
Chapter 1
Non-holomorphic Deformations of Special
Geometry and Their Applications

Gabriel Lopes Cardoso, Bernard de Wit and Swapna Mahapatra

Abstract The aim of these lecture notes is to give a pedagogical introduction to
the subject of non-holomorphic deformations of special geometry. This subject was
first introduced in the context of N = 2 BPS black holes, but has a wider range of
applicability. A theorem is presented according to which an arbitrary point-particle
Lagrangian can be formulated in terms of a complex function F , whose features are
analogous to those of the holomorphic function of special geometry. A crucial role
is played by a symplectic vector that represents a complexification of the canonical
variables, i.e. the coordinates and canonical momenta. We illustrate the characteristic
features of the theorem in the context of field theory models with duality invariances.
The function F may depend on a number of external parameters that are not subject
to duality transformations. We introduce duality covariant complex variables whose
transformation rules under duality are independent of these parameters. We express
the real Hesse potential of N = 2 supergravity in terms of the new variables and
expand it in powers of the external parameters. Then we relate this expansion to the
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one encountered in topological string theory. These lecture notes include exercises
which are meant as a guidance to the reader.

1.1 Introduction

As is well known, an abelian N = 2 supersymmetric vector multiplet in four
dimensions is described by a reduced chiral multiplet, whose gauge covariant degrees
of freedom include an (anti-selfdual) field strength F−

μν and a complex scalar field
X . The Wilsonian effective Lagrangian for these vector multiplets is encoded in a
holomorphic function F(X) which, when coupled to supergravity, is required to be
homogeneous of degree two [1]. The abelian vector multiplets may be further cou-
pled to (scalar) chiral multiplets that describe either additional dynamical fields or
background fields. The function F will then also depend on holomorphic fields that
reside in these chiral multiplets. An example thereof is provided by the coupling
of vector multiplets to a conformal supergravity background. The multiplet that
describes conformal supergravity is the Weyl multiplet, and the chiral background
is given by the square of it [2]. In this case the function F , which now depends on
the lowest component field of the chiral background superfield, encodes the cou-
plings of the vector multiplets to the square of the Riemann tensor. These couplings
constitute a special class of higher-derivative couplings, namely, they depend on the
Riemann tensor but not on derivatives thereof. In this paper we will only consider
higher-derivative couplings of this type, i.e. couplings that depend on field strengths
but not on their derivatives.1 We refer to [3] for a discussion on other classes of
higher-derivative couplings. When higher-order derivative couplings are absent, we
will denote the function F by F (0)(X), which then refers to a Wilsonian action that
is at most quadratic in space-time derivatives.

The abelian vector fields in these actions are subject to electric/magnetic duality
transformations under which the electric field strengths and their magnetic duals
are subjected to symplectic rotations. It is then possible to convert to a different
duality frame, by regarding half of the rotated field strengths as the new electric
field strengths and the remaining ones as their magnetic duals. The latter are then
derivable from a new action. To ensure that the characterization of the new action
in terms of a holomorphic function remains preserved, the scalars of the vector
multiplets are transformed accordingly. This amounts to rotating the complex fields
X I and the holomorphic derivatives FI = ∂F/∂X I of the underlying function
F by the same symplectic rotation as the field strengths and their dual partners
[1, 4]. Here the index I labels the vector multiplets (in supergravity it takes the
values I = 0, 1, . . . , n). Thus, electric/magnetic duality (which acts on the vector
(X I , FI )), constitutes an equivalence transformation that relates two Lagrangians
(based on two different functions) and gives rise to equivalent sets of equations of

1 In the language of the theorem that will be presented in Sect. 1.2, this may be rephrased by saying
that the Lagrangians we will consider depend on coordinates and velocities, but not on accelerations.
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motion and Bianchi identities. A subgroup of these equivalence transformations may
constitute a symmetry (an invariance) of the system. For a duality transformation to
constitute a symmetry, the substitution X I → X̃ I into FI must correctly induce the
transformation (X I , FI ) → (X̃ I , F̃I ) [5].

At the Wilsonian level, when coupling the N = 2 vector multiplets to supergravity,
the scalar fields of the vector multiplets parametrize a non-linear sigma-model whose
geometry is called special geometry [6], a name that first arose in the study of the
geometry of the effective action of type-II string compactifications on Calabi-Yau
threefolds [4]. The sigma-model space is a so-called special-Kähler space, whose
Kähler potential is [1],

K (z, z̄) = − ln

[
i
(
X I F̄ (0)

I − X̄ I F (0)
I

)
|X0|2

]
, (1.1)

where F (0)(X) is the holomorphic function that determines the supergravity action,
which is quadratic in space-time derivatives. Because F (0)(X) is homogeneous of
second degree, this Kähler potential depends only on the ‘special’ holomorphic
coordinates zi = Xi/X0 and their complex conjugates, where i = 1, . . . , n, so
that we are dealing with a special-Kähler space of complex dimension n. In view of
the homogeneity, the symplectic rotations acting on the vector (X I , F (0)

I ), induce
corresponding (non-linear) transformations on the special coordinates zi . Up to a
Kähler transformation, the Kähler potential transforms as a function under duality.

There actually exist various ways of defining special Kähler geometry. Apart
from its definition in terms of special holomorphic coordinates [1], it can also be
defined in a coordinate independent way [7]. More recently, the formulation of special
geometry in terms of special real instead of special holomorphic coordinates has been
emphasized [8–13]. This formulation is based on the real Hesse potential [14–16],
which will play an important role below.

In order to pass from the Wilsonian effective action to the 1PI low-energy effective
action, one needs to integrate over the massless modes of the model. In the context
of N = 2 theories this induces non-holomorphic modifications in the gauge and
gravitational couplings of the theory that, at the Wilsonian level, are encoded in the
holomorphic function F . An early example thereof is provided by the computation
of the moduli dependence of string loop corrections to gauge coupling constants in
heterotic string compactifications [17]. These non-holomorphic modifications of the
coupling functions are crucial to ensure that the low-energy effective action possesses
the expected duality symmetries. This is therefore a generic feature of the low-energy
effective action of N = 2 models with duality symmetries.

Another context where these moduli dependent corrections play an important role
is the one of BPS black hole solutions in N = 2 models. Their entropy should exhibit
the duality symmetries of the underlying model, and this is achieved by taking into
account the non-holomorphic modifications of the low-energy effective action. The
need for non-holomorphic modifications of the entropy was established in models
with exact S-duality [18], and their presence has been confirmed at the semiclassical
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level from microstate counting [19, 20]. The fact that non-holomorphic modifications
can be incorporated into the entropy of BPS black holes gave a first indication that
the framework of special geometry can be consistently modified by a class of non-
holomorphic deformations, to be described below. This can be understood as follows.
The free energy of these BPS black holes turns out to be given by a generalized version
of the aforementioned Hesse potential [8, 10, 21]. The Hesse potential is related by a
Legendre transformation to the function F that defines the effective action, and thus
it can be regarded as the associated ‘Hamiltonian’. The Hamiltonian transforms as a
function under electric/magnetic duality transformations. If the N = 2 model under
consideration has a duality symmetry, the Hamiltonian will be invariant under sym-
metry transformations due to the presence of the aforementioned non-holomorphic
modifications. Since the Hamiltonian is related to the function F by an Legendre
transformation, these non-holomorphic modifications will also be encoded in F .

This ‘Hamiltonian’ picture of BPS black holes suggests that special geometry can
be consistently modified by a class of non-holomorphic deformations, whereby the
holomorphic function F(X) that characterizes the Wilsonian action is replaced by a
non-holomorphic function

F(X, X̄) = F (0)(X) + 2i Ω(X, X̄), (1.2)

where Ω denotes a real (in general non-harmonic) function. The Wilsonian limit is
recovered by taking Ω to be harmonic. In Sect. 1.2 we show that the non-holomorphic
deformations of special geometry described by (1.2) occur in a generic setting. There
we consider general point-particle Lagrangians (that depend on coordinates and
velocities) and their associated Hamiltonians. We present a theorem that shows that
the dynamics of these models can be reformulated in terms of a symplectic vector
(X, ∂F/∂X) constructed out of a complex function F of the form (1.2), and whose
real part comprises the canonical variables of the associated Hamiltonian. We show
that under duality transformations the transformed symplectic vector is again encoded
in a non-holomorphic function of the form (1.2). We illustrate the theorem with
various field theory examples with higher-derivative interactions. We give a detailed
discussion of these examples in order to illustrate the characteristic features of the
theorem. One example consists of the Born-Infeld Lagrangian for an abelian gauge
field, which we reformulate in the language of the theorem based on (1.2). We
subsequently promote the gauge coupling constant to a dynamical field S and discuss
the duality symmetries of the resulting model. We then turn to more general models
with exact S- and T-duality and discuss the restrictions imposed on Ω by these
symmetries.

The function F in (1.2) may depend on a number of external parameters which we
denote by η. Under duality transformations, the symplectic vector (X, ∂F/∂X) trans-
forms into (X̃ , ∂ F̃/∂ X̃), while the parameters η are inert. When expressing the trans-
formed variables X̃ in terms of the X , the relation will depend on η, i.e. X̃ = X̃(X, η).
In Sect. 1.3 we introduce covariant complex variables that constitute a complexifica-
tion of the canonical variables of the Hamiltonian, and whose duality transformation
law is independent of η. These variables ensure that when expanding the Hamiltonian
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in powers of the external parameters, the resulting expansion coefficients transform
covariantly under duality transformations. This expansion can also be studied by
employing a modified derivative Dη , which we construct. The covariant variables
introduced in this section have the same duality transformation properties as the
ones used in topological string theory and can therefore be identified with the latter.
A further indication of the relation with topological string theory is provided by the
generating function that relates the canonical variables of the Hamiltonian to the
covariant complex variables. This generating function turns out to be the one that is
used in the wave function approach to perturbative topological string theory [22–26].

In Sect. 1.4 we turn to supergravity models in the presence of higher-curvature
interactions encoded in the square of the Weyl superfield [2, 5]. We consider these
models in an Ad S2 × S2 background and compute the effective action in this back-
ground. This is first done at the level of the Wilsonian effective action [27, 28]. Then
we assume that the extension to the low-energy effective action can be implemented
by replacing the Wilsonian holomorphic function F by the non-holomorphic func-
tion (1.2). Next, we perform a Legendre transformation of the low-energy effective
action in this background and obtain the associated ‘Hamiltonian’, which takes the
form of the aforementioned generalized Hesse potential. Using the covariant com-
plex variables introduced in Sect. 1.3, we expand the associated Hesse potential (the
Hamiltonian) and work out the first few iterations. This reveals a systematic struc-
ture. Namely, the Hesse potential decomposes into two classes of terms. One class
consists of combinations of terms, constructed out of derivatives of Ω , that transform
as functions under electric/magnetic duality. The other class is constructed out of Ω

and derivatives thereof. Demanding this second class to also exhibit a proper behav-
ior under duality transformations (as a consequence of the transformation behavior
of the Hesse potential) imposes restrictions on Ω . These restrictions are captured
by a differential equation that constitutes half of the holomorphic anomaly equation
encountered in the context of perturbative topological string theory. The differential
equation is a consequence of the tension between maintaining harmonicity of Ω

and insisting on a proper behavior under duality transformations [5]. We conclude
Sect. 1.4 with a brief discussion of open issues which will be addressed in an up-
coming paper. There we will give a detailed discussion of the relation of perturbative
topological string theory with the Hesse potential.

In the appendices we have collected various results, as follows. Appendix A
discusses the transformation behavior under symplectic transformations of various
holomorphic and anti-holomorphic derivatives of F . We use these expressions to give
an alternative proof of the integrability of the resulting structures. In addition, we
show that when F depends on an external parameter η, its derivative ∂η F transforms
as a function under symplectic transformations. In appendix B we show that the
modified derivative Dη of Sect. 1.3 acts as a covariant derivative for symplectic
transformations. This is done by showing that when given a quantity G(x, x̄; η) that
transforms as a function under symplectic transformations, also DηG transforms as a
function. In appendix C we review the holomorphic anomaly equation of topological
string theory in the big moduli space. Appendix D lists certain combinations that arise
in the expansion of the Hesse potential in powers of η and that transform as functions
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under electric/magnetic duality. In appendix E we list the transformation properties of
various derivatives of Ω under duality transformations using the covariant variables
of Sect. 1.3.

These lecture notes include exercises which we hope will constitute a guidance
to the reader.

1.2 Lecture I: Point-Particle Models and F-Functions

We begin by considering a general point-particle Lagrangian that depends on coor-
dinates φ and velocities φ̇. The associated Hamiltonian will depend on the canonical
variables φ and π, where π denotes the canonical momentum. After briefly review-
ing some of the salient features of the Hamiltonian description, such as canonical
transformations in phase space, we present a theorem that shows that the dynamics
of these models can be reformulated in terms of a symplectic vector that is com-
plex, and whose real part comprises the canonical variables (φ,π). This is achieved
by introducing a complex function F that depends on complex variables x , with
the symplectic vector given by (x, ∂F/∂x). This reformulation exhibits many of
the special geometry features that are typical for N = 2 supersymmetric systems.
However, it also goes beyond the standard formulation of these systems in that the
function F is of the form (1.2), and hence non-holomorphic in general.

We illustrate the theorem with various field theory examples with higher-derivative
interactions. We give a detailed discussion of these examples in order to illustrate
the characteristic features of the theorem. One example consists of the Born-Infeld
Lagrangian for a Maxwell field, which we reformulate in the language of the theorem.
We subsequently promote the gauge coupling constant to a dynamical field S and
discuss the duality symmetries of the resulting model. We turn to more general
models with exact S- and T-duality and discuss the restrictions imposed on Ω by
these symmetries.

The reader not interested in the details of these examples may want to proceed to
Sect. 1.2.3, where we discuss the form of the Hamiltonian when the function F is such
that it transforms homogeneously under a real rescaling of the variables involved.

1.2.1 Theorem

Let us consider a point-particle model described by a Lagrangian L with n coor-
dinates φi and n velocities φ̇i . The associated canonical momenta ∂L/∂φ̇i will be
denoted by πi . The Hamiltonian H of the system, which follows from L by Legendre
transformation,

H(φ,π) = φ̇i πi − L(φ, φ̇), (1.3)
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depends on (φi ,πi ), which are called canonical variables, since they satisfy the
canonical Poisson bracket relations. The variables (φi ,πi ) denote coordinates on
a symplectic manifold called the classical phase space of the system. In these
coordinates, the symplectic 2-form is dπi ∧ dφi . This 2-form is preserved under
canonical transformations of (φi ,πi ) given by

(
φi

πi

)
−→

(
φ̃i

π̃i

)
=
(

Ui
j Zi j

Wi j Vi
j

)(
φ j

π j

)
, (1.4)

where U, V, Z and W denote n × n matrices that satisfy the relations

U T V − W T Z = V T U − Z T W = I,

U T W = W T U , Z T V = V T Z . (1.5)

These relations are precisely such that the transformation (1.4) constitutes an element
of Sp(2n, R). This transformation leaves the Poisson brackets invariant. The Hamil-
tonian transforms as a function under symplectic transformations, i.e. H̃(φ̃, π̃) =
H(φ,π). When the Hamiltonian is invariant under a subset of Sp(2n, R) transfor-
mations, this subset describes a symmetry of the system. This invariance is often
called duality invariance. Observe that the Legendre transformation (1.3) also gives
rise to the relation ∂L/∂φi = −∂H/∂φi by virtue of πi = ∂L/∂φ̇i .

Now we present a theorem that states that the Lagrangian can be reformulated in
terms of a complex function F(x, x̄) based on complex variables xi , such that the
canonical coordinates (φi ,πi ) coincide with (twice) the real part of (xi , Fi ), where
Fi = ∂F(x, x̄)/∂xi .

Theorem Given a Lagrangian L(φ, φ̇) depending on n coordinates φi and n veloc-
ities φ̇i , with corresponding Hamiltonian H(φ,π) = φ̇i πi − L(φ, φ̇), there exists a
description in terms of complex coordinates xi = 1

2 (φi +iφ̇i ) and a complex function
F(x, x̄), such that,

2 Re xi = φi ,

2 Re Fi (x, x̄) = πi , where Fi = ∂F(x, x̄)

∂xi
. (1.6)

The function F(x, x̄) is defined up to an anti-holomorphic function and can be
decomposed into a holomorphic and a purely imaginary (in general non-harmonic)
function,

F(x, x̄) = F (0)(x) + 2iΩ(x, x̄). (1.7)

The relevant equivalence transformations take the form,

F (0) → F (0) + g(x) , Ω → Ω − Im g(x), (1.8)



8 G. L. Cardoso et al.

which results in F(x, x̄) → F(x, x̄) + ḡ(x̄). The Lagrangian and Hamiltonian can
then be expressed in terms of F (0) and Ω ,

L = 4[Im F − Ω],
H = − i(xi F̄ı̄ − x̄ ı̄ Fi ) − 4 Im[F − 1

2 xi Fi ] + 4 Ω

= − i(xi F̄ı̄ − x̄ ı̄ Fi ) − 4 Im[F (0) − 1
2 xi F (0)

i ] − 2(2 Ω − xiΩi − x̄ ı̄Ωı̄ ),

(1.9)

with Fi = ∂F/∂xi , F (0)
i = ∂F (0)/∂xi ,Ωi = ∂Ω/∂xi , and similarly for F̄ı̄ , F̄ (0)

ı̄
and Ωı̄ .

Furthermore, a crucial observation is that the 2n-vector (xi , Fi ) denotes a com-
plexification of the phase space coordinates (φi ,πi ) that transforms precisely as
(φi ,πi ) under symplectic transformations, i.e.

