
Chapter 6
Non-extremal Black Holes from
the Generalised R-map

Thomas Mohaupt and Owen Vaughan

Abstract We review the timelike dimensional reduction of a class of five-
dimensional theories that generalises 5D, N = 2 supergravity coupled to vector
multiplets. As an application we construct instanton solutions to the four-dimensional
Euclidean theory, and investigate the criteria for solutions to lift to static non-extremal
black holes in five dimensions. We focus specifically on two classes of models: STU-
like models, and models with a block diagonal target space metric. For STU-like
models the second order equations of motion of the four-dimensional theory can be
solved explicitly, and we obtain the general solution. For block diagonal models we
find a restricted class of solutions, where the number of independent scalar fields
depends on the number of blocks. When lifting these solutions to five dimensions we
show, by explicit calculation, that one obtains static non-extremal black holes with
scalar fields that take finite values on the horizon only if the number of integration
constants reduces by exactly half.

6.1 Introduction

Black holes provide an important testing ground for string theory and other theories
of quantum gravity. Theories with extended supersymmetry allow for extremal BPS
black hole solutions, and for certain examples the microscopic and macroscopic
entropy has been calculated with agreement to leading order [1, 2], and even to
higher orders when including R2 corrections [3–5]. Interestingly, the entropy of cer-
tain near-extremal black holes can also be calculated [6–10], with at least leading
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order agreement. In order to improve on this analysis it is critical to have a sys-
tematic understanding of non-extremal black hole solutions of lower-dimensional
supergravity theories. This naturally leads one to consider maps between the various
special geometries of N = 2 supergravity through dimensional reduction, which are
also interesting mathematically. These go by the names of the r-map and c-map, and
although they have been known for some time [11–14], they have also seen much
recent interest, a small sample of which is given by [15–23]. Dimensional reduction
over time need not be restricted to supersymmetric theories [24–27], with the stan-
dard reference for non-linear sigma models coupled to vector fields and gravity being
the seminal paper [28]. Since static, single-centred black hole solutions correspond
to geodesics in the target manifold of the image of these maps, there exists a rich
interplay between physical objects and geometrical constructions.

We will review the procedure presented in [29] for producing non-extremal static
black hole solutions to a large class of five-dimensional theories, which includes
N = 2 supergravity coupled to vector multiplets as a subclass. The method is based
on [30], and uses dimensional reduction (the r-map) over a timelike direction followed
by a specific field redefinition, which can be understood as follows: The physical
scalar fields parametrise a hypersurface in a larger ambient space (a d-conical affine
special real manifold). The field redefinition combines the physical scalar fields with
the Kaluza-Klein scalar, which can be used to parametrise the direction orthogonal
to the hypersurface. The new scalar fields then parametrise the whole of the ambient
space. After this procedure the effective Lagrangian for static, spherically symmetric
and purely electric backgrounds takes the particularly simple form:

e−1
4 L4 = 1

2 R4 − 3
4 aI J (σ)

(
∂μσ

I∂μσ J − ∂μbI∂μbJ
)
.

Here σ I are the scalars fields which combine the original five-dimensional phys-
ical scalars with the Kaluza-Klein scalar. The axionic scalar fields bI descend from
the gauge sector, and represent the electric potentials.

Solving the equations of motion corresponds to constructing harmonic maps from
reduced spacetime into a target manifold, which becomes enlarged due to the dimen-
sional reduction procedure. We focus on STU-like models, for which the general
solution to the full second order equations of motion can be found. This is a class of
models that contains the STU model along with specific generalisations that share
the same feature of having a diagonal target space metric. We also consider models
with block diagonal target space metrics, where a restricted class of solutions can be
found that is based on the solutions to STU-like models. We will see that the number
of independent scalar fields in these solutions depends on the number of blocks in
the metric. For all models this provides one universal solution with constant scalar
fields, because all metrics can be thought of as having at least one block (the whole
metric).

We then investigate the criteria for solutions to correspond to static, non-extremal
black holes in the five-dimensional theory with scalar fields that take finite values on
the horizon. We find that the number of integration constants must reduce by half,
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which is suggestive of a first order rewriting. While first order equations governing
examples of non-extremal black holes have been known for some time [17, 26, 27,
31–35], it has previously been used (to our knowledge) only as an ansatz for obtaining
specific non-extremal solutions. The logic presented here is different. We consider
the most general type of solution and then restrict it to solutions that describe non-
extremal black holes. For STU-like models all calculations are performed explicitly,
and actually rather simply.

