
Chapter 7
Black Hole Microstate Geometries
from String Amplitudes

David Turton

Abstract In this talk we review recent calculations of the asymptotic supergravity
fields sourced by bound states of D1 and D5-branes carrying travelling waves.
We compute disk one-point functions for the massless closed string fields. At large
distances from the branes, the effective open string coupling is small, even in the
regime of parameters where the classical D1-D5-P black hole may be considered.
The fields sourced by the branes differ from the black hole solution by various mul-
tipole moments, and have led to the construction of a new 1/8-BPS ansatz in type
IIB supergravity.

7.1 Introduction

Black holes provide (at least) two major challenges for any theory of quantum gravity:
to give a microscopic interpretation of the Bekenstein-Hawking entropy [1, 2], and
to resolve the information paradox [3]. String theory promises to pass both tests:
the microscopic interpretation of the Bekenstein-Hawking entropy is provided by
enumerating microstates of the black hole [4–6], and studying the properties of these
microstates promises to resolve the information paradox.

The information paradox states, roughly, that if a classical black hole metric with
a horizon is a valid description of a physical black hole in Nature, then Hawking
radiation leads to a breakdown of unitarity or exotic remnant objects (for a recent
rigorous treatment, see [7]). A conservative way of avoiding these pathologies is to
ask whether the physics of individual black hole microstates modifies the process of
Hawking radiation.

The study of the gravitational description of individual microstates has motivated
a ‘fuzzball’ picture of a black hole [8, 9]. The fuzzball conjecture is composed of two
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parts: firstly that quantum effects are important at the would-be horizon of a black
hole, making Hawking radiation a unitary process; secondly, that the mechanism
underlying this is that the quantum bound state of matter making up the black hole
has a macroscopic size, of order the horizon scale.

To investigate this conjecture, one must understand the characteristic size of (the
wavefunctions of) individual bound states. A fruitful line of inquiry has been to
construct and analyze classical supergravity solutions describing the gravitational
fields sourced by semiclassical/coherent states of the Hilbert space of the black
hole (for reviews, see [10–13]). Supergravity solutions which describe individual
microstates have been found not to have horizons themselves.

Given such a supergravity solution however, it may not always be clear whether
it corresponds to a black hole microstate (see e.g. [14, 15]). In this talk we describe
calculations which directly associate supergravity fields with the microscopic bound
states they describe. We consider particular bound states of D-branes, and derive
the asymptotic supergravity fields from worldsheet amplitudes. The amplitudes are
disk-level one-point functions for the emission of massless closed string fields.

We first derive the fields sourced by a D1-brane with a travelling wave and relate
them to the previously known two-charge supergravity fields [16, 17]. We then derive
the fields sourced by a D1-D5 bound state with a travelling wave and find a new set
of three-charge supergravity fields, more general than previously considered [18].
The results reviewed here appeared in the papers [19] and [20].

This talk is structured as follows. In Sect. 7.2 we introduce the calculation and
discuss its regime of validity. In Sect. 7.3 we review the D1-P calculation, and in
Sect. 7.4 we review the D1-D5-P calculation.

7.2 The Calculation and its Regime of Validity

The procedure we follow for calculating the asymptotic fields sourced by D-brane
bound states was developed in [21–24]. First, we calculate the momentum-space
amplitude A(k) for the emission of a massless closed string. We then extract the
field of interest (e.g. graviton), multiply by a free propagator, and Fourier transform
to obtain the spacetime one-point function.

For applications to black holes, given N D-branes we are interested in the regime
gs N � 1, where a classical black hole solution might be relevant. The naive open
string coupling is also gs N , so it seems we are out of the regime of open string
perturbation theory (see e.g. [5]).

