agents are presented with a string e(L),e(L-1),…,e(1), e(0) where e(t) represents
the presented appearance at time t.

This string is presented to the population from right to left, one state at a time
and within that presented state the entire population responds according to the
mixture of strategies in the population. The numbers of individuals playing each
strategy are counted as well as the number who have died (eaten or starved). Two
assumptions are added: (a) If the presented state is DD or SD then individual
agents who are not eaten survive without a meal; (b) If the presented state is DS or
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SS then no agents are eaten but agents who do not get a meal do not survive. With
these assumptions the population evolution equation is:

niðt þ 1Þ ¼ qði; eðtÞÞN
P

j
qðj; eðtÞÞnjðtÞ

2

64

3

75niðtÞ ð15Þ

where N = n1 ? n2 ? n3 ? n4 with n1 the number of agents playing strategy HT,
n2 the number of agents playing strategy SF, n3 the number playing strategy CS,
and n4 the number playing strategy CO. N is to be kept constant as Eq. (15) is
iterated by redistributing the number of dead in a round in proportional to the
numbers of surviving agents in each of the four strategy subpopulations, before
starting the next round. This equation can also be written in terms of frequencies:
xi(t) = ni(t)/N as:

xiðt þ 1Þ ¼ qði; eðtÞÞ
P

j
qðj; eðtÞÞxjðtÞ

2

64

3

75xiðtÞ ð16Þ

The coefficient q(i,e(t)) is defined by

Table 5 Conditions for R to be maximum for specified strategy

R max at Conditions Strong implications

p1 = 1 q4 [ 1�fDðt0Þ�fDðt1Þ
fSðt0Þ�fSðt1Þ

h i
q2; q3\

fDðt0Þ�fDðt1Þ
fSðt1Þ

h i
q1

q4 	 q2

q1	 q3

p2 = 1 q4\
1�fDðt0Þ�fDðt1Þ

fSðt0Þ�fSðt1Þ

h i
q2; q3\

fDðt0Þ�fDðt1Þ
fSðt1Þ

h i
q1

q1	 q3

p3 = 1 q4\
1�fDðt0Þ�fDðt1Þ

fSðt0Þ�fSðt1Þ

h i
q2; q3 [ fDðt0Þ�fDðt1Þ

fSðt1Þ

h i
q1

p4 = 1 q4 [ 1�fDðt0Þ�fDðt1Þ
fSðt0Þ�fSðt1Þ

h i
q2; q3 [ fDðt0Þ�fDðt1Þ

fSðt1Þ

h i
q1

q4 	 q2

Table 6 Conditions for R to be maximum on p-simplex edges

Edge Conditions for R maximum on edge

(p1,p2) q4 ¼ 1�fDðt0Þ�fDðt1Þ
fSðt0Þ�fSðt1Þ

h i
q2

(p1,p3) q4 ¼ 1�fDðt0Þ�fDðt1Þ
fSðt0Þ�fSðt1Þ

h i
q2; q3 ¼ fDðt1Þ�fDðt0Þ

fSðt1Þ

h i
q1

(p1,p4) q3 ¼ fDðt1Þ�fDðt0Þ
fSðt1Þ

h i
q1

(p2,p3) q3 ¼ fDðt0Þ�fDðt1Þ
fSðt1Þ

h i
q1

(p2,p4) q4 ¼ 1�fDðt0Þ�fDðt1Þ
fSðt0Þ�fSðt1Þ

h i
q2; q3 ¼ fDðt1Þ�fDðt0Þ

fSðt1Þ

h i
q1

(p3,p4) q4 ¼ 1�fDðt0Þ�fDðt1Þ
fSðt0Þ�fSðt1Þ

h i
q2
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qði; eðtÞÞ ¼ 1� PEði; eðtÞÞ eðtÞ ¼ DD or SD
PMði; eðtÞ eðtÞ ¼ DS or SS

�
ð17Þ

Working with the frequency representation, iteration of Eq. (16) yields

xiðt þ 1Þ ¼

Qt

s¼0
qði; eðsÞÞ

P

j

Qt

s¼0
qðj; eðtÞÞ

� �
xjðtÞ

2

6664

3

7775
xið0Þ: ð18Þ

Writing this out in terms of the probabilities in Table 3 gives

x1ðtÞ ¼
f k1
D ðt0Þ 1� fDðt0Þ½ �k2 f k4

S ðt0Þ
WðtÞ

" #

x1ð0Þ

x2ðtÞ ¼
f k1
D ðt0Þf k2

D ðt1Þf
k4
S ðt1Þx2ð0Þ

WðtÞ

" #

x2ð0Þ

x3ðtÞ ¼
f k1þk2
D ðt1Þf k3þk4

S ðt1Þ
WðtÞ

" #

x3ð0Þ

x4ðtÞ ¼
f k1
D ðt1Þ 1� fDðt1Þ½ �k2 f k3

S ðt1Þf k4
S ðt0Þ

WðtÞ

" #

x4ð0Þ

ð19Þ

where k1, k2, k3, and k4 are the respective numbers of the states DD, SD, DS, and
SS in the choice sequence and the denominator W(t) is given by

X

j

Yt

s¼0

qðj; eðtÞÞ
" #

xjðtÞ 
 WðtÞ ¼ f k1
D ðt0Þ 1� fDðt0Þ½ �k2 f k4

S ðt0Þx1ð0Þ

þ f k1
D ðt0Þf

k2
D ðt1Þf k4

S ðt1Þx2ð0Þ þ f k1þk2
D ðt1Þf k3þk4

S ðt1Þx3ð0Þ
þ f k1

D ðt0Þ 1� fDðt0Þ½ �k2 f k4
S ðt0Þx1ð0Þ:

ð20Þ

3.2 A Population Dynamics Version of the Model

Let ns, s = 1,…,4 be the number of individual agents using strategy s out of a total
population N = n1 ? n2 ? n3 ? n4. Further, assume that only those agents who
have had a meal can reproduce, and that members of population s reproduce at a
rate as. Then the evolutionary dynamics of the total population is modeled by the
equation
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dns

dt
¼ asPMðsÞ 1� PEðsÞ½ �ns ð21Þ

where PM(s) and PE(s) are the probabilities of obtaining a meal, or of being eaten
for strategy ps. What is of interest are the relative proportions of each strategy in
the total population: xs = ns/N.

dxs

dt
¼ 1

N

dns

dt
� ns

N2

dN

dt
ð22Þ

Substituting from Eq. (22) and the definition of xs yields

dxs

dt
¼ asPMðsÞ 1� PEðsÞ½ �xs � xs

X4

k¼1

akPMðkÞ 1� PEðkÞ½ �xk ð23Þ

which has the form of a simple replicator equation [27]. Writing a rescaled growth
rate for each strategy group as rs = asPM(s)[1-PE(s)] puts Eq. (23) into the form

dxs

dt
¼ rsxs � xs/; / ¼

X4

k¼1

rkxk ð24Þ

The relatively simple form of this equation allows direct solution. Consider / as
a function of time and define

wðtÞ ¼ exp

Z t

0

/ds

2

4

3

5 ð25Þ

With this definition, Eq. (24) becomes

dxs

dt
¼ xs rs �

dw
dt

� �
ð26Þ

with solution

xsðtÞ ¼ xsð0Þerst�wðtÞ ð27Þ

Use of Eqs. (24) and (25) together with Eq. (27) yields

dw
dt
¼
X4

k¼1

rkxkð0Þerkt�wðtÞ ¼ e�wðtÞ
X4

k¼1

rkxkð0Þerkt ð28Þ

The solution of this equation is
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wðtÞ ¼ ln
X4

k¼1

xkð0Þerkt

" #

ð29Þ

Substituting from Eq. (29) into Eq. (27) gives the solution

xsðtÞ ¼
xsð0Þ

P4

k¼1
xkð0Þeðrk�rsÞt

ð30Þ

By Eq. (30), if for any k = s it is true that rk [ rs then xs(t) goes exponentially
to zero while if rs [ rk for all k = s then xs(t) goes to 1. If any mixed strategy is to
persist the corresponding rescaled growth rates must be equal, and this places
conditions on the growth rates as or on the functions fD and fS. In particular, if
strategies s and k are to coexist then the condition rk = rs yields the constraint on
growth rates

ak ¼
PMðsÞ 1� PEðsÞ½ �
PMðkÞ 1� PEðkÞ½ � as ð31Þ

If all four strategies are to persist, this requires that

a1 ¼ 1þ fSðt1Þq3

fSðt0Þq4

� �
a4

a2 ¼
q3

q4
þ fSðt0Þ

fSðt1Þ

� �
1� fDðt1Þq1 � 1� fDðt0Þq2½ �

1� fDðt0Þq1 � fDðt1Þq2

� �
a4

a3 ¼
fSðt1Þq3 þ fSðt0Þq4½ � 1� fDðt1Þq1 � 1� fDðt0Þq2½ �f g

fDðt1ÞfSðt1Þðq1 þ q2Þðq3 þ q4Þ
a4

ð32Þ

Results such as this might arise from an evolutionary process but Eq. (31) can
also be satisfied if the probabilities PM and PE are allowed to depend on the choice
of strategy. If this is the case, the form of the functions fD and fS becomes
significant beyond their use to model qualitative probabilities.

3.3 Simulation of the Model

A simulation program was developed to model a population of agents partitioned
into sub-populations playing fixed strategies. Initial results show that, as antici-
pated from the population dynamics model, a single strategy wins out. The
sequences in this simulation were generated at random with only probabilities of
each environmental state specified. Evolutionary paths are represented graphically,
or traced out in the p-simplex, as shown in Figs. 7, 8.

The initial point for each trajectory shown in Fig. 7 is chosen near the center of
the p-simplex and the environmental sequences are chosen at random. This figure
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indicates that convergence to fixation at each of the possible strategies can occur.
Examination of Fig. 7 indicates a general pattern of the approach to fixation with a
trajectory often first going to a face, then an edge of the p-simplex before finally
fixating at a vertex. This corresponds to the dying off of species in the simulation,
with the loss of a species corresponding to the loss of a dimension in the simplex.
Figure 8a–d shows cases in which each strategy goes to fixation as well as the
sequential dying off of losing species.

Because the choice of starting point is the same in all cases, the behavior shown
of convergence to a single fixed strategy would seem to depend on contingent
aspects of the randomly generated sequence of environmental situations. The
general implication arising from this is that each of the posited response strategies
can come to dominate, depending on the particular environmental situations that
are faced. Given that all of the listed environmental situations can arise, the
evolutionary of different species can be expected to follow a path that relates
behavioral strategies to other, biological characteristics of the organisms that adapt
them to a particular strategy.

Preliminary studies seem to indicate that the q-simplex is partitioned into non-
overlapping regions such that for any situation sequence with probabilities drawn
from a given region the same p-strategy will win out.

There also appears to be a relation between foraging strategies and species
growth rates. The population version of the model, for example, indicates that
coexistence of strategies is possible only when very specific relations hold among
reproductive rates. While this is likely an artifact of the simplicity of the model, it
does raise the question of possible relationships between a species birth rate and
it’s foraging behavior. Do species where members produce few offspring exhibit
different quickness-accuracy behavior than those in which members produce large
numbers of offspring? Also, are there other biological characteristics of a species
that are directly adapted to its behavioral characteristics?

Figure 9 shows two typical cases of the evolution of PM, PE. and R. The patterns
in Fig. 9 both show an approach to a constant value but in the first graph PE remains

Fig. 7 Evolutionary
trajectories: Red = HT,
Green = SF, Blue = CS,
Purple = CO
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high while it decreases toward 0 in the second. The first graph is typical of cases
where the HT strategy wins and the second is typical of cases in which SF wins.

One implication that can be drawn from examination of these results arises from
an observation that while the initial populations are always started at the barycenter
of the p-D3 simplex, the results in any given run are undetermined: any strategy can
win. This suggests that the actual winning strategy in each case is determined by
random fluctuations in the probabilistically generated q-sequence. There is a con-
nection to virtual stability in this—the initial conditions in the p-simplex are set at

(a) (b)

(d)(c)

Fig. 8 CO Wins (a), SF Wins (b), CS Wins (c), HT Wins (d)

Fig. 9 Typical evolutions of PM, PE, and R
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the barycenter as well, which appears to be an unstable equilibrium. This suggesting
that in terms of control, maintain a virtually stable state at this equilibrium allows
rapid adjustment to such environmental contingencies.

4 Discussion

As emphasized by MacIver, the class of potential behaviors available to a complex
system within its environment is determined by a perceptual response horizon.
This is the ‘‘perceptual’’ distance available to the system as compared to its
capacity for motion. For organisms where these two distances are of the same
order of magnitude, behavior is limited to responses based on a local spatial
template. If the perceptual horizon is much greater than movement capacity, long
term planning and the ability to optimize over many possible projected future
actions becomes essential. In MacIver’s view this is the evolutionary advantage
provided by vision as life moved from the sea to the land [28, 29].

In the actual process of ‘‘optimizing over possible future actions,’’ however, a
variety of issues arise. When a leopard is chasing a baboon, each is acting to
optimize over the same set of pursuit paths, but each is using different optimality
criteria. The result of any individual pursuit is governed by how well each par-
ticipant is able to maneuver in the rapidly changing space of future possibilities. If
an animal sees a potential source of food, but also sees a predator, then there is a
decision problem: is the time required to obtain the food and escape greater than
the time it will take for the predator recognize that a prey is near and move into a
capture position?

Two issues directly associated with success in such life or death situations are
maneuverability and accuracy of perception and response. Evolution has provided
a variety of answers that address these issues, in ways that are satisfactorily from
the point of view of species survival. From the species point of view survival is a
matter of statistics—in each generation enough members of the species must
survive and reproduce. But selection acts on individual organisms; it is the
cumulative effect of selection, acting as a function mediating between individual
phenotypic expression and environmental contingency, that produces change in
gene frequency distributions.

Thus, if a biological species is to survive its members must satisfy certain
constraints imposed by the ecological niche occupied by that species. Species
members need to be able to behave in ways that are adequate to insure that a
sufficient proportion survive to reproductive age. Species that are observed in
nature can, in general, be assumed to be well adapted—the species phenotype
remains relatively stable while at the same time there is sufficient genetic vari-
ability to provide for accommodative response to environmental fluctuations.

A well-known ecological example is the British Peppered Moth (Biston belu-
laria) [30]. Until the middle of the nineteenth century the overwhelming phenotype
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for this moth was called typica, characterized by white wings with dark speckles.
As a result of smoke emitted from coal burning factories during the industrial
revolution, trees in industrial areas were covered with dark soot. Against this dark
background the white winged moth was easily spotted by predatory birds, intro-
ducing a strong selective pressure that led, by the end of the nineteenth century, to
a population of moths almost completely dominated by the carbonaria pheno-
type—black wings with white speckles. As industrial emissions were cleaned up in
the later twentieth century the typica phenotype reemerged.

While this is often pointed to as an example of evolution, it is important to
recognize that survival of the species was contingent on there being sufficient
variation available in the species gene pool, together with a generation time suf-
ficiently short that phenotypic change takes place on a time scale matching that of
environmental change. That is, the insight arising from the principle of virtual
stability is that in such cases it is not only a matter of having a requisite variety of
responses available, it is also necessary that these responses occur within a situ-
ation dependent temporal window, with a not too costly expenditure of energy or
resources. This can motivate construction of formal models of such cases har-
monizing mutational frequencies with generational and external time scales.

Species survive because a sufficient fraction of their members survive and
reproduce. If an individual organism is to survive, on the other hand, it must be
able to both acquire adequate resources and avoiding predation as it seeks these
resources. The capacity to optimize over possible futures plays an important role in
balancing the potentially conflicting goals of resource acquisition and predator
avoidance. Similarly, if a social group is to survive it must be able to replenish its
membership while maintaining the stability of those things that identify it as a
distinct social collective. These may involve nationalistic, economic, religious, or
other interests. The group must be able to maintain its core identity while adapting
to change.

The toy models presented in this chapter address some of the trade-offs
involved in such optimization. The model of the quickness-accuracy trade-off
deals directly with the functional relation between the need for resources in order
to survive and the cost (or danger) involved in obtaining those resources.
Empirically, animal studies show the existence of a speed-accuracy trade-off that
is consistent with the neural integration of sensory evidence until a decision
threshold is reached [31, 32]. These studies have focused on cognitive and neural
aspects involved, however, rather than the actual expression of trade-off behavior
in a natural environment where the potential consequences of a mistake charge the
decision with survival related tension.

With social groups the situation becomes more complicated. Ideological and
religious groups typically favor assimilation over accommodation and either reject
new ideas outright, or take an extended time to investigate them before either
declaring them heretical, or allowing them into the group belief structure.

In a more detailed extension, the quickness-accuracy model would have a
hierarchy of cues rather than just immediate appearance and actual reality, with
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corresponding temporal scales and graded levels of response.4 Nevertheless, the
model as presented provides insight into possible animal and social behaviors
under conditions of uncertainty and points to potentially interesting lines of
research. For example, it points to the question of whether there is a relationship
between species fecundity and foraging behavior—do species that produce many
offspring engage in riskier behavior than species that produce few offspring?

The virtual stability model illustrates the general concept of a stability-flexi-
bility trade-off. Commitment to a fixed trajectory of future action provides stability
but also exposes an organism to potential danger arising from the predictability of
this trajectory to potential predators, as well as vulnerability to random, hence
unpredictable, environmental fluctuations. It is easy to change an unstable state,
difficult to change a stable one so the trade-off is between an ongoing energy
expenditure required to maintain a state of virtual stability and the occasional need
for a much larger episodic energy expenditure to escape from a stable state that is
no longer preferred. A general mathematical formulation of this idea requires
specification of the degree of instability, the relation between the frequency of
adaptive corrections necessary to maintain the unstable state, and the average
energy expenditure involved in each correction. The energy expenditure, averaged
over a sufficiently long time scale must be less than the sum of expected energy
expenditures involved in episodically moving from one stable state to another in
response to environmental fluctuations. While it does not directly address these
requirements, the model shows the existence of circumstances under which it is
important to avoid commitment to any fixed course of action and indicates the
value of being able to maintain a position on an unstable trajectory that, for
example, moves on the boundary between competing basins of attraction.

A well-studied example of a virtually stable state is standing. Without ongoing
self-monitoring and feedback the standing position is unstable. If standing were
stable, walking would be difficult. As it is, taking a step is a controlled fall. Winter
[32] notes this, following on an extensive description of the complexities involved
in walking: ‘‘In order to accelerate our COG [center of gravity] in a forward
direction we must voluntarily initiate the start of a forward fall to accelerate the
COG ahead of the base of support.’’ (p.205)

Extensive research has been done to model human and animal standing,
walking and postural control [32, 33]. Mathematical analysis of human standing
and walking uses an inverted pendulum model. Asai, et al. [17] use the equation

I €H ¼ mghH� KHþ B _Hþ fPHD þ fD
_HD

� 	
þ rn ð33Þ

where I is the moment of inertia of the body about the ankle, H is the tilt angle, g is
gravitational acceleration, m the body mass, h the distance from the ankle joint to
the body center of mass, K the passive ankle stiffness, B a viscosity measure, D the

time delay for neural feedback (HD ¼ Hðt � DÞ; _HD ¼ _Hðt � DÞ) and n is a

4 Such a model could use filtering and template matching of perceptions, for example, in order to
find the best behavioral response fit.

Two Conceptual Models for Aspects of Complex Systems Behavior 127



Gaussian white noise of intensity r. The terms fP and fD are control parameters.
The equilibrium manifold is an unstable saddle and the control problem is to
maintain the system trajectory within the stable manifold. Their analysis shows
that this is best done with well-timed intermittent feedback. They conclude:
‘‘Overall the origin of such intermittency remains obscure and has, up to now been
viewed mainly as a consequence of neurophysiological internal constraints that
limit the computing power of the neural controller. However, there is the alter-
native possibility that intermittency has a functional role in the control strategy of
human subjects: that of maintaining the stability of feedback control despite
uncertainties about dynamic properties of the body or manipulated objects and the
large neural delays in the transmission of the feedback signals.’’

Because of neural transmission delays on the order of 200 ms, the brain
receives input of a situation as it was a short time in the past and, for effective
control, it must extrapolate from this past state and project control signals to an
anticipated future state. Since the standing position is unstable, the frequency of
control feedback must be high enough that the system never deviates from the
upright position by more than an easily correctable amount. While the mechanisms
underlying control of standing and walking are still being worked out, evidence
from animal experiments indicates that postural control appears to rely on main-
taining a movable balance between antagonistic neural control systems with a
small intermittent control function [17, 33]. In systems that are in a virtually stable
state, the inherent instability of the state means that the system will tend to be
‘‘falling’’ out of the state into a more stable configuration and this implies that a
threshold is required such that when it is crossed a control impulse must be
introduced to return the system to the unstable configuration [34]. This fits well
with theories of intermittent control and may point to the ‘‘functional role of
intermittency’’ alluded to in [17].

Another broad area where the virtual stability model is potentially applicable is
in studies of social groups. On one hand, it can point to the trade-off between
intransigence and flexibility in business or political negotiations, where keeping
options open can be advantageous. On the other, a person maintaining a state of
non-commitment within a group may face sanctions because this smacks of
opportunism. There is evidence of an innate human tendency not only to punish
defectors, but also to punish those who are unwilling to punish defectors [35, 36], a
tendency that seems to be directly linked to the evolution of cooperation [37].

Finally, the advantage in behavioral flexibility provided by the capacity to
maintain states of virtual stability suggests that in any sufficiently energy rich
environment with a moderate spectrum of random fluctuations, evolution will
produce nervous systems have the necessary self-monitoring and adaptive control
capacities to maintain virtually stable states. In other words, in a suitable envi-
ronment, the evolution of sentient life may be the rule rather than the exception.
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Toward a Computational Model
of Complex Human Systems Dynamics

Glenda H. Eoyang

Abstract A useful computational model of complex human systems dynamics
could support advancements in theory and practice for social systems from
intrapersonal experience to global politics and economics. Models of human
interactions have evolved from Newtonian assumptions, which served a variety of
needs in the past. Another class of models has been informed by nonlinear
dynamics. None of the existing models, however, sufficiently represents the open,
high dimension, and nonlinear self-organizing dynamics of social systems.
A conceptual model, CDE Conditions for Self-organizing in Human Systems, is
explored as an alternative. While the CDE overcomes the limitations of previous
models, it also provides an explanatory base for prospective analysis to inform
meaning making and action taking in response to complex conditions. An invi-
tation is extended to engage in developing a computational model that incorporates
the assumptions, meta-variables, and relationships of this conceptual model of the
complex dynamics of human systems.
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1 Modeling Human Behavior

A computational model1 that captures the nonlinear nature of the dynamics of
human systems with fidelity would yield great benefits for scholars and practi-
tioners who face emergent personal, professional, and political challenges.
Scholars would use such a model to develop and test hypotheses about human
behavior, institutional development, and evolution of industrial and political
ecosystems. Practitioners would use a robust nonlinear model to inform decision
making in real time and instructional programs to develop knowledge and skills
required in complex environments. Individuals and groups would build adaptive
capacity to see, understand, and influence complex and unpredictable patterns as
they emerge.

1.1 Current Models of Human Systems

Many different quantitative and qualitative, rigorous and imaginative models are
currently used for all of these functions. Rational choice theory, statistical analysis,
systems dynamics modeling, adaptive leadership, Myers Briggs Type Indicator,
Strength Finder, Technology of Participation, and so on are just a few examples.
All of these models support useful methods of research and practice in a variety of
contexts. Each one also has limitations based on its fundamental assumptions
about the dynamics of human systems. The most rigorous of the existing models
may apply only in narrowly defined theoretical contexts. The most imaginative,
without benefit of disciplined research, may prove to be ineffective or even
destructive in practice.

While these models of human interaction have served well enough in the past,
their inherent weaknesses are beginning to show. They assume clear and distinct
boundaries in space, time, and function, and our global economy transcends all
bounds. They assume a low number of relevant variables and clear indicators of
performance. The recent focus on systemic issues such as sustainability under-
scores the need to consider many factors at the same time, some of which are
unpredictable or ambiguous. They assume linear cause and effect. Today mas-
sively complex information and resource networks contribute to nonlinear effects
that cannot be ignored. As the world becomes more complex, the choices we have
made to simplify our models seriously limit their reliability and usefulness.

1 We will use the term model throughout to refer to ‘‘a simplified description, especially a
mathematical one, of a system or process to assist calculations and predictions.’’ (Oxford
Dictionaries Online. (n.d.). Oxford Dictionaries Online. Retrieved from http://
oxforddictionaries.com/.) We will characterize all systemic representations including qualita-
tive and quantitative, positivistic and interpretive as models. We will make the distinction explicit
when referring specifically to simulation, mathematical, conceptual, or computational models.
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As challenges of humanity become more complex, the limitations of these
models turn into fatal flaws. When individual, corporate, social, and political
patterns are radically open to external influences, assumed boundaries of a model
become irrelevant. As human systems at all levels are shaped by innumerable and
constantly changing variables, model assumptions about a small number of
dependent and independent variables are no longer valid. As our challenges
involve more and faster feedback loops, model assumptions of linear cause and
effect prove insufficient to capture the emergent dynamics of the system. In short,
as human systems become more complex, our models—even the complicated
ones—are not sufficient to inform either our research or our practice. Today’s
global challenges exceed the capacity of our historical models of human systems
dynamics. Robust theory and effective practice demand a new generation of
models and modeling techniques.

Even with all their flaws, the models of human interaction that currently exist
provide insights to support historical analysis, current decision making, forecast-
ing, and planning. In the same way that Ptolemy gave a ‘‘good enough’’ model of
celestial movement, social and economic models of the twentieth century have
been ‘‘good enough’’ to guide thinking and action across all levels of meaning
making and action taking. Just as Copernicus introduced an alternative model to
solve challenges that could not be solved under Ptolemy’s geocentric worldview,
we need a new model of human systems dynamics that will allow us to transcend
the limitations of our past theory and practice to respond to uncertainty and radical
emergence of our complex reality.

1.2 An Alternative to the Limitations of Current Models

Today, the inherent weaknesses of the existing models are increasingly apparent.
Decision makers in all sectors and industries realize the limitations of the models
and methods available to inform their action. Economists acknowledge that the
conditions resulting in crisis and collapse are not represented in their econometric
models. In spite of sophisticated technologies, intelligence communities have
insufficient power to deal with the challenges of information collection, collabo-
ration, and interpretation in the midst of unpredictable and complex networks of
insurgents. Political upheavals, social movements, violent and nonviolent conflict
generate phenomena that we urgently need to understand and influence. Around
the world, institutions find themselves overwhelmed and without sufficient tools to
see emerging patterns, understand their implications, and generate and select
options for action to influence systemic patterns of health or sustainability.

Over the past two decades, research into nonlinear dynamics has revolutionized
models and methods in a variety of physical science and mathematical disciplines.
Techniques emerging from the study of nonlinear physical systems, such as
nonlinear time series analysis and dynamical network theory, have been applied to
social systems dynamics with some success. Research and practice indicate that
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even those models have limited utility in shaping effective theory and practice in
complex social systems.

In this chapter, we will explore usefulness and limitations of some of the
models of social interaction that have influenced research and practice in psy-
chology and economics. We will also describe benefits and constraints of inno-
vative methods that have emerged from nonlinear dynamics applied to social
systems. We will explore these approaches in the contexts of the open, high
dimension, and nonlinear patterns of today’s complex human systems dynamics.
We will introduce a conceptual model of the human systems dynamics based on a
nonlinear paradigm of systemic interaction and emergent structuration. Based in
both theory and practice, this conceptual model informs action while it assumes
open, high dimension, and nonlinear dynamics of social systems at all scales.
Finally, we will invite colleagues to engage with us to develop a computational
model to quantify and test this emerging conceptual model.

Our experience is that this complexity-based conceptual model of human
interaction resolves issues of previous models and helps individuals and groups see
patterns in emergent systems, understand their implications in given contexts, and
take intentional action to influence the patterns as they emerge. We speculate that
this conceptual model might provide a strong theoretical grounding for a com-
putational model to inform theory and practice, and that such a computational
model would be robust enough to address our emerging challenges in complex
human systems. After introducing the conceptual model and speculating about a
possible computational implementation, we will propose a research agenda and
invite colleagues to join us in creating a computational model that exceeds the
benefits and resolves the risks of existing models of human systems dynamics and
their applications in theory and practice.

2 Traditional Models of Social Interaction

‘‘Essentially, all models are wrong, but some are useful.’’ [1] Diverse fields in
social sciences develop and apply mathematical and qualitative models and
methods to represent human behavior. Each one has emerged from a specific
discipline to respond to specific questions and inform certain kinds of decision
making. Like any other model, each model applied to human interaction has its
own inherent limitations.

2.1 Sources and Applications of Traditional Models

Models of human behavior have emerged from many different social sciences.
Political science, education, arts, anthropology, industrial engineering, sociology,
and an array of other fields focus on specific aspects of human systems and human
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behavior. Within each of these fields, a variety of conceptual and some compu-
tational models inform theory and practice. For the purposes of this paper, we will
focus only on illustrative examples drawn from the fields of psychology and
economics. Detailed analyses and critiques of even these models are beyond the
scope of this paper. We intend only to acknowledge the widely accepted notion of
the gap between human systems as they are experienced and as they are captured
in current models.

Psychological models are based on a variety of theoretical frameworks and
support diverse practical applications. For example, biological and cognitive
models of time have emerged from psychological research and practice [2].
Models of mood disorders are diverse and emerge from a variety of theoretical
frameworks [3]. Decision making is another application of psychological model
making [4, 5]. One class of psychological decision models is particularly applied
to intelligence efforts and the decision making and action in the intelligence
community. Judgment and Decision Making (JDM), Analysis of Competing
Hypotheses (ACH), Naturalistic Decision Making (NDM), foraging, and various
group decision-making models [6] are all applied to the field of intelligence col-
lection, analysis, and action.

These and many other models emerge from psychological research, and they
can be applied with good purpose to enhance theory and practice when individuals
and groups seek to see, understand, and influence change in social systems. As
useful as they are, these psychological models are limited to specific contexts and
challenges, and they are applicable at a limited number of human systems scales.
Some focus on the individual (and occasionally a small group) level of organi-
zation in human systems. Other sets of models deal with patterns at the commu-
nity, institution, or national scope. None of them is intended to speak
simultaneously to all of the open, high dimension, and nonlinear patterns that
emerge across the complex systems of human dynamics. In addition, most of these
models are not amenable to computational modeling or other quantitative methods
of inquiry. The lack of commensurability between qualitative and quantitative
representation of dynamics fuels the on-going conflict between positivistic and
interpretive epistemologies and research methodologies. The closer traditional
models come to realistically describing open, high dimension, and nonlinear
phenomena, the more difficult it becomes to represent their dynamics in mathe-
matical or computational models. Simplicity and fidelity are constantly in tension
in the whole range of models of psychological interaction. Where one succeeds,
the other fails.

Economic models, from statistical analyses to rational choice theory and cha-
otic dynamics [7], have shaped individual, institutional, and market decision
making for decades. The reliability and usefulness of such representations have
been challenged for equally as long [8]. In spite of their acknowledged limitations,
models of macroeconomic patterns of global interactions have become relatively
common. They are used to influence decisions that affect global politics and
commerce [9]. The reliability, robustness, and relevance of economic models can
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be characterized in many ways, but each model stands on its own foundation of
assumptions and acceptable methods [10].

The insufficiency of current economic models is widely understood. In January
of 2011, Ban ki-Moon, Secretary General of the UN proclaimed:

It is easy to mouth the words ‘‘sustainable development’’, but to make it happen, we have
to be prepared to make major changes—in our lifestyles, our economic models, our social
organization and our political life. We have to connect the dots between climate change
and what I might call here WEF—water, energy and food [11].

The systems we seek to sustain—physical, economic, social—are open, high
dimension, and nonlinear. Models we use to represent those systems must be able
to capture such complex dynamics. If we are to think simply and with fidelity
about these systems, we must have new models that capture the complex dynamics
of economic systems and their behavior. The current disconnect between micro-
and macroeconomic models is one example of this challenge. Economic models
isolate local action from the global patterns that capture consequences. The lack of
integration also makes it difficult to incorporate emergent global patterns into local
decision making. Global outcomes that depend on local action require new models
for economic behavior that scale across levels of analysis and action while
accounting for the massive complexity of nonlinear dynamics within every scale
and among all scales. Current economic models are not able to satisfy any of these
requirements.

We might add to this list of economic and psychological models ones from
political science, sociology, management, organization development, education,
and many other social sciences. All of these models are useful for their intended
purposes, but none is robust enough to represent complex dynamics of human
systems in ways that inform understanding or action in systems that exhibit
complex, nonlinear, emergent behaviors. When we acknowledge that human
systems are simultaneously open, high dimension and nonlinear, these models fall
short in a variety of ways.

2.2 Limitations of Traditional Models

Traditional models serve many purposes, but they are not able to represent the
complex dynamics of human systems as we experience them individually or in
groups. In our action research across many kinds of social systems [12], we have
found major limitations of the models emerging from assumptions of (1) a single
level of analysis rather than massive interdependencies across scales; (2) closed
boundaries rather than open interactions with emergent environmental landscapes;
(3) low dimensionality rather than high and/or indeterminate number of relevant
variables; (4) linear causality rather than nonlinear relationships and mutual cau-
sality; (5) random variability supporting statistical analysis rather than significant
levels of ambient background correlation. While they make the problems more
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tractable, these assumptions also limit the usefulness of the models to address real
dynamics of real problems.

Multi-level. Traditional models of human interaction tend to focus on a single
scale of human activity. Like the disciplines from which they emerged, current
models focus on one or at most two specific levels of social organization. One
model might consider the state of the individual in relation to the group dynamics.
Another might look at the firm in relation to a market. Yet another might consider
political entities and their interactions in global patterns of behavior. None of the
models supports a look across levels or at the interactions among multiple levels.
None captures the scale-free pattern-forming processes that are common in
complex adaptive systems. Even though we are keenly aware that global inter-
actions can influence and be influenced by individual or group decision making,
our models continue to represent one level in a way that is incommensurable with
the levels above and below it. While some techniques, like traditional systems
dynamics modeling, can include models within models to represent multiple levels
of underlying dynamics; still, the ability to generalize insights or actions across
scales is severely limited.