Since this method does not rely critically on supersymmetry, we are able to con-
sider a larger class of theories than 5D, N = 2 supergravity coupled to vector
multiplets. This is achieved by generalising the geometry of the target manifold
of the scalar fields in two ways: first, we do not require that the Hesse potential
(often called the prepotential) is a homogeneous polynomial, but just a homoge-
neous function. Second, we allow the degree of homogeneity not just to be three,
but to be arbitrary. Mathematically, this means that we replace the projective special
real target manifold, which is required for 5D, N = 2 supergravity [36], with a
generalised projective special real manifold. The generalisation is captured in the
degree of homogeneity of the Hesse potential of the corresponding d-conical affine
special real manifold [37]. The kinetic terms of the gauge fields also get modified
in an appropriate fashion. We refer to the dimensional reduction of such a theory
as the generalised r-map. Various geometrical aspects of this map have been dis-
cussed in [37], and the analogous generalisation of the rigid r-map has been also
been considered in [38].

6.1.1 The Reissner-Nordström Black Hole

Let us first briefly review the five-dimensional Reissner-Nordström black hole, which
will be our guiding example. This is a static, spherically symmetric and purely electric
solution to a five-dimensional theory of gravity coupled to a single U(1) gauge field.
The line element for this solution can be written as

ds2
5 = − W

H2 dt2 + H
(

W −1dr2 + r2dΩ2
(3)

)
, (6.1)

where the functions H and W are given by

H = 1 + q

r2 , W = 1 − 2c

r2 ,

and are harmonic functions with respect to the flat metric on R
4, i.e.

Δ4H = Δ4W = 0.
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The parameter q is the electric charge, and c is the non-extremality parameter. The
mass is given by m2 = q2 − c2. In these coordinates the solution has an outer event
horizon at r = 2c and an inner Cauchy horizon at r = 0. One can analytically
continue these coordinates to the singularity, which is located at r = −√

q . The
extremal limit in given by c → 0, in which case W → 1. It will be useful later to
decompose the five-dimensional metric according to

ds2
5 = −e2σ̄φdt2 + e−σ̄ds2

4 ,

which for the Reissner-Nordström metric corresponds to

eσ̄ =
√

W

H , ds2
4 = dr2

√
W

+ √
Wr2dΩ2

(3). (6.2)

The simple example of the Reissner-Nordström black hole gives us some impor-
tant clues about non-extremal solutions:

(i) The solution is built from harmonic functions on R
4.

(ii) The four-dimensional line element is flat in the extremal limit.
(iii) The non-extremal solution is obtained by dressing the extremal solution with

one additional harmonic function W .

We will see that these key features of the Reissner-Nordström black hole are also
true of more complicated non-extremal solutions.

6.2 Generalising 5D, N = 2 Supergravity

Before we write down the Lagrangian of the class of theories under consideration,
we will first give a mathematical description of generalised projective special real
geometry, which is a generalisation of the geometry of 5D vector multiplets. This
is based in part on [37], work in progress with Vicente Cortés and the first author,
and a summary given in [39]. The less mathematically inclined reader may skip this
section and move directly to Sect. 6.2.2.

6.2.1 Generalising Special Real Geometry

A d-conical affine special real manifold (M, g,∇, ξ) is a pseudo-Riemannian
manifold (M, g) of dimRM = (n + 1) equipped with a flat, torsion free ‘special’
connection ∇ and vector field ξ such that

(i) ∇g is completely symmetric.
(ii) Dξ = d

2 1l, where D is the Levi-Civita connection.
(iii) ∇ξ = 1l.
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Let us discuss each condition in turn. Firstly one can define a natural set of special
coordinates hI that are flat with respect to ∇, i.e.

∇dhI = 0 , ⇒ ∇I = ∂I .

With respect to these coordinates the condition (i) ensures that

∂

∂hI
gJ K (h) = ∂

∂h J
gI K (h),

and, hence, the metric g is given by the second derivatives of a function

g = ∂2 H.

Such a function is referred to a Hesse potential, and it is not unique. For condition
(ii) we follow a similar analysis to [40], which deals with the particular case d = 2.
This condition implies that ξ is a homothetic Killing vector field of weight d

Lξg = dg.

Moreover it ensures that the manifold has the property of being d-conical, which
means there always exists a coordinate system (r, xi ), with rd = g(ξ, ξ), such that
the metric decomposes as

g = rd−2dr2 + rd ḡ(xi ).

In these coordinates ξ = r ∂
∂r . One can then define the new coordinates y I = (r, r xi ),

for which the homothetic Killing vector ξ becomes an Euler vector field

ξ = y I ∂

∂y I
.

In such coordinates the metric components are homogeneous functions of degree
(d − 2)

ξgI J (y) = (d − 2)gI J (y),

which can be deduced from the fact that
[
ξ, ∂

∂y I

]
= − ∂

∂y I . The last condition (iii)

can be seen as a compatibility condition between the previous two conditions. It
ensures that ξ is the Euler field associated with the special coordinates

ξ = hI ∂

∂hI
,

and, hence, the metric components are homogeneous functions of degree (d − 2)

with respect to the special coordinates hI . It follows that one can always choose a
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unique Hesse potential that is homogeneous of degree d, which is given by

H = 1

d(d − 1)
gI J h I h J .

