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Abstract This chapter proposes a pseudo-gradient based particle swarm optimi-
zation (PGPSO) method for solving nonconvex economic dispatch (ED) including
valve point effects, multiple fuels, and prohibited operating zones. The proposed
PGPSO is based on the self-organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients (HPSO-TVAC) with position of particles
guided by a pseudo-gradient. The pseudo-gradient here is to determine an
appropriate direction for the particles during their movement so that they can
quickly move to an optimal solution. The proposed method has been tested on
several systems and the obtained results are compared to those from many other
methods available in the literature. The test results have indicated that the pro-
posed method can obtain less expensive total costs than many others in a faster
computing manner, especially for the large-scale systems. Therefore, the proposed
PGPSO is favorable for online implementation in the practical ED problems.
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Nomenclature
ai, bi, ci fuel cost coefficients of unit i
ei, fi fuel cost coefficients of unit i reflecting valve-point effects
aij, bij, cij fuel cost coefficients for fuel type j of unit i
eij, fij fuel cost coefficients for fuel type j of unit i reflecting valve-point

effects
Bij, B0i, B00 B-matrix coefficients for transmission power loss
c1i, c1f initial and final values of cognitive acceleration factor, respectively
c2i, c2f initial and final values of social acceleration factor, respectively
c1, c2 cognitive and social acceleration coefficients, respectively
DRi ramp down rate limit of unit i

gp xðkÞid

� �
pseudo-gradient at point k for particle d of element i

N total number of generating units
ni number of prohibited operating zones of unit i
Np number of particles
PD total system load demand
Pi power output of unit i
Pi,high highest possible power output of generator i
Pi,low lowest possible power output of generator i
Pi,max maximum power output of generator i
Pi,min minimum power output of generator i
Pij,min minimum power output for fuel j of generator i
PL total transmission loss
Pl

ik lower bound for prohibited zone k of generator i
Pu

ik upper bound for prohibited zone k of generator i
URi ramp up rate limit of unit i
vid velocity of particle d for element i
xid position of particle d for element i
X set of units with prohibited operating zones
d xidð Þ direction indicator for position of element i in particle d

1 Introduction

The economic dispatch (ED) is used to determine the economical real power
output of the online units so as their total production cost is minimized while
satisfying the unit and system operating constraints [1, 2]. For mathematical
convenience, the objective function of the ED problem was approximated by a
single quadratic function [3], which is differentiable. Nevertheless, the input-
output characteristics of thermal generating units are more complicated due to the
effects of valve point loadings [4], multiple fuels [5], or prohibited zones [6].
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Therefore, the practical ED problem should be formulated as a non-convex
objective function subject to complex constraints, which cannot be directly solved
by the mathematical programming techniques. Hence, more advanced techniques
have to be developed to deal with the optimization problem with multiple minima.

Several conventional methods have been applied for solving ED problems such
as gradient search, Newton’s method, dynamic programming (DP) [3], hierarchical
approach based on the numerical method (HNUM) [5], decomposition method
(DM) [6], lambda iteration method [7], Maclaurin series-based Lagrangian (MSL)
method [8], and novel direct search (NDS) [9]. Among these methods, the MSL and
NDS methods can directly deal with a non-convex ED problem with non-differ-
entiable objective. Although these methods can quickly find a solution for the
problem, the obtained results are still the local optimum solution, especially for the
large-scale systems. In general, the conventional methods are not effective for
implementation on the ED problems with non-differentiable objective function.
Recently, many methods based on artificial intelligence have been developed for
solving ED problems such as Hopfield neural network (HNN) [10, 11], genetic
algorithm (GA) [12], evolutionary programming (EP) [13], evolutionary algorithm
(EA) [14, 15], differential evolution (DE) [16], artificial bee colony (ABC) algo-
rithm [17], artificial immune system (AIS) [18], biogeography-based optimization
(BBO) [19], and particle swarm optimization (PSO) [20–27]. Among of them, the
HNN method which is based on the minimization of its energy function can be only
applied to the convex optimization problems with differentiable objective function.
Although this method can be implemented on large-scale problems, it suffers many
drawbacks such as large number of iterations, linear constraint requirement, and
local optimum solution. The others are the meta-heuristic search methods which are
based on a population for searching an optimal solution for the problems. These
search methods can overcome the drawbacks of the HNN and conventional
methods due to their ability to find near optimal solution for non-convex optimi-
zation problems. However, for the large-scale and non-smooth problems with
multiple minima these methods may suffer low solution quality and long compu-
tational time. Of all the meta-heuristic search methods, PSO is the most popular
method implemented for solving different ED problems due to its powerful search
ability, especially for nonconvex problems [21]. Several improvements for PSO
method have been proposed for solving nonconvex ED problems such as quantum-
inspired PSO (QPSO) [22], self-organizing hierarchical PSO (SOH_PSO) [23],
modified PSO (MPSO) [24, 25], PSO with modified stochastic acceleration factors
(PSO-MSAF) [26], new PSO with local random search (NPSO-LRS) [27], and
simulated annealing like PSO (SA-PSO) [28]. These improved PSO-based methods
can obtain higher solution quality than the conventional PSO method for compli-
cated nonconvex optimization problems. In addition to the single methods, hybrid
methods have been also developed for dealing with the nonconvex ED problems
such as hybrid technique integrating the uniform design with the genetic algorithm
(UHGA) [29], combining of chaotic differential evolution and quadratic pro-
gramming (DEC-SQP) [30, 31], self-tuning hybrid differential evolution (self-
tuning HDE) [32], and fuzzy adaptive particle swarm optimization algorithm with
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Nelder–Mead simplex search (FAPSO-NM) [33]. These hybrid methods utilize the
advantages of each element method to enhance their search ability for the complex
problems. Consequently, they become powerful search methods for obtaining
higher solution quality than the element methods. However, these hybrid methods
may be more complicated and slower than the element methods due to combination
of several operations.

In this chapter, a pseudo-gradient based particle swarm optimization (PGPSO)
method is proposed for solving nonconvex ED problems considering valve point
effects, multiple fuels, and prohibited operating zones. The proposed PGPSO is
based on the self-organizing hierarchical particle swarm optimizer with time-
varying acceleration coefficients (HPSO-TVAC) [34] with position of particles
guided by a pseudo-gradient [35]. The pseudo-gradient here is to determine an
appropriate direction for the particles during their movement so that they can
quickly move to an optimal solution. The proposed method has been tested on
several systems and the obtained results are compared to those from many other
methods available in the literature.