However if one considers the above calculation for the fields at a distance r from
the bound state (Fig. 7.1), one finds that the effective open string coupling is in fact

ε = gs N

(
α′

r2

)7−p
2

. (7.1)
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r

Fig. 7.1 For the calculation of the fields at large distances r from a bound state of N Dp-branes,

the effective open string coupling is small if r7−p � gs N
√
α′7−p

This effective open string coupling may be understood as follows. The next order in
open string perturbation theory corresponds to adding an extra border to the string
worldsheet. The factor of N comes from the N choices of which Dp-brane the open
string endpoints can end on. The extra border on the worldsheet also introduces a loop
momentum integral, two extra propagators, and reduces the background superghost
charge by two units. This results in the above powers of α′

r2 , as discussed in detail
in [20].

The next order in closed string perturbation theory corresponds to adding handles
to the closed string propagator, which we suppress by working at gs � 1. Thus we
work in the following regime of parameters:

gs � 1, gs N

(
α′

r2

)7−p
2 � 1. (7.2)

Thus one can simultaneously consider gs N � 1, provided r is sufficiently large.
One can rephrase the second condition above as saying that disk amplitudes

give the leading contribution to the fields at lengthscales much greater than the

characteristic size of the D-brane bound state, r7−p � gs N
√
α′7−p

. A similar
perturbative expansion was made some time ago in the field theory analogue of our
calculation [25].

Since the fields in which we are interested are massless, the emitted closed string
state has non-zero momentum only in the four non-compact directions of the R

4, i.e.
a spacelike momentum. The momentum-space amplitude A(k) mentioned above is
defined by analytically continuing k to complex values such that we impose k2 = 0,
i.e. the emitted string state is treated as on-shell [23].

One can ask whether this procedure fails to capture any physics relevant to the
calculation. For example, one could add to the amplitude A(k) a contribution pro-
portional to any positive power of k2, which would vanish if k2 = 0. Suppose we add
a term proportional to k2; then multiplying by a free propagator 1/k2 and Fourier
transforming gives a Dirac delta-function in position space. Similarly, higher powers
of k2 correspond to derivatives of the delta-function in position space. This signifies
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that these terms are relevant for physics very close to the location of the D-brane,
and do not affect the large distance behaviour of the supergravity fields.

7.3 The Two-Charge D1-P Amplitude

We consider type IIB string theory on R
1,4 × S1 × T 4. We denote the 10D coor-

dinates (xμ,ψμ) by μ, ν = t, y, 1, . . . , 8. We use (i, j, . . .) and x1, . . . , x4 for the
R

4 directions, we use (a, b, . . .) and x5, . . . , x8 for the T 4 directions and we use
(I, J, . . .) to refer to the combined R

1,4 × S1 directions. We work in the light-cone
coordinates

v = (t + y), u = (t − y) (7.3)

constructed from the time and S1 directions. We consider a D1-brane wrapped around
y and carrying a v-dependent travelling wave:

v u R
4 T 4

D1 x x fi (v) fa(v) = 0
(7.4)

Here “x” denotes a Neumann direction and f indicates the (v-dependent) position
of the D-brane in the Dirichlet directions. From the start we set the profile along the
T 4 directions to be trivial, fa = 0. The D1-P amplitude is depicted in (Fig. 7.2). An
analogous calculation may be performed for the case of a D5-brane wrapped on the
T 4 × S1 directions, and both these amplitudes contribute to the D1-D5-P amplitude
that we discuss in the next section.

The boundary conditions on the worldsheet fields in the open string picture may
be expressed in terms of a reflection matrix R as

Fig. 7.2 The one-point func-
tion for emission of the closed
string state W from a disk
ending on a D1 brane with
profile f

W
D1f
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ψ̃μ = η Rμν (v)ψν (7.5)

∂Xμ
R = Rμν (v)δXν

L − δμu 4α′ f̈ j (v)ψ jψv (7.6)

where η can be set to 1 at σ = 0, while at σ = π we have η = 1 or η = −1
corresponding to the NS and R sectors respectively. In the above we use a bold letter
for the string field corresponding to the coordinates

xμ(z, z̄) = 1

2

[
X L(z) + X R(z̄)

]
. (7.7)

The holomorphic and the anti-holomorphic world-sheet fields are then identified with
the reflection matrix R where (see [19] and references within)

Rμν =

⎛
⎜⎜⎝

1 0 0 0
4| ḟ (v)|2 1 −4 ḟi (v) 0
2 ḟi (v) 0 1 0

0 0 0 1

⎞
⎟⎟⎠ , (7.8)

where 1 denotes the four-dimensional unit matrix and the indices follow the ordering
(v, u, i, a).