In order to obtain physically relevant signatures we will require this Hesse potential
to be strictly positive.

It is convenient to introduce a second metric on M , given by

a = ∂2 H̃ ,

where H̃ := − 1
d log H . We can write this metric in a basis of special coordinates as

a = aI J dhI ⊗ dh J = − 1

d

(
HI J

H
− HI HJ

H2

)
dhI ⊗ dh J , (6.3)

where HI , HI J are the first and second derivatives of the Hesse potential. If the
metric g has signature (+ − . . . −), which is the case for supergravity, then a is
strictly positive definite. The vector field ξ acts as an isometry of the metric a

Lξa = 0.

We define a generalised special real manifold (M̄, ḡ) as a hypersurface of constant
H in a d-conical affine special real manifold, with metric induced from a. If dimR

M = (n + 1) then dimRM̄ = n. It is particularly convenient to consider the hyper-
surface defined by H = 1

M̄ � {H = 1} ⊂ M,

and we denote the embedding of M̄ into M given by the hypersurface H = 1 by
i : M̄ → M . For this embedding both the pull-back of − 1

d g and a give the same
metric on M̄

ḡ = i∗
(

− 1

d
∂2 H

)
= i∗

(
∂2 H̃

)
.

Let φx denote local coordinates on M̄ , which therefore parametrise the hypersurface
H = 1. The metric can be written as

ḡ = ḡxydφx ⊗ dφy =
(

aI J
∂hI

∂φx

∂h J

∂φy

) ∣∣∣∣
H=1

dφx ⊗ dφy .

A particularly natural set of coordinates is given by

φx = hx

h0 , h0 = Ĥ(φ1, . . . ,φn)−
1
d := H

(
1,

h1

h0 , . . . ,
hn

h0

)− 1
d

. (6.4)
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These are analogous to the inhomogeneous special coordinates zi = Xi/X0 on a
projective special Kähler manifold. It is worth noting that one can also realise M̄ as
the quotient manifold M/R

>0 with quotient metric obtained from (M, a).
For the special case that d = 3 and the Hesse potential is a polynomial then

(M̄, ḡ) represents the target manifold of 5D, N = 2 supergravity coupled to vec-
tor multiplets [36]. The matrix aI J restricted to the hypersurface H = 1 provides
the kinetic term for the gauge fields. We will make the same identifications when
considering more general Lagrangians, only we no longer require that d = 3 or the
Hesse potential is a polynomial.

6.2.2 Generalising the Lagrangian

We are now ready to generalise the Lagrangian of five-dimensional N = 2 super-
gravity coupled to n abelian vector multiplets. Our starting point is the Lagrangian
of a five-dimensional theory of gravity coupled to n scalar fields and (n + 1) abelian
gauge fields

e−1
5 L5 = 1

2 R5 − 3
4 ḡxy∂μ̂φ

x∂μ̂φy − 1
4 aI J F I

μ̂ν̂F J μ̂ν̂, (6.5)

We could also have included a Chern-Simons term, however this will not be relevant
for solutions which are static and purely electric. Likewise for fermionic terms.
Spacetime indices run from μ̂ = 0, . . . , 4, and target space indices from x = 1, . . . n,
I = 0, . . . , n. The coupling matrices ḡxy and aI J depend only on φx .

The scalar fields form a non-linear sigma model with values in an n-dimensional
target manifold that we require to be generalised projective special real (as defined in
the previous section). The matrix aI J are the components of the tensor field (6.3) on
the corresponding d-conical affine special real manifold. We will require that gI J has
signature (+ − . . . −), and, hence, aI J is positive definite. One obtains a projective
special real manifold, and therefore 5D, N = 2 supergravity, for the special case
when d = 3 and the Hesse potential is a polynomial.

We prefer not to work with the n physical scalar fields φx but rather the (n + 1)

special coordinates hI , which are subject to the hyper-surface constraint

H(h) = 1. (6.6)

Here H is a smooth homogeneous function of degree d, and represents the Hesse
potential of the corresponding d-conical affine special real manifold. It is often
convenient to choose the parametrisation given by (6.4), where φx and hI can be
related explicitly. In the Lagrangian one must make the replacement

ḡxy(φ)∂μ̂φ
x∂μ̂φy → aI J (h)∂μ̂hI∂μ̂h J

∣∣∣
H=1

,
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and, hence, the Lagrangian can be written as

e−1
5 L5 = 1

2 R5 − 3
4 aI J∂μ̂hI∂μ̂h J − 1

4 aI J F I
μ̂ν̂F J μ̂ν̂, (6.7)

where it is understood that the scalar fields hI are now subject to the constraint (6.6).
Two advantages of using the special coordinates hI are immediately clear: we now
have the same number of scalar fields as gauge fields, and the coupling matrices are
the same. The coupling matrix aI J can be written in these coordinates as

aI J (h) = ∂2
I,J H̃(h),

where as in the previous section H̃ := − 1
d log H . The details of the model are

completely determined by the Hesse potential H .