The remaining organization the chapter is as follows. The formulation of
nonconvex ED problems with valve point loading effects, multiple fuels, and
prohibited operating zones are presented in Sect. 2. The PGPSO method is
addressed in Sect. 3. The implementation of the PGPSO method to the nonconvex
ED problems is described in Sect. 4. The numerical results are followed in Sect. 5.
Finally, the conclusion is given.

2 Problem Formulation

The objective of an ED problem is to minimize the total cost of thermal generating
units of a system over some appropriate period (1 h typically) while satisfying
various constraints including system and unit operating constraints. Mathemati-
cally, the nonconvex ED problems are formulated as follows.

2.1 ED Problem with Valve Point Effects

The ED problem with valve point effects (VPE) is a non-smooth and non-convex
problem with multiple minima due to taking into consideration of ripples in the
heat-rate curve of boilers. The model of valve point loading effects has been
proposed in Walter and Sheble [36] by introducing a sinusoidal function added to
the quadratic fuel cost function. The objective of the problem is written as:

Min F ¼
XN

i¼1

FiðPiÞ ð1Þ
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where the fuel cost function of unit i with VPE is represented by Sinha et al. [13]:

FiðPiÞ ¼ ai þ biPi þ ciP
2
i þ ei � sinðfi � ðPi;min � PiÞÞ

�� �� ð2Þ

subject to

1. Real power balance: The total real power output of generating units satisfies
total real load demand plus power loss:

XN

i¼1

Pi ¼ PD þ PL ð3Þ

where the power loss PL can be approximately calculated by Kron’s formula [3]:

PL ¼
XN

i¼1

XN

j¼1

PiBijPj þ
XN

i¼1

B0iPi þ B00 ð4Þ

2. Generator capacity limits: The real power output of generating units should be
within between their upper and lower bounds by:

Pi;min�Pi�Pi;max ð5Þ

2.2 ED Problem with Multiple Fuels

In the ED problem with multiple fuels (MF), the piecewise quadratic function is
used to represent the multiple fuels which are available for each generating unit
[5]. The fuel cost function of unit i is defined as [10]:

FiðPiÞ ¼

ai1 þ bi1Pi þ ci1P2
i ; fuel 1; Pi;min�Pi�Pi1

ai2 þ bi2Pi þ ci2P2
i ; fuel 2; Pi1\Pi�Pi2

. . .

aij þ bijPi þ cijP
2
i ; fuel j; Pij�1\Pi�Pi;max

8>>>><
>>>>:

ð6Þ

For generator i with j fuel options in (6), its cost curve is divided into j discrete
segments between lower limit Pi,min and upper limit Pi,max, in which each fuel type
is represented by a quadratic function with lower power output limit Pij-1 and
upper power output limit Pij.
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The objective of the ED problem with multiple fuels is to minimize total
generator cost (1) with fuel cost function in (6) subject to the real power balance
constraint (3) and generator capacity limits (5).

2.3 ED Problem with Both Valve Point Effects and Multiple
Fuels

Thermal generating units can be supplied with multiple fuel sources and their
boilers have also valve points for controlling their power outputs [12]. The fuel
cost function of generating unit i is represented as:

FiðPiÞ ¼

Fi1ðPiÞ; fuel 1; Pi;min�Pi�Pi1

Fi2ðPiÞ; fuel 2; Pi1\Pi�Pi2

. . .

FijðPiÞ; fuel j; Pij�1\Pi�Pi;max

8>>><
>>>:

ð7Þ

where the fuel cost function for fuel type j of unit i is determined by:

FijðPijÞ ¼ aij þ bijPji þ cijP
2
ij þ eij � sinðfij � ðPij;min � PijÞÞ

�� �� ð8Þ

The objective of the ED problem with both valve point effects and multiple
fuels is to minimize total generator cost (1) with fuel cost function in (7) subject to
the real power balance constraint (3) and generator capacity limits (5).

2.4 ED Problem with Prohibited Operating Zones

In some practical cases, thermal generating units may have prohibited operating
zones (POZ) due to physical constraints on components of units. Consequently, the
whole operating region of a generating unit with prohibited operating zones will be
broken into several isolated feasible sub-regions [20].

The fuel cost function for each unit in the ED problem with POZ is a quadratic
function as in (2) neglecting the sinusoidal term and the equality and inequality
constraints for this problem include the real power balance constraint (3), gener-
ator capacity limits (5) for units having no POZ, and

1. Prohibited operating zones: For generating units with POZ, their entire feasible
operating zones are decomposed in feasible sub-regions and their feasible
operating points should be in one of the sub-regions as follows:
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Pi 2
Pi;min�Pi�Pl

i1

Pu
ik�1�Pi�Pl

ik; k ¼ 2; . . .; ni

Pu
ini
�Pi�Pi;max

8><
>:

; 8i 2 X ð9Þ

2. Ramp rate constraints: The increased or decreased power output of a unit from
its initial operating point to the next one should not exceed its ramp up and
down rate limits. The ramp rate constraints are determined by:

Pi � Pi0�URi; if generation increases ð10Þ

Pi0 � Pi�DRi; if generation decreases ð11Þ

3 Pseudo-Gradient Based Particle Swarm Optimization

3.1 Self-organizing Hierarchical Particle Swarm Optimizer

PSO has become one of the most popular methods applied in various optimization
problems due to its simplicity and capability to find near optimal solution, espe-
cially for complicated and non-convex problems [37]. Several improvements have
been made to enhance the search ability of PSO to deal with more complicated and
larger-scale problems [21]. In this chapter, the new improvement is based on the
self-organizing hierarchical particle swarm optimizer with time-varying acceler-
ation coefficients (HPSO-TVAC) [34]. For the implementation of the HPSO-
TVAC on a n-dimension optimization problem, the position and velocity vectors
of particle d are represented by xd = [x1d, x2d, …, xnd] and vd = [v1d, v2d, …, vnd],
respectively. Suppose that the best previous position of particle d is represented by
pbestd = [p1d, p2d, …, pnd] and the best particle among all particles is represented
by gbest, the velocity and position of each particle in the next iteration (k ? 1) for
are calculated as follows:

vðkþ1Þ
id ¼ cðkÞ1 � rand1 � pbestðkÞd � xðkÞid

� �
þ cðkÞ2 � rand2 � gbestðkÞ � xðkÞid

� �

ð12Þ

if vid = 0 and rand3 \ 0.5 then

vid ¼ rand4 � vid;max else vid ¼ �rand5 � vid;max ð13Þ

xðkþ1Þ
id ¼ xðkÞid þ vðkþ1Þ

id ð14Þ

Pseudo-Gradient Based Particle Swarm Optimization 7



where randi, i = 1, 2, …, 5 are randomly generated numbers in [0, 1] and the
cognitive and social acceleration coefficients at iteration k are determined by:

cðkÞ1 ¼ ðc1f � c1iÞ
k

Itermax

þ c1i ð15Þ

cðkÞ2 ¼ ðc2f � c2iÞ
k

Itermax

þ c2i ð16Þ

where k is the iteration counter and Itermax is the maximum number of iterations.
The upper and lower bounds for each particle position xid are limited by the

maximum and minimum limits of the variable represented by the particle,
respectively. The velocity of each particle is limited in [-vid,max, vid,max], i = 1,
…, N, d = 1, …, Np, where the maximum and minimum velocities for element i of
particle d in the search space is determined by:

vid;max ¼ R� ðxid;max � xid;minÞ ð17Þ

vid;min ¼ �vid;max ð18Þ

where vid,max and vid,min are the maximum and minimum limits for element i of
particle d and R is the limit coefficient for maximum velocity of particles.

3.2 Pseudo-Gradient Concept

Pseudo-gradient is to determine the search direction for each individual in popu-
lation based methods [38]. The advantage of the pseudo-gradient is that it can
provide a good direction in the search space of a problem without requiring the
objective function to be differentiable. Therefore, the pseudo-gradient method is
suitable for implementation on the meta-heuristic search methods for solving non-
convex problems with multiple minima.

For a non-differentiable n-dimension optimization problem with objective
function f(x) where x = [x1, x2, …, xn], a pseudo-gradient gp(x) for the objective
function is defined as follows [35]: Supposed that xk = [xk1, xk2, …, xkn] is a point
in the search space of the problem and it moves to another point xl. There are two
abilities for this movement.

1. If f(xl) \ f(xk), the direction from xk to xl is defined as the positive direction.
The pseudo-gradient at point xl is determined by:

gpðxlÞ ¼ dðxl1Þ; dðxl2Þ; . . .; dðxlnÞ½ �T ð19Þ
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where d(xli) is the direction indicator of element xi moving from point k to point
l defined by:

dðxliÞ ¼
1 if xli [ xki

0 if xli ¼ xki

�1 if xli\xki

8<
: ð20Þ

2. If f(xl) C f(xk), the direction from xk to xl is defined as the negative direction.
The pseudo-gradient at point xl is determined by:

gpðxlÞ ¼ 0 ð21Þ

The pseudo-gradient can also indicate a good direction similar to the conven-
tional gradient in the search space based on the two last points. From the defini-
tion, if gp(xl) = 0, it implies that a better solution for the objective function could
be found in the next step based on the direction indicated by the pseudo-gradient
gp(xl) at point l. Otherwise, the search direction at this point should be changed.

3.3 Proposed Pseudo-Gradient Based Particle Swarm
Optimization

In this chapter, the proposed PGPSO is a combination of the HPSO-TVAC and
pseudo-gradient. For implementation of the pseudo-gradient in the HPSO-TVAC,
the two points considered here corresponding to xk and xl are x(k) and x(k+1),
respectively. Therefore, the updated position for particles in (14) is rewritten as:

xðkþ1Þ
id ¼

xðkÞid þ a� d xðkþ1Þ
id

� �
� vðkþ1Þ

id

���
��� if gp xðkþ1Þ

id

� �
6¼ 0

xðkÞid þ vðkþ1Þ
id otherwise

(
ð22Þ

where a[ 0 is the acceleration factor for updating particle’s position.
In (22), if the pseudo-gradient is non-zero, the position of the involved particle

is quickly displaced to the global solution by its enhanced velocity; otherwise the
position is normally updated as in (14). The value of a can be adjusted so that a
particle can move faster or slower depending on the characteristic of each problem.
In fact, too large value of a may lead to optimal solution ignored since the particles
are at their limit positions while too small value of a may lead to particles trapped
in local minima in the search space. In our experience, the proper values of a can
be tuned in the range from 1 to 10.

The proposed PGPSO here is an improvement from the HPSO-TVAC method
with its search capability enhanced by the pseudo-gradient. The advantage of the
PGPSO is that its search capability is better than the HPSO-TVAC with the
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support from the pseudo-gradient. During the search process, the particle’s
velocity will be accelerated if the pseudo-gradient indicates that the direction will
lead to minimization of the objective function. Consequently, the particle can
quickly move to the optimal position. In contrast, if the pseudo-gradient indicates
that the direction will not lead to minimization of the objective function, the
particle’s position will be updated as the conventional PSO method. Moreover, the
acceleration factor can be appropriately selected so that the particles can avoid
ignoring optimal position or being trapped in local minima. Therefore, the PGPSO
is a simple PSO method but more efficient than the HPSO-TVAC method, espe-
cially for nonconvex optimization problems with multiple minima.

4 Implementation of PGPSO to Nonconvex ED Problems

The proposed PGPSO here is implemented for the general problem which includes
all the generator characteristics and constraints from the formulated problems. For
properly handling the equality constraint of real power balance from the problem,
the slack variable method is used. In addition, a heuristic search is also applied for
a repairing strategy in case of prohibited zones violated. Other constraints for slack
unit limits are handled in the fitness function for the problem. Therefore, all the
constraints in the general problem are properly handled in the proposed PGPSO
method.

4.1 Calculation of Power Output for Slack Unit

To guarantee that the equality constraint (3) is always satisfied, a slack generating
unit is arbitrarily chosen and therefore its power output will be dependent on the
power outputs of remaining N - 1 generating units in the system. The method for
calculation of power output for the slack unit is given in Kuo [28].