(
xi

Fi (x, x̄)

)
−→

(
x̃ i

F̃i (x̃, ¯̃x)

)
=
(

Ui
j Zi j

Wi j Vi
j

)(
x j

Fj (x, x̄)

)
. (1.10)

Hence, a Sp(2n, R) transformation of (xi , Fi ) is a canonical transformation of
H(φ,π). The Eq. (1.10) are, moreover, integrable: the symplectic transformation
yields a new function F̃(x̃, ¯̃x) = F̃ (0)(x̃) + 2iΩ̃(x̃, ¯̃x), with Ω̃ real.

Proof The proof of this theorem proceeds as follows. First we introduce the
2n-vector (xi , yi ),

xi = 1
2

(
φi + i

∂H

∂πi

)
,

yi = 1
2

(
πi − i

∂H

∂φi

)
, (1.11)

which is constructed out of two canonical pairs, one comprising the variables (φi ,πi )

and the other one comprising derivatives of H(φ,π), namely (∂H/∂πi ,−∂H/∂φi ).
Both pairs transform in the same way under canonical transformations (1.4). Now
we relate the vector (xi , yi ) to the one given in (1.6), and we show that Lagrangian
and the Hamiltonian can be expressed in terms of a complex function F(x, x̄) as in
(1.9).

The Legendre transformation (1.3) gives φ̇i = ∂H/∂πi , where we used πi =
∂L/∂φ̇i . This equation establishes that the complex xi introduced in (1.11) coincide
with the xi defined above (1.6). Then, expressing the Lagrangian in terms of xi and
x̄ ı̄ , gives

∂L(x, x̄)

∂xi
= −2iyi , (1.12)
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where we used the relation ∂L/∂φi = −∂H/∂φi mentioned below (1.5). Next we
write L as the sum of a harmonic and a non-harmonic function (which is always
possible),

L = −2i
[
F (0)(x) − F̄ (0)(x̄)

]+ 4 Ω(x, x̄). (1.13)

By introducing the combination F(x, x̄) = F (0)(x)+2iΩ(x, x̄), we observe that the
relation (1.12) can be concisely written as yi = ∂F(x, x̄)/∂xi , while the Lagrangian
(1.13) becomes L = 4[Im F − Ω]. Using this as well as (1.11), we obtain that the
Hamiltonian H(φ,π) = φ̇i πi − L(φ, φ̇) can be expressed as in (1.9).

Exercise 1 Verify that H can be written as in (1.9).

Thus, we have shown that the vector (xi , yi ) equals (xi , Fi ), and we have established
the validity of (1.9).

Now let us discuss the integrability of (xi , yi ) under canonical transforma-
tions. The vector (xi , yi ), given in (1.11), consists of two canonical pairs, and
hence it transforms as in (1.10) under canonical transformations. We denote the
transformed variables by (x̃ i , ỹi ). The Hamiltonian transforms as a function, i.e.
H̃(Re x̃, Re ỹ) = H(Re x, Re y), as already mentioned. Since we are dealing with
a canonical transformation, the dual quantities (x̃ i , ỹi ) and H̃ will satisfy the same
relations as the original quantities (xi , yi ) and H , so that we can apply the steps
(1.11–1.13) to the dual quantities. The dual variables (x̃ i , ỹi ) have the decomposition
given in (1.11), but now in terms of the dual quantities. The Lagrangian L̃ associated to

H̃ is obtained by a Legendre transformation of H̃ , i.e. L̃ = ˙̃φi π̃i − H̃ . Then, applying
the steps given below (1.11) to the dual Lagrangian shows that L̃ = 4[Im F̃ − Ω̃],
where F̃ is the sum of a holomorphic function F̃ (0) and a real function Ω̃ , i.e.
F̃(x̃, ¯̃x) = F̃ (0)(x̃) + 2iΩ̃(x̃, ¯̃x). This establishes that (x̃ i , ỹi ) can be obtained from
a new function F̃ , and hence ensures the integrability of (x̃ i , ỹi ) under symplectic
transformations.

To complete the proof of the theorem, we need to discuss one more issue, namely
the decompositions of F(x, x̄) and F̃(x̃, ¯̃x) and their relation. The decomposition of
F into F (0) and Ω suffers from the ambiguity (1.8), and so does the decomposition
of F̃ . Therefore, to be able to relate both decompositions, we need to fix the ambiguity
in the decomposition of F̃ , once a decomposition of F has been given. To do so, we
proceed as follows.

We consider a symplectic transformation (1.10) which, as we just discussed,
yields a new function F̃ . Given a decomposition of F , we apply the same trans-
formation to the vector (xi , F (0)

i ) alone, where F (0)
i = ∂F (0)/∂xi . This yields

the vector (x̂ i , F̃ (0)
i (x̂)), as explained in appendix A. The transformed vector

(x̂ i , F̃ (0)
i (x̂)) can be integrated, i.e. F̃ (0)

i can be expressed as ∂ F̃ (0)(x̂)/∂ x̂ i , where
F̃ (0)(x̂) is uniquely determined up to a constant and up to terms linear in x̂ i

(see (1.165)) [5]. The expression for F̃ (0)(x̂) can be readily obtained by using
that the combination F (0) − 1

2 xi F (0)
i transforms as a function under symplectic

transformations, i.e. δ
(

F (0) − 1
2 xi F (0)

i

)
= 1

2

(
δxi F (0)

i − xi δF (0)
i

)
. One obtains
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F̃ (0)(x̂) = 1
2 x̂ i F̃ (0)

i (x̂)+ F (0) − 1
2 xi F (0)

i , up to a constant and up to terms linear in
x̂ i . Thus, to relate the decomposition of F̃ to the decomposition of F , we demand that
F̃ (0) refers to the combination that follows by applying a symplectic transformation
to (xi , F (0)

i ), as just described. This in turn determines Ω̃ = 1
4 [L̃ − 4Im F̃ (0)]. This

completes the proof of the theorem.
We finish this subsection with a few comments. First, we note that since both H

and F (0) − 1
2 xi F (0)

i transform as functions under symplectic transformations, so
does the following combination that appears in (1.9),

2 Ω − xiΩi − x̄ ı̄Ωı̄ . (1.14)

Second, the transformation law of 2iΩi = Fi − F (0)
i under symplectic transfor-

mations is determined by the transformation behavior of Fi and F (0)
i , as described

above. In appendix A we give an equivalent expression for Ω̃i in terms of a power
series in derivatives of Ω , see (1.161). The transformation law of 2iΩı̄ = Fı̄ , on the
other hand, follows from the reality of Ω̃ ,

Ω̃ı̄ = (Ω̃i ). (1.15)

Third, as mentioned in the introduction, the function F(x, x̄) may, in general, depend
on a number of external parameters η that are inert under symplectic transformations.
Without loss of generality, we may take η to be solely encoded in Ω and, upon
transformation, in Ω̃ (we can use the equivalence relation (1.8) to achieve this). In
appendix A we show that ∂η F = ∂F/∂η transforms as a function under symplectic
transformations [21]. We will return to this feature in Sect. 1.2.3.

Appendix A also discusses the transformation behavior under symplectic trans-
formations of various holomorphic and anti-holomorphic derivatives of F . We use
these expressions to give an alternative proof of the integrability of (1.10).

1.2.2 Examples

We now proceed to illustrate the features of the theorem discussed above in various
models that have duality symmetries. To keep the discussion as transparent as possible
in all cases, we consider the reduced Lagrangian that is obtained by restricting to
spherically symmetric static configurations in flat spacetime. The first model we
consider is the Born-Infeld model for an abelian gauge field, which has been known
to have an SO(2) duality symmetry for a long time [29]. This symmetry may be
enlarged to an SL(2, R) duality symmetry by coupling the system to a complex
scalar field, called the dilaton-axion field [30]. This is the second model we consider.
Then we turn to more general models with exact S- and T-duality and discuss the
restrictions imposed on Ω by these symmetries. We exhibit how the Born-Infeld-
dilaton-axion system fits into this class of models. Finally, we focus on the case when
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the function F(x, x̄) is taken to be homogeneous, and we discuss the form of the
associated Hamiltonian.

The Born-Infeld Model

The Born-Infeld Lagrangian2 for an abelian gauge field in a spacetime with metric
gμν is given by [31]

L = −g−2
[√| det[gμν + g Fμν]| −√| det gμν |

]
. (1.16)

It depends on an external parameter η = g2. In the following we consider spherically
symmetric static configurations in flat spacetime given by

ds2 = − dt2 + dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

,

Frt = e(r), Fθϕ = p sin θ. (1.17)

Here, the θ-dependence of Fθϕ is fixed by rotational invariance, and p is constant by
virtue of the Bianchi identity. Evaluating (1.16) for this configuration gives

L = −g−2r2 sin2 θ

[√
|1 − g2e2(r)|

√
1 + g2 p2 r−4 − 1

]
. (1.18)

Below we will rewrite (1.18) and bring it into the form (1.9). Since this rewriting
does not depend on the angular variables and since it applies to any r -slice, we
integrate over the angular variables and pick the r -slice 4πr2 = 1, for convenience.
The resulting reduced Lagrangian reads,

L(e, p) = −g−2
[√

1 − g2e2
√

1 + g2 p2 − 1

]
, (1.19)

where we take g2e2 < 1.

Exercise 2 Instead of flat spacetime, consider the Ad S2 × S2 line element ds2 =
v1(−r2dt2 + r−2dr2) + v2(dθ2 + sin2 θ dϕ2), where v1 and v2 denote constants.
Show that the resulting reduced Lagrangian takes the form (1.19) after performing a
suitable rescaling of g, e and p.

In the example (1.19), the role of the coordinate φ and of the velocity φ̇ introduced
above (1.6) is played by p and e, respectively. The associated Hamiltonian H is
obtained by Legendre transforming with respect to φ̇ = e. The conjugate momentum
π is given by the electric charge q, so that

2 We will use the notation L and H when dealing with Lagrangian and Hamiltonian densities,
respectively.
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H(p, q) = q e − L(e, p). (1.20)

Computing

q = ∂L
∂e

= e

√
1 + g2 p2

1 − g2e2 , f ≡ ∂L
∂ p

= −p

√
1 − g2e2

1 + g2 p2 , (1.21)

where we introduced f for later convenience, and substituting in (1.20), we obtain
for the Hamiltonian,

H(p, q) = g−2
[√

1 + g2(p2 + q2) − 1

]
. (1.22)

This Hamiltonian is manifestly invariant under SO(2) rotations of p and q and, in
particular, under the discrete symmetry that interchanges the electric and magnetic
charges. The external parameter η = g2 is inert under these transformations. These
rotations constitute the only continuous symmetry of the system [29]. Their infinites-
imal form can be represented by an Sp(2, R)-transformation (1.5) with U = V = 1
and Z = −W = −c, where c ∈ R.

Now, following the construction described in the Sect. 1.2.1, we introduce a
complex coordinate x in terms of the coordinate φ = p and the velocity φ̇ = e, and
a complex function F(x, x̄; g2),

x = 1
2 (p + ie) , F(x, x̄; g2) = F (0)(x) + 2iΩ(x, x̄; g2), (1.23)

where

F (0)(x) = − 1
2 i x2,

Ω(x, x̄; g2) = 1
8 g−2

(√
1 + g2(x + x̄)2 −

√
1 + g2(x − x̄)2

)2
. (1.24)

The split into F (0) and Ω is done in such a way that F (0) will encode the contribution
at the two-derivative level (which corresponds to the term L ≈ − 1

4 F2
μν + O(g2) in

(1.16)), while Ω will encode the higher-derivative contributions. Indeed, with these
definitions the Lagrangian (1.19) can be written as

L = 4[ImF − Ω], (1.25)

in agreement with the first equation of (1.9). Next, using the first equation of (1.21),
we establish

p = 2 Re x, q = 2 Re Fx , (1.26)

in accordance with (1.6), where we recall that the conjugate momentum π equals q.
Then, inserting (1.26) into (1.22) yields
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H = i(x̄ Fx − x F̄x̄ ) + 4 g2 ∂Ω

∂g2 , (1.27)

where Fx = ∂F(x, x̄; g2)/∂x . This is in agreement with the second equation of (1.9),
since F (0) satisfies F (0) = 1

2 x F (0)
x , and Ω obeys the homogeneity relation

2 Ω = x Ωx + x̄ Ωx̄ − 2 g2 ∂Ω

∂g2 , (1.28)

which is a consequence of the behavior of Ω under the real scaling x → λ x and
g2 → λ−2 g2.

Exercise 3 Establish (1.28) by differentiating the relation Ω(λ x,λ x̄;λ−2 g2) =
λ2 Ω(x, x̄; g2).

Exercise 4 Verify (1.25), (1.26) and (1.27).

Rather than performing a Legendre transformation of L(e, p) with respect to e,
we may instead consider performing a Legendre transformation with respect to p.
The resulting quantity S(e, f ) will then depend on the canonical pair (e, f ), rather
than on (p, q). Using the expression for f given in (1.21), we obtain

S(e, f ) = f p − L(e, p) = g−2
[√

1 − g2(e2 + f 2) − 1

]
, (1.29)

which is invariant under SO(2) rotations of e and f . Next, we express S(e, f ) in
terms of x and Fx introduced in (1.23). First we establish

f = 2 Im Fx , (1.30)

so that
x = 1

2 (p + ie), Fx = 1
2 (q + i f ). (1.31)

Then, using (1.27) and (1.31), we obtain3

S = f p − q e + H = −i
(
x̄ Fx − x F̄x̄

)+ 4 g2 ∂Ω

∂g2 . (1.32)

Let us now return to the discussion about symplectic transformations alluded to
below (1.22). A symplectic transformation (1.10) may either constitute a symmetry
(an invariance) of the system or correspond to a symplectic reparametrization of the
system giving rise to an equivalent set of equations of motion and Bianchi iden-
tities [33]. When a symplectic transformation describes a symmetry, a convenient

3 In the context of BPS black holes, H is the Hesse potential, and the double Legendre transform
of H yields the entropy function [8, 32].
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method for verifying this consists in performing the substitution xi → x̃ i in the deriv-
atives Fi , and checking that this correctly induces the symplectic transformation on
(xi , Fi ) [5].

To elucidate this, let us consider a particular example, namely the discrete sym-
metry that interchanges the electric and magnetic charges. It can be implemented
by the transformation (x, Fx ) → (Fx ,−x), which operates on the canonical pairs
(p, q) and (e, f ) through (1.31). This constitutes a symplectic transformation (1.5)
with U = V = 0 , Z = 1 , W = −1. To verify that the transformation x → x̃ = Fx

correctly induces the transformation of Fx , we compute

Fx = −ix
1 + g2(x2 − x̄2)√

1 + g2(x + x̄)2
√

1 + g2(x − x̄)2
. (1.33)

Also, expressing e in terms of p and q (by using the first relation of (1.21)), we may
express x in terms of p = 2Re x and q = 2Re Fx ,

x = 1
2

(
p + iq√

1 + g2(p2 + q2)

)
. (1.34)

We leave the following exercise to the reader.

Exercise 5 Using (1.33), show that the transformation x → Fx induces the trans-
formation Fx → −x by inserting the former on the right hand side of Fx . Similarly,
using (1.34), show that the transformation (Re x, Re Fx ) → (Re Fx ,−Re x) induces
the transformation x → Fx .

Next, let us discuss an example of a symplectic transformation that does not
constitute a symmetry of the system, but instead describes a reparametrization of it.
Namely, consider the following transformation of the canonical pair (p, q),

(
p
q

)
=
(

2Re x
2Re Fx

)
−→

(
p̃
q̃

)
=
(

2Re x̃
2Re F̃x̃

)
=
(

p + α q
q

)
, α ∈ R.

(1.35)
This constitutes a symplectic transformation (1.5) given by U = V = 1 , Z = α ,

W = 0. Since, however, it does not represent an SO(2) rotation of p and q, it does not
leave the Hamiltonian (1.22) invariant. To determine the new function F̃(x̃, ¯̃x; g2)

associated with this reparametrization, we start on the Hamiltonian side and use the
fact that H transforms as a function under symplectic transformations. Using (1.35)
this gives

H̃( p̃, q̃) = H(p, q) = g−2
[√

1 + g2[( p̃ − αq̃)2 + q̃2] − 1

]
. (1.36)

Now we determine the corresponding Lagrangian by Legendre transformation,



1 Non-holomorphic Deformations of Special Geometry and Their Applications 15

L̃(ẽ, p̃) = ẽ q̃ − H̃( p̃, q̃), (1.37)

where

ẽ = ∂H̃
∂q̃

= (1 + α2)q̃ − α p̃√
1 + g2(1 + α2)−1[((1 + α2)q̃ − α p̃)2 + p̃2] . (1.38)

This yields,

q̃ = α p̃

1 + α2 + ẽ

1 + α2

√
1 + α2 + g2 p̃2

1 + α2 − g2 ẽ2 , (1.39)

which, when inserted in (1.37), gives

L̃(ẽ, p̃) = α ẽ p̃

1 + α2 − g−2
[

1

1 + α2

√
1 + α2 − g2 ẽ2

√
1 + α2 + g2 p̃2 − 1

]
.