6.3 Dimensional Reduction and Equations of Motion

We now impose that backgrounds are static, and make the following decomposition
of the five-dimensional metric:

ds2
5 = −e2σ̄dt2 + e−σ̄ds2

4 ,

We impose further that backgrounds are purely electric, so the gauge vector and field
strength decompose as

AI =
√

3

2
bI dt + C I

μdxμ, C I
μ = const.

Choosing C I
μ to be constant ensures that the magnetic components of the field

strengths F I
μ̂ν̂

vanish, and we can write

F I
μ̂ν̂F J μ̂ν̂ = −3e−2σ̃∂μbI∂μbJ .

The scalar fields bI represent the electric potentials. After integrating out the redun-
dant timelike dimension, the four-dimensional Lagrangian takes the form

e−1
4 L4 = 1

2 R4 − 3
4∂μσ̃∂

μσ̃ − 3
4 aI J (h)

(
∂μhI∂μh J − e−2σ̃∂μbI∂μbJ

)
.

We now combine the KK-scalar σ̃ and the constrained scalar fields hI into the new
scalar fields σ I

σ I := eσ̃hI . (6.8)
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The (n + 1) scalar fields σ I are unconstrained, as the KK-scalar absorbs the hyper-
surface constraint (6.6), which now becomes

H(σ) = edσ̃.

One can therefore interpret hI and the KK-scalar σ̃ as fields that depend on σ I ,
which are a set of independent fields. Since aI J (h) is homogeneous of degree −2
and aI J (h)hI∂μh J = 0 we have

aI J (h)∂μhI∂μh J = aI J (σ)∂μσ
I∂μσ J − ∂μσ̃∂

μσ̃,

The four-dimensional Lagrangian can now be written as

e−1
4 L4 = 1

2 R4 − 3
4 aI J (σ)

(
∂μσ

I∂μσ J − ∂μbI∂μbJ
)
. (6.9)

This Lagrangian encodes all the information about the theory for static and purely
electric backgrounds. It will be useful later to note that the scalar fields σ I satisfy
the relation

aI J (σ)σ Iσ J = 1. (6.10)

We will now impose that backgrounds are spherically symmetric. This is in fact
enough to completely determine the four-dimensional metric1

ds2
4 = c3

sinh3(2cτ )
dτ2 + c

sinh(2cτ )
dΩ2

(3). (6.11)

Here τ is an affine parameter in the radial direction, which is related to the standard
radial coordinate through

r2 = ce2cτ

sinh(2cτ )
. (6.12)

Subbing in r to the four-dimensional metric (6.11) one finds that it is nothing other
than the spatial part of the Reissner-Nordström metric with respect to the decompo-
sition (6.2)

ds2
4 = dr2

√
W

+ √
Wr2dΩ2

(3),

where

W = 1 − 2c

r2 = e−4cτ . (6.13)

The effective one-dimensional Lagrangian for spherically symmetric backgrounds
is given by

1 For a derivation see [29], and see [41] for a general formula for d ≥ 4 dimensions.
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L1 = 1
4 aI J (σ)

(
σ̇ I σ̇ J − ḃI ḃ J

)
, (6.14)

which must be supplemented by the Hamiltonian constraint

1
4 aI J (σ)

(
σ̇ I σ̇ J − ḃI ḃ J

)
= c2. (6.15)

The equations of motion for the one-dimensional Lagrangian (6.14) are

d

dτ

(
aI J (σ)σ̇ J

)
− 1

2∂I aJ K (σ)
(
σ̇ J σ̇K − ḃ J ḃK

)
= 0,

d

dτ

(
aI J (σ)ḃ J

)
= 0.

The equations of motion for bI can be solved immediately

aI J (σ)ḃ J = QI ,

where the QI are constant electric charges that correspond to the isometry bI →
bI + C I .

The remaining second order equation of motion for σ I becomes much simpler if
one introduces a natural set of dual coordinates σI , defined by

σI := ∂I H̃ = −aI J (σ)σ J .

It is clear that both coordinates σ I and dual coordinates σI are related algebraically.
The derivative of σI can by written using the chain rule as

σ̇I = d

dτ
σI = aI J (σ)σ̇ J .

Plugging the dual coordinates into the second order equations of motion and Hamil-
tonian constraint we find

σ̈I + 1
2∂I a J K (σ) (σ̇J σ̇K − Q J QK ) = 0, (6.16)

1
4 aI J (σ) (σ̇I σ̇J − QI Q J ) = c2. (6.17)

We are left to solve these equations of motion.
Extremal instanton solutions correspond to the choice c = 0. In this case the

equations of motion can be solved for arbitrary models by2

σ̇I = ±QI , ⇒ σI = AI ± QI τ .

