
Chapter 5
Non-supersymmetric Extremal Black Holes:
First-Order Flows and Stabilisation Equations

Pietro Galli, Kevin Goldstein, Stefanos Katmadas and Jan Perz

We review the results of [1, 2] on reducing the second-order equations of motion for
stationary extremal black holes in four-dimensional N = 2 supergravity to first-order
flow equations and further to non-differential stabilisation equations.

5.1 Introduction

Supergravity theories, being extensions of general relativity, admit black hole solu-
tions. Finding them, as indeed any type of solutions in any theory, can be greatly
simplified by a judicious exploitation of symmetries. One example, which would
be valid also in Einstein’s relativity, concerns space-time symmetries: for solutions
translationally invariant in time, we can take the metric to be stationary, i.e. to have
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a timelike Killing vector. In the simplest case, without rotation or NUT charge, the
ansatz for the line element can be chosen to be static (invariant under time reversal)
and spherically symmetric.

In supergravity, we can in addition take advantage of supersymmetry, as long as
the solution is also, at least partly, supersymmetric (or ‘BPS’), i.e. when it is invariant
under some of the supersymmetry transformations (a supersymmetric variation of
the fields vanishes). If we look for classical, purely bosonic solutions (the expecta-
tion value of anticommuting fields must be zero, in other words fermions have no
classical limit), the only non-trivial conditions (Killing spinor equations) come from
the supersymmetry transformations of the fermionic fields, as the result of the super-
symmetry transformations acting on bosons is fermionic and this by our assumption
is automatically zero. Since the Killing spinor equations are of first order in deriv-
atives of the fields, they are usually easier to solve than the second-order equations
of motion.

Finally, we can make use of other internal symmetries of the theory, especially
its invariance under duality transformations. We shall return to this point later, but
already now let us mention that it may be helpful if the existence of these symmetries
can be reflected in the description of the theory itself.

5.2 Special Geometry

In this review we restrict our attention to the bosonic sector of N = 2 ungauged
supergravity in four spacetime dimensions [3, 4], which is one of the most widely
encountered settings in the study of supergravity black holes, for it is sufficiently com-
plicated to have physically interesting solutions, yet simple enough to be tractable.
We consider only vector multiplets, because hypermultiplets do not couple to them
and can be taken as constants in a self-consistent solution.

The remaining part of the action contains the familiar Einstein–Hilbert term for
gravity, kinetic terms for nv neutral complex scalars and nv + 1 abelian gauge fields
(where nv is the number of vector multiplets; the extra gauge field is the graviphoton
of the gravity multiplet):

I4D = 1

16π

∫ (
R � 1 − 2 gab̄(z, z̄) dza ∧ � dz̄b̄

− Im NI J (z, z̄) F I ∧ � F J − Re NI J (z, z̄) F I ∧ F J
)
. (5.1)

Importantly for our subsequent discussion, both the scalar manifold metric gab̄ and
the gauge kinetic matrix N depend on the scalars. This dependence, however, is not
totally arbitrary. The scalar manifold is special Kähler, which means that its metric
follows from the (real) Kähler potential K

gab̄ = ∂a∂b̄ K (z, z̄), (5.2)
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and that the Kähler potential itself can be determined by specifying a prepotential
F (not to be confused with the field strengths F I = dAI ).1 The prepotential is
usually displayed in homogeneous (projective) coordinates X I (z), rather than the
affine coordinates za = Xa(z)/X0(z) corresponding to physical scalars, and we
shall take it to be cubic (so-called ‘very special geometry’):

F = −1

6
Dabc

Xa(z)Xb(z)Xc(z)

X0(z)
. (5.3)

The Kähler potential can be calculated as the symplectic invariant

K = − ln

[
i
(

X I (z) FI (z)
) (

0 −I

I 0

) (
X I (z)
FI (z)

)]
(5.4)

=: − ln
(

i〈Ωhol(z),Ωhol(z)〉
)
, (5.5)

where FI = ∂I F = ∂F/∂X I (z) and Ωhol(z) is the holomorphic section of special
geometry. (In practice it will be more convenient to use the covariantly holomorphic
section Ω = eK/2Ωhol.) The detailed form of the matrix N will not be needed in
our considerations, but it too can be obtained from the prepotential.