(1.40)

In order to bring the Lagrangian L̃ into the form L̃ = 4
[
Im F̃ − Ω̃

]
, as in (1.9), we

express L̃ in terms of the complex coordinate

x̃ = 1
2 ( p̃ + iẽ) , (1.41)

which is the transformed version of the coordinate x introduced in (1.23). Then, we
consider all the terms in L̃ that are independent of g2, and we express them in terms
of a function F̃ (0)(x̃), as follows,

1

1 + α2

[
α ẽ p̃ + 1

2

(
ẽ2 − p̃2

)]
= 4 Im F̃ (0)(x̃). (1.42)

This yields

F̃ (0)(x̃) = α − i

2 (1 + α2)
x̃2, (1.43)

up to a real constant. It represents the function that is obtained by applying the
symplectic transformation (1.35) to F (0)(x), as explained at the end of Sect. 1.2.1.
Next, we introduce the function

F̃(x̃, ¯̃x; g2) = F̃ (0)(x̃) + 2iΩ̃(x̃, ¯̃x; g2), (1.44)

with Ω̃ real, and we require it to satisfy L̃ = 4
[
Im F̃ − Ω̃

]
. This implies that all the

g2-dependent terms will be encoded in Ω̃(x̃, ¯̃x; g2). We obtain
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Ω̃(x̃, ¯̃x; g2) = 1

8(1 + α2) g2

(√
1 + α2 + g2(x̃ + ¯̃x)2 −

√
1 + α2 + g2(x̃ − ¯̃x)2

)2

.

(1.45)
This result gives the function F̃ associated with the reparametrization (1.35). We now
check that it correctly reproduces the relation q̃ = 2 Re F̃x̃ , as required by (1.35).
We compute F̃x̃ and obtain,

F̃x̃ = α x̃

1 + α2 (1.46)

− i

2 (1 + α2)

⎧⎨
⎩(x̃ − ¯̃x)

√
1 + α2 + g2(x̃ + ¯̃x)2

1 + α2 + g2(x̃ − ¯̃x)2
+ (x̃ + ¯̃x)

√
1 + α2 + g2(x̃ − ¯̃x)2

1 + α2 + g2(x̃ + ¯̃x)2

⎫⎬
⎭ .

We leave the following exercise to the reader.

Exercise 6 Using (1.46), verify explicitly that 2Re F̃x̃ equals (1.39).

Now we want to see how F̃x̃ is related to Fx . According to the discussion
around (1.10), the symplectic transformation (1.35) of the canonical pair (Re x, Re Fx )

induces a corresponding transformation of the vector (x, Fx ),(
x̃
F̃x̃

)
=
(

x + α Fx

Fx

)
. (1.47)

This is indeed the case, as can be verified explicitly by expressing the transformed
variables ( p̃, ẽ) in terms of the original variables (p, e) using (1.21), (1.38) and
(1.35),

p̃ = p + α e

√
1 + g2 p2

1 − g2e2 , ẽ = e − α p

√
1 − g2e2

1 + g2 p2 , (1.48)

and employing the relation

1 + α2 − g2ẽ2

1 + α2 + g2 p̃2 = 1 − g2e2

1 + g2 p2 . (1.49)

Exercise 7 Verify (1.47) explicitly using (1.46).

Including a Dilaton-Axion Complex Scalar Field

The Born-Infeld system discussed in the previous section possesses a continuous
SO(2) duality symmetry group. It is possible to enlarge this duality symmetry group
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to Sp(2, R) by coupling the abelian gauge field to a complex scalar field S = Φ +
i B [30]. This is achieved by replacing g Fμν in (1.16) with g Φ1/2 Fμν and adding a
term B Fμν F̃μν to the Lagrangian, as follows [30]

L = −g−2
[√

| det[gμν + g Φ1/2 Fμν]| −√| det gμν |
]

+ 1
4 B Fμν F̃μν . (1.50)

Then, the combined system of equations of motion and Bianchi identity for Fμν is
invariant under Sp(2, R) transformations, provided that S transforms in a suitable
fashion. The associated Hamiltonian will then be invariant under these transforma-
tions. This will be discussed momentarily. The coupling g Φ1/2 replaces the gauge
coupling constant with a dynamical field, customarily called the dilaton field, while
the term B Fμν F̃μν introduces a scalar field degree of freedom called the axion. For
this reason, S is also called the dilaton-axion field.

As before, let us consider spherically symmetric static configurations of the
form (1.17). Picking again the r -slice 4πr2 = 1, for convenience, the reduced La-
grangian is now given by

L(e, p, Φ, B) = −g−2
[√

1 − g2 Φ e2
√

1 + g2 Φ p2 − 1

]
+ B e p, (1.51)

where we take g2 Φ e2 < 1. This reduces to the previous one in (1.19) when setting
S = 1. To obtain the associated Hamiltonian H,

H(p, q, Φ, B) = q e − L(e, p, Φ, B), (1.52)

we first compute q = ∂L/∂e,

q = e Φ

√
1 + g2 Φ p2

1 − g2 Φ e2 + B p. (1.53)

Inverting this relation yields

e = q − B p√
Φ2 + g2 Φ

[
Φ2 p2 + (q − B p)2

] , (1.54)

and substituting in (1.52) gives

H(p, q, Φ, B) = g−2
[√

1 + g2[Φ p2 + Φ−1 (q − B p)2] − 1

]
. (1.55)

Then, expressing Φ and B in terms of S and S̄ results in
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H(p, q, S, S̄) = g−2
[√

1 + 2 g2 �(p, q, S, S̄) − 1

]
, (1.56)

where

�(p, q, S, S̄) = q2 + ip q(S − S̄) + p2 |S|2
S + S̄

. (1.57)

Exercise 8 Verify (1.56).

Now we are in position to discuss the invariance of the Hamiltonian under Sp(2, R)

transformations. Consider a general Sp(2, R) transformation of the canonical pair
(p, q) given by (

p
q

)
−→

(
p̃
q̃

)
=
(

d −c
−b a

)(
p
q

)
, (1.58)

where a, b, c, d ∈ R and ad − bc = 1. The latter ensures that the transformation
belongs to SL(2, R) ∼= Sp(2, R). Then, � given in (1.57) is invariant under (1.58)
provided that S transforms according to [8]

S → aS − ib

icS + d
. (1.59)

This explains the role of S in achieving duality invariance. It should be noted that
S does not constitute an additional canonical variable, but instead describes a back-
ground field. The external parameter g2 is inert under these transformations.

Exercise 9 Show that � is invariant under the combined transformation (1.58) and
(1.59).

We observe that H homogeneously as H → λ2H under the real scaling (p, q) →
λ(p, q) , g2 → λ−2 g2 , S → S, with λ ∈ R.

Let us now return to the reduced Lagrangian (1.51) and recast it in the form
L = 4 [ImF − Ω], where again we introduce the complex variable x = 1

2 (p + ie).
The function F will now depend on the two complex scalar fields x an S,

F(x, x̄, S, S̄; g2) = F (0)(x, S) + 2iΩ(x, x̄, S, S̄; g2), (1.60)

and is determined as follows. The holomorphic function F (0) encodes all the contri-
butions that are independent of g2, while Ω , which is real, accounts for all the terms
in the reduced Lagrangian that depend on g2. This yields,

F (0)(x, S) = − 1
2 i S x2, (1.61)

Ω(x, x̄, S, S̄; g2) = 1
8 g−2

(√
1 + 1

2g2 (S + S̄) (x + x̄)2

−
√

1 + 1
2g2 (S + S̄) (x − x̄)2

)2

.
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Observe that under the scaling of (p, q) and g2 discussed below (1.59), e scales
as e → λe, and hence x scales as x → λx . This in turn implies that F scales as
F → λ2 F .

From (1.6) we infer that the canonical pair (p, q) is given by (2Re x, 2Re Fx ).
According to the discussion around (1.10), the symplectic transformation (1.58)
of the canonical pair (Re x, Re Fx ) induces a transformation of the vector (x, Fx )

given by (x, Fx ) → (d x − c Fx , a Fx − b x). Since (1.58) together with (1.59)
constitutes a symmetry of the model, the transformation of Fx must be induced by
the transformation of x and S upon substitution. We leave it to the reader to verify
this.

Exercise 10 Show that the transformation of x and S (given in (1.58) and (1.59),
respectively) induces the transformation Fx → a Fx − b x by substituting x and S
with x̃ and S̃ in Fx .

The reduced Lagrangian (1.51) describes the system on an r -slice 4πr2 = 1.
Another background leading to a similar reduced Lagrangian, and hence to a similar
description in terms of a function F , is provided by an Ad S2 × S2 spacetime.

Exercise 11 Consider the Born-Infeld-dilaton-axion system in an Ad S2 × S2 back-
ground and show that, after performing a suitable rescaling of g, e and p, the resulting
reduced Lagrangian is again encoded in (1.61).

Towards N = 2 Supergravity Models

In the Born-Infeld example discussed above, the duality symmetry of the model was
enlarged by coupling it to an additional complex scalar field S. This feature is not
an accident. In the context of N = 2 supersymmetric models, it is well known that
the presence of complex scalar fields is crucial in order for the model to have duality
symmetries. To explore this in more detail, let us broaden the discussion and consider
functions F that depend on three complex scalar fields Y I (with I = 0, 1, 2), as well
as on an external parameter η. They will have the form

F(Y, Ȳ ; η) = − 1
2

Y 1(Y 2)2

Y 0 + 2iΩ(Y, Ȳ ; η). (1.62)

The function F describing the Born-Infeld-dilaton-axion system, given in (1.60), is a
special case of (1.62). It is obtained by performing the identification S = −i Y 1/Y 0,
x = Y 2 and η = g2. This identification is consistent with the scaling properties
of x, S and g2 discussed below (1.59). Namely, by assigning the uniform scaling
behavior Y I → λ Y I to the Y I , we reproduce the scalings of x, S and g2. The
function (1.62) may, however, also describe other models, such as genuine N = 2
supergravity models and should thus be viewed in a broader context. Depending
on the chosen context, the external parameter η will have a different interpretation.
Observe that in the description (1.62) based on the Y I , duality transformations are
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represented by Sp(6, R) matrices (which are 6 × 6 matrices of the form (1.5)) acting
on (Y I , FI ), where FI = ∂F(Y, Ȳ ; η)/∂Y I . The external parameter η is inert under
these transformations.

Let us now assume that a model based on (1.62) has a symmetry associated with
a subgroup of Sp(6, R). This will impose restrictions on the form of Ω [18, 21]. For
concreteness, we take the symmetry to be an SL(2, R) × SL(2, R) subgroup. The
first SL(2, R) subgroup acts as follows on (Y I , FI ),

Y 0 → d Y 0 + c Y 1,

Y 1 → a Y 1 + b Y 0,

Y 2 → d Y 2 − c F2,

F0 → a F0 − b F1,

F1 → d F1 − c F0,

F2 → a F2 − b Y 2,

(1.63)

where a, b, c, d are real parameters that satisfy ad − bc = 1. This symmetry is
referred to as S-duality. Let us describe its action on two complex scalar fields S and T
that are given by the scale invariant combinations S = −iY 1/Y 0 and T = −iY 2/Y 0.
The field S is the one we encountered above. The S-duality transformation (1.63)
acts as

S → aS − ib

icS + d
, T → T + 2i c

ΔS (Y 0)2

∂Ω

∂T
, Y 0 → ΔS Y 0, (1.64)

where we view Ω as function of S, T, Y 0 and their complex conjugates, and where

ΔS = d + ic S. (1.65)

The second SL(2, R) subgroup is referred to as T-duality group. Here we focus on
the T-duality transformation that, in the absence of Ω , induces the transformation
T → 2/T . It is given by the following Sp(6, R) transformation,

Y 0 → F1 ,

Y 1 → −F0 ,

Y 2 → Y 2 ,

F0 → −Y 1 ,

F1 → Y 0 ,

F2 → F2 ,

(1.66)

and yields

S → S + 2

ΔT(Y 0)2

[
−Y 0 ∂Ω

∂Y 0 + T
∂Ω

∂T

]
, T → T

ΔT
, Y 0 → ΔT Y 0, (1.67)

where

ΔT = 1
2 T 2 + 2

(Y 0)2

∂Ω

∂S
. (1.68)

As already mentioned below (1.32), when a symplectic transformation describes
a symmetry of the system, a convenient method for verifying this consists in per-
forming the substitution Y I → Ỹ I in the derivatives FI , and checking that this
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substitution correctly induces the symplectic transformation of FI . This will impose
restrictions on the form of F , and hence also on Ω . Imposing that S-duality (1.63)
constitutes a symmetry of the model (1.62) results in the following conditions on the
transformation behavior of the derivatives of Ω [21],

(
∂Ω

∂T

)′

S
= ∂Ω

∂T
,

(
∂Ω

∂S

)′

S
= ΔS

2
(

∂Ω

∂S

)
+ ∂

(
ΔS

2
)

∂S

[
− 1

2 Y 0 ∂Ω

∂Y 0 − ic

2ΔS (Y 0)2

(
∂Ω

∂T

)2
]

,

(
Y 0 ∂Ω

∂Y 0

)′

S
= Y 0 ∂Ω

∂Y 0 + 2ic

ΔS (Y 0)2

(
∂Ω

∂T

)2

, (1.69)

while requiring (1.66) to constitute a symmetry imposes the transformation behav-
ior [21]

(
∂Ω

∂S

)′

T
= ∂Ω

∂S
,

(
∂Ω

∂T

)′

T
=
(
ΔT − T 2

) ∂Ω

∂T
+ T Y 0 ∂Ω

∂Y 0 ,

(
Y 0 ∂Ω

∂Y 0

)′

T
= Y 0 ∂Ω

∂Y 0 + 4

ΔT (Y 0)2

∂Ω

∂S

[
−Y 0 ∂Ω

∂Y 0 + T
∂Ω

∂T

]
. (1.70)

These equations allow for various classes of solutions. For instance, if we only impose
S-duality invariance, then an exact solution to the S-duality conditions (1.69) is

Ω(S, S̄, Y 0, Ȳ 0; η) = η
[
ln Y 0 + ln Ȳ 0 + ln(S + S̄)

]
, (1.71)

which is invariant under (1.64). If, on the other hand, we impose both S-duality
and T-duality invariance, solutions to both (1.69) and (1.70) may be constructed
iteratively by assuming that Ω is analytic in η and power expanding in it, so that

Ω(Y, Ȳ ; η) =
∞∑

n=1

ηn Ω(n)(Y, Ȳ ). (1.72)

Then, at order η, the differential equations (1.69) reduce to

(
∂Ω(1)

∂T

)′

S

= ∂Ω(1)

∂T
,

(
∂Ω(1)

∂S

)′

S

= ΔS
2

(
∂Ω(1)

∂S

)
+ ∂

(
ΔS

2
)

∂S

[
− 1

2 Y 0 ∂Ω(1)

∂Y 0

]
,
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(
Y 0 ∂Ω(1)

∂Y 0

)′

S

= Y 0 ∂Ω(1)

∂Y 0 , (1.73)

while the differential equations (1.70) reduce to

(
∂Ω(1)

∂S

)′

T

= ∂Ω(1)

∂S
,

(
∂Ω(1)

∂T

)′

T

= − 1
2 T 2 ∂Ω(1)

∂T
+ T Y 0 ∂Ω(1)

∂Y 0 ,

(
Y 0 ∂Ω(1)

∂Y 0

)′

T

= Y 0 ∂Ω(1)

∂Y 0 . (1.74)

Once a solution Ω(1) to these equations has been found, the full expression (1.72)
can be constructed by solving (1.69) and (1.70) iteratively starting from Ω(1).

As an application, let us return to the Born-Infeld-dilaton-axion model (1.61)
which, as we already mentioned, is a model of the form (1.62) that scales as F →
λ2 F under Y I → λY I with λ ∈ R (see below (1.61)). Let us first check that
both S- and T-duality constitute invariances of the model. We recall that x = Y 2.
The S-duality transformation (1.63) precisely induces the transformations (1.58)
and (1.59), since (p, q) = (2Re x, 2Re Fx ). The T-duality transformation (1.66)
leaves (x, Fx ) invariant. By expressing Ω given in (1.61) in terms of S, T and Y 0

(and their complex conjugates), we see from (1.67) that also S is invariant under
this T-duality transformation, since Y 0∂Ω/∂Y 0 = T ∂Ω/∂T . Consequently, the
Hamiltonian (1.56) is also invariant under (1.66).

Now consider expanding (1.61) in powers of g2. To first order we obtain

Ω(1) = 1
8 |Y 0|4 (S + S̄)2 |T |4. (1.75)

It is invariant under both (1.63) and (1.66) to lowest order in g2, and it is straightfor-
ward to check that (1.75) indeed satisfies the differential Eqs. (1.73) and (1.74).
We note that under the aforementioned scaling Y I → λ Y I , Ω(1) scales as
Ω(1) → λ4 Ω(1). This scaling behavior is thus very different from the one en-
countered in supergravity models, such as those considered in [18, 21], where the
function F scaled homogeneously as F → λ2 F , but the associated Ω(1) did not
scale at all. This difference is due to the fact that in these models, the external para-
meter η scaled as η → λ2 η, while in the Born-Infeld-dilaton-axion model it scales
as η → λ−2 η.

Thus, we see that the actual solutions to (1.69) and (1.70) depend sensitively
on the scaling behavior of the Y I and η. For instance, the solution (1.71) does not
exhibit a homogeneous scaling behavior under Y I → λY I . In the next subsection,
we further analyze some of the consequences of this scaling behavior.
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1.2.3 Homogeneous F(x, x̄;η)

The theorem in Sect. 1.2.1 did not assume any homogeneity properties for F . Here
we will look at the case when F is homogeneous of degree two and discuss some of
its consequences. As shown in the previous subsections, an example of a model with
this feature is the Born-Infeld-dilaton-axion system.