2 These solutions necessarily lift to BPS black holes. If the metric of the target manifolds allows for
a field rotation matrix RI

K that satisfies aI J RI
K R J

L = aK L then one can generalise this ansatz to
produce solutions which lift to non-BPS black holes [30, 42, 43].
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Note that the number of possible independent integration constants from (n + 1)

second order differential equations should be (2n + 2), but in the extremal solution
above we only have (n +1) integration constants. This is because extremal solutions
must satisfy the first order attractor equations, of which much has already been
explained in the literature, see for example [30, 34].

We will now investigate non-extremal solutions where c �= 0. This turns out to be
considerably more difficult, as the non-extremality parameter entangles the second
order equations of motion in a highly non-trivial manner, and we can only find the
most general solution for specific models.

6.4 Instanton Solutions

6.4.1 General Solution of STU-like Models

Let us fix that we have n physical scalar fields φx and a generalised projective special
real target manifold. We will consider STU-like models, where the Hesse potential
on the corresponding d-conical affine special real manifold takes the form

H(h) =
(

h0h1 . . . hn
) d

(n+1)
,

or models that can be brought to this form by a linear transformation. We will only
consider patches where hI are pointwise non-zero, and note that by construction
the Hesse potential is strictly positive. This class of models actually generalises the
class of models for which solutions were found in [29], where only the special case
d = (n + 1) was considered. The supergravity STU model is given by the special
case n = 2 and d = 3. Using the formula (6.4) the hypersurface H = 1 can be
parametrised by the n physical scalar fields φx through

φx = hx

h0 , h0 = (φ1 . . .φn)
− 1

(n+1) . (6.18)

We now need to calculate the equations of motion (6.16) and (6.17) for this class
of models. The matrix aI J and its derivative can be calculated using (6.3), and are
given in terms of dual coordinates σI by

aI J = diag

(
1

(n + 1)σ2
0

, . . . ,
1

(n + 1)σ2
n

)
,

∂I a J K = diag

(
− 2

σ0
, . . . ,− 2

σn

)
.

The equations of motion then take the form
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σ̈I −
[
(σ̇I )

2 − (QI )
2
]

σI
= 0, (6.19)

∑
I

[
(σ̇I )

2 − (QI )
2
]

(n + 1)σ2
I

= 4c2. (6.20)

The second order Eqs. (6.19) for each coordinate σI completely decouple from one-
another, and can be explicitly integrated to find the general solution

σI = ± QI

BI
sinh

(
BI τ + BI

AI

QI

)
. (6.21)

The constraint (6.20) then relates the integration constants with the non-extremality
parameter

1

(n + 1)
(B0)

2 + . . . + 1

(n + 1)
(Bn)

2 = 4c2. (6.22)

One can either interpret c as a dependent parameter, or see this as a restriction on the
integration constants. Either way, after solving all equations of motion we are left
with (2n + 2) free parameters. Since the solution is invariant under BI → −BI we
can assume without loss of generality that the BI are non-negative. The Kaluza-Klein
scalar can be written in terms of the dual coordinates as

e−σ̃ = (−1)(n+1)(n + 1)(σ0 . . .σn)
1

(n+1) .

Note that upon setting c → 0 we immediately have BI → 0 due to (6.22). The
general solution then reduces to the extremal solution.

6.4.2 Block Diagonal Models

For models in which the matrix aI J splits into distinct blocks, or can be made to
do so be a linear transformation, we find a restricted class of solutions in which the
number of independent scalar fields is the same as the number of blocks. Solutions
to each block are given again by the general solution (6.21). We will demonstrate
this with an example that has two blocks.

Consider a model with n physical scalar fields and a generalised projective special
real target manifold with a corresponding Hesse potential that is homogeneous of
degree d. For a general Hesse potential the physical scalar fields can be written using
(6.4) as

φx = hx

h0 , h0 = Ĥ(φ1, . . . ,φn)−
1
d := H

(
1,

h1

h0 , . . . ,
hn

h0

)− 1
d

.
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We will assume that the metric aI J decomposes into precisely two blocks

aI J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ . . . ∗ 0 0 0
...

. . .
... 0 0 0

∗ . . . ∗ 0 0 0
0 0 0 ∗ . . . ∗
0 0 0

...
. . .

...

0 0 0 ∗ . . . ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us denote the size of the first block by k × k and the second block by l × l, so
that k + l = (n + 1). A Hesse potential that produces such a block diagonal metric
is given by

H(σ0, . . . ,σn) = H1(σ0, . . . ,σk−1)H2(σk, . . . ,σn).

We now set all scalar fields within each block to be proportional to one another

σ0 ∝ . . . ∝ σk−1, σk ∝ . . . ∝ σn,

which implies that the dual coordinates σI are proportional to one-another

σ(0) := σ0 ∝ . . . ∝ σk−1, σ(1) := σk ∝ . . . ∝ σn .