5.3 Static Supersymmetric Black Holes

The static, spherically symmetric case is the simplest to analyse, because all
spacetime-dependent quantities become functions of the radial coordinate τ only.
For the line element one can then take [6]

ds2 = −e2U (τ )dt2 + e−2U (τ )

(
c4

sinh4(cτ )
dτ2 + c2

sinh2(cτ )
dΩ2

(2)

)
, (5.6)

where c is a non-extremality parameter and dΩ2
(2) is the metric of a unit two-sphere.

(The horizon is located at τ → ±∞, depending on conventions, and τ → 0 corre-
sponds to spatial infinity, where we shall also require U = 0 for asymptotic flatness.)
The vector fields can be expressed in terms of the magnetic and electric charges

Γ :=
(

pI

qI

)
= 1

4π

∫
S2

(
F I

G I

)
, (5.7)

1 Strictly speaking, the existence of a prepotential is not guaranteed in every symplectic frame, but
a frame where a prepotential exists can always be found by a symplectic transformation [5].
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where G I = Im NI J � F J +Re NI J F J is the dual field strength. Upon substitution
one obtains [7] the action2

Ieff = − 1

4π

∫
dt

∫
dτ

(
U̇ 2 + gab̄ ża ˙̄zb̄ + e2U Vbh

)
(5.8)

with an effective ‘black hole potential’

Vbh = − 1
2Γ TM(N )Γ, (5.9)

which is a function of the charges and (through the gauge couplings) of the scalars
(again, the detailed form of the matrix M is immaterial for our purposes). This
action reproduces the original equations of motion, except for one component of the
Einstein equations, which is referred to as the Hamiltonian constraint:

U̇ 2 + gab̄ ża ˙̄zb̄ − e2U Vbh = c2. (5.10)

The black hole potential can be expressed in terms of the central charge3 Z =
〈Γ,Ω〉 as

Vbh = |Z |2 + 4gab̄∂a |Z |∂b̄|Z |. (5.11)

This, together with the Hamiltonian constraint and the identification of the mass with
the asymptotic value of the t t component of the metric differentiated with respect to
τ (which, by asymptotic flatness, equals U̇ here) implies that solutions that saturate
the supersymmetric BPS bound

M = |Z(z∞, Γ )| (5.12)

must be extremal: c = 0. In that case the line element simplifies to

ds2 = −e2U (τ )dt2 + e−2U (τ )

(
1

τ4 dτ2 + 1

τ2 dΩ2
(2)

)
(5.13)

with τ = ±1/|x|, so the terms in parentheses represent the flat metric on R
3.

Formula (5.11) also makes it possible to rewrite the effective Lagrangian (up to a
total derivative term, which can be neglected) as a sum of squares:

Leff ∝
(

U̇ + eU |Z |
)2 +

∥∥∥ża + 2eU gab̄∂b̄|Z |
∥∥∥2

. (5.14)

2 We adopt the plus sign for the potential term, as is customary in the black hole potential literature.
3 More precisely, Z is a function of the radial coordinate. It coincides with the central charge of the
supersymmetry algebra at spatial infinity.



5 Non-supersymmetric Extremal Black Holes 225

Since δ(. . .)2 = 2(. . .)δ(. . .), the action attains a stationary value when the two brack-
ets vanish separately, which immediately leads to first-order gradient flow equations
that by construction satisfy the (second-order) equations of motion:

U̇ = −eU |Z |, (5.15)

ża = −2eU gab̄∂b̄|Z |. (5.16)

The flow generated by these equations terminates at ża = 0 in the scalar manifold
and on the horizon in spacetime. This means that the critical points of |Z(z, z̄, Γ )|
determine the horizon values of the scalars in terms of the charges (attractor mecha-
nism).