This limitation of being scale-bound is neither trivial nor merely theoretical. In
many fields, analysis at the micro and macro scales are totally incommensurate, so
critical information does not flow between local and global meaning making or
action. Incidents of violent conflict demonstrate the effects of missing inter-scale
communication. Individual peace makers interact with individuals in communities
on the ground. They may use conflict resolution models and methods to quell
emerging conflict between neighbors in a neighborhood. At the same time, the
economic and geopolitical analyses may capture critical contextual cues that are
not visible from the ground, but miss the messages that are local and specific to a
particular hotspot. As a result, model-informed insights about both the local and
global patterns are incomplete, and decision making and action taking in both
contexts are constrained. Increasingly, social scientists refer to macro-, meso-, and
micro-levels of interaction. While moving from one or two to three levels of
analysis is definitely an improvement, such a conceptualization still misses the
scale-free interdependence that is critical in the dynamics of complex adaptive
systems.

Open. The second limitation of current models is that they require human
systems to be bounded in space and/or time. Traditional models that represent
human interaction are based on assumptions that limit the conceptual definition of
a situation to make its problem space more tractable. Bounding conditions increase
certainty, so limiting assumptions make it easier to manage the mathematics or
theoretical descriptions. On the other hand, each assumption that limits the
problem space makes it more difficult to correlate model behavior to real human
behavior in the living system. Of course this is the purpose of the model—to
represent the system in a simplified way. In the past, the trade-offs between
bounded simplicity and real-world fidelity were manageable. Phenomena of social
systems were simple enough that our finite, constrained representations were
sufficient to inform theory and practice. As our local and global situations become
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more complex, however, it is increasingly difficult to support the delusion that our
situations are as bounded as our models assume them to be. A robust and reliable
model of human interaction must acknowledge and incorporate open system
relationships if it is to support meaningful theory building, pragmatic decision
making, and effective action.

While we know that all social systems are open to external influence, theo-
retical and mathematical models are seldom able to represent such open bound-
aries. Even the most closed examples of human institutions—prisons or fascist
regimes for example—are subject to external influences. Many modeling methods
constrain these unpredictable influences by artificially bounding a system in time
or space. While such a compromise makes the mathematics more tractable, it
limits the correspondence between behavior of the model and a real human sys-
tem—whatever the scale.

High Dimension. High dimensionality is the third complexity of real human
behavior that is difficult (if not impossible) to capture in traditional conceptual or
mathematical models. Perforce, our models assume that any human decision or
action depends on a finite number of relevant variables; while we know even the
simplest decision in real life may be driven by a large and unpredictable number of
parameters. Not only is the number of variables that influence human behavior
high, they also change constantly. At one time, for multiple individuals or at
different times for the same individual, different considerations will influence a
particular decision or action. If this is true at the level of the individual, it is even
more obvious for communities, institutions, or nation states.

This radical diversity of complex human systems is a major challenge to
effective modeling. One drawback of any model is the distinction between the
generalized, abstracted, perfect case represented in the model and the specific,
embodied, particular example that occurs in reality. In order for a model to apply
to diverse cases, assumptions must limit the amount of variability among the cases
in the system. In so far as the variability is limited, the model fails to represent the
particular case adequately.

Nonlinear and Non-random. Some models, such as those founded on rational
choice theory, simply deny local variability in order to represent a consistent
general case. Other models, including all of those based in traditional statistics,
assume a random distribution of phenomena across a context. Beginning with the
random distribution, modelers use statistical analyses to discern and characterize
patterns of interaction and intention that might emerge over time. For example,
when you assume random distribution, you can focus on average behavior as
representative of the whole. Again, this strategy has been ‘‘good enough,’’ but it
breaks down in the class of systems considered to be complex adaptive. These
systems generate system-wide patterns, so they do not begin from a state of normal
distribution. When the goal is to model how individuals are influenced by each
other, it is not ‘‘good enough’’ to imagine that their cultural or personal patterns are
random to begin with. If human beings have free will and if they influence each
other, which most model makers and users would like to believe, then we cannot
assume an initial random distribution with no correlation among agents. Each
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individual case has the freedom to vary in unpredictable ways, and the assumption
of zero natural correlation, which is required for statistical analysis, is no longer
valid. When agent behavior is naturally and unpredictably correlated, as happens
when many human beings are connected, their individual actions, driven by their
free will, influence each other. As a result, we cannot assume a random distribution
as a precondition for statistical analysis of overall system behavior, whether the
system is a person, a group, institution, or community. We need a different way to
conceptualize non-random, unpredictable differentiation that is common in our
observations and experiences of human systems dynamics.

2.3 Current Options for Modeling

Limitations of modeling methods have been acknowledged for decades. Narrative
is one modeling method that has successfully been used to represent open, high
dimension, nonlinear, and locally variable phenomena [13]. Stories are powerful
ways to represent reality in its own language, including its most complex char-
acteristics. While the uses of narrative methods are becoming increasingly robust
and rigorous [14] the dilemma of how to generalize or abstract narrative as a
model of social interaction has not been resolved. Two computer-based narrative
analysis methods are able to derive complex patterns of meaning from narrative
data. CRAWDAD (www.crawdadtech.com) [15] uses the linguistic technique of
centering resonance analysis to detect relations among noun phrases in a natural
language sample and represent those relationships as a network of meaning [16].
Quantitative analysis of the network provides rich information about the patterns
encoded in a narrative selection. Sensemaker (www.sensemaker-suite.com) [17] is
another software-based narrative analysis process that transforms narrative into
patterns of meaning. While both products create open, high dimension, and non-
linear models of narrative text, they share limitations of other complexity-inspired
models which we will discuss later.

Historical models of human behavior have understandably compromised
fidelity to make models more tractable and more generalizable. They focused on a
single level of analysis; they bounded systems, focused on a small number of
variables, assumed linear causality, avoided free will and interdependency by
assuming random distribution of behavior. While such models serve specific
purposes, they do not capture the complex dynamics that are relevant to decision
making and action taking in the twenty-first century. In efforts to adapt models to
match reality, many social scientists have embraced a variety of complexity-
inspired methods. We will explore some of those methodologies next.
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3 Complexity and Social Interaction

Traditional models of human interaction and human behavior have drawn from
traditional scientific, linguistic, and mathematical models and methodologies.
Since the mid-1970s, new and more complex analytical methods have emerged,
and they have been applied to research and modeling of human systems [18].
These approaches break through some of the limitations of traditional approaches
to modeling social systems because they deal explicitly with nonlinear causality.
On the other hand, they fall prey to some of the traditional limitations while
introducing some new limitations of their own. We will briefly introduce five
modeling approaches that have been derived from nonlinear dynamical methods,
describe how they support decision making and action taking in complex human
systems, and explore their limitations as true and useful representations of com-
plex dynamics of human systems for research and practice in emergent and
uncertain environments.

3.1 Sources and Applications of Complexity-Inspired Models

Beginning in the mid-1970s and continuing to the current day, models, methods,
and insights of the nonlinear dynamics in physical and mathematical systems have
been applied to explore human systems dynamics. Scholars and practitioners have
used these approaches more and less metaphorically to create simple models of
complex human system behavior at a variety of scales. Five categories of models
have been particularly useful, and we will describe them briefly here:

• Catastrophe theory;
• Dynamical network theory;
• Nonlinear time series modeling;
• Agent-based simulation modeling;
• Power law dynamics.

Catastrophe Theory. Renee Thom’s catastrophe theory [19] emerged as one of
the earliest quantitative models of complex dynamics. Not only did it deal with
nonlinearity, but it also included ways to capture high-dimension interactions. It
has been applied to a variety of social systems, including error and injury rates and
growth of firms [20]. While catastrophe theory showed great promise in its ability
to represent the dynamics of complex human interactions, it had limited practical
use for a variety of reasons. First, the mathematical sophistication of the model
made it complicated and difficult for practitioners to understand. In addition, its
graphical representations of systems in more than three dimensions were impos-
sible to see and even difficult for most people to imagine. So, while the qualitative
explanations of Thom’s work were powerful, and early interest in them was great,
the quantitative applications proved too complicated to be useful for decision
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making and action taking. Within a few years, the promise of catastrophe theory as
a definitive model of human interaction faded from most scholarly and practitioner
applications.

Dynamical Network Theory. Dynamical network theory [21] has been used
extensively as a powerful modeling method to explore market potential, social
cohesion, and dissemination of information [22] and innovation [23]. In the past
decade, a variety of software packages [24] have come on the market to simplify
the methods of collecting and analyzing network-related data. Measures of net-
work properties such as clustering, connectedness, density, and centrality have
opened new ways to see and understand the patterns of social interaction and
emergent social structures. Online social network sites have helped make such
models familiar to the public and have accelerated the acceptance of network-
based models of social systems. Stages of network evolution, from hub and spoke
to scale-free structures, have informed an understanding of the development of
social and computer networks over time. While this approach solves many of the
issues of pre-complexity models, it is essentially descriptive, providing a snapshot
of a current state without explanation of what came before or implications for
options for action to influence the future.

Nonlinear Time Series Analysis. One of the earliest modeling methods from
deterministic chaos involved a process of nonlinear time series analysis [25]. In
this method, an extended time series is analyzed and plotted in phase space,
looking not at change through time, but comparing the change in non-time vari-
ables from one point to the next across the entire time series. Such analysis
allowed the researcher to characterize the nonlinear phenomenon as following the
pattern of a random, point, periodic, or strange attractor pattern. Further analysis of
the time series could reveal the dimensionality of the phenomenon by pointing to
the number of key variables involved in the dynamics that shaped the pattern. In
the early 90s many researchers used methods of nonlinear time series analysis,
searching for strange attractors as evidence of deterministic chaotic dynamics in
social systems.

Three challenges emerged in using this approach either for theory or practice
development. First, the analytical method required a long and reliable time series
as input data, and appropriate data was not often available from the systems under
examination. Second, the mathematics required for the analysis were so compli-
cated that they were not well understood by many researchers, so they were
embedded in a variety of automated analysis tools. Lack of basic understanding of
the underlying method led to a variety of errors in analysis and interpretation,
including misinterpretation of results and unintended artifacts of the analytical
methods themselves. The third challenge was embedded in practice. Even when
strange attractor patterns were reliably discerned in time series data, the inter-
pretation and meaning making based on the results were not clear or compelling.
For these reasons and others, attractor pattern reconstruction as a modeling method
to support decision making and action taking in human systems has been relegated
to a small number of highly technical research applications.
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Agent-Based Simulation Modeling. Agent-based computer simulation mod-
eling has become a popular research method to demonstrate processes and out-
comes of self-organizing dynamics of social systems [26] in decision science [27],
financial markets [28], sociology [29], information and political science [30],
conflict analysis [31], and a variety of other social science applications [32]. Given
a set of initial conditions and agent characteristics, semi-autonomous agents in the
model follow local rules, learn adaptive behaviors, and contribute to formation of
system-wide patterns. These models can be used to visualize data about interac-
tions, to test hypotheses regarding conditions and paths of self-organizing pro-
cesses, and to teach about dynamics of complex change in human systems. The
premier institution committed to the study of agent-based modeling and its
influence in both physical and social sciences is the Santa Fe Institute (http://
santafe.edu/). Researchers have used the method to model and explore a variety of
dynamical systems and emergent phenomena. Though they demonstrate rela-
tionships between initial conditions and outcomes based on simple rules, the
abstract and generalized structure of an agent-based simulation model limits its
usefulness for decision making and action taking in real-world situations.

Self-Organized Criticality. Per Bak led a group that pioneered our fifth and
final method of nonlinear modeling for human systems, the power law [33]. Power
law dynamics, sometimes referred to as self-organized criticality, Pareto distri-
bution, or Zipf’s Law, have been used to describe major transition phenomena of
markets and market development [34]. The idea was popularized as the ‘‘long tail’’
of internet-driven business models [35]. The power law has also been used to
describe dynamics of population migration, violent conflict, and addiction.
Because of its ability to capture inter-level dynamics and to account for discon-
tinuous change, the power law has become one of the symbols of the changing
dynamics of human systems. The power law is scale-free, so it works at every level
of human system, from brain dynamics to world-wide conflict. The challenge is
that there is currently no robust theoretical explanation of why these mathematical
relationships emerge over time in complex systems. For this reason, the model can
only be used to analyze transitions after the fact. It cannot inform prospective
decision making and action.

All of these modeling methods have emerged from the study of nonlinear
dynamics in physical and mathematical systems. They have been applied to human
systems in an effort to develop models and methodologies that support better
observation, understanding, and intentional action in all scales of social systems
from intrapersonal reflections to international relations. Each one of these mod-
eling techniques brings a special feature that helps the researcher or observant
practitioner engage effectively and perform well in social systems that may be far-
from-equilibrium and actively emergent. All of these models, however, share two
characteristics that limit their usefulness in situations of practical decision making
and action taking.
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3.2 Limitations of Complexity-Inspired Models

Each of these models transcends some or all of the limitations of traditional
methods of modeling human systems. Table 1 provides a brief summary of the five
modeling methods and their relationship to the five limitations of the traditional
models described above. Exceptions to these simple categorizations may certainly
exist. Hybrid methods and models are emerging across many fields of study, but in
general, these families of approaches share the assumptions described here. Net-
works and power law analyses deal with multiple levels of analysis and are able to
represent massive interdependencies across scales. Networks, agent-based models,
and power law distributions assume the possibility of open system boundaries. All
of these methods except agent-based modeling assume high dimensional dynam-
ics, and all of the methods account for both nonlinear and non-random pattern
formation.

These models share a more realistic set of assumptions than previous modeling
approaches, and they account for social systems’ complex and nonlinear dynamics.
They are far superior in representing the emergent dynamics of complex human
interactions, but they still have two characteristics that limit application to formal
and informal real-time decision making and action taking in social systems.

Retrospective. First, they are all inductive models, so they can only provide
analysis in retrospect. None of them supports effective forecasting or even antic-
ipation of future pattern formation. All of these methods draw data from the past to
describe relationships and transformations that happened in the past. Time series
analysis requires a long and detailed data set extracted from previous events.
Network analysis captures past and current nodes and edges, but it does not help
anticipate or recommend action for the future. Being a node in an information
network can certainly inform decision making and empower action taking, but
creating a network model from empirical data does not inform options for action or
risk and benefit calculation except in very limited cases. Catastrophe theory bases
model characteristics on existing data and its models represent historical dynam-
ics. Agent-based modeling and power law dynamics both start with sets of
assumptions, but the findings of the models are descriptions of historical systemic
behavior as opposed to anticipation of future patterns of behavior. In essence, none
of these models has the power to anticipate future patterns or to provide

Table. 1 Limiting assumptions for complexity-inspired models of human systems dynamics

Model
characteristics

Catastrophe
theory

Dynamical
networks

Nonlinear time
series analysis

Agent-based
modeling

Power law
dynamics

Multi-level x x
Open x x x
High dimension x x x x
Nonlinear x x x x x
Non-random x x x x x
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intelligence that can inform future action for decision makers who are engaged in
self-organizing dynamics in real time.

On the one hand, this reliance on historical patterns is to be expected because
complex dynamical systems are sensitive to initial conditions and, by nature, are
unpredictable. You would not expect a model based on emergent dynamics to be
predictive. On the other hand, if a model is to be of service to real decision makers
in real situations, it must provide some level of intelligence about underlying
dynamics and ways to intervene to influence an emergent future. An effective
model also needs to provide information about the dynamics in any given moment
to inform action that might shift those dynamics for future benefit. All of these
complexity-inspired models are backward looking, and none of them proposes a
causal mechanism, so none of them meets the requirement of support for
prospective decision making in actual human systems.

Descriptive. Second, the models are descriptive rather than explanatory.
A descriptive model represents the ‘‘symptoms’’ of dynamical self-organizing
processes. These models help describe the behaviors that emerged over time in
complex human systems. We can use them to determine whether the system
patterns conformed to multi-dimensional manifolds (catastrophe theory); gener-
ated or broke connections (network theory); showed coherent behavior in phase
space (nonlinear time series analysis); generated system-wide patterns from local
interactions (agent-based simulations); or generated consistent ratios between
numbers and sizes of transforming events (power law). Each of these models
describes patterns that emerged among the components of a given system, but they
do not capture explanations for those dynamics. An explanatory model, on the
other hand, provides information about the underlying relationships that set con-
ditions for observable behaviors to emerge. For example, the life cycle of the
rhinovirus is an explanation for the common cold, while a runny nose is a true, but
descriptive, symptom. Effective intervention depends on the explanation, and
current complexity-inspired models of human behavior provide only descriptions.

We should note two possible exceptions to this rather radical observation. Per
Bak and others who work with power law dynamics hypothesize a variety of
explanatory theories [36]. Bak, himself, speculates that power law dynamics
emerge from cycles of accumulation and release of tension among agents at
various levels in a complex system. When enough tension accumulates in one
scale of the system, structural changes take place in scales either above or below to
release the tension and reach a more stable state. This mechanism is incorporated
in the model we will propose shortly. The other notable possible exception is the
work of June Holley regarding her network weaving approach [37]. Her work is
derived from extensive experience in supporting development of entrepreneurial
networks, but the connections between her practical advice and the structure of
dynamical models is not always explicit. Her insights have also informed our
emerging conceptual model as well as our practice in real human systems. With
these slight exceptions, most models from the nonlinear array can, at best, describe
the world as it has been. They cannot inform theoreticians or practitioners about
conditions under which those patterns emerged or how they might be influenced.
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Traditional models of physical and social dynamics provided explanations for
phenomena in social systems, but they were of limited use because they drew from
Newtonian mechanics, in which systems were closed, low dimensional, and linear.
In those situations, the causality and explanations were clear, but not trustworthy
when applied to complex human systems. In complex dynamics, where none of
these limiting conditions persist, a new explanatory model is needed to inform
human action inside emergent, complex adaptive systems.

Interpretation Not Action. Finally, because the complexity-inspired models
are neither prospective nor explanatory, they cannot support decision making or
action taking in a moment. They do represent systemic patterns of the past and can
certainly support meaning making for individuals and groups who want to
understand historical patterns. But if the goal is to create a computational model
that informs wise forward-looking action, then it must be based on a conceptual
model that provides prospective insight and explanation of self-organizing
dynamics that help people see, understand, and influence patterns as they emerge
in complex human systems.

4 Conceptual Model of Human Systems Dynamics

The challenge is to develop a computational model and modeling methodology
that (1) represents the complex and unpredictable dynamics of human systems;
(2) works at all scales from intrapersonal to global; (3) provides information about
the possible futures of systemic behavior, even knowing that the future of complex
systems cannot be predicted or controlled; (4) provides sufficient explanation of
interactions within the system to inform options for action; (5) reveals meaningful
patterns even in systems that are open, high dimension, and nonlinear; (6) rep-
resents the diversity of the parts and the coherence of the whole simultaneously;
and (7) provides sufficient explanatory foundation to inform wise and responsible
action, even under conditions of the greatest uncertainty. The computational model
must be based on a conceptual model that rigorously meets all of these criteria, as
well.

Social sciences are not the only contexts in which this challenge exists. Even
across the physical and mathematical sciences, no single conceptual model of
complex systems dynamics has proved to be general and robust enough to be
universally accepted today. Fitness landscapes [38], dissipative structures [39],
power law dynamics [40], synergetics [41], and dynamical networks [42] have all
proven to be useful conceptualizations of complex dynamics, but none dominates
across disciplines. Even in these contexts of physical and biological sciences
(which are substantially less open, high dimension, and nonlinear than human
systems), no model is accepted as a definitive representation of all complex
adaptive phenomena. All accept limitations that compromise fidelity or specificity
in favor of tractability.
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We propose an alternative conceptual model of human systems dynamics that is
derived from patterns common to a wide variety of physical science and mathe-
matical models of complex adaptive systems. This emerging model also draws
from philosophical foundations of perception and knowledge that are unique to the
functioning of human systems. It is grounded in conscious and intentional action
with real groups facing real challenges in organizations and communities [43]. In
both theory and practice, this conceptual model captures the dynamics of human
systems at all scales, in ways that inform decision making and action taking in
complex and uncertain environments.

4.1 Conditions of Self-Organizing in Complex Systems

We accept the definition of complex adaptive system (CAS) as a collection of semi-
autonomous agents that have the freedom to act in unpredictable ways, and their
interactions generate self-organized patterns across the entire collection. As pat-
terns form in the system, they constrain the options of the agents in subsequent
phases as this self-organizing process continues [44]. We use an operational
definition of pattern as similarities, differences, and connections that have meaning
across space and/or time. Examples of CAS and the patterns they form are myriad
in physical systems (e.g., whirlpools, heart rate variability, embryonic develop-
ment, crystal formation), but we will focus here on such processes as they influ-
ence human systems. In the context of human experience, intrapersonal reflection
and emotional and cognitive experiences generate self-organizing patterns for
individuals [45]. (Some even argue that consciousness itself is self-organizing
processes of a complex adaptive system [46], but that conversation is outside the
scope of our current exploration.) Two or more people who form a coherent group
for learning, work, or play function as agents in the complex adaptive system [47]
of a group. Neighborhoods can be seen as CASs as well as agents that contribute to
the patterns of an urban landscape. Firms self-organize from within and participate
in emergent patterns of markets and industries. Provinces, nations, national allies
all are examples of CASs in the realm of human systems.

Prospective. It is one thing simply to say that human systems self-organize. It
is another to track self-organizing processes in retrospect through case study
narratives, nonlinear analysis of time series, construction of network maps, and so
on. Existing conceptual and computational models, as described above, are suffi-
cient for such descriptive investigations. Analysis that supports proactive decision
making in a complex human system, however, requires more. It requires an
understanding of the conditions that influence the speed, path, and outcomes of
self-organizing processes.

Constraints and Self-Organizing. Examination of diverse models of self-
organizing processes in non-human complex systems revealed that self-organizing
patterns were influenced by certain conditions. Any complex adaptive system only
generates patterns when it is constrained in some way. The Belousov–Zhabotinsky
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reaction requires a containing vessel, a certain temperature threshold, and very
particular chemical gradients. An ecosystem will be bounded in space and requires
predator, prey, and reproductive interactions among organisms. Fractals require a
nonlinear equation to act as a seed and the context of the complex number plane. A
fitness landscape requires specific parameters that define fitness and feedback
loops to determine survival on the landscape over time. A laser beam depends on
both control and order parameters. A scale-free network has nodes and hubs with
specified characteristics and criteria for connection. Without any constraints,
regardless of the system or its substrata, no pattern self-organizes.

The same realization about the necessity of constraint in pattern formation came
from personal and professional experience in social systems. Self-organizing pro-
cesses in complex human systems, such as large group meetings or team perfor-
mance, required some constraining conditions for patterns to emerge. Depending on
those conditions, pattern formation was sometimes fast, direct, and clear. In other
circumstances, the process of pattern formation was slow, wandering, and messy.
Within a particular self-organizing process, the patterns were sometimes coherent
and distinct, and sometimes they were distorted or ambiguous. Sometimes the
emergent patterns were healthy or fit to purpose, and sometimes they were dys-
functional. Sometimes the self-organizing process moved quickly through explor-
atory stages and into exploitation. At other times the process got stuck in exploration
and productive patterns emerged slowly, if at all. Patterns at the individual scale
were sometimes in conflict with those at intrapersonal or group scales, and patterns
in two separate parts of the system often contradicted each other.

These variations on the process of human systems emergence were not random.
They were influenced by the context, and the context was formed by other self-
organizing processes in other places and times. As one pattern emerged, it influ-
enced the conditions that informed the speed, path, and outcomes of other patterns
in the vicinity. This interdependency among patterns held whether the patterns
were in scales above or below, or in remote parts of the system at the same scale.
This mechanism of constraints influencing emergence of shifting, interdependent
patterns held across environments, contexts, and levels of analysis.

Influencing Constraints. The question emerged for us: Would it be possible to
identify parameters that influenced the variability of self-organizing processes,
while acknowledging the open, high dimension, and nonlinear nature of self-
organizing in human systems? If so, those parameters could be used to see self-
organizing patterns in the moment, understand their potential for future pattern
formation, and influence the conditions to nudge the emerging pattern toward
desired outcomes.

These conditions that result from one self-organizing process and influence
other self-organizing processes were the focus of our investigation and the foun-
dations for the CDE Model for the conditions for self-organizing in human sys-
tems. CDE stands for the three fundamental, necessary and sufficient clusters of
constraining conditions: container, difference, and exchange. The CDE Model is
grounded in a multi-disciplinary study of nonlinear dynamics in a wide range of
physical and mathematical sciences as well as action research in diverse human
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systems settings [48]. We will first introduce the model, then articulate ways in
which it meets all of the criteria earlier defined for a conceptual model to inform
theory and practice in complex human systems.

4.2 CDE Model for Conditions of Self-Organizing in Human
Systems

The CDE Model of conditions for self-organizing in human systems is a qualitative
conceptual model of a set of meta-variables that represent a wide variety of con-
straints that influence the speed, direction, and outcomes of self-organizing pro-
cesses in human systems. The characteristics of these meta-variables and the
nonlinear interdependencies among them form the foundation of a model of human
systems dynamics that meets all of our criteria for a useful way to support seeing,
understanding, and influencing the complex dynamics of social systems at all scales.

Container. Boundaries and boundary conditions have always been an integral
concern of systems theory [49]. Open, high dimension, nonlinear conditions that are
common in human systems challenge traditional understandings of system bound-
aries. Especially in complex human systems, practitioners and theoreticians chal-
lenge the traditional ways that systems are defined and system boundaries are
represented. Boundaries of human systems must account for multiple, massively
entangled levels of pattern formation, from personal insight to mob behavior. At the
same time, human system boundaries have to account for the fact that ‘‘inside’’ and
‘‘outside’’ have distinct and significant meanings, and that those meanings change
over time depending on perspective. To meet the needs of both flexibility and fidelity
to a human system, the CDE Model must account for system boundaries that can be
simultaneously open and closed, unitary and multiple, local and global.

In response to this need, the first meta-variable in the CDE Model highlights the
boundaries of the focal system. This set is called container and is represented by
‘‘C’’. A container (C), of any self-organizing process includes any condition, or
collection of parameters, that hold the agents of the CAS close enough together
that they can interact and form patterns. A particular container may be physical,
like a room or a mountain range. It may be conceptual, like a national identity, a
stated purpose, or religious belief. It may be social, like an invitation to a party or
an artistic performance. As these examples demonstrate, a container can be a
bounding condition (fence), an attractive condition (magnet), or a combination of
multiple mutual attractions (network).

In any real human system, there are innumerable containers at play simulta-
neously, and usually, the containers are massively entangled. Containers can be
simply nested within each other, for example, a child is in a classroom, a classroom is
in a building, a building in a district, and a district in an educational system. More
often, however, the relevant containers are overlapping and interdependent. For
example, the child is a member of a family, a scout troop, a baseball team, a cultural
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community, a gender group, a gang, and so on. Standing within all these boundaries
simultaneously, the child is a participant in many different self-organizing complex
adaptive systems. At every moment, the child both influences and is influenced by
patterns emerging in any of these diverse containers.

C, in the CDE Model, is the meta-variable that encompasses all conditions that
influence any particular complex adaptive system at any given point in time. Any
particular emergent pattern of a CAS involves some subset of all possible Cs, and
within a pattern, some Cs will be more and others will be less relevant to a
particular purpose. For example, the child’s elementary school class container may
be irrelevant when he or she is playing first base, though it does not cease to exist.
As intentional agents who see, understand, and influence patterns in self-orga-
nizing processes, we recognize the most relevant containers and focus our atten-
tion and action on them. At the same time, we understand that innumerable other
containers exist and might become relevant at any moment. The simultaneous
reality of one configuration of containers and the potential of another configuration
of them allow us to deal with the system as if it were simultaneously bounded (to
support computation and decision making) and unbounded (to represent the
openness of observed social reality).

Containers manifest the self-organizing patterns at a specific point in time, but
they also influence the potential for change in the pattern in the future by
increasing or decreasing the degrees of freedom for all of the agents contained in
the system. Larger or weaker containers reduce the pressure of constraint and
increase the degrees of freedom for the agents to establish relations and to orga-
nize, so the process of pattern formation is likely to be slower and less articulated.
Smaller or tighter containers, on the other hand, tend to increase constraints,
decrease degrees of freedom, and so increase the likelihood of collision and the
speed and clarity of the self-organizing process.

The correlation between container size and the speed and clarity of the self-
organizing process serves as an explanation to support decision making and action
taking by individuals and groups. It is significant to note, however, that the rela-
tionship is not simply causal. A particular change in the size of a container does
not necessarily determine the effect on the pattern as a whole. The precise rela-
tionship between the container and the emergent pattern is not predictable in any
given self-organizing situation because the influence of the container is mediated
by the other two conditions for self-organizing—D (difference) and E (exchange).

Difference. Difference has also historically been an important factor in the
ontology and epistemology of systems, and it is the second condition for self-
organizing in the CDE Model. Even the ancients recognized the power of differ-
ence for causing change and making meaning [50]. Traditional physics considered
difference as the key to all kinds of potential energy, and more recently, com-
plexity scholars have explored the power of difference in understanding [51] and
influencing systemic patterns [52]. The challenge is that in our open, high
dimension, nonlinear human systems, we must deal with the fact that potential is
embedded in many differences simultaneously, and that the relevance of a
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particular difference, and its influence on system-wide patterns, cannot be pre-
dicted and can shift without warning.

As a result, the CDE includes ‘‘D’’ as the second meta-variable to capture the
myriad differences that influence change in a human system. A difference is any
gradient or distinction that exists within any given container that bounds the
complex adaptive system of focus. At a given moment, in any given human
system, at any given scale, an indeterminate number of differences articulate the
systemic pattern and hold the potential of the system to change.

In the system dynamics as captured in the CDE Model, relevant differences
serve two functions. First, difference articulates a pattern as it emerges out of self-
organizing interaction. Difference allows the pattern to be observed, analyzed, and
influenced. Differences can be physical, emotional, social, political, financial, or
any other dimension you can imagine. They may be subjective, objective, or
normative. Regardless of the substantive manifestation of the difference, as agents
interact, the interactions among their different characteristics manifest a pattern
across the system. At any point in time or location in space, the pattern of a CAS
consists of variation in one or another characteristic among the agents bounded by
a given system container. For example, in a team, differences in expertise might
contribute to the pattern of high performance. In a neighborhood, differences in
household income might contribute to the architectural design for the whole. In a
nation, differences in political assumptions and values shape the pattern of deci-
sion making and action for the government. Differences are relevant in a variety
ways in diverse containers. For example, height can be a difference that makes a
difference on a basketball team, but it might be irrelevant in an academic learning
environment. Difference may refer to the degree of variation (more or less tall,
more or less happy) or to the kind of variation (height or attitude). Discrete and
large differences build clear patterns, and continuous differences or small ones
contribute to fuzzy or ambiguous patterns.

The second function served by difference is to establish potential for change.
Potential energy in physical systems is an example of the motive power of dif-
ference. Difference in height, spring tension, and heat are all examples of the ways
in which potential for change is ‘‘stored’’ in differentiation between or among
system-wide parameters. In human systems, the tensions created across differences
also motivate action. The teacher knows more, and the student wants to learn. The
racist is moved to violence. Platforms of political parties motivate voters. Gender,
values, expertise, wealth, curiosity, expectations, age, power, faith commitments
are just a few examples of differences that can hold the potential energy of a
human system at any point in time. Any of these differences may shift a relevant
pattern and result in new patterns self-organizing across a single human scale or
between scales. For example, my level of confusion results from a difference
within my own cognitive frame. It may cause me to bother my neighbor, and
together we may interrupt the flow of an otherwise orderly class. A difference at
one place or scale of a system motivates the local pattern to shift, and a shift in
local pattern may result in shifts at a more global level.
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Difference is such a powerful influence on change because it, too, represents
levels of constraint (degrees of freedom). Large differences increase degrees of
freedom and tend to motivate rapid or more turbulent change, while small dif-
ferences constrain degrees of freedom and, therefore, convert more slowly. A
system with few relevant differences (lower degrees of freedom, more constraint)
will manifest a clear and coherent pattern, while one with many relevant differ-
ences (higher degrees of freedom, less constraint) may appear random and be stuck
in an entropy trough.

Conversion of the potential energy of difference to the kinetic energy of change
in a human system is not simply a causal process. At any moment, differences in
multiple containers are influencing each other. For example, a social definition of
political correctness, and my desire to make a good impression on my boss, may
damp my action in regard to my political or racial bias. Even within the same
container, multiple differences vie for dominance in the self-organizing process.
For example, I love chocolate, and I am committed to weight control. Sometimes
one difference sets the potential for action, sometimes the other does, and some-
times two differences are balanced, and the result is stasis.

The meta-variable of difference, both as demonstration of current pattern and
motivation for change in the future, establishes another link in an explanatory
pattern that can inform observation, meaning making, and action for people
engaged in social systems. As long as any one difference or small set of differences
is relevant at a given instant, the system may be manipulated as if it were simply a
low dimensional phenomenon. Because ‘‘D’’ is a meta-variable, the CDE problem
space is tractable enough for individuals to see (and groups to discuss) coherent
mental models of a self-organizing social system. On the other hand, because an
unlimited number of differences can be represented within any ‘‘C’’ in the CDE,
the system as a whole can be understood to function simultaneously as a high- and
low-dimension space. In this way, the model matches both the need for tractable
representation and infinite variety of real experience.

While changes in ‘‘D’’ shift patterns in a system, they do not allow for total
prediction or control. Multiple interacting differences influence a given pattern at a
given moment, so an intentional change in one may be distorted or damped by any
other. Even if differences are constrained to a small and manageable number, a
change in the complex human system cannot be controlled. By itself, or even in
tandem with defined containers, difference can influence direction but not pre-
determine outcome of a self-organizing process. The final set of meta-variables
that simultaneously influence the emergent self-organizing patterns involves the
connections across the system that allow difference to accumulate or dissipate.

Exchange. From feedback in traditional systems dynamics modeling [53] to the
theory of constraints [54] and complex responsive processes [55] the idea of flow
has been essential to conceptual and computational models of human systems. In
the past decade, nonlinear relationships and feedback loops have been accom-
modated in models of human interaction, but they have usually been conceptu-
alized in the context of low dimension and/or closed systems. When a nonlinear
relationship is embedded in a quasi-bounded, high dimension space, it quickly
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becomes intractable. When coupled with high dimension and open boundaries,
feedback has resulted in system patterns that are either disordered or radically
subjective. These are critical modeling challenges because it is just such
exchanges, in open and high dimension space, that are critical to understanding
and action in human systems.

To meet this requirement, the final meta-variable in the CDE connects across
the system to realize the potential stored in any of its differences. We call this
meta-variable exchange and represent it by ‘‘E’’. Exchange includes any transfer of
information, energy, force, signal, material, or anything else between or among
agents. It appears as flow from one part of the system to another. and it establishes
relationships that are observed before, during, and after self-organizing processes
in human systems.