The solution is characterised by just two independent scalar fields σ(0) and σ(1) and
two electric charges Q(0) and Q(1), where

Q(0) := Q0 = σ1

σ0
Q1 = . . . = σk−1

σ0
Qk−1,

Q(1) := Qk = σk+1

σk
Qk = . . . = σn

σk
Qn .

There is only one independent physical scalar field

φ(1) := φk = σk

σk+1φ
k+1 = . . . = σk

σn
φn,

and the other physical scalars are constant

φ1 = σ1

σ2φ
2 = . . . = σ1

σk−1φ
k−1 = const.

The equations of motion reduce to
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σ̈(0) −
[
(σ̇(0))

2 − (Q(0))
2
]

σ(0)

= 0, (6.23)

σ̈(1) −
[
(σ̇(1))

2 − (Q(1))
2
]

σ(1)

= 0, (6.24)

ψ0

[
(σ̇(0))

2 − (Q(0))
2
]

σ2
(0)

+ ψ1

[
(σ̇(1))

2 − (Q(1))
2
]

σ2
(1)

= 4c2, (6.25)

where ψ0,ψ1 are fixed constants that depend on the ratios σx
σ0

, and from (6.10) they
must satisfy the identity

ψ0 + ψ1 = 1.

Just as for STU-like models, we can find the general solution to the second order
Eqs. (6.23), (6.24), which is given by

σ(0) = ± Q(0)

B(0)

sinh

(
B(0)τ + B(0)

A(0)

Q(0)

)
, (6.26)

σ(1) = ± Q(1)

B(1)

sinh

(
B(1)τ + B(1)

A(1)

Q(1)

)
, (6.27)

and the constraint (6.25) places one restriction on the integration constants

ψ0
(
B(0)

)2 + ψ1
(
B(1)

)2 = 4c2 . (6.28)

The solution naturally generalises to models with more than two blocks. For a metric
with two blocks we obtained solutions characterised by one non-constant scalar field.
With three blocks solutions will be characterised by two independent non-constant
scalar fields, etc. We can write the Kaluza-Klein scalar as

e−σ̃ = μ
(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1) ,

where μ is a fixed constant that depends on the ratios σx
σ0

.
Since every matrix can be thought of as having one block (the whole matrix), this

method provides at least one universal instanton solution for any model. In this case
all the physical scalar fields are constant. We will see in the next section that when
we lift the universal solution to five dimensions we obtain the Reissner-Nordström
black hole.
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6.5 Non-extremal Black Hole Solutions

The four-dimensional instanton solutions in the previous section can be lifted to
static solutions of the five dimensional theory by retracing the steps of dimensional
reduction. However, for these solutions to correspond to black holes they need to
satisfy certain criteria:

1. An event horizon with finite area must exist.
2. The physical scalar fields φx must take finite values on the horizon.

We will show that these two requirement force us to make restrictions on the integra-
tion constants that reduce the number by exactly half—just like the extremal case—
which suggests a first order rewriting. The fact that certain non-example black holes
are governed by first order equations has been known in the literature for some time
[17, 26, 27, 31–35]. But here we present the argument differently. For STU-like
models we start with the most general solution to the equations of motion truncated
to static, spherically symmetric and purely electric backgrounds. We then impose
the above criteria on the general solution, and by doing so find the most general type
of non-extremal black hole solution using the parametrisation of the physical scalar
fields given by (6.4). The fact that the number of integration constants reduces by half
is interesting because there is no reason a priori that non-extremal solutions should
be governed by first order equations. Since we see no reason why the STU-like mod-
els should be a privileged with respect to the number of integration constants, it is
reasonable to suspect that this is a feature of non-extremal black hole solutions to all
models.

6.5.1 STU-like Models

We can lift the instanton solutions found in the previous section to a static solution
to the five-dimensional theory

ds2
5 = − 1

(n + 1)2 (σ0 . . .σn)
2

(n+1)

dt2

+ (−1)(n+1)(n + 1) (σ0 . . .σn)
1

(n+1)

(
c3

sinh3 2cτ
dτ2 + c

sinh 2cτ
dΩ2

(3)

)
,

where one should note that (−1)(n+1)(n + 1)(σ0 . . .σn)
1

(n+1) is positive between
radial infinity and the outer horizon τ ∈ (0,+∞). The area A of the outer event
horizon is given by

A = lim
τ→+∞(−1)(n+1)(n + 1) (σ0 . . .σn)

1
(n+1)

c

sinh 2cτ
.
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The highest order term in the numerator is proportional to e
1

(n+1)
(B0+...+Bn)τ (recall

that the BI are non-negative), which must exactly cancel with the highest order term
in the denominator e2cτ . We can conclude that in order to obtain a finite area we
must have

1

(n + 1)
(B0 + . . . + Bn) = 2c. (6.29)

Next, we turn our attention to the physical scalar fields φx . These can be written in
terms of the dual scalars σI simple by

φx = σ0

σx
.