4.2 Handling of Ramp Rate Constraints and POZ Violation

To handle the ramp rate limits, the highest and lowest possible power outputs of
units are determined based on their power output limits, initial power output and
ramp rate constraints as:

Pi;high ¼ minfPi;max; Pi0 þ URig ð23Þ

Pi;low ¼ maxfPi;min; Pi0 � DRig ð24Þ

10 V. N. Dieu et al.



If the highest and lowest possible power outputs of a generating unit violate its
POZ, the new limits should be redefined. Suppose that the highest or lowest
possible power output of unit i violates its prohibited zone k, the new limit is
redefined as follows:

Pnew
i;high ¼ minfPi;high;P

l
ikg ð25Þ

or

Pnew
i;low ¼ maxfPi;low;P

u
ikg ð26Þ

When a unit operates in one of its prohibited zones, a repairing strategy is used
to force the unit either to move toward the lower bound or upper bound of that
zone. For making a decision based on the operating point of a unit located in one
of its prohibited zones, the middle point of each prohibited zone Pm

ik is firstly
determined by:

Pm
ik ¼

Pl
ik þ Pu

ik

2
ð27Þ

This middle point divides a prohibited zone in two sub-zones, the left and right
prohibited sub-zones with respect to the point. Therefore, the operating point Pi of
unit i violating its prohibited zone k will be adjusted by:

Pnew
i ¼ Pl

ik if Pi�Pm
ik

Pu
ik if Pi [ Pm

ik

�
ð28Þ

However, when ramp rate constraints are included, the strategy for handling the
POZ violation is more complicated. There are possibilities for adjusting the
operating point of unit i when violating its prohibited zone k based on its initial
power output Pi0 and the violated position as follows:

• If Pi [ Pm
ik then

Pnew
i ¼

max Pu
ik;Pi;low

� �
; if Pi0�Pu

ik
Pu

ik; if Pi0�Pl
ik and Pu

ik�Pi;high

min Pl
ik;Pi;high

� �
; if Pi0�Pl

ik and Pu
ik [ Pi;high

8<
: ð29Þ

• If Pi\Pm
ik then

Pnew
i ¼

min Pl
ik;Pi;high

� �
; if Pi0�Pl

ik
Pl

ik; if Pi0�Pu
ik and Pl

ik �Pi;low

max Pu
ik;Pi;low

� �
; if Pi0�Pu

ik and Pl
ik\Pi;low

8<
: ð30Þ
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4.3 Implementation of PGPSO

4.3.1 Initialization

A population of Np particles is represented by x = [x1, x2, …, xNp], where each
particle’s position xd = [P1d, …, Ps-1d, Ps+1d, …, PNd]T (d = 1, …, Np) repre-
senting for power output of N - 1 generating units is initialized by:

xð0Þid ¼ ð1þ randÞ � Pð0Þi ; i 6¼ s ð31Þ

where rand is a normally distributed stochastic number, Pi
(0) is the initial operating

point obtained by quadratic programming (QP) with quadratic objective function
neglecting power loss, and s is the slack unit which is initially selected.

For the obtained initial solution, its upper and lower limits based on the gen-
erator limits should be satisfied:

xid ¼
Pi;high if xid [ Pi;high

Pi;low if xid\Pi;low

xð0Þid otherwise

8<
: ; i 6¼ s ð32Þ

In addition, this initial solution should be also checked for POZ violation. If the
violation is found, the repairing strategy in Sect. 4.2 is used to move the operating
point to a feasible region. Based on the initial position of particles, the fitness
function FTd to be minimized corresponding to each particle for the considered
problem is calculated:

FTd ¼
XN

i¼1

FiðxidÞ þ Ks � Psd � Plim
s

� 	2 ð33Þ

where Ks is the penalty factor for the slack unit, Psd is the power output of the slack
unit calculated from Sect. 4.1 corresponding to particle d in the population, and the
power limits for the slack unit Ps

lim are determined based on its calculated output as
follows:

Plim
s ¼

Ps;high if Psd [ Ps;high

Ps;low if Psd\Ps;low

Psd otherwise

8<
: ð34Þ

where Ps,high and Ps,low are the highest and lowest possible power outputs of the
slack unit.

The initial position is set to best value of each particle’s position pbestd (d = 1,
…, Nd) and the particle’s position corresponding to the best fitness function in (33)
is set to the best particle gbest among all particles in the population.

12 V. N. Dieu et al.



4.3.2 Calculation of Particle’s Velocity and Position

The obtained initial position of particles is used for calculation of their velocity.
The new velocity of particles is calculated as in (12–13) from the HPSO-TVAC
method. The position of particles is then updated with the guidance of pseudo-
gradient as in (22).

The new position of each particle should also satisfy their upper and lower
limits as in (32) and the repairing strategy in Sect. 4.2 is used if any POZ violation
is found. The new value of the fitness function is evaluated using (33) based on the
new particle’s position for determining the newly best position pbestd for each
particle and best global position gbest among all particles.

4.3.3 Stopping Criteria

The algorithm of the proposed PGPSO is terminated when the predefined maxi-
mum number of iterations Itermax is reached.

5 Numerical Results

The proposed PGPSO is tested on different systems corresponding to the formu-
lated problems. The algorithm of the PGPSO is coded in Matlab platform and run
100 independent trials for each test case on a 2.1 GHz PC with 2 GB of RAM. In
this chapter, the initial operating point is obtained by QP from optimization
toolbox in Matlab.

5.1 Selection of Parameters

In the proposed PGPSO method, some parameters are predetermined for dealing
with the systems such as cognitive acceleration and social factors, number of
particles Np, particle’s velocity limit coefficient R, updating accelerator factor a,
and maximum number of iterations Itermax. Among these parameters, the cognitive
acceleration and social factors can be easily fixed by c1i = c2f = 2.5,
c2i = c1f = 0.2 [23]. On the one hand, the penalty factor for the slack unit is large
enough and set to 104 for all systems. On the other hand, the number of particles
and maximum number of iterations depend on the dimension and complexity of
problems. The number of particles is chosen in the range from twice to twenty
times of the problem dimension while the maximum number of iterations is chosen
in the range from 100 to 500 iterations. In this chapter, these parameters are chosen
by experiments. For each problem, their value is first fixed at the low range and
then increased. If the obtained result after one run is considerably improved in
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comparison with the previous one, their value will be increased. Otherwise, the
obtained value is chosen as the proper value for multiple runs. In this chapter, the
value of R will be reduced by 10 % from its initial value for every 100-iteration
interval. By experiments, the values for the initial R and a can be chosen in a range
of [0.1, 0.5] and [1, 10], respectively. For tuning R, its value is initially set to 0.1
and the step is set to 0.05 in the range [0.1, 0.25] and 0.1 in the range [0.3, 0.5].