Let us consider a function F(x, x̄; η) = F (0)(x) + 2iΩ(x, x̄; η) that depends
on a real external parameter η, and let us discuss its behavior under the scaling
x → λ x , η → λm η with λ ∈ R. We take F (0)(x) to be quadratic in x , so that
F (0) scales as F (0)(λ x) = λ2 F (0)(x). This scaling behavior can be extended to
the full function F if we demand that the canonical pair (φ,π) given in (1.6) scales
uniformly as (φ,π) → λ (φ,π). Then we have

F(λ x,λ x̄;λm η) = λ2 F(x, x̄; η), (1.76)

which results in the homogeneity relation

2 F = xi Fi + x̄ ı̄ Fı̄ + m η Fη, (1.77)

where Fη = ∂F/∂η. Inspection of (1.11) shows that the associated Hamiltonian H
scales with weight two as

H(λφ,λπ;λm η) = λ2 H(φ,π; η), (1.78)

so that H satisfies the homogeneity relation,

2 H = φ
∂H

∂φ
+ π

∂H

∂π
+ m η

∂H

∂η
. (1.79)

Using (1.11) as well as yi = Fi , this can be written as

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
+ m

2
η

∂H

∂η
. (1.80)

Next, using that the dependence on η is solely contained in Ω , we obtain

∂H

∂η
|φ,π = −∂L

∂η
|φ,φ̇ = −4Ωη, (1.81)

where Ωη = ∂Ω/∂η. Thus, we can express (1.80) as

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
− 2 m η Ωη. (1.82)
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This relation is in accordance with (1.9) upon substitution of the homogeneity
relations 2F (0)(x) = xi F (0)

i and 2 Ω = xiΩi + x̄ ı̄Ωı̄ + m η Ωη that follow from
(1.77).

The Hamiltonian transforms as a function under symplectic transformations. Since
the first term in (1.82) transforms as a function, it follows that Ωη also transforms as a
function. This is in accordance with the general result quoted at the end of Sect. 1.2.1
which states that ∂η F transforms as a function.

An application of the above is provided by the Born-Infeld-dilaton-axion system
based on (1.61), whose function F scales according to (1.76) with m = −2 (in this
example, η = g2).

In certain situations, such as in the study of BPS black holes [34], the discussion
needs to be extended to an external parameter η that is complex, so that now we
consider a function F(x, x̄; η, η̄) = F (0)(x)+ 2iΩ(x, x̄; η, η̄) that scales as follows
(with λ ∈ R),

F(λ x,λ x̄;λm η,λm η̄) = λ2 F(x, x̄; η, η̄). (1.83)

For instance, in the case of BPS black holes, η is identified with Υ , which is complex
and denotes the (rescaled) lowest component of the square of the Weyl superfield.
The extension to a complex η results in the presence of an additional term on the
right hand side of (1.77) and (1.79),

2 F = xi Fi + x̄ ı̄ Fı̄ + m
(
η Fη + η̄Fη̄

)
,

2 H = φ
∂H

∂φ
+ π

∂H

∂π
+ m

(
η

∂H

∂η
+ η̄

∂H

∂η̄

)
, (1.84)

and hence

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
+ m

2

(
η

∂H

∂η
+ η̄

∂H

∂η̄

)
. (1.85)

Then, since the dependence on η and η̄ is solely contained in Ω , we obtain

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
− 2 m

(
η Ωη + η̄ Ωη̄

)
. (1.86)

This is in accordance with (1.9) upon substitution of the homogeneity relations
2F (0)(x) = xi F (0)

i and 2 Ω = xiΩi + x̄ ı̄Ωı̄ + m (η Ωη + η̄ Ωη̄) that follow
from (1.84). The case of BPS black holes mentioned above corresponds to m = 2
[8, 21].

The above extends straightforwardly to the case of multiple real external
parameters.
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1.3 Lecture II: Duality Covariant Complex Variables

As already discussed, the function F(x, x̄) may depend on a number of external
parameters η. Under duality transformations (1.10), the symplectic vector (xi , Fi

(x, x̄)) transforms into (x̃ i , F̃i (x̃, ¯̃x)), while the parameters η are inert. When
expressing the transformed variables x̃ i in terms of the original xi , the relation
will depend on η, i.e. x̃ i = x̃ i (x, x̄, η). In this section we introduce duality co-
variant complex variables t i whose duality transformation law is independent of η.
These variables constitute a complexification of the canonical variables of the Hamil-
tonian and ensure that when expanding the Hamiltonian in powers of the external
parameters, the resulting expansion coefficients transform covariantly under duality
transformations. This expansion can also be organized by employing a suitable co-
variant derivative, which we construct. The covariant variables introduced here have
the same duality transformation properties as the ones used in topological string
theory and can therefore be identified with the latter.

We begin by writing the Hamiltonian H given in (1.9) in the form

H = − i(xi F̄ (0)
ı̄ − x̄ ı̄ F (0)

i ) − 4 Im[F (0) − 1
2 xi F (0)

i ]
− 2

[
2 Ω − (xi − x̄ ı̄ )(Ωi − Ωı̄ )

]
, (1.87)

where we made use of (1.7). We take Ω(x, x̄; η) to depend on a single real parameter
η that is inert under symplectic transformations. The discussion given below can
be extended to the case of multiple real external parameters in a straightforward
manner. For later convenience, we introduce the notation Ωη = ∂Ω/∂η, Fη j =
∂2 F/∂η∂x j , etc.

The Hamiltonian (1.87) is given in terms of complex fields xi and x̄ ı̄ whose
transformation law under duality depends on the external parameter η. Now we
define complex variables t i whose transformation law does not depend on η, as
follows. We introduce the complex vector (t i , F (0)

i (t)) and equate its real part with
the vector comprising the canonical variables (φi ,πi ) [10],

2Re t i = φi ,

2Re F (0)
i (t) =πi . (1.88)

This definition ensures that the vector (t i , F (0)
i (t)) describes a complexification of

(φi ,πi ) that transforms in the same way as (φi ,πi ) under duality transformations,
namely as in (1.4). This yields the transformation law

t̃ i = Ui
j t j + Zi j F (0)

j (t), (1.89)

which, differently from the one for the x̃ i , is independent of η.
Using (1.6), the new variables t i are related to the xi by



26 G. L. Cardoso et al.

2Re t i = 2Re xi ,

2Re F (0)
i (t) = 2Re Fi (x, x̄; η). (1.90)

Now we consider the series expansion of H in powers of η. If the expansion
is performed keeping xi and x ı̄ fixed, the resulting coefficients functions in the
expansion do not have a nice behavior under sympletic transformations because of
the aforementioned dependence of x̃ i on η. This implies that the coefficient functions
at a given order in η will transform into coefficient functions at higher order. This
can be avoided by performing an expansion in powers of η keeping t i and t ı̄ fixed
instead. We obtain

H =
∞∑

n=0

ηn

n! f (n)(t, t̄), (1.91)

where the coefficient functions

f (n) = ∂
n

η H(t, t̄; η)

∣∣∣
η=0

(1.92)

transform as functions under symplectic transformations, i.e. f̃ (n)(t̃, ¯̃t) = f (n)(t, t̄).
Viewing them as as functions of Re t i and of Re F (0)

i (t), we can re-express them in
terms of xi and x̄ ı̄ using (1.90), as follows. First we introduce a modified derivative
Dη [5, 33] that has the feature that it annihilates the canonical variables (φi ,πi ), so
that

Dη

(
Re xi

)
= 0, Dη (Re Fi ) = 0. (1.93)

We then use Dη to expand H in powers of η while keeping Re xi and Re Fi fixed,

H =
∞∑

n=0

ηn

n! H (n), (1.94)

where the coefficient functions are given by

H (n) = Dn

η H(x, x̄; η)

∣∣∣
η=0

. (1.95)

By comparing (1.91) with (1.94), we conclude that f (n) = H (n), so that the sym-
plectic coefficient functions f (n) can be expressed as

f (n) = ∂
n

η H(t, t̄; η)

∣∣∣
η=0

= Dn

η H(x, x̄; η)

∣∣∣
η=0

. (1.96)

The modified derivative Dη used in the expansion is given by

Dη = ∂η + i N̂ i j (Fη j + F̄ηj̄

)
(∂i − ∂ı̄ ) , (1.97)
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where N̂ i j denotes the inverse of

N̂i j = −i
[
Fi j − F̄ı̄ j̄ − Fi j̄ + F̄ı̄ j

]
. (1.98)

Using (1.7), the above can also be written as

Dη = ∂η − 2 N̂ i j (Ωη j − Ωηj̄

)
(∂i − ∂ı̄ ) , (1.99)

with

N̂i j = Ni j + 4Re
(
Ωi j − Ωi j̄

)
,

Ni j = − i
[

F (0)
i j − F̄ (0)

ı̄ j̄

]
. (1.100)

Observe that N̂i j is a real symmetric matrix.

Exercise 12 Verify (1.93).

We now give the first few terms in the expansion of H . We choose to evaluate
them using (1.95). Expanding Ω in a power series4 in η,

Ω(x, x̄; η) =
∞∑

n=1

ηn

n! Ω(n)(x, x̄), (1.101)

we obtain

f (0) = − i(xi F̄ (0)
ı̄ − x̄ ı̄ F (0)

i ) − 4 Im[F (0) − 1
2 xi F (0)

i ],
f (1) = − 4 Ω(1),

f (2) = − 4
[
Ω(2) − 2N i j

(
Ω

(1)
i − Ω

(1)
ı̄

) (
Ω

(1)
j − Ω

(1)
j̄

)]
,

f (3) = − 4
[
Ω(3) − 6N i j

(
Ω

(2)
i − Ω

(2)
ı̄

) (
Ω

(1)
j − Ω

(1)
j̄

)
(1.102)

+ 12N ik N jl
(
Ω

(1)
i j − Ω

(1)
i j̄ + c.c.

) (
Ω

(1)
k − Ω

(1)

k̄

) (
Ω

(1)
l − Ω

(1)

l̄

)
+ 4i N ip N jl N km

(
Ω

(1)
i − Ω

(1)
ı̄

) (
Ω

(1)
j − Ω

(1)
j̄

) (
Ω

(1)
k − Ω

(1)

k̄

)
×
(

F (0)
plm + F̄ (0)

p̄l̄m̄

)]
.

Observe that at any given order in η, there is no distinction between xi and t i , so that
in (1.102) we may replace xi everywhere by t i .

The expansion (1.94) yields expansion functions that are symplectic functions.
This implies that Dη acts as a covariant derivative for symplectic transformations.

4 Note that here we have chosen a different normalization for the Ω(n) compared to the one in
(1.72).
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This can be verified explicitely and is done in appendix B, where we show that if a
quantity G(x, x̄; η) transforms as a function under symplectic transformations, then
so does DηG. In particular, applying Dη to H yields the relation

∂η H(t, t̄; η) = Dη H(x, x̄; η), (1.103)

where the right-hand side defines a symplectic function. More generally, applying
multiple derivatives Dn

η on any symplectic function depending on xi and x̄ ı̄ , will

again yield a symplectic function. As an example, consider applying Dη and D2

η
on (1.87),

Dη H(x, x̄; η) = − 4 ∂ηΩ(x, x̄; η),

D2

η H(x, x̄; η) = − 4
[
∂

2

ηΩ − 2 N̂ i j∂ηωi ∂ηω j

]
, (1.104)

where ωi = Ωi − Ωı̄ . According to the above, both these expressions transform as
functions under symplectic transformations. For the first expression this is confirmed
by the result (1.177) which shows that ∂ηΩ transforms as a function. The second

expression shows that, while ∂
2

ηΩ does not transform as a function, there exists
a modification that can be included such that the result does again transform as a
function. Expressions like these were derived earlier in a holomorphic setup [5, 33].
Furthermore, we note that the differential operators Di , defined by

Di = N̂ i j
(

∂

∂x j
− ∂

∂ x̄ j̄

)
, (1.105)

are mutually commuting, and they also commute with Dη ,

[Di ,D j ] = [Di ,Dη] = 0. (1.106)

Exercise 13 Verify (1.106).

As already mentioned, it is possible to extend the above to the case of several
independent real parameters η, η′, η′′, . . .. In that case the additional operators, Dη′ ,
etc., will also commute with the operators considered in (1.106).

Obviously, when imposing the restriction η = 0 on the functions Dn

η H , they

reduce to the expressions for the f (n) obtained in (1.102). This can be explicitly
verified for the functions given in (1.104) by comparing them to the expressions
in (1.102).

Let us return to the relation (1.88) and discuss it in the light of phase space

variables. As mentioned in Sect. 1.2.1, we view (φi ,πi ) as coordinates on a clas-
sical phase space equipped with the symplectic form dπi ∧ dφi . Let us express the
symplectic form in terms of the t i using (1.88),
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dπi ∧ dφi = i Ni j dt i ∧ dt̄ j̄ , (1.107)

with Ni j given in (1.100). This relation may be interpreted as a canonical transforma-
tion from variables (φi ,πi ) to (t i , t̄ ı̄ ) which is generated by a function S that depends
on half of all the coordinates. We take S to depend on φi and t i . We determine it
in the linearized approximation by expanding Ni j around a background value t i

B .
Performing the shift

t i → t i
B + t i , t̄ ı̄ → t̄ ı̄

B + t̄ ı̄ , (1.108)

and keeping only terms linear in the fluctuations t i and t̄ ı̄ , we obtain from (1.88),

φi = t i + t̄ ı̄ ,

πi = F (0)
i j (tB) t j + F̄ (0)

ı̄ j̄ (t̄B) t̄ j̄ , (1.109)

where we absorbed the fluctuation independent pieces into the definition of (φi ,πi ).
Then, expressing πi in terms of t i and φi ,

πi = iNi j (tB, t̄B) t j + F̄ (0)
ı̄ j̄ (t̄B)φ j , (1.110)

and introducing the combination

Pi = −i Ni j (tB, t̄B)
(
φ j − t j

)
, (1.111)

yields
dπi ∧ dφi = i Ni j (tB, t̄B) dti ∧ dt̄ j̄ = d Pi ∧ dti . (1.112)

Hence, the 1-form πi dφi − Pi dti is closed, so that locally,

πi dφi − Pi dti = d S, (1.113)

where S(φ, t) is called the generating function of the canonical transformation. Then,
integrating this relation yields the following expression for the generating function
S(φ, t; tB, t̄B) [23–25],

S(φ, t; tB, t̄B) = 1
2 F̄ (0)

ı̄ j̄ (t̄B)φiφ j + i Ni j (tB, t̄B)φi t j − 1
2 i Ni j (tB, t̄B) t i t j

+ c(tB, t̄B), (1.114)

where c denotes a background dependent integration constant. Observe that S(φ, t;
tB, t̄B) is holomorphic in the fluctuation t and non-holomorphic in the background tB .
The generating function S(φ, t; tB, t̄B) plays a crucial role in the wave function
approach to perturbative topological string theory. This approach represents a concise
framework [22–26] for deriving the holomorphic anomaly equation of topological
string theory [35, 36], and will be reviewed in appendix C.
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1.4 Lecture III: The Hesse Potential and the Topological
String

In the previous sections we showed that the dynamics of a general class of Lagrangians
is encoded in a non-holomorphic function F of the form given in (1.2). This function
F may depend on a number of external parameters η. We expressed the associated
Hamiltonian in terms of duality covariant complex variables and showed that in these
variables, the expansion of the Hamiltonian in a power series in η yields expansion
coefficients that transform as functions under duality. In this section we apply these
techniques to supergravity models in the presence of higher-curvature interactions
encoded in the square of the Weyl superfield [2, 5]. We consider these models in
an Ad S2 × S2 background. The Hamiltonian (1.9) associated to the reduced La-
grangian is a (generalized) Hesse potential. The Hesse potential plays a central role
in the formulation of special geometry in terms of real variables [7, 14–16]. The
external parameter η, which is now complex, is identified with the lowest component
field of the square of the Weyl superfield.

We begin by reviewing the computation of the Wilsonian effective Lagrangian
in an Ad S2 × S2 background [27, 28] and relate it to the presentation of Sect. 1.2.
We then generalize the discussion to the case of a function F of type (1.7) with a
non-harmonic Ω . We express the Hesse potential in terms of the aforementioned
duality covariant complex variables, and expand it in powers of η and η̄. This reveals
a systematic structure. Namely, the Hesse potential decomposes into two classes of
terms. One class consists of combinations of terms, constructed out of derivatives
of Ω , that transform as functions under electric/magnetic duality. The other class
is constructed out of Ω and derivatives thereof. Demanding this second class to
also exhibit a proper behavior under duality transformations (as a consequence of
the transformation behavior of the Hesse potential) imposes restrictions on Ω . These
restrictions are captured by a differential equation that equals half of the holomorphic
anomaly equation encountered in perturbative topological string theory.

1.4.1 The Reduced Wilsonian Lagrangian in an Ad S2 × S2

Background

We consider the coupling of N = 2 vector multiplets to N = 2 supergravity in
the presence of higher-curvature interactions encoded in the square of the Weyl
superfield [2, 5]. We use the conventions of N = 2 supergravity, whereby the vector
multiplets are labelled by a capital index I = 0, . . . , n (instead of the index i used
in the previous sections). The degrees of freedom of a vector multiplet include an
abelian gauge field and a complex scalar field, and these will thus carry an index I .
We denote the complex scalar fields by X I . The square of the Weyl superfield has
various component fields. The highest component field contains the square of the
anti-selfdual components of the Riemann tensor, while the lowest one, denoted by
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Â, equals the square of an anti-selfdual tensor field. Below we will find it convenient
to work with rescaled complex fields Y I and Υ , which are related to the X I and Â
by a complex rescaling [34].

First we evaluate the Wilsonian effective Lagrangian of these models on a field
configuration consistent with the SO(2, 1)× SO(3) isometry of an Ad S2 × S2 back-
ground. The spacetime metric gμν and the field strengths Fμν

I of the abelian gauge
fields are given by

ds2 = v1

(
− r2 dt2 + dr2

r2

)
+ v2

(
dθ2 + sin2 θ dϕ2

)
,

Frt
I = eI , Fθϕ

I = pI sin θ. (1.115)

The θ-dependence of Fθϕ
I is fixed by rotational invariance and the pI denote the

magnetic charges. The quantities v1, v2, eI and pI are all constant by virtue of the
SO(2, 1) × SO(3) symmetry.