The most direct way to derive the one-point functions in the current setup is to use
the boundary state formalism [23]. The calculation we now review was carried out
in [19] by using the boundary state for a D-brane with a null wave derived in [26–28].

The wrapped D1-brane may be viewed as a set of nw different D-brane strands,
with a non-trivial holonomy gluing these strands together. Each strand carries a
segment of the full profile f i

(s), with s = 1, . . . , nw. The boundary state describing
the wrapped D1-brane can be expanded in terms of the closed string perturbative
states. The first terms of this expansion are

|D1; f 〉 = − i
κ τ1

2

nw∑
s=1

∫
du

2πR∫
0

dv

∫
d4 pi

(2π)4 e−i pi f i
(s)(v) c0 + c̃0

2
(7.9)

× c1c̃1

[
−ψμ− 1

2
(t R)μνψ̃

ν
− 1

2
+ γ− 1

2
β̃− 1

2
− β− 1

2
γ̃− 1

2
+ . . .

]

× |u, v, pi , 0〉−1,−̃1

where τ1 = [2πα′gs]−1 is the physical tension of a D1-brane, and where tR is the
transpose of R. The ket in (7.9) represents a closed string state obtained by acting on
the SL(2, C) invariant vacuum with an eipi xi

in the R
4 directions. We wrote the delta

functions on the pu and pv momenta as integrals in configuration space du, dv. The
boundary state enforces the identification (7.5), which in the approximation (7.9)
holds just for the first oscillator ψ̃μ−1/2.
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The second line of (7.9) contains all the massless NS-NS states; we can separate
the irreducible contributions by taking the scalar product with each state. Having
done this, the contribution to the NS-NS couplings is

Adil(k) = − i
κ τ1

2
Vu

√
2φ̂

LT∫
0

d v̂ e−ik· f (v̂) , (7.10)

Agra(k) = − i
κ τ1

2
Vu

LT∫
0

d v̂ e−ik· f (v̂)

[
−3

2
(−ĥt t + ĥ yy) (7.11)

+1

2
(ĥi i + ĥaa) − 2ĥvv| ḟ |2 + 4ĥvi ḟ i

]

where Vu is the (divergent) volume along the u direction and the integrals over v in
each strand in (7.9) have become a single integral over the multi-wound worldvolume
coordinate v̂ which runs from 0 to LT = 2πnw R.

For the R-R coupling, we simply recall the results of [19]:

ARR(k) = −i
√

2κ τ1Vu

LT∫
0

d v̂ e−ik· f (v̂)
[
2Ĉ (2)

uv + Ĉ (2)
vi ḟ i

]
. (7.12)

The next step is to multiply by a free propagator and Fourier transform to find the
position-space massless fields. After doing this, one finds agreement with the known
D1-P solutions obtained by an S-duality of the solutions of [16, 17]. Further details
may be found in [19].

7.4 The Three-Charge D1-D5-P Amplitude

We next consider a D1-D5 bound state carrying a travelling wave; the black hole
solution with the same charges has a macroscopic horizon [5], and so this case is
more interesting and richer than that of the previous section.

We consider a D1-D5 bound state with a common travelling-wave profile fi (v)

along the branes. The D5-brane is wrapped on the T 4 × S1.

v u R
4 T 4

D1 x x fi (v) fa(v) = 0
D5 x x fi (v) x

(7.13)



7 Black Hole Microstate Geometries from String Amplitudes 261

The disk amplitude of most interest in this setup is the one where the disk has half
its boundary on a D1 and the other half on the D5, and two twisted vertex operator
insertions, as studied in [29, 24].