While many kinds of exchanges influence pattern formation in human systems,
one of the easiest to visualize is the flow of information during a conversation.
Two people hold different views or expectations (D). When they come together for
a particular purpose (C), they exchange (E) information, and if everything goes
well, a coherent pattern of the whole emerges. The emergent pattern is not pre-
dictable. It may be increasing anger, distrust, frustration, and separation, or it may
be shared mental models and harmonious friendship. The presence of the exchange
cannot pre-determine the nature of the emergent pattern, but the absence of
exchange will result in no shared pattern at all.

Exchanges are taking place in many different containers and across many dif-
ferent relevant differences simultaneously. An individual is thinking about one
thing, her team is focusing a conversation on another, senior management is
assessing the team’s performance against others, and other firms in the industry are
seeking competitive intelligence. All of these Es are simultaneously influencing
the emergent patterns at all scales of the system. A change resulting from one may
well influence the efficacy of another. Exchanges that are invisible to one system
participant may be quite powerful for another, and those that are global and formal
are often less powerful than those that are local and informal.

Like containers and differences, exchange derives its influence on systemic
behavior from increasing or decreasing degrees of freedom. The power of a given
exchange is denoted by limiting degrees of freedom by the tightness of the con-
nection it establishes across differences in a system. Tightness is determined by a
variety of factors, including speed (time required to complete the connection),
width (number of differences considered), strength (size of differences traversed).
Tighter exchanges (increasing constraint and reducing degrees of freedom) tend to
speed up self-organizing processes, and weaker ones (lower constraint, more
degrees of freedom) slow it down. When exchanges are absent, no self-organizing
change will occur at all.

Again, the ‘‘E’’ meta-variable can be used to assess and influence self-orga-
nizing patterns as they emerge. One might tighten exchanges to increase the speed
and influence the outcomes of a self-organizing process, but the results of that
intervention are unpredictable. The relationship is not simply causal. The vari-
ability of competing exchanges and the indeterminacy of containers and
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differences in the system at large make the future unknowable, even while
exchanges can be manipulated with the intention of influencing the speed, path, or
outcomes of a self-organizing process.

Interdependencies among C, D, E. The indeterminacy of the meta-variables of
C, D, and E help capture the open, high dimension, and nonlinear nature of human
systems. The relationships among the sets of meta-variables account for the
emergent, self-organizing dynamics of those systems. Variability of the speed,
direction, and outcome of a self-organizing process is influenced by the dynamic
relationships among members of the same variable class within each of the meta-
variables (C1 to C2, D1 to D2, or E1 to E2). The process is also influenced by the
nonlinear relationships among the three collections of meta-variables (Cn to Dn to
En). These interdependencies generate a variety of interesting consequences that
increase the fidelity of the CDE Model to the lived reality of self-organizing
processes in human systems. A shift in one difference begins a self-organizing shift
in other differences, as well as in multiple exchanges within the same container
and in related containers as well. For example, I observe an anomaly (D1), this
causes me to question (E1) other observations (D2) in the current experiment (C1)
as well as to challenge a protocol (E2) that might be used by others on my team
(C2). Given the number of variables represented with each meta-variable and the
interconnections among the meta-variables in any system moment, it is easy to
understand how complex adaptive systems are sensitive to initial conditions. This
complex interdependency among system conditions helps explain why complex
adaptive systems can be unpredictable at the local and patterned at global scales.

Any feature of a social system that might influence a self-organizing pattern can
be accounted for in this conceptual model. Even system features that would
otherwise be seen as extraneous can be incorporated into the CDE portrait of any
systemic pattern. The only adjustment that is required is to recognize the larger,
relevant container that encompasses both what was originally ‘‘outside’’ with what
was ‘‘inside.’’ And, because the three conditions do not depend on time or dis-
tance, a CDE portrait is necessarily scale-free. For example, when we work with
teachers in the throes of school reform, they focus primarily on their classrooms
(C1) and their students (C2). When they perceive the requirement for high-stakes
testing (E1), they see it as an external force (C3) that is being imposed on them and
their students from the outside. Instead, we encourage the teachers to see high
stakes testing as a difference that makes a difference (D) in their classrooms. By
recognizing the test as a part of a classroom pattern, rather than an external
imposition, new options for teaching and learning (E2) emerge.

The three conditions (C, D, and E) are mutually determined, so changes in any
one spontaneously result in changes in the other two conditions. It is possible that
the broader universe of conditions holds a particular pattern (C or D or E) in place,
so an adjustment may not be immediate or predictable. Ultimately, as the related
conditions shift, more and more energy is required to resist the tendency of the
system to adapt internally. For example, a corporate focus on profits (D1) as a sole
difference that makes a difference can pre-determine (E1) policies and procedures
(C1) that contradict (D2) individuals’ (C2) personal values (D3). If exchanges are
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established that allow employees who share values to talk (E2) with each other,
they may amplify the values difference between them and their boss and, ulti-
mately undermine profit-dominated patterns of behavior.

Difference and container have a special relationship in the context of complex
adaptive systems. Within a container, a difference can denote a pattern and set
conditions for self-organizing change. At the same time, if that difference is great
enough, it may overwhelm exchanges that mediate the difference within the whole,
until the system bifurcates along the fault lines formed by the difference. When
this happens, the characteristic that functioned as a difference previously is
transformed into a container, which bounds a new and somewhat autonomous
system. In an opposite process, two containers may be connected by an exchange
that is strong enough to elicit a shared pattern. In that case, the previous containers
become mere differences that make a difference within a new emergent whole.
Examples of both of these situations abound in real human systems. A team
includes people of both genders, so gender is a difference that may or may not
make a difference. A sexist joke or a harassing behavior can turn that difference
into a container in which the men and the women face off against each other. At
the same time, race and experience, which were also differences within the original
container, may be invisible and equally distributed across the system, waiting for
circumstances that transform them into features that contain rather than just dif-
ferentiate an emerging pattern.

Recognizing the features that contain, differentiate, and connect across self-
organizing patterns allows a conscious agent to observe the process of change as it
occurs. Understanding the relationships among the conditions for self-organizing
and seeing the pattern from a variety of perspectives allows the conscious agent to
make meaning of social change as it emerges. Acknowledging options for action
and anticipating the nonlinear consequences of a change allows the conscious
agent to take intentional action to shift patterns in the course of self-organizing.
Finally, continuing to observe the system patterns in formation allows the con-
scious agent to take adaptive action to amplify opportunity and mitigate risk in real
time [56]. These three iterative problem solving steps—observe, understand,
influence—engage the actor/observer with patterns as they emerge. They are the
foundation of adaptive action and adaptive capacity for individuals, communities,
and organizations.

4.3 Implications of the CDE Model

The CDE Model addresses and resolves many of the limitations of models of
human systems that were informed by Newtonian and previous applications of
complexity science, but it also introduces some challenges of its own as a foun-
dation for either a conceptual or a computational model.

CDE Describes Social Phenomena. Like other complexity-inspired models,
the CDE is able to address phenomena across levels of organization. As we stated
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before, none of the meta-variables necessarily includes either time or distance, so
they are applicable on any scale of human system, as well as across scales in the
same system at the same time.

The CDE Model represents human systems as simultaneously open and closed.
While one might focus on a single configuration of C, D, and E at one moment, it
is done with the consciousness that an infinite number of other containers, dif-
ferences, and exchanges might become relevant at any moment.

CDE as a conceptual model also opens the space for a system to be both high
and low dimension at the same time. Differences that make a difference at one
moment may be supplanted by any one of a slew of other differences, all of which
fit into the category of conditions represented by the meta-variable, D.

The CDE Model matches the nonlinear causality that is so familiar in human
systems. The massive and mutual interdependency among the meta-variables
reflects the massive interdependency among the conditions that shape the speed,
direction, and outcomes of real self-organizing processes in the real world.

The dynamics of CDE are not predictable, but they are not random either.
Changes in one condition or pattern are highly correlated to changes in others, both
local and distant. On the other hand, CDE can account for random behavior when
the conditions are under-constraining. Low constraint happens when the C is large,
the Ds are many, and/or the Es are weak. In these situations, the coupling and
correlations among the conditions for pattern formation are so low that system
behaviors may be indistinguishable from randomness.

In addition to resolving the limitations of traditional models of social interac-
tion, the CDE Model also resolves challenges unmet by other complexity-inspired
models. The CDE captures the underlying dynamics of self-organizing processes
by naming the categories of constraint that initiate and influence the shape of
emerging patterns as well as the process of emergence. Because it explains
underlying interrelationships, it can be used to inform intentional action to shift the
conditions and, one can hope, influence the future path and outcomes. The cau-
sality is not absolute, and results are not predictable. The complex interactions
among self-organizing conditions, both seen and unseen, make unintended con-
sequences not just common but expected.

Finally, the CDE Model allows an observant actor to anticipate the future
consequences of current action. In this way, the CDE allows a conscious actor to
construct a conceptual model of an ethical dilemma. We can consider multiple
options for action and imagine possible consequences, risks, and benefits for each
option. When a choice is made, the consequences may or may not be as anticipated,
but each cycle of adaptive action informs the next, so individuals and groups can
learn and improve their capacity to adapt and influence patterns over time.

CDE Informs Practice. The CDE Model, as a conceptual representation of the
complex dynamics of human systems, meets the challenges set out at the begin-
ning of this paper. The CDE Model of the conditions for self-organizing in human
systems (1) represents the complex and unpredictable dynamics of human systems;
(2) works at all scales from intrapersonal to global; (3) provides information about
future systemic behavior, even knowing that the future of complex systems cannot
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be predicted or controlled; (4) provides sufficient explanation of interactions
within the system to inform options for action and anticipated possible outcomes;
(5) reveals meaningful patterns even in systems that are open, high dimension, and
nonlinear; (6) represents the diversity of the parts and the coherence of the whole
simultaneously; (7) provides sufficient explanatory foundation to inform wise and
responsible action, even under conditions of the greatest uncertainty.

As a conceptual model the CDE has been tested in a variety of contexts and
under a wide range of conditions. It is currently informing theory and practice in
education, school reform, program evaluation, occupational therapy, conflict res-
olution, organization development, management, leadership, team building,
advocacy, public health, public policy advocacy and implementation at all levels
of governance, human resource development, facilitation, diversity, ethics, and
community development [57]. As a qualitative tool, it supports individuals and
groups as they engage in adaptive action to see, understand, and influence the self-
organizing patterns of complex human systems. The outstanding question is if and
how the CDE Model might also form the foundation for a computational model of
individual and collective human behavior.

5 Computational Model of Human Systems Dynamics

Over the years, we have experimented with a variety of computational models to
represent the complex dynamics represented in the CDE Model. The most suc-
cessful efforts at inductive model building and testing have focused on qualitative
descriptions drawn from narrative or shared dialogue. We have also experimented
with a variety of inductive and deductive mathematical models, including time
series analysis, fuzzy logic, genetic algorithms, and dynamical networks. While all
of these proved somewhat helpful, none was sufficient to inform decision making
or action is real situations.

We continue to search, however, for a computational model that represents
emergence of patterns of human systems dynamics that are open, high dimension,
and nonlinear, like those represented conceptually by the CDE Model.

The computational or simulation model we propose will represent the C, D, and E
as meta-variables that describe functional clusters of conditions that constrain and
inform systemic patterns. At the most macroscopic level the three conditions are co-
active collections of parameters that exist in the particular situation. A collection of
‘‘containing’’ characteristics holds the system together without generating an
impermeable boundary. A collection of ‘‘differentiating’’ characteristics articulates
the pattern and provides the energy and directionality for change to occur in the
future. A collection of ‘‘exchanging’’ characteristics moves information, material,
and energy around the system to release tension of difference in one physical or
conceptual place and contribute to accumulating tension in another.

The model will make it possible for relevant Cs, Ds, and Es to be unique in any
given situation and at any given time. Over time, even if the context remains
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constant, different Cs, Ds, and Es can increase or decrease in relevance to shift the
pattern into self-organizing change and transform the potential energy stored in the
pattern into actual systemic change.

In a robust computational model, a single feature might serve the function of
container, difference, or exchange, depending on the context and the perspective of
the system observer and the intention of the system analysis. In practice this
happens often. I belong to a team (C). My team behavior is different from my other
professional behavior (D). When I am in meetings, my team communications (E)
are clear and effective. The computational model will need to acknowledge and
incorporate this local specificity and global ambiguity.

The computational model would support nonlinear interactions among indi-
vidual parameters as well as clusters of meta-variables representing the Cs, Ds, and
Es, so that a change in one generates a change in the other where the tendency or
direction of change can be anticipated, though the specific outcome is indeter-
minate. For example, I expect for the noise level (D1) to decrease when I move a
party to a larger space (C), but perhaps the guests will simply talk louder (E), and
the overall volume (D2) will remain unchanged.

An adequate model would support manipulation of a complex combination of
constraints of the three conditions on each other or of particular conditions on
others of its same category. A combination of conditions might influence the
emergent patterns within the system and provide options for action for individuals
and groups interacting with the system. In this way, it should be possible to model
changes in multiple Cs, Ds, and Es either in series or in parallel. For example, if
we simultaneously moved to the larger room (C) and encouraged people to dance
(E), what would happen to the volume in the room (D)? What other conditions,
perhaps not observed previously, would emerge as relevant to the pattern?

A model that met these criteria would represent human systems dynamics in a
way that would be simultaneously flexible enough to match lived experience and
elegant enough to support realistic processing and interpretation.

6 Conclusion

In this document, we have summarized and critiqued a variety of models designed
to represent the dynamics of human systems. Some are based on traditional
understanding of mathematical, physical, and social relationships. Others are based
on nonlinear dynamics and principles of emergence in complex adaptive systems.
All of these models have proven useful in specific applications in a variety of
social science inquiries, but they all fall short of capturing the open, high
dimension, nonlinear interaction of human systems dynamics in experience or of
providing sufficient explanation to support prospective understanding and action.

While the CDE Model has proven to be a robust and useful interpretive con-
ceptual model, its value to both research and practice in social sciences will be
immeasurably enhanced when it can inform a computational model. Such a model
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will capture the nonlinear nature of the dynamics of human systems to inform the
work of scholars and practitioners who face complex and emergent personal,
professional, and political challenges. Scholars would use such a model to develop
and test hypotheses about self-organizing dynamics at all scales of human inter-
action. Practitioners would use the model to inform decision making in real time
and to develop individual and group capacity through training and instruction.
Individuals and groups would build adaptive capacity to see, understand, and
influence complex and unpredictable patterns as they emerge.

The network of Human Systems Dynamics scholar-practitioners invites you to
engage with us in an inquiry that moves the CDE Model from the realm of conceptual
and into the realm of computational modeling. Together we might create a model to
help scholars and practitioners explore and develop adaptive capacity to leverage the
emergent potential in our social systems today and into the unknowable future.
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Stochastic Complexity Analysis
in Synthetic Biology

Natalja Strelkowa

Abstract In this chapter we present selected mathematical methods used for the
design of synthetic gene networks. We showcase the method applications on the
generalized repressilator model which simplest special cases—a genetic switch
and a genetic oscillator—have been implemented in living bacterial cells. The
concepts for switches and oscillators used in synthetic biology are originally from
electrical engineering and were transferred to synthetic biology using mathemat-
ical analysis. However the straight transfer is not always possible due to low copy
number stochasticity and time-limited cell environments. We explore the impli-
cations of inherent stochasticity and of nontrivial long lasting transients on gene
network models revealing that these effects can lead to qualitatively different
dynamics compared to steady states. Therefore, mathematical analysis of synthetic
gene expression networks should not be limited to exploration of the steady states,
but include the influence of stochasticity and transient dynamics.

Keywords Bifurcation analysis � Stochastic models � Transients � Synthetic
biology

1 Introduction

Can we engineer biological systems in a predictable manner to perform new
functions or to optimize already existing ones? And what are the underpinning
principles behind the forward design of gene regulatory networks? These questions
gave rise to Synthetic Biology—a rapidly advancing interdisciplinary science that
aims to create new or redesign existing biological organisms [1–4]. Inspired in
many cases by electronic elements, simple gene networks have been designed to
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perform reproducible, low-level functions. The pioneering synthetic circuit
implementations in 2000 include the genetic ring oscillator known as the re-
pressilator [5] and the toggle switch [6].

Since then progress has been made in experimental implementation of engi-
neered genetic transcription networks during the last years. Simple synthetic
modules were used to create mammalian cell oscillators with integrated parts of
natural cellular machinery [7] or cell-synchronized oscillators in bacterial popu-
lations [8]. Synthetic networks were also interfaced with cellular pathways to
induce particular responses, as in the construct where the toggle switch was
connected to the SOS pathway to induce DNA protection mechanisms in E. coli
when exposed to UV light [9]. There are also examples for medically inspired
designs as for instance selective invasion of cancer cells [10]. This experimental
progress infuses the minds of mathematicians and engineers with new design ideas
for more complex artificial gene networks, which would perform more sophisti-
cated functions.

A successful design of an artificial genetic network is often preceded by
mathematical modeling [11, 12], which usually includes abstraction of biochem-
ical processes to differential equations. The abstraction steps include several
assumptions on biochemical reactions as for instance that the laws of mass action
are approximately valid or that the number of DNA copies in a cell is constant.
After the abstraction a biochemical process can be coded in a mathematical model
amenable to numerical solution. Very often inherent stochasticity of gene
expression process strongly influences dynamic behavior of the network. Then the
stochasticity can be explicitly included in the model by using either the Master
equation formalism [13] for analytical calculations or Gillespie algorithm [14] for
numerical evaluation.

In this chapter we review a gene expression model derivation and selected
mathematical methods which are commonly used in the design of synthetic gene
networks and show their application on the generalized repressilator model (uni-
directionally coupled genetic repressors ordered in a ring). The generalized re-
pressilator model has been extensively explored in the deterministic setting using
nonlinear complexity analysis [15–18] and the special cases of two and three genes
have already been implemented in living bacterial cells using synthetic biology
tools [5, 6].

The model shows qualitatively different steady state characteristics if the rings
consist of even number of repressors compared to rings with odd number of
repressors [15]. Odd rings are oscillators in which stable oscillations emerge via
Hopf bifurcations. The steady state of even rings is a dimerized up/down solution
(i.e. they are switches), although even rings are also characterized by the presence
of long-lived oscillatory transients that can dominate the observable dynamics in
such systems [18].

In electrical engineering there are other well-studied uni-directionally coupled
ring systems, which are currently in use for practical applications. Interestingly,
the steady state feature that even numbered rings are switches and odd numbered
rings are oscillations remains preserved for electrical as well as biological systems.

162 N. Strelkowa



We show parallels between the generalized repressilator model and the well-
established ring symmetric structures via bifurcation analysis and group theory and
discuss how engineering concepts can be adapted to remain functional in noisy and
time-limited cell environments.

2 Gene Expression in Bacteria

In the early 2000’s, synthetic circuits for bacterial cells were implemented on
plasmids using cloning techniques [19]. Plasmids enter a bacterial cell by trans-
formation, i.e. synthesized DNA is taken up by the cell after a chemo-physical
treatment (e.g. cell chilling in the presence of cations followed by a heat shock).
Once the plasmid is inside the cell, the available transcription machinery of
bacterial cell ensures the expression of the genes encoded on the plasmid. Any
DNA sequence can be coded and synthesized on a plasmid creating great
opportunity for design of new cell functionalities.

The engineering of synthetic networks requires a thorough understanding of
natural gene expression in bacterial cells and their abstraction to mathematical
models. For that we need to pinpoint biochemicals which control the gene
expression process, e.g. are present in low or non-constant amounts. These process
limiting biochemicals have to be contained in mathematical models either
implicitly as constants or explicitly as dynamical variables. Time scales on which
the reactions occur are also important for model derivation. Biochemicals which
quickly reach the dynamical steady state do not need to be considered as
dynamical variables, but can instead be approximated as constants defined by their
steady state values. So, as describing the gene expression in the following we
concentrate on the identification of limiting step biochemicals and will classify the
reactions as fast and slow.

The production of synthetic proteins occurs in two steps: DNA transcription
resulting in messenger RNA (mRNA) chains and mRNA translation leading to
creation of proteins (see Fig. 1). As initiation of gene expression process a pro-
karyotic transcription initiation factor r binds to RNA polymerase (RNAP)
forming a holoenzyme (see Fig. 1a). The holoenzyme complexes are directed by
r-factors towards gene regulatory region so that DNA coding region is transcribed
and its information is converted to mRNA—the basis for the engineered proteins.
There are several different r-factors in bacterial cells, but one factor is highly
conserved across all bacteria and is responsible for expression of most indis-
pensable genes during normal growth conditions. This r-factor constantly binds
and unbinds to the gene regulatory region located �35 to �10 basepairs upstream
of the gene and the transcription can only start then the factor is bound to the
DNA.

In order to take advantage of this natural transcription machinery the engi-
neered DNA sequences must contain the upstream promoter region recognisable
by the r-factor. Then the abundantly present r-factor will direct the holoenzyme to
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the designed DNA sequence and make sure that the coding region is transcribed as
if it was an indispensable gene in normal growth conditions. Both r-factor and
RNAP are abundantly present in the cells and are not limiting for gene expression.
The binding and unbinding of the factor to the regulatory region of the DNA is
classified as a fast reaction.

For an abstract mathematical model we need to identify biochemicals which
control the transcription reaction, i.e. are limiting factors. A closer look at the
involved biochemicals reveals that the number of DNA copies strongly influences
the amount of mRNA. The number of mRNA transcripts is indeed directly pro-
portional to the DNA copy number and the amount of mRNA is quite low (in the
order of few tens) compared to other chemicals involved in the transcription
process. There is a delay between the binding of the transcription activator and the
appearance of the final mRNA transcript, because mRNA is slowly produced by
chain elongation, i.e. biochemical letters are attached one by one to an already
existing piece according to the DNA code.

The transcription of genes is regulated by activators (e.g. r-factors) initiating
the transcription and by inhibitors repressing the transcription. Inhibitors are other
proteins which specifically bind to the regulatory region of the gene and hinder the
transcription initiation. Activators and inhibitors constantly bind and unbind to the
regulatory site of the gene and these reactions usually occur on a very fast time
scale. The inhibition mechanism requires that the shape of the inhibitor protein is
tailor-made for the associated regulatory region. The amount of mRNA will
strongly depend on the amount of inhibitor proteins and this needs to be explicitly
taken into account in a mathematical model. Indeed the pioneering implementa-
tions of the oscillator and the switch as synthetic networks are based on the
inhibitory gene regulation [5, 6].

DNA

coding region

RNAP with
σ − factor

regulatory region

mRNARB1 RB2 RB3

(a) (b)

Fig. 1 Abstract view on gene expression in bacteria. a Transcription initiation. The structure of a
typical bacterial gene consists of a regulatory region (dark-grey filled rectangle) followed by a
coding region (black filled rectangle). The holoenzyme composed of RNA polymerase, (RNAP
light-grey filled circle) and promoter recognising r-factor (dark-grey inserted triangle) is about to
bind to the gene regulatory region. The transcription direction after binding of holoenzyme is
indicated by a black arrow. b Translation in bacteria. Three ribosomes RB1, BR2, RB3 are
translating one mRNA template into proteins, which are indicated with dark-grey curved lines.
Since ribosomes are in abundance, protein production rate can be approximated as a linear first
order reaction, which is proportional to the amount of mRNA. The rate constant for the
translation reaction can be larger than one, because several ribosomes can simultaneously
translate one template
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In summary, bacterial transcription majorly depends on the amount of regula-
tory proteins and the DNA copies in the cell. It involves biochemical reactions on
two different time scales: the attachment and the detachment of the regulatory
proteins is fast compared to the mRNA production in the elongation step. The
overall number of mRNA transcripts is usually quite low, so that stochasticity due
to low copy number needs to be considered in mathematical models.

The second step in the gene expression process is the translation of mRNA to
protein sequences. Several natural biomolecules are involved in this reaction and
they have to build a complex and attach to the mRNA, which was produced by the
transcription reaction and contains the code for the designed protein. All natural
biomolecules for the translation machinery are abundantly present in the cell, since
they are involved in all translation processes and keep the cells alive. The only rate
limiting factor of this reaction is the amount of mRNA containing the code for the
engineered protein.

Similarly to mRNA, proteins are created by elongation of polypeptide chains
(see Fig. 1b). Several copies are produced from a single mRNA chain at the same
time, because several translation units can simultaneously attach to the same
mRNA chain. So the overall number of proteins is usually larger than the number
of mRNAs and is in the order of hundreds or thousands. Protein creation is a slow
reaction occurring on similar time scales as the mRNA creation [11].

mRNAs and proteins produced in the transcription and translation reactions
have limited lifetimes, which means they are destroyed regularly by cell internal
processes. mRNA transcripts are degraded by ribonucleases. The exact process and
which biomolecules are more important is still disputed [20, 21], but there are
strong indications that there is only one initiation process. Once this process
happened mRNA cannot be used as a protein transcript any longer and is degraded
through a decay pathway. The decay molecules involved are present in approxi-
mately constant amounts in the cell cytoplasm and therefore mRNA degradation
can be assumed as a first order chemical reaction. The amount of transcripts
degraded per time is proportional to the mRNA copies and the proportionality
constant is reciprocal to the mean life time of mRNA, which is � 2–4 min in
E. coli [22]. Proteins are longer lived than mRNAs with the average lifetime of
40–60 min [5, 23, 24]. Through similar degradation pathways as mRNAs the
proteins are degraded by proteases and the degradation can be approximated as a
single step biochemical reaction for the same reasons.

Summarising, we can identify four major reactions dictating the gene
expression:

1. production of mRNA involving fast binding and unbinding of activators/
repressor proteins and depending on the amount of DNA and the amount of
activators/repressors

2. production of proteins mainly depending on the amount of mRNA
3. mRNA degradation mainly depending on the amount of mRNA
4. protein degradation mainly depending on the amount of proteins.
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3 Abstraction of the Gene Expression Process and Model
Derivation

3.1 Abstractions and Simplifications

The underlying gene expression process involves several biochemical steps, and
some of them are more important for the qualitative and quantitative gene network
dynamics than others. The aim of mathematical modeling is to take these
important steps into account neglecting or approximating all other processes and
provide an abstract model, which can be used for design development and eval-
uation of synthetic gene networks. The following is a summary of typical
assumptions on biochemical processes often implicitly contained in mathematical
models:

• Laws of mass action. Processes modeled by deterministic differential equations
assume gas-like dynamics of mRNAs and proteins with characteristics such as
free diffusion, random collision, and homogeneous mixture of molecules. If
molecules involved in the model process have a relatively small size (smaller
than 400 kDa) then this assumption holds in the first approximation. But we also
have to keep in mind that bacterial cytoplasm is highly packed with proteins
(340 mg/ml) [25] leading to molecular overcrowding and gel behavior of the
cytoplasm. In particular, for large molecules the laws of mass action might not
hold and overcrowding effects might need to be included in the model.

• Synthetic genes are present in constant amounts per cell. There are actually
two ways how a synthetic genetic element can be incorporated into the bacteria.
The first possibility is to encode the synthetic circuit onto a plasmid, which will
be taken up by the cell. Plasmids do replicate inside the cell and this process
must be controlled. For the classical examples of the toggle switch and the
repressilator [5, 6] replication control ECol1 was encoded on the synthesized
gene. A different way to encode synthetic elements is using expression cassettes,
which would incorporate the artificial DNA directly into the bacterial genome.
This procedure is more controlled and ensures the constancy of the gene copy
numbers.

• Engineered proteins bind inhibitory to the DNA regulatory regions without
leakiness. Basal transcription can easily be incorporated into the models as an
additive term, however this effect should be negligible, if the engineered pro-
teins are properly designed.

• Binding and unbinding of the regulatory proteins and DNA is much faster
than transcription and translation. The dynamics of the intermediate complex
consisting of DNA and regulatory protein occurs on much faster time scale than
other reactions. Taking the time scale separation into account we obtain
Michaelis–Menten-like kinetics for the transcription rate. Standard mathemati-
cal derivations are provided in detail in Sect. 3.2.
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• Protein and mRNA degradation are first order reactions. Engineered bac-
terial proteins are degraded by simple mechanisms and we approximate their
degradation as a first order reaction. But we have to keep in mind that there are
other natural proteins, which degrade in several steps and in particular for
eukaryote cells several steps are involved in folding/creation as well as degra-
dation reactions [26]. Then the mathematical models need to account for these
several steps using for instance an approximation.

• Reaction constants are not time dependent. Effectively we neglect cell growth
and death and the change of the cell environment as the cells get older [21].
These effects would influence the reaction constants. A robustness analysis
slightly perturbing the reaction rates around their reference values can be per-
formed to ensure the network functionality under these circumstances.

• All molecules are present in large amounts. This constraint is only assumed
for the deterministic description with ODEs. As it turns out stochastic fluctua-
tions do have a qualitative effect on the overall dynamics and their role will be
extensively discussed and showcased for our generic example the generalized
repressilator model.

• Cell division is a renormalization step. One of the poorly investigated, but
potentially very important effect on the synthetic circuit is the cell division,
which for E. coli happens approximately every 15–60 min depending on the
feeding conditions. The dynamical features such as switch toggle [6] or oscil-
lation period [5, 8] take hours, which means they are spread over several cell
generations. Formally we can assume that the cell division is strictly symmetric
and the reactions are renormalizable (see for instance [27] Chap. 8 for definition
of renormalization group). Effectively it means that the circuit dynamics do not
depend on the system size, but scale with the system and their qualitative
dynamics remain unchanged. These assumptions are often not fulfilled, because
cell division and plasmid distribution between the daughter cells are not
symmetric and it is not precisely clear how biochemical reactions scale with the
cell size.

3.2 Derivation of a Deterministic Gene Expression Model

In previous sections biochemical reactions during the gene expression process as
well as necessary abstractions lead to the conclusion that four major reactions,
namely transcription of mRNA, degradation of mRNA, translation resulting in the
protein production, and protein degradation, are the most important biochemical
steps during the gene expression (see Sect. 2). Based on these insights we derive a
deterministic ordinary differential equation model for gene expression involving
these reactions.

We show the derivation for the repressed transcription, but a similar line of
thoughts can be used to derive a model for transcription activators.
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3.2.1 Repressed Transcription

We start by deriving a formula for mRNA transcription, which is inhibited in the
presence of repressor proteins and is constant otherwise. Let the repressor proteins
be denoted by Pr, the DNA copies D0, the DNA regions not bound by the repressor
D, and the DNA-proteins complex DPr � X. Note that the equality D0 ¼ X þ D
holds.

A model for enzymatic repression with Pr can be described with a chemical
reaction scheme [28, 29]:

D�!k1 mRNAþ D

Dþ Pr�!
k2 X

X�!k3 Dþ Pr

Using the classical mass action kinetics the scheme translates to the following
set of differential equations:

d½D�
dt
¼ �k2½D�½Pr� þ k3½X�

d½X�
dt
¼ k2½D�½Pr� � k3½X�

d½mRNA�
dt

¼ k1½D�

using the brackets ½�� to denote the concentration of biochemical molecules.
These equations contain chemical reactions with different rate scales: the

mRNA molecules are produced at a very slow rate k2ð� 0:015 [30]) compared to
the fast dynamics of the binding and unbinding of the repressor protein
k1ð� 0:17 [30]) and k�1ð� 10 [30]). The three equations can be reduced to one
under the quasi-stationarity assumption for the intermediate complex d½X�=dt � 0,
which binding/unbinding dynamics are much faster compared to the mRNA
production rate. With the quasi-stationarity assumption, we get rid of the variables
½X� and ½D� and describe the transcription inhibition only in terms of repressor
protein concentration ½Pr�.

d½X�
dt
¼ 0

k2½D�½Pr� ¼ k3½X�
k2ð½D0� � ½X�Þ½Pr� ¼ k3½X�

X½ � ¼ k2½D0�½Pr�
½Pr�k2 þ k3
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where the last line is the average complex concentration, which will be reached
quickly due to fast binding and unbinding.

Then the time evolution of the mRNA can be written in terms of the repressor
protein concentration ½Pr� as:

d½mRNA�
dt

¼ k1½D� ¼ k1ð½D0� � ½X�Þ

¼ k1ð½D0� �
k2½D0�½Pr�
½Pr�k2 þ k3

Þ

¼ ½D0�k1

1þ ½Pr�k2=k3
:

The derivation is shown for monomers, i.e. only one protein binds to the regulatory
region and represses the transcription. But bacterial genes are very often regulated
not by a single, but by several proteins which cooperatively bind to a regulatory
region of a gene. Their degree of cooperativity and the sequence in which the
proteins can access the binding sites influences the exponent in the reduced
equation for mRNA transcription:

d½mRNA�
dt

¼ ½D0�k1

1þ ½Pr�hk2=k3

� c1

1þ ½Pr�h

The exponent h can be thought of as a fitting parameter and can be a positive real
number. It is often referred to as the Hill coefficient and the repression functions
are called Hill-functions [28, 29]. Experimentally it was found that h ¼ 1 often
explains the results worse than larger exponents, see for example [5], who used
h � 2.

3.2.2 Degradation

We assume that mRNAs and proteins are degraded via first order reactions:

Y�!c2 ;

Here Y is either mRNA or protein molecules and c2 denotes the according deg-
radation constant. The change of molecule concentration ½Y � due to this reaction
can be described with the ODE:

d½Y �
dt
¼ �c2½Y�
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3.2.3 Translation

Translation of mRNA templates into proteins P can be thought of as an enzymatic
production from the source, because all necessary components are present in the
cell. The limiting step is the amount of mRNA and therefore the reaction constant
is well approximated by a linear dependence on mRNA concentration ½mRNA�:

; �!c3½mRNA�
P:

The according concentration change per time due to this reaction is then

d½P�
dt
¼ c3½mRNA�:

3.2.4 Full Deterministic Model

Putting together transcription dependent on repressor protein Pr, translation, and
degradation reactions, we obtain a simplified deterministic model for repressed
bacterial gene expression:

d½mRNA�
dt

¼ c1

Km þ ½Pr�m
� c2½mRNA�

d½P�
dt
¼ c3½mRNA� � c4½P�:

3.2.5 The Generalized Repressilator Model

The expression in Eq. 1 can be extended to N repressing genes wired in a ring and
this network is then often referred to as generalized repressilator model:

_mj ¼ f ðpj�1Þ � c2mj

_pj ¼ c3mj � c4pj;
ð1Þ

where j 2 1; . . .;N, pj and mj describe the variables for proteins and mRNAs for
each gene respecting the circular boundary conditions p0 � pN , and f ðpÞ is a
monotonically decreasing function acting as a repressor.

For reference, we provide literature-based parameter ranges which are taken as
a reference point for numerical simulations of the generalized repressilator model:

• c4 protein degradation rate is �0:06 min�1 and corresponds to the protein half
life of 10–60 min (see Ref. [5, 23, 24]).
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• c2 mRNA degradation rate is �0:12 min�1, please note that the actual range is
quite large 30 s to 50 min (see Ref. [22]).