The conditions for critical points can be brought to the form known as the attractor
equations [8]

2Im(Z̄Ω) = Γ. (5.17)

When the scalars are constant in spacetime (so-called ‘doubly extremal black holes’),
the attractor values are taken everywhere. The non-constant solutions are given in
terms of harmonic functions by the similar stabilisation equations4 [9]

2Im(Ωhol) = H, H = Γ τ + h, (5.18)

where h is the vector of constants related to the asymptotic values of the scalars.

5.4 Beyond the Static, Supersymmetric Case

For supersymmetric black holes, as we indicated in the introduction, the fact that
the equations of motion can be reduced to first-order equations is not surprising.
More unexpectedly, it turns out [10] that non-supersymmetric and even non-extremal
black holes can enjoy a like description. In the non-supersymmetric extremal case
this becomes evident [11] when the black hole potential remains invariant under
rotations of the charge vector by a matrix S, Γ �→ Γ̃ = SΓ :

STMS = M =⇒ Vbh = W 2 + 4gab̄∂a W∂b̄W, W = |〈Γ̃ ,Ω〉|. (5.19)

Flow equations based on the superpotential5 W (or ‘fake central charge’, as it is built
from the ‘fake charges’ Γ̃ ) are entirely analogous to (5.15), (5.16), except that the
respective attractor equations may be underdetermined and may not fix the horizon

4 Some authors interchange the meaning of ‘stabilisation equations’ and ‘attractor equations’ rel-
ative to our nomenclature or use the term ‘generalised stabilisation equations’ for those involving
harmonic functions. Occasionally the name ‘stabilisation equations’ is given to the relation, implied
by Eq. (5.18), between the real and imaginary parts of the symplectic section.
5 In some papers called the prepotential.
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values of scalars completely in terms of the charges (this is due to flat directions of the
effective potential; the entropy, being related to the stationary value of the potential,
is therefore still independent of the asymptotic values of the scalars [12]). In the non-
extremal case [13] one seeks an expansion of the whole potential term (including the
warp factor) into squares of partial derivatives of a (generalised) superpotential Y :

e2U Vbh = (∂U Y )2 + 4gab̄∂aY∂b̄Y − c2. (5.20)

This again leads to gradient flow equations, but not to the attractor mechanism,
because unlike Z or W , Y depends also on the metric function U .

What about extremal, but not necessarily static and spherically symmetric black
holes (for instance, rotating stationary solutions or multicentre configurations)?
Could one still reduce the equations of motion to first-order equations and inte-
grate them to non-differential stabilisation equations? To answer these questions
we proceed in a similar manner to the static case, but using a different formalism,
originally devised by Denef [14] for supersymmetric solutions.

Let us first reinterpret or redefine the quantities that we have already encoun-
tered from the geometrical perspective, when the supergravity considered is viewed
as a low-energy approximation of type IIB string theory compactified on a Calabi–
Yau three-fold MCY. Specifically, the number of vector multiplets is equal to one
of the Hodge numbers, nv = h2,1, the holomorphic symplectic section Ωhol can be
identified with the unique up to rescaling (3, 0)-form that characterises the compact-
ification manifold and the symplectic product becomes the intersection product, for
instance

e−K = i
∫

MCY

Ωhol ∧ Ω̄hol. (5.21)

In the canonical basis {αI ,β
I } of the third integral cohomology H3(MCY, Z):

Ωhol = X I (z)αI − FI (z)β
I , Γ = pI αI − qI β

I (5.22)

and the electromagnetic fields can be seen as the components of the IIB five-form

F = F I ⊗ αI − G I ⊗ β I , (5.23)

which should be self-dual in 10 dimensions. Decomposing this condition into 4 + 6
dimensions as �10 F = (� ⊗ �)F = F we can relate the Hodge operator on the
internal manifold to matrix M appearing in the black hole potential:

�
(

β I

αI

)
=

(
0 I

−I 0

)
M

(
β I

αI

)
. (5.24)