Table 1 Additional parameters of PGPSO

System No. of units Np Itermax Initial R a

Valve point effects 40 500 500 0.40 10.0
Multiple fuels 10 20 100 0.15 5.0
Prohibited operating zones 15 200 100 0.10 1.0
Valve point effects and multiple fuels 10 50 200 0.15 1.5

20 50 500 0.15 2.5
40 100 500 0.20 3.0
80 200 500 0.10 2.0

160 300 500 0.10 2.0

Table 2 Solution for 40-unit system with VPE

Unit Pgi (MW) Unit Pgi (MW)

1 110.8300 21 523.2797
2 110.8017 22 523.2841
3 97.4012 23 523.2808
4 179.7347 24 523.2798
5 92.6126 25 523.2801
6 139.9970 26 523.2837
7 259.6112 27 10.0000
8 284.6113 28 10.0000
9 284.6027 29 10.0037

10 130.0021 30 87.8077
11 168.8009 31 189.9993
12 168.7993 32 190.0000
13 214.7600 33 189.9986
14 304.5194 34 164.8063
15 394.2808 35 164.8018
16 394.2813 36 164.8468
17 489.2789 37 110.0000
18 489.2796 38 109.9999
19 511.2805 39 109.9994
20 511.2800 40 511.2830
Min cost ($/h) 121,415.2447
Average cost ($/h) 121,998.6771
Max cost ($/h) 122,746.9205
Standard deviation ($/h) 329.0243
Average CPU time (s) 5.895
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The value of a is also tuned by similar way by setting its initial value to 1.0 with
the step of 0.5 in the range [1, 3] and 1.0 in the range [4, 10]. By experiments, the
fine tuned parameters for each considered test system in this chapter are shown in
Table 1.

5.2 Systems with Valve Point Effects

The proposed PGPSO is tested on a large-scale system from [13] comprising 40
generating units supplying to a load demand of 10,500 MW neglecting power loss.
The optimal solution obtained by the proposed PGPSO method for this case is
given in Table 2.

Table 3 shows a comparison of total cost and computational time from the
proposed PGPSO method to those from improved fast EP (IFEP) [13], MSL [8],
MPSO [24], evolutionary strategy optimization (ESO) [14], DEC-SQP [30, 31],
self-tuning HDE [32], NPSO-LRS [27], NDS [9], SOH_PSO [23], QPSO [22],
ABC [17], SA-PSO [28], BBO [19], UHGA [29], improved coordinated aggre-
gation-based PSO (ICA-PSO) [39, 40], FAPSO-NM [33], DE [16], modified dif-
ferential evolution (MDE) [41], and integration of the variable DE with the fuzzy
adaptive PSO (FAPSO-VDE) [42]. Apparently, the PGPSO method obtains a less
total cost of 121,415.2447 ($/h) than the total cost of the other methods except the
MDE and FAPSO-VDE methods. Moreover, the PGPSO also obtains a higher

Table 3 Comparison of best
total cost and CPU time for
40-unit system with VPE

Method Total cost ($/h) CPU time (s)

IFEP [13] 122,624.35 1,167.35
MSL [8] 122,406.10 0.078
MPSO [24] 122,252.27 –
ESO [14] 122,122.16 0.261
DEC-SQP [30, 31] 121,741.98 14.26
Self-tuning HDE [32] 121,698.51 6.07
NPSO-LRS [27] 121,664.43 20.74
NDS [9] 121,647.40 4.0471
SOH_PSO [23] 121,501.14 –
QPSO [22] 121,448.21 –
ABC [17] 121,441.03 32.45
SA-PSO [28] 121,430.00 23.89
BBO [19] 121,426.95 1.1749
UHGA [29] 121,424.48 333.68
ICA-PSO [39], [40] 121,422.10 139.92
FAPSO-NM [33] 121,418.30 40
DE [16] 121,416.29 72.94
MDE [41] 121,414.79 –
FAPSO–VDE [42] 121,412.56 22
PGPSO 121,415.24 5.895
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quality solution in a faster manner with 5.895 s which is less than those from the
other methods except MSL, ESO, NDS, and BBO methods. The computational
time from IFEP, MSL, ESO, DEC-SQP, self-tuning HDE, NPSO-LRS, NDS,
ABC, BBO, UHGA, ICA-PSO, DE, and FAPSO–VDE were from a Pentium-II
350 MHz with 128 MB of RAM PC, Pentium IV 1.5 GHz with 512 MB of RAM
PC, Pentium IV PC, 1.1 AMD Athlon GHz with 112 MB of RAM, Pentium
1.5 GHz with 768 MB of RAM, Pentium IV 1.5 GHz with 128 MB of RAM,
Pentium IV 2.6 GHz with 512 MB of RAM, 1.7 GHz with 1 GB of RAM, Pen-
tium IV 2.3 GHz with 512 MB of RAM PC, Pentium IV 2.99 GHz PC, Pentium
IV 1.4 GHz PC, Intel 1.67 GHz with 1 GB of RAM PC, and Pentium-IV 3.0 GHz
PC, respectively. There is no computational time or computer processor reported
for the other methods. In fact, it may not be directly comparable the computational
time among the methods due to different computers and programming languages
used. However, the comparison of computational time can be considered as a basis
for estimation of their efficiency for dealing with the nonconvex ED problems.The
test results have indicated that the PGPSO is effective for solving nonconvex ED
with valve point effects.

5.3 System with Multiple Fuels

The test system from [10] comprises 10 generating units with multiple fuel
options. Various load demands are considered for this system including 2,400,
2,500, 2,600, and 2,700 MW neglecting power loss. The solutions for different

Table 4 Results for 10-unit system with MF

Unit Load demand of
2,400 MW

Load demand of
2,500 MW

Load demand of
2,600 MW

Load demand of
2,700 MW

Fi Pi (MW) Fi Pi (MW) Fi Pi (MW) Fi Pi (MW)

1 1 189.7807 2 206.4667 2 216.2074 2 218.3351
2 1 202.3332 1 206.5038 1 210.8414 1 211.5971
3 1 253.8521 1 265.8326 1 278.5687 1 280.6878
4 3 233.1025 3 235.9293 3 238.9349 3 239.6504
5 1 241.8250 1 257.9819 1 275.7003 1 278.4149
6 3 232.9748 3 235.9461 3 239.0876 3 239.6019
7 1 253.4319 1 269.0991 1 286.0002 1 288.6804
8 3 233.0516 3 235.9656 3 239.1758 3 239.4526
9 1 320.3100 1 331.3439 1 343.3878 3 428.8039

10 1 239.3382 1 254.9309 1 272.0959 1 274.7759
Min total cost ($/h) 481.7227 526.2389 574.3814 623.8095
Average total cost ($/h) 485.3323 531.7085 576.9959 626.7308
Max total cost ($/h) 507.3870 571.6084 598.7630 646.2601
Standard deviation ($/h) 5.4601 7.9350 4.0521 4.3292
CPU (s) 0.228 0.228 0.229 0.233
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system load demands are given in Table 4. The total costs obtained by the PGPSO
for the system with corresponding load demands of 2,400, 2,500, 2,600, and 2,700
are 481.7227 ($/h), 526.2389 ($/h), 574.3814 ($/h), and 623.8095 ($/h),
respectively.