• h Hill coefficient reflecting repressor protein cooperativity is �2 (see Ref. [5,
16]).

• Km� 1 (see Ref. [16]).
• c1 � 1� 10 min�1 is calibrated to achieve the maximal values around a few

tens.
• c3 � 0:16 min�1 the translation efficiency is taken to be rather low. The value

might be increased to 20 proteins per transcript [5].

A closer look reveals that the special case for N ¼ 2 is a model for a genetic
switch and for N ¼ 3 for a genetic oscillator. Similar deterministic models have
been used prior the implementation of the genetic switch and the genetic oscillator
[5, 6]. Remarkably, a genetic switch and a genetic oscillator are indeed very
similar since both networks contain repressing genes ordered in a ring topology
(see Fig. 2a), but qualitatively they show completely different dynamics: the
switch approaches a stable steady state with constant gene expression levels and
the final state of the oscillator are periodically changing gene expression levels
(see Fig. 2b).
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Fig. 2 Dynamical behavior of the generalized repressilator model. a Topology of the generalized
repressilator: N genes in a cycle where each gene is repressed by the protein product of the
preceding gene. Also shown is the reaction scheme underlying the dynamical system in Eq. 1
with production and degradation terms for the mRNA (mj) and protein (pj) of each gene. The
repression of the production of mRNA is modeled by a Hill-type term Hðpj�1Þ. b Typical time
trace of the long-term deterministic dynamics of an odd ring and the associated bifurcation
diagram. Odd rings converge to a globally attracting periodic solution after Hopf bifurcation
(black dot). c Typical time trace of an even ring converging to fixed points and the bifurcation
diagram. Even rings undergo a pitchfork bifurcation (black dot), leading to the emergence of two
stable fixed points
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Such qualitative differences in systems dynamics can be assessed during the
design phase of synthetic circuits using the tools from complexity analysis.
Complexity analysis systematically searches parameter spaces of differential
equations returning parameter values at which qualitative changes in systems
dynamics occur. These points are referred to as bifurcation points. In the following
section we introduce needed background on two most common types of bifurca-
tions—Hopf and pitchfork bifurcation—which both occur in the generalized re-
pressilator model and lead to either oscillatory (Hopf) or switching (pitchfork)
dynamics (see Fig. 2c).

3.3 Hopf and Pitchfork Bifurcations

Bifurcation analysis predicts qualitative change of the system behavior as one or
several parameters change. A parameter value at which such qualitative change
occurs is called bifurcation. The variation of a parameter can produce a change in
the stability or the number of fixed points (points to which the system would
converge as time goes to infinity t!1). Typical questions answered by bifur-
cation analysis could be for example: for which parameter sets a model would
express stable oscillatory behavior or how many fixed points exist for a given
parameter set.

Bifurcation points can be found numerically using for example a continuation
software packages such as AUTO [31] or MATCONT [32]. In rare special cases
bifurcation analysis can be done analytically. The generalized repressilator model
possesses high internal symmetry due to its ring topology and to a large extent the
bifurcation analysis can be done analytically. We perform bifurcation analysis for
the generalized repressilator model using both analytical as well as numerical
techniques. But before proceeding with this example we provide some background
on two types of bifurcation, which frequently occur in biochemical networks and
also to a large extent explain the dynamical behavior of the generalized repress-
ilator model.

3.3.1 Hopf Bifurcation

Stable oscillations in several biochemical networks arise through Hopf bifurca-
tions [33]. Hopf bifurcation is a local bifurcation in which a stable fixed point
looses its stability as a pair of complex conjugate eigenvalues of the linearization
around the fixed point cross the imaginary axis of the complex plane [34].
Informally speaking, a stable system approaching a single constant steady state
value becomes an oscillator as a parameter changes.

A formal definition of Hopf bifurcation for a system described by a set of
differential equations _x ¼ f ðx; lÞ is provided below:
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Theorem 1 (Hopf Bifurcation: emergence of a periodic solution from a stationary
solution [35]) Suppose that the parameter dependent differential system

_x ¼ f ðx; lÞ

f : Rmþ1 ! Rm; f 2 C1 has an equilibrium ðx0; l0Þ (i.e. f ðx0; l0Þ ¼ 0) at which
the following properties are satisfied:

(H1) The Jacobian Dxf ðx0; l0Þ has a simple pair of pure imaginary eigen-
values �ix and there are no other eigenvalues with zero real part. Then (H1)
implies that there is a smooth curve of equilibria ðxðlÞ; lÞ with xðl0Þ ¼ x0: There
is pair of eigenvalues kðlÞ; �kðlÞ of the Jacobian Dxf ðxðlÞ; lÞ along this curve with
kðl0Þ ¼ ix; kðl0Þ ¼ �ix at l ¼ l0which varies smoothly with the parameter. If,
moreover, the following condition applies:

(H2) d
dl ðRekðlÞÞjl¼l0

6¼ 0;then there exists a branch of periodic solutions

bifurcating at ðx0; k0Þ:

The oscillations in the three gene repressilator are explained by Hopf bifur-
cations and in fact also in all generalized repressilator models with an odd number
of genes in the ring.

3.4 A Condition for Switching Behavior

The dynamical feature, on which the genetic switch as implemented by [6] is
based, is the pitchfork bifurcation as formally defined below:

Theorem 2 (Pitchfork Bifurcation [34]) Suppose that the parameter dependent
differential system is given by

_x ¼ f ðx; lÞ

f : Rmþ1 ! Rm; f 2 C1 where the following properties are satisfied:

• f is an odd function: �f ðx; lÞ ¼ f ð�x; lÞ
• the first and second derivatives of f vanish, but not the third one:

of
ox ð0; l0Þ ¼ 0;o

2f
ox2 ð0; l0Þ ¼ 0; and o3f

ox3 ð0; l0Þ 6¼ 0:

• of
ol ¼ 0; o2f

oxol ð0; l0Þ 6¼ 0

then there is a pitchfork bifurcation at ð0; l0Þ: If the third derivative is positive the
pitchfork bifurcation is sub-critical, if the third derivative is negative, it is super-
critical.

The qualitative behavior of the system before the bifurcation is that it converges
to a single fixed point, in contrast after the bifurcation the system can converge to
one of the two stable fixed points or one unstable fixed point depending on the
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initial conditions (IC). The pitchfork bifurcation induces a symmetry breaking in
the system, which then leads to the switching behavior.

4 Numerical Bifurcation Analysis

On the abstract level the implemented genetic oscillator [5] and the switch [6]
represent a ring of N identical elements repressing each other in a cyclic manner
(see Fig. 2). Remarkably a system containing even number of elements is an
inherent switch and a system containing an odd number of elements is an oscil-
lator. These differences in the dynamical behavior can be explained by numerical
bifurcation analysis. Widely used and well-established software solutions for
numerical bifurcation analysis are AUTO [31] and MATCONT [32]. The software
packages track solution branches of dynamical systems by solving algebraic
equations and provide approximations for the parameter values at which bifur-
cations such as Hopf or pitchfork occur.

The bifurcation graphs for the repressilator model (see Fig. 3) show the steady
state dynamics for odd element rings which become oscillators after the Hopf
bifurcation. The steady state of even element rings are the two possible up/down
solutions. Numerical bifurcation analysis reveals an interesting fact: in even and
odd element rings we also find Hopf bifurcations branching from the unstable
solution branch (marked in red dashed lines in Fig. 3). It turns out that these Hopf
bifurcations play a crucial role for the dynamics of larger even element rings
leading to long lasting but unstable oscillations [17, 18]. In [17] we proposed a
design for a controllable genetic oscillator around these periodic solutions. A
distinctive feature of the oscillator based on quasi-stable periodic solutions is that
such oscillators are controllable through an outer regulation loop and can also be
switched on and off on demand [17]. On the contrary, classical oscillators are
based on stable periodic solutions, they oscillate autonomously and are not
controllable.

5 Analytical Bifurcation Analysis of Generalized
Repressilator and Unstable Periodic Orbits

For the generalized repressilator model given by the ODEs in Eq. 1 several aspects
of the bifurcation analysis can be done analytically. Analytical calculations
together with the symmetry arguments reveal a connection to other engineering
concepts, as for instance the Duffing oscillators [36], magnetic field sensors based
on unidirectionally coupled repressors in a ring [37] and also the oscillating
behavior in the ring of quantum harmonic oscillators [27].

For analytical calculations in this chapter, a special case of a Hill function has
been used with the Hill coefficient h ¼ 2 in the repression function f ðxÞ ¼ c1

1þx2.
However the outlined calculations are similar for any f : Uð2 RþÞ ! Uð2 RþÞ,
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which are bounded and monotonically decreasing in this region. The symmetric
solution, where all proteins have the same concentration pj ¼ pj�1 8j is guaranteed
for such f ðxÞ. For a Hill-type repression function f ðxÞ ¼ c1

1þxh a complete stationary
solution can be formulated in terms of a recursion relation for the proteins:
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Fig. 3 Numerical bifurcation analysis for generalized repressilator model. Even rings undergo a
pitchfork bifurcation, leading to the emergence of two stable fixed points. Odd rings undergo a
Hopf bifurcation leading to the emergence of a limit cycle. Quasi-stable periodic solutions branch
from the symmetric unstable solution leading to observable long lasting oscillations in even rings
(indicated by dashed lines). In odd rings the unstable solutions also exist, but are not observable
(i.e. if starting from random initial conditions) [17, 18]
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p�j ¼
c1c3

c2c4
�

m�j ¼
c4

c3
p�j

In general, the full solution has to be obtained from nested fractions. But there are
only two types of solutions for this symmetric system, which has been confirmed
by numerics: the symmetric fixed point solution pm, where all pj’s have the same
concentration pj ¼ pjþ1 � pm and for even rings only the dimerized solutions pu=d

where every other gene has the same concentration p�j ¼ p�jþ2 6¼ p�jþ1; 8j.
The symmetric fixed point solution pm from the equation

pm þ phþ1
m ¼ c ð2Þ

exists for even and odd rings (c � c1c3
c2c4

for convenience). It is stable for smaller c’s,
but eventually becomes unstable in both even and odd rings.

In even element rings, a pitchfork bifurcation occur at c ¼ 2 for all N and this
condition can be derived by requiring that p�j ¼ p�jþ2 6¼ p�jþ1; 8j, which essentially
means tiling a larger even ring into gene pairs, where each pair is equivalent to a
two gene ring.

p1ð1þ ph
2Þ ¼ c & p2ð1þ ph

1Þ ¼ c

Positive and real solutions satisfying the two equations are given either by ðp1 ¼
pu; p2 ¼ pdÞ or the symmetric alternative ðp1 ¼ pd; p2 ¼ puÞ, where pu � c and
pd � 0. These conditions lead to dimerized solutions, where if one gene is
expressed the following gene in the ring will be suppressed or vice verse.

For the specific case of the Hill coefficient h ¼ 2, the explicit solutions can be
given by the following:

p�j ¼
c

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
� 1

r

� pu

p�jþ1 ¼
c

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
� 1

r

� pd:

ð3Þ

Note that pu ! c and pd ! 0 for large c. The emerged fixed points for larger c’s
correspond to two distinct dimerized states: one in which genes with odd indices
are upregulated (pu) while genes with even indices are downregulated (pd); and
another symmetric state where the genes with odd and even indices exchange their
patterns of regulation. The pattern structure is similar to that of other dimerized
degenerate solutions in classic models of unidirectionally ring-coupled elements
[27, 36, 37].

It can also be shown analytically that the solution branches pu=d are stable (see
[38] for details) by showing that the real parts of the Jacobian Eigenvalues are
negative. We encourage the reader to reproduce the calculation by writing down
the Jacobian of the system and evaluating it at the solution branches pu=d as in
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Eq. 3. Eigenvalues of the Jacobian can then be found using the fact that the
characteristic polynomial factorizes for ring symmetric structures. For more
information on analytical bifurcation analysis please refer to [34, 38].

Our analytical calculations are in line with the numerics and confirm that after
the bifurcation even element rings have two stable solutions, i.e. are bistable and
behave like switches in the steady state.

5.1 Analytical Solutions and Cross-Discipline Transfer
of Engineering Concepts

In numerical bifurcation analysis we saw the emergence of Hopf bifurcations from
the symmetric middle branch solution pm (see Fig. 3), there the first Hopf bifur-
cation for odd element rings leads to stable periodic solutions and all other
bifurcations branch from unstable middle point solutions. The conditions for the
emergence of those bifurcations ((H1) and (H2) in Theorem 1) can be calculated
analytically. Detailed algebraic solution would go beyond the scope of this book
chapter and the interested reader is referred to our previous publication [18].

Using these analytical calculations we obtain the number of possible Hopf
bifurcations for rings with different number of elements and can explore the
oscillating modes of the generalized repressilator model. The number of oscillating
modes is directly proportional to the length of the ring N and depends on the
parameter set and the repression function. For a biologically meaningful parameter

set with a Hill coefficient h ¼ 2 odd rings possess NHB ¼ 1
2
ðN�1Þ

2

j k
Hopf bifur-

cations and even rings possess NHB ¼ 1
2 ðN2 � 1Þ
� �

[18]. This result links the gen-
eralized repressilator model to other engineering concepts, which functionality is
based on a ring symmetric topology of the elements.

The group theoretical approach predicts the existence of NHB ¼ ðN � 1Þ=2 (odd
rings) and NHB ¼ ðN=2� 1Þ (even rings) possible solutions for strong enough
element couplings in rings [39]. For the generalized repressilator the strength of
element coupling is given by the form of the repressor function and the Hill
exponent. We do not observe all possible solutions predicted by the standard group
theory for the biologically meaningful parameter set and Hill suppression function
with h ¼ 2. These analytical results can be used for identification of possible
oscillation modes and finally for the design of either autonomous or controlled
synthetic oscillators.

Bifurcation analysis and group theory connect the generalized repressilator
model to many other well-studied physical systems whose functionality is also
based on discrete rotation symmetry (see for example [27, 36, 37]). The design of
our special cases of the generalized repressilator model for N = 2 and N = 3
synthetic networks were indeed inspired by electrical switches and oscillators.
Mathematical framework allows to make use of experience and insights from other
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engineering disciplines and aid cross-disciplinary transfer of ideas for function-
alities which can be implemented in both physical and biological systems.

Specific properties of genetic networks have to be considered if transferring
classical engineering concepts to synthetic biology. One such characteristic is that
the gene expression comes with a non-negligible amount of noise due to low copy
numbers of biochemicals involved in the transcription reaction. The number of
DNA copies (Oð1Þ) or the number of mRNA molecules (Oð10Þ) involved in the
process is low and stochastic fluctuations can lead to qualitatively different system
dynamics even for the simplest genetic networks. In fact, the genetic switch (the
generalized repressilator with N = 2 genes) shows qualitatively different
dynamics in stochastic low copy number regime compared to the deterministic
equation. The inherent stochasticity also influences the oscillation properties of
synthetic oscillators (e.g. the generalized repressilator with N=3 genes).

The time evolution of inherently stochastic systems are well described by
differential equations for probability distributions. A convenient theoretical for-
malism for time dependent probability functions are Master equations and we will
use them for modeling of network topologies taking the inherent gene expression
stochasticity into account. We use the notation for this chapter introduced in a
classical text book [13].

6 Stochastic Dynamics for Gene Regulatory Networks
Using Master Equations

Molecular reactions involved in gene expression processes can be seen as discrete
events randomly occurring in time. If the number of molecules involved is very
high, the system can be well described with ordinary differential equations, but if
the number of molecules is low, the randomness influences the system dynamics
and the deterministic description is no longer appropriate.

To get an intuition about such processes imagine gas molecules, which are
enclosed in a reservoir and react by collision. If the density of molecules is high,
then several collision reactions will be happening per time period, then the fact
that the reactions are discrete events becomes irrelevant for the description of the
process, and the reaction rate can be well approximated as a deterministic rate law.
A different situation occurs if the density of gas molecules in the reservoir is very
low. Discrete collision events can be observed, which mathematically can be
captured with the so called Master equation, describing time evolving probability
distributions instead of the deterministic ordinary differential equations.

Instead of a real valued concentration vector in the deterministic formalism, we
introduce the random variable nðtÞ 2 N

s describing the time dependent state of the
system, which denotes the number of molecules of each biochemical s at the time
t. A state nðtÞ can appear at a time t with the probability Pðn; tÞ, so that the
evolution of the system will be given as evolution of probability function Pðn; tÞ.
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The probability function is discrete in n the number of molecules, but continuous
in time t. Hence, a general form of a Master equation:

dtPðn; tÞ ¼
X

n0
Wnn0Pðn0; tÞ �Wn0nPðn; tÞ

can be seen as a gain-loss equation for the probabilities of the system states. The
transition probability from the state n0 to the state n per unit time is given by the
conditional probability Wnn0 . The first term of the equation is the gain to the state
n by all other states and the second term of the equation is the loss of n caused by
the transitions into the other states.

Describing molecular dynamics in this way we implicitly assume that the
transition probabilities Wnn0 only depend on current state of the system and are not
affected by other previous states, i.e. the process history. The processes for which
this kind of description in appropriate variables can be found are referred to as first
order Markov processes [13]. The Markov property for successive times (i.e.
t0\ðt0 þ DtÞ\ � � �\ðt � DtÞ\t) and homogeneous processes (dependent on time
difference Dt, but not on time t itself) can be formulated as:

Wðntjnt0 ; nt0þDt; . . .; nt�DtÞ ¼ Wðntjnt�DtÞ ð4Þ

The analysis of stochastic processes is well manageable if the Markov property is
fulfilled, and therefore we will find an appropriate set of variables for the bio-
chemical reactions involved in gene expression for which the Markov property is
fulfilled.

6.1 Linear One-Step Birth-Death Processes

For biochemical reactions involved in gene regulation we consider a class of Wnn0 ,
where the transitions occur between the neighbouring states. So in a time period Dt
a biochemical is either created or deleted. Such processes are called one-step birth-
death processes (see Fig. 4). In order to describe those processes conveniently we
introduce the creation Ef ðnÞ ¼ f ðnþ 1Þ and the annihilation operators E�1f ðnÞ ¼
f ðn� 1Þ [13]. The schematically illustrated probability flows in Fig. 4 correspond
to the reaction scheme:

n 1 n n 1 ...

rn rn 1

gn 1 gn

Fig. 4 One-step stochastic
birth-death process
illustration as in Ref. [13]
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;�!gx
x�!rx ;

where the rate functions rx, gx are linear in x. Using the creation/annihilation
operators the Master equation is then given by

_pnðtÞ ¼ ðE� 1Þrnpn þ ðE�1 � 1Þgnpn ð5Þ

with E;E�1 one dimensional step operators.

6.2 Multi-dimensional Creation and Annihilation Operators
in the Master Equation for Biochemical Networks

For Master equations with several interacting biochemicals we introduce multi-
dimensional step operators defined by

Eif ðn1; n2; . . .; ni; . . .Þ ¼ f ðn1; n2; . . .; ni þ 1; . . .Þ
E
�1
i f ðn1; n2; . . .; ni; . . .Þ ¼ f ðn1; n2; . . .; ni � 1; . . .Þ

ð6Þ

on the support n 2 N
s. The main advantage of the formalism is that the probability

distribution is discrete in the number of molecules. Low copy number reactions
can be modeled as discrete transitions from one state to the next and conveniently
described using the multi-dimensional creation and annihilation operators.
Therefore, this formalism will be used for the stochastic modeling of gene
expression.

6.3 Hill-Type Variable Reduction for Repressed
Transcription

As for the deterministic example we consider the simplified reaction scheme for
the repressed genetic transcription reaction:

Dþ Pr �
k1
k�1

X

D! k2 Dþ mRNA:
ð7Þ

where D denotes DNA copies not occupied by the repressor protein Pr, X is the
DNA-repressor complex and the conservation equation for the overall DNA
present in the system D0 ¼ Dþ X holds. Then the resulting Master equation can
be written as:
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dtPðd; p; x;m; tÞ ¼k1ðd þ 1Þðpþ 1ÞPðd þ 1; pþ 1; x� 1;m; tÞ
þ k�1ðxþ 1ÞPðd � 1; p� 1; xþ 1;m; tÞ
þ k2dPðd; p; x;m� 1; tÞ
� ðk1dpþ k�1xþ k2dÞPðd; p; x;m; tÞ

ð8Þ

We assume that the number of repressor proteins is much larger than the number
of DNA copies: Pr 	 D0, so that the inhibition dynamics are almost unaffected by
the binding/unbinding reactions and can be considered slow. For the slow sto-
chastic variables Pr and mRNA, we assume intermediate values Pr ¼ p�;mRNA ¼
m� and denote the fast dynamics probability distribution for the complex X,
pn � PðX ¼ nÞ1.

The dynamics of the complex X happen on the considerably faster time scales
compared to the mRNA production, because the binding and unbinding reaction
rates of the inhibitor protein to the DNA are much larger compared to the tran-
scription rate: k1; k�1 	 k2. We are mainly interested in slow dynamics of the
mRNA production and its dependence on the protein repressor dynamics, which
also occurs on much slower rate than k1 and k�1. Therefore, we will decouple fast
and slow time scales obtaining a reduced Master equation for the mRNA pro-
duction, which will only depend on the dynamics of the inhibitor protein. We
assume intermediate values for the slow variables Pr ¼ p�;mRNA ¼ m� and write
the fast dynamics probability distribution for the complex X:

dtpn ¼k1ðd0 � n� 1Þp�pn�1

þ k�1ðnþ 1Þpnþ1

� ðk1ðd0 � nÞp� þ k�1nÞpn

¼ðE� 1Þrnpn þ ðE�1 � 1Þgnpn

with gn ¼ k1p�ðd0 � nÞ and rn ¼ k�1n.
Following the same considerations as for a stochastic process confined between

the two absorbing boundaries, we obtain an analytically solvable first order ODE
for the mean of the complex X[56]

dt\n [ þ ðk1p� þ k�1Þ\n [ ¼ d0k1p�:

The solution is

\n [ ¼ d0p�k1

p�k1 þ k�1
ð1� e�ðk1p�þk�1ÞtÞ � IC � e�ðk1p�þk�1Þt

1 Note: p� and m� are stochastic variables, not mean values, which change slowly compared to
the dynamics of the complex X. We assume that the time scale to reach the steady state of X is
so fast, that the slow stochastic variables do not change during this period.
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with IC denoting initial condition. The intermediate complex X will approach the
steady state exponentially fast on the time scale, which is proportional to the fast
reaction variables / ðk1p� þ k�1Þ:

xst ¼ lim
t!1

\n [ ¼ d0p�k1

p�k1 þ k�1
¼ d0p�

p� þ k�1=k1

leading to the reduced Master equation for the repressed transcription:

dtpm � ðd0 � xstÞk2ðE� 1Þpm

¼ d0k2

p� þ k�1=k1
ðE� 1Þpm

which again is in agreement with reduction result for the purely deterministic
system.

Analogous calculations for the variance lead to the following result for the
stationary coefficient of variation:

lim
t!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðxÞ

p

\x [
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�1=k1

p�d0

s

�
ffiffiffiffiffiffiffiffiffi

1
p�d0

s

This stationary variability of the intermediate complex x will be neglected in the
reduced Master equation. Note that the approximation is better if the number of
repressor proteins p� and/or the number of DNA copies D0 are much larger than
one, so that the stationary coefficient of variation vanishes. Note also that in the
deterministic description the coefficient of variation is implicitly assumed to be
equal to zero.

It is worth mentioning that the elimination of the fast dynamics variables also
affects the Markov property of the process description, in the sense that the pro-
duction of the mRNA from the source is now directly dependent on the present
amount of repressor proteins. In the Master equation (Eq. 8) before the elimination
of the fast variable dynamics, the mRNA production was indirectly dependent on
the repressor protein through several intermediate stochastic processes involved in
the intermediate dynamics X. If gene expression model or this approximation
capture the relevant dynamics of real gene expression process is still an active
research topic [26, 40].

7 The Generalized Repressilator Model in the Master
Equation Formalism

Similarly to the deterministic description we consider model transcription, trans-
lation and degradation of proteins and mRNA in the full Master equation resulting
in 4 reactions per gene. We will use the creation (annihilation) EpjðE�1

pj
Þ=EmjðE�1

mj
Þ
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for creation (annihilation) events of proteins and mRNA as introduced in the
Sect. 6.2. Then the Master equation for the generalized repressilator amounts to:

otPðm; p; tÞ ¼ c1

p2
j�1 þ 1

ðE�1
mj
� 1Þ

"

þ c2ðEmj � 1Þmj þ c3 � mjðE�1
pj
� 1Þ þ c4ðEpj � 1Þpj

�
Pðm; p; tÞ

using as usual the index j 2 f1; . . .;Ng and respecting circular boundary
conditions p0 � pN .

7.1 Noise Qualitatively Changes Gene Network Dynamics

Inherent stochasticity can change the dynamics of genetic networks qualitatively.
By qualitatively we mean here that the deterministic curve is not just slightly
perturbed by the noise around its mean, but that low copy number dynamics shows
features which are not observed in the deterministic description. To demonstrate
that we compare the genetic switch model (generalized repressilator with N = 2)
in the deterministic description and Master equation formalisms.

We take a closer look at the stationary state of the switch in the deterministic
and stochastic cases. We learned in Sect. 5 that the stationary state of the switch in
deterministic regime is given by two fixed points. Depending on the initial con-
ditions the deterministic system will reach one of the two fixed points and once
this has happened the state of the switch will remain unchanged.

In the stochastic regime the stationary state is given by a stationary probability
distribution. The stationary distribution for the switch is bimodal with two hubs
around the deterministic fixed points. The main difference between the deter-
ministic and stochastic regime is that depending on the noise level there is a non-
vanishing probability that the genetic switch can spontaneously reverse its state
(see Fig. 5).

What we already see from this example is that the reliability and the func-
tionality of genetic switches is strongly impaired in the low copy number regime.
Clearly a switch which just spontaneously reverses its state if triggered by random
noise is not a reliable bio-synthetic element and misses the design purpose. Low
copy number dynamics should be addressed during the design phase by explicitly
taking stochastic aspects into account and tuning the amount of noise. A useful
framework for estimating the noise levels depending on the number of molecules
involved in the reactions, i.e. the system size is given by the so called X-
expansion.
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7.2 From Master Equations to ODEs and SDEs: Bridging
the Gap with X-Expansion

Intuitively stochastic equations must go over into the deterministic as the number
of molecules involved in biochemical reactions becomes high. The variable
influencing how well deterministic dynamics approximate real system behavior is
the number of molecules or the system size, which is usually denoted by X.
Therefore, a systematic approach going from a fully stochastic to deterministic
equation quantitatively estimating the errors for neglected terms is the application
of Taylor expansion to the Master equation in the inverse of X [13].

As could be intuitively expected, the largest contribution to the Taylor
expansion in terms of X-power is an ordinary differential equation, which
describes the time evolution of the Master equation mean, i.e. the first moment.

The next order of the expansion contains equations for second moments, i.e.
variances and covariances. It is also often referred to as ‘‘linear noise approxi-
mation’’ because the solution is determined by a Gaussian [13], which is fully
characterized by the first and the second moments, therefore it is equivalent to an
SDE:

xðtÞ ¼ x0 þ
Z t

0
bðxsÞdsþ

Z t

0
rðxsÞ � dxs ð9Þ

with dxs Gaussian white noise, b the drift term, and r the diffusion term.
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Fig. 5 Qualitative difference in the stochastic compared to the deterministic regime of a genetic
switch. A numerical estimate of the stationary distribution for a genetic switch (grey bars) have
been obtained using Dominated Coupling From The Past (DCFTP) introduced in Ref. [41]. As
expected we obtain a bimodal distribution Ps [ pfi (grey bars) centered around deterministic
fixed points marked by dashed black lines. The qualitative difference between the stochastic and
the deterministic dynamics is that in the deterministic setting reaching the steady state is a final
decision, the system dynamics will remain there for all times. In contrast for the stochastic setting
there is a non-vanishing probability that switch spontaneously reverses its state. We show on the
right a time trace of protein counts (p1 in dark-grey and p2 in light-grey) of the forward Gillespie
simulation [14] containing two such reversal events

184 N. Strelkowa



7.3 Reaction Rates Dependence on the System Size X
for the Generalized Repressilator Model

The Master equation for the generalized repressilator model contains 3 linear
reactions, which are the protein creation, the protein decay and the mRNA decay.
The constants cj in linear terms do not change with the size of the system X,
because the biochemical rate is just proportional to the number of molecules in the
system and if the size is increased, so will be their absolute number. The bio-
chemical rate of linear reactions scales therefore automatically with the size of the
system [13]. For the Hill-type transcription term scaling arguments and derivations
for extensive and intrinsic variables result in the following transformation rule:

c1

1þ p2
! c1X

1þ ðpXÞ
2 :

The Fig. 6 shows simulations of the stochastic system carried out with the
Gillespie algorithm at different values of X. As expected if we increase the size of
the system X the fluctuations disappear and the oscillations become regular.

Clearly, the oscillations and their quality are simultaneously affected by the
parameter set and the system size X. But the parameter set itself also affects the
system size X. In particular, our previously used bifurcation variable c1 is directly
proportional to the gene copy number D0 which strongly affects the system size
[38]. The gene copy number D0 can be manipulated experimentally and used as a
‘‘biological knob’’ for induction of oscillations in synthetic repressilators imple-
mented in living bacterial populations. The onset of stochastic oscillations in the
generalized repressilator model needs to be explored in dependence of two vari-
ables, e.g. in the (X, c1)-plane.
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Fig. 6 From deterministic to stochastic regime in the generalized repressilator model using the
dependence of reaction rates on the system size X
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7.3.1 Onset of Oscillations in Stochastic Setting of Generalized
Repressilator Model

The Fig. 7 illustrates snapshots in the (X; c1)-plane around the onset of oscillations
in the stochastic generalized repressilator model. The classical Gillespie algorithm
[14] was used for numerical simulations. In the low copy number regime (small
X), where the stochastic fluctuations are strong, the oscillating pattern are less
distinct even after the deterministic bifurcation point (see Fig. 7a).

An interesting effect occurs in large-X regime right before the onset of oscil-
lations in the deterministic model (see Fig. 7f, g). Due to the stochastic broadening
of the Hopf bifurcation, the oscillating pattern appear in the generalized repress-
ilator model already at smaller parameter value in the stochastic setting. Often it is
an indication that microscopic fluctuations lead to emergence of coherent oscil-
lations on the macroscopic level around the deterministic bifurcation point in the
model [42].

7.3.2 Linear Noise Approximation Close to the Hopf Bifurcation

Following the numerical hint from the previous section we will investigate the
premature oscillation onset shortly before the deterministic bifurcation point. We
apply linear noise approximation in the fixed point phase close to the emergence of
Hopf bifurcation (see [13] for procedure details).

(a) (b) (c) (d)

(e) (f) (g) (i)

(k) (l) (m) (n)

Fig. 7 Onset of oscillations in the stochastic repressilator model for N ¼ 3 nearby the
deterministic bifurcation point in the (X, c1) -plane. In the deterministic regime the limit cycle
oscillations start, then the bifurcation parameter c1 reaches the value 0.21 so that the sub-figures
a–d show the behavior of the system after the deterministic Hopf bifurcation and the sub-figures
e–n before the bifurcation. Depending on the system size X oscillations appear already earlier in
the stochastic version of the generalized repressilator model (f, g)
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Denoting the system state ðm; pÞ � x, the according SDE is

xðtÞ ¼ x0 þ
Z t

0
J � x dsþ

Z t

0
r � x dWs; ð10Þ

where J is the drift matrix equal to the deterministic Jacobian and r is the diffusion
matrix.

We use a standard procedure to determine if regular oscillations are contained
in the dynamics of this SDE and calculate the autocorrelation function and its
Fourier transform, the stationary power spectrum (see [43], Chap. 1.5.2). If the
power spectrum is peaked around a frequency m ¼ mpeak then the system shows
regular behavior with the frequency mpeak.

For linear SDEs as in this case closed expression for the stationary power
spectrum matrix SðmÞ is known and it depends on the Jacobian J and the diffusion
matrix r (see the formula for multi-variable linear SDEs [43], Chap. 4.5.6):

SðmÞ ¼ ðJ þ imÞ�1r � rTðJ � imÞ�1: ð11Þ

The power spectra are obtained from the diagonal contributions on SðmÞ and
shown for values in the fixed point phase close to the bifurcation point in Fig. 8.
The power spectrum peak can be made divergent to 1 around the resonance
values. The linear noise approximation suggests that in all odd numbered rings
microscopic fluctuations lead to coherent oscillations on the macroscopic level
close to the Hopf bifurcation point. The Fig. 8 illustrates this effect for the ring
N = 3.

Fig. 8 Power spectra obtained from the linearization around Hopf bifurcations leading to stable
periodic orbits in the generalized repressilator model. In the stochastic regime the oscillations
emerge already for smaller parameter values, e.g. prior to deterministic Hopf bifurcation.
According to the linearized model, we expect coherent stochastic oscillations to appear already at
c1 ¼ 0:162 for the stable limit cycle in N ¼ 3. The frequency peak can be made divergent around
these parameter values, which physically means that stochastic fluctuations occurring on the
microscopic level lead to coherent oscillations on the macroscopic level [42]. Direct Gillespie
simulations around these values confirmed the numerical hints of the linearized spectra.
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7.3.3 The Quality of Stochastic Oscillations in the (X, c1)-plane.

In previous sections we saw that the regularity or the quality of stochastic oscil-
lations in the repressilator model is affected by the system size X and the bifur-
cation parameter c1. For engineering of synthetic oscillators in living bacterial
cells it can be interesting to quantitatively explore the quality of oscillations
depending on both parameters. Therefore, we navigate the (X, c1) -plane for the
special case N ¼ 3 applying the following quantitative measure [44]:

QðmpeakÞ ¼
mpeakSðmpeakÞR

SðmÞdm
ð12Þ

In the non-oscillating phase (c1 ¼ 0:1) the power spectrum is flat, and the
quality score assumes its lowest values (see Fig. 9). The resonance oscillations
prior the Hopf bifurcation point are more prominent in larger systems and a steady
increase of the quality score is observed in the second row of the Fig. 9 for
c1 ¼ 0:162. In the regime long after the bifurcation (c1 ¼ 1:6) the quality of
oscillations according to this score strongly depends on the system size X. In
particular, in small systems the quality of oscillations according to this score does
not become better even if moving far away from the bifurcation point.