For the spacetime line element we take [15]
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ds2 = −e2U (x)
(
dt + ω(x)

)2 + e−2U (x)δi j dxi dx j , ω(x) = ωi (x)dxi (5.25)

and this time we trade the manifest Lorentz invariance of the action for the duality
invariance by writing the Lagrangian in terms of the spatial components of field
strengths F (boldface signals here and below the spatial part) and in terms of the
product

(B,C) = e2U

1 − w2

∫
MCY

B ∧ [
�0(� C) − �0(w ∧ � C) w + �0(w ∧ �0C)

]
, (5.26)

defined for any B,C ∈ Ω2(R3) ⊗ H3(MCY), where �0 is the Hodge dual with
respect to the flat metric δi j in space and Ω2(R3) is the set of two-forms on space.
The result is

I4D eff = − 1

16π

∫
dt

∫
R3

[
2dU ∧ �0dU − 1

2 e4U dω ∧ �0dω

+ 2gab̄ dza ∧ �0dz̄b̄ + (F ,F)
]
. (5.27)

Analogously to the derivation in the previous section, we need to rewrite the
effective Lagrangian in a form that yields first-order equations. The suitable pairing
between the scalars and the gauge fields is afforded by the combination

G = F − 2Im �0D(e−U e−iαΩ) + 2Re D(eU e−iαΩ ω), (5.28)

where
D = d + i(Q + dα + 1

2 e2U �0dω), Q = Im(∂a K dza) (5.29)

and α(x) is at this stage an arbitrary function. The Lagrangian becomes

Leff = (G,G) − 4 (Q + dα + 1
2 e2U �0dω) ∧ Im〈G, eU e−iαΩ〉

+ d
[
2w ∧ (Q + dα) + 4Re〈F , eU e−iαΩ〉

]
. (5.30)

Neglecting the total derivative term and requiring that the variations of the remaining
two terms vanish separately, directly leads to the first-order equations

F − 2Im �0D(e−U e−iαΩ) + 2Re D(eU e−iαΩ ω) = 0, (5.31)

Q + dα + 1
2 e2U �0dω = 0. (5.32)

The second relation implies D = d, so taking the differential of the first yields the
Laplace equation

2 d�0d(e−U e−iαΩ) = 0 (5.33)
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on account of the closure of the field strength (dF = 0). The resulting supersym-
metric stabilisation equations have the same form [16] as those for static, spherically
black holes (in the gauge K = 2U , α = 0), but now the harmonic functions can be
multicentred, with the constituents located at xn :

2Im(e−U e−iαΩ) = H, H =
N∑

n=1

Γnτn + hn, (5.34)

where τn = ±1/|x − xn|. The poles of harmonic functions must be the physical
charges, as mandated by Eq. (5.31), and the constants hn dictate the asymptotic values
of the scalars. Once the stabilisation equations have been solved, all unknowns, in
particular the metric warp factor and the one-form ω, can be calculated.

A non-supersymmetric generalisation [1, 2] inspired by the superpotential
approach can be achieved through the replacement of F by a fake field strength F̃
that reproduces the same gauge term: (F̃ , F̃) = (F ,F). If these field strengths are
related by a constant matrix, the above derivation can be repeated without any other
adjustments, but the relevant multicentre configurations, with centres at arbitrary
distances from each other, have vanishing angular momentum and purely imaginary
scalars za .