A comparison of the best total costs and average computational times of the
PGPSO and HNUM [5], HNN [10], adaptive HNN (AHNN) [11], MPSO [24], AIS
[18], and augmented Lagrange Hopfield network (ALHN) [43] is made as in
Table 5. For this system, the best total costs from the PGPSO are less than those
from HNUM and HNN for the load demand of 2,400 MW and HNUM, HNN, and
AHNN for the load demand of 2,700 MW and close to those from the other
methods for the remaining cases. For the computational times, the PGPSO is faster
than HNUM, HNN, and AHNN and slightly slower than ALHN. The CPU times
from the HNUM, HNN, AHNN, and ALHN methods were from a VAX 11/780,
IBM PC-386, Compaq 90, and 2.1 GHz PC. There is no CPU time reported for the
AIS method. From the obtained results, it has shown that the PGPSO can obtain
the better solutions in a faster manner due to its powerful search ability.
Accordingly, the proposed PGPSO is effective for solving nonconvex ED with
multiple fuels.

Table 5 Comparison of best total costs and average CPU times for 10-unit system with MF

Method 2,400 MW 2,500 MW

Cost ($/h) CPU (s) Cost ($/h) CPU (s)

HNUM [5] 488.50 1.08 526.70 1.08
HNN [10] 487.87 *60 526.13 *60
AHNN [11] 481.72 *4 526.230 *4
MPSO [24] 481.723 – 526.239 –
AIS [18] 481.723 – 526.240 –
ALHN [43] 481.723 0.042 526.239 0.043
PGPSO 481.723 0.228 526.239 0.228

Method 2,600 MW 2,700 MW

Cost ($/h) CPU (s) Cost ($/h) CPU (s)

HNUM [5] 574.03 1.08 625.18 1.08
HNN [10] 574.26 *60 626.12 *60
AHNN [11] 574.37 *4 626.24 *4
MPSO [24] 574.381 – 623.809 –
AIS [18] 574.381 – 623.809 –
ALHN [43] 574.381 0.047 623.809 0.057
PGPSO 574.381 0.225 623.810 0.233
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5.4 System with Prohibited Operating Zones

The test system consists of 15 units supplying to a load demand of 2,630 MW,
considering ramp rate constraints and system power loss [20]. The results obtained
by the proposed PGPSO for this system are given in Table 6.

The result obtained by the PGPSO is compared to that from GA and PSO in [20],
AIS [18], SOH_PSO [23], MPSO [25], PSO-MSAF [26], and SA-PSO [28] as in
Table 7. The proposed method obtains a less total cost of 32,705.7533 ($/h) than
the best total cost from the other methods. In addition, the proposed method is
faster than GA, PSO, PSO-MSAF, and SA-PSO and slightly slower than
SOH_PSO. The GA and PSO, SOH_PSO, and PSO-MSAF methods were imple-
mented on a Pentium III 550 with 256 MB of RAM, Pentium IV 2.8 GHz with
512 MB of RAM, and Pentium IV 2.60 GHz with 512 MB of RAM, respectively.
There is no computational time reported for the AIS and MPSO methods. The result

Table 6 Results for 15-unit system with POZ

Unit Pi (MW) Unit Pi (MW)

1 454.9644 9 43.2998
2 380.0000 10 160.0000
3 130.0000 11 80.0000
4 130.0000 12 80.0000
5 170.0000 13 25.0721
6 460.0000 14 15.6087
7 430.0000 15 15.7862
8 85.9332
Power loss (MW) 30.6644
Total power (MW) 2,660.6644
Minimum total cost ($/h) 32,705.7533
Average total cost ($/h) 32,716.8369
Maximum total cost ($/h) 32,726.0751
Standard deviation ($/h) 4.0221
CPU time (s) 1.631

Table 7 Comparison of best total cost and average CPU time for 15-unit system with POZ

Method Power loss (MW) Total power (MW) Total cost ($/h) CPU time (s)

GA [20] 38.2782 2,668.40 33,113.00 4.95
PSO [20] 32.4306 2,662.40 32,858.00 2.74
AIS 18 32.4075 2,662.04 32,854.00 –
SOH_PSO [23] 32.2800 2,662.29 32,751.00 0.0936
MPSO [25] 29.9780 2,661.62 32,738.42 –
PSO-MSAF [26] 30.4900 2,660.49 32,713.09 19.15
SA-PSO [28] 30.9080 2,660.90 32,708.00 10.37
PGPSO 30.6644 2,660.66 32,705.75 1.632
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comparison has indicated that the PGPSO can obtain better solution quality than
many other methods for the nonconvex ED with POZ.

5.5 Systems with Both Valve Point Effects and Multiple
Fuels

5.5.1 10-unit System

The test system from [12] comprises 10 units with VPE and MF. This system
supplies to a load demand of 2,700 MW neglecting power loss. Table 8 shows the
result obtained by the proposed PGPSO for this system.