8 Discussion

8.1 Mathematical Models and New Functionalities
of Network Topologies

The design of synthetic gene networks is usually based on a simplified parametric
model including only key molecules as dynamic variables. Mathematical models
for gene expression should be as simple as possible, but have enough detail on

= 1 =100 =100.000

c1 = 1.6 2.4 · 10−3 8.0 · 10−2 1.3 · 10−1

c1 = 0.162 1.0 · 10−3 2.0 · 10−3 3.0 · 10−3

c1 = 0.1 1.4 · 10−4 1.4 · 10−3 1.3 · 10−3

Ω ΩΩ

Fig. 9 Snapshots of the oscillation quality in the (X; c1) plane. The quality score defined in
Eq. 12 has been applied for the repressilator model with N ¼ 3 genes in the non-oscillating phase
(c1 ¼ 0:1), at the coherent oscillations prior the Hopf bifurcation point (c1 ¼ 0:162) and further
away from the bifurcation point (c1 ¼ 1:6) for the different system sizes X 2 f1; 100; 100:000g.
The power spectra have been obtained from Gillespie simulations, are normalized and shown on
the logarithmic scale to provide an intuition for oscillation quality score shown in the table.
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dynamic description for key molecules. The biochemical processes which are of
main interest should be treated as model variables and molecules which are not of
interest and/or can be assumed constant should be absorbed into the model
parameters.

Further simplifications can be made by time scale analysis and approximation
of fast reactions by their steady state values and their absorption into model
constants. For gene expression in bacteria we identified mRNA and proteins as
model variables and replaced a fast dynamics variable by its steady state value.

One of the key issues by performing this sort of abstraction steps is that the
resulting mathematical description remains at least approximately Markovian,
because non-Markovian process description are much more difficult to simulate or
analyze and they are therefore less suitable as design aid in synthetic biology.

Once a gene expression model is created numerical or analytical bifurcation
analysis can be applied to investigate, which qualitative dynamics can be expected
for the proposed network topology and different parameter sets. We use the
generalized repressilator model as an example to illustrate how bifurcation anal-
ysis can reveal different functionalities of network topology depending on
parameter set.

In weak repression regime generalized repressilator model has a simple steady
state dynamics: it converges to an equilibrium state where all genes have the same
expression. For strong enough repression term bifurcation analysis predicts qual-
itatively different steady state dynamics for even or odd numbered rings. Odd
numbered rings for strong enough repressor term undergo Hopf bifurcation and
become oscillators. Even numbered rings for strong enough repressor term
undergo pitchfork bifurcation and become switches. Indeed bifurcation analysis
was an essential part of design phase prior the implementation of the first synthetic
elements—the synthetic switch by Ref. [6] and the synthetic oscillator by Ref.
[5]—in real biological cells.

Further bifurcation analysis of generalized repressilator model for longer even
rings (N
 4) revealed the existence of quasi-stable periodic solutions in which
longer even numbered rings often get trapped in long transient oscillations before
reaching the switch-like steady state. Based on these oscillation modes we have
recently proposed a design for a controllable oscillator with an outer feedback loop
for oscillation induction and maintenance [17]. This example shows how bifur-
cation analysis resulted in an idea for a new engineering application of gene
network topology.

8.2 Transferable Concepts

Another source for engineering ideas and functionalities for synthetic gene net-
works are classical electrical engineering. It provides ideas on how to design parts
out of low-level functions as for example repression or activation. The seminal
contributions from 2000 by Ref. [5, 6] for synthetic switch and oscillator have also
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been build as electrical circuits prior their implementation in bacterial cells.
Several other achievements in synthetic biology have been adapted from classical
engineering including cascades, logical gates, other designs for oscillators and
spatial patterning (see [45]). Bifurcation analysis and other mathematical concepts
helped to transfer the concept from electrical part design to synthetic biology.

In general, mathematical analysis and group theory as demonstrated here with
ring symmetries can help identify classical engineering or physics concepts, that
can be transferable to synthetic biology. Structures with N repressors ordered in a
ring are an example that topology-based designs are potential candidates for
portable concepts across several disciplines: odd numbered rings oscillate in
natural biological systems [46], as an electro-magnetic device [37], and also as a
synthetic gene expression network [5]. Abstract ideas such as for example group
theory and bifurcation analysis help to identify transferable designs, which can
function as synthetic networks inside bacterial cells. Topology-based concepts not
relying on special functional form or a small parameter region have the best
chances to function in several disciplines and are therefore worth considering as an
adaptable concept.

There are fundamental differences between the design requirements for clas-
sical and genetic engineering. Classical designs were invented for static envi-
ronments where electrical or mechanical parts usually quickly reach their
predicted steady states, but synthetic networks have to be designed for operation in
time-limited, fluctuating cell environments. It means that the focus of mathe-
matical analysis for the parts design has to be shifted from the routinely performed
deterministic analysis of steady state towards the analysis of the transients and
noise influence which takes the system size into account.

Nontrivial transient behavior can arise in genetic networks if the network
topology for instance includes several feedback loops. A prominent example of
such behavior is our generalized repressilator model with longer even rings which
if starting from random initial conditions often exhibits long lasting transient
oscillations even though the steady state is stable and switch-like [18]. For the
genetic networks, in particular if their topology becomes complex and contains
several feedback loops, the dynamics that is observable and that matters for the
cells can be transients and not steady states and this has to be taken into account
during the design of synthetic gene networks.

8.3 Noise

The origins of noise in genetically identical populations are attributed to inherent
stochastic nature of biochemical reactions [47, 48]. Therefore gene expression
noise is unavoidable and is observed in all living organisms. A prominent example
for the gene expression noise manifestation in complex organisms are human or
animal twins, which are genetically identical but show different phenotypic fea-
tures, e.g. coat/finger print pattern or personality [47].
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Indeed, naturally occurring noise in biology is far from being a nuisance on
the contrary necessary noise seems to be an evolutionary strategy keeping
genetically identical, but phenotypically diverse populations. This strategy has
been reported in several microbial populations [49–51] and most likely it
enhances survival chances in case of sudden changes in environmental condi-
tions. A well-characterized example is a soil bacterial population Bacillus
subtilis, which determines the cell fate using stochastic switch between ‘‘dor-
mant’’ and ‘‘competent’’ states [52].

Noise in engineered organisms does not have to be a nuisance. The pursuit
should be to create designs for synthetic circuits, which take advantage of noise.
Noisy low copy number regime has also the advantage of small effective system
size requiring overall less heterologous proteins needed to be produced by the cells
and therefore resulting in smaller cell burdens. Previous synthetic constructs [5, 6]
have been designed to operate in large number regimes mainly to showcase the
proof of concept with clear signals, but for larger genetic networks the cell burden
becomes too high if all nodes are operated in the full capacity deterministic
regime.

Still only few design ideas are available which explicitly take advantage of the
noise in gene networks [53]. One of the reasons is that we still require better
techniques for characterisation of noise distributions. The development of in vivo
real-time measurements of mRNA and protein concentrations with single cell and
single molecule resolution is ongoing research in this direction [54]. From this
research we expect to obtain knowledge on transcriptional noise distributions in
real cells. We can then integrate this knowledge into models for synthetic gene
network designs using stochastic complexity analysis, as for example the ðX; c1Þ-
plane framework introduced in this chapter.

8.4 ðX; c1Þ-Plane Framework for Analysis of Noise

We have shown that low copy number noise influences both the steady state of
engineered genetic network as well as the onset of bifurcations. In the generalized
repressilator model bifurcation analysis required navigation on the (X, c1)-plane,
where X is the system size and c1 the deterministic bifurcation parameter directly
proportional to gene copy number D0 [38, 55]. Both parameters have influenced
the bifurcation onset of the repressilators. The gene copy number D0 can be seen as
a biochemical ‘‘knob’’ for the generalized repressilator model, which is controlled
by the experimentator and triggers the emergence of bifurcations in synthetic
realizations of the model inside bacterial cells.

In the associated deterministic model the gene copy number increase would in
principle just reproduce the bifurcation diagrams [17]. However, in the stochastic
setting the increase of gene copy numbers has an effect on two model parameters:
D0 strongly affects the bifurcation parameter c1 (direct proportionality) as well as
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the system size X and the noise level. The biochemical knob D0 can be seen as a
diagonal navigator on the (X,c1)-plane.

Synthetic gene networks in living bacterial cells should be implemented in
sufficiently large X regimes in order to achieve reliable functionality. For synthetic
gene networks there will always be a trade off between the operational quality and
the amount of metabolic burden due to high levels of expressed heterologous
proteins. The (X, c1)-plane approach can be used for search of operation regimes
with sufficient functional quality while achieving the lowest possible metabolic
burden.

Classical parts design can serve as sources for ideas in gene network engi-
neering. Bifurcation analysis and other mathematical techniques help to create
models for gene expression and transfer known engineering concepts as for
example switches and oscillators as synthetic networks into bacterial cells.
However, these concepts need rethinking and adaptation taking into account
transcriptional noise due to low copy numbers and time-limited bacterial cell
environments. The model analysis during the design phase should therefore not be
confined to steady state analysis but also include the analysis of transients and
stochasticity, which can lead to qualitatively different dynamics.
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Automatic Computation of Crossing Point
Numbers Within Orthogonal
Interpolation Line-Graphs

Victor J. Law, Feidhlim T. O’Neill and Denis P. Dowling

Abstract The recording of atmospheric pressure plasmas (APP) electro-acoustic
emission data has been developed as a plasma metrology tool over the last couple
of years. In this work low moment analysis of acoustic time-series data is
examined for structure complexity (in terms crossing points) within 2- and 3-
dimensional time-series line graph datasets for the purpose of plasma control. A
theoretical analysis of the structural complexity analysis is given, and the
embedding algorithms obtained are implemented using LabVIEWTM for the pur-
pose of real-time plasma control. The software uses a threshold segmentation
process to map high contrast images of the line-graphs into binary (red and black)
images that maps particles (red) directly to the number of crossing points within
the cluster. It is found that single and bimodal cluster systems can be analyzed
within the pixelation error limit. The approach taken here is generic and may be
transferred to other (non-acoustic) datasets.

Keywords Plasma � Acoustic � Threshold segmentation � Cluster analysis

1 Introduction

With the increased use of atmospheric pressure plasma (APP) systems in industrial
applications such as surface activation of polymers prior to bonding within the
automotive [1] and the aerospace industry [2, 3] there is a growing recognition for
the need for the development of non-invasive in situ process monitoring tech-
niques. One such metrology is based on plasma acoustic emission. The study of
acoustic emission has a long history dating back to W Duddell’s and V Paulson’s
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ionized gas sound production experiments at the turn of 19–20th century when
radio technology was in its infancy [4, 5]. In more recent times (since 1990s)
optical-acoustic studies of plasma welding process [6], acoustic metrology of
anomalous arc discharge in plasma processing equipment [7], plasma and laser
welding [8–10], and plasma anodizing [11] have been reported. More recently
plasma acoustic emission metrology has been demonstrated on industrial scale
APP reel-to-reel systems [12, 13] and APPJ systems that use compressed helium
gas [14] or compressed air [15–17] as the working gas. In addition acoustic
emission has been reported in a helium linear-field jet [18]. Arguably one of the
drivers of this metrology is it relative low cost of implementation as compared to
optical emission spectroscopy and electrical measurement [19–21].

This chapter explores acoustic signatures that are characteristic of the process
environment between the PlasmaTreat Open-airTM atmospheric pressure plasma
jet [15, 16, 20–22] and a temperature sensitive surface. In particular we look at the
low entropy plasma jet flowing afterglow region where the process temperature is
around * 300–400 K. This temperature region has a characteristic plasma-sur-
face gap distance of 5–60 mm. This region is also of interest because the low
temperatures reached enable thermally sensitive materials to be processed: for
example, the activation of polymers and carbon epoxy composites prior to adhe-
sive bonding, the therapeutic treatment of open wounds, and cell treatment.

Whereas operating the APPJ below a gap of 5 mm produces a high entropy
state (1700 ± 100 K) due to the proximity of the plasma arc and therefore ther-
mally damages (burns) these materials.

Today’s atmospheric plasma pressure metrology uses advanced digital time-
and frequency-domain instrumentation linked to multivariate analysis tools [12–
19, 22, 23] to capture the interaction between the plasma and treated surface. To
examine the low entropy state signals we bring together the emerging Low-order
moment (Mean, Standard Deviation (SD) and Skewness (Sk)) analysis of acoustic
time-series data [16] with structural complexity techniques in the mathematical
analysis of random polygons that are composed of freely jointed segments of equal
length (equilateral), and knot systems that display morphological organization
[24–27]. One of the emphases of these polygon and knot system studies was the
development and understanding of the structural complexity of polymer chains in
solvents; in particular the determination of the knot type and topological (mini-
mum) crossing point numbers within polymer chains.

The aim of this work is to extend Ricca’s crossing point algebra techniques [27]
to Cartesian interpolation line-graphs, where the graphs are formed from high
contrast (black and white) regions. In addition the crossing point technique is
extended to the 3 orthogonal planes to extract both the average crossing point
which is defined as the average crossing point number over all three planes. This
last embodiment within our approach is in-line with previous reported work [26]
where it has been observed that average crossing point number correlates well with
the experimentally observed speed of electrophoretic migration of knotted DNA
molecules of the same size but of various knot types, and with relaxation dynamics
of modelled knotted polymers.
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The approach taken here greatly simplifies the choices of viewing angle by
locking the analysis to 3 orthogonal planes. Then using this restricted viewing
angle, threshold segmentation software is constructed and employed to automat-
ically process and extract the crossing point number from the interpolation line-
graphs. In this work the 3 orthogonal planes are: XY: l-SD, XZ: l-Sk, and XY:
SD-Sk.

To describe this new non-parametric cluster analysis process, the rest of the
chapter is divided into three sections. Section 2 provides a theoretic analysis of
crossings point numbers in relation to interpolation line-graphs and an outcome
interpretation of in terms stochastic and deterministic events. The LabVIEWTM

2011 programing is described in Sect. 3, and crossing point number analysis of
single and double clusters is presented in Sect. 4. Section 5 provides a discussion
of this work in the context of process control where stochastic and deterministic
effects need to be identified. The algorithms described in this chapter were
implemented using LabVIEWTM, however, it is worth noting that they could be
implemented in many other software packages including Matlab�. A 4 page
extended abstract briefly describing this work (Interdisciplinary Symposium on
Complex Systems, Kos, Greece 2012) can be found in Ref. [28].

2 Analysis

The time-series acoustic data used in this work was first published by Law VJ et al.
[16]. A total 26 datasets containing 300 sequentially sampled data points is used
here: 13 dataset for 19 kHz and 13 datasets for 25 kHz plasma electrical drive
frequency. Each dataset is then reduced to their l, SD and Sk datum points.
Figure 1 depicts the result of this reduction process. These Low-order moment
planes describe the temporal-spatial heterogeneous APPJ process from 5 mm
nozzle to surface distance (arc) to 60 mm far flowing afterglow.

Inspection of the six Low-order shape-space line-graphs reveals that the high
entropy arc datum points tend to be separated from the flowing afterglow datum
points. In addition as the axis parameter changes from l to Sk the low-entropy part
of each cluster becomes more complex: moving from a near-linear shape entan-
glement cluster to cyclic or torus-like. This mapping transition [29] will be dis-
cussed later with the analysis of the crossing point numbers in Sect. 2.1. For now it
is sufficient to understand that these datasets illustrate a specific plasma processing
case however this analysis approach may be used on other datasets that describe
different phenomenological processes.

To extract meaningful information from these six line-graphs, a modified form
of the falling stick model as described by Ricca [27] is used. Ricca’s falling stick
model is mathematically defined in Eq. 1, (where Cmax is the maximum number of
crossing points, N is the number of sticks and N-1 is the embedded delay). The
model allows the sticks to fall on to each other, or fall away from each other, and
with the ends of the sticks being allowed to cross and extend above the previous
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fallen stick. In this process the sticks are allowed to exhibit morphology. In this
scenario, morphology means that an observer can trace a stick going under another
stick and emerge on the other side of the upper stick due to surface shading and
texture.

Cmax�
N

2
N � 1ð Þ ð1Þ

Equation 1 is then re-analysed for the interpolation line-graph as shown in
Fig. 1. In this case, the length of each interpolation line is not fixed at some
equilateral value, but is variable in length and extends between and up to their
associated twin datum points. Furthermore the interpolation lines cannot extend in
length beyond the initial and following datum point, that is to say the lines are
contiguous. The direction of each interpolation line is allowed to be variable so
that they express the underlying physical process that they are to characterise.
There is no morphology in this process as the interpolation lines are totally formed
from one colour (black) seating upon a white background and when lines cross
another there is no layer information.

A reinterpretation of the falling stick model with morphological sticks over-
laying each other is schematically shown in Fig. 2a, and the interpolation line-
graph model is shown in Fig. 2b. In Figs. 2a and 2b, N = 3. From this simple
representation it can be seen that 3 crossing points for the stick model are produced
and 1 crossing point for the interpolation line-graph model is produced. In addition
it is important to note that morphology does not take any part in the deduction of
this outcome.

19 kHz 25 kHz

XY (µ -SD)

XZ (µ -Sk)

YZ (SD -Sk)

Axis

Fig. 1 Low-order orthogonal interpolation line-graphs of APP data
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Figure 3 shows the experimental observations of both models and the analysis
derived from Eqs. 1 and 2. Note in both equations the approximation sign is used
because the fitted curve of the models departs from experimental observations
above N = 11. In this new analysis, Eq. 1 has now been transposed into Eq. 2 with
an embedding delay of N-2.

Cmax�
N

2
N � 2ð Þ ð2Þ

Given the knowledge that the sum of the crossing points within each orthogonal
interpolation line-graph can be computed and the average crossing point C?

� �
for

all three planes can also be computed by adding all the crossings points and then
dividing the sum by 3 to yield the final value a simple procedure may be math-
ematically expressed as shown in Eq. 3.

C � C? �
Cxy þ Cxz þ Cyz

3

� �
ð3Þ

3 sticks (3 crossings points)                  3 interpolation lines (1 crossing point) 

(a) (b)

Fig. 2 a, b. Schematic representation of falling stick model, including morphology (a) and, line
interpolation model (b)
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The structural complexity information within C?
� �

may also be normalised to
Cmax for a given number N within the datasets to provide an efficiency index (Ieff).
This procedure is mathematically expressed in Eq. 4, where for the 12 interpo-
lation line-graphs used here Cmax = 60. The index may then be used for transfer or
make a comparison between other plasma of the same type, between similar
plasma processes (cleaning, activation and/or deposition), formed by different
plasma reactor types, or indeed other datasets that characterise different phe-
nomenological processes.

Ieff �
C?

Cmax

100ð%Þ ð4Þ

Table 1 shows the calculated orthogonal crossing points for the 6 datasets given
in Fig. 1 along with their averaged value (Eq. 3) and efficiently index (Eq. 4). The
tabulated results reveal that the two dataset have significantly larger crossing point
values in the YZ: SD-Sk plane (row 4) as compared to the mean and standard
deviation values. The differences are reflected in the average crossing point (row
5) and the efficiency index (row 6). For example efficiency index for 19 kHz and
25 kHz data sets are 8.3 and 10.5, respectively. Some of the possible origins of
these differences are explore in Sect. 2.1.

2.1 Stochastic Thermal Noise Comparison

In this section the efficiency index is examined with respect to the interpolation
line-graphs in Fig. 1, and to random (stochastic) electrical noise measurements. To
test the efficiency index, the electrical thermal (room temperature: 293–298 K)
noise from two 1 MX input terminals of a 200 MHz bandwidth analogue-to-digital
digitizer are measured and presented. Under these open-circuit conditions the
sampled dc voltage values are expected to have a Gaussian probability function
over time and be symmetrical around the zero voltage crossing point. The standard
deviation will also be approximately equal to the route mean square of sampled
datum points [30].

For the purpose of this analysis, each channel measurement is repeated 3 times
and the sampled datum points (14 points per channel) are plotted against each

Table 1 Crossing point numbers for interpolation line-graphs in Fig. 1 and their orthogonal
average and efficiency index

1 N = 12 and Cmax = 60 Crossing point # for Crossing point # for
19 kHz 25 kHz

2 XY: l-SD 4 4
3 XZ: l-Sk 5 4
4 YZ: SD-Sk 6 11
5 Average 5 6.3
6 Efficiency index (%) 8.3 10.5
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other to generate a series of Cartesian graph plots. The results of these plots are
shown in Fig. 4. The crossings point of each graph is then computed and the
average taken. This procedure therefore enables a direct comparison to be made
with the crossings points of the plasma datasets and a general classification of the
efficiency index to be made in relation to a statistics family of values.

Figure 4 (1, 2, & 3) shows the results of the stochastic noise measurements in
Cartesian space. Channel 1 is plotted on the horizontal axis and channel 2 is
plotted along the vertical axis and the individual consecutive datum points are
connected with interpolation lines. In these three representations the main feature
of note is that the interpolation lines form a single cluster, or entanglement, with
no deterministic clustering such as linear or cycle shapes as observed in corre-
sponding datasets (see Fig. 2). The salient statistical description of these plots
(standard deviation of each channel measurement, the mean of the channel mea-
surements plus the voltage (peak–peak) per channel) is shown in Table 2.

The tabulated results reveal a SD mean value of 0.000507 for channel 1 and a
SD mean value of 0.009288 for channel 2. In voltage amplitude terms, these values
are approximately 33 % of their respective noise voltage amplitudes.

The orthogonal analysis results of the three datasets are tabulated in Table 3,
where the computed orthogonal averaged crossing point and efficiency index are
given for each datum point. These results reveal that the averaged crossing point
increase from 0.33 to 13.33 for N = 3 to N = 13 and their corresponding

Fig. 4 Cartesian space representation of the three noise measurements

Table 2 Electrical noise per channel measurements

Measurement Standard deviation Voltage (peak-peak)

Channel 1
1 0.000485 0.18027–0.17840
2 0.000579 0.18024–0.17822
3 0.000457 0.18027–0.17895
Mean 0.000507
Channel 2
1 0.006997 0.07156–0.04495
2 0.011276 0.07845–0.03794
3 0.009595 0.07356–0.04236
Mean 0.009288
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efficiency index decreases from 33.33 % to 22.22 %. These values equate to an
average crossing point efficiency index range of 27.64 % ± 5.68.

As we are visualizing the Cartesian shape-space of Fig. 4 in pixels (picture
elements) rather than the real-world voltage dimension it is possible to charac-
terize the efficiency index using non-parametric cluster analysis.

Let us first consider 14 datum points forming a continuous straight line in
Cartesian space with coordinates: a,b1, a,b2, a,b3…. For this example the gradient
of the line and intercept are mathematically represented by the straight line
equation: y = mx +b. Therefore the efficiency index = 0, and by definition there
cannot be any crossing point. Hence there must be a strong deterministic process
behind the formation of the line. Now consider the 14 datum having a crossing
point efficiency index of 100 %. This upper (or maximum) boundary scenario is
again described by a linear deterministic model. Between these boundary limits,
random (or stochastic), processes can operate. Classification the crossing point
efficiency index can therefore help in providing an estimation of deterministic
effect within time series datasets. For example, the stochastic electrical noise
generated by the unit provides an efficiency index of between 33.33 to 20 %.
Outside this band deterministic effect may be expected to be observed and their
effect becoming stronger as the boundary limit is reached.

Figure 5 displays this analysis in graph form, where the abscissa axis repre-
sents the line interpolation number and the crossing point number is plotted along
the ordinate axis. In this figure the black datum points represent the upper
boundary limit as described by the embedding delay of (N-2) of Eq. 2. The
lower, or straight line equation, boundary is defined by the zero value on the
ordinate. Between these two limit boundaries, stochastic crossing point behavior is

Table 3 Orthogonal analysis

Data N Crossing Crossing Crossing Average crossing Clmax Efficiency
point points points points point index

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 2 0 0 0 0 0 0
4 3 0 1 0 0.33 1 33.33
5 4 1 2 0 1 3 33.33
6 5 2 3 1 2 6 33.33
7 6 2 4 3 3 10 30
8 7 2 6 7 5 15 33.33
9 8 4 6 10 6.66 24 27.75
10 9 4 6 12 7.33 31 23.64
11 10 4 9 14 9 40 22.5
12 11 6 9 18 11 49 22.44
13 12 7 11 22 13.33 60 22.20
14 13 8 16 24 16 72 22.22
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located. The estimated location of the stochastic behavior is outlined by the black
square and open square datum points as measured by the stochastic noise
measurement.

2.2 Bimodal Clusters

So far we have considered a single cluster of data points. However in the real
world of plasma processing datasets sometimes contain double [3, 12, 13, 16] or
multiple [31] clusters over the supposedly stable processing time period. This is
particular true of parallel-plate reel-to reel plasma processing system where two or
more plasma reactors are electrically driven from one electrical power source.
Typically these atmospheric reactors are used to plasma treat polymers and
composites. The bimodal behavior arises from two contrasting electrical effects:
firstly, the sequentially nature of the process in that the treated material adds to the
electrical impedance of each reactor in turn as the material passes through the
reactors or, secondly mode jumping where the treated material drastically alters
the plasma chemistry and hence the plasma electric impedance.

Figure 6 shows a principle component analysis (PCA) loading plot of one such
bimodal behavior as measured on the Dow Corning� SE-1100 AP4 helium-
atmospheric reel-to-reel system [16]. In this example the plasma electrical
parameters (current and voltage) of the dual reactor are measured with the process
starting at the bottom right and progressing to the top-left with each datum point
added at are rate of 1 point per 0.5 s over a total process time period of 2 min. In
this example note how the datum points jump 8 times between the two clusters
states within the total time period.
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This bimodal cluster behavior was originally analyzed for cluster separation in
Euclidian co-ordinate space rather than angle measurement and local threshold
variation within the Euclidian space. However in this work, the application of
crossing point number analyses requires we treat each cluster as a separate identity
where the interpolation lines projecting out of the clusters are terminated in empty
space between the clusters. An example of this new LabVIEW Software treatment
of bimodal behavior is described in Sect. 4.1 and shown in Figs. 10 and 11.

3 LabVIEW Programing

This section describes the non-parametric cluster analysis (NPCA) using Lab-
VIEWTM 2011 [National Instruments Ltd] and the Vision builder A1 (3.5)
application software.1 An earlier vision of the software using LabVIEW 8.2 with
Vision builder has been used for non-parametric cluster analyses of the space
separation between data clusters mapped onto a Cartesian graph. The mode
classification results of which are published in Chaotic Systems: Theory and
Applications, 2009 [12].

The new software uses a threshold segmentation process to map any high
contrast image. In this case the low-order moment interpolation line-graphs of

Fig. 6 PCA loading plot of helium plasma driven at 500 W as a function time [16]

1 The complete program may be obtained from the Author (victor.law@ucd.ie). In addition
information on National Instruments LabVIEW software can also be found at http://www.ni.com/
.
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each of the three orthogonal planes are mapped. For ease of portability the soft-
ware is installed in a Windows environment on a Dell laptop computer.

The LabVIEW software packages form a complete programming language
based entirely on a graphical user interface. Within the software a sub-program
called a virtual instrument (VI) creates graphical constructs equivalent to for-
loops, do-while loops, case structures, and subroutines (called sub-VIs). These
components are placed on a panel (block diagram) which is ultimately hidden from
the operator. The data flow through the VIs is controlled by connecting ‘‘wires’’
between objects, somewhat like constructing an electrical circuit. The graphical
user interface or ‘‘Front panel’’ is created from a flexible set of predefined
graphical displays and control features. The programme is designed to accept and
read an 8-bit Bitmap or JPEG image of the line-graph and exports its 0–255 pixel
bit depth greyscale component into the Vision builder software. The image read VI
is located outside of the while loop so when the program is operated the image VI
opens and stays open to allow interactive processing of the image within the while-
loop. Within the while loop the vision builder software contains a suite of hier-
archical particle measurement VIs tools. The parameters of the VIs are user preset
to look for bright objects within a local adaptive threshold which has a lower and
upper boundary limit. The local threshold operation defines the graphs interpola-
tion lines in terms of pixel depth (typically between 226 and 290 bit depth): pixels
with a bit depth below 226 and outside the crossing point areas are reset to a
background pixel value of I = 0 (black); pixels not reset I = 0 and completely
surrounded by the interpolation lines are regarded as holes and are set to a new
pixel value of I = 1 (red). Hence the pixel surround by three interpolation lines
form a red particle, the result of which produces a black-and-red binary image that
represents the number of crossing points (in terms of particles).

Figure 7 shows the complete source code at the block diagram level. For this
publication the code is turned through 90 degree to fit the book format, otherwise
the code is be to read from left to right with the create and read image VIs and final
error handling VI outside of all the while-loop.

For a simple image containing one or two crossing points the structural com-
plexity information can be readily visualised and identified by the human eye.
However to remove any possible counting error an automatic counting algorithm is
used to count and display the number of particles that are formed by the inter-
polation lines. In addition, for each individual particle within the region-of-interest
their areas calculated, logged and subtracted from the interactive region to produce
a percentage particle area value. This process also allows further analysis to be
performed at a later date and provides the means of pixelation error correction, see
Eq. 5.

Finally the operator can generate a report containing the non-parametric cluster
analysis information which is time-stamped in units of hours, minutes and seconds
and exported as comma separated file (*.csv).

It should be noted that the digital image processing is pixel based rather than
using real-world units (i.e. mm, cm, etc.…). There is however a limitation to the
program functionality which is found in the quantization process of the pixelated
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Fig. 7 Block diagram of completed LabVIEWTM software programme
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line widths. In this case, the LabVIEW boundary limit is defined by the
640 9 480 = 307,200 pixels or 0.3 megapixels arranged in regular two-dimen-
sional grid field format of the read image VI; and as long as all of the line graph
information is within these quantization limits the program will function as
designed. The interpolation line-graph image fidelity is also a limiting factor as
they are formed by pixels, and where too few pixels produce a jagged line which
may be degraded further if the original image was in the JPEG format which has
undergone compression by 10:1. Figure 11 provides a good example of pixel
limitation where a 195 x 191 pixel format is used in the original image. Under
these restricted conditions the program is operating but the jagged line edge starts
to present a problem to the counting algorithm.

For the reader who may not be familiar with LabVIEW block diagrams a
simplified block diagram of dataflow through the Vision build VIs is shown in
Fig. 8. In this figure all arrays, Boolean (true or false) operators, data displays, data
collection and data reporting have been removed for clarity. The diagram shows
that the main vision VIs are nested within two binary (True or False) case
structures: the false state of these case structures handle all the error commands:
the errors being no file to read or no change in the threshold values. These case
structures operate within while loop, located outside of which are the ‘create’ and
‘read’ file command Vis, and the error handling VI.

An example of the front panel of the software program is shown in Fig. 8. In
this example the Cartesian shape-space image form Fig. 1 is displayed on the left-
hand-side of the panel and, the automatically reconstructed binary image (black
and red) is displayed on the right-hand-side. Using a threshold window pixel value
matrix of minimum = 226 and maximum = 296 it can be visually observed (red
coloured triangles) the number of particle analysis outcome is 4. Note, the visual
comparison and digital count directly compares to the number of crossing point in
the original image.

The non-parametric cluster analysis information is displayed in numerical
panels on the front panel, and includes the number of particles, total area of
particles and the percentage area of the particles within the region of interest.

4 LabVIEW Results

This section presents the LabVIEWTM software processing two images of different
pixel formats, 462 by 362 pixels 195 by 191 pixels, respectively. The two images
are of a single cluster and cut away of a single cluster taken from a bimodal cluster
system. These two examples show how the clusters are counted and also how pixel
resolution affects the crossing point counting process. The software front panel of
these two clusters are shown in Figs. 8 and 10, respectively. In addition, Sect. 4.2
describes how the number particles, hence the number crossing points, is altered
by interpolation line pixel resolution.
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Fig. 8 Simplified block
diagram showing the
dataflow through the main
VIs
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4.1 Single Cluster

Figure 9 displays the front panel analysing a 462 by 362 pixel image of 25 kHz
(l-SD) line graph image as depicted Fig. 1. The left image is the original image
and the right image is the reconstructed binary image. In this example it can be
seen that the original image has 4 crossings points that form a total of 4 particles.
The automatic reconstructed binary (back and red) image clearly depicts this
visual analysis. In this case there is no need for further analysis.

Fig. 9 LabVIEWTM software front panel showing the analysis of a single cluster

Fig. 10 Bimodal cluster system (left) and single cut away cluster (right)
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4.2 Single Cluster Analysis Within a Bimodal Cluster System

In this section a data array consisting of two columns that form a bimodal cluster
system is considered. These data cluster formations generally described plasma
system that has two time dependant states which momentary jump from one state
to the other [12].

Figure 10 shows a typical bimodal cluster system consisting of 53 data points
and 52 interpolation lines. The clusters are well separated as characterised by the
fact that the pixel space between the two clusters is of the same order as the cluster
themselves. The two clusters are however connected by 6 interpolation lines. For
purpose of this work the right hand cluster is cut away at the mid separation point
and analysed for the number of crossing points. The most striking feature of note
for the cut away cluster is that the six connecting interpolation lines are no long
connected at both ends, but rather the lines are terminated in free space. That is the
lines are hanging in free space.

The software analysis of the cut away cluster is shown in Fig. 11. In this case a
195 by 191 pixel image is used along with the similar threshold values
(min = 223 and max = 295). The first feature of note is that the interpolation
lines that are hanging in free space do not interfere with the crossing point
algorithm. However the number of crossing points in the original image is difficult
to visualize: whereas, the reconstructed binary image yields 43 particles and hence
43 crossing points. On closer visual inspection of the original image the number of
crossing points is 31 and an interpolation line pixel width of 1–2 pixels.

Table 4 lists all 43 particles and their particle size in terms of pixels for the
reconstructed image. The table shows there are 31 particles having a pixel value of
3 or greater and 12 having 2 or less pixels (7 particles have 1 pixel and 4 particles

Fig. 11 LabVIEWTM software front panel showing cut away cluster analysis
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have 2 pixels). The discrepancy of 12 between the original and the reconstructed
binary image appears to be due to pixelation of the interpolation lines. This is the
cause for the misinterpretation of image data, that is to say that the counting
algorithm over counts the number of particles.

To correct the counting error and thus make the count process more accurate a
secondary analysis procedure is required, and one that is based on pixelation error,
that is a change in grey scale of individual elements within a group of pixels that
go to make-up the types of objects (lines and particles) in the binary image. One
way of doing this is to manually calculate the total number of particles (Partmax)

Table 4 Particle # and area within the reconstructed binary image of Fig. 10

Particle # Area Particle # Area Particle # Area

1 117 15 177 29 161
2 205 16 1 30 2
3 1150 17 30 31 77
4 18 18 31 32 35
5 2 19 6 33 60
6 1 20 2 34 370
7 3 21 37 35 1
8 9 22 202 36 59
9 10 23 16 37 1
10 167 24 268 38 4
11 71 25 1 39 7
12 78 26 29 40 1
13 27 27 1 41 95
14 2 28 44 42 31

43 1

Fig. 12 Exploded view of the pixelated lines of the original cut away cluster image in Fig. 10.
The pixelated image shows the smallest particle has two pixels and the line width is constructed
from 2 grey scale picture elements
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then subtract this value from this value the number of particles that have pixelation
error (Parterror) so generating a good estimation of the true number of particles
(Parttrue). Here Parterror is defined as the number of particles that have a similar
number of pixels to the grey scale pixels that construct the width of the interpo-
lation lines. This procedure is mathematically expressed in Eq. 5. With this pix-
elation correction an accurate estimation of particles within the cluster is achieved,
and so leading to a good estimation of the number crossing points.