It is well-known [2] that the Wilsonian Lagrangian L is encoded in a holomorphic
function F(X, Â), which is homogeneous of degree two under the scaling discussed
in (1.76), i.e. F(λX,λ2 Â) = λ2 F(X, Â). Evaluating the Wilsonian Lagrangian in
the background (1.115) and integrating over S2 [32],

F =
∫

dθ dϕ
√|g|L, (1.116)

yields the reduced Wilsonian Lagrangian which depends on eI and pI , on the rescaled
fields Y I and Υ , and on v1 and v2 through the ratio U = v1/v2.

In the following, we will restrict to supersymmetric backgrounds, for simplicity,
in which case U = 1 and Υ = −64 [34]. Then, the reduced Wilsonian Lagrangian
reads [27, 28],

F(e, p, Y, Ȳ ;Υ, Ῡ ) = − 1
8 i
(
FI J − F̄Ī J̄

) (
eI eJ − pI pJ

)
− 1

4

(
FI J + F̄Ī J̄

)
eI pJ

+ 1
2 ieI

(
FI + FI J Ȳ J̄ − h.c.

)
− 1

2 pI
(

FI − FI J Ȳ J̄ + h.c.
)

+ i
(

F − Y I FI + 1
2 F̄Ī J̄ Y I Y J − h.c.

)
, (1.117)

where Υ = Ῡ = −64 and FI = ∂F/∂Y I , FI J = ∂2 F/∂Y I ∂Y J , etc. Introducing
the complex scalar fields x I = 1

2 (pI + ieI ) of Sect. 1.2.2 (see (1.31)), the reduced
Lagrangian becomes a function of two types of complex scalar fields, namely the x I

that incorporate the electromagnetic information, and the moduli fields Y I .
Now we recall that in an Ad S2 × S2 background the electro/magnetic quantities

appearing in (1.115) are related to the moduli fields Y I . When the background is
supersymmetric, the relation takes the form [37]

x I = iȲ I . (1.118)



32 G. L. Cardoso et al.

In the context of BPS black holes, the real part of this equation yields the magnetic
attractor equation. Then, using (1.118), the reduced Wilsonian Lagrangian becomes
equal to

F(Y, Ȳ ;Υ, Ῡ ) = −2 ImF(Y, Υ ), (1.119)

with Υ = Ῡ = −64.

Exercise 14 Verify (1.119).

Let us reformulate the reduced Lagrangian (1.119), which is based on a holo-
morphic functions F(Y, Υ ), in terms of the function F(Y, Ȳ ;Υ, Ῡ ) = F (0)(Y ) +
2iΩ(Y, Ȳ ;Υ, Ῡ ) introduced in Sect. 1.2. This is achieved by using the equivalence
transformation (1.8). Writing the holomorphic function F(Y, Υ ) as F(Y, Υ ) =
F (0)(Y ) − g(Y, Υ ) and applying (1.8), we obtain Ω = −Im g(Y, Υ ). Thus, at
the Wilsonian level, Ω is a harmonic function, and the reduced Lagrangian can
be expressed as

F(Y, Ȳ ;Υ, Ῡ ) = − 2
[
ImF (0)(Y ) + Ω(Y, Ȳ ;Υ, Ῡ )

]
= − 2

[
ImF(Y, Ȳ ;Υ, Ῡ ) − Ω(Y, Ȳ ;Υ, Ῡ )

]
, (1.120)

with Υ = Ῡ = −64. Both F (0) and Ω are homogeneous functions of degree two,
so that F(λY,λȲ ;λ2Υ,λ2Ῡ ) = λ2 F(Y, Ȳ ;Υ, Ῡ ).

The reduced Lagrangian (1.120) agrees with the one in (1.9), up to an overall
normalization factor of −2. In the following, we rescale (1.120) by this factor, so
that from now on

F(Y, Ȳ ;Υ, Ῡ ) = 4
[
ImF(Y, Ȳ ;Υ, Ῡ ) − Ω(Y, Ȳ ;Υ, Ῡ )

]
. (1.121)

Using (1.118), we infer that pI = −i
(
Y I − Ȳ I

)
and eI = Y I + Ȳ I . According

to (1.6), on the other hand, the real part of Y I plays the role of the canonical vari-
able φI , so that we have φI = eI . We may thus view F as a function of pI and φI , and
consider its Legendre transformation either with respect to pI or with respect to φI .
Performing the Legendre transformations with respect to the pI , i.e. H = F − pI πI ,
results in

πI = ∂F
∂ pI

= FI + F̄Ī , (1.122)

and hence

H = i
[
Y I F̄Ī − Ȳ Ī FI

]
+ 2

[
2 Ω − Y I ΩI − Ȳ Ī Ω Ī

]
= i
[
Y I F̄ (0)

Ī
− Ȳ Ī F (0)

I

]
+ 2

[
2 Ω − (Y I − Ȳ Ī )(ΩI − Ω Ī )

]
, (1.123)

which is the analogue of the Hamiltonian (1.9) (up to an overall sign difference in
the definition of both quantities). In the context of BPS black holes, H denotes the
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BPS free energy of the black hole. When viewed as a function of φI and πI , H(φ,π)

is called the Hesse potential.

Exercise 15 Verify (1.123).

On the other hand, performing the Legendre transformations with respect to theφI ,
i.e. S = F − φI qI , results in

qI = ∂F
∂φI

= −i
(
FI − F̄Ī

)
, (1.124)

and hence

S = −i
[
Y I F̄Ī − Ȳ Ī FI

]
+ 2

[
2 Ω − Y I ΩI − Ȳ Ī Ω Ī

]
= −i(Y I F̄ (0)

Ī
− Ȳ Ī F (0)

I ) + 2
[
2 Ω − (Y I + Ȳ Ī )(ΩI + Ω Ī )

]
. (1.125)

In the context of BPS black holes, (1.124) is the electric attractor equation, and S
denotes the black hole entropy when viewed as function of pI and qI [34].

Exercise 16 Verify (1.125).

The entropy S can be obtained from the Hesse potential by a double Legendre
transformation with respect to (φI ,πI ) [8], i.e.

S(p, q) = H(φ,π) + πI pI − φI qI (1.126)

with pI = −∂H/∂πI and qI = ∂H/∂φI .

1.4.2 The Reduced Low-Energy Effective Action in an
Ad S2 × S2 Background

When passing from the Wilsonian to the low-energy effective action, non-
holomorphic terms emerge that are crucial for maintaining duality invariances [17],
and that therefore need to be incorporated into the framework of the previous sub-
section. In the following, we assume that these terms can be incorporated into Ω

by giving up the requirement that Ω is harmonic. We take the reduced low-energy
effective Lagrangian and the associated Hesse potential to be given by (1.121) and
(1.123), respectively, but now based on a non-harmonic Ω .

The Hesse potential (1.123) is given in terms of complex scalar fields Y I

and Ȳ I . Under duality transformations, the scalar fields Y I transform into Ỹ I =
Ỹ I (Y, Ȳ , Υ, Ῡ ) (and similarly for the ¯̃Y I ), as discussed in Sect. 1.3. In order to obtain
expansion coefficients that have a proper behavior under duality when expanding H
in powers of Υ and Υ , we first express H in terms of the duality covariant complex
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coordinates introduced in Sect. 1.3. This can be achieved by iteration, and the result
for the Hesse potential in the new coordinates then takes the form of an infinite
power series in terms of Ω and its derivatives. We explicitly evaluate the first terms
in this expansion up to order Ω5. This suffices for appreciating the general structure
of the full result. The actual calculations are rather cumbersome, and we have rele-
gated some relevant material to appendices D and E. The expression for the Hesse
potential, given in (1.143), consists of a sum of contributions H(a)

i , each of which
transforms as a function under symplectic transformations. The function H(1) is the
only one that contains Ω , while all the other H(a)

i contain derivatives of Ω . Using
that H(1) transforms as a function under symplectic transformations, we determine
the transformation law of Ω , which is given in (1.146). In the following, we present
a detailed derivation of these results. We suppress the superscript in F (0) for the most
part, for simplicity.

The Hesse potential H is defined in terms of the real variables (φI ,πI ), whose
definition depends on the full effective action. These may be expressed in terms of
the duality covariant variables introduced in (1.88), and which will be denoted by
Y I in the following. Inspection of (1.90) shows that these new variables are such
that they coincide precisely with the fields Y I that one would obtain from (φI ,πI )

by using only the lowest-order holomorphic function F (0),

2 Re Y I = φI = 2 Re Y I ,

2 Re F (0)
I (Y) = πI = 2 Re FI (Y, Ȳ ;Υ, Ῡ ). (1.127)

Since the relation between the new variables and the real variables (φI ,πI ) depends
only on F (0), their duality transformations will not depend on the the details of the
full effective action. Under symplectic transformations they transform according to,

Ỹ I = U I
J Y J + Z I J F (0)

J (Y) = S0
I

J (Y)Y J , (1.128)

where
S0

I
J (Y) = U I

J + Z I K F (0)
K J (Y). (1.129)

At the two-derivative level, where Ω = 0, we have Y I = Y I , but in higher orders
the relation between these moduli is complicated and will depend on Ω . Hence we
write Y I = Y I + ΔY I , where ΔY I is purely imaginary. Writing F = F (0) + 2iΩ ,
we will express (1.128) in terms of F (0) and Ω , so that we can henceforth sup-
press the superscript in F (0). Hence, in the following, F will denote a holomorphic
homogeneous function of degree two. Therefore it is not necessary to make a dis-
tinction between holomorphic and anti-holomorphic derivatives of this function. The
Eq. (1.127) can then be written as,

FI (Y − ΔY ) + F̄I (Ȳ + ΔY ) − FI (Y) − F̄I (Ȳ)

= −2i
[
ΩI (Y − ΔY, Ȳ + ΔY ) −Ω Ī (Y − ΔY, Ȳ + ΔY )

]
. (1.130)



1 Non-holomorphic Deformations of Special Geometry and Their Applications 35

Upon Taylor expanding, this equation will lead to an infinite power series in ΔY I .
Retaining only the term of first order in ΔY I shows that it is proportional to the first
derivative of Ω . Proceeding by iteration will then lead to an expression for ΔY I

involving increasing powers of Ω and its derivatives taken at Y I = Y I . Here it
suffices to give the result of this iteration up to fourth order in Ω ,

ΔY I = 2 (Ω I − Ω Ī )

− 2i(F + F̄)I J K (ΩJ − Ω J̄ )(ΩK − ΩK̄ ) − 8 Re(Ω I J − Ω I J̄ ) (ΩJ − Ω J̄ )

+ 4
3 i
[
(F − F̄)I J K L + 3i(F + F̄)I J M (F + F̄)M

K L
]

× (ΩJ − Ω J̄ )(ΩK − ΩK̄ )(ΩL − ΩL̄)

+ 8i
[
2 (F + F̄)I J

K Re(ΩK L − ΩK L̄) + Re(Ω I K − Ω I K̄ )(F + F̄)K
J L
]

× (ΩJ − Ω J̄ )(ΩL − ΩL̄)

+ 32 Re(Ω I J − Ω I J̄ ) Re(ΩJ K − ΩJ K̄ ) (ΩK − Ω K̄ )

+ 8i Im(Ω I J K − 2 Ω I J K̄ + Ω I J̄ K̄ )(ΩJ − Ω J̄ ) (ΩK − ΩK̄ ) + O(Ω4).

(1.131)

Here indices have been raised by making use of N I J , which denotes the inverse of

NI J = 2 ImFI J , (1.132)

where we stress that all the derivatives of F and Ω are taken at Y I = Y I and
Ȳ I = Ȳ I .

Furthermore, we obtain the following expression for the Hesse potential (1.123),

H(Y, Ȳ) = − i[Ȳ I FI (Y) − Y I F̄I (Ȳ)] + 4 Ω(Y, Ȳ)

− i
[
Y I (FI (Y ) − FI (Y)) + ΔY I FI (Y ) − h.c.

]
+ 4
[
Ω(Y, Ȳ ) − Ω(Y, Ȳ) + ΔY I (ΩI (Y, Ȳ ) − Ω Ī (Y, Ȳ )

) ]
. (1.133)

Here we made use of (1.130) at an intermediate stage of the calculation. Again this
result must be Taylor expanded upon writing Y I = Y I −ΔY I and Ȳ I = Ȳ I +ΔY I .
The last two lines of (1.133) then lead to a power series in ΔY , starting at second
order in the ΔY ,

H(Y, Ȳ) = − i[Ȳ I FI (Y) − Y I F̄I (Ȳ)] + 4 Ω(Y, Ȳ)

− NI J ΔY I ΔY J − 2
3 i(F + F̄)I J K ΔY I ΔY J ΔY K

− 4 Re(ΩI J − ΩI J̄ )ΔY I ΔY J + 1
4 i(F − F̄)I J K LΔY I ΔY J ΔY K ΔY L

+ 8
3 i Im(ΩI J K − 3ΩI J K̄ )ΔY I ΔY J ΔY K + · · · . (1.134)
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Inserting the result of the iteration (1.131) into the expression above leads to the
following expression for the Hesse potential, up to terms of order Ω5,

H(Y, Ȳ) = − i[Ȳ I FI (Y) − Y I F̄I (Ȳ)] + 4 Ω(Y, Ȳ)

− 4 N̂ I J ωI ωJ + 8
3 i(F + F̄)I J K N̂ I L N̂ J M N̂ K N ωL ωM ωN

− 4
3 i[(F − F̄)I J K L + 3i(F + F̄)I J R N̂ RS(F + F̄)SK L ]

× N̂ I M N̂ J N N̂ K P N̂ L QωM ωN ωP ωQ

− 32
3 i Im(ΩI J K − 3ΩI J K̄ )N̂ I L N̂ J M N̂ K N ωL ωM ωN + O(Ω5),

(1.135)

where ωI = ΩI − Ω Ī , and where we also made use of N̂ I J , which is the inverse of
the real, symmetric matrix N̂I J given in (1.100), namely

N̂I J = NI J + 4 Re(ΩI J − ΩI J̄ ). (1.136)

Upon expanding N̂ I J we straightforwardly determine the contributions to the Hesse
potential up to fifth order in Ω ,

H = H|Ω=0 + 4 Ω − 4 N I J (ΩI ΩJ + Ω Ī Ω J̄ ) + 8 N I J ΩI Ω J̄

+ 16 Re(ΩI J − ΩI J̄ )N I K N J L(ΩK ΩL + ΩK̄ ΩL̄ − 2 ΩK ΩL̄

)
− 16

3 (F + F̄)I J K N I L N J M N K N Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

− 64N I P Re
(
ΩP Q − ΩP Q̄

)
N Q RRe

(
ΩRK − ΩRK̄

)
N K J

× (ΩI ΩJ + Ω Ī Ω J̄ − 2ΩI Ω J̄

)
+ 64(F + F̄)I J K N I L N J M N K P Re

(
ΩP Q − ΩP Q̄

)
N QN

× Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

− 8
3 i[(F − F̄)I J K L + 3i(F + F̄)R(I J N RS(F + F̄)K L)S]N I M N J N N K P N L Q

× Re
(
ΩMΩN ΩPΩQ − 4ΩMΩN ΩPΩQ̄ + 3ΩMΩN ΩP̄ΩQ̄

)
+ 64

3 Im(ΩI J K − 3ΩI J K̄ )N I L N J M N K N Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

+ O(Ω5). (1.137)

We stress once more that this expression is taken at Y I = Y I .
The expression (1.137) gives the Hesse potential in terms of the duality covariant

variables Y I and Ȳ I , up to order Ω5. It takes a rather complicated form, even at this
order of approximation. Nevertheless, it will turn out that there is some systematics
here. First of all, the Hesse potential (1.137) transforms as a function under duality
transformations acting on the fields Y I . This in turn enables one to determine how Ω

should transform. Clearly, when Ω = 0 the Hesse potential transforms manifestly as
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a function. In general the transformation behaviour of Ω must be rather complicated
in view of the non-linear dependence of the Hesse potential on Ω . To evaluate this
transformation, we have to perform yet another iteration procedure.