The vertex operators take the form

Vμ = μAe− ϕ
2 SA Δ, Vμ̄ = μ̄Ae− ϕ

2 SA Δ (7.14)

where μA and μ̄A are Chan-Paton matrices with n1 × n5 and n5 × n1 components
respectively, SA are the SO(1, 5) spin fields, ϕ is the free boson appearing in the
bosonized language of the worldsheet superghost (β, γ), and Δ is the bosonic twist
operator with conformal dimension 1

4 which acts along the four mixed ND directions
and changes the boundary conditions from Neumann to Dirichlet and vice versa.

We focus on open string condensates involving the Ramond sector states only.
These states break the SO(4) symmetry of the DD directions R

4, and are invariant
under the SO(4) acting on the compact T 4 torus. The most general condensate of
Ramond open strings can be written as:

μ̄A μB = vI (CΓ I )[AB] + 1

3! vI J K (CΓ I J K )(AB), (7.15)

where the parentheses indicate that the first term is automatically antisymmetric,
while the second is symmetric. The open string bispinor condensate is thus specified
by a one-form vI and an self-dual three-form vI J K . The self-duality of vI J K follows
from μ̄A and μB having definite 6D chirality and can be written as

vI J K = 1

3!εI J K L M N vL M N . (7.16)

In this talk we consider only the components of vI J K which have one leg in the
t, y directions and two legs in the R

4; this choice of components was associated to
considering profiles only in the R

4 directions in [24]. Since the spinors μ̄A and μB

carry n5 ×n1 and n1 ×n5 Chan-Paton indices, the condensate μ̄AμB must be thought
of as the vev for the sum

n1∑
m=1

n5∑
n=1

μ̄A
mn μ

B
nm , (7.17)

which, for generic choices of the Chan-Paton factors, is of order n1n5.
The open string insertions (7.14) are related to the vevs of the strings stretched

between the D1 and D5 branes, which we are treating perturbatively. The microstates
for which we might expect a gravitational description have large open string vevs, so
in principle we should resum amplitudes with many twisted vertices. However each
pair of open string insertions (7.14) comes with a factor of 1/r in the large distance
expansion of the corresponding gravity solution [24, 20].

Thus in the following we focus only on the leading contributions at large distances
which are induced by the amplitudes with one border and one pair of open vertices
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Fig. 7.3 The simplest ampli-
tude involving all three
charges of the D1-D5-P
microstate: the worldsheet
topology is that of a mixed
disk diagram where part of the
border lies on the D1 brane
and part on the D5 brane

Vµ

Vµ̄

WD1 f D5 f

Vμ, Vμ̄ (see Fig. 7.3). This should be sufficient to derive the sourced supergravity
fields up to order 1/r4.

Thus the amplitude we now calculate is

AD1-D5
N S,R =

∫ ∏4
i=1 dzi

dVCKG

〈
Vμ(z1) W (−k)

N S,R(z2, z3) Vμ̄(z4)
〉

f
, (7.18)

where the subscript f is to remind that, in this disk correlator, the identification
between holomorphic and anti-holomorphic components depends on the profile of
the D-branes through (7.5–7.8).

In order to have a non-trivial correlator we must saturate the superghost charge
(−2) of the disk. The two open string vertices together contribute −1, thus in the NS
sector we use the closed string vertex operator in the (0,−1) picture,

W (k)
N S = Gμν

(
∂Xμ

L − i
k

2
·ψ ψμ

)
ei k

2 ·X L (z) ψ̃νe−ϕ̃ei k
2 ·X R (z̄) + . . . , (7.19)

where the dots stand for other terms that ensure the BRST invariance of the vertex,
but that do not play any role in the correlator under analysis.

We will not review the intermediate steps of the calculation here; details are given
in [20]. We move on to discuss the spacetime fields which result from the calculation.
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7.4.1 New D1-D5-P Geometries

The fields obtained from the calculation of the previous section fit into the following
ansatz, which solves the supergravity equations perturbatively1 in 1/r up to 1/r4.
Using the short-hand notation

dt̂ = dt + k, d ŷ = dy + dt − dt + k

Z3
+ a3 , (7.20)

the ansatz (in the string frame) is

ds2 = 1√
Z1 Z2

[
− 1

Z3
dt̂2 + Z3 d ŷ2

]
+ √

Z1 Z2 ds2
4 +

√
Z1

Z2
ds2

T 4 ,

B = −Z4 dt̂ ∧ d ŷ + a4 ∧ (dt̂ + d ŷ) + δ2 ,

e2φ = Z1

Z2
C (0) = Z4,

C (2) = − 1

Z1
dt̂ ∧ d ŷ + a1 ∧ (dt̂ + d ŷ) + γ2 , (7.21)