Parttrue � Partmax � Parterror ð5Þ

The validation of the value of Parterror is simply performed by enlarging the cut
away cluster line detail and counting the pixel and inspecting both the line and
particle pixelation. Figure 12 shows an exploded view of the cluster. In this view
the characteristic grey scale (black through to grey and on to white) mosaic fea-
tures. Note how the smallest particle is made up from 2 pixels and the lines width
are constructed from 2 grey scale pixels. This parity now defines the pixel error.

Incorporating this pixelation correction procedure into the software, the original
number of crossing points (43) now reduces to 31. Using this additional procedure,
the software can now be used to map out the crossing point number for each
orthogonal plane of a single and multiples clusters.

5 Discussion and Outlook

This chapter has described the amalgamation of low-order moment analysis with
3-dimensional structural complexity techniques applied to time-series datasets. In
this case the time-series data describes spatial-temporal acoustic emission from an
air atmospheric pressure plasma jet. A comparison between the morphology falling
stick problem and orthogonal (XY: l-SD, XZ: l-Sk, and XY: SD-Sk) 3-dimen-
sional interpolated line-graph data has been undertaken. Here the normal family of
the three orthogonal planes is set to limit the boundary conditions. Although this
approach greatly reduces the thousands of potential viewing angles, the outcomes
directly transforms into 3-dimensional graph plots and thereby greatly reduces the
computing power that is required for the analysis. In addition it is desirable to have
only the three orthogonal planes as they retain in at least partly a mathematical
tractability and some formal properties of the standard Cartesian projection.

A comparative algebraic analysis between the falling stick and the Cartesian
graphing problem has revealed a unique embedding delay of N-2 (see Eq. 2) for
the interpolation line-graph.

For the wider uptake of this new analysis, the significance of the efficiency
index has been considered. For this reason the new embedded delay has been
tested against stochastic noise measurements which are expected to have a known
time independent Gaussian probability function. The analysis indicates that the
efficiency index (Eq. 4) may be used as a classification system to separate out

212 V. J. Law et al.



stochastic process from deterministic effects within a dataset. For example: a low
(0–20 %) or high index score (33–100 %) may indicate a deterministic process
occurring within the dataset; an index between 22–33 %, in conjunction with
single cluster, would indicate stochastic processes are most likely to be occurring
within the dataset.

With this new insight we turn back to the plasma datasets which have efficiency
indexes of 12.5 % at 19 kHz and 21.6 % at 25 kHz, respectively. These values
may initially suggest a deterministic effect within the process and indeed the linear
and open cyclic space-shape (Fig. 1) of the dataset gives support to this idea.
However the 25 kHz SD-Sk dataset does exhibits a single cluster with an asso-
ciated efficiency index is 21.6 %. Both these criteria would be sufficient for the
dataset to be classified as having a stochastic behaviour if it was not for the factor
the 3rd order of moment (SD, or, Skewness) needs careful interpretation as a zero
SD does not imply that the mean = median, as in the case of discrete distributions
which are multimodal [16]. Given this corollary the SD-Sk does point to a known
hot process processing window where the entropy of the arc dominates Plasma-
Treat afterglow. Clearly this processing window needs to be investigated further.

As the new embedded delay algorithm describes geometric features in 3
dimensional orthogonal Cartesian space the algorithm has been incorporated using
National Instruments LabVIEW software which employs a graphical user inter-
face. The software programing has been designed to sample high contrast (black
and white) digital images with minimal user interactive control settings, and
automatically compute the crossing point number within a single cluster.

In the case of bimodal cluster systems it has been demonstrate the two clusters
can be analysed separately. The cut away cluster has crossover interpolation lines
that hang in free space, these however do not interfere with the counting algorithm
has they have are one ended. By extension this process can be employed in
multiple cluster systems.

Poor preparation of the original image in terms of interpolation line and particle
pixel resolution (pixelation) may require additional processing to achieve the
correct crossing point number (particle count). Experimental observations indicate
that loss of line definition occurs when the line thickness falls below 2 pixels. For
images that contain 40 lines and above 265 by 265 pixel array within a
640 9 480 = 307,200 pixels format is required. In the present work this line
definition is not limited by the number of lines. An approximation of the correct
crossing point number (particles) can be obtained by rejecting particles which
contain a similar number of grey scale picture elements that construct the width of
the interpolation lines. Experimentally this is found to be approximately 2 pixels
and defined graphically using the software user interface.

Finally it has been found that the graphical user interface software approach
developed here agrees well with the manual inspection of the test plasma datasets.
This agreement indicates that the software may be applicable to analyse other
related dataset that describe different phenomenal processes. This approach may
therefore constitute a new non-parametric cluster analysis tool.
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5.1 Future Morphology Software

This work has focused on high contrast black and white 8-bit grayscale images of
interpolated line-graphs that contain no perspective information. To advance this
work forward to enable processing images that contain perspective information,
i.e. that delineate lines and features that overlay each other to form entanglements
of physical features [27, 32], a move away from simple binary images that contain
no graduation of edge definition is required. As morphology information is gen-
erally considered to be generated by visual perspective, two methods of producing
morphology may be considered. Firstly, a graded grey scale may be used to define
edge detail. Secondly, use colour images and separate out the colour planes into
various sets of primary components, such as RGB (Red, Green, and Blue) where
each colour plane becomes an 8-bit image that can be processed like a grey scale
image. Such software does exist within the suit of National Instruments vision
software and is being investigated by the author and shall be reported on.
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Computational Tactic to Retrieve
a Complex Seismic Structure
of the Hydrocarbon Model

Tatyana A. Smaglichenko, Maria K. Sayankina
and Alexander V. Smaglichenko

Abstract Passive seismic is a direction of human activity, due to which the
prospecting of hydrocarbons can be performed by producing a minimal amount of
drilling. The synthetic data are presented as arrival times of waves from regional
events. Seismic rays pass through the thin layers that compose 2-D hydrocarbon
model. The conventional view views mathematical methods as weakly reliable in a
detection of hydrocarbons. Nevertheless we demonstrate that numerical recon-
struction of seismic velocities in the gas-saturated reservoir can be accurate if the
tactic of solution includes a statistical analysis of different subsets of observations
and a selection of computational techniques, which resolve a complexity of the
structure. Unconventional computing is in that we first make an assumption about
geophysical properties of a subject, and only then the appropriate calculation
scheme is chosen with following checking of parameters of a resolution. The basic
techniques involve the relaxation scheme of the gradient descent method or CSSA
to retrieve the large-size structure beneath the gas reservoir and the modification of
Gaussian elimination that is effective to overcome the problem of an uncertain
error of seismic observations.
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1 Introduction

The data of seismic waves passing through the Earth from their natural sources to
the survey’s receivers mainly include the information about inhomogeneous deep
structure. Purpose of any inversion technique is accurately as possible to recon-
struct images of real geological bodies located in depth in order to perform their
analysis as well as to see processes that are connected with them and occur in the
invisible Earth interior. Complexity of seismic structure is among the factors that
significantly influence on the inversion effectiveness. Natural structures have a
small- or large-size and combine both these characteristics. For instance the large-
size structure having a strong low velocity of P-waves often designates a motion of
a hot mantle substance or a mantle plume. Such anomalous spot has been found in
ocean beneath central Iceland [23]. Another clear low-velocity anomaly charac-
terizes the area of an extinct volcano Eifel (Germany) [15]. Strong low-velocity
zone neighboring with high velocities has been found within the rift zone in the
Ruwenzori mountains (Africa) [4]. These large-size structures are examples of
models that can not be easily retrieved by tomographic methods.

Small-size structures are determined by means of zones of low and high
velocities that alternate with each other. Normally they can be found in the fault
zones, wherein extremally low velocity can be inside in the fault plane when high
velocities characterize rocks in a vicinity of this plane. Structures can be changed
with time and be transformed into different hierarchies. The example of unstable
geodynamic state is the Western Nagano fault area (Central Japan) that appeared
after the 1984 Nagano-Seibu earthquake having a magnitude 6.8. During many
decades numerous aftershocks followed the main shock and then they led to
complex fault patterns [3], which are characterized by the structure simultaneously
having small- and large-size velocity anomalies [20]. Inversion methods are
conventionally applied are not able easily resolve such structures. In this study we
focus our attention on the part of Earth, which near a surface (till a depth of
0.54 km) and will investigate the complex model that has a meaning for a mining.

It is a long time since seismic exploration methods use borehole data and
effectively find horizons of hydrocarbon deposits in the subsurface. However it is
not always possible to determine details of a shape of the complex hydrocarbon
reservoir that contains water- and gas- saturated layers and surrounding rocks. This
opportunity can provide seismic tomography, which works with the data of seismic
waves passing through the inhomogeneous Earth from natural sources to the
survey’s receivers. Due the tomography application one can particularly obtain the
wave propagation velocities and to reconstruct physical properties of rocks in the
reservoir. This allows predict the hydrocarbon potential for the being investigated
region, to claim a presence of hydrocarbons at the given place and only then
perform drilling.

In order to illuminate the Earth beneath the reservoir traditional exploration
methods use active sources, i.e. explosions. The seismic tomography can also
process information from passive seismic sources i.e. earthquakes. The advantage
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of such approach is ability to utilize the data in more wide frequency range than
under typical hydrocarbon exploration [5]. Moreover under passive seismic there
is no intervention to an environment, and the geodynamic balance of our planet is
not disturbed. Nevertheless tomographic computations are based on limits that
include the linearized formulation of the problem (see the next section), a choice
of the appropriate blocks (cells) in accordance with a morphology of hydrocarbon
reservoir (see Sect. 3.1) and finally hierarchical properties of the geophysical
medium (different sizes of the structure), which are widely considered in this work.

The purpose of this study is to demonstrate the computational tactic of
numerical reconstruction of the hydrocarbon model in conditions of passive-source
seismic data. As a synthetic example of this model we choose so called ‘‘dipping
thin-bed reservoir model’’ that has been considered in the work [14]. The proposed
algorithm combines methods of transmission tomography: the Modification of
Gaussian Elimination (MGE) that was recently developed [19, 20]; the Consec-
utive Subtraction of Selected Anomalies method (CSSA), which corresponds to
the innovative scheme of the method descent gradient [18] and traditional inver-
sion techniques as possible part of the algorithm.

2 Passive Source Seismic Data

The transmission seismic tomography has been considered among methods for
hydrocarbon detection in a subsurface region using passive source seismic data
(item 22 of [5]). Seismic data consist of P –wave arrival times that are observed
from earthquakes (passive sources) and registered by seismometers. Assume that
for each event we have initial guesses about epicenter, focal depth and origin time
T0

source. For the seismic ray (source-seismometer) a non-linear function of the
observed time Tobs has been approximated by seismologists Aki and Lee in the
work [1]:

Tobs ¼ Tcal þ oT

ox
Dxþ oT

oy
Dyþ oT

oz
Dzþ DTsource þ

X
k

T ðkÞFk þ E ð1Þ

where Tcal is the calculated time based on an initial velocity model V0,
Dx, Dy; Dz; DTsource are unknown corrections to the source parameter,

P
k T ðkÞFk

is unknown correction to the seismic velocity parameter. The last correction is
expressed as sum of multiplications of unknown fractional perturbations of
velocity slowness Fk ¼ V�1 � V�1

0

� �
=V�1

0 and travel times TðkÞ that can be cal-
culated with respect to the initial model V0 for blocks (cells) of a medium, through
which the given ray passed. E represents a sum of the approximation error and
error in observations. Actually the non-linear function of the earthquake wave
travel time is generalized function of the variables x, y, z. Decade prior to the
research [1] mathematicians Lavrentiev and Romanov [7, 8] approximated this
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function and proposed the linearized formulation of an inversion problem for the
case of two variables x, z that can be presented in the following form:

Tobs � Tcal � Z ððVðx; zÞ=V2
0 ÞÞdx; dz ð2Þ

where an integral is taken along a curve representing the seismic ray trajectory
based on an initial model V0. Note, that the formulation of (2) is valid under the
next condition is satisfied:

abs
V � V0

V0

� ��
� 1 ð2:1Þ

Later, Romanov [16] showed that the three-dimensional case can be resolved
using a set of planar tasks. Thus a transition from the nonlinear to linear formu-
lation having the integral form (2) or the differential form (1) is justified if the
model V (x,y,z) meets the condition of (2.1).

Let us stress that the merit of Aki and Lee is in that they did formulation of the
velocity model via blocks (cells). On the one hand, this leads to adding of some
small error into the last item in the Eq. (1). However on the other hand, it gives a
simple way to a solution of the problem when we have deal with incomplete data
sets, which are normally in all fields of practice of seismic research.

Suppose, P-wave arrivals that were registered in the prospecting area of
hydrocarbons form the vector b of observation data with components of Tobs-Tcal.
A dimension of this vector is equal to the number of seismic rays. Respectively to
the equation of (1) parameters Dx, Dy; Dz; DTsource define the vector y, the
dimension of which is in correspondence with the number of sources and
parameters Fk determine the vector x, components of which are velocity pertur-
bations that deduce changes in density and porosity of the geophysical medium. A
dimension of the vector x is equal to the number of blocks (cells). Thus, for all
observation data the tomography problem can be written as the solution of the next
system of linear equations:

AxþHy ¼ bþ e ð3Þ

where b is the vector of data of passive-source seismic survey; A is the matrix,
whose elements are calculated via lengths of seismic rays that penetrate from
passive natural sources to a surface, wherein seismometers are located; x is the
vector of values of velocity perturbations at different locations in the subsurface
region; H is the matrix, whose elements are determined via seismic rays that are
distributed from each source; y is the vector of the source location corrections; e is
the vector of errors.

Sources from regional earthquakes can be used as passive sources. Hypocenter
of an earthquake can be very far away from a subsurface region, wherein the
hydrocarbon exploration is performed. A high frequency of a strong earthquake
will be decreased due to attenuation of seismic waves passing through the inho-
mogeneous medium from the source of earthquake to the exploration area and
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seismometers can record this event as the low frequency signal. In this case the
arrival time of the signal should be compared with times of seismic waves arriving
from the earthquake to permanent stations, which are located in the epicentral
region. Thus the information from low frequency signals is the main part of the
data set. If seismicity of the district is high then high frequency signals will form
additional data that could be very essential to improve a resolution.

A complexity of the velocity model x that can be determined due to the
equation of (3) is in a presence of an additional unknown vector y, which corre-
sponds to the source parameters. Computational practice shows that traditional
methods converge very slowly when two parameters (velocity and hypocenter
locations) are involved to the inversion process of large systems of (3). Moreover
the system is ‘‘burdened’’ by zero elements of matrices A and H that lead to
inadequate results. In order to overcome these difficulties the probabilistic
approach has been proposed in [20]. If an error in the source coordinates is in
limits of pre-assumed accuracy then by using this approach it is possible to show
that the problem of (3) can be simplified in the next form:

Ax ¼ bþ ê ð4Þ

where ê is the vector of errors that involve errors in data and errors in a location of
sources.

Let us remark that the system (4) should be also solved when we have deal with
explosions (active sources). Even for such simple system as (4) the next com-
plexity issue appears. In accordance with seismic experiment as a rule we should
solve a strongly over-determined system. From a numerical point of view there is
infinite number of solution that satisfies to the Eq. (4) with different small values
of the calculation error. In accordance with the least-squares we search for min-
imal value. But it often happens that the computational result is not consistent with
the condition of (2.1), under which the linearized formulation is valid.

Frequently the obtained values of the vector x are nonrealistic in order to
characterize the seismic velocity structure. Seismologists try to overcome this
problem by resorting to various tricks. They simply cut the data set by selecting
respectively small values of the vector b. However this way leads to the situation
when two images showing quite different physical properties characterize the same
district, and the contradiction is in that the calculation error is small enough for
these images.

The following complexity is in the uncertain structure of the error of ê. Let us
point that errors in seismic data can be in wide range of different values. The error
of each seismic ray or consequently the value of each component of the vector ê in
the system of (4) depends on accuracy of measurements, choice of the initial model,
linear properties of the seismic model and can not be accurately estimated [12].
From computational point of view we do everything in order to get the correct
solution, for which the unique minimum of the least square functional is reached.
However on the other hand, everything is done in order to reach a consistency of
this ‘‘correct’’ solution with observations having a chaotic behavior of the error.
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It is known that in the applied mathematics Tikhonov’s regularization is used to
get the solution that is stable with respect to the data error. However when we add
the smoothing operator to the least squares norm we suppose that errors are small.
In the case of seismic data errors can not be under a control of a researcher.
Therefore we apply the GME technique [19] and sub-divide the initial data set into
a number of sub-sets, which can be reliably resolved with the point of view of a
uniqueness of the sub-system solution. The selection of a stable value among all
outcomes of sub-systems provides a protection of the final result from the influ-
ence of an uncertain error.

3 Hydrocarbon Model

3.1 Synthetic Example of Reservoir

The hydrocarbon model or ‘‘the thin-bed model’’ has been presented in [14] as the
2-D model that consists of layers: water- and gas- saturated reservoirs, surface
rock, encasing shale, which are above and beneath reservoirs. Combination of
large-size structures is the morphological manifestation of the hydrocarbon res-
ervoir. In Sects. 4 and 5 we will demonstrate that there is a difficulty in the
reconstruction of large-size structures if we apply conventional methods. There-
fore in this work we propose the using of other inversion schemes. A complexity
of the hydrocarbon model is the closeness of the values of seismic velocities for
water- and gas- saturated reservoirs. This can lead to the registration of similar
seismic signals from waves that were passed through these reservoirs and the same
shale. From numerical point of view the vector-rows of the extended matrix A will
linearly dependent. Then the system of (4) becomes underdetermined. This means
that we have no sufficient number of seismic rays in order to resolve this system at
whole. However if we follow the basic idea of GME that is in the division of the
initial system into sub-systems then the chance appears in order to invert the
homogeneous vector-rows in order to reconstruct the part of the model (see below
Sect. 6) and then reconstruct other parts step-by-step.

‘‘The thin-bed model’’ is consistent with the generally accepted scheme of
hydrocarbon deposits (Fig. 1), which was described in many schoolbooks for
example in [21]. Suppose a multiple drilling and explosions (active seismic
sources) are in an using to create seismic waves then it is difficult to define the
segments of seismometer data, which could correspond to the amplitude-frequency
characteristics of P- waves passing through the reservoir. Because of a small
thickness of oil and gas layers, the travel times, which are components of the
vector b in the equation of (4) are almost equal for different types of seismic
waves. Passive seismic is based on a registration of P-waves from regional events.
These waves are created by nature. They pass through the reservoir and their
amplitudes and frequencies can be clearly determined in the seismometer records
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at a surface. As told above the arrival times of waves should be additionally agreed
with the information from permanent seismic stations in the region. Thus passive
seismic provides more wide opportunity for transmission tomography than the
traditional seismic exploration.

Let us guess the initial velocity V0 = 2.53 km/s that corresponds to a visible
layer at a surface. Table 1 illustrates velocities in layers of ‘‘the thin-bed model’’
and respectively velocity perturbations relatively to the initial velocity.

We defined the grid-size 0.112 9 0.067 km (Fig. 2). This size has been
selected based on two conditions. First, physical conditions of propagation of
seismic waves through inhomogeneous blocks must be met. Therefore the block-
size has been obtained by calculating the Fresnel zone radius and assuming that
regional events with low frequency will participate in the given experiment.
Second, blocks should be located in accordance with the geometry of reservoirs.

Figure 3 shows the distribution of seismic velocities in blocks in accordance
with Table 1.

3.2 Seismic Experiment

In this study we will conduct our experiment for seismic rays of P-waves trans-
mitted through the Earth to a surface, wherein they are registered by seismometers.
The distance between seismometers is 112 m (Fig. 4). This separation is optimal
in order to register body waves (P-waves) as well as surface waves (S-waves). In
real research the bringing of information about surface waves can significantly
improve a reliability of our results. S-waves travel along the Earth surface and
their using can well illuminate velocities in homogeneous layers that close to a
surface. This information can be incorporated to the inversion process of the
transmission tomography.

Seismic rays form a rectangular matrix A of dimension 264 9 88, whose ele-
ments are determined by a length of rays in blocks. Synthetic data bsynth were

Fig. 1 A simplified scheme
of hydrocarbons. Gas- (water-
) saturated reservoir is
colored in black (in gray with
dots). Different kinds of shale
are delineated by lines
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calculated taking into account velocity perturbations that were assigned to each
block in accordance with the ‘‘true’’ seismic model (see Table 1, Fig. 3). Thus our
task is to solve the system

Ax ¼ bsynth; ð5Þ

and to compare components of vector x with values of the ‘‘true’’ model.

Table 1 Velocity perturbations of synthetic model

Vp (Vp-V0)/V0

Water-saturated reservoir 3.049 0.21
Gas-saturated reservoir 2.789 0.1
Surface rock 2.53 0.0
Encasing shale that above reservoirs 2.643 0.044
Encasing shale that beneath reservoirs 2.695 0.065

Fig. 2 Water- and gas- saturated reservoirs, surface rock, encasing shale that are above and
beneath reservoirs are colored in black, dark-grey, white, light-gray and gray, respectively
Geometry of colors is in agreement with ‘‘the thin-bed model’’ that is given in [14]. The grid
illustrates the configuration of blocks of the seismic medium

Fig. 3 Water- and gas- saturated reservoirs, surface rock, encasing shale that are above and
beneath reservoirs correspond to blocks, which are colored in black, dark-grey, white, light-gray
and gray, respectively
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4 The Modification of Gaussian Eliminations

The MGE technique has been developed to protect the system from various errors,
which distort seismic images and lead to an ambiguity of tomography results. The
sources of error in data can include inaccurate measurements, incorrect reading
from seismograms, inappropriate choice of the model parameters. From a
numerical point of view the presence of recurrence formulas can create the source
of round-off error, which leads to the lost of adequacy of the solution of systems,
especially if they are large and sparse.

The problem of serious error can be overcome by means of the fragmentation of
the original system into subsystems. The useful idea of division of the initial
matrix is known since the fundamental mathematical work [6], wherein the
solution of large system is determined by means of resolving of the subsystem with
following substitution of the found components instead unknown variables of the
initial system. Other idea to protect the solution from various errors leads us to the
MGE method. Namely, according to MGE we simultaneously determine solutions
of few subsystems, which have common unknowns. Next, solutions are compared
with each other, and a value of the component, which is nearly equal for few
subsystems and has minimal error in the solution, is chosen as final value for the
velocity parameter. Only after such rigorous selection, the obtained value is
substituted into the initial system.

There is also another difference from the scheme that has been described in [6],
where an overdetermined system is solved by means of an inversion of a square
matrix, which has been obtained by multiplying of the initial rectangular matrix
and the transpose matrix. In MGE we also build a square (basic) matrix however
by means of selecting independent rows (columns) that satisfy Rouche-Capelli
theorem. Additionally columns of the square matrix should meet criteria of
probability theory that requires their high correlation with the column of observed
data [17].

In accordance with MGE the system of (5) can be represented as the next
system of subsystems:

Fig. 4 Geometry of experiment. Seismometers are denoted by triangles. The distance between
measurement points is 112 m
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A1x1 ¼ b1

..

.

Aqxq ¼ bq

8
>><

>>:
ð6Þ

The condition giving the final solution is the approximate equality of the
components xk

i and xl
j that are i-th and j-th components of the solution for k-th and

l-th subsystems. Because of a sparseness of the system (5) and an uncertain error
of the location of regional earthquakes it is reasonable to apply MGE for the
hydrocarbon model reconstruction.

Preliminary testing of MGE for the arbitrary model showed that it is effective in
retrieving of large-size structure. Below we illustrate two results, which were
obtained by application of two different algorithms under the same conditions of
inversion experiment. The first is LSQR algorithm [11] that is based on the
Lanczos process and it is similar to the conjugate gradients method. Let us note
that the LSQR using with a small number of iterations is equivalent to using the
Singular Value Decomposition (SVD) technique. Figure 5 (from the left) dem-
onstrates the initial testing model representing a single large-size anomaly that
surrounded by an uniform zone. An anomaly and a zone are characterized by
opposite signs and by the same absolute value of the velocity perturbation. For
example, if the velocity perturbation of anomalous block is equal to +3 % then its
value in a zone is equal to -3 % (or vice versa). The geometry of the experiment
is the same as in [9]. Figure 5 (from the right) shows the result of the SVD
inversion of synthetic data that correspond to this model. One can see that the
inverted model does not coincide with the initial one.

The same experiment has been repeated for MGE. Figure 6 illustrates that it is
possible to reconstruct this model. Concrete example with numerical description of
this model and computational results of both methods can be found in Appendix B
of the work [20].

Fig. 5 An illustration of the SVD testing. The initial model (from the left) presents the large-size
structure, which is a single anomaly (colored in light gray) surrounded by uniform zone (colored
in gray). Black circles (triangles) denote sources (receivers). The model consists of 4 blocks. The
inverted model derived by SVD (from the right) does not coincide with the initial one
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Analyzing of the hydrocarbon model (Figs. 2 and 3) shows that the complex
structure of the reservoir mainly consists of the combination of large-size anom-
alies. Therefore we encourage the MGE application. Owing to MGE we divide our
original data into 22 sub-systems, each of which is formed by rays coming to the
same receiver from the cluster of events. Farther solutions of all sub-systems
should be compared to get stable value to unknown component. Each sub-system
is weakly-sparse and does not meet Rouche-Capelli theorem. Therefore we applied
the Moore-Penrose pseudo inversion method [10, 13] that is based on SVD.
However all inverted models were inadequate comparing with the ‘‘true’’ model.

5 The CSSA Relaxation Scheme

In order to resolve this complicated case we investigated a synthetic field from
point of view of a complexity. We have analyzed statistical characteristics of the
data vector representing the response of the model for each subsystem. Obviously
properties of a medium define this response. We selected few homogeneous
vectors, components of which are near equal. This means that travel times of
seismic waves through a medium are near equal too. Hence we can guess that the
medium has a homogeneous structure. In order to check this assumption one
should estimate resolution parameters of the CSSA method that is known as
effective technique to reconstruct the structures having separated anomalies [18].

Mathematically, CSSA corresponds to relaxation scheme of the method of
steepest descent. We search a minimum of the functional in the sense of least
squares:

FðxÞ ¼ Ax� bk k2¼
XM

m¼1

ð
XK

k¼1

amkxk � bmÞ2 ! min
x

; ð7Þ

Fig. 6 An illustration of the MGE testing. The initial model (from the left) and the configuration
of blocks are the same as has been presented in Fig. 5. Black circles (triangles) denote 4 sources
(receivers). The model consists of 4 blocks. The inverted model derived by MGE (from the right)
coincides with the initial one
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where M is the total number of seismic rays, K is the total number of blocks (cells)
of the medium.

The solution is defined in the form of:

xðiÞ ¼ xði�1Þ þ kknk; ð8Þ

where i is the iteration number, kk indicates the value of the velocity parameter in
the k-th block, nk is the unit vector, k-th component of which is equal to 1.
The solution is searched by applying the next simple condition;

F0ðxÞ ¼ 0 ð9Þ

Further k�k is determined to meet the condition of (9):

k�k ¼ argmin
kk

FkðxðiÞÞ ð10Þ

Finally we have:

k�k ¼ �
ðAxði�1Þ � b;AnkÞ
ðAnk;AnkÞ

ð11Þ

The convergence of CSSA has been proved and the degree of convergence has
been estimated showing that seismic rays that are uniformly distributed in blocks
provide the convergence to the accurate solution in the least square sense [18]. It
has been also shown on numerical examples that CSSA easily retrieves a single
large-size anomaly that is surrounded by the uniform zone having zero values of
velocity perturbation, while this structure can not be reconstructed by means of the
SVD algorithm. Figures 7 and 8 illustrate the results of application of two methods
under the same conditions of fair match.

Fig. 7 An illustration of the SVD testing. The initial model (from the left) presents the large-size
structure, which is a single anomaly (colored in white) that surrounded by the zone with zero
values of velocity perturbation (colored in gray). Black circles (triangles) denote 4 sources
(receivers). The model consists of 16 blocks. The inverted model (from the right) derived by SVD
does not coincide with the initial one
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Let us return to the synthetic field of the hydrocarbon model. As said above we
can make an assumption that homogenous data vector we have obtained for sub-
systems can be a response to a homogeneous structure. By using the formulas (8)
and (11)the CSSA solution for the simple case of a homogeneous structure can be
estimated as the next:

xk ¼
ðak; b

ðkÞÞ
ðak; akÞ

ð12Þ

where (,) denotes a scalar product; ak is k-th vector-column of sub-matrix Â;
vector bðkÞ is equal to component multiplication of vectors b and aðkÞ. Here b be a

part of vector bsynth, and aðkÞ is equal to ak=
PM

m¼1

amk, where amk be a row element,

M be the number of elements in kth row-vector.
The CSSA resolution parameters can be determined using the next formula:

rk ¼
ðak; b

ðkÞÞ2

ðak; akÞðbðkÞ; bðkÞÞ
ð13Þ

The parameters rk estimate the proximity of the CSSA solution to the accurate
solution in the least squares sense.

6 Comparison of SVD and CSSA Numerical Outcomes

We will apply CSSA in order to retrieve the homogeneous part of the medium that
is beneath the reservoir. Let us consider an example of the sub-system having
homogeneous vector b. Below we also will compare the inversion results of two

methods SVD and CSSA Let Â be the 12� 12 matrix:

Fig. 8 An illustration of the CSSA testing. The initial model (from the left) and the configuration
of blocks are the same as in Fig. 7. Black circles (triangles) denote 4 sources (receivers). The
inverted model (from the right) derived by CSSA coincides with the initial one
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Â ¼

0:042 0:042 0:0 0:0418 0:0 0:0418 0:0 0:0418 0:0 0:0418 0:0418 0:0418

0:0415 0:0415 0:0 0:0415 0:0 0:0415 0:0 0:0415 0:0 0:0415 0:0415 0:0415

0:0411 0:0411 0:0 0:0411 0:0 0:0411 0:0 0:0411 0:0 0:0411 0:0411 0:0411

0:0408 0:0408 0:0 0:0408 0:0 0:0051 0:0 0:0357 0:0408 0:0408 0:0408 0:0408

0:0404 0:0404 0:0 0:0404 0:0 0:0202 0:0 0:0202 0:0404 0:0404 0:0404 0:0404

0:0401 0:0401 0:0 0:0401 0:0 0:0301 0:0 0:0100 0:0401 0:0401 0:0401 0:0401

0:0397 0:0397 0:0 0:0397 0:0 0:0397 0:0 0:0 0:0397 0:0397 0:0397 0:0397

0:0394 0:0394 0:0 0:0394 0:0 0:0394 0:0197 0:0 0:0197 0:0394 0:0394 0:0394

0:0391 0:0391 0:0 0:0391 0:0 0:0 0:0391 0:0 0:0391 0:0391 0:0391 0:0391

0:0387 0:0387 0:0387 0:0 0:0387 0:0 0:0387 0:0 0:0097 0:0291 0:0387 0:0387

0:0384 0:0 0:0384 0:0 0:0384 0:0 0:0384 0:0 0:0384 0:0384 0:0384 0:0384

0:0381 0:0 0:0381 0:0 0:0381 0:0 0:0381 0:0 0:0381 0:0381 0:0381 0:0381

�����������������������������

�����������������������������

while b be the known 12� 1column:

b ¼

�0:0217
�0:0216
�0:0214
�0:0212
�0:0210
�0:0209
�0:0206
�0:0205
�0:0203
�0:0201
�0:0200
�0:0198

������������������������

������������������������

First, we have estimated the resolution parameters for both methods. The CSSA
parameters can be obtained using formula (13). In accordance with [2] the SVD
resolution matrix R is equal to:

R ¼ ðATAÞ�1ATA; ð14Þ

where AT is the transpose of the matrix A.
It has been shown in [22] that the diagonal elements of R characterize an accuracy

of the SVD solution. By analyzing of them and components of the CSSA parameter
one can see that the CSSA indicators are more close to the unit values. Thus the
resolution gets poorer for SVD (see Table 2) and a researcher should select CSSA in
order to reconstruct sub-systems having a homogeneous vector b. Next, we inverted
synthetic data by using of formula (12) and by the standard MATLAB program. As
we expected, the SVD inverted model was inadequate compared with the ‘‘true’’
model, while the CSSA inverted model was preferable (see Table 3).

Figure 9 illustrates a behavior of the error, which is absolute difference between
the ‘‘true’’ solution and the solution, which has been obtained for each component
of vector x in the case of SVD and CSSA in accordance with Table 3.
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7 Results of the Hydrocarbon Model Reconstruction

After eliminating of all CSSA stable components from equations of the system of
(5) the initial system size is reduced and we should solve a new form of subsys-
tems. Newly born subsystems are over determined. In accordance with the MGE
criteria we build basic systems, which are consistent and can be easily inverted by
any application that is conventionally used.

We have obtained the next outcomes. Anomalies of the gas reservoir are
accurately determined in three blocks that are close to a surface and in the
neighborhood with encasing shale beneath the reservoir. Their values are equal to
0.1 Anomalies in two blocks that are located between encasing shale that beneath
and above the reservoir have been determined with permissible error. Their values
are equal to 0.07.

The block, which is bordered with water, has been retrieved with unacceptable
error of reconstruction. Its value is equal to 0.03. Strictly speaking the boundary
‘‘gas-water’’ is fundamental problem in the oil and gas research. The problem can
be overcome in future if we will combine efforts of few disciplines, which will
include seismic tools together with other geophysical and geochemical information.

8 Discussion and Conclusion

In the present work, we have considered the complex 2-D reservoir model (synthetic
example) and have selected the medium parameters that correspond to seismic data
from regional events. We have assumed that the number of earthquakes is not big.
Thus the tomography experiment has been conducted in the limited conditions, when
seismic rays are sparsely distributed and their number is small. Our result is the
following. Mathematical methods we have used are able to reliably reconstruct the
main part of the initial model, which contains the gas reservoir.