Table 8 Results for 10-unit
system with VPE and MF

Unit Fi Pi (MW)

1 2 218.5941
2 1 210.9690
3 1 280.6574
4 3 240.1769
5 1 279.6374
6 3 240.1769
7 1 290.0615
8 3 239.3707
9 3 427.7234

10 1 272.6326
Min total cost ($/h) 623.8431
Average total cost ($/h) 624.0979
Max total cost ($/h) 626.5191
Standard deviation ($/h) 0.5428
CPU time (s) 1.494

Table 9 Comparison of best
total cost and average CPU
time for 10-unit system with
VPE and MF

Method Total cost ($/h) CPU time (s)

CGA_MU [12] 624.7193 26.64
IGA_MU [12] 624.5178 7.32
PSO-LRS [27] 624.2297 1.81
NPSO [27] 624.1624 0.76
NPSO-LRS [27] 624.1273 1.60
RGA [15] 624.5081 4.1340
DE [15] 624.5146 2.8236
PSO [15] 624.5074 3.3852
PGPSO 623.8431 1.494
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The best total cost and average computational time from the proposed method
are compared to those from other methods such as conventional GA with multi-
plier updating (CGA_MU) and improved GA with multiplier updating (IGA_MU)
in Chiang [12], PSO with local random search (PSO-LRS), new PSO (NPSO), and
NPSO-LRS in Selvakumar and Thanushkodi [27], and real-coded GA (RGA),
PSO, and DE in Manoharan et al. [15] as in Table 9. Obviously, the total cost
obtained from the proposed method for this system is less than that from the other
methods. The proposed PGPSO is also faster than the CGA_MU, IGA_MU, PSO-
LRS, NPSO-LRS, RGA, PSO, and DE methods and slightly slower than the NPSO
method. The computational times for the CGA_MU and IGA_MU methods were
from a PIII-700 PC, the computational times for the PSO-LRS, NPSO, and NPSO-
LRS methods from a Pentium IV 1.5 GHz with 128 MB of RAM, and the com-
putational times for the CGA, PSO, and DE method from a Pentium IV 1.8 GHz
with 1 GB of RAM PC. Test result indicates that the PGPSO can obtain better
solution quality than many other methods for nonconvex ED problem with valve
point effects and multiple fuels.

Table 11 Comparison of average total cost and average CPU time for large-scale systems with
VPE and MF

Method No. of units Total cost ($) CPU time (s)

CGA_MU [12] 20 1,249.3893 80.48
40 2,500.9220 157.39
80 5,008.1426 309.41

160 10,143.7263 621.30
IGA_MU [12] 20 1,249.1179 21.64

40 2,499.8243 43.71
80 5,003.8832 85.67

160 10,042.4742 174.62
PGPSO 20 1,248.9623 4.078

40 2,499.6127 18.645
80 5,003.0250 43.191

160 10,032.4883 91.570

Table 10 Results for large-scale systems with VPE and MF

No. of units 20 40 80 160

Min total cost ($/h) 1,247.7326 2,495.6162 4,994.2781 10,004.7260
Average total cost ($/h) 1,248.9623 2,499.6127 5,003.0250 10,032.4883
Max total cost ($/h) 1,259.2242 2,512.9091 5,021.0196 10,107.1708
Standard deviation ($/h) 2.0378 3.8971 6.2272 17.0031
CPU time (s) 4.078 18.645 43.191 91.570
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5.5.2 Large-Scale Systems

The large-scale systems here consisting of 20, 40, 80, and 160 units are based
on the basic 10-unit system above. The considered systems are created by dupli-
cating the basic 10-unit system with the load demand adjusted proportionally to
the system size. The results obtained by the proposed method for these systems
including minimum costs, average costs, maximum costs, standard deviations, and
computational times are given in Table 10. For all systems, the difference between
the maximum and minimum costs obtained the proposed method is small and the
ratio between the standard deviation and the minimum cost is less than 0.17 %. In
Table 11, the average total costs and computational times from the PGPSO
method are compared to those from CGA_MU and IGA_MU methods in Chiang
[12]. The result comparison has shown that the proposed PGPSO can obtain better
average total costs with faster average computational times than both CGA_MU
and IGA_MU. Therefore, the proposed method is also effective for solving large-
scale nonconvex ED problems with valve point effects and multiple fuels.

6 Conclusion

In this chapter, the newly proposed PGPSO method has been efficiently imple-
mented for solving different nonconvex ED problems. The PGPSO method is a
novel improvement of PSO by combining the HPSO-TVAC method with the
pseudo-gradient to improve its search capability. The pseudo-gradient is efficient
for guiding the search direction for each individual in population based methods.
In addition, an efficient repairing strategy is also used for handling POZ violation
considering ramp rate constraints. With the new improvement, the proposed
PGPSO method is more effective than many other methods in solving nonconex
ED problems with multiple minima. The proposed method has been tested on
different systems with nonconvex generator’s characteristics including valve point
effects, multiple fuels, and prohibited operating zones. Test results have shown
that the proposed PGPSO can obtain better solution quality than many other
methods, leading substantial cost savings.

Appendix

The unit data for 40-unit system with valve point effects are given in Table A1.
The unit data for 10-unit system with multiple fuels is given in Table A2.
The unit data for 15-unit system with prohibited zones is given in Table A3 and

prohibited zones are given in Table A4.
The unit data for 10-unit system with valve pint effects and multiple fuels is

given in Table A5.
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Table A1 Unit data for 40-unit system with valve point effects

Unit ai ($/h) bi ($/MWh) ci ($/MW2h) ei ($/h) fi (1/MW) Pimin (MW) Pimax (MW)

1 94.705 6.73 0.0069 100 0.084 36 114
2 94.705 6.73 0.0069 100 0.084 36 114
3 309.54 7.07 0.02028 100 0.084 60 120
4 369.03 8.18 0.00942 150 0.063 80 190
5 148.89 5.35 0.0114 120 0.077 47 97
6 222.33 8.05 0.01142 100 0.084 68 140
7 287.71 8.03 0.00357 200 0.042 110 300
8 391.98 6.99 0.00492 200 0.042 135 300
9 455.76 6.6 0.00573 200 0.042 135 300