In the limit τ → +∞ the physical scalars φx will not take finite values3 for generic
choices of BI . The only way to ensure that they take finite values is to impose

B0 = B1 = . . . = Bn .

Combining this with (6.29) we conclude that in order to have a finite horizon and
finite scalar fields the integration constants must satisfy

B0 = . . . = Bn = 2c. (6.30)

The solution (6.21) therefore reduces to

σI = ± QI

2c
sinh

(
2cτ + 2c

AI

QI

)
. (6.31)

Lastly, in order for the solution to be Minkowski space at radial infinity it must satisfy
eσ̃ → 1, which places one further constraint on the integration constants

(−1)(n+1)(n + 1)

[
± Q0

2c
sinh

(
2c

A0

Q0

)
. . . ± Qn

2c
sinh

(
2c

An

Qn

)] 1
(n+1) = 1.

(6.32)
Due to the constraints (6.30) and (6.32) the number of integration constants reduces
by precisely one half, from (2n + 2) to (n + 1). This is suggestive of a first order
rewriting, and indeed this can be achieved by first defining the generating function
W = W(σ I , QI , c) by

W : = ± 1

(n + 1)

∑
I

[√
4c2 + (n + 1)2 Q2

Iσ
I 2

+ c log

⎛
⎝
√

4c2 + (n + 1)2 Q2
Iσ

I 2 − 2c
√

4c2 + (n + 1)2 Q2
Iσ

I 2 + 2c

⎞
⎠
⎤
⎦.

3 By finite values we mean φx −→/ 0,±∞.
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This is of a similar form to the generating function for the four-dimensional STU
model [44]. We can therefore write the solution as first order flow equations

σ̇I = ∂

∂σ I
W,

= ±
√

Q2
I + 4c2σ2

I ,

which is clearly solved by (6.31). These are first order differential equations (in τ ),
which relate σ̇I to the gradient of a function. They can alternatively be written as
σ̇ I = aI J∂J W .

Collecting everything together, we find that the most general static black hole
solution for STU-like models is given by

ds2
5 = − W

(H0 . . . Hn)
2

(n+1)

dt2 + (H0 . . . Hn)
1

(n+1)

(
dr2

W
+ r2dΩ2

(3)

)
,

where

W = 1 − 2c

r2 , HI = ∓(n + 1)

⎡
⎣QI

2c
sinh

(
2c

AI

QI

)
+ QI e

−2c
AI
Q I

2

1

r2

⎤
⎦,

= e−4cτ , = ∓(n + 1)

[
1

4c
QI e

2c
AI
Q I − 1

4c
QI e

−2c
AI
Q I e−4cτ

]
,

and the scalar fields are given by

φx = σ0

σx
, σI = −1

(n + 1)

HI√
W

= ± QI

2c
sinh

(
2cτ + 2c

AI

QI

)
.

For the case where n = 2 and d = 3 this reproduces the non-extremal black hole
solutions of 5D, N = 2 supergravity originally found in [9, 45].

6.5.2 Block Diagonal Models

Let us now lift the instanton solutions to models with block diagonal matrix aI J ,
described in the previous section, to static solutions in five dimensions. Again we
will focus on an example with two blocks of size k × k and l × l. The line element
is given by
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ds2
5 = − 1

μ
(
σ(0)

) 2k
(n+1)

(
σ(1)

) 2l
(n+1)

dt2

+ μ
(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1)

(
c3

sinh3 2cτ
dτ2 + c

sinh 2cτ
dΩ2

(3)

)
.

The area A of the outer event horizon is given by

A = lim
τ→+∞μ

(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1)

c

sinh 2cτ
.

The highest order term in the numerator is proportional to e

(
k

(n+1)
B(0)+ l

(n+1)
B(1)

)
τ
,

which must exactly cancel with the highest order term in the denominator e2cτ . We
can conclude that in order to obtain a finite area we must have

k

(n + 1)
B(0) + l

(n + 1)
B(1) = 2c.

The physical scalar field φ(1) can be written in terms of the dual scalars σ(0,1) as

φ(1) ∼ σ(0)

σ(1)

.

In the limit τ → +∞ the physical scalar φ(1) will not take finite values for generic
choices of B(0,1). The only way to ensure that they take finite values is to impose

B(0) = B(1).

Combining this with (6.5.2) we conclude that in order to have a finite horizon and
finite scalar fields the integration constants must satisfy

B(0) = B(1) = 2c.

Ensuring that the solution is Minkowski space at radial infinity eσ̃ → 1 places one
further constraint on the integration constants

μ

(
± Q(0)

2c
sinh

(
2c

A(0)

Q(0)

)) k
(n+1)

(
± Q(1)

2c
sinh

(
2c

A(1)

Q(1)

)) l
(n+1) = 1.