Fig. 9 Errors of each
component of the SVD
(CSSA) solution are
approximated by a curve. The
zero line corresponds to
errors of the ‘‘true’’ model
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The computational tactic is based on the interaction of two techniques MGE
and CSSA. Let us note that seismic velocity can not be properly retrieved if any of
these methods is separately applied to the whole data set. Our practice showed that
it is impossible to reconstruct the model if the algorithm uses only the MGE
technique in spite of the requirement of high resolution of the MGE subsets.
Moreover we demonstrated that there is a failure in reconstruction of the large-size
structure if we apply traditional inversion methods.

New tactic makes an emphasis on statistical analysis of observation data. We
solve the system of linear equations first of all by means of a review of different
parts of the vector of constant terms that are seismic observations. In the given
work it has been shown that by using statistical characteristic of observations one
can to make an assumption about geological property of a medium or in other
words about the morphology. This thesis is based on the example of hydrocarbon
model. Namely we detected homogeneous data vector. Geophysical sense of these
data can be in that seismic waves traveled through the same structure. To check
this assumption we applied the CSSA technique that is effective to resolve a large-
size structure. By comparing a few inversion results having a high resolution in
various directions we found the shale.

Thus we conclude that computational models should not be formally con-
structed by means of just inverting the initial data sets. The inversion process
requires understanding of the physics of a propagation of seismic waves through
different kinds of geological structure, interpretation of this process on a language
of statistics and only then the choice of calculation tools.

It has been shown that the proposed tactic permitted to retrieve seismic
velocities in blocks that form the part of the gas reservoir, which is before the
boundary ‘‘gas water’’. Velocities are also determined in encasing shale that are
beneath and above of this part of a reservoir. Thus this study confirms that the
transmission tomography can be among methods for hydrocarbon exploration in
the subsurface layer.

Acknowledgments We thank the organizers of the Symposium. Since the last ICNAAM con-
ference we had a fruitful discussion of subject of complexity. This helped in developing of the
computational tactic that is presented in this study. Our thanks go to Reviewers for providing of
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Controlling Complexity

Ivan Zelinka, Petr Saloun, Roman Senkerik and Michal Pavelch

Abstract Complex systems and dynamics are present in many parts of daily life
and branches of science. This chapter is continuation of our previous research, that
introduced a novelty method of visualization and possible control of complex
networks, that are used to visualize dynamics of evolutionary algorithms. Selected
evolutionary algorithms are used as an example in order to show how its behavior
can be understood as complex network and controlled via conversion into CML
system—a model based on mutually joined nonlinear n equations. The main aim of
this investigation was to show that dynamics of evolutionary algorithms can be
converted via complex network to CML system and then controlled. Selected
results of conversion of evolutionary dynamics into complex network and
consequently to CML as well as controlled CML system are discussed here.

1 Introduction

In this article, we try to merge, at first glance, two completely different areas of
research: complex systems with attention to complex networks and evolutionary
algorithm dynamics. Complexity can be classified from different point of views
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like dynamics, structure, memory and information processing etc. Complex sys-
tems create rich set of subclasses, that have mutual relations as shown at Fig. 1.

One of many possible definition of a complex system is like: A complex system
is a system composed of interconnected parts that as a whole exhibit one or more
properties (behavior among the possible properties) not obvious from the prop-
erties of the individual parts. This characteristic of every system is called
emergence.

or
A systems complexity may be of one of two forms: disorganized complexity and

organized complexity. In essence, disorganized complexity is a matter of a very large
number of parts, and organized complexity is a matter of the subject system (quite
possibly with only a limited number of parts) exhibiting emergent properties.

A complex system is in fact any system featuring a large number of interacting
components, whose aggregate activity is non-linear (existence of linear complex
systems is also possible) and typically exhibits self-organization under selective
pressures. The term complex systems has multiple meaning as mentioned here:

• A field of science studying these systems, see further complex systems.
• A specific kind of systems, that are complex from different point of view.
• A paradigm, that complex systems have to be studied with non-linear dynamics.
• � � �
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Today a lot of various informal descriptions of complex systems have been put
forward, and these may give some insight into their, very often interesting,
properties. As mentioned in the special edition of Science journal (Vol. 284. No.
5411, 1999) about complex systems highlighted several of these:

• A complex system is a highly structured system, which shows structure with
variations.

• A complex system is one whose evolution is very sensitive to initial conditions
or to small perturbations, one in which the number of independent interacting
components is large, or one in which there are multiple pathways by which the
system can evolve. This is very typical for deterministic chaos system.

• A complex system is one that by design or function or both is difficult to
understand and verify.

• A complex system is one in which there are multiple interactions between many
different components complex systems are systems in process that constantly
evolve and unfold over time.

• � � �

Examples of complex systems include natural as well as artificial: ant colonies,
human economies, social structures, climate, nervous systems, cells and living
things, including human beings, modern energy or telecommunication infra-
structures and much more. Many systems of research and technology interest to
humans are complex systems. Complex systems are studied by many areas of
natural science, mathematics, physics, biology and social science. Fields that
specialize in the interdisciplinary study of complex systems include systems the-
ory, complexity theory, systems ecology and mainly cybernetics.

Complex system used in this investigation are complex networks, that are used
to model interaction between n independent vertices (agents, neurons, cells,. . .)
and are the main part of this investigation. Typical example are social networks
with people in vertices position. In this chapter we are substituting people from
social networks by individuals from evolutionary algorithms population and social
interaction by offspring creation in the evolution. By this simple idea we get
evolutionary complex network.

Large-scale networks, exhibiting complex patterns of interaction amongst
vertices exist in both nature and in man-made systems (i.e., communication net-
works, genetic pathways, ecological or economical networks, social networks,
networks of various scientific collaboration, Internet, World Wide Web, power
grid etc.). The structure of complex networks thus can be observed in many
systems. The word complex networks [1, 2] comes from the fact that they exhibit
substantial and non-trivial topological features, with patterns of connection
between vertices that are neither purely regular nor purely random. Such features
include a heavy tail in the degree distribution, a high clustering coefficient, hier-
archical structure, amongst other features. In the case of directed networks, these
features also include reciprocity, triad significance profile and other features.
Amongst many studies, two well-known and much studied classes of complex
networks are the scale-free networks and small-world networks (see examples in
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Figs. 2 and 3), whose discovery and definition are vitally important in the scope of
this research. Specific structural features can be observed in both classes i.e. so
called power-law degree distributions for the scale-free networks and short path
lengths with high clustering for the small-world networks. Research in the field of
complex networks has joined together researchers from many areas, which were
outside of this interdisciplinary research in the past like mathematics, physics,
biology, chemistry computer science, epidemiology, etc... Evolutionary compu-
tation is a sub-discipline of computer science belonging to the bio-inspired com-
puting area. Since the end of the second world war, the main ideas of evolutionary
computation has been published [3] and widely introduced to the scientific com-
munity [4]. Hence, the golden era of evolutionary techniques began, when Genetic
Algorithms (GA) by Holland [4], Evolutionary Strategies (ES), by Schwefel [5]
and Rechenberg [6] and Evolutionary Programming (EP) by Fogel [7] had been
introduced. All these designs were favored by the forthcoming of more powerful
and more easily programmable computers, so that for the first time interesting
problems could be tackled and evolutionary computation started to compete with
and became a serious alternative to other optimization methods. The main idea of
our research is to show in this article that the dynamics of evolutionary algorithms,
in general, shows properties of complex networks and evolutionary dynamics can
be analyzed and visualized like a complex networks. This article is focused on
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observation and description of complex networks phenomenon in evolutionary
dynamics. Possibilities of its use are discussed at the end.

Motivation of this research is quite simple. Evolutionary algorithms are capable
of hard problem solving. Its performance depend on algorithm parameter setting
that is usually given by heuristic observation. A number of examples on evolu-
tionary algorithms can be easily found like differential evolution, SOMA, simu-
lated annealing, genetic algorithms, etc. Evolutionary algorithms (EA)are used to
solve different tasks like for example with chaotic systems that is done for example
in [8] where EAs has been used on local optimization of chaos, [9] for chaos
control with use of the multi-objective cost function or in [10, 11], where evo-
lutionary algorithms have been studied on chaotic landscapes. Slightly different
approach with evolutionary algorithms is presented in [12] where selected algo-
rithms were used to synthesize artificial chaotic systems. In [13, 14] EAs has been
successfully used for real-time chaos control and in [15] EAs was used for opti-
mization of chaos control. Other examples of evolutionary algorithms application
can be found in [16], which developed statistically robust evolutionary algorithms,
alongside research conducted by [17]. Parameters of permanent magnet synchro-
nous motors has been optimized by PSO and experimentally validated on the
servomotor. Another research was focused on swarm intelligence, which has been
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used for IIR filter synthesis, co-evolutionary particle swarm optimization (CoPSO)
approach for the design of constrained engineering problems, particularly for
pressure vessel, compression spring and welded beam, etc. On the other side,
complex networks, widely studied across many branches of science are promising
and is a modern interdisciplinary research. Evolutionary algorithms, based on its
canonical central dogma (following darwinian ideas) clearly demonstrate intensive
interaction amongst individual in the population, which is, in general, one of the
important attributes of complex networks (intensive interaction amongst the ver-
tices). The main motivation (as well as a question) is whether it is possible to
visualize and simulate underlying dynamics of evolutionary process like complex
network. This investigation contain three mutually joined parts, namely intro-
ducing a novel approach joining evolutionary dynamics, complex networks and
CML systems exhibiting chaotic behavior. The first part will discuss a novel
method on how dynamics of evolutionary algorithms can be visualized in the form
of complex networks. An analogy between individuals in the populations in an
arbitrary evolutionary algorithm and the vertices in a complex network will be
discussed as well as the relationship between the communications of individuals in
a population and the edges in a complex network. The second part will discuss the
possibility of how to visualize the dynamics of a complex network by means of
coupled map lattices and to control by means of chaos control techniques. The last
part will discuss some possibilities on CML systems control, especially by means
of evolutionary algorithms. The spirit of this chapter is to create a closed loop in
the following schematic: evolutionary dynamics ! complex network ! CML
system! control CML! control evolutionary dynamics. Reason for this is such
that today various techniques for analysis and control of complex networks exists
and if complex network structure would be hidden behind EA dynamics, then we
believe, that for example above mentioned control techniques could be used to
improve dynamics of EAs. All experiments here were designed to analyze and
either confirm or reject this idea.

2 Experiment Design

2.1 Selected Algorithms

For the experiments described here, stochastic optimization algorithms, such as
DE [18] and Self Organizing Migrating Algorithm (SOMA) [19], have been used.
Application of alternative algorithms like GA and Simulated Annealing (SA), ES
and/or Swarm Intelligence in general are possible to use too. All experiments have
been done on a special server consisting of 16 Apple XServer (2 � 2 GHz Intel
Xeon, 1 GB RAM), each with 4 CPU, so in total 64 CPUs were available for
calculations. It is important to note here, that such technology was used to save
time due to a large number of calculations, however it must be stated that
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evolutionary identification described here, is also solvable on a single PC (with
longer execution time). For all calculations and data processing, Mathematica
version 7.0.1.0 was used. Four versions of SOMA and two versions of DE have
been applied for all simulations in this chapter. See details in [20]. Parameters for
the optimizing algorithm were set up in such a way as to reach similar value of
maximal cost function evaluations for all used versions. Each version of EAs has
been applied 50 times in order to get less or more valuable statistical data. Dif-
ferential Evolution [18] is a population-based optimization method that works on
real-number-coded individuals. For each individual xi;G in the current generation
G, DE generates a new trial individual x0i;G by adding the weighted difference
between two randomly selected individuals xr1;G and xr2;G to a randomly selected
third individual xr3;G. The resulting individual x0i;G is crossed-over with the original
individual xi;G. The fitness of the resulting individual, referred to as a perturbed
vector ui;Gþ1, is then compared with the fitness of xi;G. If the fitness of ui;Gþ1 is
greater than the fitness of xi;G, then xi;G is replaced with ui;Gþ1; otherwise, xi;G

remains in the population as xi;Gþ1. DE is quite robust, fast, and effective, with a
global optimization ability. It does not require the objective function be differ-
entiable, and it works well even with noisy, epistatic and time-dependent objective
functions. For more about DE see in [18].

SOMA is a stochastic optimization algorithm, modeled based on the social
behavior of competitive-cooperating individuals [19]. It was chosen because it has
been proved that this algorithm has the ability to converge towards the global
optimum [19]. SOMA works on a population of candidate solutions in loops,
called migration loops. The population is initialized by being randomly and uni-
formly distributed over the search space at the beginning of the search. In each
loop, the population is evaluated and the solution with the lowest cost value
becomes the leader. Apart from the leader, in one migration loop, all individuals
will traverse the searched space in the direction of the leader. Mutation, the ran-
dom perturbation of individuals, is an important operation for evolutionary strat-
egies. It ensures the diversity among all the individuals and it also provides a
means to restore lost information in a population. Mutation is different in SOMA
as compared with other evolutionary strategies. SOMA uses a parameter called
PRT to achieve perturbations. This parameter has the same effect for SOMA as
mutation for GA. The novelty of this approach lies in that the PRT vector is
created before an individual starts its journey over the search space. The PRT
vector defines the final movement of an active individual in the search space. The
randomly generated binary perturbation vector controls the permissible dimen-
sions for an individual. If an element of the perturbation vector is set to zero, then
the individual is not allowed to change its position in the corresponding dimension.
An individual will travel over a certain distance (called the PathLength) towards
the leader in a finite number of steps in the defined length. If the PathLength is
chosen to be greater than one, then the individual will overshoot the leader. This
path is perturbed randomly. More about SOMA, see in [19].
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2.2 Selected Test Functions and Its Dimensionality

The test functions applied in this experimentation were selected from the test bed of
17 test functions. In total 16 test function were selected as a representative subset of
functions which shows geometrical simplicity and low complexity as well as
functions from the opposite side of spectra. Selected functions (see Figs. 4, 5, 6, 7)
were: 1st DeJong, Schwefels function, Rastrigins function, Ackleys function
amongst the others. Each of them has been used for identification of complex
networks dynamics and structure in 5, 10, 20 and 50 dimensions (individual length
was 5, 10, 20 and 50). Test functions has been selected due to their various
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Fig. 4 Selected test
functions: 1st DeJong

Fig. 5 Selected test
functions: Schwefels function
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complexity and mainly for the fact that this functions are widely used by researchers
working with evolutionary algorithms. Another reason was, that speed of conver-
gence and thus evolutionary dynamics itself, is different for simple functions like 1st
DeJong or more complex example Rastrigins function.

Fig. 6 Selected test
functions: Rastrigins function

Fig. 7 Selected test
functions: Ackleys function
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3 Data for Complex Network Visualization

The most critical point of this research and related simulations was as to which
data and relations should be selected and consequently visualized. Based on
investigated algorithms, we believe that there is no universal approach, but rather a
personal one, based on the knowledge of algorithm principle. Of course, some
conclusions (see Sect. 7 and [21]) can be generalized over a class or family of
algorithms. As mentioned in the previous sections, algorithms like DE and SOMA
were used. Each class of algorithm is based on a different principle. The main idea
was such that each individual is represented by vertex and edges between vertices
should reflect dynamics in population, i.e. interactions between individuals (which
individual has been used for offspring creation). The SOMA algorithm, as
described in [19], consists of a Leader attracting the entire population in each
migration loop (equivalent of generation), so in that class of swarm like algorithm,
it is clear that the position in the population of activated Leaders shall be recorded
like vertex (getting new inputs from remaining vertices—individuals) and used
(with remaining part of population) for visualization and statistical data process-
ing. The other case is DE, e.g. DERand1Bin in which each individual is selected in
each generation to be a parent. Thus in DE, we have recorded only those indi-
viduals-parents, that has been replaced by better offspring (like vertex with added
connections). In the DE class of algorithms we have omitted the philosophy that a
bad parent is replaced by a better offspring, but accepted philosophical interpre-
tation, that individual (worse parent) is moving to the better position (better off-
spring). Thus no vertex (individual) has to be either destroyed or replaced in the
philosophical point of view. If, for example, DERand1Bin has a parent been
replaced by offspring, then it was considered as an activation (new additional links,
edges) of vertex-worse parent from three another vertices (randomly selected
individuals, see [18]).

3.1 Basic Visualization Methods

Experimental data can be visualized in a few different ways and as an example, a
few typical visualizations is depicted here. As mentioned in [21]: vertices in
complex graph are individuals that are activated by other individuals, incre-
mentally from generation to generation. Used visualization is depicted in Fig. 8,
in which one can see which individual (out of 100) has been activated for offspring
creation (in this case selected like Leader in SOMA). Figure 8 are sort of auxiliary
visualizations, which does not give total view on complex network structure behind
evolutionary dynamics. Better visualization that can be used is as in Fig. 9 which
shows, that interactions between individuals create (at the first glance) structures,
which looks like complex networks. However, it has to be said, that we have met
results whose visualizations looks like net and resemble complex networks but
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after closer complex network characteristics calculations, those networks did not
belong to the class of complex networks with small world phenomenon. Meaning of
vertices in the above mentioned figures is given by ratio of incoming and outgoing
edges and implies that: small vertex (small gray (pink) with dashed edges) has less
incoming edges than outgoing. White (middle-sized) vertex is balanced (i.e. has the
same incoming number of edges as outgoing) and dark gray (green), the biggest,
are vertices with more incoming edges than outgoing. The light gray (yellow)
vertex is the most activated individual vertex with the maximum of incoming edges.
In EA jargon, small vertex is an individual, which has been used more times for
offspring creation rather than as a successful parent and pink vertices reflects the
opposite.

In the basic visualization above is proposed that vertices of network are indi-
viduals and number of edges between them only increase by integer number. It is
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also possible to set decrement of edges according to various criteria. For example
when parents—individuals does not create better offsprings, then number of edges
between them decrease. Each evolutionary algorithm is running under different
philosophy—algorithm, so there is no universal recipe how to convert dynamics of
studied EA to complex network and has to be developed for each specific algo-
rithm. For example SOMA, see [19], is in each migration loop winner only one
individual, so called Leader and other individuals establish connection with this
individual. On the other side, DE create for selected parent individual, by means of
randomly selected another three individuals (DERand1Bin) new offspring which is
understood here like movement of selected parent individual to the new position. If
fitness is better, then this selected parent individual get new connections from
those randomly selected another three individuals. Decreasing of existing edges is
done in similar inverse way. Complex networks, generated from EAs dynamics,
can be done in following scenarios:

• Strategy 1 (increasing mode): number of established edges increase only for
individuals whose fitness was improved.

• Strategy 2 (real mode): number of edges between vertices is decreasing
according to various scenarios:

– Strategy 2a: if edge between individual A and B exist, then is decreased by 1, if
not exist, then decrease is not done, i.e. minimal value that can be reached is 0.

– Strategy 2b: if edge between individual A and B exist, then is decreased by 1
even if not exist, i.e. minimal value that can be negative.

• Strategy 3: number of edges between vertices is increasing and decreasing
according to various scenarios that can involve fitness and another attributes of
EA dynamics.

For more details about results and vizualizations, please see [21].

3.2 Preliminary Results

As reported above, both algorithms, in 10 versions, has been tested on various test
function (to reveal its complex networks dynamics) with constant level of test
function dimensionality (i.e. individual length) and different number of genera-
tions (migrations) in all used algorithms. All data has been processed graphically
(see [21], etc.) alongside calculations of basic statistical properties. Emergence of
complex network structure behind evolutionary dynamics depend on many factors,
however some special versions of used algorithms did not show complex network
structure despite the fact that the number of generations was quite large. Some
pictures like Figs. 10, 11, 12, 13 and 14 has been generated in order to visualize all
important data and relations, see also [21]. All main ideas coming from the results
are discussed further. Another part of our experiments has been focused on parallel
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evolutionary algorithms and its conversion and visualization as a complex net-
works. Preliminary results and main idea is reported in the next section.

4 Evolutionary Dynamics, Complex Networks and Parallel
Architecture

Simulations presented in this chapter were carried out by a computing platform
called MRDEAF. MRDEAF is a software framework running on top of a Hadoop
server and incorporates MapReduce programming model in order to distribute
compute load across heterogeneous computing cluster. During the development of
software for evolution of artificial neural networks we have run into problems
regarding computational cost of the software. Evolution of sufficient solution
simply took too much time, even after its division into multiple threads on multi
core and multi processor computers. In order to achieve acceptable run times, a
decision was made to develop version of the software which could exploit dis-
tributed computing environment. Instead of single purpose program a flexible
framework was developed which allows adaptation of wide variety of evolutionary
algorithms. For the ease of development as well as for the previous experiences we
chose MapReduce programming model, together with its implementation called
Hadoop.
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4.1 MapReduce and Hadoop

MapReduce [22] is a programming model developed by Google. Its original
purpose was the simplification of development of distributed applications for large
scale data processing [22, 23]. The main idea behind MapReduce is inspired by
map and reduce functions in functional languages like LISP. The simplest pro-
grams require developers to define just two functions (or classes, depending on
implementation), which serve as map and reduce parts of resultant program. For
data storing and sharing, MapReduce is built with close relations to distributed file
systems [24, 25], optimized for large amount of data and shared access. Important
thing about data structure is that it needs to be in form of [key, value] pairs, the
purpose of keys is explained later. In order to run MapReduce programs the
framework servers have to be installed on a number of computers, which are
usually of two types: distributed file system servers and actual computation nodes.
One server is designated master node, which controls task assignments, monitors
active nodes and cooperates all tasks and framework functions. Programs are
usually copied to master, which copies them onto slave nodes. Program execution
is as follows (also displayed in Fig. 15):

• Program and data to be processed are uploaded to servers.
• Data is divided into M blocks, size of blocks is user controllable. Master must

gradually assign these blocks to map nodes.
• Map nodes process blocks and generate intermediate results, also in [key, value]

pairs, which are written to local disks or alternatively to distributed file system.
Generally only one result is generated for each key. Location of intermediate
results is sent to master node.

• Master sorts locations of results according to keys, then sends locations of
intermediate results to reduce nodes, so that results with the same key are sent to
one reduce node.

• Reduce functions use iterators to remotely read data and process them. Results
of produce functions are appended to resultant output file. It is usual for map
functions to generate high number of outputs for one key and reduce function
generates only one result for each key.

• After all reduce functions are completed program ends.

The simplest example of MapReduce is the word count problem. Problem is
defined as follows: count the number of occurrences of words in large number of
files. Map functions loads a number of files and generates data pairs, where key is
string representation of a word and value is number of its occurrences in an
assigned files. Reduce function groups values by words and writes them into
output file. MapReduce was developed with emphasis on its usage on commonly
available hardware, meaning that hardware and connection errors are likely to
occur. To address this shortcomings MapReduce includes mechanisms which deal
with failures. The simplest method is the check and restart master periodically
checks slave nodes and if a node does not respond it is added to a black list, so no
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new task are assigned to this node and failed task is reassigned (and restarted) to
another node. Status of blacklisted nodes is reevaluated after a period of time.
Several implementations of MapReduce exist, possibly the most popular and
widely used open implementation is the Hadoop [26] together with Hadoop dis-
tributed file system implementation (HDFS) [25].

4.2 MapReduce and Evolutionary Algorithms

There have been several attempts at using MapReduce model together with evo-
lutionary algorithms (EA). EAs are incremental algorithms working in rounds,
where output of each round is an input for next round. In contrary, MapReduce is
designed to run only once and produce final outputs immediately, this means that
basic premises behind either MapReduce model of EAs have to be modified.
Probably the first reported usage of MapReduce for improving the execution speed
of EAs was made by Jin et al. [27]. They used custom MapReduce implementa-
tion, called MRPGA, based on .NET platform, which included additional reduce
phase to increase effectiveness of genetic algorithm (GA). Map function was used
for fitness function evaluations, where each map function was called for one
individual from population. 1st reduce phase chose local optimum individuals and
2nd reduce selected global optimum individual which is emitted as final result.
Mutation and crossover are implemented sequentially on master node. Above

Fig. 15 Overview of MapReduce execution flow [22]
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operations are continuously repeated with previous population as an input until
stopping criteria are met. In response to the previous work, Verma et al. presented
another approach [28]. Instead of developing their own MapReduce implemen-
tation they utilized Hadoop. They identified that Hadoop needs large amounts of
time to initialize each map and reduce function, so in order to minimize these
overheads, each map function processes more that one individual. Each map
function gets data pairs of several individuals, where key represents genome and
value represents fitness of individual. Each individual is then evaluated and
emitted from map function and also each map function selects and emits the best
individuals. To counter partitioning of population into smaller parts, which could
lower search space and cause premature convergence, individuals are assigned to
reducers randomly. Reduce functions randomly chose a number of individuals and
performs crossover and emits new individuals as outputWhole process is repeated
until stopping criteria are met. Another work, which uses combination of GA and
Hadoop, with approach similar to Verma et al. is [29]. GA was not the only EA
which was implemented via the MapReduce model, other EAs include differential
evolution [30], self-organizing migration algorithm [31] and particle swarm
optimization [32].

4.3 MapReduce Distributed Evolutionary Algorithms
Framework

All previous uses of MapReduce with EAs required a MapReduce process to be
restarted at least once for each generation. Previous works also indicated that
framework overhead significantly decreased performance gain from adding new
nodes into the cluster [28, 31]. In order to decrease communication and initiali-
zation overhead it was necessary to change the method of distributing the work-
load across the computing nodes. MRDEAF is an acronym for MapReduce
Distributed Evolutionary Algorithms Framework and is developed on top of
Hadoop. Its main goal is to provide researchers and developers with an easy
solution for development of distributed optimization programs independent on EA
used. MRDEAF uses the coarse and fine grained model of parallel EAs (in some
source also island models). The whole population is divided into relatively isolated
subpopulations, which evolve on their own, and uses migration operator which is
used for moving individuals between subpopulations. Migrations are useful for
increasing diversity of subpopulations, thus allowing them to explore wider search
areas and increasing their chances of finding better solutions. Distinction between
coarse and fine grained algorithms is in ratio of subpopulation count versus sub-
population size. Smaller count of bigger subpopulations (coarse grained) is best
suitable for distributed architectures as it minimizes communication overheads,
while reverse solution is intended for massively parallel computers. Island models
introduce 5 additional parameters into EAs:
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• Topology determines to which subpopulations will individuals migrate. High
number of target islands may cause domination of one solution across popula-
tion and premature convergence (Fig. 16).

• Number of migrating individuals.
• Migration rate is migration occurs too often, algorithm is degraded to global

parallelization.
• Method for selection of individuals for migration if only best individuals

migrate, they may draw population into local optimum and population will lose
diversity.

• Method for replacement of individuals in target population.

Problem with using Hadoop is that for each map or reduce function call new java
virtual machine (JVM) is started, this event considerably increases framework
overhead. To minimize this overhead it was important to use as little map functions
as possible. Each map function in MRDEAF is responsible for evolution of one
subpopulation for a given number of generations. This way we are able to lower the
number of JVM restarts. Implementation of migration between subpopulations
relies on HDFS. The execution of MRDEAF programs can be divided into two
separate logical loops: outer loop, or migration round and inner loop or generation.
Inner loops are computed on each compute node independently and they represent
evolution of a subpopulation. Outer loop represents one MapReduce cycle and
encapsulates the evolution of subpopulations, selection of migrating individuals
and migration of these individuals between populations and testing of stopping
criteria. The compute nodes in Hadoop cluster are not able to communicate directly
with each other, therefore all data which should be transferred into next migration
round must be stored in HDFS. Hadoop requires its data to be in form of [key,
value] pairs. Value is a data structure which holds entire subpopulation, while key is
an integer number serving as a subpopulation index. This data structure ensures that
all populations with the same population index are assigned to the same compute
node. The selection of migrating individuals if performed after the evolution of
subpopulation for this round finishes. Genotypes and fitness values of selected
individuals are copied into a new data structure of the same class as subpopulation,
which has the population index set to the index of subpopulation which should
receive these individuals. One new subpopulation is created for each subpopulation
which is supposed to receive individuals based on the topology. To distinct

Fig. 16 Fine and coarse
grained parallelizations with
different topologies [33]
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migrating individuals from actual subpopulation a boolean value is assigned to each
subpopulation which indicates its state. The migration mechanism is flexible
enough to handle several destination subpopulations, different selection methods
(select best, worst, random, best + random) and numbers of migrating individuals.
Prior to a migration round each compute node checks availability of migrating
individuals for its corresponding subpopulation. If migrating individuals do exist
they are imported into subpopulation using the defined replacement function.
Creation of custom topology, selection and replacement functions involves over-
riding built-in MRDEAF functions. Topology function returns array of integers to
identify which subpopulations should receive individuals from current one.
Selection and replacement functions work directly with subpopulations, and thus
can base their selection on complete state of the subpopulation. As all the data
exchange between nodes and between migration rounds is based on files stored in
HDFS, the historic states of subpopulations is stored and can be further analyzed.
Interesting by-product of this approach is that MRDEAF execution can be started
with already stored subpopulations but with different settings, or perhaps com-
pletely different EAs. MRDEAF operation is independent of EA used for evolution
of subpopulations, therefore it is possible for each subpopulation to have its own
variant of EA. The only constraint is that individuals which represent a solution in
one subpopulation must be interpreted the same way in all subpopulations. Exe-
cution of MRDEAF displayed in Fig. 17 with description in pseudocode in Fig. 18.

4.4 Generating the ‘‘Parallel’’ Networks

MRDEAF implements the functionality to generate networks describing the
evolutionary process for several built in algorithms. Each subpopulation maintains
records of interactions amongst its individuals and also of migrating individuals.
After program finishes, data from all subpopulations is compiled into a single file.
We chose the GraphML [34] file format to store networks. It is an XML-based file
format for exchange of graphing information. Example of how the data is stored in
an GraphML file is in Fig. 19.

Network nodes represent individuals, while edges show interactions between
them. Each node in network holds 4 data values:

• Id index of an individual in subpopulation.
• Fitness fitness value of an individual.
• Population index of subpopulation.
• InWeights sum of weights of incoming edges.

Edges contain 3 values:

• Source the starting point of an edge.
• Target the end point of the edge.
• Weight weight value.
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The process of creating network nodes and connections is dependent on the EA.
GraphML format can be further analyzed and visualized. We used open-source
software called Gephi [35] for visualization of networks. Three variants of network
generating techniques were proposed for SOMA.

Fig. 17 Overview of MRDEAF execution flow
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• After an individual finishes its movement and its fitness improved, it adds 1 to
its connection to the leader.

• The same as previous, except that the connection direction is reversed (1 is
added to a connection from leader to individual).

• After one SOMA generation ends, all individuals add 1 to their connection to the
leader.

Fig. 18 MRDEAF execution in pseudocode

Fig. 19 Example of GraphML file
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At Fig. 20 is shown network which describes evolution of 5 subpopulations,
each running SOMA algorithm. The nodes are clustered according to their sub-
population index. Color of the nodes indicates the fitness value (the darker the
better) and node size is a function of inWeights parameter. Edges which connect
nodes from different clusters represent migrating individuals.

This is clear demonstration (one of may we got) that parallelization of evolu-
tionary algorithm also create complex network, or better, dynamics of parallelized
evolutionary algorithms can be visualized in that way.

5 Complex Networks and CML Systems

In the previous section we have shown, that dynamics of evolutionary algorithms
can be, under certain conditions, visualized like a complex network. Following
sections will explain CML systems and demonstrate, how can be complex network
converted to the CML systems (Coupled Map Lattices, see [36]), for control and
analysis (deterministic, chaotic behavior,. . .) of network (i.e. evolutionary algo-
rithm) dynamics. Complex networks belong to the class of strongly nonlinear
systems, which can, in general, generate very wide spectrum of behavior, from
deterministic to chaotic one. All kind of behavior can be met in daily engineering
activities and can have negative impact on various devices and everyday life.
According to our experiences and contemporary research so called deterministic
chaos is the most interesting and promising area of behavior analysis and control.
Deterministic chaos, discovered by Lorenz [37] is a fairly active area of research in

Fig. 20 Network describing
evolution of 5 subpopulations
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the last few decades. The Lorenz system produces one of the well-known
canonical chaotic attractors in a simple three-dimensional autonomous system of
ordinary differential equations [37, 38]. For discrete chaos, there is another famous
chaotic system, called logistic equation [39]. Logistic equation is based on a
predator-prey model showing chaotic behavior. This simple model is widely used
in the study of chaos, where other similar models exist (canonical logistic equation
[40] and 1D or 2D coupled map lattices [36]). Since then, a large set of nonlinear
systems that can produce chaotic behavior have been observed and analyzed.
Chaotic systems thus have become a vitally important part of science and engi-
neering in theoretical as well as in practical levels of research. The most inter-
esting and applicable notions are, for example, that chaos control and chaos
synchronization are related to secure communication, amongst others. Recently,
the study of chaos is focused not only along the traditional trends but also on the
understanding and analyzing principles, with the new intention of controlling and
utilizing chaos as demonstrated in [41, 42]. The term chaos control was first coined
by Ott et al. in [43]. It represents a process in which a control law is derived and
used so that the original chaotic behavior can be stabilized on a constant level of
output value or a n-periodic cycle. Since the first experiment of chaos control,
many control methods have been developed and some are based on the first
approach [43], including pole placement [44, 45] and delay feedback [46, 47].
Another research has been done on CML control by [48], special feedback
methods for controlling spatiotemporal on-off intermittency has been used there
and [48]. This paper introduces a controller (based on discrete-time sliding mode
and Lyapunov function) for controlling of spatiotemporal chaos system. Many
methods were adapted for the so-called spatiotemporal chaos represented by
coupled map lattices (CML). Control laws derived for CML are usually based on
existing system structures [36], or by using an external observer [49]. Evolutionary
approach for control was also successfully developed, for example in, [50–52].
Many published methods of deterministic chaos control (DCC) were (originally
developed for classic DCC) adapted for so called spatiotemporal chaos represented
by CML, given by Eq. (1). Models of this kind are based on a set of spatiotemporal
(for 1D, Fig. 21, axe x is time). Typical example is CML based on so called
logistic equation, [39, 49, 53] which is used to simulate behavior of system which
consists of n mutually joined cells (logistic equations) via nonlinear coupling,
usually noted like �. Nonlinear coupling is done only and only between nearest
cells. Cells that are not direct neighbor of a cell X are not directly influenced by
this cell. Mathematical description of CML system is given by Eq. (1), [53]. The
function, which is represented by f ðxnðiÞÞ is an arbitrary discrete system—in this
case study logistic equations has been selected to substitute f ðxnðiÞÞ, variable is
usually set to value that represent nonlinear coupling between systems f ðxnðiÞÞ.
CML description based on (1) in Mathematica software is given in Fig. 21.

xnþ1ðiÞ ¼ ð1� eÞf ðxnðiÞÞ þ
e
2
ðf ðxnði� 1ÞÞ þ f ðxnðiþ 1ÞÞÞ ð1Þ
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It is important to say, that CML are main backbone of our approach and this
participation.