F (5) = d Z4 ∧ dz4 + Z2

Z1
∗4 d Z4 ∧ dt̂ ∧ d ŷ ,

where ds2
4 is a generic Euclidean metric on R

4; ds2
T 4 is the flat metric on T 4; Z I are

0-forms, k, aI are 1-forms, and γ2, δ2 are 2-forms on R
4. The above quantities are

subject to the conditions

dδ2 = ∗4da4 , dγ2 = ∗4d Z2 , (7.22)

and we take the asymptotic boundary conditions

Z1, Z2, Z3 = 1 + O(r−2), Z4 = O(r−4),

k, a1, a3, a4 = O(r−3), ds2
4 = dxi dxi + O(r−4). (7.23)

The above fields satisfy the approximate supergravity Killing spinor equations up
to order 1/r4. It turns out, however, that one can keep the full r dependence of the
string results and still satisfy the approximate supergravity Killing spinor equations,
to linear order in the condensate vI J K .

The full r dependence of the supergravity fields describes the small gs N and
small vI J K limit, i.e. the weak gravity regime and the region of the Higgs branch
infinitesimally close to its intersection with the Coulomb branch. If one is interested

1 This ansatz was later extended to a full non-linear supergravity ansatz in [30]. Solutions have been
studied in [31].
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in the black hole regime (large gs N and finite vI J K ), one should keep only the large
r limit (up to 1/r4 order) of the following results.

We next review the most interesting features of the string amplitude; for the full
set of fields see [20]. If we set Z4 and a4 to zero, the ansatz reduces to that in [18].
These ‘new’ fields are thus the most interesting. The disk amplitude gives

Z4 = −vu jk ∂ j

[
1

LT

∫ LT

0
d v̂

ḟk

|xi − f i |2
]
, (7.24)

a4 = vui j ∂ j

[
1

LT

∫ LT

0
d v̂

| ḟ |2
|xi − f i |2

]
dxi (7.25)

where we have absorbed some factors multiplying the open string condensate,

vI J K = − 2
√

2nwκ

πV4
vI J K . (7.26)

Note that the new fields above vanish in either of the two-charge limits in which
we set either vI J K or f to zero.

Another interesting outcome of our calculation is that it predicts that the 4D base
metric ds2

4 , which is simply the flat metric on R
4 in the 2-charge case, is a non-trivial

hyper-Kähler metric when all three charges are present. The base metric which arises
from the string amplitude is

ds2
4 =

(
δi j + vuli ∂lI j + vul j ∂lIi − δi j vulk ∂lIk

)
dxi dx j , (7.27)

where

I j = 1

LT

∫ LT

0
d v̂

ḟ j

|xi − f i |2 . (7.28)

The non-flatness of the base metric for 3-charge microstate geometries was previ-
ously observed in the particular solution of [32], but had remained until now largely
unexplained. It is nice to see that the disk amplitudes lead directly to this feature.

7.5 Summary

In this talk we have seen how disk amplitudes can be used to derive the asymptotic
supergravity fields sourced by bound states of D-branes. At large distances from
the bound state, the effective open string coupling is small, even in the regime of
parameters in which there is a classical black hole solution with the same charges.

The supergravity fields differ from the black hole solution by various multipole
moments, suggesting that the D1-D5-P black hole solution is not an exact description
of the gravitational fields sourced by individual microstates. Rather the black hole
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solution is likely to be an approximate thermodynamic description of the entire
system. Thus the results reviewed here support the fuzzball proposal.

It would be interesting to apply the techniques reviewed here to other D-brane
bound states, and we hope that this will lead to an improved understanding of the
physics of black holes in string theory.
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