Collecting everything together, we find that our solution for the block diagonal
models can be written as

ds2
5 = − W

(H(0)

) 2k
(n+1)

(H(1)

) 2l
(n+1)

dt2 + (H(0)

) k
(n+1)

(H(1)

) l
(n+1)

(
dr2

W
+ r2dΩ2

(3)

)
,
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where

W = 1 − 2c

r2 = e−4cτ,

H(0,1) = ±μ
⎡
⎢⎣Q(0,1)

2c
sinh

(
2c

A(0,1)

Q(0,1)

)
+ Q(0,1)e

−2c
A(0,1)
Q(0,1)

2

1

r2

⎤
⎥⎦,

= ±μ
[

1

4c
Q(1,2)e

2c
A(0,1)
Q(0,1) − 1

4c
Q(0,1)e

−2c
A(0,1)
Q(0,1) e−4cτ

]
.

and the scalar fields are given by

φ(1) ∼ σ(0)

σ(1)

,

σ(0,1) = 1

μ

H(0,1)√
W

= ± Q(0,1)

2c
sinh

(
2cτ + 2c

A(0,1)

Q(0,1)

)
.

6.6 Conclusion and Outlook

We have discussed the notion of a d-conical affine special real manifolds and corre-
spondingly generalised projective special real manifolds. The latter generalises the
geometry of projective special real manifolds, which appear as the target manifolds
of 5D, N = 2 supergravity coupled to vector multiplets. We used this to construct
a class of five-dimensional gravity-scalar-vector theories that generalises N = 2
supergravity coupled to vector multiplets.

Through dimensional reduction and the specific field redefinition (6.8) one can
obtain a particularly simple effective Lagrangian for static, spherically symmetric
and purely electric solutions (6.9). One key feature was that we worked always at the
level of the ‘larger’ moduli space: the d-conical affine special real manifold. We then
focused on STU-like models, where we found the general solution to the equations of
motion, and models that are block diagonal, where we found solution with as many
independent scalar fields as there are blocks. Since the metrics of all models contain
at least one block, this also provides a universal solution to all models.

We then investigated which solutions correspond to non-extremal black holes
solutions of the five-dimensional theory. In order to obtain a finite horizon area and
finite scalar fields the number of integration constants must halve, suggesting a first
order rewriting of the equations of motion. For STU-like models all calculations were
performed explicitly, and at every stage we can set c → 0 to obtain the extremal
solution. Since we see no reason STU-like models should be privileged in their
number of integration constants, we conjecture that all non-extremal black hole
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solutions should have half the number of integration constants one would expect
from the second order equations of motion.

One obvious extension to this work is to investigate solutions of more complicated
models. However, it was shown in [29] that the hyperbolic-sine form of the solution
to STU-like models (6.31) does not give the most general solution for generic mod-
els. One must therefore replace the hyperbolic-sine function with something more
complicated. It is an open question whether one can find a general formula for such a
function, e.g. [41], or whether one can only find explicit formulas for specific models.
At this point it is still not even clear in the literature that every extremal black hole
solution admits a non-extremal generalisation [16, 17].

One may also wonder whether this analysis can be repeated for four-dimensional
theories. In [21] it was shown that the effective action for static solutions to
4D, N = 2 supergravity coupled to vector multiplets can be brought to the same
simple form as (6.9) for general static spacetime metrics (see p. 51 of [21]). One can
then follow exactly the same logic for axion-free solutions to the four-dimensional
STU model as we have present here for the five-dimensional STU model: one can
find the general solution to the equations of motion, and show that these correspond
to black hole solutions with finite scalar fields only when the number of integration
constants reduces by half. This will be presented in future work [46].

Another natural extension is to consider various other types of solutions. These
include solutions with a cosmological constant or Taub-NUT charge, rotating solu-
tions, domain walls, black strings and cosmological solutions. Reduction over time
has previously been used to construct black ring solutions [24, 47, 48], and in [49]
black ring solutions were constructed based on [50]. Cosmological solutions may
also be particularly interesting as the non-extremal black hole solutions we have
discussed can be continued beyond the horizon where the Killing vector is spacelike.
This provides a natural starting point for the construction of S-brane cosmological
solutions [51, 52].

Theories of gauged supergravity are also applicable to the analysis presented in
this paper. In [53] it was shown that the same procedure can be used to find new
non-extremal solutions to four-dimensional Fayet-Iliopoulos gauged supergravity. It
would also be interesting to investigate non-extremal solutions of five-dimensional
gauged supergravity, though solutions to the STU model have previously been found
by other methods [54].

Lastly, one may wonder whether special Kähler geometry, which corresponds to
4D, N = 2 supergravity coupled to vector multiplets, can be generalised in a way
similar to the generalisation of special real geometry considered in this paper. At
present there does not exist a well defined generalisation of special Kähler geometry.
However, the dimensional reduction of d-conical affine special real geometry sug-
gests that generalising the degree of homogeneity of the holomorphic prepotential
may provide one consistent generalisation of conic affine special Kähler geometry.
This would be interesting to investigate in the future.
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