10 722.82 12.9 0.00605 200 0.042 130 300
11 635.2 12.9 0.00515 200 0.042 94 375
12 654.69 12.8 0.00569 200 0.042 94 375
13 913.4 12.5 0.00421 300 0.035 125 500
14 1,760.4 8.84 0.00752 300 0.035 125 500
15 1,728.3 9.15 0.00708 300 0.035 125 500
16 1,728.3 9.15 0.00708 300 0.035 125 500
17 647.85 7.97 0.00313 300 0.035 220 500
18 649.69 7.95 0.00313 300 0.035 220 500
19 647.83 7.97 0.00313 300 0.035 242 550
20 647.81 7.97 0.00313 300 0.035 242 550
21 785.96 6.63 0.00298 300 0.035 254 550
22 785.96 6.63 0.00298 300 0.035 254 550
23 794.53 6.66 0.00284 300 0.035 254 550
24 794.53 6.66 0.00284 300 0.035 254 550
25 801.32 7.1 0.00277 300 0.035 254 550
26 801.32 7.1 0.00277 300 0.035 254 550
27 1,055.1 3.33 0.52124 120 0.077 10 150
28 1,055.1 3.33 0.52124 120 0.077 10 150
29 1,055.1 3.33 0.52124 120 0.077 10 150
30 148.89 5.35 0.0114 120 0.077 47 97
31 222.92 6.43 0.0016 150 0.063 60 190
32 222.92 6.43 0.0016 150 0.063 60 190
33 222.92 6.43 0.0016 150 0.063 60 190
34 107.87 8.95 0.0001 200 0.042 90 200
35 116.58 8.62 0.0001 200 0.042 90 200
36 116.58 8.62 0.0001 200 0.042 90 200
37 307.45 5.88 0.0161 80 0.098 25 110
38 307.45 5.88 0.0161 80 0.098 25 110
39 307.45 5.88 0.0161 80 0.098 25 110
40 647.83 7.97 0.00313 300 0.035 242 550
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Table A2 Unit data for 10-unit system with multiple fuels

Unit Fuel type aij ($/h) bij ($/MWh) cij ($/MW2h) Pijmin (MW) Pijmax (MW)

1 1 26.97 -0.3975 0.002176 100 196
2 21.13 -0.3059 0.001861 196 250

2 2 1.865 -0.03988 0.001138 50 114
3 13.65 -0.198 0.00162 114 157
1 118.4 -1.269 0.004194 157 230

3 1 39.79 -0.3116 0.001457 200 332
3 -2.876 0.03389 0.000804 332 388
2 -59.14 0.4864 1.18E-05 388 500

4 1 1.983 -0.03114 0.001049 99 138
2 52.85 -0.6348 0.002758 138 200
3 266.8 -2.338 0.005935 200 265

5 1 13.92 -0.08733 0.001066 190 338
2 99.76 -0.5206 0.001597 338 407
3 -53.99 0.4462 0.00015 407 490

6 2 1.983 -0.03114 0.001049 85 138
1 52.85 -0.6348 0.002758 138 200
3 266.8 -2.338 0.005935 200 265

7 1 18.93 -0.1325 0.001107 200 331
2 43.77 -0.2267 0.001165 331 391
3 -43.35 0.3559 0.000245 391 500

8 1 1.983 -0.03114 0.001049 99 138
2 52.85 -0.6348 0.002758 138 200
3 266.8 -2.338 0.005935 200 265

9 3 14.23 -0.01817 0.000612 130 213
1 88.53 -0.5675 0.001554 213 370
3 14.23 -0.01817 0.000612 370 440

10 1 13.97 -0.09938 0.001102 200 362
3 46.71 -0.2024 0.001137 362 407
2 -61.13 0.5084 4.16E-05 407 490

Table A3 Unit data for 15-unit system with prohibited zones

Unit ai ($/
h)

bi ($/
MWh)

ci ($/
MW2h)

Pimin

(MW)
Pimax

(MW)
Simax

(MW)
URi

(MW)
DRi

(MW)
Pi0

(MW)

1 671 10.1 0.000299 150 455 50 80 120 400
2 574 10.2 0.000183 150 455 0 80 120 300
3 374 8.8 0.001126 20 130 30 130 130 105
4 374 8.8 0.001126 20 130 30 130 130 100
5 461 10.4 0.000205 150 470 0 80 120 90
6 630 10.1 0.000301 135 460 0 80 120 400
7 548 9.8 0.000364 135 465 50 80 120 350
8 227 11.2 0.000338 60 300 50 65 100 95
9 173 11.2 0.000807 25 162 30 60 100 105

(continued)
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Table A4 Prohibited zones for 15-unit system

Unit Prohibited zone 1 Prohibited zone 2 Prohibited zone 3

2 (185 225) (305 335) (420 450)
5 (180 200) (305 335) (390 420)
6 (230 255) (365 395) (430 455)

12 (30 40) (55 65)

Table A3 (continued)

Unit ai ($/
h)

bi ($/
MWh)

ci ($/
MW2h)

Pimin

(MW)
Pimax

(MW)
Simax

(MW)
URi

(MW)
DRi

(MW)
Pi0

(MW)

10 175 10.7 0.001203 25 160 30 60 100 110
11 186 10.2 0.003586 20 80 20 80 80 60
12 230 9.9 0.005513 20 80 0 80 80 40
13 225 13.1 0.000371 25 85 20 80 80 30
14 309 12.1 0.001929 15 55 40 55 55 20
15 323 12.4 0.004447 15 55 40 55 55 20

Table A5 Unit data for 10-unit system with valve point effects and multiple fuels

Unit Fuel
type

aij ($/h) bij

($/MWh)
cij

($/MW2h)
eij ($/h) fij

(1/MW)
Pijmin

(MW)
Pijmax

(MW)

1 1 26.97 -0.3975 0.002176 0.02697 -3.975 100 196
2 21.13 -0.3059 0.001861 0.02113 -3.059 196 250

2 2 1.865 -0.03988 0.001138 0.001865 -0.3988 50 114
3 13.65 -0.198 0.00162 0.01365 -1.98 114 157
1 118.4 -1.269 0.004194 0.1184 -12.69 157 230

3 1 39.79 -0.3116 0.001457 0.03979 -3.116 200 332
3 -2.876 0.03389 0.000804 -0.00288 0.3389 332 388
2 -59.14 0.4864 1.18E-05 -0.05914 4.864 388 500

4 1 1.983 -0.03114 0.001049 0.001983 -0.3114 99 138
2 52.85 -0.6348 0.002758 0.05285 -6.348 138 200
3 266.8 -2.338 0.005935 0.2668 -23.38 200 265

5 1 13.92 -0.08733 0.001066 0.01392 -0.8733 190 338
2 99.76 -0.5206 0.001597 0.09976 -5.206 338 407
3 -53.99 0.4462 0.00015 -0.05399 4.462 407 490

6 2 1.983 -0.03114 0.001049 0.001983 -0.3114 85 138
1 52.85 -0.6348 0.002758 0.05285 -6.348 138 200
3 266.8 -2.338 0.005935 0.2668 -23.38 200 265

7 1 18.93 -0.1325 0.001107 0.01893 -1.325 200 331
2 43.77 -0.2267 0.001165 0.04377 -2.267 331 391
3 -43.35 0.3559 0.000245 -0.04335 3.559 391 500

(continued)
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