To demonstrate how this iteration proceeds, let us have a look at the first few steps.
Consider the expression (1.137) at first order in Ω . At this order, Ω must transform
as a function, since both H and H|Ω=0 transform as functions. This implies that

Ω̃(Ỹ, ˜̄Y) = Ω(Y, Ȳ) ,

Ω̃I (Ỹ, ˜̄Y) = [S−1
0 ]J

I (Y)ΩJ (Y, Ȳ). (1.138)

Now consider the terms of order Ω2 in (1.137). Applying the transformation given in
the second line of (1.138) to these terms and demanding H to transform as a function,
shows that the result given in the first line of (1.138) must be modified to

Ω̃ = Ω − i
(Z I J

0 ΩI ΩJ − Z̄ Ī J̄
0 Ω Ī Ω J̄

)+ O(Ω3), (1.139)

which in turn gives rise to the following result for derivatives of Ω ,

Ω̃I = [S−1
0 ]J

I

[
ΩJ + iFJ K L ZK M

0 ΩM ZL N
0 ΩN − 2iΩJ K ZK L

0 ΩL

+ 2iΩJ K̄ Z̄ K̄ L̄
0 ΩL̄

]
+ O(Ω3),

Ω̃I J = [S−1
0 ]K

I [S−1
0 ]L

J

[
ΩK L − FK L M ZM N

0 ΩN

]
+ O(Ω2),

Ω̃I J̄ = [S−1
0 ]K

I [S̄−1
0 ]L̄

J̄ ΩK L̄ + O(Ω2), (1.140)

where the symmetric matrix Z I J
0 is defined by5

Z I J
0 = [S−1

0 ]I
K Z K J . (1.141)

Here we made use of the relations,

[S−1
0 ]I

K [S̄0]K̄
J̄ = δ I

J − iZ I K
0 NK J ,

ÑI J = [S−1
0 ]K

I [S̄−1
0 ]L̄

J̄ NK L ,

δZ I J
0 = − Z I K

0 δFK L ZL J
0 , (1.142)

which are independent of Ω .
This iteration can be continued by including the terms of order Ω3, making use

of (1.140) for derivatives of Ω , to obtain the expression for Ω̃ up terms of order Ω4.
In the next iterative step one then derives the effect of a duality transformation on Ω

5 This quantity was first defined in [5]. It appeared later in [25], where it was denoted by Δ.
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up to terms of order Ω5. Before presenting this result, we wish to observe that terms
transforming as a proper function under duality, will not contribute to this result.
This is precisely what already happened to the Ω-independent contribution to the
Hesse potential, which decouples from the above equations. As it turns out there
actually exists an infinite set of contributions to the Hesse potential that transform
as functions under duality. By separating those from (1.137), we do not change the
transformation behaviour of Ω , but we can extract certain functions from the Hesse
potential in order to simplify its structure. We obtain

H = H(0) + H(1) + H(2) + (H(3)
1 + H(3)

2 + h.c.
)+ H(3)

3 + H(4)
1 + H(4)

2 + H(4)
3

+ (H(4)
4 + H(4)

5 + H(4)
6 + H(4)

7 + H(4)
8 + H(4)

9 + h.c.
)
. . . , (1.143)

where the H(a)
i are certain expressions to be defined below, whose leading term

is of order Ωa . For higher values of a it turns out that there exists more than one
functions with the same value of a, and those will be labeled by i = 1, 2, . . .. Of all
the combinations H(a)

i appearing in (1.143), H(1) is the only that contains Ω , while
all the other combinations contain derivatives of Ω . Obviously, H(0) equals,

H(0) = −i[Ȳ I FI (Y) − Y I F̄I (Ȳ)], (1.144)

whereas H(1) at this level of iteration is given by,

H(1) = 4 Ω − 4 N I J (ΩI ΩJ + Ω Ī Ω J̄ )

+ 16 Re
[
(ΩI J )(NΩ)I (NΩ)J ]+ 16ΩI J̄ (NΩ)I (NΩ̄)J

− 16
3 Im

[
FI J K (NΩ)I (NΩ)J (NΩ)K

]
− 4

3 i
[ (

FI J K L + 3iFR(I J N RS FK L)S

)
(NΩ)I (NΩ)J (NΩ)K (NΩ)L − h.c.

]
− 16

3

[
ΩI J K (NΩ)I (NΩ)J (NΩ)K + h.c.

]
− 16

[
ΩI J K̄ (NΩ)I (NΩ)J (NΩ̄)K + h.c.

]
− 16i

[
FI J K N K P ΩP Q(NΩ)I (NΩ)J (NΩ)Q − h.c.

]
− 16

[
(NΩ)P ΩP Q N Q RΩRK (NΩ)K + h.c.

]
− 32

[
(NΩ)P ΩP Q N Q RΩRK̄ (NΩ̄)K + h.c.

]
− 16

[
(NΩ)P ΩP Q̄ N Q RΩR̄K (NΩ)K + h.c.

]
− 16i

[
FI J K N K P ΩP Q̄(NΩ)I (NΩ)J (NΩ̄)Q − h.c.

]
+ O(Ω5). (1.145)

Here we have used the notation (NΩ)I = N I J ΩJ , (NΩ̄)I = N I J Ω J̄ . The sym-
metrization FR(I J N RS FK L)S is defined with a symmetrization factor 1/(4!).
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The expressions for the higher-order functions H(a)
i with a = 2, 3, 4 are given

in appendix D. Each of these higher-order functions transforms as a function under
symplectic transformations. Demanding H(1) to also transform as a function under
these transformations determines the transformation behavior of Ω . Proceeding as
already explained below (1.138) we obtain for the transformation law of Ω (up to
order Ω5),

Ω̃ = Ω − i
(Z I J

0 ΩI ΩJ − Z̄ Ī J̄
0 Ω Ī Ω J̄

)
+ 2

3

(
FI J K Z I L

0 ΩL Z J M
0 ΩM ZK N

0 ΩN + h.c.
)

− 2
(
ΩI J Z I K

0 ΩK Z J L
0 ΩL + h.c.

)+ 4 ΩI J̄ Z I K
0 ΩK Z̄ J̄ L̄

0 ΩL̄

+
[

− i
3 FI J K L(Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L

+ 4i
3 ΩI J K (Z0Ω)I (Z0Ω)J (Z0Ω)K

+ i FI J R Z RS
0 FSK L (Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L

− 4iΩI J K̄ (Z0Ω)I (Z0Ω)J (Z̄0Ω̄)K

− 4i FI J K ZK P
0 ΩP Q (Z0Ω)I (Z0Ω)J (Z0Ω)Q

+ 4i FI J K ZK P
0 ΩP Q̄(Z0Ω)I (Z0Ω)J (Z̄0Ω̄)Q

+ 4i (Z0Ω)P ΩP Q Z Q R
0

(
ΩRK (Z0Ω)K − 2ΩRK̄ (Z̄0Ω̄)K

)
− 4i (Z0Ω)P ΩP Q̄ Z̄ Q̄ R̄

0 ΩR̄K (Z0Ω)K + h.c.
]

+ O(Ω5). (1.146)

The transformation laws of the derivatives of Ω , such as those in (1.140), are sum-
marized in appendix E.

The transformation law (1.146), which is entirely encoded in Z0 and in Z̄0, suggest
a systematic pattern, which we now explore. First we observe that (1.146) simplifies
when taking Ω to be harmonic both in Y I and Υ ,

Ω(Y, Ȳ;Υ, Ῡ ) = f (Y, Υ ) + h.c.. (1.147)

We obtain

Ω̃ = Ω +
[

− iZ I J
0 ΩI ΩJ

+ 2
3 FI J K Z I L

0 ΩL Z J M
0 ΩM ZK N

0 ΩN

− 2 ΩI J Z I K
0 ΩK Z J L

0 ΩL

− i
3 FI J K L(Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L

+ 4i
3 ΩI J K (Z0Ω)I (Z0Ω)J (Z0Ω)K

+ i FI J R Z RS
0 FSK L (Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L



40 G. L. Cardoso et al.

− 4i FI J K ZK P
0 ΩP Q (Z0Ω)I (Z0Ω)J (Z0Ω)Q

+ 4i Z I P
0 ΩP Q Z Q R

0 ΩRK (Z0Ω)K ΩI + h.c.
]

+ O(Ω5), (1.148)

which shows that Ω̃ also is harmonic. Hence, the harmonicity of Ω is preserved
under symplectic transformations. The transformation law (1.148) has a certain re-
semblance with the one encountered in the context of perturbative topological string
theory, where Z I J

0 plays the role of a propagator [25]. The relation with topological
string theory will be discussed below. Next, inserting (1.147) into (1.145), we find that
H(1) is also almost harmonic, i.e. it equals the real part of a function that contains only
purely holomorphic derivatives of F and Ω , contracted with the non-holomorphic
tensor N I J ,

H(1) =
[
4 f (Y, Υ ) − 4 N I J ΩI ΩJ

+ 8(ΩI J )(NΩ)I (NΩ)J + 8
3 i FI J K (NΩ)I (NΩ)J (NΩ)K

− 4
3 i
(

FI J K L + 3iFR(I J N RS FK L)S

)
(NΩ)I (NΩ)J (NΩ)K (NΩ)L

− 16
3 ΩI J K (NΩ)I (NΩ)J (NΩ)K

− 16i FI J K N K P ΩP Q(NΩ)I (NΩ)J (NΩ)Q

− 16(NΩ)P ΩP Q N Q RΩRK (NΩ)K + h.c.
]

+ O(Ω5). (1.149)

Thus, when Ω is of the form (1.147), H(1) is given in terms of the real part of a
function that is holomorphic in Υ . Moreover, since N I J is homogeneous of degree
zero, this function is homogeneous of degree two in Y I and homogeneous of degree
zero in Ȳ I .

Let us now elucidate the relation of H(1) given in (1.149) with topological string
theory. We write H(1) as

H(1) = h(Y, Ȳ, Υ ) + h.c., (1.150)

and we consider two expansions of h(Y, Ȳ, Υ ), namely one in powers of Ω and the
other one in powers of Υ . First we consider the expansion in powers of Ω . Expanding
h as

h =
∞∑

g=1

h(g) (1.151)

and comparing with (1.149), we obtain

h(1) = 4 f, h(2) = −4N I J ΩI ΩJ ,

h(3) = 8ΩI J (NΩ)I (NΩ)J + 8
3 iFI J K (NΩ)I (NΩ)J (NΩ)K ,

h(4) = − 4
3 i
(

FI J K L + 3iFR(I J N RS FK L)S

)
(NΩ)I (NΩ)J (NΩ)K (NΩ)L
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− 16
3 ΩI J K (NΩ)I (NΩ)J (NΩ)K

− 16i FI J K N K P ΩP Q(NΩ)I (NΩ)J (NΩ)Q

− 16(NΩ)P ΩP Q N Q RΩRK (NΩ)K , (1.152)

where (NΩ)I = N I J f J . This shows that all the h(g) are non-holomorphic in Y I

with the exception of h(1). Using these expressions, one finds by direct calculation
that the following relation holds,

∂ Ī h(g) = 1
4 i F̄Ī

J K
g−1∑
r=1

∂J h(r) ∂K h(g−r), g � 2, (1.153)

where F̄Ī
J K = F̄Ī L̄ M̄ N L J N M K .

Exercise 17 Verify (1.153) for g = 2, 3.

Equation (1.153) captures the Ȳ I -dependence of h(g) (for g � 2). This depen-
dence is a consequence of requiring H(1) to have a proper behavior under symplectic
transformations [5]. The differential Eq. (1.153) resembles the holomorphic anom-
aly equation of perturbative topological string theory. The latter arises in a specific
setting, namely in the study of the non-holomorphicity of the genus-g topological
free energies F (g) [36]. To exhibit the relation with the holomorphic anomaly equa-
tion, we turn to the second expansion and expand both f (Y, Υ ) and h(Y, Ȳ, Υ ) in
powers of Υ ,

f (Y, Υ ) = − 1
2 i

∞∑
g=1

Υ g f (g)(Y),

h(Y, Ȳ, Υ ) = − 2i
∞∑

g=1

Υ g F (g)(Y, Ȳ). (1.154)

Then we obtain

F (1)(Y) = f (1)(Y), F (2)(Y, Ȳ) = f (2)(Y) + 1
2 i N I J F (1)

I F (1)
J ,

F (3)(Y, Ȳ) = f (3)(Y) + i N I J f (2)
I F (1)

J − 1
2 F (1)

I J (N F (1))I (N F (1))J

− 1
6 iFI J K (N F (1))I (N F (1))J (N F (1))K ,

F (4)(Y, Ȳ) = f (4)(Y) + i N I J f (3)
I F (1)

J + 1
2 i N I J f (2)

I f (2)
J

− 1
2 f (2)

I J (N F (1))I (N F (1))J − F (1)
I J (N f (2))I (N F (1))J

− 1
2 iFI J K (N f (2))I (N F (1))J (N F (1))K

+ 1
24

(
FI J K L + 3iFR(I J N RS FK L)S

)
(N F (1))I (N F (1))J

× (N F (1))K (N F (1))L
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− 1
6 i F (1)

I J K (N F (1))I (N F (1))J (N F (1))K

+ 1
2 FI J K N K P F (1)

P Q(N F (1))I (N F (1))J (N F (1))Q

− 1
2 i (N F (1))P F (1)

P Q N Q R F (1)
RK (N F (1))K , (1.155)

where (N F (1))I = N I J F (1)
J and (N f (2))I = N I J f (2)

J . Observe that all the F (g)

are non-holomorphic except F (1). Using these expressions, one again finds by direct
calculation,

∂ Ī F (g) = 1
2 F̄Ī

J K
g−1∑
r=1

∂J F (r) ∂K F (g−r), g � 2. (1.156)

This is similar to (1.153), except that now the relation holds order by order in Υ ,
whereas (1.153) holds order by order in Ω . Both expansions are, nevertheless, related.
Namely, taking f in (1.154) to consist of only f (1), the expansion (1.155) coincides
with the expansion (1.152).

Summarizing, we have found the following. When expressing the Hesse potential,
which is a symplectic function, in terms of the duality covariant complex variables
(1.127), we obtain an infinite set of contributions H(a)

i , all of which transform as
functions under symplectic transformations. One of them, namely H(1), has a struc-
ture that arises in topological string theory. H(1) is the only contribution that contains
Ω , while all the other combinations contain derivatives of Ω . When Ω is taken to
be harmonic in all the variables (i.e. in both Y I and Υ ), the resulting H(1) is given
in terms of the real part of a function that is holomorphic in Υ , homogeneous of
degree two in Y I and homogeneous of degree zero in Ȳ I . Then, expanding H(1)

in powers of Υ yields expansion functions F (g), given in (1.155), that transform as
functions under symplectic transformations. The F (g) are all non-holomorphic, with
the exception of F (1), and the non-holomorphicity is governed by (1.156). This dif-
ferential equation equals half of the holomorphic anomaly equation of perturbative
topological string theory, which reads [38]

∂ Ī F (g) = 1
2 F̄Ī

J K

⎛
⎝DJ ∂K F (g−1) +

g−1∑
r=1

∂J F (r) ∂K F (g−r)

⎞
⎠, g � 2, (1.157)

where DL VM = ∂L VM + iN P I FI L M VP . This is the holomorphic anomaly equation
in the so-called big moduli space [38], and its derivation is reviewed in appendix
C following [25]. In the context of topological string theory, the F (g) denote free
energies that arise in the perturbative expansion of the topological free energy Ftop in

powers of the topological string coupling gtop, i.e. Ftop =∑∞
g=0 g

2g−2
top F (g). Whereas

F (0) is holomorphic (it only depends on Y), all the higher F (g) (with g � 1) are
non-holomophic. For g � 2 this non-holomorphicity is captured by (1.157).

The fact that the first term on the right hand side of (1.157) is missing in (1.156) is
due to the holomorphic nature of the expansion function F (1) appearing in (1.155).
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Were it to be non-holomorphic, it would induce a modification of the relation (1.156).
The required modification arises by replacing the holomorphic quantity F (1)

I = f (1)
I

with the non-holomorphic combination F (1)
I = f (1)

I + 1
2 i FI J K N J K (see (1.206)).

This will be addressed in an upcoming paper.
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A Symplectic Reparametrizations

In Sect. 1.2.1 we introduced the 2n-vector (xi , Fi ) and discussed its behavior under
symplectic transformations. Here we consider derivatives of Fi and show how they
transform under symplectic transformations. We use the resulting expressions to give
an alternative proof of integrability of the Eq. (1.10). In addition, we show that ∂η F
transforms as a function under symplectic transformations.

We begin by recalling some of the elements of Sect. 1.2.1. The 2n-vector (xi , Fi )

is constructed using F(x, x̄) = F (0)(x) + 2iΩ(x, x̄). Under symplectic transforma-
tions, it transforms as,

x̃ i = Ui
j x j + Zi j [F (0)

j (x) + 2iΩ j (x, x̄)],
F̃i (x̃, ¯̃x) = Vi

j [F (0)
j (x) + 2iΩ j (x, x̄)] + Wi j x j , (1.158)

where U, V, Z and W are the n × n submatrices (1.5) that define a symplectic
transformation belonging to Sp(2n, R). Without loss of generality, we decompose
F̃i as

F̃i (x̃, ¯̃x) = F̃ (0)
i (x̃) + 2iΩ̃i (x̃, ¯̃x). (1.159)

This decomposition, which a priori is arbitrary, can be related to the decomposition
of Fi = F (0)

i + 2iΩi in the following way. The symplectic transformation (1.158) is
specified by the matrices U, V, W and Z . Consider applying the same transformation
(specified by these matrices) to the vector (xi , F (0)

i ) alone. This yields the vector

(x̂ i , F̃ (0)
i (x̂)), which is expressed in terms of x̂ i = x̃ i − 2iZi jΩ j (x, x̄) instead of x̃ i ,
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x̂ i = Ui
j x j + Zi j F (0)

j (x),

F̃ (0)
i (x̂) = Vi

j F (0)
j (x) + Wi j x j . (1.160)

Thus, by demanding that F̃ (0)
i follows from the same symplectic transformation

applied on F (0)
i alone, we relate the decomposition of F̃i to the decomposition of Fi .

Then, the second equation of (1.158) can be written as

Ω̃i (x̃, ¯̃x) = Vi
j Ω j (x, x̄) − 1

2 i[F̃ (0)
i (x̂) − F̃ (0)

i (x̃)] (1.161)

= Vi
j Ω j (x, x̄)

+ 1
2 i

∞∑
m=1

(2i)m

m! Z j1k1Ωk1(x, x̄) · · · Z jm km Ωkm (x, x̄) F̃ (0)
i j1··· jm

(x̂),

where the F̃ (0)
i j1··· jm

(x̂) denote multiple derivatives of F̃ (0)
i (x̃) evaluated at x̂ . The

right-hand side of (1.161) can be written entirely in terms of functions of x and x̄ ,
upon expressing F̃ (0)

i j1··· jm
(x̂) in terms of derivatives of F (0)

i (x) using (1.160). We give
the first few derivatives,

F̃ (0)
i j (x̂) = (Vi

l F (0)
lk + Wik) [S−1

0 ]k
j , (1.162)

F̃ (0)
i jk (x̂) = [S−1

0 ]l i [S−1
0 ]m

j [S−1
0 ]n

k F (0)
lmn,

F̃ (0)
i jkl(x̂) = [S−1

0 ]m
i [S−1

0 ]n
j [S−1

0 ]p
k [S−1

0 ]q
l

[
F (0)

mnpq − 3 F (0)
r(mnZrs

0 F (0)
pq)s

]
,

where we used the definitions

S i
0 j = Ui

j + Zik F (0)
k j ,

Z i j
0 = [S−1

0 ]i
k Zk j . (1.163)

Let us consider the first expression of (1.162). While F (0)
i j is manifestly symmetric

in i, j , this appears not to be the case for F̃ (0)
i j . However, using the properties (1.5)

of the matrices U, V, W and Z , it follows that F̃ (0)
i j is symmetric in i, j . Using this,

we obtain
F̃ (0)

i j (x̂) Z jk = Vi
k − [S−1,T

0 ]i
k . (1.164)

Exercise 18 Verify (1.164) by computing V T S0.