Allowing the relation between the fake and actual field strengths to be arbitrary
causes a number of complications, due to the fact that F̃ may not be closed. The
condition of reproducing the original gauge term in the Lagrangian has to be relaxed
by adding a possible three-form deviation Ξ

(F̃ , F̃) = (F ,F) + Ξ , (5.35)

and a new term η appears in the rewriting:

L = (G̃, G̃) − 4 (Q + dα + η + 1
2 e2U �0dω) ∧ Im〈G̃, eU e−iαΩ〉

+ d [ 2w ∧ (Q + dα) + 4Re〈F̃ , eU e−iαΩ〉 ], (5.36)

where
G̃ = F̃ − 2Im �0D(e−U e−iαΩ) + 2Re D(eU e−iαΩω). (5.37)

The two new quantities Ξ and η are constrained by consistency requirements to
satisfy:

Ξ = −2dη ∧ w, (5.38)

η ∧ Im〈G̃, eU e−iαΩ〉 = 〈dF̃ , Re(eU e−iαΩ)〉 + 1
4Ξ . (5.39)

Evidently, the general stationary extremal case can be reduced to first-order equa-
tions G̃ = 0 and D = d − iη, but the description is much more involved than before:
even after elimination of Ξ we are left with an additional unknown object η, which
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has to obey a complicated equation. Crucially, the combination e−U e−iαΩ is gener-
ically no longer determined by Laplace’s equation, thus the solutions will no longer
be given in terms of pure harmonic functions.

5.5 An Ansatz for Stabilisation Equations

Although in the non-supersymmetric case we are unable to integrate the equations
of motion directly to non-differential stabilisation equations, we can still try to find
a suitable ansatz [2]. To that end it is useful to look at the known ‘almost-BPS’
[17] seed solution [18] for single-centred under-rotating extremal black holes in
four-dimensional theories with cubic prepotentials6:

2Im Ω̂ = H̃ + R̃, F = �0dH − 2 d(e2URe Ω̂ ω), (5.40)

where Ω̂ = e−U e−iαΩ and

H = (H0, 0 ; 0, Ha), H̃ = (−H0, 0 ; 0, Ha), R̃ =
(

0, 0 ; M

H0 , 0
)
. (5.41)

The harmonic functions are:

H0 = h0 + p0τ , Ha = ha + qaτ , M = b + Jτ2cos θ, (5.42)

where J denotes the angular momentum.
Besides the familiar harmonic part, in this case H̃, the stabilisation equations

involve ratios of harmonic functions, R̃. As one can verify, the new object that we
had to introduce to compensate for the possible non-closure of F̃ does not vanish if
M 
= 0:

η = e2U 〈dR̃, H̃〉 = −e2U H0 d
(

M

H0

)
. (5.43)

Interestingly, the anharmonic part of the stabilisation equations persists even without
the angular momentum, as long as the constant b responsible for the non-trivial flow
of the axions Re za is non-zero.

Under duality transformations H̃ and R̃ will change: in particular the relation
between H̃ and H will be more complicated than merely a switch of sign. The
structure of the ansatz for the stabilisation equations stays nonetheless the same. Since
the starting configuration is a seed solution, we postulate that in general the right-
hand side of the stabilisation equations for extremal black holes is given by a sum of
harmonic functions and ratios of harmonic functions. Whereas the anharmonic part
may vanish, as it did in the supersymmetric case, the harmonic part must be always
present, to ensure the correct near-horizon behaviour.

6 The notation has been slightly changed in comparison with [2].
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5.6 Conclusions

As we have seen, it is possible to derive first-order equations not only for super-
symmetric black holes. In the stationary extremal case this can be accomplished by
a merger of the superpotential approach with Denef’s duality-covariant formalism.
The essential step in the rewriting is a suitable pairing between the scalar degrees of
freedom and the gauge fields.

Unfortunately, the procedure applied to stationary non-supersymmetric extremal
black holes does not offer nearly as much simplification as in the BPS case. This is
partly due to the fact that the superpotential approach itself requires a new quantity
(originally: the superpotential, here: the fake field strength or the vector of fake
charges), whose relation to the physical parameters needs to be determined separately,
and partly due to the anharmonicity of the stabilisation equations, reflecting the non-
closure of the fake field strength. Nevertheless, the combinations of the variables
entering the stabilisation equations are universal, in the sense that when one uses
them as the new degrees of freedom, the equations of motion expressed in terms of
them take the same form for all black hole solutions, irrespective of supersymmetry
or extremality [19, 20].
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