The term chaos covers a rather broad class of phenomena whose behavior may
seem erratic and unpredictable at the first glance. Often, this term is used to denote
phenomena, which are of a purely stochastic nature, such as the motion of mol-
ecules in a vessel with gas etc. This publication focuses on the deterministic chaos,
a phenomenon that—as its name suggests—is not based on the presence of a
random, stochastic effects. On the contrary, it is based on the absence of such
effects what may seem surprising at the first glance. Broadly used, the term chaos
can denote anything that cannot be predicted deterministically (e.g. motion of an
individual molecule, numbers in a lottery,. . .). If, however, the word chaotic is
combined with an attribute such as stochastic or deterministic, then a specific type
of chaotic phenomena is involved, having their specific laws, mathematical
apparatus and a physical origin. Stochastic system (not stochastic chaos) is the
appropriate term for a system such as plasma, gas, liquid, which should be studied
by using a suitable apparatus of plasma physics, statistical mechanics or hydro-
dynamics. On the contrary, if a double pendulum, billiard or the similar objects are
the subjects of examination; a mathematical apparatus, which is based on classical
mathematics and does not exhibit stigmata of statistics, is employed. The math-
ematical apparatus for the description and study of the systems was not chosen at
random; in fact, it is related with the physical nature of the system being studied.
Considering the class of systems of deterministic chaos as mentioned above, signs
of chaotic behavior are usually conditional on the presence of nonlinearities, either
in the system itself (i.e. the system is a nonlinear system) or in links between linear
systems [54]. Usually, such nonlinearities are only visible after making up a
mathematical model of the system or after analysis of observed data. Simple
systems exhibiting deterministic chaos include, for instance, double pendulum,
magnetic pendulum, electronic circuit or so called billiard problem through which
balls are poured from the same starting position. Note that in CML are observable
deterministic—periodical windows. On the x axe are iterations of CML, while on y
are sites, mutually joined, see Eq. (1). Chaos is visible here like grainy part while
deterministic behavior like periodic parts. Ideas of CML is in this participation

Fig. 21 Typical CML behavior with chaotic and deterministic windows
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used to show, that complex networks behavior can be also visualized and mainly
modeled in this way. The possibility to handle with complex network like with
CML then allows to use a wide class of CML control methods to control complex
networks.

5.1 Complex Networks Dynamics and Its Visualization

Structure and dynamics of complex networks is usually visualized in a classical
way that is depicted on Figs. 2, 3. Complex network is depicted like a set of
vertices, mutually joined by single and multiple edges. Each edge can be added or
cancelled during the evolution of the network, or importance of an edge can be
modified by weights associated to the each edge. Adding or canceling of the
vertices and modification of the edge weights represents, in fact, dynamics of the
network. Network then change its shape, structure and size and as a consequence
isolated sub-networks (or its fractions) can be observed. In [55] are reported
various techniques how to control and analyze such networks. Our approach is
based on well-known CML systems and its analysis and control by means of
traditional as well as heuristic methods. Our method of visualization is based on
fact that simplest version of CML (i.e. 1D version) is usually depicted like a row of
mutually joined sites, where each site is nonlinearly joined with its nearest sites,
see Fig. 22.

Our vision of equivalence between CML and complex network is quite simple.
Each vertex is equivalent to the site in the CML. Comparing to the standard CML,
sites in complex network CML (CNCML) are not joined to the nearest site, but to
the sites equal to the complex network vertices. Thus sites in CNCML are not
joined symmetrically (i.e. from site X to Y and vice versa) and between different
sites is random pattern of connections, which can change in the time, see Fig. 23.

Our experiments of CNCML visualization were based on above described idea.
In all cases has been CNCML calculated and visualized in such a way. Different
levels of vertices (sites) excitation are depicted by different colors, see Fig. 24.
When compared with our previous results, [56, 57] it is clearly visible, that our
proposed kind of visualization is usable. It is observable, that CNCML visuali-
zation shows complex and obviously nonlinear behavior of tested CNs. On figures
are visualized experiments with SOMA algorithm according to Strategy 1 (see
Sect. 3.1) for different number of individuals and migrations, see Figs. 25, 26, 27
and 29. On Fig. 28 is final network of SOMA (related CML is in Fig. 29) and in
Fig. 30 is depicted history of selected individuals—Leaders of SOMA, that got
edges from remaining part of population.
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Fig. 22 Typical CML and its mechanical (pendulum-based) interpretation. Parameter � is
strength between two neighbor (pendulums, vertices) and in classic CML philosophy is in the
interval ½0; 1�, see [36]
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Fig. 23 Complex network like CML, vertices (pining sites in CML) are not connected
equilaterally but according to complex network topology. Parameter � is here number of edges
(can be also converted to the interval ½0; 1�) between two neighbor (pendulums, vertices)
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6 CML Control

In the previous parts has been shown, how can be converted dynamics of selected
EA to complex network with selected examples and also idea describing con-
version from complex network to CML has been introduced too. Here, in the last
part, we would like to discuss possibilities about CML control. Because classical
control techniques are well known, our attention is focused here on CML control
selected examples by means of evolutionary algorithms. Examples mentioned here

Fig. 24 Zoom of the network with 20 vertices in 500 iterations

Fig. 25 An example of CML visualization of SOMA dynamics with 50 individuals, according to
the Strategy 1 (see Sect. 3.1)
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are results of our research and for its detailed description important references are
provided here.

6.1 CML Control—Selected Examples

This part introduces the main ideas of an investigation on deterministic spatio-
temporal chaos real-time control by means of selected evolutionary techniques,

Fig. 26 Another example of CML visualization of SOMA dynamics with 10 individuals,
according to the Strategy 1 (see Sect. 3.1)

Fig. 27 Another example of CML visualization of SOMA dynamics with 20 individuals,
according to the Strategy 1 (see Sect. 3.1)
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done in our previous research, see for full versions and references [20]. Real-time
like behavior is specially defined and simulated with spatiotemporal chaos model
based on mutually nonlinearly joined n equations, so called Coupled Map Lat-
tices—CML. In total five evolutionary algorithms has been used for chaos control
here: differential evolution, self-organizing migrating algorithm, genetic algo-
rithm, simulated annealing and evolutionary strategies in total of 15 versions. For
modeling of spatiotemporal chaos behavior, so called coupled map lattices were
used based on logistic equation to generate chaos. The main aim of this investi-
gation was to show that evolutionary algorithms, under certain conditions, are
capable of control of CML deterministic chaos, when the cost function is properly
defined as well as parameters of selected evolutionary algorithm. Investigation
consists of four different case studies with increasing simulation complexity. For
all algorithms each simulation was 100 times repeated to show and check
robustness of used methods. All data were processed and used in order to get
summarizing results and graphs.

6.2 Cost Function

The fitness (cost function) has been calculated according to using the distance
between desired CML state and actual CML output, Eq. (2). The minimal value of
this cost function, guarantee the best solution, is 0. The aim of all simulations was
to find the best solution, i.e. a solution that returns the cost value 0. This cost
function was used for reported case studies in [20], the first two case studies
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Strategy 1 (see Sect. 3.1)
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(pinning values setting, pinning sites setting). In the next (last) two case studies
cost function (3) was used. It is synthesized from cost function (2) so that two
penalty terms are added. The first one, p1, represents number of used pinning sites
in CML. The second one, p2, is added here to attract attention of evolutionary
process on main part of cost function. If this would not be done, then mainly p1

would be optimized and results should not be acceptable (proved by simulations).
Indexes i and j are coordinates of lattice element, i.e. CMLi;j is ith site (equation) in
jth iteration. For all simulations of T1S1 was set stabilized state to S1 = 0.75, and
for T1S2 to period S2 = (0.880129, 0.536537), i.e. CML behavior was controlled to
this state.

Preliminary knowledge about complexity and variability of used cost function
is usually very important. See for example Fig. 32 that shows cost function sur-
face, which is highly erratic and a lot of classical algorithms would fail there. Thus
such knowledge can be important when class of optimizing algorithms is selected.
A few ideas and examples has been selected here to show complexity and its

0 50 100 150 200
0

5

10

15

20

Migration No.

In
di

vi
du

al
 N

o.
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Fig. 29 Another example of CML visualization of SOMA dynamics with 20 individuals,
according to the Strategy 1 (see Sect. 3.1)
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dependance on chaotic system parameter setting. How complex can be such a cost
function is clearly visible from Fig. 31, for more see [20]. It is clearly visible, that
cost function is partly chaotic and for certain pining value global minimum rep-
resenting stabilization is accessible. Intensity of chaos of such a graphical repre-
sentation is caused by fact that calculations are based on chaotic system. If average
value (over many of such runs) would be calculated, then we would get smooth
graphs however, because our simulations were running on single run, not over a lot
of them, are Fig. 32 real representation of landscape of our cost function. Over
such or similar landscape were running our simulations. It is also important to
note, that for each simulation of CML can exact shape and its intensity of chaos
slightly be different from previous one, due to the sensitivity of initial conditions.
Another more complex visualizations of landscape of Eq. (2) are depicted in [20].
It is clear that complexity of used cost function is of a high level, despite simple
mathematical description. Also suitable stabilizing combination of control
parameters depend on number of CML iterations and configuration (T1S1;2) of
stabilized state.
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Fig. 31 CML T1S2 in configuration 30 � 600—stabilization after 400 iterations is visible
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fcos t ¼
P30

i¼1

Pb

j¼a
TSi;j � CMLi;j

�� ��
2

TSi;j � target state of CML

CMLi;j � actual state of controlled CML

fa; bg ¼ f80; 100g for T1S1 and fa; bg ¼ f580; 600g for T1S2

ð2Þ

fcos t ¼ p1þ p2þ
P30

i¼1

Pb

j¼a
TSi;j � CMLi;j

�� ��
 !2

TSi;j � target state of CML

CMLi;j � actual state of controlled CML

p1 � number of actually selected pinning sites

p2 � 100; heuristically set weight constant

fa; bg ¼ f80; 100g for T1S1 and fa; bg ¼ f580; 600g for T1S2

ð3Þ

6.3 Case Studies

The class of CML problems chosen for this comparative study was based on case
studies reported in [36]. In general, CML control means setting of such pinning
sites (controlled CML sites) and their pining values (control values) so that system
stabilizes itself on expected spatiotemporal pattern. CML as an object of study was
chosen because it shows chaotic behavior and its level of complexity can be quite
rich.

All simulations designed and reported here are based on previous simulations,
like [58–60]. In the previous simulations has been found that EAs are capable to
control CML chaos. Some of them were modified (cost functions was redefined) to
increase speed (i.e. number of cost function evaluations) of simulations. To
highlight impact of proposed changes in this chapter, we have used all five evo-
lutionary algorithms to control CML, size of 10 inputs, see Figs. 33 and 34.

Comparing to simulations described further, this simulation was defined so that
20 unknown parameters has been estimated. The reason, why exactly 20, is simple.
CML size was 10 and EAs estimated which pining site (10 inputs of CML) shall be
used and what pining value (10 control signals) will be applied to each input. Thus
evolutionary search has run in the 20 dimensional solution space. Based on in-
formations in [36] and previous experiences [58, 59] cost function (3) has been
used and empirically has been discovered that cost value � 5 should guarantee
stabilized CML (at least in our realization in Mathematica code).

We have found, that when EAs stop above cost value � 5.1, then CML is
stabilized in almost all cases between 300–600 iterations. To safely stabilize CML
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before 100 iterations, it is enough when EAs stop below this level, like for
example cost value � 5.00001. Thus it is quite critical, what stopping cost value is
selected.

In [20] are summarized cost function needed to find stabilizing combination of
all 20 parameters. It is visible, that number of cost function evaluations needed to
reach solution was 3964 in the average. All those results are valid for CML of 10
inputs only, however, more often one can use CML with 50, 100 or more inputs
and in such a case search algorithms would search in really high dimensional
space. Expected cost function evaluations would be much more higher.

To improve performance and speed of simulations, two modifications are
suggested here. Number of used pining sites is omitted, only period of used pining
site is estimated (i.e. only one variable instead of n variables) which means that
only each nth site is used to apply pining value. Pining value is estimated in the
same manner. Only one value is estimated and then applied to each nth pining site.
In such a case, problem of generally n dimensional problem (n can be 20, 50,
100,. . .) is reduced only to search in the 2D solution space.
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Fig. 34 Another example from 1500 simulated CML behavior. Stabilization to T1S1 has been
reached before 100 iterations

0 100 200 300 400 500 600

2

4

6

8

10

Fig. 33 An example from 1500 simulated CML behavior. Stabilization to T1S1 has been reached
after 250 iterations
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Selected modifications has improved performance of selected algorithms, as
reported in following section. Investigation consists of four parts in increasing
order from complexity point of view and was based on paper [61]. The first one is
focused on pining values estimation for a priori given pinning sites. In the second
one pinning sites with a priori given pinning values were estimated by EAs. The
third simulation was enlargement of the previous simulation—EAs were used to
find minimal number of pinning sites and the fourth simulation was focused on
mutual estimation of pinning sites and values, i.e. EA was searching for the
minimal number of pinning sites and optimal (as much as possible) pinning values.
All simulations were based on the same model and 100 times repeated for each EA
with new initial conditions for each simulation. Simulations were done for two
basic CML stabilized configuration—T1S1 (CML is stabilized on period Time = 1
and Space = 1, i.e. after stabilization is CML as reported in [20], in total 4�
2� 1500 ¼ 12000 independent simulations (4� T1S1;2, 15 algorithms, each for
100 independent runs) of spatiotemporal CML were carried out.

Next logical step is to control CML in real time, that is the main aim of this
process, because it shall allow to us to control complex networks dynamics as well
as dynamics of used evolutionary algorithm. An example of real time control of
CML by means of evolutionary algorithms is reported in [59] and extended
modified study in [60]. Capability of EAs on such a black-box processes control
has been demonstrated there. Comparing to non realtime CML was in [59]
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Fig. 35 An example of controller output, see [60]
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Fig. 36 Partial stabilization of realtime CML in T1S2 pattern—pattern is temporarily stabilized,
see [60]
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simulated realtime in such a way that each configuration (individual) has been
applied after n iterations without possibility to start from initial conditions again.
For demonstrative purposes are three figures depicted here. Figure 35 show typical
of controller output developed during evolution. Each change of its value is related
to another, better individual, whose parameter (or one of them) was estimated
controlled output. Figures 36 and 37 show process of T1S2 stabilization. For more
exact information, it is recommended to see [60].

6.4 Mutual Intersections and Open Problems

Based on previous informations, is can be stated that a numerous unsolved
research items is still open. Some of them are for example:

• Use control techniques to control CML and EAs dynamics, as mentioned above.
• Convert to the complex net and CML another, till now not used, evolutionary

algorithms.
• Use our proposed philosophy evolutionary dynamics ! complex network !

CML system ! control CML to verify-measure presence of chaos in used EA
and/or in complex network.

• Study relations between chaotic regimes in EA dynamics and structure of
related complex network.

• Study relations between previous item and fractal dimensions.
• � � �

All this problems, symbolically depicted at Fig. 38, are now in process of
research of our group.

0 2000 4000 6000 8000 10000

Iterations

0

10

20

30

40

50

60

S
ite

Fig. 37 Succesfull stabilization of realtime CML in T1S2 pattern—pattern is permanently
stabilized, see [60]
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7 Conclusion

The main motivation of research reported in this chapter is whether it is possible to
visualize and simulate underlying dynamics of an evolutionary process as a
complex network. Based on preliminary results (based only on 2 algorithms in 10
versions and 16 test function out of 17) it can be stated that number of generations
has such impact that occurrence of the complex network structure (CNS) sensi-
tively depends on the number of generations. If the number of generations was
small, then no CNS was established. This effect can be easily understand so that
low number of generations means that EAs has no time, long enough, to establish
CNS. During our experiments has been observed that the moment of CNS
establishing depend on cost function dimension, population size, used algorithm
and cost function. Very generally, EAs searching for global extreme is on the
beginning quite random-like and when domain of global extreme is discovered,
then CNS is quite quickly established.

Impact of dimensionality on CNS forming has been observed when the
dimension of the cost function was big and number of generations was too low, the
selected EA was not able to finish successfully the global extreme search not all
connections had been properly established. Thus if high dimensional cost functions
are used, then number of generations has to be selected so that at least domain of
the global extreme is found. On the other side, if number of generations (or
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Migrations in the case of the SOMA algorithm) if very big, then it is possible
observe effect that rich become to be richer, i.e. one vertex (individual) become to
be winner repeatedly. This moment usually means that global extreme has been
found and further searching is not necessary.

Population size: Comparing to results reported in [20] CNS forming was
observed usually from population size of 10 and more individuals for dimensions 5
and more. Again, it is parameter, which does not influent CNS forming alone, but
in the combination with another parameters.

Used algorithm: CNS forming has also been clearly observed with algorithms,
that are more or less based on swarm philosophy or partly associated with it. For
example DERand1Bin did not show any CNS formatting (in principle each indi-
vidual is selected to be parent), see [21], while in the case of the DELocalToBest
(Fig. 10) in which the best solution in the population play an important role, CNS
has been observed, as well as in the SOMA strategies, see [21]. The conclusion
reached is that CNS formatting is more likely observable with swarm like algo-
rithms rather than randomly driven algorithms. We think that this is quite logical
and close to the idea of preferred linking in the complex networks modeling social
behavior (citation networks, etc).

Parallelization: Part of our research is also focused on parallel evolutionary
techniques and analysis of its dynamics as of complex networks. Simple imple-
mentation based on MRDEAF and visualized at Fig. 20. It is shown network
which describes evolution of 5 subpopulations of SOMA algorithm. The nodes are
clustered according to their subpopulation index. Color of the nodes indicates the
fitness value (the darker the better) and node size is a function of inWeights
parameter. Edges which connect nodes from different clusters represent migrating
individuals. It is clear demonstration that also dynamics of parallel population
based algorithms can be visualized like complex networks.

As noted in the Sect. 6, [20, 36] it is possible to control CML by means of
classical as well as evolutionary methods. So the last step of our proposed
investigation evolutionary dynamics ! complex network ! CML system !
control CML! control evolutionary dynamics is control evolutionary dynamics,
see Fig. 38. This shall be possible benefit of this approach. Based on numerically
demonstrated fact (no mathematical proof has been made) that EAs dynamics can
be visualized like complex networks we believe that there is new research area for
study of EAs dynamics and its possible control via techniques of complex network
control [55].
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Influence of Chaotic Dynamics
on the Performance of Differential
Evolution Algorithm

Roman Senkerik, Donald Davendra, Ivan Zelinka
and Zuzana Oplatkova

Abstract This paper outlines the extended investigations on the concept of a chaos
driven Differential Evolution. The focus of this paper is the embedding of chaotic
systems in the form of chaos number generator for Differential Evolution. The
chaotic systems of interest are the discrete dissipative systems. Three chaotic sys-
tems were selected as possible chaos number generators for Differential Evolution.
Repeated simulations were performed on the set of six basic benchmark functions.
Finally, the obtained results are compared with canonical Differential Evolution.

1 Introduction

During the recent years, usage of new intelligent systems in engineering, tech-
nology, modeling, computing and simulations has attracted the attention of
researchers worldwide. The most current methods are mostly based on soft
computing, which is a discipline tightly bound to computers, representing a set of
methods of special algorithms, belonging to the artificial intelligence paradigm.
The most popular of these methods are neural networks, evolutionary algorithms,
fuzzy logic, and genetic programming. Presently, evolutionary algorithms are
known as a powerful set of tools for almost any difficult and complex optimization
problem. Ant Colony (ACO), Genetic Algorithms (GA), Differential Evolution
(DE), Particle Swarm Optimization (PSO) and Self Organizing Migration Algo-
rithm (SOMA) are some of the most potent heuristics available.
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Recent studies have shown that Differential Evolution (DE) [1] has been used
for a number of optimization tasks, [2], [3] has explored DE for combinatorial
problems, [4] has hybridized DE whereas [5]–[7] has developed self-adaptive DE
variants.

This paper is aimed at investigating the chaos driven DE. Although a several of
papers have been recently focused on the connection of DE and chaotic dynamics
either in the form of hybridizing of DE with chaotic searching algorithm [8] or in
the form of chaotic mutation factor and dynamically changing weighting and
crossover factor in self-adaptive chaos differential evolution (SACDE) [9], the
focus of this paper is the embedding of chaotic systems in the form of chaos
number generator for DE and its comparison with the canonical DE.

This research is an extension and continuation of the previous initial application
based experiment with chaos driven DE [10].

The primary aim of this work is not to develop a new type of random number
generator, which should pass many statistical tests, but to try to use and test the
implementation of natural chaotic dynamics into evolutionary algorithm as a
chaotic random number generator.

The chaotic systems of interest are discrete dissipative systems. Three different
chaotic systems were selected as the chaos number generator for DE.

Firstly, Differential Evolution is explained. The next sections are focused on the
description of used chaotic systems and benchmark test functions. Results and
conclusion follow afterwards.

This work presents the extension and summarization of initial results presented
in [11] and [12].

2 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1]. A schematic is given in Fig. 1.

There are essentially five sections to the code depicted in Fig. 1. Section 1
describes the input to the heuristic. D is the size of the problem, Gmax is the
maximum number of generations, NP is the total number of solutions, F is the
scaling factor of the solution and CR is the factor for crossover. F and CR together
make the internal tuning parameters for the heuristic.

The Section 2 (See Fig. 1) outlines the initialization of the heuristic. Each
solution xi,j,G=0 is created randomly between the two bounds x(lo) and x(hi). The
parameter j represents the index to the values within the solution and i indexes the
solutions within the population. So, to illustrate, x4,2,0 represents the fourth value
of the second solution at the initial generation.

After initialization, the population is subjected to repeated iterations in
section 3.

Section 4 describes the conversion routines of DE. Initially, three random
numbers r1, r2, r3 are selected, unique to each other and to the current indexed
solution i in the population in 4.1. Henceforth, a new index jrand is selected in the
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solution. jrand points to the value being modified in the solution as given in 4.2. In
4.3, two solutions, xj,r1,G and xj,r2,G are selected through the index r1 and r2 and
their values subtracted. This value is then multiplied by F, the predefined scaling
factor. This is added to the value indexed by r3.

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then
the new value replaces the old value in the current solution. The fitness of the
resulting solution, referred to as a perturbed vector uj,i,G., is then compared with the
fitness of xj,i,G. If the fitness of uj,i,G is greater than the fitness of xj,i,G., then xj,i,G. is
replaced with uj,i,G; otherwise, xj,i,G. remains in the population as xj,i,G+1. Hence the
competition is only between the new child solution and its parent solution.

DE is quite robust, fast, and effective, with global optimization ability. It does
not require the objective function to be differentiable, and it works well even with
noisy and time-dependent objective functions. Description of the used DER-
and1Bin strategy is presented in Table 1 together with the description and com-
parison of the three other most common and used DE strategies. These strategies
differ in the way of calculating the perturbed vector uj,i,G. Please refer to [1, 13] for
the detailed complete description of all other strategies.
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Fig. 1 DE Schematic

Table 1 Description of selected DE Strategies

Strategy Formulation

DERand1Bin uj;i;Gþ1 ¼ xj;r1;G þ F � xj;r2;G � xj;r3;G
� �

DERand2Bin uj;i;Gþ1 ¼ xj;r5;G þ F � xj;r1;G � xj;r2;G � xj;r3;G � xj;r4;G
� �

DEBest2Bin uj;i;Gþ1 ¼ xj;Best;G þ F � xj;r1;G � xj;r2;G � xj;r3;G � xj;r4;G
� �

DELocalToBest uj;i;Gþ1 ¼ xj;i;G þ Frand xj;Best;G � xj;i;G

� �
þ F � xj;r1;G � xj;r2;G

� �
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3 Chaotic Maps

This section contains the description of three discrete chaotic maps used as the
random generator for DE. Iterations of the chaotic maps were used for the gen-
eration of real numbers in the process of crossover based on the user defined CR
value and for the generation of the integer values used for selection of solutions
(individuals).

3.1 Dissipative Standard Map

The Dissipative Standard map is a two-dimensional chaotic map. The parameters
used in this work are b = 0.1 and k = 8.8 as suggested in [14]. The Dissipative
standard map is given in Fig. 2. The map equations are given in Eqs. 1 and 2.

Xnþ1 ¼ Xn þ Ynþ1ðmod 2pÞ ð1Þ

Ynþ1 ¼ bYn þ k sin Xnðmod 2pÞ ð2Þ

3.2 Arnold’s Cat Map

The Arnold’s Cat map is a simple two dimensional discrete system that stretches
and folds points (x, y) to (x ? y, x ? 2y) mod 1 in phase space. The map equations
are given in Eqs. 3 and 4. This map uses parameter k = 2.0 as suggested in [14].
The x-y plot of this map is depicted in Fig. 2.

Xnþ1 ¼ Xn þ Ynðmod1Þ ð3Þ

Ynþ1 ¼ Xn þ kYnðmod1Þ ð4Þ

3.3 Sinai Map

The Sinai map is a simple two-dimensional discrete system similar to the Arnold’s
Cat map. The map equations are given in Eqs. 5 and 6. The parameter used in this
work is d = 0.1 as also suggested in [14]. The Sinai map is depicted in Fig. 2.

Xnþ1 ¼ Xn þ Yn þ d cos 2pYnðmod1Þ ð5Þ

Ynþ1 ¼ Xn þ 2Ynðmod1Þ ð6Þ
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4 Benchmark Functions

For the purpose of evolutionary algorithms performance comparison within this
research, the following six basic test functions were selected: Schwefel’s function
(7), Ackley I (8), Ackley II (9), Rastrigin’s (10), Stretched V Sine (11) and
Griewangk’s function (12). The 3D diagrams for D = 2 are depicted in Figs. 3, 4,
5, 6, 7 and 8.
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XD
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�xi sin
ffiffiffiffiffiffi
xij j
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Fig. 2 Dissipative standard map (upper left), Arnold’s Cat Map (upper right), Sinai map (below)
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Fig. 3 Schwefel’s
benchmark function, D = 2

Fig. 4 Ackley I function,
D = 2

Fig. 5 Ackley II function,
D = 2
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5 Results

The novelty of this approach represents the utilization of discrete chaotic maps as a
random generator for DE. In this paper, the canonical DE strategy DERand1Bin
and three versions of ChaosDE were used. The parameter settings for both
canonical DE and ChaosDE were obtained analytically based on numerous
experiments and simulations (see Table 2). Experiments were performed in an
environment of Wolfram Mathematica, canonical DE therefore used the built-in
Mathematica software random number generator. All experiments used different
initialization, i.e. different initial population was generated in each run of
Canonical or Chaos DE.

Within this research, two experiments were performed. The first one utilizes the
maximum number of generations fixed at 200 generations. This allowed the
possibility to analyze the progress of DE within a limited number of generations

Table 2 Parameter set up for canonical DE

Parameter Value—Experiment 1 Value—Experiment 2

Popsize 10D 10D
F 0.8 0.8
Cr 0.8 0.8
Dimensions 2–8 10
Generations 200 ?
Max Cost Function Evaluations (CFE) 4000–16000 ?

Fig. 8 Griewangk’s
function, D = 2
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and cost function evaluations. In the second case, the number of generations was
unlimited. The main observed parameters were the total number of cost function
evaluations and the time in seconds required for finding of the global minimum of
the used test functions. The stopping criterion was the finding of the real global
minimum.

The results of the first experiment are shown in Tables 3, 5, 7, 9, 11 and 13,
which represent the average deviations from the known global minimum for 20
repeated runs of the different variants of utilized DE.

Tables 4, 6, 8, 10, 12 and 14 contain the results for the second experiment.
These tables show the average time in seconds and number of CFE (Cost Function
Evaluations) required for the finding of global minimum for 20 repeated runs of
the evolutionary algorithms. The bold values depict the best value.

5.1 Results for the Schwefel’s Test Function

5.2 Results for the Ackley I Test Function

Table 3 Average difference from Global minimum for the Schwefel’s Function: 2D–8D

Dim. Known
Value

Canonical
DE

ChaosDE
Dissipative

ChaosDE Arnold
Cat

ChaosDE
Sinai

2 -837,966 2,2545.1024 2,2545.1024 2,2545.1024 2,2545.1024

4 -1675,932 7,1499.10-4 5,0084.1024 3,4091.10-3 2,0311.10-3

6 -2513,898 228,818 158,723 315,082 306,371
8 -3351,864 800,731 805,248 872,714 822,857

Table 4 Average CFE and evaluation time for the Schwefel’s Function: 10D

Canonical DE ChaosDE Dissipative ChaosDE Arnold Cat ChaosDE Sinai

CFE 304400 167100 340800 263700
Time (s) 162.63 124.62 249.58 193.77

Table 5 Average difference from Global minimum for the Ackley I function: 2D–8D

Dim. Known
Value

Canonical
DE

ChaosDE
Dissipative

ChaosDE Arnold
Cat

ChaosDE
Sinai

2 24,5901 1,6341.1026 1,6341.1026 1,6341.1026 1,6341.1026

4 210,46137 2,39.10-3 2,32.1023 0,01275 0,07054
6 216,29877 4,3451 3,31813 4,68185 4,5361
8 222,13611 14,1343 11,7813 14,5216 14,6120
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5.3 Results for the Ackley II Test Function

5.4 Results for the Rastrigin’s Test Function

Table 6 Average CFE and evaluation time for the Ackley I function: 10D

Canonical DE ChaosDE Dissipative ChaosDE Arnold Cat ChaosDE Sinai

CFE 377400 222500 331300 474100
Time (s) 237.598 172.520 210.188 371.515

Table 7 Average difference from Global minimum for the Ackley II function: 2D–8D

Dim. Known
Value

Canonical
DE

ChaosDE
Dissipative

ChaosDE Arnold
Cat

ChaosDE
Sinai

2 0 1.8527.10-13 2.5419.10-13 1.1954.10-13 3.7836.10214

4 0 1.6623.10-5 1.219.1025 1.6262.10-5 1.7792.10-5

6 0 0.01606 0.01248 0.02064 0.01578
8 0 0.7009 0.37949 0.82246 0.74808

Table 8 Average CFE and evaluation time for the Ackley II function: 10D

Canonical DE ChaosDE Dissipative ChaosDE Arnold Cat ChaosDE Sinai

CFE 226000 205700 244300 242100
Time (s) 174.81 146.93 200.45 200.36

Table 9 Average difference from Global minimum for the Rastrigin’s function: 2D–8D

Dim. Known
Value

Canonical
DE

ChaosDE
Dissipative

ChaosDE Arnold
Cat

ChaosDE
Sinai

2 0 0 0 0 0
4 0 1,31435 0,66387 1,81004 1,83477
6 0 10,8232 10,4494 11,9057 11,7926
8 0 24,4106 21,6622 23,6621 24,578

Table 10 Average CFE and evaluation time for the Rastrigin’s function: 10D

Canonical DE ChaosDE Dissipative ChaosDE Arnold Cat ChaosDE Sinai

CFE 1997800 1022100 2089600 2414600
Time (s) 1686.921 1123.790 1720.638 2160.638
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5.5 Results for the Stretched V Sine Test Function

5.6 Results for the Griewangk’s Test Function

6 Brief Analysis of the Results

The results in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 show that using the
Dissipative standard map as a random generator has actually improved the per-
formance of DE. The performance of DE significantly improved in both experi-
ments for the limited number of generations (2D–8D) and for unlimited simulation
(10D). The results achieved in the first experiment for the other two chaotic

Table 11 Average difference from Global minimum for the Stretched V Sine function: 2D–8D

Dim. Known
Value

Canonical
DE

ChaosDE
Dissipative

ChaosDE Arnold
Cat

ChaosDE
Sinai

2 0 6.3633.1024 1.538.10-3 2.225.10-3 9.09.10-4

4 0 0.43779 0.39181 0.45610 0.50088
6 0 3.00447 2.7542 2.97886 2.81253
8 0 6.83747 6.51784 7.40881 7.28129

Table 12 Average CFE and evaluation time for the Stretched V Sine function: 10D

Canonical DE ChaosDE Dissipative ChaosDE Arnold Cat ChaosDE Sinai

CFE 1781900 1387600 1850600 1868300
Time (s) 1294.516 1026.029 1403.32 1432.738

Table 13 Average difference from Global minimum for the Griewangk’s function: 2D–8D

Dim. Known
Value

Canonical
DE

ChaosDE
Dissipative

ChaosDE Arnold
Cat

ChaosDE
Sinai

2 0 6.86.10-3 5.78.1023 6.84.10-3 8.03.10-3

4 0 0.112184 0.0925748 0.126363 0.115032
6 0 0.335629 0.307843 0.338102 0.337148
8 0 0.595801 0.505621 0.570298 0.528804

Table 14 Average CFE and evaluation time for the Griewangk’s function: 10D

Canonical DE ChaosDE Dissipative ChaosDE Arnold Cat ChaosDE Sinai

CFE 327400 242500 334600 333100
Time (s) 217.838 192.542 240.192 338.513
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systems are comparable with the results of canonical DE. The Fig. 9 shows the
evolution of the cost function value in time (iterations). Time (iterations) are
converted here to a number of cost function evaluations, where in each iteration
the cost function is evaluated exactly as many times as there are individuals
(solutions) in the population.

Based on data presented in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and an
illustrative example of the time evolution of the cost function values depicted in
Fig. 9, the results can be summarized as follows:

Using the Dissipative standard map has significantly improved performance of
DE for both experiments.

Using the Sinai map or Arnold’s cat map in specific cases helped to improve the
behavior of the DE for higher dimension problems; however, for lower dimension
problems it is comparable to the performance of canonical DE.

7 Conclusion

In this paper chaos driven DE were tested and compared with canonical DE
strategy.

Based on obtained results, it may be claimed, that the developed ChaosDE
driven by means of the chaotic Dissipative standard map gives better results than
other compared heuristics. Furthermore, all obtained results point to the fact that
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Fig. 9 Example of the time evolution of the cost function values for Schwefel’s function and the
second experiment—10D
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they are very sensitive to the selection of chaotic system being used as a random
generator. Any change in the selection of chaotic system or its parameter
adjustment can cause radical improvement of DE performance, however on the
downside it can cause a worsening of observed parameters and subsequently the
behavior of the evolutionary algorithms as well.

Since this was an initial study, future plans include experiments with bench-
mark functions in higher dimensions, testing of different chaotic systems and
obtaining a large number of results to perform statistical tests.

Furthermore chaotic systems have additional parameters, which can by tuned.
This issue opens up the possibility of examining the impact of these parameters to
generation of random numbers, and thus influence on the results obtained using
differential evolution. One of possible approach in this issue is to use meta-
evolution.
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