The symmetry of F̃ (0)
i j implies that F̃ (0)

i (x̂) can be integrated, i.e. F̃ (0)
i (x̂) =

∂ F̃ (0)(x̂)/∂ x̂ i , with F̃ (0)(x̂) given by the well-known expression [5],
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F̃ (0)(x̂) = F (0)(x) − 1
2 xi F (0)

i + 1
2 (U T W )i j x i x j + 1

2 (U T V + W T Z)i
j x i F (0)

j

+ 1
2 (Z T V )i j F (0)

i F (0)
j , (1.165)

up to a constant and up to terms linear in x̂ i .
In addition to (1.163), we will also need the combinations S and Ŝ given in (1.167)

and (1.169) below, which are related to S0 by

S i
j = S i

0 j + 2iZikΩk j ,

Ŝ i
j = S i

0 j + Zik[2iΩk j − 4 Ωkl̄Z̄ l̄m̄Ωm̄ j
]
,

Z i j = [S−1]i
k Zk j . (1.166)

Observe that the matrices Z0, Z and Ẑ = Ŝ−1 Z are symmetric matrices by virtue
of the fact that ZU T is a symmetric matrix [5].

Next we consider the transformation behavior of the derivatives Fi j = ∂Fi/∂x j

and Fi j̄ = ∂Fi/∂ x̄ j̄ . First we observe that

∂ x̃ i

∂x j
≡ S i

j = Ui
j + Zik Fk j ,

∂ x̃ i

∂ x̄ j̄
≡ Zik Fkj̄ . (1.167)

Applying the chain rule to (1.158) yields the relation

Fi j → F̃i j =
(

Vi
l F̂lk + Wik

)
[Ŝ−1]k

j , (1.168)

where F̃i j = ∂ F̃i/∂ x̃ j and

F̂i j = Fi j − Fik̄ Z k̄l̄ F̄l̄ j = F (0)
i j + 2iΩi j − 4 Ωi k̄ Z̄ k̄l̄ Ωl̄ j ,

Ŝ i
j = Ui

j + Zik F̂k j . (1.169)

Exercise 19 Derive (1.168) by differentiating the second equation of (1.158) with
respect to either x or x̄ . Then combine the two resulting equations to arrive at (1.168).

Then, using the first equation of (1.162) as well as (1.164) in (1.168) yields,

Ω̃i j (x̃, ¯̃x) = 1
2 i
[
F̃ (0)

i j (x̃) − F̃ (0)
i j (x̃ k − 2iZklΩl(x, x̄))

]
(1.170)

+ [Ŝ−1]k
i [Ŝ−1]l j

[
Ωkl + 2iΩkm̄Z̄m̄n̄Ωn̄l

+ 2i(Ωkm + 2iΩk p̄Z̄ p̄r̄Ωr̄m)Zmn
0 (Ωnl + 2iΩnq̄Z̄ q̄ s̄Ωs̄l)

]
,

which is symmetric by virtue of the symmetry of F̃ (0)
i j , Ωi j , Zmn and Zmn

0 .
Subsequently we derive the following result from (1.161) [21],
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Ω̃i j̄ = [Ŝ−1]k
i [S̄−1]l̄ j̄ Ωkl̄ = [S−1]k

i [ ¯̂S−1]l̄ j̄ Ωkl̄ . (1.171)

Exercise 20 Deduce (1.171) by taking the first line of (1.161) and differentiating it
with respect to x̄ . Use the relation (1.164) in the form

Vi
j = [S−1,T

0 ]i
k + (Vi

l F (0)
lk + Wik)Zk j

0 , (1.172)

together with (1.166).

The relation (1.171) establishes that Ω̃i j̄ = (Ω̃ j ı̄ ). Using this as well as (1.15),

and recalling that Ω̃i j̄ = ∂Ω̃i/∂ ¯̃x j̄
, we obtain Ω̃i j̄ = (Ω̃ j ı̄ ) = (∂Ω̃ j/∂ ¯̃x ı̄

) =
∂(Ω̃ j )/∂ x̃ i = ∂Ω̃j̄ /∂ x̃ i ≡ Ω̃j̄ i . This, together with the symmetry of Ω̃i j , ensures
the integrability of (1.158), as follows.

We consider the 1-form Ã = Ω̃i d x̃ i + Ω̃ı̄ d ¯̃x ı̄ , which is real by virtue of Ω̃ı̄ =
(Ω̃i ). Its field strength reads F̃ = d Ã = Ω̃i j d x̃ j ∧ dx̃i +

(
Ω̃i j̄ − Ω̃j̄ i

)
d ¯̃x j̄ ∧dx̃i +

Ω̃ı̄ j̄ d ¯̃x j̄ ∧ d ¯̃x ı̄ . Then, using Ω̃i j = Ω̃ j i as well as Ω̃i j̄ = Ω̃j̄ i , we conclude that
F̃ = 0, which establishes that locally Ã = dΩ̃ , with a real Ω̃ .

Hence we conclude that the Eq. (1.158) are integrable and the decomposition
(1.7) is preserved, i.e. the transformed 2n-vector (x̃ i , F̃i ) is constructed from a new
function F̃(x̃, ¯̃x) = F̃ (0)(x̃) + 2iΩ̃(x̃, ¯̃x) with a real Ω̃(x̃, ¯̃x). This was established
in Sect. 1.2.1 by relying on the Hamiltonian.

Next, let us assume that the function F depends on a auxiliary real parameter
η that is inert under symplectic transformation, i.e. F(x, x̄; η), and let us consider
partial derivatives with respect to it. A little calculation shows that ∂η Fi transforms
in the following way,

∂η F̃i = [Ŝ−1] j
i

[
∂η Fj − Fjk̄ Z̄ k̄l̄ ∂η F̄l̄

]
, (1.173)

where x̃ and ¯̃x are kept fixed under the η-derivative in ∂η F̃i (x̃, ˜̄x; η), while in
∂η Fi (x, x̄; η) the arguments x and x̄ are kept fixed.

Exercise 21 Verify (1.173) by differentiating the second equation of (1.158) with
respect to η, keeping x and x̄ fixed. Subsequently, use (1.159), (1.168) and (1.171)
to arrive at (1.173).

Let us first consider (1.173) in the case of a holomorphic function F , so thatΩ = 0.
In that case (1.173) implies that the derivative with respect to xi of ∂η F̃ − ∂η F must
vanish. Therefore it follows that ∂η F transforms as a function under symplectic
transformations (possibly up to an x-independent expression, which is irrelevant in
view of the same argument that led to the equivalence (1.8)).

When Ω 
= 0 one derives the following result using (1.173),
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∂ x̃ j

∂xi
∂η F̃j − ∂ ¯̃x j̄

∂xi
∂η(F̃j ) = ∂η Fi . (1.174)

Exercise 22 Deduce (1.174) by suitably combining (1.173) with its complex con-
jugate, and using the relation

Z̄ ı̄ j̄ F̄j̄k [Ŝ−1S]k
l = [ ¯̂S−1S̄]ı̄

j̄ Z̄ j̄ k̄ F̄k̄l . (1.175)

Next, we assume without loss of generality that the dependence of F̃ on η is
entirely contained in Ω̃ . Then, using (1.15), it follows that

∂η(F̃j ) = −∂η F̃j̄ , (1.176)

and the relation (1.174) simplifies. Namely, the left hand side of (1.174) becomes
equal to ∂(∂η F̃)/∂xi , where we used the existence of the new function F̃ . Thus, we
obtain from (1.174),

∂

∂xi

(
∂η F̃ − ∂η F

)
= 0. (1.177)

This equation, together with its complex conjugate equation, implies that ∂η F̃ −∂η F
vanishes upon differentiation with respect to x and x̄ , so that ∂η F transforms as a
function under symplectic transformations (possibly up to an irrelevant term that is
independent of x and x̄).

B The Covariant Derivative Dη

The modified derivative (1.97) acts as a covariant derivative for symplectic transfor-
mations. Here we verify this explicitly by showing that, given a quantity G(x, x̄; η)

that transforms as a function under symplectic transformations, also DηG transforms
as a function.

To establish this, we need the transformation law of N̂ i j that enters in (1.97).
Under symplectic transformations, N̂i j given in (1.98) transforms as

˜̂Ni j = [Ŝ−1]k
i [ ¯̂S−1]l̄ j̄

[
N̂kl + i Fkm̄ Z̄m̄n̄ F̄n̄ p

(
δ

p
l − Z pq Fql̄

)
− i F̄k̄m Zmn Fn p̄

(
δ

p̄
l̄

− Z̄ p̄q̄ F̄q̄l

)]
+ i [Ŝ−1]k

i [ ¯̂S−1]l̄ j̄ F̄k̄m [S−1 Ŝ]m
l − i[ ¯̂S−1]k̄

ı̄ F̄k̄l [S−1]l j , (1.178)

where S, Ŝ and Z are defined in (1.166).

Exercise 23 Verify (1.178) using (1.168) and (1.171).
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Then, it follows that the inverse matrix N̂ i j transforms as

˜̂N i j =
(
S i

l − Zin Fnl̄

)
N̂ lk

(
S j

k − Z jm Fmk̄

)
− i S i

k Zkl S j
l . (1.179)

Since the matrix Z = S−1 Z is symmetric [5], so is ˜̂N i j . Observe that it can also be
written as

˜̂N i j =
(
S̄ ı̄

l̄ − Zin F̄n̄l

)
N̂ lk

(
S j

k − Z jm Fmk̄

)
− i Zil Z jm Flm̄ . (1.180)

Establishing the transformation behavior (1.179) turns out to be a tedious exercise,
which we relegate to end of this appendix.

Now consider a quantity G(x, x̄; η) that transforms as a function under symplectic
transformations, i.e. G(x, x̄; η) = G̃(x̃, ¯̃x; η). We then calculate the behavior of DηG
under symplectic transformations. First we establish

Gη = G̃η + G̃i Z i j Fη j + G̃ı̄ Z i j F̄ηj̄ , (1.181)

where, on the right hand side, the tilde quantities are differentiated with respect to
the tilde variables, while those without a tilde are differentiated with respect to the
original variables. Similarly,

Gi − Gı̄ =
(

G̃ j − G̃ j̄

) (
S j

i − Z jk Fkı̄

)
+ i G̃ j̄ Z jk N̂ki , (1.182)

as well as
Fη j = F̃ηi S i

j + F̃ηı̄ Z ik F̄k̄ j , (1.183)

where we used that Fη transforms as a symplectic function, as established in (1.177).

Exercise 24 Verify (1.181) and (1.182) using G(x, x̄; η) = G̃(x̃, ¯̃x; η).

Then, inserting (1.181) and (1.182) into (1.97) yields,

DηG = G̃η+
(

G̃i − G̃ı̄

)
Zi j Fη j+i N̂ i j (Fη j + F̄ηj̄

) (
G̃k − G̃k̄

) (
Sk

i − Zkl Flı̄

)
.

(1.184)
Next, using (1.183), we compute

(
Fη j + F̄ηj̄

) =
(

F̃ηk + ¯̃Fηk̄

) (
Sk

j − Zkl Fl j̄

)
− i ¯̃Fηl̄ Z lk N̂k j

+
(

F̃ηl + ¯̃Fηl

)
Zlk Fk j̄ +

(
F̃ηl̄ + ¯̃Fηl̄

)
Zlk F̄k̄ j . (1.185)

Using that F̃ has the decomposition

F̃(x̃, ¯̃x; η) = F̃ (0)(x̃) + 2i Ω̃(x̃, ¯̃x; η) (1.186)
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with Ω̃ real, it follows that the second line of (1.185) vanishes. Inserting the first line
of (1.185) into (1.184) and using Fi j̄ = −F̄j̄ i as well as S Z T = Z ST , we obtain

DηG = G̃η + i Ñ i j
(

F̃η j + ¯̃Fηj̄

) (
G̃i − G̃ı̄

)
= (̃DηG

)
, (1.187)

which shows that DηG transforms as a function under symplectic transformations.
Now we return to the transformation behavior of N̂ i j given in (1.179) and ver-

ify that it is the inverse of (1.178), i.e. ˜̂N−1 ˜̂N = I. We use the decomposition
F(x, x̄; η) = F (0)(x) + 2iΩ(x, x̄; η). We find it useful to introduce the following
matrix notation,

S̄−1 S = I + Z̄ (F·· − F̄−−
)
,

S−1 Ŝ = I − X , X = Z F· − Z̄ F̄−· = 4 Z Ω· − Z̄ Ω−·,

Ŝ−1S = (I − X)−1 =
∞∑

n=0

Xn,

¯̂S =S
[
I − X − Z

(
F̂·· − ¯̂F−−

)]
= [I − Z (F·· − F̄−−

)− 4 Z Ω−· Z Ω·−
]
,

Z − Z̄ = − Z̄ (F·· − F̄−−
)Z = −Z (F·· − F̄−−

) Z̄, (1.188)

where we assume that the power series expansion of S−1 Ŝ is convergent. Here
F·· , F−− , F·− denote entries of the type Fi j , Fı̄ j̄ , Fi j̄ , respectively. Then, using
(1.178), we compute

ST ˜̂N ¯̂S =
∞∑

n=0

(
Xn)T (N̂ + 4i Ω·− Z̄ Ω−· − 4iΩ−· Z Ω·− + 2Ω·− X̄ + 2Ω−·

)
(1.189)

− 2
(S̄−1 S)T ∞∑

n=0

(
X̄n)T Ω−·

[
I − Z (F·· − F̄−−

)− 4 Z Ω−· Z Ω·−
]
.

Multiplying this with ˜̂N−1 S−1,T from the left and requiring the resulting expression

to equal ¯̂S yields the relation

[
N̂−1 − 2i N̂−1 Ω−· Z − 2i Z Ω·− N̂−1 − 4Z Ω·− N̂−1 Ω−· Z − iZ

]
[ ∞∑

n=0

(
Xn)T (N̂ + 4i Ω·− Z̄ Ω−· − 4iΩ−· Z Ω·− + 2Ω·− X̄ + 2Ω−·

)
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− 2
(
S̄−1 S

)T ∞∑
n=0

(
X̄n)T Ω−·

[
I − Z (F·· − F̄−−

)− 4 Z Ω−· Z Ω·−
]]

= [I − Z (F·· − F̄−−
)− 4 Z Ω−· Z Ω·−

]
. (1.190)

Thus, checking ˜̂N−1 ˜̂N = I amounts to verifying the relation (1.190). To do so, we
write (1.190) as a power series in Z by converting Z̄ into Z using the last relation
in (1.188). Introducing the expressions

σ = 4 Ω−· Z Ω·− Z,

Δ =
∞∑

n=1

[(
F·· − F̄−−

)Z]n , (1.191)

we obtain

X̄ = 4 Z (I + Δ) Ω−· Z Ω·−,

X̄ T Ω−· = Ω−· X,

∞∑
n=0

(
X̄n)T Ω−· = Ω−·

∞∑
n=0

Xn,

Xn = 4 Z Ω·− Z [(I + Δ) σ]n−1 (I + Δ)Ω−·, n � 1,(
Xn)T = 4 Ω·−(I + ΔT )

[
σT (I + ΔT )

]n−1 Z Ω−· Z, n � 1,(
S̄−1 S

)T = I + (F·· − F̄−−
)Z (I + Δ) . (1.192)

Then, (1.190) becomes

[
I − 2i Ω−· Z − 2i N̂ Z Ω·− N̂−1 − 4 N̂ Z Ω·− N̂−1 Ω−· Z − i N̂ Z

]
[ ∞∑

n=0

(
Xn)T [N̂ + 4i Ω·− Z (I + Δ)Ω−· − 4iΩ−· Z Ω·−

+ 8Ω·− Z (I + Δ)Ω−· Z Ω·− + 2Ω−·
]

−2
[
I + (F·· − F̄−−

)Z (I + Δ)
]
Ω−·

∞∑
n=0

Xn [
I − Z (F·· − F̄−−

)
− 4 Z Ω−· Z Ω·−

] ] = N̂
[
I − Z (F·· − F̄−−

)− 4 Z Ω−· Z Ω·−
]
, (1.193)

where Xn (with n � 1) is expressed in terms of Z according to (1.192). Now we
proceed to check that (1.193) is indeed satisfied, order by order in Z . Observe that
the right hand side of (1.193) is quadratic in Z , so first we check the cancellation of



1 Non-holomorphic Deformations of Special Geometry and Their Applications 51

the terms up to order Z2. Then we proceed to check the terms at order n with n � 3.
Here we use the relations

F·· − F̄−− = iN̂ + 2iΩ·− + 2iΩ−·,
ΔT Z = Z Δ,[

σT
(
I + ΔT

)]n Z = Z [σ (I + Δ)]n , (1.194)

and we organize the terms at order n into those that end on either N (introduced in
(1.100)), Ω·− or Ω−·. It is then straightforward, but tedious, to check that at order
n in Z all these terms cancel out. This establishes the validity of the transformation
law (1.179).

C The Holomorphic Anomaly Equation in Big Moduli Space

The holomorphic anomaly Eq. (1.157) of perturbative topological string theory
[35, 36] can be suscintly derived in the wave function approach [22] to the latter
[23–26]. In this approach, the topological string partition function Z is represented
by a wavefunction,

Z(t; tB, t̄B) =
∫

dφ e−S(φ,t;tB ,t̄B )/� Z(φ), (1.195)

where S(φ, t; tB, t̄B) denotes the generating function (1.114) of canonical transfor-
mations6. We take the background dependent constant c(tB, t̄B) appearing in S to be
given by [23–26]

c(tB, t̄B) = −�

2
ln det NI J (tB, t̄B), (1.196)

with NI J as in (1.132).
Differentiating (1.195) with respect to the background field t̄B on the one hand,

and with respect to the fluctuations t on the other hand, yields the relation [24],

∂Z(t; tB, t̄B)

∂ t̄ L
B

= �

2
F̄L̄

I J ∂

∂t I

∂

∂t J
Z(t; tB, t̄B). (1.197)

Here F̄L̄
I J is evaluated on the background, and is given by F̄L̄

I J = F̄L̄ M̄ Ō N M I N O J .
Assigning scaling dimension 1 to both tB and t (and to their complex conjugates)
and scaling dimension 2 to �, we see that (1.197) has scaling dimension −1. Setting

Z(t; tB, t̄B) = eW (t;tB ,t̄B )/�, (1.198)

6 We use the conventions of Sect. 1.4 and suppress the superscript of F (0).
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we obtain from (1.197)

∂W (t; tB, t̄B)

∂ t̄ L
B

= 1
2 F̄L̄

I J
(

�
∂2W

∂t I ∂t J
+ ∂W

∂t I

∂W

∂t J

)
, (1.199)

which has scaling dimension 1. The BCOV-solution [36] is obtained by making the
ansatz [38]

W =
∞∑

g=0,n=0

�
g

n! C (g)
I1...In

(tB, t̄B) t I1 . . . t In , (1.200)

with
C (g)

I1...In
= 0, 2g − 2 + n � 0. (1.201)

The C (g)
I1...In

are symmetric in I1, . . . , In and have scaling dimension 2 − 2g − n.
Inserting the ansatz (1.200) into (1.199), equating the terms of order �

g for g � 2
and setting t = 0 gives,

∂L̄C (g)(tB, t̄B) = 1
2 F̄L̄

I J

⎛
⎝C (g−1)

I J +
g−1∑
r=1

C (r)
I C (g−r)

J

⎞
⎠ , g � 2. (1.202)

Exercise 25 Verify (1.202).

Now we set [38]
C (g)

I1...In
= DI1 . . . DIn F (g), g � 1, (1.203)

where DL is given by

DL VM = ∂L VM + i N P I FI L M VP . (1.204)

DL acts as a covariant derivative for symplectic reparametrizations VM →
(
S−1

0

)P
M

VP , since N I J transforms as N I J → [S0 N−1 S0]I J − i[S0 Z0 S0]I J (see (1.179)).
The F (g) have scaling dimension 2 − 2g and transform as functions under symplec-
tic transformations. Inserting (1.203) into (1.202) yields the holomorphic anomaly
equation in big moduli space [38],

∂L̄ F (g)(tB, t̄B) = 1
2 F̄L̄

I J

⎛
⎝DI ∂J F (g−1) +

g−1∑
r=1

∂I F (r) ∂J F (g−r)

⎞
⎠ , g � 2.

(1.205)
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As an example, consider solving (1.205) for g = 2. We need F (1)
I = ∂I F (1)

(tB, t̄B), which is non-holomorphic and given by7

∂I F (1)(tB, t̄B) = ∂I f (1)(tB) + 1
2 i FI J K N J K . (1.206)

Then, solving (1.205) for F (2) yields [25, 38]

F (2)(tB, t̄B) = f (2)(tB) + 1
2 i N I J

(
DI F (1)

J + F (1)
I F (1)

J

)
+ 1

2 N I J N K L
(

1
4 FI J K L + 1

3 i N M N FI K M FJ L N + FI J K F (1)
L

)
.

(1.207)

In this expression, all the terms are evaluated on the background (tB, t̄B).

Exercise 26 Verify that (1.207) solves (1.205).

Observe that (1.206) transforms covariantly under symplectic transformations, pro-
vided that f (1) transforms as f (1) −→ f (1) − 1

2 ln det S0 in order to compensate for

the transformation behavior NI J −→ NK L [S̄0
−1]K

I [S−1
0 ]L

J [5], so that

f (1)
I −→

(
f (1)

J − 1
2Z P Q

0 FP Q J

) (
S−1

0

)J
I ,

f (1)
I J −→

(
S−1

0

)Q
J ∂Q

[(
f (1)
L − 1

2Z P Q
0 FP QL

) (
S−1

0

)L
I

]
. (1.208)

Exercise 27 Determine the transformation behavior of f (2)(tB) under symplectic
transformations (1.128) that ensures that F (2)(tB, t̄B) transforms as a function. A
useful transformation law is,

FI J K L −→
(
S−1

0

)M
I ∂M

[
FN O P

(
S−1

0

)N
J

(
S−1

0

)O
K

(
S−1

0

)P
L

]

=
(
S−1

0

)M
I

(
S−1

0

)N
J

(
S−1

0

)O
K

(
S−1

0

)P
L

[
FM N O P

− FM P SZ S R
0 FRN O − FO P SZ S R

0 FRM N − FN P SZ S R
0 FRO M

]
.

(1.209)

7 F (1) contains an additional term proportional to the Kähler potential (1.1), but this term drops out
of (1.205) due to the special geometry relation F̄Ī J̄ K̄ t̄ K̄ = 0.
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D The Functions H(a)
i for a � 2

Here we collect the explicit results for the various functions H(a)
i (with a � 2) that

appear in (1.143). These functions can be determined by iteration. We present the
functions up to order O(Ω4). We use the notation (NΩ)I = N I J ΩJ , (NΩ̄)I =
N I J Ω J̄ . The symmetrization FR(I J N RS FK L)S is defined with a symmetrization
factor 1/(4!).

H(2) = 8 N I J ΩI Ω J̄ − 16
[
ΩI J (NΩ̄)I (NΩ)J + ΩI J̄ (NΩ̄)I (NΩ̄)J + h.c.

]
− 8i

[
FI J K (NΩ̄)I (NΩ)J (NΩ)K − h.c.

]
+ 16

3 i
[(

FI J K L + 3iFI J R N RS FSK L

)
(NΩ)I (NΩ)J (NΩ)K (NΩ̄)L

− h.c. ] + 16
[
ΩI J K (NΩ)I (NΩ)J (NΩ̄)K + h.c.

]
+ 16

[ (
ΩI J K̄ + iFI J P N P QΩQK̄

) (
(NΩ)I (NΩ)J (NΩ)K

+ 2 (NΩ)I (NΩ̄)J (NΩ̄)K
)

+ h.c.
]

+ 32
[
ΩI Q N Q R ΩR J (NΩ)I (NΩ̄)J + h.c.

]
+ 32 ΩI Q N Q R ΩR̄ J̄ (NΩ)I (NΩ̄)J

+ 16i
[

FI J K N K P ΩP Q

(
(NΩ)I (NΩ)J (NΩ̄)Q

+ 2 (NΩ)Q(NΩ)I (NΩ̄)J
)

− h.c.
]

+ 16i
[

FI J K N K P ΩP̄ Q̄ (NΩ)I (NΩ)J (NΩ̄)Q − h.c.
]

+ 8 (NΩ)I (NΩ)J FI J Q N Q R F̄R̄K̄ L̄ (NΩ̄)K (NΩ̄)L

+ 32
[
(NΩ)I ΩI J N J K ΩK L̄ (NΩ)L + h.c.

]
+ 32

[
(NΩ̄)I ΩI J N J K ΩK L̄ (NΩ̄)L + h.c.

]
+ 32

[
(NΩ)I ΩI J N J K ΩK̄ L (NΩ)L + h.c.

]
+ 16i

[
(NΩ)I (NΩ)J FI J K N K LΩL̄ P (NΩ)P − h.c.

]
+ 32

[
(NΩ)I ΩI J̄ N J K ΩK̄ L (NΩ̄)L + h.c.

]
+ 32

[
(NΩ)I ΩI J̄ N J K ΩK L̄ (NΩ̄)L

]
, (1.210)

H(3)
1 = − 8

3 iFI J K (NΩ̄)I (NΩ̄)J (NΩ̄)K

+ 8i FI J K (NΩ̄)J (NΩ̄)K N I P
[
2ΩP̄ Q̄(NΩ̄)Q + 2ΩP̄ Q(NΩ)Q

− i F̄P̄ Q̄ R̄(NΩ̄)Q(NΩ̄)R
]
, (1.211)
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H(3)
2 = 8

(
ΩI J + iFI J K (NΩ)K

)
(NΩ̄)I (NΩ̄)J

− 4
3 i
(

FI J K L + 3iFR(I J N RS FK L)S

) (
6(NΩ)I (NΩ)J (NΩ̄)K (NΩ̄)L

− 4 (NΩ̄)I (NΩ̄)J (NΩ̄)K (NΩ)L
) ]

− 16
3 ΩI J K

(
3 (NΩ̄)I (NΩ̄)J (NΩ)K − (NΩ̄)I (NΩ̄)J (NΩ̄)K

)
− 16 ΩI J K̄ (NΩ̄)I (NΩ̄)J (NΩ̄)K

− 16i FI J K N K P ΩP Q
[− (NΩ̄)I (NΩ̄)J (NΩ̄)Q

+ (NΩ̄)I (NΩ̄)J (NΩ)Q + 2(NΩ̄)I (NΩ)J (NΩ̄)Q]
− 16 (NΩ̄)P ΩP Q N Q RΩRK (NΩ̄)K

− 32 (NΩ)I
(
ΩI J + iFI J P (NΩ)P

)
N J K

(
ΩK̄ L̄ − iF̄K̄ L̄ M̄ (NΩ̄)M

)
(NΩ)L

+ 16i(NΩ)I (NΩ)J FI J P N P K
(
ΩK̄ L̄ − iF̄K̄ L̄ Q̄(NΩ̄)Q̄

)
(NΩ)L

− 16 (NΩ)PΩP̄ Q N Q RΩRK̄ (NΩ)K

− 32 (NΩ̄)I
(
ΩI J + iFI J K (NΩ)K

)
N J LΩL̄ M (NΩ)M

− 16i (NΩ̄)I (NΩ̄)J FI J K N K PΩP Q̄(NΩ̄)Q , (1.212)

H(3)
3 = 16 ΩI J̄ (NΩ̄)I (NΩ)J

− 16
[
2(NΩ̄)K (NΩ)L

(
ΩK M N M N ΩN L̄ + ΩK L̄ Q(NΩ)Q

)
+ (NΩ̄)K ΩK L̄ N L P

(
iFP M N (NΩ)M (NΩ)N + 2ΩP J (NΩ)J

+ 2 ΩP J̄ (NΩ̄)J
)

+ 2i(NΩ̄)I (NΩ)J FI J K N K PΩP Q̄(NΩ)Q + h.c.
]
,

(1.213)

H(4)
1 = 32 (NΩ̄)I

(
ΩI J + iFI J K (NΩ)K

)
N J P

(
ΩP̄ Q̄ − iF̄P̄ Q̄ R̄(NΩ̄)R

)
(NΩ)Q ,

(1.214)

H(4)
2 = 32 (NΩ)P ΩP̄ Q N Q R ΩR̄K (NΩ̄)K (1.215)

H(4)
3 = 8 FI J R N RS F̄S̄ K̄ L̄ (NΩ̄)I (NΩ̄)J (NΩ)K (NΩ)L , (1.216)

H(4)
4 = − 4

3 i
(

FI J K L + 3i FI J R N RS FSK L

)
(NΩ̄)I (NΩ̄)J (NΩ̄)K (NΩ̄)L , (1.217)

H(4)
5 = − 16i FI J K N K LΩL̄ Q (NΩ̄)Q(NΩ̄)I (NΩ̄)J , (1.218)

H(4)
6 = − 16i FI J K N K P

(
ΩP̄ Q̄ − iF̄P̄ Q̄ R̄(NΩ̄)R

)
(NΩ̄)I (NΩ̄)J (NΩ)Q , (1.219)

H(4)
7 = 16

(
ΩI J K̄ + iFI J P N P Q ΩQK̄

)
(NΩ̄)I (NΩ̄)J (NΩ)K , (1.220)

H(4)
8 = 32 (NΩ̄)I

(
ΩI J + iFI J K (NΩ)K

)
N J PΩP̄ Q (NΩ̄)Q , (1.221)

H(4)
9 = − 16i (NΩ̄)I (NΩ̄)J FI J K N K LΩL̄ P (NΩ̄)P . (1.222)
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E Transformation Laws by Iteration

The Hesse potential in Sect. 1.4 depends on Ω , whose behavior under symplectic
transformations can be determined by iteration. Here we summarize the result for
the transformation behavior of derivatives of Ω (expressed in terms of the covariant
variables of Sect. 1.3), up to a certain order. We use the conventions of Sect. 1.4 and
suppress the superscript of F (0).

Ω̃I = [S−1
0 ]J

I

[
ΩJ + iFJ K L (Z0Ω)K (Z0Ω)L − 2iΩJ K (Z0Ω)K

+ 2iΩJ K̄ (Z̄0Ω̄)K̄ + 2
3 FJ K L P (Z0Ω)K (Z0Ω)L(Z0Ω)P

+ 2FK L P (Z0Ω)K
J (Z0Ω)L(Z0Ω)P

+ 4FJ K L(Z0Ω)K (Z0Ω)L
P (Z0Ω)P

− 4FJ K L(Z0Ω)K (Z0Ω)L
P̄ (Z̄0Ω̄)P̄

− 2FJ K LZL P
0 FP QS(Z0Ω)K (Z0Ω)Q(Z0Ω)S

+ 2F̄K̄ L̄ P̄ (Z̄0Ω̄)K̄
J (Z̄0Ω̄)L̄(Z̄0Ω̄)P̄

− 2ΩJ K L(Z0Ω)K (Z0Ω)L − 4ΩK L(Z0Ω)K
J (Z0Ω)L

− 2ΩJ K̄ L̄(Z̄0Ω̄)K̄ (Z̄0Ω̄)L̄ − 4ΩK̄ L̄(Z̄0Ω̄)K̄
J (Z̄0Ω̄)L̄

+ 4ΩJ K L̄(Z0Ω)K (Z̄0Ω̄)L̄ + 4ΩK L̄(Z0Ω)K
J (Z̄0Ω̄)L̄

+ 4ΩK L̄(Z0Ω)K (Z̄0Ω̄)L̄
J

]
+ O(Ω4) ,

Ω̃I J = [S−1
0 ]K

I [S−1
0 ]L

J

[
ΩK L − FK L M ZM N

0 ΩN

− iFK L PZ P M
0 FM Q R(Z0Ω)Q(Z0Ω)R + 2iFK L P (Z0Ω)P

Q(Z0Ω)Q

− 2iFK L P (Z0Ω)P
Q̄(Z̄0Ω̄)Q̄ + iFK L M N (Z0Ω)M (Z0Ω)N

+ iFK M N (Z0Ω)M
L(Z0Ω)N + iFK M N (Z0Ω)N

L(Z0Ω)M

− 2iFK M N ZM P
0 FP QL(Z0Ω)Q(Z0Ω)N

− 2iΩK L P (Z0Ω)P − 2iΩK P (Z0Ω)P
L + 2iΩK PZ P Q

0 FQL S(Z0Ω)S

+ 2iΩK L P̄ (Z̄0Ω̄)P̄ + 2iΩK P̄ (Z̄0Ω̄)P̄
L

]
+ O(Ω3) ,

Ω̃I J̄ = [S−1
0 ]K

I [S̄−1
0 ]L̄

J̄

[
ΩK L̄ + 2iFK M N (Z0Ω)M

L̄(Z0Ω)N

− 2iF̄L̄ P̄ N̄ (Z̄0Ω̄)N̄
K (Z̄0Ω̄)P̄

− 2iΩK M L̄(Z0Ω)M − 2iΩK M (Z0Ω)M
L̄ + 2iΩK L̄ M̄ (Z̄0Ω̄)M̄

+ 2iΩK M̄ (Z̄0Ω̄)M̄
L̄

]
+ O(Ω3) ,
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Ω̃I J L = [S−1
0 ]M

I [S−1
0 ]N

J [S−1
0 ]K

L

[
ΩM N K − FM N K P (Z0Ω)P

− FM N P (Z0Ω)P
K − FK M P (Z0Ω)P

N − FN K P (Z0Ω)P
M

+ FM N PZ P Q
0 FK Q R(Z0Ω)R + FK M PZ P Q

0 FQN R(Z0Ω)R

+ FN K PZ P Q
0 FQM R(Z0Ω)R

]
+ O(Ω2) ,

Ω̃I J K̄ = [S−1
0 ]M

I [S−1
0 ]N

J [S̄−1
0 ]L̄

K̄

[
ΩM N L̄ − FM N Q(Z0Ω)Q

L̄

]
+ O(Ω2), (1.223)

where (Z0Ω)M = ZM N
0 ΩN , (Z̄0Ω̄)M̄ = Z̄ M̄ N̄

0 ΩN̄ , (Z0Ω)M
L̄ = ZM N

0 ΩN L̄ ,

(Z̄0Ω̄)P̄
L = Z̄ P̄ N̄

0 ΩN̄ L , (Z0Ω)L
P̄ = ZL K

0 ΩK P̄ , (Z̄0Ω̄)P̄
L̄ = Z̄ P̄ N̄

0 ΩN̄ L̄ .
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